WorldWideScience

Sample records for municipal wastewater effluent

  1. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico.

    Science.gov (United States)

    Brown, Kathryn D; Kulis, Jerzy; Thomson, Bruce; Chapman, Timothy H; Mawhinney, Douglas B

    2006-08-01

    This study had three objectives: 1) determine occurrence of antibiotics in effluent from hospitals, residential facilities, and dairies, and in municipal wastewater 2) determine antibiotic removal at a large wastewater treatment plant (WWTP) in Albuquerque, NM, and 3) determine concentrations of antibiotics in the Rio Grande, which receives wastewater from the Albuquerque WWTP. Twenty-three samples of wastewater and 3 samples of Rio Grande water were analyzed for the presence of 11 antibiotics. Fifty-eight percent of samples had at least one antibiotic present while 25% had three or more. Hospital effluent had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, ofloxacin, lincomycin, and penicillin G, with 4 of 5 hospital samples having at least one antibiotic detected and 3 having four or more. At the residential sampling sites, ofloxacin was found in effluent from assisted living and retirement facilities, while the student dormitory had no detects. Only lincomycin was detected in dairy effluent (in 2 of 8 samples, at 700 and 6600 ng/L). Municipal wastewater had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, and ofloxacin, with 4 of 6 samples having at least one antibiotic present and 3 having 3 or more. The relatively high concentrations (up to 35,500 ng/L) of ofloxacin found in hospital and residential effluent may be of concern due to potential genotoxic effects and development of antibiotic resistance. At the Albuquerque WWTP, both raw wastewater and treated effluent had detections of sulfamethoxazole, trimethoprim, and ofloxacin, at concentrations ranging from 110 to 470 ng/L. However, concentrations in treated effluent were reduced by 20% to 77%. No antibiotics were detected in the Rio Grande upstream of the Albuquerque WWTP discharge, and only one antibiotic, sulfamethoxazole, was detected in the Rio Grande (300 ng/L) below the WWTP.

  2. Two synthetic progestins and natural progesterone are responsible for most of the progestagenic activities in municipal wastewater treatment plant effluents in the Czech and Slovak republics.

    Science.gov (United States)

    Šauer, Pavel; Stará, Alžběta; Golovko, Oksana; Valentová, Olga; Bořík, Adam; Grabic, Roman; Kroupová, Hana Kocour

    2018-06-15

    Vast numbers of xenobiotics are known still to be present in treated municipal wastewater treatment plant (WWTP) effluents. Some of these possess endocrine-disrupting potency and pose risks for exposed aquatic animals. We searched for 17 potential environmental contaminants having affinity to the progesterone receptor. Relative potency values of these progesterone receptor-active chemicals were obtained. On the basis of relative potencies and measured environmental concentrations, the contribution of progestins to measured progestagenic activities was evaluated. Wastewaters (influent and effluent) and surrounding surface waters (upstream and downstream) at six municipal WWTPs were screened using instrumental chemical analysis and in vitro reporter gene bioassay. We showed the presence of target compounds and (anti-)progestagenic activities in municipal wastewater and surface water. Nine and seven progestins were identified in influent and effluent wastewaters, respectively. Only two compounds, progesterone and medroxyprogesterone were found in surface waters. Progestagenic agonistic activities in influents were partially masked by strong anti-progestagenic activities that were detected in all influents and ranged from 2.63 to 83 ng/L of mifepristone equivalents (EQs). Progestagenic activities were detected in all effluents and ranged from 0.06 to 0.47 ng/L of reference compound ORG 2058 EQs (a synthetic progestin equivalents), thus indicating incomplete removal of progestins during wastewater treatment processing. This activity poses a continuing risk for the aquatic environment. By contrast, anti-progestagenic activities showed better removal efficiency in WWTPs compared to progestagenic agonistic activities. Anti-progestagenic activities were found in only three of six effluents and ranged from 0.26 to 2.1 ng/L mifepristone EQs. We explained most of the progestagenic activity in municipal WWTP effluents by the presence of synthetic progestins and

  3. Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Huggett, D.B.; Khan, I.A.; Foran, C.M.; Schlenk, D

    2003-02-01

    This is the first report of beta-adrenergic receptor antagonist pharmaceuticals in United States wastewater effluent. - Beta adrenergic receptor antagonists ({beta}-Blockers) are frequently prescribed medications in the United States and have been identified in European municipal wastewater effluent, however no studies to date have investigated these compounds in United States wastewater effluent. Municipal wastewater effluent was collected from treatment facilities in Mississippi, Texas, and New York to investigate the occurrence of metoprolol, nadolol, and propranolol. Propranolol was identified in all wastewater samples analyzed (n=34) at concentrations {<=}1.9 {mu}g/l. Metoprolol and nadolol were identified in {>=}71% of the samples with concentrations of metoprolol {<=}1.2 {mu}g/l and nadolol {<=}0.36 {mu}g/l. Time course studies at both Mississippi plants and the Texas plant indicate that concentrations of propranolol, metoprolol, and nadolol remain relatively constant at each sampling period. This study indicates that {beta}-Blockers are present in United States wastewater effluent in the ng/l to {mu}g/l range.

  4. Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent

    International Nuclear Information System (INIS)

    Huggett, D.B.; Khan, I.A.; Foran, C.M.; Schlenk, D.

    2003-01-01

    This is the first report of beta-adrenergic receptor antagonist pharmaceuticals in United States wastewater effluent. - Beta adrenergic receptor antagonists (β-Blockers) are frequently prescribed medications in the United States and have been identified in European municipal wastewater effluent, however no studies to date have investigated these compounds in United States wastewater effluent. Municipal wastewater effluent was collected from treatment facilities in Mississippi, Texas, and New York to investigate the occurrence of metoprolol, nadolol, and propranolol. Propranolol was identified in all wastewater samples analyzed (n=34) at concentrations ≤1.9 μg/l. Metoprolol and nadolol were identified in ≥71% of the samples with concentrations of metoprolol ≤1.2 μg/l and nadolol ≤0.36 μg/l. Time course studies at both Mississippi plants and the Texas plant indicate that concentrations of propranolol, metoprolol, and nadolol remain relatively constant at each sampling period. This study indicates that β-Blockers are present in United States wastewater effluent in the ng/l to μg/l range

  5. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    Science.gov (United States)

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  6. Characteristic numbers of granular activated carbon for the elimination of micropollutants from effluents of municipal wastewater treatment plants.

    Science.gov (United States)

    Benstoem, F; Pinnekamp, J

    2017-07-01

    Adsorption on granular activated carbon (GAC) is a promising step to extend existing treatment trains in municipal wastewater treatment plants (WWTPs) and, thus, to reduce the concentration of micropollutants (MPs) (e.g. pharmaceuticals) in wastewater. It is common practice to use characteristic numbers when choosing GAC for a specific application. In this study, characteristic numbers were correlated for five different GACs, with measured adsorption capacities of these carbons for three pharmaceutical MPs (carbamazepine, diclofenac and sulfamethoxazole) and dissolved organic carbon of a WWTP effluent. The adsorption capacities were measured using rapid small scale column tests. Density of GAC showed the highest correlation to adsorption of MP. All other characteristic numbers (iodine number, Brunauer-Emmett-Teller (BET) surface and methylene blue titre) are not suitable markers for choosing an appropriate activated carbon product for the elimination of MPs from municipal wastewater.

  7. Research and development on municipal Wastewater treatment processes using electron beams

    International Nuclear Information System (INIS)

    Kashiwaya, Mamoru

    1994-01-01

    This paper was described concerning the experimental results and their engineering evaluations on electron beam irradiation treatment to effluent and sludge produced in existing municipal wastewater treatment plants implemented by the Japan Atomic Energy Research Institute and the study committee for past five years. Laboratory tests using an electron accelerator were carried out for the purposes of disinfection both to effluent and to dewatered sludge. And composting tests by a pilot-plant were also carried out to find the optimal conditions on design and operation, and initial and operational cost estimations for pelletized sludge with/without the irradiation. It was found that these applications to effluent, sludge and supernatant were quite effective. However, several problems awaiting solution were found from the tests and evaluating works on the matters of marketed electron accelerators. As the results of tests and evaluating works, electron beam irradiation treatment process applied to effluent should be carried out at the municipal wastewater treatment plants. Regenerated granular activated carbon treated by electron beam irradiation may also be applicable to remove hazardous organic substances in effluent. However, long-term tests by pilotplants will be necessary to determine the design criteria, operation and maintenance conditions, and so on. For composting of dewatered sludge produced at municipal wastewater treatment plants, several sizes of smaller electron accelerator are required to be on the market. Especially, medium and small sizes municipalities expect to install composting facilities in the plant. (J.P.N.)

  8. Ultraviolet disinfection of treated municipal wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Vander Laan, H; Cairns, B

    1993-12-31

    A wastewater disinfection system developed by a Canadian company, Trojan Technologies Inc., was discussed. Disinfection for pathogen reduction prior to discharge of treated municipal wastewater back into rivers and lakes has been either ignored or treated by the use of chemicals. In 1979 the first pilot ultraviolet (UV) wastewater disinfection system was established. Since then, over 500 municipal UV installations have been commissioned. The largest installation can process 212 million gallons of water per day. The advantages of UV as a disinfectant are: (1) It is more effective than chlorine. (2) There are no mutagenic/carcinogenic byproducts formed with UV. (3) No toxic chemical residuals are discharged. (4) UV is safe to both the operators and the public. (5) It is cost effective. Europe has not been as active in wastewater disinfection as has North America. One result of the absence of wastewater disinfection in Europe is that the Rhine River, for example, carries 50 million salmonella per second. Disinfection of wastewater effluents is, of course, indispensable in protecting our drinking water supply. 2 figs.

  9. Evaluation of flat sheet membrane bioreactor efficiency for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Somayeh Fazeli

    2012-01-01

    Conclusion: It is concluded that FS-MBR can be used in the large scale municipal wastewater treatment plants to improve effluent quality due to high removal of COD, BOD 5 , TSS and VSS to meet effluent discharge standards.

  10. Efficacy of HRF in COD Removal from Secondary Effluent of Yasuj Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    M Ehteshami

    2011-10-01

    Full Text Available Background & Aim: Re-use of wastewater is an appropriate approach for development of water resources and water supply strategies. The purpose of this study was to determine the efficacy of HRF in COD removal from secondary effluent of municipal wastewater in Yasouj. Methods: The pilot which was used in the present study was a horizontal roughing filter designed and prepared according to the Wegelin’s Design Criteria. The Samples were removed daily and instantaneous based on the predicted number of samples (28 samples at each filtration rate from the input and output filter, and then tested in the laboratory by the D5000 device. The collected data was analyzed using ANOVA and paired t-test. Results: The results indicated that the average COD removal in the filtration rate of 0.5, 1, and 1.5 were 60, 51, and 38 percent respectively. Conclusion: The average output of the HRF for all three filtration rates was lower than the maximum EPA standard of Iran.

  11. Removal of Alkylphenols from Industrial and Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    J. Derco

    2017-07-01

    Full Text Available The results of the study of removal of nonylphenol, octylphenol and their ethoxylates from real industrial and municipal wastewater are presented. Industrial wastewater was pre-treated by coagulation with FeCl3 and adsorption on zeolite, before discharging into municipal sewer system. Their removal efficiencies in primary sedimentation tank of municipal WWTP were very low. From the practical point of view, the highest and the most significant removal efficiencies within the whole WWTP were observed for nonylphenol and nonylphenol ethoxylates. Dominancy of abiotic mechanisms of alkylphenols removal follows from adsorption measurements. Activated sludge cultivated in lab-scale extended aeration tank accounted for relatively high adsorption affinity to these substances. Activated sludge sampled from municipal wastewater treatment plant (MWWTP receiving industrial wastewater containing alkylphenols accounted for very low adsorption affinity to these pollutants. Significantly higher removal efficiency of octylphenol ethoxylates was observed with the O3/granular active carbon (GAC process compared to the ozonation process alone. Lower toxicity impact of intermediates and products of ozonation treatment on Vibrio fischeri was measured in comparison to the O3/GAC process. Actually, the municipal WWTP effluent discharge concentration values complies with EQS values, including nonylphenols.

  12. Stress-related gene expression changes in rainbow trout hepatocytes exposed to various municipal wastewater treatment influents and effluents.

    Science.gov (United States)

    Gagné, F; Smyth, S A; André, C; Douville, M; Gélinas, M; Barclay, K

    2013-03-01

    processes had the best performance. We found that the effects of municipal effluents on gene expression depended on the population size, the initial properties of the incoming influent, and the wastewater treatment method applied. Considering that the long-term goals of wastewater treatment is to produce clean effluents for the aquatic biota and independent of the incoming influent, more research is needed in developing treatment processes to better protect aquatic life from anthropogenic contamination.

  13. Cultivation of Azolla microphylla biomass on secondary-treated Delhi municipal effluents

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Saxena, S. [Indian Agricultural Research Institute, New Delhi (India). Centre for Conservation of Blue Green Algae

    2005-07-01

    Study was conducted on recycling municipal wastewaters for cultivation of Azolla microphylla biomass, which is used for inoculation into paddy fields as N biofertiliser and has other applications as green manure, animal feed and biofilter. Secondary-treated municipal wastewaters were collected from Wazirabad sewage treatment plant in New Delhi during all four seasons and tested for reactive P and heavy metal content. The reactive P levels in effluents ranged between 1-2 ppm and levels of heavy metals like Cd, Pb, Ni, Zn, Fe and Mn were well below permissible limits. A. microphylla was grown in sewage effluents and its dilutions prepared with tapwater. It showed good growth potential on sewage effluents. Doubling times during September and December months compared well with those on Espinase and Watanabe (E and W) medium and tapwater. Dried Azolla biomass produced on sewage waters did not show presence of toxic heavy metals Cd, Cr and Pb. However, levels of P in dried biomass cultivated on sewage effluents were lower as compared to those from E and W medium and tapwater. The biomass produced can be used for inoculating paddy fields or for other applications and polished wastewaters can be recycled for irrigation purposes. (author)

  14. Multi-year prediction of estrogenicity in municipal wastewater effluents.

    Science.gov (United States)

    Arlos, Maricor J; Parker, Wayne J; Bicudo, José R; Law, Pam; Marjan, Patricija; Andrews, Susan A; Servos, Mark R

    2018-01-01

    In this study, the estrogenicity of two major wastewater treatment plant (WWTP) effluents located in the central reaches of the Grand River watershed in southern Ontario was estimated using population demographics, excretion rates, and treatment plant-specific removals. Due to the lack of data on estrogen concentrations from direct measurements at WWTPs, the treatment efficiencies through the plants were estimated using the information obtained from an effects-directed analysis. The results show that this approach could effectively estimate the estrogenicity of WWTP effluents, both before and after major infrastructure upgrades were made at the Kitchener WWTP. The model was then applied to several possible future scenarios including population growth and river low flow conditions. The scenario analyses showed that post-upgrade operation of the Kitchener WWTP will not release highly estrogenic effluent under the 2041 projected population increase (36%) or summer low flows. Similarly, the Waterloo WWTP treatment operation is also expected to improve once the upgrades have been fully implemented and is expected to effectively treat estrogens even under extreme scenarios of population growth and river flows. The developed model may be employed to support decision making on wastewater management strategies designed for environmental protection, especially on reducing the endocrine effects in fish exposed to WWTP effluents. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    Science.gov (United States)

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Peracetic acid (PAA) disinfection of primary, secondary and tertiary treated municipal wastewaters.

    Science.gov (United States)

    Koivunen, J; Heinonen-Tanski, H

    2005-11-01

    The efficiency of peracetic acid (PAA) disinfection against enteric bacteria and viruses in municipal wastewaters was studied in pilot-scale. Disinfection pilot-plant was fed with the primary or secondary effluent of Kuopio municipal wastewater treatment plant or tertiary effluent from the pilot-scale dissolved air flotation (DAF) unit. Disinfectant doses ranged from 2 to 7 mg/l PAA in the secondary and tertiary effluents, and from 5 to 15 mg/l PAA in the primary effluents. Disinfection contact times were 4-27 min. Disinfection of secondary and tertiary effluents with 2-7 mg/l PAA and 27 min contact time achieved around 3 log reductions of total coliforms (TC) and enterococci (EC). PAA disinfection also significantly improved the hygienic quality of the primary effluents: 10-15 mg/l PAA achieved 3-4 log reductions of TC and EC, 5 mg/l PAA resulting in below 2 log reductions. F-RNA coliphages were more resistant against the PAA disinfection and around 1 log reductions of these enteric viruses were typically achieved in the disinfection treatments of the primary, secondary and tertiary effluents. Most of the microbial reductions occurred during the first 4-18 min of contact time, depending on the PAA dose and microorganism. The PAA disinfection efficiency remained relatively constant in the secondary and tertiary effluents, despite of small changes of wastewater quality (COD, SS, turbidity, 253.7 nm transmittance) or temperature. The disinfection efficiency clearly decreased in the primary effluents with substantially higher microbial, organic matter and suspended solids concentrations. The results demonstrated that PAA could be a good alternative disinfection method for elimination of enteric microbes from different wastewaters.

  17. Prevalence of Listeria monocytogenes in the river receiving the effluent of municipal wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Atefeh Taherkhani

    2013-01-01

    Full Text Available Aims: The objective of this study was to evaluate the prevalence of Listeria spp. in the river water before and after discharge of the effluent of the municipal wastewater treatment plant (WWTP in Isfahan, Iran. Materials and Methods: A total of 66 samples were collected bi-weekly over 4 months from eleven discrete sampling locations in Zayandehrood River, Iran. Three sampling sites were located above the discharge point and five sites were located after the discharge point of WWTP. Samples were also collected from the influent and the effluent of WWTP. Listeria spp. were isolated using a selective enrichment procedure and a subculture onto polymyxin-acriflavine-lithium chloride-ceftazidime-esculin-mannitol Agar. All isolates were subjected to standard biochemical tests. Results: L. monocytogenes was isolated from influent (83%, effluent (50% and (18.5% river water. Listeria spp. was not found before the discharge point in river water. However, L. monocytogenes was isolated in samples collected from 200 m (33%, 500 m (33%, 2 km (16.5%, 5 km (16.5% and 10 km (16.5% downstream from the WWTP. Listeria innocua (9% and Listeria seeligeri (10% were the second most frequently isolated species. Conclusion: During the wastewater treatment, Listeria spp. is not removed completely. L. monocytogenes is widely distributed in the Zayandehrood river. L. monocytogenes released into surface water demonstrates a potential risk for public health. These results indicate the need for appropriate water management in order to reduce human and animal exposure to such pathogens.

  18. Palm oil mill effluent and municipal wastewater co-treatment by zeolite augmented sequencing batch reactors: Turbidity removal

    Science.gov (United States)

    Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md

    2017-10-01

    Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.

  19. UASB/flash aeration enable complete treatment of municipal wastewater for reuse.

    Science.gov (United States)

    Khan, Abid Ali; Gaur, Rubia Zahid; Lew, Beni; Diamantis, Vasileios; Mehrotra, Indu; Kazmi, A A

    2012-08-01

    A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.

  20. PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments

    International Nuclear Information System (INIS)

    Chen Hong; Zhang Can; Han Jianbo; Yu Yixuan; Zhang Peng

    2012-01-01

    Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in influents, effluents and sludges were investigated by analyzing the samples from twelve wastewater treatment plants (WWTPs) in China. The highest concentrations of PFOS and PFOA in influents were found to occur in municipal and industrial WWTPs, respectively. Relative to PFOS and PFOA concentrations in influents, elevated concentrations were observed in effluents from WWTPs applying anaerobic–anoxic–oxic wastewater treatment process. Importantly, application of previously reported organic carbon normalized partition coefficients (K OC ) derived from sediment-based sorption experiments appear to underestimate the PFOS and PFOA levels in biosolids quantified in the current study. PFOS and PFOA levels in effluents were found to be approximately 27 and 2 times higher than those detected in the effluent-receiving seawater, respectively. However, their levels in this area of seawater haven't exceeded the provisional short-term health advisories in drinking water issued by U.S. EPA yet. - Highlights: ► Levels of PFOS and PFOA in influents, effluents and sludge from Chinese WWTPs were examined. ► Municipal sewage was the main source for PFOS in Chinese WWTPs, while industrial sewage for PFOA. ► PFOS and PFOA concentrations in effluents were much higher than those in receiving seawater. - Levels of PFOS and PFOA in influent, effluent and sludge samples from Chinese WWTPs were examined and found much higher than those in receiving seawater.

  1. Impact of municipal wastewater effluent on seed bank response and soils excavated from a wetland impoundment

    Science.gov (United States)

    Finocchiaro, R.G.; Kremer, R.J.; Fredrickson, L.H.

    2009-01-01

    Intensive management of wetlands to improve wildlife habitat typically includes the manipulation of water depth, duration, and timing to promote desired vegetation communities. Increased societal, industrial, and agricultural demands for water may encourage the use of alternative sources such as wastewater effluents in managed wetlands. However, water quality is commonly overlooked as an influence on wetland soil seed banks and soils. In four separate greenhouse trials conducted over a 2-yr period, we examined the effects of municipal wastewater effluent (WWE) on vegetation of wetland seed banks and soils excavated from a wildlife management area in Missouri, USA. We used microcosms filled with one of two soil materials and irrigated with WWE, Missouri River water, or deionized water to simulate moist-soil conditions. Vegetation that germinated from the soil seed bank was allowed to grow in microcosms for approximately 100 d. Vegetative taxa richness, plant density, and biomass were significantly reduced in WWE-irrigated soil materials compared with other water sources. Salinity and sodicity rapidly increased in WWE-irrigated microcosms and probably was responsible for inhibiting germination or interfering with seedling development. Our results indicate that irrigation with WWE promoted saline-sodic soil conditions, which alters the vegetation community by inhibiting germination or seedling development. ?? 2009, The Society of Wetland Scientists.

  2. Alfred pilot wetland to treat municipal lagoon effluent - case study

    International Nuclear Information System (INIS)

    Crolla, A.; Kinsley, C.

    2002-01-01

    A constructed wetland demonstration system has been built to polish the municipal lagoon effluent from the village of Alfred. The treatment lagoons have an annual discharge in the spring and have currently reached maximum capacity; inhibiting further population growth or expansion of the local agri-food industries. The demonstration wetland system is designed to treat 15% of the municipal lagoon influent, that is, 155 m 3 /day or 23,250 m 3 /year. A three year monitoring program (2000-2002) was put in place to evaluate the wetland as a cost effective means to treat municipal lagoon wastewater for the village of Alfred. The 2000 and 2001 monitoring seasons have been completed, and the 2002 monitoring season will operate between June and October 2002. At the completion of the three year monitoring program the Alfred wetland system will be evaluated for its ability to polish the municipal lagoon effluent to meet the Spring/Summer/Fall discharge criteria, set by the Ontario Ministry of the Environment (MOE), for the receiving water body (Azatica Brook). As phosphorus is the most difficult element to remove down to MOE guidelines, the Alfred research wetland includes slag phosphorus adsorption filters and a vegetated filter as phosphorus polishing systems. Once the wetland system is approved by the MOE, the village of Alfred will be able to increase its capacity for municipal wastewater treatment. Constructed wetlands are still considered innovative systems in Ontario and government ministries (MOE, OMAFRA) are insisting upon 3-4 years of monitoring data for each constructed wetland system established. There is a clear need for monitoring data to be gathered on established systems, and for this data to be evaluated with the goal of developing reliable design guidelines. Ultimately this should result in having constructed wetlands recognised as viable wastewater treatment options in Ontario. With fewer grant programs for rural municipalities, cost effective systems such

  3. Treatment of micropollutants in municipal wastewater using white-rot fungi

    OpenAIRE

    Margot, Jonas; Vargas, Micaela; Contijoch, Andreu; Barry, David Andrew; Holliger, Christof

    2014-01-01

    Treatment of micropollutants such as pharmaceuticals and pesticides in municipal wastewater is challenging due to their very low concentrations (ng/l to µg/l), their relatively low biodegradability, and their different physico-chemical characteristics. One potential way to improve micropollutant biodegradation in wastewater treatment plant (WWTP) effluent is by using microorganisms such as white-rot fungi that produce powerful unspecific oxidative exo-enzymes (laccase, peroxidase) that are ab...

  4. Identification of critical contaminants in wastewater effluent for managed aquifer recharge.

    Science.gov (United States)

    Yuan, Jie; Van Dyke, Michele I; Huck, Peter M

    2017-04-01

    Managed aquifer recharge (MAR) using highly treated effluent from municipal wastewater treatment plants has been recognized as a promising strategy for indirect potable water reuse. Treated wastewater effluent can contain a number of residual contaminants that could have adverse effects on human health, and some jurisdictions have regulations in place to govern these. For those that do not, but where reuse may be under consideration, it is of crucial importance to develop a strategy for identifying priority contaminants, which can then be used to understand the water treatment technologies that might be required. In this study, a multi-criteria approach to identify critical contaminants in wastewater effluent for MAR was developed and applied using a case study site located in southern Ontario, Canada. An important aspect of this approach was the selection of representative compounds for each group of contaminants, based on potential for occurrence in wastewater and expected health or environmental impacts. Due to a lack of MAR regulations in Canada, the study first proposed potential recharge water quality targets. Predominant contaminants, potential additional contaminants, and potential emerging contaminants, which together comprise critical contaminants for MAR with reclaimed water, were then selected based on the case study wastewater effluent monitoring data and literature data. This paper proposes an approach for critical contaminant selection, which will be helpful to guide future implementation of MAR projects using wastewater treatment plant effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Operation and effluent quality of a small rural wastewater treatment ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the impact of effluent and sludge discharges of an abattoir wastewater treatment plant (WWTP) on the operation of a municipal aerated pond WWTP. Experiments were carried out in Cervera WWTP, located in northeastern Spain, which comprises four ponds operating in series.

  6. Peracetic Acid (PAA Disinfection: Inactivation of Microbial Indicators and Pathogenic Bacteria in a Municipal Wastewater Plant

    Directory of Open Access Journals (Sweden)

    Silvia Bonetta

    2017-06-01

    Full Text Available Several studies have noted that treated and untreated wastewaters are primary contributors of a variety of pathogenic microorganisms to the aquatic ecosystem. Conventional wastewater treatment may not be sufficient to achieve microbiologically safe effluent to be discharged into natural waters or reused, thus requiring wastewater effluents to be disinfected. In recent years, peracetic acid (PAA has been adopted as a disinfectant for wastewater effluents. The aim of this study was to evaluate the disinfection efficiency of PAA at low doses (range 0.99–2.10 mg/L against microbial indicators and pathogenic bacteria in a municipal wastewater plant. Samples of untreated sewage and effluents before and after PAA treatment were collected seasonally for 1 year and were analysed for pathogenic Campylobacter, Salmonella spp., E. coli O157:H7 and E. coli virulence genes using molecular methods; moreover, the detection of specific microbial indicators (E. coli, faecal coliforms, enterococci, C. perfringens and Salmonella spp. were carried out using culturing methods. Salmonella spp. DNA was found in all untreated sewage and effluent before PAA treatment, whereas it was recovered in 50% of the samples collected after PAA treatment. Although E. coli O157:H7 was never identified, the occurrence of Shiga-like toxin I amplicons was identified in 75% of the untreated sewage samples, in 50% of the effluents assayed before PAA treatment, and in 25% of the effluents assayed after PAA treatment, whereas the stx2 gene was never found. Campylobacter coli was only detected in one effluent sample before PAA treatment. In the effluents after PAA treatment, a lower load of indicator bacteria was observed compared to the effluents before treatment. The results of this study highlight that the use of low doses of PAA seems to lead to an improvement of the microbiological quality of the effluent, although it is not sufficient to guarantee its suitability for irrigation

  7. Comparative Inactivation of Murine Norovirus and MS2 Bacteriophage by Peracetic Acid and Monochloramine in Municipal Secondary Wastewater Effluent.

    Science.gov (United States)

    Dunkin, Nathan; Weng, ShihChi; Schwab, Kellogg J; McQuarrie, James; Bell, Kati; Jacangelo, Joseph G

    2017-03-07

    Chlorination has long been used for disinfection of municipal wastewater (MWW) effluent while the use peracetic acid (PAA) has been proposed more recently in the United States. Previous work has demonstrated the bactericidal effectiveness of PAA and monochloramine in wastewater, but limited information is available for viruses, especially ones of mammalian origin (e.g., norovirus). Therefore, a comparative assessment was performed of the virucidal efficacy of PAA and monochloramine against murine norovirus (MNV) and MS2 bacteriophage in secondary effluent MWW and phosphate buffer (PB). A suite of inactivation kinetic models was fit to the viral inactivation data. Predicted concentration-time (CT) values for 1-log 10 MS2 reduction by PAA and monochloramine in MWW were 1254 and 1228 mg-min/L, respectively. The 1-, 2-, and 3-log 10 model predicted CT values for MNV viral reduction in MWW were 32, 47, and 69 mg-min/L for PAA and 6, 13, and 28 mg-min/L for monochloramine, respectively. Wastewater treatment plant disinfection practices informed by MS2 inactivation data will likely be protective for public health but may overestimate CT values for reduction of MNV. Additionally, equivalent CT values in PB resulted in greater viral reduction which indicate that viral inactivation data in laboratory grade water may not be generalizable to MWW applications.

  8. ASSESSMENT OF CARBON, NITROGEN AND PHOSPHORUS TRANSFORMATIONS DURING MUNICIPAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Lucyna Bogumiła Przywara

    2017-08-01

    Full Text Available Proper exploitation of waste water treatment plant is strictly connected with monitoring of basic parameters and effectiveness of particular its stages. Legal requirements include not only organic compounds (BOD5, COD and general suspensions but also highly effective removal of nutrients: nitrogen and phosphorus. Effectiveness of removal of biogenic compounds interferes with temperature fluctuations, effluent quality, problems of active sediment. The aim of this study was to show changes in concentrations of organic compounds, nitrogen and phosphorus in the municipal wastewater after subsequent stages of mechanical-biological treatment. During researches samples were taken down by the wastewater treatment line: raw wastewater, after mechanical treatment, pre-denitrification, dephosphatation, denitrification, nitrification and treated wastewater. Another aspect of this study was determination of COD fractions, and their changes in the municipal wastewater, after the successive stages of mechanical-biological treatment. It allows separation of dissolved and non-dissolved organic substances, taking into account also their biodegradability and the lack of susceptibility to biological decomposition. It can also be a very important method of the processes control during wastewater treatment.

  9. Investigation of Irrigation Reuse Potential of Wastewater Treatment Effluent from Hamedan Atieh-Sazan General Hospital

    Directory of Open Access Journals (Sweden)

    Mohammad Binavapour

    2007-12-01

    Full Text Available Hospital wastewater is a type of municipal wastewater which may contain pathogenic agents and different microorganisms. If properly treated, the effluent from hospital wastewater treatment facilities can be used for irrigation purposes. To investigate this, the effluent from Hamedan Atieh-Sazan General Hospital was studied. The existing treatment facility uses an extended aeration system with an average wastewater flow rate of approximately 150 m3/day. In addition to evaluating the performance of the wastewater facility at Atieh-Sazan General Hospital, quality parameters of the raw wastewater and the effluent were measured. The mean values obtained for pH, BOD, COD, MPN for total Coliform/100ml, and Nematode/lit in raw wastewater were about 7.1, 238 mg/l, 352 mg/l, 5.5´106, and 2340, respectively. The mean values obtained for pH, BOD, COD, Na%, MPN for total Coliform/100 ml, and Nematode/lit in the effluent were 7.1, 35 mg/L, 77 mg/L, 61, 1561, and 575, respectively. Based on these results, the efficiency of the existing system in removing BOD, COD, and MPN/100 ml were %85.3, %78.3, and %99.97, respectively. With respect to water quality standards available, the quality of the effluent was considered to be suitable for irrigation except for its Na%, MPN for total Coliform, and Nematodes values.

  10. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources.

    Science.gov (United States)

    Cho, Sunja; Lee, Nakyeong; Park, Seonghwan; Yu, Jaecheul; Luong, Thanh Thao; Oh, You-Kwan; Lee, Taeho

    2013-03-01

    In order to reduce input cost for microalgal cultivation, we investigated the feasibility of wastewater taken from a municipal WWTP in Busan, Korea as wastewater nutrients. The wastewaters used in this study were the effluent from a primary settling tank (PS), the effluent from an anaerobic digestion tank (AD), the conflux of wastewaters rejected from sludge-concentrate tanks and dewatering facilities (CR), and two combined wastewaters of AD:PS (10:90, v/v) and AD:CR (10:90, v/v). Chlorella sp. ADE5, which was isolated from the AD, was selected for the feasibility test. The highest biomass production (3.01 g-dry cell weight per liter) of the isolate was obtained with the combined wastewater ADCR, and it was 1.72 times higher than that with BG 11 medium. Interestingly, the cells cultivated with wastewater containing PS wastewater were easily separated from the culture and improved lipid content, especially oleic acid content, in their cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    Energy Technology Data Exchange (ETDEWEB)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-07-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  12. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    International Nuclear Information System (INIS)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-01-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  13. A Survey on the Removal Efficiency of Fat, Oil and Grease in Shiraz Municipal Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Dehghani

    2014-12-01

    Full Text Available Background Fat, oil and grease (FOG in municipal wastewater treatment plant (MWWTP caused many problems. Objectives This study aimed to determine the removal efficiency of FOG in Shiraz MWWTP. Materials and Methods The removal efficiencies of FOG in the MWWTP were studied from June 2011 to September 2011 in Shiraz (Iran. The influent and effluent wastewater samples were collected in a volume of one liter (4 samples per week and analyzed according to the standard methods. Samples are transferred to the laboratory immediately. The concentration of FOG was determined using the solvent extraction and separating funnel and then compared with the effluent standards. To analyze the data, SPSS (version 11.5, Chi-square test and t test were used. Results The results showed that the FOG amount in input raw sewage in the MWWTP from June 2011 to September 2011 was around 25.5 mg/L and the amount in treated wastewater was about 8.1 mg/L. The FOG removal efficiency in this refinery was about 70% and met the environmental standards for the discharge (less than 10 mg/L (P < 0.05. Conclusions The effluent can be discharged to surface waters or used for irrigation. In order to the FOG concentration met the effluent standards, it is very crucial to control the entrance of industrial wastewater to the municipal wastewater collection networks. Otherwise, the MWWTP should be upgraded and the special techniques used to reduce FOG.

  14. Treatment of micropollutants in municipal wastewater: Ozone or powdered activated carbon?

    International Nuclear Information System (INIS)

    Margot, Jonas; Kienle, Cornelia; Magnet, Anoÿs; Weil, Mirco; Rossi, Luca; Alencastro, Luiz Felippe de; Abegglen, Christian; Thonney, Denis; Chèvre, Nathalie; Schärer, Michael

    2013-01-01

    Many organic micropollutants present in wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs). To reduce the release of these substances into the aquatic environment, advanced wastewater treatments are necessary. In this context, two large-scale pilot advanced treatments were tested in parallel over more than one year at the municipal WWTP of Lausanne, Switzerland. The treatments were: i) oxidation by ozone followed by sand filtration (SF) and ii) powdered activated carbon (PAC) adsorption followed by either ultrafiltration (UF) or sand filtration. More than 70 potentially problematic substances (pharmaceuticals, pesticides, endocrine disruptors, drug metabolites and other common chemicals) were regularly measured at different stages of treatment. Additionally, several ecotoxicological tests such as the Yeast Estrogen Screen, a combined algae bioassay and a fish early life stage test were performed to evaluate effluent toxicity. Both treatments significantly improved the effluent quality. Micropollutants were removed on average over 80% compared with raw wastewater, with an average ozone dose of 5.7 mg O 3 l −1 or a PAC dose between 10 and 20 mg l −1 . Depending on the chemical properties of the substances (presence of electron-rich moieties, charge and hydrophobicity), either ozone or PAC performed better. Both advanced treatments led to a clear reduction in toxicity of the effluents, with PAC-UF performing slightly better overall. As both treatments had, on average, relatively similar efficiency, further criteria relevant to their implementation were considered, including local constraints (e.g., safety, sludge disposal, disinfection), operational feasibility and cost. For sensitive receiving waters (drinking water resources or recreational waters), the PAC-UF treatment, despite its current higher cost, was considered to be the most suitable option, enabling good removal of most

  15. Irrigation of Castor Bean (Ricinus communis L. and Sunflower (Helianthus annus L. Plant Species with Municipal Wastewater Effluent: Impacts on Soil Properties and Seed Yield

    Directory of Open Access Journals (Sweden)

    Vasileios A. Tzanakakis

    2011-11-01

    Full Text Available The effects of plant species (castor bean (Ricinus communis L. versus sunflower (Helianthus annus L. and irrigation regime (freshwater versus secondary treated municipal wastewater on soil properties and on seed and biodiesel yield were studied in a three year pot trial. Plant species were irrigated at rates according to their water requirements with either freshwater or wastewater effluent. Pots irrigated with freshwater received commercial fertilizer, containing N, P, and K, applied at the beginning of each irrigation period. The results obtained in this study showed that irrigation with effluent did not result in significant changes in soil pH, soil organic matter (SOM, total kjeldahl nitrogen (TKN, and dehydrogenase activity, whereas soil available P was found to increase in the upper soil layer. Soil salinity varied slightly throughout the experiment in effluent irrigated pots but no change was detected at the end of the experiment compared to the initial value, suggesting sufficient salt leaching. Pots irrigated with effluent had higher soil salinity, P, and dehydrogenase activity but lower SOM and TKN than freshwater irrigated pots. Sunflower showed greater SOM and TKN values than castor bean suggesting differences between plant species in the microorganisms carrying out C and N mineralization in the soil. Plant species irrigated with freshwater achieved higher seed yield compared to those irrigated with effluent probably reflecting the lower level of soil salinity in freshwater irrigated pots. Castor bean achieved greater seed yield than sunflower. Biodiesel production followed the pattern of seed yield. The findings of this study suggest that wastewater effluent can constitute an important source of irrigation water and nutrients for bioenergy crop cultivations with minor adverse impacts on soil properties and seed yield. Plant species play an important role with regard to the changes in soil properties and to the related factors of

  16. Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

    KAUST Repository

    Cheng, Tuoyuan

    2016-05-01

    To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical oxygen demand (COD) together with oil and grease in terms of hexane extractable material (HEM) in the reactors were measured after batch cultivation tests of Chlorella Vulgaris, indicating the releasing algal metabolites were oleaginous (dissolved HEM up to 8.470 mg/L) and might hazard effluent quality. Ultrafiltration adopted as solid-liquid separation step was studied via critical flux and liquid chromatography-organic carbon detection (LC-OCD) analysis. Although nutrients removal was dominated by algal assimilation, nitrogen removal (99.6% maximum) was affected by generation time (2.49 days minimum) instead of specific nitrogen removal rate (sN, 20.72% maximum), while phosphorus removal (49.83% maximum) was related to both generation time and specific phosphorus removal rate (sP, 1.50% maximum). COD increase was affected by cell concentration (370.90 mg/L maximum), specific COD change rate (sCOD, 0.87 maximum) and shading effect. sCOD results implied algal metabolic pathway shift under nutrients stress, generally from lipid accumulation to starch accumulation when phosphorus lower than 5 mg/L, while HEM for batches with initial nitrogen of 10 mg/L implied this threshold around 8 mg/L. HEM and COD results implied algal metabolic pathway shift under nutrients stress. Anaerobic membrane bioreactor effluent polishing showed similar results to synthetic anaerobic secondary effluent with slight inhibition while 4 symbiotic bioremediation of raw municipal wastewater with microalgae and activated sludge showed competition for ammonium together with precipitation or microalgal luxury uptake of phosphorus. Critical flux was governed by algal cell concentration for ultrafiltration membrane with pore size of 30 nm, while

  17. Performance assessment of aquatic macrophytes for treatment of municipal wastewater.

    Science.gov (United States)

    Shah, Mumtaz; Hashmi, Hashim Nisar; Ali, Arshad; Ghumman, Abdul Razzaq

    2014-01-01

    The objective of the study was to evaluate the performance of three different aquatic macrophytes for treatment of municipal wastewater collected from Taxila (Pakistan). A physical model of treatment plant was constructed and was operated for six experimental runs with each species of macrophyte. Every experimental run consist of thirty days period. Regular monitoring of influent and effluent concentrations were made during each experimental run. For the treatment locally available macrophyte species i.e. water hyacinth, duckweed & water lettuce were selected to use. To evaluate the treatment performance of each macrophyte, BOD5, COD, and Nutrients (Nitrogen and Phosphorus) were monitored in effluent from model at different detention time of every experimental run after ensuring steady state conditions. The average reduction of effluent value of each parameter using water hyacinth were 50.61% for BOD5, 46.38% for COD, 40.34% for Nitrogen and 18.76% for Phosphorus. For duckweed the average removal efficiency for selected parameters were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus and for Water Lettuce the average removal efficiency were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus. The mechanisms of pollutant removal in this system include both aerobic and anaerobic microbiological conversions, sorption, sedimentation, volatilization and chemical transformations. The rapid growth of the biomass was measured within first ten days detention time. It was also observed that performance of macrophytes is influenced by variation of pH and Temperature. A pH of 6-9 and Temperature of 15-38°C is most favorable for treatment of wastewater by macrophytes. The option of macrophytes for treatment of Municipal sewage under local environmental conditions can be explored by further verifying the removal efficiency under variation of different environmental conditions. Also this is need of time that macrophyte

  18. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jelic, Aleksandra [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Fatone, Francesco; Di Fabio, Silvia [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Interuniversity Consortium ' Chemistry for the Environment' (INCA), Via delle Industrie, I-30135, Marghera-Venice (Italy); Petrovic, Mira, E-mail: mpetrovic@icra.cat [Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 80010 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona (Spain); Cecchi, Franco [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Interuniversity Consortium ' Chemistry for the Environment' (INCA), Via delle Industrie, I-30135, Marghera-Venice (Italy); Barcelo, Damia [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona (Spain)

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ss-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 {mu}g/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. < 20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg) also indicated that the selected pharmaceuticals preferably remain

  19. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment

    International Nuclear Information System (INIS)

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-01-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification–denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. < 20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg) also indicated that the selected pharmaceuticals preferably remain

  20. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramani, Aparna, E-mail: aparna.27889@gmail.com; Howell, Nathan L., E-mail: nlhowell@central.uh.edu; Rifai, Hanadi S., E-mail: rifai@uh.edu

    2014-03-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K{sub oc} values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K{sub ow}, organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs.

  1. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    International Nuclear Information System (INIS)

    Balasubramani, Aparna; Howell, Nathan L.; Rifai, Hanadi S.

    2014-01-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K oc values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K ow , organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs

  2. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    Decentralised wastewater treatment effluent fertigation: preliminary technical assessment. ... living in informal settlements with the effluent produced being used on agricultural land. ... Banana and taro required 3 514 mm of irrigation effluent.

  3. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  4. Fate of wastewater effluent hER-agonists and hER-antagonists during soil aquifer treatment.

    Science.gov (United States)

    Otakuye, Conroy; Quanrud, David M; Ela, Wendell P; Wicke, Daniel; Lansey, Kevin E; Arnold, Robert G

    2005-04-01

    Estrogen activity was measured in wastewater effluent before and after polishing via soil-aquifer treatment (SAT) using both a (hER-beta) competitive binding assay and a transcriptional activation (yeast estrogen screen, YES) assay. From the competitive binding assay, the equivalent 17alpha-ethinylestradiol (EE2) concentration in secondary effluent was 4.7 nM but decreased to 0.22 nM following SAT. The YES assay indicated that the equivalent EE2 concentration in the same effluent sample was below the method-detection limit (bioassays alone should not be relied upon to measure estrogenic activity in complex environmental samples because the simultaneous presence of both agonists and antagonist compounds can yield false negatives. Multiple in vitro bioassays, sample fractionation or tests designed to measure anti-estrogenic activity can be used to overcome this problem. It is also clear that there are circumstances under which SAT does not completely remove estrogenic activity during municipal wastewater effluent polishing.

  5. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  6. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    Science.gov (United States)

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  7. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents.

    Science.gov (United States)

    Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L

    2013-08-01

    Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

  8. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin.

    Science.gov (United States)

    Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A

    2017-03-01

    The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter ( 3 OM*), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1 O 2 . In all water samples, cimetidine degraded by reaction with 1 O 2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3 OM* and 1 O 2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E 2 /E 3 ratios

  9. Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection.

    Science.gov (United States)

    Klamerth, Nikolaus; Malato, Sixto; Agüera, Ana; Fernández-Alba, Amadeo; Mailhot, Gilles

    2012-03-06

    The goal of this paper was to develop a modified photo-Fenton treatment able to degrade micro pollutants in municipal wastewater treatment plant (MWTP) effluents at a neutral pH with minimal iron and H(2)O(2) concentrations. Complexation of Fe by ethylenediamine-N,N'-disuccinic acid (EDDS) leads to stabilization and solubilization of Fe at natural pH. Photo-Fenton experiments were performed in a pilot compound parabolic collector (CPC) solar plant. Samples were treated with solid phase extraction (SPE) and analyzed by HPLC-Qtrap-MS. The rapid degradation of contaminants within the first minutes of illumination and the low detrimental impact on degradation of bicarbonates present in the water suggested that radical species other than HO(•) are responsible for the efficiency of such photo-Fenton process. Disinfection of MWTP effluents by the same process showed promising results, although disinfection was not complete.

  10. Occurrence of Vibrio Pathotypes in the Final Effluents of Five Wastewater Treatment Plants in Amathole and Chris Hani District Municipalities in South Africa

    Directory of Open Access Journals (Sweden)

    Vuyokazi Nongogo

    2014-08-01

    Full Text Available We assessed the occurrence of Vibrio pathogens in the final effluents of five wastewater treatment plants (WWTPs located in Amathole and Chris Hani District Municipalities in South Africa over a 12 months period between September 2012 and August 2013 using standard membrane filtration technique followed by cultivation on thiosulphate citrate-bile salts-sucrose (TCBS agar. The identities of the presumptive Vibrio isolates were confirmed using polymerase chain reaction (PCR including delineation into V. parahaemolyticus, V. vulnificus and V. fluvialis pathotypes. The counts of Vibrio spp. varied with months in all the study sites and ranged in the order of 101 and 104 CFU/100mL. Vibrio distribution also showed seasonality with high counts being obtained in autumn and spring (p < 0.05. Prevalence of Vibrio spp. among the five WWTPs also differed significantly (p < 0.05. Of the 300 isolates that were confirmed as belonging to the Vibrio genus, 29% (86 were V. fluvialis, 28% (84 were V. vulnificus and 12% (35 were V. parahaemolyticus. The isolation of Vibrio pathogens from the final effluent suggests that this pathogen is in circulation in some pockets of the population and that the WWTPs under study do not efficiently remove bacterial pathogens from the wastewater and consequently are threats to public health.

  11. Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent.

    Science.gov (United States)

    Shin, Dong Yun; Cho, Hyun Uk; Utomo, Joseph Christian; Choi, Yun-Nam; Xu, Xu; Park, Jong Moon

    2015-05-01

    Microalgae, Scenedesmus bijuga, was cultivated in anaerobically digested food wastewater effluent (FWE) to treat the wastewater and produce biodiesel simultaneously. Three different mixing ratios with municipal wastewater were compared for finding out proper dilution ratio in biodiesel production. Of these, 1/20 diluted FWE showed the highest biomass production (1.49 g/L). Lipid content was highest in 1/10 diluted FWE (35.06%), and the lipid productivity showed maximum value in 1/20 diluted FWE (15.59 mg/L/d). Nutrient removal was also measured in the cultivation. FAME compositions were mainly composed of C16-C18 (Over 98.94%) in S. bijuga. In addition, quality of FAMEs was evaluated by Cetane Number (CN) and Bis-allylic Position Equivalent (BAPE). Copyright © 2015. Published by Elsevier Ltd.

  12. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation

    Science.gov (United States)

    We measured the concentrations of 56 active pharmaceutical ingredients (APIs) and seven metabolites, including 50 prioritized APIs, in 24-hour composite effluent samples collected from 50 very large municipal wastewater treatment plants across the US. Hydrochlorothiazide was foun...

  13. Effluent Guidelines

    Science.gov (United States)

    Effluent guidelines are national standards for wastewater discharges to surface waters and municipal sewage treatment plants. We issue the regulations for industrial categories based on the performance of treatment and control technologies.

  14. Seawater-driven forward osmosis for enriching nitrogen and phosphorous in treated municipal wastewater: effect of membrane properties and feed solution chemistry.

    Science.gov (United States)

    Xue, Wenchao; Tobino, Tomohiro; Nakajima, Fumiyuki; Yamamoto, Kazuo

    2015-02-01

    Seawater-driven forward osmosis (FO) is considered to be a novel strategy to concentrate nutrients in treated municipal wastewater for further recovery as well as simultaneous discharge of highly purified wastewater into the sea with low cost. As a preliminary test, the performance of FO membranes in concentrating nutrients was investigated by both batch experiments and model simulation approaches. With synthetic seawater as the draw solution, the dissolved organic carbon, phosphate, and ammonia in the effluent from a membrane bioreactor (MBR) treating municipal wastewater were 2.3-fold, 2.3-fold, and 2.1-fold, respectively, concentrated by the FO process with approximately 57% of water reduction. Most of the dissolved components, including trace metals in the MBR effluent, were highly retained (>80%) in the feed side, indicating high water quality of permeate to be discharged. The effect of membrane properties on the nutrient enrichment performance was investigated by comparing three types of FO membranes. Interestingly, a polyamide membrane possessing a high negative charge demonstrated a poor capability of retaining ammonia, which was hypothesized because of an ion exchange-like mechanism across the membrane prompted by the high ionic concentration of the draw solution. A feed solution pH of 7 was demonstrated to be an optimum condition for improving the overall retention of nutrients, especially for ammonia because of the pH-dependent speciation of ammonia/ammonium forms. The modeling results showed that higher than 10-fold concentrations of ammonia and phosphate are achievable by seawater-driven FO with a draw solution to feed solution volume ratio of 2:1. The enriched municipal wastewater contains nitrogen and phosphorous concentrations comparable with typical animal wastewater and anaerobic digestion effluent, which are used for direct nutrient recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Europe-wide survey of estrogenicity in wastewater treatment plant effluents: the need for the effect-based monitoring.

    Science.gov (United States)

    Jarošová, Barbora; Erseková, Anita; Hilscherová, Klára; Loos, Robert; Gawlik, Bernd M; Giesy, John P; Bláha, Ludek

    2014-09-01

    A pan-European monitoring campaign of the wastewater treatment plant (WWTP) effluents was conducted to obtain a concise picture on a broad range of pollutants including estrogenic compounds. Snapshot samples from 75 WWTP effluents were collected and analysed for concentrations of 150 polar organic and 20 inorganic compounds as well as estrogenicity using the MVLN reporter gene assay. The effect-based assessment determined estrogenicity in 27 of 75 samples tested with the concentrations ranging from 0.53 to 17.9 ng/L of 17-beta-estradiol equivalents (EEQ). Approximately one third of municipal WWTP effluents contained EEQ greater than 0.5 ng/L EEQ, which confirmed the importance of cities as the major contamination source. Beside municipal WWTPs, some treated industrial wastewaters also exhibited detectable EEQ, indicating the importance to investigate phytoestrogens released from plant processing factories. No steroid estrogens were detected in any of the samples by instrumental methods above their limits of quantification of 10 ng/L, and none of the other analysed classes of chemicals showed correlation with detected EEQs. The study demonstrates the need of effect-based monitoring to assess certain classes of contaminants such as estrogens, which are known to occur at low concentrations being of serious toxicological concern for aquatic biota.

  16. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah

    KAUST Repository

    Shraim, Amjad; Diab, Atef; Alsuhaimi, Awadh; Niazy, Esmail; Metwally, Mohammed; Amad, Maan H.; Sioud, Salim; Dawoud, Abdulilah

    2012-01-01

    The chemical pollution of water resources is a major challenge facing the humanity in this century. Pharmaceuticals and personal care products (PPCPs) are a group of emerging environmental chemical pollutants distinguished by their bioactivity and high solubility. They may also cause health complications to humans and living organisms. Pharmaceuticals enter the environment, mainly via wastewater and can eventually reach the surface and ground water. Despite this, PPCPs received less attention as environmental pollutants than other chemical pollutants (e.g. heavy metals and pesticides). The purpose of this work was to investigate the presence of some of the most frequently dispensed drugs for the residents of Almadinah Almunawarah, Saudi Arabia in the municipal wastewater before and after treatment. For this purpose, wastewater samples were collected biweekly from the city’s sewage treatment plant for a period of 4 months and analyzed the targeted drugs using tandem LC–MS. Out of the 19 investigated drugs, 5 pharmaceuticals have been found in concentrations greater than the limit of detection in both the influents and effluents of the sewage treatment plant. As expected, the concentrations of investigated pharmaceuticals in the wastewater were found to be low. These drugs and their average concentrations (in ng mL−1) in the influents were: acetaminophen (38.9), metformin (15.2), norfluoxetine (7.07), atenolol (2.04), and cephalexin (1.88). Meanwhile, the effluents contained slightly lower levels (in ng mL−1) than those of influents: acetaminophen (31.2), metformin (3.19), norfluoxetine (7.25), atenolol (0.545), and cephalexin (1.53). The results of this study supported by many other investigations indicate the inefficiency of current conventional wastewater treatment protocols in eliminating such a group of active and potentially hazardous pollutants from the wastewater.

  17. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah

    KAUST Repository

    Shraim, Amjad

    2012-11-29

    The chemical pollution of water resources is a major challenge facing the humanity in this century. Pharmaceuticals and personal care products (PPCPs) are a group of emerging environmental chemical pollutants distinguished by their bioactivity and high solubility. They may also cause health complications to humans and living organisms. Pharmaceuticals enter the environment, mainly via wastewater and can eventually reach the surface and ground water. Despite this, PPCPs received less attention as environmental pollutants than other chemical pollutants (e.g. heavy metals and pesticides). The purpose of this work was to investigate the presence of some of the most frequently dispensed drugs for the residents of Almadinah Almunawarah, Saudi Arabia in the municipal wastewater before and after treatment. For this purpose, wastewater samples were collected biweekly from the city’s sewage treatment plant for a period of 4 months and analyzed the targeted drugs using tandem LC–MS. Out of the 19 investigated drugs, 5 pharmaceuticals have been found in concentrations greater than the limit of detection in both the influents and effluents of the sewage treatment plant. As expected, the concentrations of investigated pharmaceuticals in the wastewater were found to be low. These drugs and their average concentrations (in ng mL−1) in the influents were: acetaminophen (38.9), metformin (15.2), norfluoxetine (7.07), atenolol (2.04), and cephalexin (1.88). Meanwhile, the effluents contained slightly lower levels (in ng mL−1) than those of influents: acetaminophen (31.2), metformin (3.19), norfluoxetine (7.25), atenolol (0.545), and cephalexin (1.53). The results of this study supported by many other investigations indicate the inefficiency of current conventional wastewater treatment protocols in eliminating such a group of active and potentially hazardous pollutants from the wastewater.

  18. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah

    Directory of Open Access Journals (Sweden)

    Amjad Shraim

    2017-02-01

    Full Text Available The chemical pollution of water resources is a major challenge facing the humanity in this century. Pharmaceuticals and personal care products (PPCPs are a group of emerging environmental chemical pollutants distinguished by their bioactivity and high solubility. They may also cause health complications to humans and living organisms. Pharmaceuticals enter the environment, mainly via wastewater and can eventually reach the surface and ground water. Despite this, PPCPs received less attention as environmental pollutants than other chemical pollutants (e.g. heavy metals and pesticides. The purpose of this work was to investigate the presence of some of the most frequently dispensed drugs for the residents of Almadinah Almunawarah, Saudi Arabia in the municipal wastewater before and after treatment. For this purpose, wastewater samples were collected biweekly from the city's sewage treatment plant for a period of 4 months and analyzed the targeted drugs using tandem LC–MS. Out of the 19 investigated drugs, 5 pharmaceuticals have been found in concentrations greater than the limit of detection in both the influents and effluents of the sewage treatment plant. As expected, the concentrations of investigated pharmaceuticals in the wastewater were found to be low. These drugs and their average concentrations (in ng mL−1 in the influents were: acetaminophen (38.9, metformin (15.2, norfluoxetine (7.07, atenolol (2.04, and cephalexin (1.88. Meanwhile, the effluents contained slightly lower levels (in ng mL−1 than those of influents: acetaminophen (31.2, metformin (3.19, norfluoxetine (7.25, atenolol (0.545, and cephalexin (1.53. The results of this study supported by many other investigations indicate the inefficiency of current conventional wastewater treatment protocols in eliminating such a group of active and potentially hazardous pollutants from the wastewater.

  19. Assessment of toxicological profiles of the municipal wastewater effluents using chemical analyses and bioassays.

    Science.gov (United States)

    Smital, Tvrtko; Terzic, Senka; Zaja, Roko; Senta, Ivan; Pivcevic, Branka; Popovic, Marta; Mikac, Iva; Tollefsen, Knut Erik; Thomas, Kevin V; Ahel, Marijan

    2011-05-01

    The hazardous chemical contamination of untreated wastewater and secondary effluent from the wastewater treatment plant (WWTP) of the city of Zagreb, Croatia was comprehensively characterized using large-volume solid-phase extraction (SPE) and silica gel fractionation, followed by a detailed analysis of the resulting extracts by a combination of chemical and bioassay methods. Over 100 individual contaminants or closely related-contaminant groups were identified by high-resolution gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF). Ecotoxicity profiling of the investigated samples, including cytotoxicity, chronic toxicity and EROD activity; inhibition of the multixenobiotic resistance (MXR), genotoxicity and estrogenic potential, revealed the most significant contribution of toxic compounds to be present in polar fractions. Wastewater treatment using conventional activated sludge process reduced the initial toxicity of raw wastewater to various extents, ranging from 28% for algal toxicity to 73.2% for an estrogenic activity. The most efficient toxicity removal was observed for the polar compounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Dissinfection of municipal sludge and wastewater by energized electrons

    International Nuclear Information System (INIS)

    Trump, J.G.; Wright, K.A.; Sinskey, A.J.; Shah, D.N.; Fernald, R.

    1979-01-01

    Laboratory studies at M.I.T. and high flow rate studies at the M.D.C. Deer Island Wastewater Treatment Plant in Boston have shown the practicality and cost effectiveness of disinfecting liquid municipal sludges by injecting energized electrons. A dosage of 400 Kilorads (4 Kilograys) reduces gram-negative bacteria, including coliforms, fecal coliforms, salmonellae and shigellae, in primary raw or anaerobically digested sludges to undetectable levels. Enteric viruses are reduced by one to two orders of magnitude. This treatment also destroys parasite eggs or renders them non-infectious. Model system studies indicate that trace toxic compounds such as PCBs in water are degraded. The estimated cost of sludge disinfection by electron treatment is about $0.80 per liquid tonne for modular systems of 650 liquid tonnes per day capacity. About 6 Kilowatt-hours of input electric power per tonne is required. The temperature rise of the disinfected watery sludge is about 2 0 C. Electron disinfection combined with subsurface soil injection offers an environmentally attractive, energy-efficient, and economic two -step process for land disposal of municipal sludges with water conservation and soil improvement benefits. Combined with widely-distributed ocean feeding, electron disinfection of the municipal sludge of coastal communities offers a safe marine nutrient for increasing fish population in treated ocean areas. The electron disinfection of effluent wastewater, in lieu of chlorination, is a future application which avoids the production of potentially toxic chlorinated hydrocarbons. (Author) [pt

  1. Outfall as a Suitable Alternative for Disposal of Municipal Wastewater in Coastal Areas

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2005-11-01

    Full Text Available Disposal of raw municipal wastewater or effluent of preliminary treatment into the sea and ocean is economically more accepted and technically more efficient than secondary treatment. In this method, the wastewater disposed at the bottom of the sea in some points from diffuser. Nowadays, lots of researchers select outfall as a suitable alternative treatment method for coastal cities. The goal of this paper was to introduce the outfall as a wastewater treatment method and its design criteria considering different characteristics of the sea such as salinity, density, temperature, stratification etc. In addition, stagnant sea and thermal stratification is reviewed. In this paper the latest information were reviewed. In this alternative the wastewater treated under dilution, mixing and natural conditions. Moreover, sensitive coastal point are preserved from different wastewater pollutants. Usually, there is no limitation regarding discharge of coliform, DO, BOD, and nutrient concentrations in initial mixing zoom. The parameters such as thermal stratification, salinity stratification, density stratification, marine flows influence design of outfall.

  2. Variation of antibiotic resistance genes in municipal wastewater treatment plant with A(2)O-MBR system.

    Science.gov (United States)

    Du, Jing; Geng, Jinju; Ren, Hongqiang; Ding, Lili; Xu, Ke; Zhang, Yan

    2015-03-01

    The variation of five antibiotic resistance genes (ARGs)-tetG, tetW, tetX, sul1, and intI1-in a full-scale municipal wastewater treatment plant with A(2)O-MBR system was studied. The concentrations of five resistance genes both in influent and in membrane bioreactor (MBR) effluent decreased as sul1 > intI1 > tetX > tetG > tetW, and an abundance of sul1 was statistically higher than three other tetracycline resistance genes (tetG, tetW, and tetX) (p MBR effluent. The reduction of tetW, intI1, and sul1 was all significantly positively correlated with the reduction of 16S ribosomal DNA (rDNA) in the wastewater treatment process (p MBR was observed for all ARGs.

  3. Tetracycline antibiotics in hospital and municipal wastewaters: a pilot study in Portugal.

    Science.gov (United States)

    Pena, A; Paulo, M; Silva, L J G; Seifrtová, M; Lino, C M; Solich, P

    2010-04-01

    This study investigated the occurrence of tetracyclines (TCs), namely minocycline (MIN), TC, and its epimer epitetracycline (ETC), and doxycycline (DC), in four hospital wastewater effluents and its fate in municipal wastewater treatment plants (WWTPs), in Coimbra, Portugal. Analytical determination was carried out by solid-phase extraction followed by liquid chromatography with fluorescence detection. A gradient system with a mobile phase containing oxalic acid 0.02 M and acetonitrile was used. After postcolumn derivatization with magnesium reagent, TCs were detected at lambda(exc) 386 nm and lambda(em) 500 nm. The proposed method allowed good sensitivity, accuracy, and precision. LOQs were 0.5 microg l(-1) for ETC and TC and 15 and 5 microg l(-1) for MIN and DC, respectively. The recovery values ranged between 66.4% and 117.1%, and intraday and interday repeatability was lower than 6.8%. The method was successfully used to determine the presence of the above-mentioned TCs in 24 wastewater composite samples obtained from hospital effluents and from influent and effluent of the WWTP located in Coimbra, Portugal. MIN and TC were found in 41.7% of the samples; ETC and DC were found in 25% and 8.3% of the samples, respectively. The levels found ranged from 6 to 531.7 microg l(-1) in hospital effluents, while its concentrations in WWTP ranged from 95.8 to 915.3 microg l(-1). A seasonal influence in the concentrations found has also been observed, the levels found in samples collected during spring being higher than those observed in samples collected during autumn; however, these are only preliminary results. The WWTP removal rate ranged between 89.5% and 100%.

  4. Application of photo-fenton as a tertiary treatment of emerging contaminants in municipal wastewater.

    Science.gov (United States)

    Klamerth, N; Malato, S; Maldonado, M I; Agüera, A; Fernández-Alba, A R

    2010-03-01

    This work focuses on the treatment of real effluents from a municipal wastewater treatment plant (RE) with solar photo-Fenton (5 mg and 20 mg L(-1) Fe, pH approximately 3 and 50 mg L(-1) initial H(2)O(2) concentration) at pilot plant scale. In some experiments RE was spiked with 15 different (acetaminophen, antipyrine, atrazine, caffeine, carbamazepine, diclofenac, flumequine, hydroxybiphenyl, ibuprofen, isoproturon, ketorolac, ofloxacin, progesterone, sulfamethoxazole, and triclosan) emerging contaminants (ECs) at 100 and 5 microg L(-1) each which were added directly into RE prior to treatment. All experiments showed successful degradation of ECs in real effluents from different municipal wastewater treatment plants at low iron concentration (5 mg L(-1)). Although the most degradation took place during the Fenton process, photo-Fenton was necessary to degrade all ECs below their limit of detection (LOD). In the case of the RE containing 52 ECs (determined by HPLC-QTRAP-MS), four of them could not be degraded to their LOD and were still present, although at extremely low concentrations (nicotine 47 ng L(-1), cotinine 11 ng L(-1), chlorfenvinphos 99 ng L(-1), and caffeine 8 ng L(-1)). ECs were easily degraded by (*)OH without substantial competition with the organic content of the RE.

  5. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes.

    Science.gov (United States)

    Ben, Weiwei; Wang, Jian; Cao, Rukun; Yang, Min; Zhang, Yu; Qiang, Zhimin

    2017-04-01

    Municipal wastewater treatment plant (WWTP) effluents represent an important contamination source of antibiotic resistance, threatening the ecological safety of receiving environments. In this study, the release of antibiotic resistance to sulfonamides and tetracyclines in the effluents of ten WWTPs in China was investigated. Results indicate that the concentrations of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) ranged from 1.1 × 10 1 to 8.9 × 10 3  CFU mL -1 and 3.6 × 10 1 (tetW) to 5.4 × 10 6 (tetX) copies mL -1 , respectively. There were insignificant correlations of the concentrations of ARB and ARGs with those of corresponding antibiotics. Strong correlations were observed between the total concentrations of tetracycline resistance genes and sulfonamide resistance genes, and both of which were significantly correlated with intI1 concentrations. Statistical analysis of the effluent ARG concentrations in different WWTPs revealed an important role of disinfection in eliminating antibiotic resistance. The release rates of ARB and ARGs through the effluents of ten WWTPs ranged from 5.9 × 10 12 to 4.8 × 10 15  CFU d -1 and 6.4 × 10 12 (tetW) to 1.7 × 10 18 (sul1) copies d -1 , respectively. This study helps the effective assessment and scientific management of ecological risks induced by antibiotic resistance discharged from WWTPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Toxicity of cassava wastewater effluents to African catfish: Clarias ...

    African Journals Online (AJOL)

    The relative lethal and sublethal toxicity of cassava wastewater effluents from a local food factory were investigated on Clarias gariepinus fingerlings using a renewable static bioassay. The physico-chemical characteristics of the cassava wastewater effluents showed a number of deviations from the standards of the Federal ...

  7. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant.

    Science.gov (United States)

    Kumar, Vinod; Chopra, A K

    2018-01-01

    Phytoremediation experiments were carried out to assess the phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater collected from the activated sludge process- (ASP) based municipal wastewater treatment plant. The results revealed that T. natans significantly (P ≤ .05/P ≤ .01/P ≤ .001) reduced the contents of total dissolved solids (TDS), electrical conductivity (EC), biochemical oxygen demand (BOD 5 ), chemical oxygen demand, total Kjeldahl nitrogen, phosphate ([Formula: see text]), sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), standard plate count, and most probable number of the municipal wastewater after phytoremediation experiments. The maximum removal of these parameters was obtained at 60 days of the phytoremediation experiments, but the removal rate of these parameters was gradually increased from 15 to 45 days and it was slightly decreased at 60 days. Most contents of Cd, Cu, Fe, Mn and Zn were translocated in the leaves of T. natans, whereas most contents of Cr and Pb were accumulated in the root of T. natans after phytoremediation experiments. The contents of different biochemical components were recorded in the order of total sugar > crude protein > total ash > crude fiber > total fat in T. natans after phytoremediation of municipal wastewater. Therefore, T. natans was found to be effective for the removal of different parameters of municipal wastewater and can be used effectively to reduce the pollution load of municipal wastewater drained from the ASP-based treatment plants.

  8. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  9. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    International Nuclear Information System (INIS)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-01-01

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe"2"+/H_2O_2) and UV/H_2O_2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H_2O_2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H_2O_2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe"2"+/H_2O_2 had a molar ratio of 0.1 and a H_2O_2 concentration of 0.01 mol L"−"1 with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H_2O_2 process, when the pH was 3.5 with a H_2O_2 concentration of 0.01 mol L"−"1 accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H_2O_2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe"2"+/H_2O_2 molar ratios, H_2O_2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H_2O_2 process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H_2O_2 process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  10. Municipal Treated Wastewater Irrigation: Microbiological Risk Evaluation

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2008-06-01

    Full Text Available Municipal wastewater for irrigation, though treated, can contain substances and pathogens toxic for humans and animals. Pathogens, although not harmful from an agronomical aspect, undoubtedly represent a major concern with regards to sanitary and hygienic profile. In fact, vegetable crops irrigated with treated wastewater exalt the risk of infection since these products can also be eaten raw, as well as transformed or cooked. Practically, the evaluation of the microbiological risk is important to verify if the microbial limits imposed by law for treated municipal wastewater for irrigation, are valid, thus justifying the treatments costs, or if they are too low and, therefore, they don’ t justify them. Different probabilistic models have been studied to assess the microbiological risk; among these, the Beta-Poisson model resulted the most reliable. Thus, the Dipartimento di Scienze delle Produzioni Vegetali of the University of Bari, which has been carrying out researches on irrigation with municipal filtered wastewater for several years, considered interesting to verify if the microbial limits imposed by the italian law n.185/03 are too severe, estimating the biological risk by the probabilistic Beta-Poisson model. Results of field trials on vegetable crops irrigated by municipal filtered wastewater, processed by the Beta-Poisson model, show that the probability to get infection and/or illness is extremely low, and that the actual italian microbial limits are excessively restrictive.

  11. Effluent from Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be removed in the treatment process. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. However, standard techniques for detecting bacteria......-independent 16SrRNA gene amplicon sequencing was applied for the identification and quantification of the microorganisms. In total 84 effluent samples from 14 full-scale Danish wastewater treatment plants were investigated over a period of 3 months. The microbial community composition was investigated by 16S r...... contain pathogenic species. One of these was Arcobacter (Campylobacteraceae) which was found in up to 16% relative abundance. This indicates that Arcobacter, and perhaps other pathogenic genera, are not being removed efficiently in full-scale plants and may pose a potential health safety problem. Further...

  12. Integrated system of phytodepuration and water reclamation: A comparative evaluation of four municipal wastewater treatment plants.

    Science.gov (United States)

    Petroselli, Andrea; Giannotti, Maurizio; Marras, Tatiana; Allegrini, Elena

    2017-06-03

    In dry regions, water resources have become increasingly limited, and the use of alternative sources is considered one of the main strategies in sustainable water management. A highly viable alternative to commonly used water resources is treated municipal wastewater, which could strongly benefit from advanced and low-cost techniques for depuration, such as the integrated system of phytodepuration (ISP). The current manuscript investigates four Italian case studies with different sizes and characteristics. The raw wastewaters and final effluents were sampled on a monthly basis over a period of up to five years, allowing the quantification of the ISP performances. The results obtained show that the investigated plants are characterized by an average efficiency value of approximately 83% for chemical oxygen demand removal, 84% for biochemical oxygen demand, 89% for total nitrogen, 91% for total phosphorus, and 85% for total suspended solids. Moreover, for three of the case studies, the ISP final effluent is suitable for irrigation, and in the fourth case study, the final effluent can be released in surface water.

  13. Microbial-based evaluation of anaerobic membrane bioreactors (AnMBRs) for the sustainable and efficient treatment of municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2017-03-01

    Conventional activated sludge-based wastewater treatment is an energy and resource-intensive process. Historically it has been successful at producing safely treated wastewater effluents in the developed world, specifically in places that have the infrastructure and space to support its operation. However, with a growing need for safe and efficient wastewater treatment across the world in both urban and rural settings, a paradigm shift in waste treatment is proving to be necessary. The sustainability of the future of wastewater treatment, in a significant way, hinges on moving towards energy neutrality and wastewater effluent reuse. This potential for reuse is threatened by the recent emergence and study of contaminants that have not been previously taken into consideration, such as antibiotics and other organic micropollutants (OMPs), antibiotic resistance genes, and persistent pathogenic bacteria. This dissertation focuses on investigating the use of anaerobic membrane bioreactor (AnMBR) technology for the sustainable treatment of municipal-type wastewaters. Specifically, a microbial approach to understanding biofouling and methane recovery potential in anaerobic MBR systems has been employed to assess different reactor systems’ efficiency. This dissertation further compares AnMBRs to their more widely used aerobic counterparts. This comparison specifically focuses on the removal and biodegradation of OMPs and antibiotics in both anaerobic and aerobic MBRs, while also investigating their effect on the proliferation of antibiotic resistance genes. Due to rising interest in wastewater effluent reuse and the lack of a comprehensive understanding of MBR systems’ effects on pathogen proliferation, this dissertation also investigates the presence of pathogens in both aerobic and anaerobic MBR effluents by using molecularbased detection methods. The findings of this dissertation demonstrate that membrane-associated anaerobic digestion processes have significant

  14. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater.

    Science.gov (United States)

    Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2016-12-01

    The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.

  15. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column

    Directory of Open Access Journals (Sweden)

    Swarup Biswas

    2016-01-01

    Full Text Available The performance of a laboratory scale upflow anaerobic sludge blanket (UASB reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%, biochemical oxygen demand (BODT (93.98%, chemical oxygen demand (COD (95.59%, total suspended solid (TSS (95.98%, ammonia (80.68%, nitrite (79.71%, nitrate (71.16%, phosphorous (44.77%, total coliform (TC (99.9%, and fecal coliform (FC (99.9% was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM, X-ray fluorescence spectrum (XRF, and Fourier transforms infrared spectroscopy (FTIR. Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  16. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column.

    Science.gov (United States)

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  17. Antimicrobial resistant Escherichia coli in the municipal wastewater system: effect of hospital effluent and environmental fate.

    Science.gov (United States)

    Harris, Suvi; Morris, Carol; Morris, Dearbhaile; Cormican, Martin; Cummins, Enda

    2014-01-15

    The prevalence of antimicrobial resistant (AMR) bacteria is increasing worldwide and remains a significant medical challenge which may lead to antimicrobial redundancy. The contribution of hospital effluent to the prevalence of resistance in wastewater treatment plant (WWTP) effluents is not fully understood. AMR bacteria contained in hospital effluent may be released into the aquatic and soil environments after WWTP processing. Hence, the objective of this study is to identify the extent hospital effluent contributes to contamination of these environments by comparing two WWTPs, one which receives hospital effluent and one which does not. AMR Escherichia coli were monitored in the two WWTPs. A model was developed using these monitored values to predict the effect of hospital effluent within a WWTP. The model predicted levels of AMR E. coli in the aquatic environment and potential bather exposure to AMR E. coli. The model results were highly variable. WWTP influent containing hospital effluent had a higher mean percentage of AMR E. coli; although, there appeared to be no within treatment plant effect on the prevalence of AMR E. coli. Examination of WWTP sludge showed a similar variation. There appeared to be no consistent effect from the presence of hospital effluent. The human exposure assessment model predicted swimmer intake of AMR E. coli between 6 and 193CFU/100ml sea water. It appears that hospital effluent is not the main contributing factor behind the development and persistence of AMR E. coli within WWTPs, although resistance may be too well-developed to identify an influence from hospital effluent. Mitigation needs to focus on the removal of already present resistant bacteria but for new or hospital specific antimicrobials focus needs to be on their limited release within effluents or separate treatment. © 2013.

  18. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-04-15

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe{sup 2+}/H{sub 2}O{sub 2}) and UV/H{sub 2}O{sub 2} process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H{sub 2}O{sub 2} method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe{sup 2+}/H{sub 2}O{sub 2} had a molar ratio of 0.1 and a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H{sub 2}O{sub 2} process, when the pH was 3.5 with a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H{sub 2}O{sub 2} process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe{sup 2+}/H{sub 2}O{sub 2} molar ratios, H{sub 2}O{sub 2} concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H{sub 2}O{sub 2} process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  19. The effects of tertiary treated municipal wastewater on fish communities of a small river tributary in Southern Ontario, Canada

    International Nuclear Information System (INIS)

    Brown, Carolyn J.M.; Knight, Brendan W.; McMaster, Mark E.; Munkittrick, Kelly R.; Oakes, Ken D.; Tetreault, Grald R.; Servos, Mark R.

    2011-01-01

    Fish community changes associated with a tertiary treated municipal wastewater effluent outfall in the Speed River, Ontario, Canada, were evaluated at nine sites over two seasons (2008) using standardized electrofishing. Habitat evaluations were conducted to ensure that the riffle sites selected were physically similar. The fish community was dominated by several species of darters that differed in their response to the effluent outfall. There was a significant decrease in Greenside Darter (Etheostoma blennioides) but an increase in Rainbow Darter (E. caeruleum) abundance directly downstream of the outfall. Stable isotope signatures (δ 13 C and δ 15 N), which indicate shifts in energy utilization and flow, increased in Rainbow Darter downstream, but showed no change in Greenside Darter. Rainbow Darter may be exploiting a food source that is not as available at upstream sites giving them a competitive advantage over the Greenside Darter immediately downstream of the outfall. - Highlights: → Fish communities are altered by tertiary treated municipal wastewater exposure. → Relative abundance of the two dominant fish (darter) species changed downstream. → Differing stable isotope signatures in fish suggests shifting energy flow and diet. → The altered environment may allow resilient species a competitive advantage. → The system recovers quickly downstream. - Tertiary treated effluent altered fish community composition in a small receiving stream possibly as a result of altered availability of resources (diet) as indicated by stable isotopes.

  20. Agricultural use of treated municipal wastewaters preserving environmental sustainability

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2007-07-01

    Full Text Available In this paper the utility of the treated municipal wastewaters in agriculture, analyzing the chemical, physical and microbiological characteristics and their pollution indicators evaluation are being illustrated. Some methods employed for treating wastewaters are examined, as well as instructions and rules actually in force in different countries of the world, for evaluating the legislative hygienic and sanitary and agronomic problems connected with the treated wastewaters use, are being collected and compared. Successively, in order to provide useful indications for the use of treated municipal wastewaters, results of long-term field researches, carried out in Puglia, regarding two types of waters (treated municipal wastewater and conventional water and two irrigation methods (drip and capillary sub-irrigation on vegetable crops grown in succession, are being reported. For each crop cycle, chemical physical and microbiological analyses have been performed on irrigation water, soil and crop samples. The results evidenced that although irrigating with waters having high colimetric values, higher than those indicated by law and with two different irrigation methods, never soil and marketable yield pollutions have been observed. Moreover, the probability to take infection and/or disease for ingestion of fruits coming from crops irrigated with treated wastewaters, calculated by Beta-Poisson method, resulted negligible and equal to 1 person for 100 millions of exposed people. Concentrations of heavy metals in soil and crops were lesser than those admissible by law. The free chlorine, coming from disinfection, found in the wastewaters used for watering, in some cases caused toxicity effects, which determined significant yield decreases. Therefore, municipal wastewaters, if well treated, can be used for irrigation representing a valid alternative to the conventional ones.

  1. Design of future municipal wastewater treatment plants: A mathematical approach to manage complexity and identify optimal solutions

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    The increasing number of alternative wastewater treatment (WWT) technologies and stricter effluent requirements imposed by regulations make the early stage decision making for WWTP layout design, which is currently based on expert decisions and previous experiences, much harder. This paper...... therefore proposes a new approach based on mathematical programming to manage the complexity of the problem and generate/identify novel and optimal WWTP layouts for municipal/domestic wastewater treatment. Towards this end, after developing a database consisting of primary, secondary and tertiary WWT...... solved to obtain the optimal WWT network and the optimal wastewater and sludge flow through the network. The tool is evaluated on a case study, which was chosen as the Benchmark Simulation Model no.1 (BSM1) and many retrofitting options for obtaining a cost-effective treatment were investigated...

  2. Toxicity of leather tanning wastewater effluents in sea urchin early development and in marine microalgae.

    Science.gov (United States)

    Meriç, Süreyya; De Nicola, Elena; Iaccarino, Mario; Gallo, Marialuisa; Di Gennaro, Annamaria; Morrone, Gaetano; Warnau, Michel; Belgiorno, Vincenzo; Pagano, Giovanni

    2005-10-01

    This study was designed to investigate the composition and the toxicity of leather tanning wastewater and conditioned sludge collected at the leather tanning wastewater treatment plant (CODISO) located in Solofra, Avellino (Southern Italy). Samples were analyzed for their conventional parameters (COD, TSS, chromium and ammonia) and for metal content. Effluent samples included raw wastewater, and samples collected following coagulation/flocculation process and biological treatment. A set of toxicity endpoints were tested using sea urchin and marine microalgal bioassays by evaluating acute embryotoxicity, developmental defects, changes in sperm fertilization success and transmissible damage from sperm to the offspring, and changes in algal growth rate. Dose-related toxicity to sea urchin embryogenesis and sperm fertilization success was exerted by effluent or sludge samples according to the following rank: conditioned sludge > coagulated effluent > or = raw influent > effluent from biological treatment. Offspring quality was not affected by sperm exposure to any wastewater or to sludge samples. Algal growth was inhibited by raw or coagulated effluent to a similar extent and, again, the effluent from the biological treatment resulted in a decreased toxicity. The results suggest that coagulated effluent and conditioned sludge result in higher toxicity than raw influent in sea urchin embryos and sperm, whereas the biological wastewater treatment of coagulated effluent, in both sea urchins and algae, cause a substantial improvement of wastewater quality. Hence a final biological wastewater treatment should be operated to minimize any environmental damage from tannery wastewater.

  3. Assessing effects of a mining and municipal sewage effluent mixture on fathead minnow (Pimephales promelas) reproduction using a novel, field-based trophic-transfer artificial stream.

    Science.gov (United States)

    Rickwood, Carrie J; Dubé, Monique G; Weber, Lynn P; Lux, Sarah; Janz, David M

    2008-01-31

    The Junction Creek watershed, located in Sudbury, ON, Canada receives effluent from three metal mine wastewater treatment plants, as well as a municipal wastewater (MWW) discharge. Effects on fish have been documented within the creek (decreased egg size and increased metal body burdens). It has been difficult to identify the cause of the effects observed due to the confounded nature of the creek. The objectives of this investigation were to assess the: (1) effects of a mine effluent and municipal wastewater (CCMWW) mixture on fathead minnow (FHM; Pimephales promelas) reproduction in an on-site artificial stream and (2) importance of food (Chironomus tentans) as a source of exposure using a trophic-transfer system. Exposures to CCMWW through the water significantly decreased egg production and spawning events. Exposure through food and water using the trophic-transfer system significantly increased egg production and spawning events. Embryos produced in the trophic-transfer system showed similar hatching success but increased incidence and severity of deformities after CCMWW exposure. We concluded that effects of CCMWW on FHM were more apparent when exposed through the water. Exposure through food and water may have reduced effluent toxicity, possibly due to increased nutrients and organic matter, which may have reduced metal bioavailability. More detailed examination of metal concentrations in the sediment, water column, prey (C. tentans) and FHM tissues is recommended to better understand the toxicokinetics of potential causative compounds within the different aquatic compartments when conducting exposures through different pathways.

  4. Comparison of ferric chloride and aluminum sulfate on phosphorus removal and membrane fouling in MBR treating BAF effluent of municipal wastewater

    Directory of Open Access Journals (Sweden)

    Xin Li

    2017-12-01

    Full Text Available A membrane bioreactor (MBR was used for treating biological aerated filter effluent in a municipal wastewater plant, and chemical phosphorus removal was accomplished in the MBR. The results showed that ferric chloride of 20 mg/L and aluminum sulfate of 30 mg/L were the optimal dosages for total phosphorus (TP removal, and the TP removal efficiency was over 80%. In long-term continuous operations, both ferric chloride and aluminum sulfate effectively mitigated membrane fouling, with the corresponding growth rate of transmembrane pressure decreased to 0.08 and 0.067 kPa/d, respectively. Sludge particle sizes analysis demonstrated that the decrease of particle sizes lower than 50 μm was the main reason for membrane fouling control. Simultaneously, the proteins and polysaccharide (PS concentrations in the MBR supernatant were analyzed, and the PS concentration significantly decreased to 2.02 mg/L at aluminum sulfate of 30 mg/L, indicating the flocculation of aluminum sulfate on PS was the main reason for mitigation of membrane fouling.

  5. A mesocosm approach for detecting stream invertebrate community responses to treated wastewater effluent

    International Nuclear Information System (INIS)

    Grantham, Theodore E.; Cañedo-Argüelles, Miguel; Perrée, Isabelle; Rieradevall, Maria; Prat, Narcís

    2012-01-01

    The discharge of wastewater from sewage treatment plants is one of the most common forms of pollution to river ecosystems, yet the effects on aquatic invertebrate assemblages have not been investigated in a controlled experimental setting. Here, we use a mesocosm approach to evaluate community responses to exposure to different concentrations of treated wastewater effluents over a two week period. Multivariate analysis using Principal Response Curves indicated a clear, dose-effect response to the treatments, with significant changes in macroinvertebrate assemblages after one week when exposed to 30% effluent, and after two weeks in the 15% and 30% effluent treatments. Treatments were associated with an increase in nutrient concentrations (ammonium, sulfate, and phosphate) and reduction of dissolved oxygen. These findings indicate that exposure to wastewater effluent cause significant changes in abundance and composition of macroinvertebrate taxa and that effluent concentration as low as 5% can have detectable ecological effects. - Highlights: ► Stream invertebrate communities are altered by exposure to wastewater effluent. ► Principal Response Curves indicate a dose-effect response to effluent treatment. ► Biotic quality indices decline with increasing effluent concentration and exposure time. ► Effluent concentrations as low as 5% have detectable ecological effects. - Exposure to treated effluent in a stream mesocosm caused a dose-dependent response in the aquatic invertebrate community and led to declines in biological quality indices.

  6. Study on Relationship between Seasonal Temperatures and Municipal Wastewater Pollutant Concentration and Removal Rate

    Directory of Open Access Journals (Sweden)

    Yuan Shaoxiong

    2016-01-01

    Full Text Available In this study, the temperatures, pollutant concentrations and other indicators of municipal wastewater influent and effluent were tested for 7 months in 6 constructed wetland microcosms; the hydraulic retention time is 2 days. The results indicated that for both influent and effluent, there was a highly significant negative correlation (P<0.01 between the temperature and the pollutant concentrations, there was a significant difference (P<0.05 between seasonal temperatures, and the pollutant concentrations in summer and autumn were significantly different from those in winter (P<0.05. Furthermore, a regression analysis of pollutant concentration (y based on changes in water temperature (x in different seasons was performed. The analysis revealed that the relationship has the form ‘y = a -bx + cx2’, that under certain circumstances, pollutant concentrations can be calculated based on the temperature, and that the concentrations of NH4-N, Total Phosphorus (TP and Soluble Reactive Phosphorus (SRP had a significantly negative correlation with their removal rate (P < 0.01. However, seasonal temperature clearly did not have a direct impact on the pollutant concentration, and some studies have indicated that the different manners in which urban residents use water as the temperature changes may be the real reason that the pollutant concentrations of municipal wastewater vary with seasonal temperature. Furthermore, when designing and operating constructed wetlands, the impact of the changes in pollutant concentrations generated by seasonal temperature should be fully considered, dilution and other means should be taken to ensure purification.

  7. A multi-level biological approach to evaluate impacts of a major municipal effluent in wild St. Lawrence River yellow perch (Perca flavescens)

    Energy Technology Data Exchange (ETDEWEB)

    Houde, Magali, E-mail: magali.houde@ec.gc.ca [Centre Saint-Laurent, Environment Canada, 105 McGill Street, Montreal, QC H2Y 2E7 (Canada); Giraudo, Maeva, E-mail: maeva.giraudo@ec.gc.ca [Centre Saint-Laurent, Environment Canada, 105 McGill Street, Montreal, QC H2Y 2E7 (Canada); Douville, Mélanie, E-mail: melanie.douville@ec.gc.ca [Centre Saint-Laurent, Environment Canada, 105 McGill Street, Montreal, QC H2Y 2E7 (Canada); Bougas, Bérénice, E-mail: berenice.bougas.1@ulaval.ca [Institut de biologie intégrative et des systèmes, Université Laval, 1030, avenue de la Médecine, Québec, QC G1V 0A6 (Canada); Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); De Silva, Amila O., E-mail: amila.desilva@ec.gc.ca [Canada Centre for Inland Waters, Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Spencer, Christine, E-mail: christine.spencer@ec.gc.ca [Canada Centre for Inland Waters, Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Lair, Stéphane, E-mail: stephane.lair@umontreal.ca [Centre québécois sur la santé des animaux sauvages, Université de Montréal, C.P. 5000, St-Hyacinthe, QC J2S 7C6 (Canada); and others

    2014-11-01

    The development of integrated ecotoxicological approaches is of great interest in the investigation of global concerns such as impacts of municipal wastewater effluents on aquatic ecosystems. The objective of this study was to investigate the effects of a major wastewater municipal effluent on fish using a multi-level biological approach, from gene transcription and enzyme activities to histological changes. Yellow perch (Perca flavescens) were selected based on their wide distribution, their commercial and recreational importance, and the availability of a customized microarray. Yellow perch were sampled upstream of a major municipal wastewater treatment plant (WWTP) and 4 km and 10 km downstream from its point of discharge in the St. Lawrence River (Quebec, Canada). Concentrations of perfluoroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs) and metals/trace elements in whole body homogenates were comparable to those from other industrialized regions of the world. Genomic results indicated that the transcription level of 177 genes was significantly different (p < 0.024) between exposed and non-exposed fish. Among these genes, 38 were found to be differentially transcribed at both downstream sites. Impacted genes were associated with biological processes and molecular functions such as immunity, detoxification, lipid metabolism/energy homeostasis (e.g., peroxisome proliferation), and retinol metabolism suggesting impact of WWTP on these systems. Moreover, antioxidant enzyme activities were more elevated in perch collected at the 4 km site. Biomarkers of lipid metabolism, biosynthetic activity, and aerobic capacities were significantly lower (p < 0.05) in fish residing near the outfall of the effluent. Histological examination of the liver indicated no differences between sites. Correlations between PFAS, PBDE, and metal/trace element tissue concentrations and markers of peroxisomal proliferation, oxidative stress, and retinoid metabolism were found

  8. Two novel real time cell-based assays quantify beta-blocker and NSAID specific effects in effluents of municipal wastewater treatment plants.

    Science.gov (United States)

    Bernhard, Kevin; Stahl, Cordula; Martens, Regina; Köhler, Heinz-R; Triebskorn, Rita; Scheurer, Marco; Frey, Manfred

    2017-05-15

    Pharmaceuticals, such as beta-blockers, nonsteroidal anti-inflammatory drugs (NSAIDs) as well as their metabolites are introduced into the water cycle via municipal wastewater treatment plant (WWTP) effluents in all industrialized countries. As the amino acid sequences of the biological target molecules of these pharmaceuticals - the beta-1 adrenergic receptor for beta-blockers and the cyclooxygenase for NSAIDs - are phylogenetically conserved among vertebrates it is reasonable that wildlife vertebrates including fish physiologically respond in a similar way to them as documented in humans. Consequently, beta-blockers and NSAIDs both exhibit their effects according to their mode of action on one hand, but on the other hand that may lead to unwanted side effects in non-target species. To determine whether residuals of beta-1 adrenergic receptor antagonists and cyclooxygenase inhibitors may pose a risk to aquatic organisms, one has to know the extent to which such organisms respond to the total of active compounds, their metabolites and transformation products with the same modes of action. To cope with this demand, two cell-based assays were developed, by which the total beta-blocker and cyclooxygenase inhibitory activity can be assessed in a given wastewater or surface water extract in real time. The measured activity is quantified as metoprolol equivalents (MetEQ) of the lead substance metoprolol in the beta-blocker assay, and diclofenac equivalents (DicEQ) in the NSAID assay. Even though MetEQs and DicEQs were found to surpass the concentration of the respective lead substances (metoprolol, diclofenac), as determined by chemical analysis by a factor of two to three, this difference was shown to be reasonably explained by the presence and action of additional active compounds with the same mode of action in the test samples. Thus, both in vitro assays were proven to integrate effectively over beta-blocker and NSAID activities in WWTP effluents in a very sensitive

  9. Polishing of municipal secondary effluent using native microalgae consortia.

    Science.gov (United States)

    Beltrán-Rocha, Julio César; Barceló-Quintal, Icela Dagmar; García-Martínez, Magdalena; Osornio-Berthet, Luis; Saavedra-Villarreal, Nidia; Villarreal-Chiu, Juan; López-Chuken, Ulrico Javier

    2017-04-01

    This work evaluates the use of native microalgae consortia for a dual role: polishing treatment of municipal wastewater effluents and microalgae biomass feedstock potential for biodiesel or biofertilizer production. An initial screening was undertaken to test N and P removal from secondary effluents and biomass production by 12 consortia. A subsequent treatment was performed by selected consortia (01 and 12) under three operational conditions: stirring (S), S + 12 h of daily aeration (S + A) and S + A enriched with CO 2 (S + AC). All treatments resulted in compliance with environmental regulations (e.g. Directive 91/271/EEC) and high removal efficiency of nutrients: 64-79% and 80-94% of total N and PO 4 3- -P respectively. During the experiments it was shown that pH alkalinization due to microalgae growth benefits the chemical removal of ammonia and phosphorus. Moreover, advantages of pH increase could be accomplished by intermittent CO 2 addition which in this research (treatment S + AC) promoted higher yield and lipid concentration. The resulting dry biomass analysis showed a low lipid content (0.5-4.3%) not ideal for biodiesel production. Moreover, the high rate of ash (29.3-53.0%) suggests that biomass could be readily recycled as a biofertilizer due to mineral supply and organic constituents formed by C, N and P (e.g. carbohydrate, protein, and lipids).

  10. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Strong, P J; Chen, Hong

    2015-03-01

    In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P antibiotic-resistant bacteria (P < 0.01).

  11. Efficient Bacteria Inactivation by Ultrasound in Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Leonel Ernesto Amabilis-Sosa

    2018-04-01

    Full Text Available The reuse of treated wastewaters could contribute to reducing water stress. In this research, ultrasound application on bacterial inactivation in municipal wastewater (MWW was evaluated. Total and fecal coliforms were used as standard fecal indicators; volatile suspended solids (VSS were analyzed too. Samples were taken from the effluent of secondary clarifiers. In addition, inactivation tests were carried out on pure cultures of E. coli (EC and B. subtilis (BS. Sonication was performed at 20 kHz, 35% amplitude and 600 W/L for 15, 30 and 45 min. After 15 min of sonication, bacterial density was reduced by 1.85 Log10 MPN/100 mL for EC and 3.16 Log10 CFU/mL for BS. After 30 min, no CFU/mL of BS were observed in MWW and, after 45 min, the reduction of total and fecal coliforms was practically 6.45 Log10 MPN/100mL. Inactivation mechanism was made by cavitation, which causes irreversible damage to the cell wall. Although high bacterial densities were employed, percentages of inactivation >99% were reached at 45 min. This research contributes to the implementation of ultrasound as a disinfection technique with high potential due to its high efficiency without producing byproducts. In fact, the water meets the guidelines for reuse in direct human contact services.

  12. A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Majid Hosseinzadeh

    2014-03-01

    Full Text Available Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane bioreactor. Methods: A pilot study with a continuous stream was conducted using a 32-L-activated sludge with a flat sheet membrane. Actual wastewater from industrial wastewater treatment plant was used in this study. Membrane bioreactor was operated with a constant flow rate of 4 L/hr and chemical oxygen demand, suspended solids concentration, six heavy metals concentration, and total coliform amounts were recorded during the operation. Results: High COD, suspended solids, heavy metals, and microbial contamination removal was measured during the experiment. The average removal percentages obtained by the MBR system were 81% for Al, 53% for Fe, 94% for Pb, 91% for Cu, 59% for Ni, and 49% for Cr which indicated the presence of Cu, Ni, and Cr in both soluble and particle forms in mixed liquor while Al, Fe, and Pb were mainly in particulate form. Also, coliforms in the majority of the samples were <140 MPN/100mL that showed that more than 99.9% of total coliform was removed in MBR effluent. Conclusion: The Membrane Biological Reactor (MBR showed a good performance to remove heavy metals and microbial matters as well as COD and suspended solids. The effluent quality was suitable for reusing purposes.

  13. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    International Nuclear Information System (INIS)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang

    2016-01-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  14. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2016-11-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  15. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang, E-mail: hqren@nju.edu.cn; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-04-15

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p = 0.007–0.014, n = 6),as well as contact time (p = 0.0001, n = 10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30–1.49 logs) could be achieved at FC dosage of 30 mg L{sup −1}. The transformation kinetic data for ARGs removal (log C{sub 0} / C) followed the second-order reaction kinetic model with FC dosage (R{sup 2} = 0.6829–0.9999) and contact time (R{sup 2} = 0.7353–8634), respectively. Higher ammonia nitrogen (NH{sub 3}–N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl{sub 2}:NH{sub 3}–N ratio was over 7.6:1, a significant reduction of ARGs (1.20–1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36–0.40 at a fluence of 249.5 mJ cm{sup −2}, which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters. - Highlights: • Chlorine is more effective than UV irradiation in removing ARGs from MWTP effluent. • The chlorination reaction followed the second-order reaction kinetic model. • Higher NH{sub 3}–N contents result in lower ARGs removal in the chlorination process. • FC is more effective than CC on the inactivation of ARGs. • UV irradiation followed by chlorination shows high efficiency in removing ARGs.

  16. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    Science.gov (United States)

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  17. Evaluation of synergy and bacterial regrowth in photocatalytic ozonation disinfection of municipal wastewater.

    Science.gov (United States)

    Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B

    2017-12-01

    The use of solar and ultraviolet titanium dioxide photocatalytic ozonation processes to inactivate waterborne pathogens (Escherichia coli, Salmonella species, Shigella species and Vibrio cholerae) in synthetic water and secondary municipal wastewater effluent is presented. The performance indicators were bacterial inactivation efficiency, post-disinfection regrowth and synergy effects (collaboration) between ozonation and photocatalysis (photocatalytic ozonation). Photocatalytic ozonation effectively inactivated the target bacteria and positive synergistic interactions were observed, leading to synergy indices (SI) of up to 1.86 indicating a performance much higher than that of ozonation and photocatalysis individually (SI≤1, no synergy; SI>1 shows synergy between the two processes). Furthermore, there was a substantial reduction in contact time required for complete bacterial inactivation by 50-75% compared to the individual unit processes of ozonation and photocatalysis. Moreover, no post-treatment bacterial regrowth after 24 and 48h in the dark was observed. Therefore, the combined processes overcame the limitations of the individual unit processes in terms of the suppression of bacterial reactivation and regrowth owing to the fact that bacterial cells were irreparably damaged. The treated wastewater satisfied the bacteriological requirements in treated wastewater for South Africa. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation

    International Nuclear Information System (INIS)

    Kostich, Mitchell S.; Batt, Angela L.; Lazorchak, James M.

    2014-01-01

    We measured concentrations of 56 active pharmaceutical ingredients (APIs) in effluent samples from 50 large wastewater treatment plants across the US. Hydrochlorothiazide was found in every sample. Metoprolol, atenolol, and carbamazepine were found in over 90% of the samples. Valsartan had the highest concentration (5300 ng/L), and also had the highest average concentration (1600 ng/L) across all 50 samples. Estimates of potential risks to healthy human adults were greatest for six anti-hypertensive APIs (lisinopril, hydrochlorothiazide, valsartan, atenolol, enalaprilat, and metoprolol), but nevertheless suggest risks of exposure to individual APIs as well as their mixtures are generally very low. Estimates of potential risks to aquatic life were also low for most APIs, but suggest more detailed study of potential ecological impacts from four analytes (sertraline, propranolol, desmethylsertraline, and valsartan). -- Highlights: • Report concentrations of 56 pharmaceuticals in effluents from 50 wastewater plants. • Model and measurements agree that potential risks to healthy adult humans are low. • Model and measurements agree some uncertainties remain about risks to aquatic life. -- Measurements of pharmaceuticals in municipal effluent suggest risks of exposure to healthy human adults are low, but suggest the need for study of potential impacts on aquatic life

  19. Enhanced treatment of secondary municipal wastewater effluent: comparing (biological) filtration and ozonation in view of micropollutant removal, unselective effluent toxicity, and the potential for real-time control.

    Science.gov (United States)

    Chys, Michael; Demeestere, Kristof; Ingabire, Ange Sabine; Dries, Jan; Van Langenhove, Herman; Van Hulle, Stijn W H

    2017-07-01

    Ozonation and three (biological) filtration techniques (trickling filtration (TF), slow sand filtration (SSF) and biological activated carbon (BAC) filtration) have been evaluated in different combinations as tertiary treatment for municipal wastewater effluent. The removal of 18 multi-class pharmaceuticals, as model trace organic contaminants (TrOCs), has been studied. (Biological) activated carbon filtration could reduce the amount of TrOCs significantly (>99%) but is cost-intensive for full-scale applications. Filtration techniques mainly depending on biodegradation mechanisms (TF and SSF) are found to be inefficient for TrOCs removal as a stand alone technique. Ozonation resulted in 90% removal of the total amount of quantified TrOCs, but a post-ozonation step is needed to cope with an increased unselective toxicity. SSF following ozonation showed to be the only technique able to reduce the unselective toxicity to the same level as before ozonation. In view of process control, innovative correlation models developed for the monitoring and control of TrOC removal during ozonation, are verified for their applicability during ozonation in combination with TF, SSF or BAC. Particularly for the poorly ozone reactive TrOCs, statistically significant models were obtained that correlate TrOC removal and reduction in UVA 254 as an online measured surrogate parameter.

  20. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    OpenAIRE

    Yun-Young Choi; Seung-Ryong Baek; Jae-In Kim; Jeong-Woo Choi; Jin Hur; Tae-U Lee; Cheol-Joon Park; Byung Joon Lee

    2017-01-01

    Municipal wastewater treatment plants (WWTPs) in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industri...

  1. Influence of air scouring on the performance of a Self Forming Dynamic Membrane BioReactor (SFD MBR) for municipal wastewater treatment.

    Science.gov (United States)

    Salerno, Carlo; Vergine, Pompilio; Berardi, Giovanni; Pollice, Alfieri

    2017-01-01

    The Membrane BioReactor (MBR) is a well-established filtration-based technology for wastewater treatment. Despite the high quality of the effluent produced, one of the main drawbacks of the MBR is membrane fouling. In this context, a possible evolution towards systems having potentially lower installation and operating costs is the Self Forming Dynamic Membrane BioReactor (SFD MBR). Key of this technology is the self-formation of a biological filtering layer on a support of inert material. In this work, a lab-scale aerobic SFD MBR equipped with a nylon mesh was operated at approximately 95Lm -2 h -1 . Two mesh pore sizes (20 and 50μm) and three air scouring flow rates (150, 250, and 500mL air min -1 ) were tested at steady state. Under all the tested conditions, the SFD MBR effectively treated real municipal wastewater. The quality of the produced effluent increased for lower mesh size and lower air scouring intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Municipal Wastewater Effluents as a Source of Listerial Pathogens in the Aquatic Milieu of the Eastern Cape Province of South Africa: A Concern of Public Health Importance

    Directory of Open Access Journals (Sweden)

    Emmanuel E.O. Odjadjare

    2010-05-01

    Full Text Available We evaluated the effluent quality of an urban wastewater treatment facility in South Africa and its impact on the receiving watershed for a period of 12 months. The prevalence and antimicrobial susceptibility of potential Listeria pathogens (L. ivanovii and L. innocua and the physicochemical quality of the treated wastewater effluent was assessed, with a view to ascertain the potential health and environmental hazards of the discharged effluent. Total listerial density varied between 2.9 × 100 and 1.2 × 105 cfu/mL; free living Listeria species were more prevalent (84%, compared to Listeria species attached to planktons (59–75%. The treated effluent quality fell short of recommended standards for turbidity, dissolved oxygen, chemical oxygen demand, nitrite, phosphate and Listeria density; while pH, temperature, total dissolved solids and nitrate contents were compliant with target quality limits after treatment. The Listeria isolates (23 were sensitive to three (15% of the 20 test antibiotics, and showed varying (4.5–91% levels of resistance to 17 antibiotics. Of seven resistance gene markers assayed, only sulII genes were detected in five (22% Listeria strains. The study demonstrates a potential negative impact of the wastewater effluent on the receiving environment and suggests a serious public health implication for those who depend on the receiving watershed for drinking and other purposes.

  3. Occurrence of estrogenic effects in sewage and industrial wastewaters in Beijing, China

    International Nuclear Information System (INIS)

    Ma Mei; Rao Kaifeng; Wang Zijian

    2007-01-01

    Estrogenic potencies of the effluents or water samples from wastewater treatment plants (WWTPs), industries and hospitals and some receiving rivers in Beijing city were estimated by using a human estrogen receptor recombinant yeast assay. Estrogenic activity of industrial wastewaters was found to range from 0.1 to 13.3 ng EEQ/L and decreased to the range of 0.03-1.6 ng EEQ/L after treatment. Estrogenic activity in WWTP influent ranged from 0.3 to 1.7 ng EEQ/L and decreased to the range of 0.05-0.5 ng EEQ/L after treatment. In the receiving river waters, the estrogenic effect range was 0.1-4.7 ng EEQ/L. These data suggest that treated industrial effluents and WWTP effluents of concern are not the only source of estrogenic pollution in surface waters in Beijing city. EEQ levels in Beijing river water are likely attributable to untreated municipal and industrial wastewaters discharged directly into the river. - Estrogenic activity in Beijing river water is attributed to direct discharges of untreated municipal and industrial wastewaters

  4. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents

    KAUST Repository

    Krasner, Stuart W.; Westerhoff, Paul K.; Chen, Baiyang; Rittmann, Bruce E.; Amy, Gary L.

    2009-01-01

    Effluents from wastewater treatment plants (WWTPs) contain disinfection byproducts (DBPs) of health concern when the water is utilized downstream as a potable water supply. The pattern of DBP formation was strongly affected by whether or not the WWTP achieved good nitrification. Chlorine addition to poorly nitrified effluents formed low levels of halogenated DBPs, except for (in some cases) dihalogenated acetic acids, but often substantial amounts of N-nitrosodimethyamine (NDMA). Chlorination of well-nitrified effluent typically resulted in substantial formation of halogenated DBPs but much less NDMA. For example, on a median basis after chlorine addition, the well-nitrified effluents had 57 μg/L of trihalomethanes [THMs] and 3 ng/L of NDMA, while the poorly nitrified effluents had 2 μg/L of THMs and 11 ng/L of NDMA. DBPs with amino acid precursors (haloacetonitriles, haloacetaldehydes) formed at substantial levels after chlorination of well-nitrified effluent. The formation of halogenated DBPs but not that of NDMA correlated with the formation of THMs in WWTP effluents disinfected with free chlorine. However, THM formation did not correlate with the formation of other DBPs in effluents disinfected with chloramines. Because of the relatively high levels of bromide in treated wastewater, bromine incorporation was observed in various classes of DBPs. © 2009 American Chemical Society.

  5. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents

    KAUST Repository

    Krasner, Stuart W.

    2009-11-01

    Effluents from wastewater treatment plants (WWTPs) contain disinfection byproducts (DBPs) of health concern when the water is utilized downstream as a potable water supply. The pattern of DBP formation was strongly affected by whether or not the WWTP achieved good nitrification. Chlorine addition to poorly nitrified effluents formed low levels of halogenated DBPs, except for (in some cases) dihalogenated acetic acids, but often substantial amounts of N-nitrosodimethyamine (NDMA). Chlorination of well-nitrified effluent typically resulted in substantial formation of halogenated DBPs but much less NDMA. For example, on a median basis after chlorine addition, the well-nitrified effluents had 57 μg/L of trihalomethanes [THMs] and 3 ng/L of NDMA, while the poorly nitrified effluents had 2 μg/L of THMs and 11 ng/L of NDMA. DBPs with amino acid precursors (haloacetonitriles, haloacetaldehydes) formed at substantial levels after chlorination of well-nitrified effluent. The formation of halogenated DBPs but not that of NDMA correlated with the formation of THMs in WWTP effluents disinfected with free chlorine. However, THM formation did not correlate with the formation of other DBPs in effluents disinfected with chloramines. Because of the relatively high levels of bromide in treated wastewater, bromine incorporation was observed in various classes of DBPs. © 2009 American Chemical Society.

  6. Estimating the energy independence of a municipal wastewater treatment plant incorporating green energy resources

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Kang, Jihoon

    2013-01-01

    Highlights: • We estimated green energy production in a municipal wastewater treatment plant. • Engineered approaches in mining multiple green energy resources were presented. • The estimated green energy production accounted for 6.5% of energy independence in the plant. • We presented practical information regarding green energy projects in water infrastructures. - Abstract: Increasing energy prices and concerns about global climate change highlight the need to improve energy independence in municipal wastewater treatment plants (WWTPs). This paper presents methodologies for estimating the energy independence of a municipal WWTP with a design capacity of 30,000 m 3 /d incorporating various green energy resources into the existing facilities, including different types of 100 kW photovoltaics, 10 kW small hydropower, and an effluent heat recovery system with a 25 refrigeration ton heat pump. It also provides guidance for the selection of appropriate renewable technologies or their combinations for specific WWTP applications to reach energy self-sufficiency goals. The results showed that annual energy production equal to 107 tons of oil equivalent could be expected when the proposed green energy resources are implemented in the WWTP. The energy independence, which was defined as the percent ratio of green energy production to energy consumption, was estimated to be a maximum of 6.5% and to vary with on-site energy consumption in the WWTP. Implementing green energy resources tailored to specific site conditions is necessary to improve the energy independence in WWTPs. Most of the applied technologies were economically viable primarily because of the financial support under the mandatory renewable portfolio standard in Korea

  7. A nine-point pH titration method to determine low-concentration VFA in municipal wastewater.

    Science.gov (United States)

    Ai, Hainan; Zhang, Daijun; Lu, Peili; He, Qiang

    2011-01-01

    Characterization of volatile fatty acid (VFA) in wastewater is significant for understanding the wastewater nature and the wastewater treatment process optimization based on the usage of Activated Sludge Models (ASMs). In this study, a nine-point pH titration method was developed for the determination of low-concentration VFA in municipal wastewater. The method was evaluated using synthetic wastewater containing VFA with the concentration of 10-50 mg/l and the possible interfering buffer systems of carbonate, phosphate and ammonium similar to those in real municipal wastewater. In addition, the further evaluation was conducted through the assay of real wastewater using chromatography as reference. The results showed that the recovery of VFA in the synthetic wastewater was 92%-102 and the coefficient of variance (CV) of reduplicate measurements 1.68%-4.72%. The changing content of the buffering substances had little effect on the accuracy of the method. Moreover, the titration method was agreed with chromatography in the determination of VFA in real municipal wastewater with R(2)= 0.9987 and CV =1.3-1.7. The nine-point pH titration method is capable of satisfied determination of low-concentration VFA in municipal wastewater.

  8. Scenario Analysis of Nutrient Removal from Municipal Wastewater by Microalgal Biofilms

    NARCIS (Netherlands)

    Boelee, N.C.; Temmink, H.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H.

    2012-01-01

    Microalgae can be used for the treatment of municipal wastewater. The application of microalgal biofilms in wastewater treatment systems seems attractive, being able to remove nitrogen, phosphorus and COD from wastewater at a short hydraulic retention time. This study therefore investigates the area

  9. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Physical-chemical pretreatment as an option for increased sustainability of municipal wastewater treatment plants

    NARCIS (Netherlands)

    Mels, A.

    2001-01-01

    Keywords : municipal wastewater treatment, physical-chemical pretreatment, chemically enhanced primary treatment, organic polymers, environmental sustainability

    Most of the currently applied municipal wastewater treatment plants in The Netherlands are

  11. Agricultural use of treated municipal wastewaters preserving environmental sustainability

    OpenAIRE

    Pietro Rubino; Maurizia Catalano; Antonio Lonigro

    2007-01-01

    In this paper the utility of the treated municipal wastewaters in agriculture, analyzing the chemical, physical and microbiological characteristics and their pollution indicators evaluation are being illustrated. Some methods employed for treating wastewaters are examined, as well as instructions and rules actually in force in different countries of the world, for evaluating the legislative hygienic and sanitary and agronomic problems connected with the treated wastewaters use, are being coll...

  12. Effect of dairy wastewater on changes in COD fractions in technical-scale SBR type reactors.

    Science.gov (United States)

    Struk-Sokołowska, Joanna; Rodziewicz, Joanna; Mielcarek, Artur

    2017-04-01

    The annual global production of milk is approximately 630,000 million litres and the volume of generated dairy wastewater accounts for 3.2 m 3 ·m -3 product. Dairy wastewater is characterized by a high load of chemical oxygen demand (COD). In many wastewater plants dairy wastewater and municipal wastewater are co-treated. The effect of dairy wastewater contribution on COD fraction changes in municipal sewage which has been treated with a sequencing batch reactor (SBR) in three wastewater treatment plants in north-east Poland is presented. In these plants the real contribution of dairy wastewater was 10, 13 and 17%. In raw wastewater, S S fraction (readily biodegradable dissolved organic matter) was dominant and ranged from 38.3 to 62.6%. In the effluent, S S fraction was not noted, which is indicative of consumption by microorganisms. The presence of dairy wastewater in municipal sewage does not cause changes in the content of the X I fraction (insoluble fractions of non-biodegradable organic matter). SBR effluents were dominated by non-biodegradable dissolved organic matter S I , which from 57.7 to 61.7%. In raw wastewater S I ranged from 1.0 to 4.6%. X s fraction (slowly biodegradable non-soluble organic matter) in raw wastewater ranged from 24.6 to 45.5% while in treated wastewater it ranged from 28.6 to 30.8%. In the control object (fourth wastewater plant) which does not process dairy wastewater, the S S , S I , X s and X I fraction in inflow was 28.7, 2.4, 51.7 and 17.2% respectively. In the effluent the S S , S I , X s and X I fraction was below 0.1, 33.6, 50.0 and 16.4% respectively.

  13. LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa.

    Science.gov (United States)

    Abafe, Ovokeroye A; Späth, Jana; Fick, Jerker; Jansson, Stina; Buckley, Chris; Stark, Annegret; Pietruschka, Bjoern; Martincigh, Bice S

    2018-06-01

    South Africa has the largest occurrence of the human immune deficiency virus (HIV) in the world but has also implemented the largest antiretroviral (ARV) treatment programme. It was therefore of interest to determine the presence and concentrations of commonly used antiretroviral drugs (ARVDs) and, also, to determine the capabilities of wastewater treatment plants (WWTPs) for removing ARVDs. To this end, a surrogate standard based LC-MS/MS method was optimized and applied for the detection of thirteen ARVDs used in the treatment and management of HIV/acquired immune deficiency syndrome (HIV/AIDS) in two major and one modular WWTP in the eThekwini Municipality in KwaZulu-Natal, South Africa. The method was validated and the detection limits fell within the range of 2-20 ng L -1 . The analytical recoveries for the ARVDs were mainly greater than 50% with acceptable relative standard deviations. The concentration values ranged from effluent) in a decentralized wastewater treatment facility (DEWATS); effluent) in Northern WWTP and 61-34000 ng L -1 (influent), effluent) in Phoenix WWTP. Whilst abacavir, lamivudine and zidovudine were almost completely removed from the effluents, atazanavir, efavirenz, lopinavir and nevirapine persisted in the effluents from all three WWTPs. To estimate the ecotoxicological risks associated with the discharge of ARVDs, a countrywide survey focussing on the occurrence of ARVDs in WWTPs, surface and fresh water bodies, and aquatic organisms, is necessary. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Utilization of portable effluent wastewater in brick manufacturing

    International Nuclear Information System (INIS)

    EI-Mahllawy, M.S.; El-Sokkary, T.M.

    2005-01-01

    Portable wastewater is produced from sedimentation and filtration tanks in portable water treatment plants. Usually, this useless wastewater is drained into River Nile Canal and not to the sewer system causing a potential pollution. Wastewater has been taken from Portable Treatment Plant located at Qalubia Province, Delta, Egypt. Evaluation of raw materials was carried out by using X-ray diffraction (XRD), X-ray fluorescence (XRF), thermal analyses (DTA and TGA) as well as plasticity and drying sensitivity coefficient (DSC) measurements. Technological properties of fired bricks were investigated according to Egyptian and American Specifications. The obtained experimental results encourage substitution of the drained portable wastewater for the tap water in bricks manufacturing. Thus, utilization of the studied portable effluent wastewater in such industry is possible and fulfills the double target of saving drinking water used in clay bricks manufacturing, rather than its environmental pollution prevention. Keywords: Portable wastewater, tap water, clay building bricks, physicomechanical properties

  15. Wastewater effluent dispersal in Southern California Bays

    KAUST Repository

    Uchiyama, Yusuke; Idica, Eileen Y.; McWilliams, James C.; Stolzenbach, Keith D.

    2014-01-01

    The dispersal and dilution of urban wastewater effluents from offshore, subsurface outfalls is simulated with a comprehensive circulation model with downscaling in nested grid configurations for San Pedro and Santa Monica Bays in Southern California during Fall of 2006. The circulation is comprised of mean persistent currents, mesoscale and submesoscale eddies, and tides. Effluent volume inflow rates at Huntington Beach and Hyperion are specified, and both their present outfall locations and alternative nearshore diversion sites are assessed. The effluent tracer concentration fields are highly intermittent mainly due to eddy currents, and their probability distribution functions have long tails of high concentration. The dilution rate is controlled by submesoscale stirring and straining in tracer filaments. The dominant dispersal pattern is alongshore in both directions, approximately along isobaths, over distances of more than 10. km before dilution takes over. The current outfall locations mostly keep the effluent below the surface and away from the shore, as intended, but the nearshore diversions do not. © 2014 Elsevier Ltd.

  16. Wastewater effluent dispersal in Southern California Bays

    KAUST Repository

    Uchiyama, Yusuke

    2014-03-01

    The dispersal and dilution of urban wastewater effluents from offshore, subsurface outfalls is simulated with a comprehensive circulation model with downscaling in nested grid configurations for San Pedro and Santa Monica Bays in Southern California during Fall of 2006. The circulation is comprised of mean persistent currents, mesoscale and submesoscale eddies, and tides. Effluent volume inflow rates at Huntington Beach and Hyperion are specified, and both their present outfall locations and alternative nearshore diversion sites are assessed. The effluent tracer concentration fields are highly intermittent mainly due to eddy currents, and their probability distribution functions have long tails of high concentration. The dilution rate is controlled by submesoscale stirring and straining in tracer filaments. The dominant dispersal pattern is alongshore in both directions, approximately along isobaths, over distances of more than 10. km before dilution takes over. The current outfall locations mostly keep the effluent below the surface and away from the shore, as intended, but the nearshore diversions do not. © 2014 Elsevier Ltd.

  17. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent.

    Science.gov (United States)

    Toyama, Tadashi; Hanaoka, Tsubasa; Tanaka, Yasuhiro; Morikawa, Masaaki; Mori, Kazuhiro

    2018-02-01

    To assess the potential of duckweeds as agents for nitrogen removal and biofuel feedstocks, Spirodela polyrhiza, Lemna minor, Lemna gibba, and Landoltia punctata were cultured in effluents of municipal wastewater, swine wastewater, or anaerobic digestion for 4 days. Total dissolved inorganic nitrogen (T-DIN) of 20-50 mg/L in effluents was effectively removed by inoculating with 0.3-1.0 g/L duckweeds. S. polyrhiza showed the highest nitrogen removal (2.0-10.8 mg T-DIN/L/day) and biomass production (52.6-70.3 mg d.w./L/day) rates in all the three effluents. Ethanol and methane were produced from duckweed biomass grown in each effluent. S. polyrhiza and L. punctata biomass showed higher ethanol (0.168-0.191, 0.166-0.172 and 0.174-0.191 g-ethanol/g-biomass, respectively) and methane (340-413 and 343-408 NL CH 4 /kg VS, respectively) production potentials than the others, which is related to their higher carbon and starch contents and calorific values. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Prospective environmental risk assessment of mixtures in wastewater treatment plant effluents - Theoretical considerations and experimental verification.

    Science.gov (United States)

    Coors, Anja; Vollmar, Pia; Sacher, Frank; Polleichtner, Christian; Hassold, Enken; Gildemeister, Daniela; Kühnen, Ute

    2018-04-14

    The aquatic environment is continually exposed to a complex mixture of chemicals, whereby effluents of wastewater treatment plants (WWTPs) are one key source. The aim of the present study was to investigate whether environmental risk assessments (ERAs) addressing individual substances are sufficiently protective for such coincidental mixtures. Based on a literature review of chemicals reported to occur in municipal WWTP effluents and mode-of-action considerations, four different types of mixtures were composed containing human pharmaceuticals, pesticides, and chemicals regulated under REACH. The experimentally determined chronic aquatic toxicity of these mixtures towards primary producers and the invertebrate Daphnia magna could be adequately predicted by the concept of concentration addition, with up to 5-fold overestimation and less than 3-fold underestimation of mixture toxicity. Effluents of a municipal WWTP had no impact on the predictability of mixture toxicity and showed no adverse effects on the test organisms. Predictive ERAs for the individual mixture components based on here derived predicted no effect concentrations (PNECs) and median measured concentrations in WWTP effluents (MC eff ) indicated no unacceptable risk for any of the individual chemicals, while MC eff /PNEC summation indicated a possible risk for multi-component mixtures. However, a refined mixture assessment based on the sum of toxic units at species level indicated no unacceptable risks, and allowed for a safety margin of more than factor 10, not taking into account any dilution of WWTP effluents by surface waters. Individual substances, namely climbazole, fenofibric acid and fluoxetine, were dominating the risks of the investigated mixtures, while added risk due to the mixture was found to be low with the risk quotient being increased by less than factor 2. Yet, uncertainty remains regarding chronic mixture toxicity in fish, which was not included in the present study. The number and

  19. Multiple response optimization of the coagulation process for upgrading the quality of effluent from municipal wastewater treatment plant

    Science.gov (United States)

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J.; Sheng, Guo-Ping

    2016-05-01

    To meet the high quality standard of receiving water, the coagulation process using polyferric chloride (PFC) was used to further improve the water quality of effluent from wastewater treatment plants. Uniform design (UD) coupled with response surface methodology (RSM) was adopted to assess the effects of the main influence factors: coagulant dosage, pH and basicity, on the removal of total organic carbon (TOC), NH4+-N and PO43--P. A desirability function approach was used to effectively optimize the coagulation process for the comprehensive removal of TOC, NH4+-N and PO43--P to upgrade the effluent quality in practical application. The optimized operating conditions were: dosage 28 mg/L, pH 8.5 and basicity 0.001. The corresponding removal efficiencies for TOC, NH4+-N and PO43--P were 77.2%, 94.6% and 20.8%, respectively. More importantly, the effluent quality could upgrade to surface water Class V of China through coagulation under optimal region. In addition, grey relational analysis (GRA) prioritized these three factors as: pH > basicity > dosage (for TOC), basicity > dosage > pH (for NH4+-N), pH > dosage > basicity (for PO43--P), which would help identify the most important factor to control the treatment efficiency of various effluent quality indexes by PFC coagulation.

  20. Treatment of winery wastewater in a conventional municipal activated sludge process: five years of experience.

    Science.gov (United States)

    Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F

    2007-01-01

    A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.

  1. Pretreatment techniques of biodegradable municipal wastewater for sustainable development of surface and groundwater resources: a survey/case studies (abstract)

    International Nuclear Information System (INIS)

    Rashid, A.; Sajjad, M.R.

    1999-01-01

    Water being a scarce commodity, recharge of groundwater with clean surface water is important to maintain good quality water resources. This paper reviews and discusses the advantages and disadvantages of different techniques for the treatment of municipal wastewater's in developing countries. Different processes discussed include from simple stabilization ponds and land treatment to aerated lagoons and oxidation ditches. More sophisticated techniques of activated sludge and anaerobic digestion are also discussed. The feasibility of these techniques in terms of cost, land area, removal of pathogens, effluent quality and need of technical expertise is discussed. (author)

  2. Seasonal variation of diclofenac concentration and its relation with wastewater characteristics at two municipal wastewater treatment plants in Turkey.

    Science.gov (United States)

    Sari, Sevgi; Ozdemir, Gamze; Yangin-Gomec, Cigdem; Zengin, Gulsum Emel; Topuz, Emel; Aydin, Egemen; Pehlivanoglu-Mantas, Elif; Okutman Tas, Didem

    2014-05-15

    The pharmaceutically active compound diclofenac has been monitored during one year at separate treatment units of two municipal wastewater treatment plants (WWTPs) to evaluate its seasonal variation and the removal efficiency. Conventional wastewater characterization was also performed to assess the possible relationship between conventional parameters and diclofenac. Diclofenac concentrations in the influent and effluent of both WWTPs were detected in the range of 295-1376 and 119-1012ng/L, respectively. Results indicated that the higher diclofenac removal efficiency was observed in summer season in both WWTPs. Although a consistency in diclofenac removal was observed in WWTP_1, significant fluctuation was observed at WWTP_2 based on seasonal evaluation. The main removal mechanism of diclofenac in the WWTPs was most often biological (55%), followed by UV disinfection (27%). When diclofenac removal was evaluated in terms of the treatment units in WWTPs, a significant increase was achieved at the treatment plant including UV disinfection unit. Based on the statistical analysis, higher correlation was observed between diclofenac and suspended solids concentrations among conventional parameters in the influent whereas the removal of diclofenac was highly correlated with nitrogen removal efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems.

    Science.gov (United States)

    Pehlivanoglu-Mantas, Elif; Hawley, Elisabeth L; Deeb, Rula A; Sedlak, David L

    2006-01-01

    The probable human carcinogen nitrosodimethylamine (NDMA) is produced when wastewater effluent is disinfected with chlorine. In systems where wastewater effluent is used for landscape or crop irrigation, relatively high chlorine doses (i.e., up to 2,000,mg-min/L) are often used to ensure adequate disinfection and to minimize biofouling in the irrigation system. To assess the formation of NDMA in such systems, samples were collected from several locations in full-scale wastewater treatment systems and their associated irrigation systems. Up to 460 ng/L of NDMA was produced in full-scale systems in which chloramines were formed when wastewater effluent was disinfected with chlorine in the presence of ammonia. Less than 20 ng/L of NDMA was produced in systems that used free chlorine (i.e., HOCl/OCl(-)) for disinfection in the absence of ammonia. The production of NDMA in ammonia-containing systems was correlated with the concentration of NDMA precursors in the wastewater effluent and the overall dose of chlorine applied. Much of the NDMA formation occurred in chlorine contact basins or in storage basins where water that contained chloramines was held after disinfection. When landscape or crop irrigation is practiced with ammonia-containing wastewater effluent, NDMA production can be controlled by use of lower chlorine doses or by application of alternative disinfectants.

  4. The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Bartelt-Hunt, Shannon L. [Department of Civil Engineering, University of Nebraska-Lincoln, 203B Peter Kiewit Institute, Omaha, NE 68182-0178 (United States)], E-mail: sbartelt2@unl.edu; Snow, Daniel D.; Damon, Teyona [Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583-0844 (United States); Shockley, Johnette [Department of Civil Engineering, University of Nebraska-Lincoln, 203B Peter Kiewit Institute, Omaha, NE 68182-0178 (United States); Hoagland, Kyle [UNL Water Center, University of Nebraska-Lincoln, Lincoln, NE 68583-0995 (United States)

    2009-03-15

    The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at four sites and in a discharge canal at a fifth location. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7-dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent. - Passive samplers were used to develop semi-quantitative estimates of pharmaceutical concentrations in receiving waters influenced by wastewater effluent.

  5. The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska

    International Nuclear Information System (INIS)

    Bartelt-Hunt, Shannon L.; Snow, Daniel D.; Damon, Teyona; Shockley, Johnette; Hoagland, Kyle

    2009-01-01

    The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at four sites and in a discharge canal at a fifth location. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7-dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent. - Passive samplers were used to develop semi-quantitative estimates of pharmaceutical concentrations in receiving waters influenced by wastewater effluent

  6. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: Chemical and microbiological indicators

    International Nuclear Information System (INIS)

    Katz, Brian G.; Griffin, Dale W.; Davis, J. Hal

    2009-01-01

    Geochemical and microbiological techniques were used to assess water-quality impacts from the land application of treated municipal wastewater in the karstic Wakulla Springs basin in northern Florida. Nitrate-N concentrations have increased from about 0.2 to as high as 1.1 mg/L (milligrams per liter) during the past 30 years in Wakulla Springs, a regional discharge point for groundwater (mean flow about 11.3 m 3 /s) from the Upper Floridan aquifer (UFA). A major source of nitrate to the UFA is the approximately 64 million L/d (liters per day) of treated municipal wastewater applied at a 774 ha (hectare) sprayfield farming operation. About 260 chemical and microbiological indicators were analyzed in water samples from the sprayfield effluent reservoir, wells upgradient from the sprayfield, and from 21 downgradient wells and springs to assess the movement of contaminants into the UFA. Concentrations of nitrate-N, boron, chloride, were elevated in water samples from the sprayfield effluent reservoir and in monitoring wells at the sprayfield boundary. Mixing of sprayfield effluent water was indicated by a systematic decrease in concentrations of these constituents with distance downgradient from the sprayfield, with about a 10-fold dilution at Wakulla Springs, about 15 km (kilometers) downgradient from the sprayfield. Groundwater with elevated chloride and boron concentrations in wells downgradient from the sprayfield and in Wakulla Springs had similar nitrate isotopic signatures, whereas the nitrate isotopic composition of water from other sites was consistent with inorganic fertilizers or denitrification. The sprayfield operation was highly effective in removing most studied organic wastewater and pharmaceutical compounds and microbial indicators. Carbamazepine (an anti-convulsant drug) was the only pharmaceutical compound detected in groundwater from two sprayfield monitoring wells (1-2 ppt). One other detection of carbamazepine was found in a distant well water

  7. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: Chemical and microbiological indicators

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Brian G. [U.S. Geological Survey, 2010 Levy Avenue, Tallahassee, Florida 32310 (United States)], E-mail: bkatz@usgs.gov; Griffin, Dale W.; Davis, J. Hal [U.S. Geological Survey, 2010 Levy Avenue, Tallahassee, Florida 32310 (United States)

    2009-04-01

    Geochemical and microbiological techniques were used to assess water-quality impacts from the land application of treated municipal wastewater in the karstic Wakulla Springs basin in northern Florida. Nitrate-N concentrations have increased from about 0.2 to as high as 1.1 mg/L (milligrams per liter) during the past 30 years in Wakulla Springs, a regional discharge point for groundwater (mean flow about 11.3 m{sup 3}/s) from the Upper Floridan aquifer (UFA). A major source of nitrate to the UFA is the approximately 64 million L/d (liters per day) of treated municipal wastewater applied at a 774 ha (hectare) sprayfield farming operation. About 260 chemical and microbiological indicators were analyzed in water samples from the sprayfield effluent reservoir, wells upgradient from the sprayfield, and from 21 downgradient wells and springs to assess the movement of contaminants into the UFA. Concentrations of nitrate-N, boron, chloride, were elevated in water samples from the sprayfield effluent reservoir and in monitoring wells at the sprayfield boundary. Mixing of sprayfield effluent water was indicated by a systematic decrease in concentrations of these constituents with distance downgradient from the sprayfield, with about a 10-fold dilution at Wakulla Springs, about 15 km (kilometers) downgradient from the sprayfield. Groundwater with elevated chloride and boron concentrations in wells downgradient from the sprayfield and in Wakulla Springs had similar nitrate isotopic signatures, whereas the nitrate isotopic composition of water from other sites was consistent with inorganic fertilizers or denitrification. The sprayfield operation was highly effective in removing most studied organic wastewater and pharmaceutical compounds and microbial indicators. Carbamazepine (an anti-convulsant drug) was the only pharmaceutical compound detected in groundwater from two sprayfield monitoring wells (1-2 ppt). One other detection of carbamazepine was found in a distant well water

  8. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in urban streams

    Science.gov (United States)

    Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.

    2017-12-01

    New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.

  9. Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant.

    Science.gov (United States)

    Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang

    2017-07-01

    Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (PCDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.

  10. Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater.

    Science.gov (United States)

    Hasan, Shadi W; Elektorowicz, Maria; Oleszkiewicz, Jan A

    2014-02-01

    Submerged membrane electro-bioreactor (SMEBR) is a new hybrid technology for wastewater treatment employing electrical field and microfiltration in a nutrient-removing activated sludge process. A pilot SMEBR system was located at the wastewater treatment plant in the City of l'Assomption (Quebec, Canada) with the objective of investigating the start-up period performance under variable organic loadings and environmental conditions with respect to effluent quality, membrane fouling, and sludge properties. The pilot SMEBR facility was fed with the raw de-gritted municipal wastewater. At steady state operation, the removal efficiencies of ammonia (as NH3(+)-N), phosphorus (as PO4(3-)-P), and COD were 99%, 99%, and 92%, respectively. No substantial increase in the monitored transmembrane pressure as 0.02kPad(-1) was reported. The time necessary to filter 100mL of the sludge sample has decreased by 78% after treatment whilst the sludge volume index averaged 119mLg(-1). Energy requirements were in the range of 1.1-1.6kWhm(-3) of wastewater. It was concluded that the SMEBR is a very competitive technology when compared to conventional membrane systems as it can enhance treatment performance to an appreciable extent, remove phosphorus and reduce fouling. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. The implications of drought and water conservation on the reuse of municipal wastewater: Recognizing impacts and identifying mitigation possibilities.

    Science.gov (United States)

    Tran, Quynh K; Jassby, David; Schwabe, Kurt A

    2017-11-01

    As water agencies continue to investigate opportunities to increase resilience and local water supply reliability in the face of drought and rising water scarcity, water conservation strategies and the reuse of treated municipal wastewater are garnering significant attention and adoption. Yet a simple water balance thought experiment illustrates that drought, and the conservation strategies that are often enacted in response to it, both likely limit the role reuse may play in improving local water supply reliability. For instance, as a particular drought progresses and agencies enact water conservation measures to cope with drought, influent flows likely decrease while influent pollution concentrations increase, particularly salinity, which adversely affects wastewater treatment plant (WWTP) costs and effluent quality and flow. Consequently, downstream uses of this effluent, whether to maintain streamflow and quality, groundwater recharge, or irrigation may be impacted. This is unfortunate since reuse is often heralded as a drought-proof mechanism to increase resilience. The objectives of this paper are two-fold. First, we illustrate-using a case study from Southern California during its most recent drought- how drought and water conservation strategies combine to reduce influent flow and quality and, subsequently, effluent flow and quality. Second, we use a recently developed regional water reuse decision support model (RWRM) to highlight cost-effective strategies that can be implemented to mitigate the impacts of drought on effluent water quality. While the solutions we identify cannot increase the flow of influent or effluent coming into or out of a treatment plant, they can improve the value of the remaining effluent in a cost-effective manner that takes into account the characteristics of its demand, whether it be for landscaping, golf courses, agricultural irrigation, or surface water augmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Study on evaluation index system of operational performance of municipal wastewater treatment plants in China

    Science.gov (United States)

    Xiaoxin, Zhang; Jin, Huang; Ling, Lin; Yan, Li

    2018-05-01

    According to the undeveloped evaluation method for the operational performance of the municipal wastewater treatment plants, this paper analyzes the policies related to sewage treatment industry based on the investigation of the municipal wastewater treatment plants. The applicable evaluation method for the operational performance was proposed from environmental protection performance, resources and energy consumption, technical and economic performance, production management and main equipment, providing a reliable basis for scientific evaluation of the operation as well as improving the operational performance of municipal wastewater treatment plant.

  13. Improvement of municipal wastewater pretreatment by direct membrane filtration.

    Science.gov (United States)

    Nascimento, Thiago A; Mejía, Fanny R; Fdz-Polanco, Fernando; Peña Miranda, Mar

    2017-10-01

    The high content of particulate matter in municipal wastewater hinders the conventional anaerobic treatments at psychrophilic temperatures. The hydrolysis of the particulate chemical oxygen demand (pCOD) could be the limiting step under these conditions. Therefore, new pretreatments or improved conventional pretreatments are needed in order to separate pCOD. In this work, direct membrane filtration of municipal wastewater, using an ultrafiltration membrane, was investigated. This intensive pretreatment, which aims to separate soluble chemical oxygen demand (sCOD) and to concentrate pCOD, together with anaerobic treatments of both streams at psychrophilic and mesophilic conditions respectively, could be an alternative to the conventional activated sludge process. The obtained results show a removal yield of 24.9% of the total solids (TS) and 45% of total chemical oxygen demand (tCOD), obtaining a permeate free of suspended solids. This physical removal implies the accumulation of solids inside the membrane tank, reaching the values of 45.4 and 4.4 g/L of TS in the sedimentation and filtration sections, respectively. The membrane operated with filtration, backwashing cycles and continuous gas sparging, with a permeate flux predominantly around 10 L/(m 2  h). The results show the viability of the technology to concentrate pCOD and so to improve energy recovery from municipal wastewater.

  14. Sonochemical disinfection of municipal wastewater

    International Nuclear Information System (INIS)

    Antoniadis, Apostolos; Poulios, Ioannis; Nikolakaki, Eleni; Mantzavinos, Dionissios

    2007-01-01

    The application of high intensity, low frequency ultrasound for the disinfection of simulated and septic tank wastewaters is evaluated in this work. Laboratory scale experiments were conducted at 24 and 80 kHz ultrasound frequency with horn-type sonicators capable of operating in continuous and pulsed irradiation modes at nominal ultrasound intensities up to 450 W. For the experiments with simulated wastewaters, Escherichia coli were used as biological indicator of disinfection efficiency, while for the experiments with septic tank wastewaters, the total microbiological load was used. Complete elimination of E. coli could be achieved within 20-30 min of irradiation at 24 kHz and 450 W with the efficiency decreasing with decreasing intensity and frequency. Moreover, continuous irradiation was more effective than intermittent treatment based on a common energy input. Irradiation of the septic tank effluent prior to biological treatment at 24 kHz and 450 W for 30 min resulted in a three-log total microbiological load reduction, and this was nearly equal to the reduction that could be achieved during biological treatment. Bacterial cell elimination upon irradiation was irreversible as no reappearance of the microorganisms occurred after 24 h

  15. A Multitracer Approach to Detecting Wastewater Plumes from Municipal Injection Wells in Nearshore Marine Waters at Kihei and Lahaina, Maui, Hawaii

    Science.gov (United States)

    Hunt, Charles D.; Rosa, Sarah N.

    2009-01-01

    Municipal wastewater plumes discharging from aquifer to ocean were detected by nearshore wading surveys at Kihei and Lahaina, on the island of Maui in Hawaii. Developed in cooperation with the Hawaii State Department of Health, the survey methodology included instrument trolling to detect submarine groundwater discharge, followed by analysis of water and macroalgae for a suite of chemical and isotopic constituents that constitute a 'multitracer' approach. Surveys were conducted May 6-28, 2008, during fair-weather conditions and included: (1) wading and kayak trolling with a multiparameter water-quality sonde, (2) marine water-column sampling, and (3) collection of benthic algae samples. Instrument trolling helped guide the water sampling strategy by providing dense, continuous transects of water properties on which groundwater discharge zones could be identified. Water and algae samples for costly chemical and isotopic laboratory analyses were last to be collected but were highly diagnostic of wastewater presence and nutrient origin because of low detection levels and confirmation across multiple tracers. Laboratory results confirmed the presence of wastewater constituents in marine water-column samples at both locales and showed evidence of modifying processes such as denitrification and mixing of effluent with surrounding groundwater and seawater. Carbamazepine was the most diagnostic pharmaceutical, detected in several marine water-column samples and effluent at both Kihei and Lahaina. Heavy nitrogen-isotope compositions in water and algae were highly diagnostic of effluent, particularly where enriched to even heavier values than effluent source compositions by denitrification. Algae provided an added advantage of time-integrating their nitrogen source during growth. The measured Kihei plume coincided almost exactly with prior model predictions, but the Lahaina plume was detected well south of the expected direct path from injection wells to shore and may be

  16. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  17. Antibiotic Susceptibilities of Enterococcus Species Isolated from Hospital and Domestic Wastewater Effluents in Alice, Eastern Cape Province of South Africa

    Directory of Open Access Journals (Sweden)

    Benson Chuks Iweriebor

    2015-04-01

    Full Text Available Background: Antimicrobial resistance in microorganisms are on the increase worldwide and are responsible for substantial cases of therapeutic failures. Resistance of species of Enterococcus to antibiotics is linked to their ability to acquire and disseminate antimicrobial resistance determinants in nature, and wastewater treatment plants (WWTPs are considered to be one of the main reservoirs of such antibiotic resistant bacteria. We therefore determined the antimicrobial resistance and virulence profiles of some common Enterococcus spp that are known to be associated with human infections that were recovered from hospital wastewater and final effluent of the receiving wastewater treatment plant in Alice, Eastern Cape. Methods: Wastewater samples were simultaneously collected from two sites (Victoria hospital and final effluents of a municipal WWTP in Alice at about one to two weeks interval during the months of July and August 2014. Samples were screened for the isolation of enterococci using standard microbiological methods. The isolates were profiled molecularly after targeted generic identification and speciation for the presence of virulence and antibiotic resistance genes. Results: Out of 66 presumptive isolates, 62 were confirmed to belong to the Enterococcus genusof which 30 were identified to be E. faecalis and 15 E. durans. The remaining isolates were not identified by the primers used in the screening procedure. Out of the six virulence genes that were targeted only three of them; ace, efaA, and gelE were detected. There was a very high phenotypic multiple resistance among the isolates and these were confirmed by genetic analyses. Conclusions: Analyses of the results obtained indicated that hospital wastewater may be one of the sources of antibiotic resistant bacteria to the receiving WWTP. Also, findings revealed that the final effluent discharged into the environment was contaminated with multi-resistant enterococci species thus

  18. Performance of municipal waste stabilization ponds in the Canadian Arctic

    DEFF Research Database (Denmark)

    Ragush, Colin M.; Schmidt, Jordan J.; Krkosek, Wendy H.

    2015-01-01

    The majority of small remote communities in the Canadian arctic territory of Nunavut utilize waste stabilization ponds (WSPs) for municipal wastewater treatment because of their relatively low capital and operational costs, and minimal complexity. New national effluent quality regulations have be...

  19. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Senta, Ivan; Krizman-Matasic, Ivona; Terzic, Senka; Ahel, Marijan

    2017-08-04

    Macrolide antibiotics are a prominent group of emerging contaminants frequently found in wastewater effluents and wastewater-impacted aquatic environments. In this work, a novel analytical method for simultaneous determination of parent macrolide antibiotics (azithromycin, erythromycin, clarithromycin and roxithromycin), along with their synthesis intermediates, byproducts, metabolites and transformation products in wastewater and surface water was developed and validated. Samples were enriched using solid-phase extraction on Oasis HLB cartridges and analyzed by reversed-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The target macrolide compounds were separated on an ACE C18 PFP column and detected using multiple reaction monitoring in positive ionization polarity. The optimized method, which included an additional extract clean-up on strong anion-exchange cartridges (SAX), resulted in high recoveries and accuracies, low matrix effects and improved chromatographic separation of the target compounds, even in highly complex matrices, such as raw wastewater. The developed method was applied to the analysis of macrolide compounds in wastewater and river water samples from Croatia. In addition to parent antibiotics, several previously unreported macrolide transformation products and/or synthesis intermediates were detected in municipal wastewater, some of them reaching μg/L levels. Moreover, extremely high concentrations of macrolides up to mg/L level were found in pharmaceutical industry effluents, indicating possible importance of this source to the total loads into ambient waters. The results revealed a significant contribution of synthesis intermediates and transformation products to the overall mass balance of macrolides in the aquatic environment. Copyright © 2017. Published by Elsevier B.V.

  20. COD fractions changes in the SBR-type reactor treating municipal wastewater with controlled percentage of dairy sewage

    Directory of Open Access Journals (Sweden)

    Struk-Sokołowska Joanna

    2017-01-01

    Full Text Available The aim of study was to investigate the influence of percentage of dairy wastewater in the municipal wastewater on the changes of COD fractions during the cycle of SBR-type reactor. The scope of the research included physicochemical analyses of municipal wastewater without dairy wastewater, dairy wastewater, mixture of municipal and dairy wastewater as well as treated sewage. Both the concentrations and the proportions between COD fractions changed in the SBR cycle. In raw municipal and dairy wastewater - XS, insoluble hardly bio-degradable fraction of COD dominated (49.6 and 64.5% respectively. In treated wastewater SI, COD for dissolved compounds that are not biologically decomposed (inert (from 62.1 to 74.6% dominated, while XS fraction was from 19.1 to 24.4%. The consumption rate of organic compounds depended on the type of COD fraction, SBR cycle phase and the percentage of dairy wastewater. The highest rates of organic compounds consumption were noted in the phase of mixing. In the case of fraction SI, no differences in concentration in the SBR cycle time, were found. Concentration of COD in treated wastewater was from 34.8 to 58.9 mgO2·L-1 (efficiency wastewater treatment from 96.0 to 98.6%.

  1. Prevalence of Multiple Antibiotics Resistant (MAR) Pseudomonas Species in the Final Effluents of Three Municipal Wastewater Treatment Facilities in South Africa

    Science.gov (United States)

    Odjadjare, Emmanuel E.; Igbinosa, Etinosa O.; Mordi, Raphael; Igere, Bright; Igeleke, Clara L.; Okoh, Anthony I.

    2012-01-01

    The final effluents of three (Alice, Dimbaza, and East London) wastewater treatment plants (WWTPs) were evaluated to determine their physicochemical quality and prevalence of multiple antibiotics resistant (MAR) Pseudomonas species, between August 2007 and July 2008. The annual mean total Pseudomonas count (TPC) was 1.20 × 104 (cfu/100 mL), 1.08 × 104 (cfu/100 mL), and 2.66 × 104 (cfu/100 mL), for the Alice, Dimbaza, and East London WWTPs respectively. The effluents were generally compliant with recommended limits for pH, temperature, TDS, DO, nitrite and nitrate; but fell short of target standards for turbidity, COD, and phosphate. The tested isolates were highly sensitive to gentamicin (100%), ofloxacin (100%), clindamycin (90%), erythromycin (90%) and nitrofurantoin (80%); whereas high resistance was observed against the penicillins (90–100%), rifampin (90%), sulphamethoxazole (90%) and the cephems (70%). MAR index ranged between 0.26 and 0.58. The study demonstrated that MAR Pseudomonas species were quite prevalent in the final effluents of WWTPs in South Africa; and this can lead to serious health risk for communities that depend on the effluent-receiving waters for sundry purposes. PMID:22829792

  2. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia

    KAUST Repository

    Alidina, Mazahirali; Hoppe-Jones, Christiane; Yoon, Min; Hamadeh, Ahmed F.; Li, Dong; Drewes, Jorg

    2014-01-01

    . This study provides the first reconnaissance of TOrC occurrence in wastewater effluents within Saudi Arabia. Four wastewater treatment plants (WWTPs 1-4) located in Western Saudi Arabia were sampled hourly over twelve-hour periods, for a total of six sampling

  3. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  4. Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis.

    Science.gov (United States)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2017-09-01

    Municipal wastewater treatment involves mechanical, biological and chemical treatment steps for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pretreatment configurations, for example, direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pretreatment, for example, microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using Aquaporin Inside™ and Hydration Technologies Inc. (HTI) membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested in parallel for the different types of pretreated feed and evaluated in terms of water flux and solute rejection, that is, biochemical oxygen demand (BOD 7 ) and total and soluble phosphorus contents. The Aquaporin and HTI membranes achieved a stable water flux with rejection rates of more than 96% for BOD 7 and total and soluble phosphorus, regardless of the type of mechanical pretreated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits.

  5. Wastewater retreatment and reuse system for agricultural irrigation in rural villages.

    Science.gov (United States)

    Kim, Minyoung; Lee, Hyejin; Kim, Minkyeong; Kang, Donghyeon; Kim, Dongeok; Kim, YoungJin; Lee, Sangbong

    2014-01-01

    Climate changes and continuous population growth increase water demands that will not be met by traditional water resources, like surface and ground water. To handle increased water demand, treated municipal wastewater is offered to farmers for agricultural irrigation. This study aimed to enhance the effluent quality from worn-out sewage treatment facilities in rural villages, retreat effluent to meet water quality criteria for irrigation, and assess any health-related and environmental impacts from using retreated wastewater irrigation on crops and in soil. We developed the compact wastewater retreatment and reuse system (WRRS), equipped with filters, ultraviolet light, and bubble elements. A pilot greenhouse experiment was conducted to evaluate lettuce growth patterns and quantify the heavy metal concentration and pathogenic microorganisms on lettuce and in soil after irrigating with tap water, treated wastewater, and WRRS retreated wastewater. The purification performance of each WRRS component was also assessed. The study findings revealed that existing worn-out sewage treatment facilities in rural villages could meet the water quality criteria for treated effluent and also reuse retreated wastewater for crop growth and other miscellaneous agricultural purposes.

  6. STUDY ON WASTEWATER TREATMENT SYSTEMS IN HOSPITALS OF IRAN

    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh

    2008-07-01

    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  7. Influences of mechanical pre-treatment on the non-biological treatment of municipal wastewater by forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada

    2016-01-01

    municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pre-treatment......, e.g., microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using thin-film-composite, Aquaporin Inside(TM) and HTI membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested......-sized wastewater treatment plants....

  8. Weighing environmental advantages and disadvantages of advanced wastewater treatment of micro-pollutants using environmental life cycle assessment

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Larsen, Henrik Fred; Clauson-Kaas, Jes

    2008-01-01

    Much research and development effort is directed towards advances in municipal wastewater treatment aiming at reducing the effluent content of micro-pollutants and pathogens. The objective is to further reduce the eco-toxicity, hormone effects and pathogenic effects of the effluent. Such further ...

  9. Weighing environmental advantages and disadvantages of advanced wastewater treatment of micro-pollutants using environmental life cycle assessment

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Larsen, Henrik Fred; Clauson-Kaas, Jes

    2007-01-01

    Much research and development effort is directed towards advances in municipal wastewater treatment aiming at reducing the effluent content of micro-pollutants and pathogens. The objective is to further reduce the eco-toxicity, hormone effects and pathogenic effects of the effluent. Such further ...

  10. Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent

    Directory of Open Access Journals (Sweden)

    Shazia Akhtar, Muhammad Mahmood-ul-Hassan, Rizwan Ahmad, Vishandas Suthor and Muhammad Yasin

    2013-05-01

    Full Text Available Considering the importance of filamentous fungi for bioremediation of wastewater and contaminated soils, this study was planned to investigate the metal tolerance potential of indigenous filamentous fungi. Nineteen fungal strains were isolated from soils irrigated with untreated municipal/industrial effluent using dilution technique and 10 prominent isolates were used for metal tolerance. The isolated fungal isolates were screened for metal tolerance index (MTI at I mM cadmium (Cd, nickel (Ni and copper (Cu concentrations and for minimum inhibitory concentration (MIC and metal tolerance by growing on potato dextrose agar plates amended with varying amounts of Cd, Cu and Ni. Seven out of 10 isolated fungi belonged to the genera Aspergillus and three belonged to Curvularia, Acrimonium and Pithyum. The results revealed that the order of tolerance of isolates for metals was Cd > Cu > Ni and Aspergillus sp. were more tolerant than other fungi. Tolerance ranged from 900 – 9218 mg L-1 for Cd, followed by 381 - 1780 mg L-1 for Cu and 293-1580 mg L-1for Ni. The isolated fungi exhibiting great tolerance to metals (Cd, Cu and Ni can be used successfully for bioremediation of metals from contaminated soil and wastewaters.

  11. Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead

    Science.gov (United States)

    Blunt, Susanna M.; Sackett, Joshua D.; Rosen, Michael R.; Benotti, Mark J.; Trenholm, Rebecca A.; Vanderford, Brett J.; Hedlund, Brian P.; Moser, Duane P.

    2018-01-01

    The role of microbial communities in the degradation of trace organic contaminants in the environment is little understood. In this study, the biotransformation potential of 27 pharmaceuticals and endocrine-disrupting compounds was examined in parallel with a characterization of the native microbial community in water samples from four sites variously impacted by urban run-off and wastewater discharge in Lake Mead, Nevada and Arizona, USA. Samples included relatively pristine Colorado River water at the upper end of the lake, nearly pure tertiary-treated municipal wastewater entering via the Las Vegas Wash, and waters of mixed influence (Las Vegas Bay and Boulder Basin), which represented a gradient of treated wastewater effluent impact. Microbial diversity analysis based on 16S rRNA gene censuses revealed the community at this site to be distinct from the less urban-impacted locations, although all sites were similar in overall diversity and richness. Similarly, Biolog EcoPlate assays demonstrated that the microbial community at Las Vegas Wash was the most metabolically versatile and active. Organic contaminants added as a mixture to laboratory microcosms were more rapidly and completely degraded in the most wastewater-impacted sites (Las Vegas Wash and Las Vegas Bay), with the majority exhibiting shorter half-lives than at the other sites or in a bacteriostatic control. Although the reasons for enhanced degradation capacity in the wastewater-impacted sites remain to be established, these data are consistent with the acclimatization of native microorganisms (either through changes in community structure or metabolic regulation) to effluent-derived trace contaminants. This study suggests that in urban, wastewater-impacted watersheds, prior exposure to organic contaminants fundamentally alters the structure and function of microbial communities, which in turn translates into greater potential for the natural attenuation of these compounds compared to more pristine

  12. Anaerobic Membrane Bioreactors For Cost-Effective Municipal Water Reuse

    NARCIS (Netherlands)

    Özgün, H.

    2015-01-01

    In recent years, anaerobic membrane bioreactor (AnMBR) technology has been increasingly researched for municipal wastewater treatment as a means to produce nutrient-rich, solids free effluents with low levels of pathogens, while occupying a small footprint. An AnMBR can be used not only for on-site

  13. Multiple-endpoints gene alteration-based (MEGA) assay: A toxicogenomics approach for water quality assessment of wastewater effluents.

    Science.gov (United States)

    Fukushima, Toshikazu; Hara-Yamamura, Hiroe; Nakashima, Koji; Tan, Lea Chua; Okabe, Satoshi

    2017-12-01

    Wastewater effluents contain a significant number of toxic contaminants, which, even at low concentrations, display a wide variety of toxic actions. In this study, we developed a multiple-endpoints gene alteration-based (MEGA) assay, a real-time PCR-based transcriptomic analysis, to assess the water quality of wastewater effluents for human health risk assessment and management. Twenty-one genes from the human hepatoblastoma cell line (HepG2), covering the basic health-relevant stress responses such as response to xenobiotics, genotoxicity, and cytotoxicity, were selected and incorporated into the MEGA assay. The genes related to the p53-mediated DNA damage response and cytochrome P450 were selected as markers for genotoxicity and response to xenobiotics, respectively. Additionally, the genes that were dose-dependently regulated by exposure to the wastewater effluents were chosen as markers for cytotoxicity. The alterations in the expression of an individual gene, induced by exposure to the wastewater effluents, were evaluated by real-time PCR and the results were validated by genotoxicity (e.g., comet assay) and cell-based cytotoxicity tests. In summary, the MEGA assay is a real-time PCR-based assay that targets cellular responses to contaminants present in wastewater effluents at the transcriptional level; it is rapid, cost-effective, and high-throughput and can thus complement any chemical analysis for water quality assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Peat as Substrate for Small-Scale Constructed Wetlands Polishing Secondary Effluents from Municipal Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Meng Jin

    2017-11-01

    Full Text Available With the recent development of constructed wetland technology, it has become a mainstream treatment technology for the mitigation of a variety of wastewaters. This study reports on the treatment performance and pH attenuation capacity of three different configurations of small-scale on-site surface flow constructed wetlands (SFCW: T1 (Peat + Typha latifolia, T2 (T. latifolia alone, and T3 (Peat alone treating secondary effluent from the Amherstview Water Pollution Control Plant (WPCP for two treatment periods (start-up period and operational period. The aim of this study was to compare the nutrients removal efficiencies between the different treatments, as well as to evaluate the effects of substrate and vegetation on the wetland system. For a hydraulic retention time of 2.5 days, the results showed that all treatment systems could attenuate the pH level during both the start-up and operational periods, while significant nutrient removal performance could only be observed during the operational period. Peat was noted to be a better SFCW substrate in promoting the removal of nitrate (NO3-N, total nitrogen (TN, and phosphorus. The addition of T. latifolia further enhanced NO3-N and TN removal efficiencies, but employing T. latifolia alone did not yield effluents that could meet the regulatory discharge limit (1.0 mg/L for phosphorus.

  15. Impact of municipal waste water of Quetta city on biomass, physiology and yield of canola (brassica napus l.)

    International Nuclear Information System (INIS)

    Kakar, S.R.; Tareen, R.B.; Kayani, S.A.; Tariq, M.

    2010-01-01

    The present study was carried out in order to investigate the impact of municipal wastewater effluents of Quetta city on the biomass, physiology, and productivity of two canola (Brassica napus L.) cultivars viz., Oscar and Rainbow. Plants were grown in pots from seed to maturity during 2005-2006 growth season. Different concentrations of effluents (T1: 20% ,T2: 40%, T3: 60% T4: 80; T5: 100%) were supplied to plants as a soil drench compared to control plants (T0) receiving normal tap water. The wastewater effluents were highly alkaline in nature along with very high Electrical Conductivity, Biological Oxygen Demand; Chemical Oxygen Demand; Sodium Adsorption Ratio, Total Suspended Solids and minerals concentrations have found well above threshold limits set for the usage of municipal wastewater for irrigation purposes. Growth performance of both canola cultivars showed statistically significant effects on some physiological attributes. All treated plants showed reductions in growth and yield parameters, but T5 treated plants were most affected compared to control. There were significantly higher reductions in stomatal conductance (49% in Oscar; 53% in Rainbow), transpiration rate (62% Oscar; 67% in Rainbow), and photosynthetic rate (62% in Oscar; 69% in Rainbow) of T5 treatment plants compared with control. Both pigments of chlorophyll (a and b) responded efficiently to the applied stress of wastewater effluents showing reductions in chlorophyll a and b by 68-82% in cv. Oscar and 74-86% in cv. Rainbow. Similarly, fresh and dry biomass also showed reductions in different effluents treated plants (T1 to T5) ranging from 2-78% in both the cultivars of canola. Drastic reductions were recorded in the number of siliqua per plant (70-72%), seeds per plant (84-85%), seed weight per plant (87-90), and in the harvest index (72-74%) in cultivars Oscar and Rainbow, respectively than that of control. The overall result of the municipal wastewater impacts on canola cultivars are

  16. A review on wastewater disinfection

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2013-01-01

    Full Text Available Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent disinfection. Understanding the differences in inactivation mechanisms is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies. Disinfection byproducts discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Numerous inorganic and organic micropollutants can undergo reactions with disinfectants. Therefore, to mitigate the adverse effects and also to enhance that efficiency, the use of alternative oxidation/disinfection systems should be evaluated as possible alternative to chlorine. This review gives a summary of the traditional, innovative, and combined disinfection alternatives and also disinfection byproducts for effluent of municipal wastewater treatment plants.

  17. Characterization of persistent colors and decolorization of effluent from biologically treated cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Liu, Junfeng; Yu, Yanling; Ambuchi, John J; Feng, Yujie

    2016-05-01

    The high chroma of cellulosic ethanol production wastewater poses a serious environmental concern; however, color-causing compounds are still not fully clear. The characteristics of the color compounds and decolorization of biologically treated effluent by electro-catalytic oxidation were investigated in this study. Excitation-emission matrix (EEM), fourier transform infrared spectrometer (FTIR), UV-Vis spectra, and ultrafiltration (UF) fractionation were used to analyze color compounds. High chroma of wastewater largely comes from humic materials, which exhibited great fluorescence proportion (67.1 %) in the biologically treated effluent. Additionally, the color compounds were mainly distributed in the molecular weight fractions with 3-10 and 10-30 kDa, which contributed 53.5 and 34.6 % of the wastewater color, respectively. Further decolorization of biologically treated effluent by electro-catalytic oxidation was investigated, and 98.3 % of color removal accompanied with 97.3 % reduction of humic acid-like matter was achieved after 180 min. The results presented herein will facilitate the development of a well decolorization for cellulosic ethanol production wastewater and better understanding of the biological fermentation.

  18. Changes in the components and biotoxicity of dissolved organic matter in a municipal wastewater reclamation reverse osmosis system.

    Science.gov (United States)

    Sun, Ying-Xue; Hu, Hong-Ying; Shi, Chun-Zhen; Yang, Zhe; Tang, Fang

    2016-09-01

    The characteristics of dissolved organic matter (DOM) and the biotoxicity of these components were investigated in a municipal wastewater reclamation reverse osmosis (mWRRO) system with a microfiltration (MF) pretreatment unit. The MF pretreatment step had little effect on the levels of dissolved organic carbon (DOC) in the secondary effluent, but the addition of chlorine before MF promoted the formation of organics with anti-estrogenic activity. The distribution of excitation emission matrix (EEM) fluorescence constituents exhibited obvious discrepancies between the secondary effluent and the reverse osmosis (RO) concentrate. Using size exclusion chromatography, DOM with low molecular weights of approximately 1.2 and 0.98 kDa was newly formed during the mWRRO. The normalized genotoxicity and anti-estrogenic activity of the RO concentrate were 32.1 ± 10.2 μg4-NQO/mgDOC and 0.36 ± 0.08 mgTAM/mgDOC, respectively, and these values were clearly higher than those of the secondary effluent and MF permeate. The florescence volume of Regions I and II in the EEM spectrum could be suggested as a surrogate for assessing the genotoxicity and anti-estrogenic activity of the RO concentrate.

  19. Molecular-based detection of potentially pathogenic bacteria in membrane bioreactor (MBR) systems treating municipal wastewater: a case study.

    Science.gov (United States)

    Harb, Moustapha; Hong, Pei-Ying

    2017-02-01

    Although membrane bioreactor (MBR) systems provide better removal of pathogens compared to conventional activated sludge processes, they do not achieve total log removal. The present study examines two MBR systems treating municipal wastewater, one a full-scale MBR plant and the other a lab-scale anaerobic MBR. Both of these systems were operated using microfiltration (MF) polymeric membranes. High-throughput sequencing and digital PCR quantification were utilized to monitor the log removal values (LRVs) of associated pathogenic species and their abundance in the MBR effluents. Results showed that specific removal rates vary widely regardless of the system employed. Each of the two MBR effluents' microbial communities contained genera associated with opportunistic pathogens (e.g., Pseudomonas, Acinetobacter) with a wide range of log reduction values (5.5). Digital PCR further confirmed that these bacterial groups included pathogenic species, in several instances at LRVs different than those for their respective genera. These results were used to evaluate the potential risks associated both with the reuse of the MBR effluents for irrigation purposes and with land application of the activated sludge from the full-scale MBR system.

  20. Physicochemical Characteristic of Municipal Wastewater in Tropical Area: Case Study of Surabaya City, Indonesia

    Science.gov (United States)

    Wijaya, I. M. W.; Soedjono, E. S.

    2018-03-01

    Municipal wastewater is the main contributor to diverse water pollution problems. In order to prevent the pollution risks, wastewater have to be treated before discharged to the main water. Selection of appropriated treatment process need the characteristic information of wastewater as design consideration. This study aims to analyse the physicochemical characteristic of municipal wastewater from inlet and outlet of ABR unit around Surabaya City. Medokan Semampir and Genteng Candi Rejo has been selected as wastewater sampling point. The samples were analysed in laboratory with parameters, such as pH, TSS, COD, BOD, NH4 +, NO3 -, NO2 -, P, and detergent. The results showed that all parameters in both locations are under the national standard of discharged water quality. In other words, the treated water is securely discharged to the river

  1. Consumption-based approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater.

    Science.gov (United States)

    Le Corre, Kristell S; Ort, Christoph; Kateley, Diana; Allen, Belinda; Escher, Beate I; Keller, Jurg

    2012-09-15

    Hospitals are considered as major sources of pharmaceutical residues discharged to municipal wastewater, but recent experimental studies showed that the contribution of hospitals to the loads of selected, quantifiable pharmaceuticals in sewage treatment plant (STP) influents was limited. However such conclusions are made based on the experimental analysis of pharmaceuticals in hospital wastewater which is hindered by a number of factors such as access to suitable sampling sites, difficulties in obtaining representative samples and availability of analytical methods. Therefore, this study explores a refined and extended consumption-based approach to predict the contribution of six selected Australian hospitals to the loads of 589 pharmaceuticals in municipal wastewater. In addition, the possibility that hospital-specific substances are present at levels that may pose a risk for human health was evaluated. For 63 to 84% of the pharmaceuticals investigated, the selected hospitals are not a major point source with individual contributions likely to be less than 15% which is in line with previous experimental studies. In contrast, between 10 and 20% of the pharmaceuticals consumed in the selected hospitals are exclusively used in these hospitals. For these hospital-specific substances, 57 distinct pharmaceuticals may cause concerns for human health as concentrations predicted in hospital effluents are less than 100-fold lower than effect thresholds. However, when concentrations were predicted in the influent of the corresponding STP, only 12 compounds (including the antineoplastic vincristine, the antibiotics tazobactam and piperacillin) remain in concentration close to effect thresholds, but further decrease is expected after removal in STP, dilution in the receiving stream and drinking water treatment. The results of this study suggest that risks of human exposure to the pharmaceuticals exclusively administered in the investigated hospitals are limited and

  2. Behavior of natural radionuclides in wastewater treatment plants

    International Nuclear Information System (INIS)

    Camacho, A.; Montaña, M.; Vallés, I.; Devesa, R.; Céspedes-Sánchez, R.; Serrano, I.; Blázquez, S.; Barjola, V.

    2012-01-01

    56 samples, including influent, primary effluent, secondary effluent and final effluent wastewater from two Spanish municipal wastewater treatment plants (WWTPs), were analyzed to assess both the occurrence and behavior of natural radioactivity during 12 sampling campaigns carried out over the period 2007–2010. Influent and final effluent wastewaters were sampled by taking into account the hydraulic residence time within the WWTP. A wide range of gross alpha activities (15–129 mBq/L) and gross beta activities (477–983 mBq/L) in liquid samples were obtained. A correlation analysis between radioactivity in liquid samples and the performance characteristics of the WWTPs was performed. The results in liquid samples showed that gross beta activities were not influenced by treatment in the studied WWTPs. However, gross alpha activities behave differently and an increase was detected in the effluent values compared with influent wastewater. This behavior was due to the increase in the total dissolved uranium produced during secondary treatment. The results indicate that the radiological characteristics of the effluents do not present a significant radiological risk and make them suitable for future applications. - Highlights: ► Liquids from WWTPs were analyzed to know the behavior of natural radionuclides. ► Gross beta activities were not influenced by treatment in the studied WWTPs. ► Increase in gross alpha activity was observed due to uranium desorption/solubilisation. ► Correlation between gross alpha activity and the chemical oxygen demand was found

  3. Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin, Northeast China

    International Nuclear Information System (INIS)

    Wen, Qinxue; Yang, Lian; Duan, Ruan; Chen, Zhiqiang

    2016-01-01

    The development and proliferation of antibiotic resistance in pathogenic and environmental microorganisms is of great concern for public health. In this study, the distribution and removal efficiency of intI1 and eight subtypes of antibiotic resistance genes (ARGs) for tetracycline, sulfonamides, beta-lactams resistance in four municipal wastewater treatment plants (WWTPs) in Harbin, which locates in Songhua River basin in cold areas of China, were monitored by real-time fluorescent quantitative PCR. The results showed that intI1 and 6 ARGs except for bla_T_E_M and bla_S_H_V were detected in wastewater and sludge samples and 0.3–2.7 orders of magnitude of ARGs removal efficiency in the four WWTPs were observed. The investigation on the removal of ARGs of different treatment units in one WWTP showed that the biological treatment unit played the most important role in ARGs removal (1.2–1.8 orders of magnitude), followed by UV disinfection, while primary physical treatment units can hardly remove any ARGs. Although all the WWTPs can remove ARGs effectively, ARGs concentrations are still relatively high in the effluent, their further attenuation should be investigated. - Highlights: • The distribution of 8 ARGs and intI1 in WWTPs in Harbin in winter were monitored. • ARGs removal in 4 WWTPs with different processes were investigated. • Biological treatment process plays the most important role in ARGs removal. • A relatively high level of ARGs is still present in the effluent after wastewater treatment. • Regional uses of antibiotics other than season temperature affects the fate of ARGs in WWTPs.

  4. New wastewater treatment concepts towards energy saving and resource recovery

    NARCIS (Netherlands)

    Khiewwijit, R.

    2016-01-01

    At present, conventional activated sludge (CAS) systems are widely applied to treat municipal wastewater. The main advantages of CAS systems are that they are robust and generally produce an effluent quality that meets the discharge guidelines. However, CAS systems cannot be considered sustainable

  5. Electrochemical oxidation of ammonia-containing wastewater using Ti/RuO2-Pt electrode

    Directory of Open Access Journals (Sweden)

    Wei-wu Hu

    2009-12-01

    Full Text Available The electrochemical oxidation degradation processes for artificial and actual wastewater containing ammonia were carried out with a Ti/RuO2-Pt anode and a Ti plate cathode. We studied the effects of different current densities, space sizes between the two electrodes, and amounts of added NaCl on ammonia-containing wastewater treatment. It was shown that, after a 30-min treatment under the optimal conditions, which were a current density of 20 mA/cm2, a space size between the two electrodes of 1 cm, and an added amount of 0.5 g/L of NaCl, the COD concentration in municipal wastewater was 40 mg/L, a removal rate of 90%; and the NH3-N concentration was 7 mg/L, a removal rate of 88.3%. The effluent of municipal wastewater qualified for Class A of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002.

  6. Disinfection of wastewater by hydrogen peroxide or peracetic acid: development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent.

    Science.gov (United States)

    Wagner, Monika; Brumelis, Daina; Gehr, Ronald

    2002-01-01

    The Montreal Urban Community Wastewater Treatment Plant (MUCWTP) located in Montreal. Quebec, Canada, uses physicochemical treatment processes prior to discharging wastewater into the St. Lawrence River via an outfall tunnel of 2 hours retention time. Although chlorination facilities exist, they are not being used, and the MUCWTP is seeking alternative methods for disinfection to achieve a 2- to 3-log fecal coliform reduction. Liquid chemical disinfectants were attractive options because of their low capital costs. This led to an investigation of the feasibility of using hydrogen peroxide or peracetic acid. A method for measuring peroxycompounds (hydrogen peroxide or peracetic acid plus hydrogen peroxide) was developed using the peroxidase-based oxidation of 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfuric acid) diammonium salt (ABTS) with hydrogen peroxide. The validity of the method was confirmed using effluent from the MUCWTP. Recovery was higher than 90% for peracetic acid levels as low as 1.0 mg/L. Quenching of hydrogen peroxide was achieved with 50-mg/L catalase; quenching of peracetic acid was achieved with 100 mg/L of sodium thiosulfate, followed by 50 mg/L of catalase. Batch disinfection tests were conducted on MUCWTP effluent. Hydrogen peroxide and peracetic acid in wastewater over time could be modeled as a second-order decay, with the decay "constant" being a function of the initial concentration of peroxycompounds. This function was the same for both hydrogen peroxide and peracetic acid, possibly indicating similar decomposition pathways in wastewater matrices. Disinfection was modeled using a modified Hom equation. Required doses of hydrogen peroxide to reach the target fecal coliform levels ranged from 106 to 285 mg/L, with the higher doses occurring when ferric chloride instead of alum was used as the coagulant. Hence, hydrogen peroxide was infeasible as a disinfectant for this application. On the other hand, the peracetic acid dose needed to

  7. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.

    Science.gov (United States)

    Barber, Larry B; Loyo-Rosales, Jorge E; Rice, Clifford P; Minarik, Thomas A; Oskouie, Ali K

    2015-06-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  8. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  9. Degradation of fifteen emerging contaminants at microg L(-1) initial concentrations by mild solar photo-Fenton in MWTP effluents.

    Science.gov (United States)

    Klamerth, N; Rizzo, L; Malato, S; Maldonado, Manuel I; Agüera, A; Fernández-Alba, A R

    2010-01-01

    The degradation of 15 emerging contaminants (ECs) at low concentrations in simulated and real effluent of municipal wastewater treatment plant with photo-Fenton at unchanged pH and Fe=5 mg L(-1) in a pilot-scale solar CPC reactor was studied. The degradation of those 15 compounds (Acetaminophen, Antipyrine, Atrazine, Caffeine, Carbamazepine, Diclofenac, Flumequine, Hydroxybiphenyl, Ibuprofen, Isoproturon, Ketorolac, Ofloxacin, Progesterone, Sulfamethoxazole and Triclosan), each with an initial concentration of 100 microg L(-1), was found to depend on the presence of CO(3)(2-) and HCO(3)(-) (hydroxyl radicals scavengers) and on the type of water (simulated water, simulated effluent wastewater and real effluent wastewater), but is relatively independent of pH, the type of acid used for release of hydroxyl radicals scavengers and the initial H(2)O(2) concentration used. Toxicity tests with Vibrio fisheri showed that degradation of the compounds in real effluent wastewater led to toxicity increase. (c) 2009 Elsevier Ltd. All rights reserved.

  10. Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production.

    Science.gov (United States)

    Ji, Min-Kyu; Yun, Hyun-Shik; Park, Young-Tae; Kabra, Akhil N; Oh, In-Hwan; Choi, Jaeyoung

    2015-08-15

    The biomass and lipid/carbohydrate production by a green microalga Scenedesmus obliquus under mixotrophic condition using food wastewater and flue gas CO2 with municipal wastewater was investigated. Different dilution ratios (0.5-2%) of municipal wastewater with food wastewater were evaluated in the presence of 5, 10 and 14.1% CO2. The food wastewater (0.5-1%) with 10-14.1% CO2 supported the highest growth (0.42-0.44 g L(-1)), nutrient removal (21-22 mg TN L(-1)), lipid productivity (10-11 mg L(-1)day(-1)) and carbohydrate productivity (13-16 mg L(-1)day(-1)) by S. obliquus after 6 days of cultivation. Food wastewater increased the palmitic and oleic acid contents up to 8 and 6%, respectively. Thus, application of food wastewater and flue gas CO2 can be employed for enhancement of growth, lipid/carbohydrate productivity and wastewater treatment efficiency of S. obliquus under mixotrophic condition, which can lead to development of a cost effective strategy for microalgal biomass production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Removal of bacterial cells, antibiotic resistance genes and integrase genes by on-site hospital wastewater treatment plants: surveillance of treated hospital effluent quality

    KAUST Repository

    Timraz, Kenda Hussain Hassan

    2016-12-15

    This study aims to evaluate the removal efficiency of microbial contaminants, including total cell counts, antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs, e.g. tetO, tetZ, sul1 and sul2) and integrase genes (e.g. intl1 and intl2), by wastewater treatment plants (WWTPs) operated on-site of two hospitals (i.e., SH WWTP and IH WWTP). Both SH and IH WWTPs utilize the conventional activated sludge process but differences in the removal efficiencies were observed. Over the 2 week sampling period, IH WWTP outperformed SH WWTP, and achieved an approximate 0.388 to 2.49-log log removal values (LRVs) for total cell counts compared to the 0.010 to 0.162-log removal in SH WWTP. Although ARB were present in the hospital influent, the treatment process of both hospitals effectively removed ARB from most of the effluent samples. In instances where ARB were recovered in the effluent, none of the viable isolates were identified to be opportunistic pathogenic species based on 16S rRNA gene sequencing. However, sul1 and intl1 genes remained detectable at up to 105 copies per mL or 8 x 10(-1) copies per 16S rRNA gene in the treated effluent, with an LRV of less than 1.2. When the treated effluent is discharged from hospital WWTPs into the public sewer for further treatment as per requirement in many countries, the detected amount of ARGs and integrase genes in the hospital effluent can become a potential source of horizontal gene dissemination in the municipal WWTP. Proper on-site wastewater treatment and surveillance of the effluent quality for emerging contaminants are therefore highly recommended.

  12. Effect of exposure to wastewater treatment plant effluent on fathead minnow reproduction

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adult fathead minnows were exposed to dilutions of a historically estrogenic wastewater treatment plant effluent in a 21-d reproduction study. This dataset is...

  13. Treatment efficiency in wastewater treatment plant of Hat Yai Municipality by quantitative removal of microbial indicators

    Directory of Open Access Journals (Sweden)

    Duangporn Kantachote

    2009-11-01

    Full Text Available The efficiency of treatment in a wastewater treatment plant of Hat Yai Municipality through stabilization ponds and constructed wetlands was monitored by using the bacterial indicators, total coliforms (TC, fecal coliforms (FC, Escherichia coli and fecal streptococci (FS, and photosynthetic microbes. The sequence of water flow in the wastewater treatment plant is as follows: primary or anaerobic pond (P, facultative pond (F, maturation pond (M, constructed wetlands (W1, W2 and W3, and an effluent storage pond (S for the treated wastewater. The wastewater treatment plant has an approximate area of 3,264,000 m2 (2,040 rai and its dry weather flow was running at only 40,000 m3/ day. There were 10 sampling times used for all the 7 ponds during July-October, 2006.Statistical analysis using a Two-Factorial Design model, indicated that pond types significantly affected temperature, dissolved oxygen (DO, and pH (p<0.05, whereas the time of sampling during the day had a significant effect (p<0.05 only on the temperature and light intensity available to the ponds. There were also significant different removal efficiencies of the different bacterial indicator groups tested (p<0.05. The overall performance of the wastewater treatment plant effectively removed TC, FC, E. coli, and FS as follows, 99.8%, 99.8%, 75.8% and 98.8%, respectively. The amounts of bacterial indicators, except for E. coli, showed a negative correlation with levels of light intensity and DO, whereas there was no correlation between the pH and the different indicator bacteria. There was a positive middle level correlation between pHand chlorophyll a.There were five different divisions of photosynthetic organisms detected throughout the plant as follows, Cyanophyta, Chlorophyta, Bacillariophyta, Euglenophyta, and Pyrrhophyta. The least diversity was found in the anaerobic pond (P as there were only 15 genera. Euglena, an indicator of dirty water, was detected only in this pond. The

  14. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  15. The fate of wastewater-derived NDMA precursors in the aquatic environment.

    Science.gov (United States)

    Pehlivanoglu-Mantas, Elif; Sedlak, David L

    2006-03-01

    To assess the stability of precursors of the chloramine disinfection byproduct N-nitrosodimethylamine (NDMA) under conditions expected in effluent-dominated surface waters, effluent samples from four municipal wastewater treatment plants were subjected to chlorination and chloramination followed by incubation in the presence of inocula derived from activated sludge. Samples subjected to free chlorine disinfection showed lower initial concentrations of NDMA precursors than those that were not chlorinated or were disinfected with pre-formed chloramines. For chloraminated and control (unchlorinated) treatments, the concentration of NDMA precursors decreased by an average of 24% over the 30-day incubation in samples from three of the four facilities. At the fourth facility, where samples were collected on three different days, NDMA precursor concentrations decreased by approximately 80% in one sample and decreased by less than 20% in the other two samples. In contrast to the low reactivity of the NDMA precursors, NDMA disappeared within 30 days under the conditions employed in these experiments. These results and measurements made in an effluent-dominated river suggest that although NDMA may be removed after wastewater effluent is discharged, wastewater-derived NDMA precursors could persist long enough to form significant concentrations of NDMA in drinking water treatment plants that use water originating from sources that are subjected to wastewater effluent discharges.

  16. Nondeterministic computational fluid dynamics modeling of Escherichia coli inactivation by peracetic acid in municipal wastewater contact tanks.

    Science.gov (United States)

    Santoro, Domenico; Crapulli, Ferdinando; Raisee, Mehrdad; Raspa, Giuseppe; Haas, Charles N

    2015-06-16

    Wastewater disinfection processes are typically designed according to heuristics derived from batch experiments in which the interaction among wastewater quality, reactor hydraulics, and inactivation kinetics is often neglected. In this paper, a computational fluid dynamics (CFD) study was conducted in a nondeterministic (ND) modeling framework to predict the Escherichia coli inactivation by peracetic acid (PAA) in municipal contact tanks fed by secondary settled wastewater effluent. The extent and variability associated with the observed inactivation kinetics were both satisfactorily predicted by the stochastic inactivation model at a 95% confidence level. Moreover, it was found that (a) the process variability induced by reactor hydraulics is negligible when compared to the one caused by inactivation kinetics, (b) the PAA dose required for meeting regulations is dictated equally by the fixed limit of the microbial concentration as well as its probability of occurrence, and (c) neglecting the probability of occurrence during process sizing could lead to an underestimation of the PAA dose required by as much as 100%. Finally, the ND-CFD model was used to generate sizing information in the form of probabilistic disinfection curves relating E. coli inactivation and probability of occurrence with the average PAA dose and PAA residual concentration at the outlet of the contact tank.

  17. Anaerobic Digestion Effluents (ADEs) Treatment Coupling with Chlorella sp. Microalgae Production.

    Science.gov (United States)

    Zieliński, Marcin; Dębowski, Marcin; Szwaja, Stanisław; Kisielewska, Marta

    2018-02-01

      Nutrient removal effectiveness from anaerobic digestion effluents (ADEs) by Chlorella sp. cultivation and microalgae biomass productivity were evaluated in this study. The results showed that the highest Chlorella sp. biomass productivities of 386.5 ± 24.1 mg dry weight/L•d and 338.3 ± 11.0 mg dry weight/L•d were respectively obtained with the anaerobically digested effluent of municipal wastewater sludge and effluent from a fermentation tank treating dairy wastewater. Lower (p effluents of maize silage and swine slurry and cattle manure. The increase of the initial ammonia nitrogen concentration in ADEs to the level of 160 mg/L did not encourage Chlorella sp. productivity because of phosphorus limitation. The removal efficiencies of ammonia nitrogen, total nitrogen, total phosphorus, and chemical oxygen demand (COD) reached 99.7%, 98.6%, 88.2%, and 58.7%, respectively, depending on the source of ADE, but not on the initial ammonia nitrogen concentrations.

  18. Treating domestic effluent wastewater treatment by aerobic biofilter with bioballs medium

    Science.gov (United States)

    Permatasari, R.; Rinanti, A.; Ratnaningsih, R.

    2018-01-01

    This laboratory scale research aimed to treat wastewater effluent with advanced treatment utilizing aerobic biofilter with bio-balls medium to obtain effluent quality in accordance with DKI Jakarta Governor Regulation No. 122 of 2005. The seeding and acclimatization were conducted in 4 weeks. The effluent were accommodated in a 150 L water barrel supported by a submersible pump. The effluent were treated in two boxes shaped reactors made of glasses with 36 L of each capacity. These reactors were equipped with aquarium aerators, sampling tap is 10 cm from the base of reactors, and bio-balls with 3 cm diameter are made of PVC. Reactors operated continuously with variations of retention time of 4 hours, 8 hours, 12 hours, 18 hours, and 24 hours and also variations of Carbon: Nitrogen: Phosphor = C: N: P ratio were, 100:5:1, 100:8:1, 100:10:1, 100:12:1, 100:15:1. The results showed that the optimum variance of retention time was 24 hours and the ratio of C:N:P was 100:10:1 yielded the largest removal efficiency for 83,33% of COD, 87,33% of BOD, 82,5% of Ammonia, 79,1% of Nitrate, 92% of Nitrite, 84,82% of Oil and Grease. The concentration parameter resulted from outlet biofilter has met the domestic wastewater quality standard of DKI Jakarta.

  19. Impact of industrial effluents on surface waters

    International Nuclear Information System (INIS)

    Ahmed, K.

    2000-01-01

    The indiscriminate discharge of untreated municipal and industrial effluents has given rise to serious problems of water pollution and human health in Pakistan. The City of Lahore discharges about 365 mgd of wastewater with a BOD load of 250 tons per day, without treatment, into Ravi river. Because of the untreated industrial discharges, river Ravi is devoid of dissolved oxygen through most of its react between Lahore and Upper Chenab Canal under low flow conditions. Pollution levels can be controlled if each industry treats its own wastewater prior to disposal, in accordance with NEQS (Pakistan). (author)

  20. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    Science.gov (United States)

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  1. Wastewater use in agriculture: irrigation of sugar cane with effluents from the Cañaveralejo wastewater treatment plant in Cali, Colombia.

    Science.gov (United States)

    Madera, C A; Silva, J; Mara, D D; Torres, P

    2009-09-01

    In Valle del Cauca, south-west Colombia, surface and ground waters are used for sugar cane irrigation at a rate of 100 m3 of water per tonne of sugar produced. In addition large quantities of artificial fertilizers and pesticides are used to grow the crop. Preliminary experiments were undertaken to determine the feasibility of using effluents from the Cañaveralejo primary wastewater treatment plant in Cali. Sugar cane variety CC 8592 was planted in 18 box plots, each 0.5 m2. Six were irrigated with conventional primary effluent, six with chemically enhanced primary effluent and six with groundwater. For each set of six box plots, three contained local soil and three a 50:50 mixture of sand and rice husks. The three irrigation waters were monitored for 12 months, and immediately after harvest the sugar content of the sugar cane juice determined. All physico-chemical quality parameters for the three irrigation waters were lower than the FAO guideline values for irrigation water quality; on the basis of their sodium absorption ratios and electrical conductivity values, both wastewater effluents were in the USDA low-to-medium risk category C2S1. There was no difference in the sugar content of the cane juice irrigated with the three waters. However, the microbiological quality (E. coli and helminth numbers) of the two effluents did not meet the WHO guidelines and therefore additional human exposure control measures are required in order to minimize any resulting adverse health risks to those working in the wastewater-irrigated fields.

  2. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS: Executive summary

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level

  3. Municipal wastewater treatment for effective removal of organic matter and nitrogen

    International Nuclear Information System (INIS)

    Grebenevich, E.V.; Zaletova, N.A.; Terentieva, N.A.

    1987-01-01

    The organic matter, as well as nitrogen and phosphorus, are nutrient substances. Their excess concentrations in water receiving bodies lead to eutrophication, moreover, the nitrogen content in water bodies is standardized according the sanitary-toxicological criterion of harmfulness: NH 4 + -N ≤0,39-2,0 mgl - , NO 3 -N ≤9,1-10 mgl - . The municipal wastewater contain, usually, organic matter estimated by BOD 150-200 mgl - , and COD 300-400 mgl - , the nitrogen compounds 50-60 mgl - , and NH 4 + -N 20-25 mgl - . NO x -N are practically absent. Their presence indicated on discharge of industrial wastewater. The total phosphorus is present in the concentration of 15 mgl - , PO 4 - - P 5-8 mgl - . Activated sludge process has been most widely used in the USSR for municipal wastewater treatment. The activated sludge is biocenoses of heterotrophic and auto trophic microorganisms. They consume nutrient matters, transferring pollution of wastewater by means of enzyme systems in acceptable forms. C, N and P-containing matters are removed from wastewater by biological intake for cell synthesis. Moreover C- containing matters are removed by oxidation to CO 2 and H 2 O. P-containing compounds under definite conditions associate with solid fraction of activated sludge and thus simultaneously removed from wastewater. The removal of nitrogen in addition to biosynthesis is carried out only in the denitrification process, when oxygen of NO x -N is used for oxidation of organic matter and produced gaseous nitrogen escapes into the atmosphere

  4. Fate and impact of phthalates in activated sludge treated municipal wastewater on the water bodies in the Eastern Cape, South Africa.

    Science.gov (United States)

    Salaudeen, Taofeek; Okoh, Omobola; Agunbiade, Foluso; Okoh, Anthony

    2018-07-01

    The concentration and fates of six priority phthalate esters (PAEs); dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di (2-ethyl hexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP) in wastewaters from the wastewater treatment plants (WWTPs) which adopted the activated sludge technology in the Amathole Municipality, Eastern Cape, South Africa were investigated. The six PAEs were detected in all the influents and in almost all the WWTP effluent of which DBP was the most abundant in the influent followed by DEHP. Influent concentration of DBP in the three WWTPs ranged between 2.7 and 2488 μgL -1 and the average effluent concentration was 4.90-8.88 μgL -1 . On average, the concentration of PAEs in WWTP effluents were higher than PAEs in the upstream and downstream of the discharging point suggesting PAE impact on the receiving water. The concentrations detected in the sludge of which DEHP and DBP were more pervasive ranged between 130 and 1094 μg/g dry weight. The average removal capacity; 27.3-99.5% suggested more adsorption on settling particles and sludge than biodegradation as high significant correlation was found between PAEs removal, total suspended solid and turbidity. Removal of high molecular weight and high octanol-water partition coefficient (logK ow ) PAEs through adsorption was found to be significantly high. It could be concluded that the release of PAEs into the sludge, and the amount in the final effluent which were found to exceed the acceptable levels allowed internationally, raises safety concern for both aquatic and human's health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Assessment of wastewater effluent quality in Thessaly region, Greece, for determining its irrigation reuse potential.

    Science.gov (United States)

    Bakopoulou, S; Emmanouil, C; Kungolos, A

    2011-02-01

    The objective of the present study is to assess wastewater effluent quality in Thessaly region, Greece, in relation to its physicochemical and microbiological burden as well as its toxic potential on a number of organisms. Wastewater may be used for agricultural as well as for landscape irrigation purposes; therefore, its toxicity potential is quite important. Thessaly region has been chosen since this region suffers from a distinct water shortage in summer period necessitating alternative water resources. During our research, treated effluents from four wastewater treatment plants operating in the region (Larissa, Volos, Karditsa, and Tirnavos) were tested for specific physicochemical and microbiological parameters [biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), total suspended solids (TSS), pH, electrical conductivity, selected metals presence (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As), and fecal coliforms' (FC) number]. The effluents were also tested for their toxicity using two different bioassays (Daphnia magna immobilization test and Phytotoxkit microbiotest). The findings were compared to relative regulations and guidelines regarding wastewater reuse for irrigation. The results overall show that secondary effluents in Thessaly region are generally acceptable for reuse for irrigation purposes according to limits set by legislation, if effective advanced treatment methods are applied prior to reuse. However, their potential toxicity should be closely monitored, since it was found that it may vary significantly in relation to season and location, when indicator plant and zooplankton organisms are used. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Inactivation of viruses in municipal effluent by chlorine.

    OpenAIRE

    Hajenian, H. G.; Butler, M.

    1980-01-01

    The influence of pH and temperature on the efficiency of chlorine inactivation of two unrelated picornaviruses in a typical urban wastewater effluent was examined. Temperature, unlike pH, had relatively little effect on the rate of inactivation. The pH effect was complex and the two viruses differed. The f2 coliphage was more sensitive to chlorine at low pH, but at all values there was a threshold above which additional chlorine resulted in very rapid inactivation. The amount of chlorine requ...

  7. Performance of MBBR in the Treatment of Combined Municipal and Industrial Wastewater A Case Study: Mashhad Sewage Treatment Plant of Parkandabad

    Directory of Open Access Journals (Sweden)

    Nasrin Mohammadyari

    2008-03-01

    Full Text Available MBBR is a combination of three systems: Activated sludge, Fixed film, and Fluidized bed. This system has been designed in a manner to include the advantages of the above systems but removing most of their disadvantages. The main characteristic of the system is the growth of a biofilm on the small packing that moves through the reactor. Because of the biofilm growth on the kaldnes packing, the internal special area of the MBBR is high and around 350 m2/m3. Evidenced by reports in the literature, MBBR has been successfully used for the treatment of different industrial effluents from dairy industries, food industries, slaughter houses, paper mills, refineries, and chemical plants. In this study, the operation of MBBR in treating the combined municipal and industrial wastewater (Parkand Abad Wastewater Treatment Plant, Mashhad, Iran is studied. The results from the pilot study revealed that MBBR was capable of reducing COD levels to 43, 57, 76% at such low hydraulic retention times of 8, 12, 24 hrs, respectively. The system was also found to be capable of handling hydraulic shocks such that the system regained its stability over a short time after the shock and that the effluent COD fluctuation before and after the shock was as low as 70 mg/l.

  8. Applying polarity rapid assessment method and ultrafiltration to characterize NDMA precursors in wastewater effluents.

    Science.gov (United States)

    Chen, Chao; Leavey, Shannon; Krasner, Stuart W; Mel Suffet, I H

    2014-06-15

    Certain nitrosamines in water are disinfection byproducts that are probable human carcinogens. Nitrosamines have diverse and complex precursors that include effluent organic matter, some anthropogenic chemicals, and natural (likely non-humic) substances. An easy and selective tool was first developed to characterize nitrosamine precursors in treated wastewaters, including different process effluents. This tool takes advantages of the polarity rapid assessment method (PRAM) and ultrafiltration (UF) (molecular weight distribution) to locate the fractions with the strongest contributions to the nitrosamine precursor pool in the effluent organic matter. Strong cation exchange (SCX) and C18 solid-phase extraction cartridges were used for their high selectivity for nitrosamine precursors. The details of PRAM operation, such as cartridge clean-up, capacity, pH influence, and quality control were included in this paper, as well as the main parameters of UF operation. Preliminary testing of the PRAM/UF method with effluents from one wastewater treatment plant gave very informative results. SCX retained 45-90% of the N-nitrosodimethylamine (NDMA) formation potential (FP)-a measure of the precursors-in secondary and tertiary wastewater effluents. These results are consistent with NDMA precursors likely having a positively charged amine group. C18 adsorbed 30-45% of the NDMAFP, which indicates that a substantial portion of these precursors were non-polar. The small molecular weight (MW) (10 kDa) fractions obtained from UF were the primary contributors to NDMAFP. The combination of PRAM and UF brings important information on the characteristics of nitrosamine precursors in water with easy operation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  10. Municipal wastewater biological nutrient removal driven by the fermentation liquid of dairy wastewater.

    Science.gov (United States)

    Liu, Hui; Chen, Yinguang; Wu, Jiang

    2017-11-01

    Carbon substrate is required by biological nutrient removal (BNR) microorganism, but it is usually insufficient in the influent of many municipal wastewater treatment plants. In this study the use of ethanol-enriched fermentation liquid, which was derived from dairy wastewater, as the preferred carbon substrate of BNR was reported. First, the application of dairy wastewater and food processing wastewater and their fermentation liquid as the carbon substrate of BNR was compared in the short-term tests. The fermented wastewater showed higher BNR performance than the unfermented one, and the fermentation liquid of dairy wastewater (FL-DW), which was obtained under pH 8 and fermentation time of 6 day, exhibited the highest phosphorus (95.5%) and total nitrogen (97.6%) removal efficiencies due to its high ethanol content (57.9%). Then, the long-term performance of FL-DW acting as the carbon substrate of BNR was compared with that of acetate and ethanol, and the FL-DW showed the greatest phosphorus and total nitrogen removal. Further investigation showed that the use of FL-DW caused the highest polyhydroxyalkanoates (PHAs) synthesis in BNR microbial cells, and more PHAs were used for phosphorus uptake and denitrification rather than glycogen synthesis and microbial growth. The FL-DW can be used as a preferred carbon substrate for BNR microbes. AB: aerobic end sludge active biomass; BNR: biological nutrient removal; DW: dairy wastewater; FL-DW: fermentation liquid of dairy wastewater; FPW: food processing wastewater; FL-FPW: fermentation liquid of food processing wastewater; PHAs: polyhydroxyalkanoates; PHB: poly-3-hydroxybutyrate; PHV: poly-3-hydroxyvalerate; PH2MV: poly-3-hydroxy-2- methylvalerate; PAOs: phosphorus accumulating organisms; SBR: sequencing batch reactor; SOP: soluble ortho-phosphorus; TN: total nitrogen; TSS: total suspended solids; VSS: volatile suspended solids; VFAs: volatile fatty acids; WWTPs: wastewater treatment plants.

  11. Assessment of wastewater treatment plant effluent on fish reproduction utilizing the adverse outcome pathway conceptual framework

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are a known contributor of chemical mixture inputs into the environment. Whole effluent testing guidelines were developed to screen these complex mixtures for acute toxicity. However, efficient and cost-effective approaches for screenin...

  12. Demasculinization of male fish by wastewater treatment plant effluent

    Science.gov (United States)

    Vajda, A.M.; Barber, L.B.; Gray, J.L.; Lopez, E.M.; Bolden, A.M.; Schoenfuss, H.L.; Norris, D.O.

    2011-01-01

    Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17??-estradiol, estrone, estriol, and 17??-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent. ?? 2011 Elsevier B.V.

  13. Abundance of carbapenemase genes (blaKPC, blaNDM and blaOXA-48) in wastewater effluents from Tunisian hospitals.

    Science.gov (United States)

    Nasri, Emna; Subirats, Jessica; Sànchez-Melsió, Alexandre; Mansour, Hedi Ben; Borrego, Carles M; Balcázar, José Luis

    2017-10-01

    Carbapenems are β-lactam antibiotics with a broad spectrum of activity and are usually considered the last resort for the treatment of severe infections caused by multidrug-resistant pathogens. The clinically most significant carbapenemases are KPC, NDM, and OXA-48-like enzymes, whose genes have been increasingly reported worldwide in members of the family Enterobacteriaceae. In this study, we quantified the abundance of these genes in wastewater effluents from different Tunisian hospitals. The bla NDM and bla OXA-48 -like genes were detected at similar concentrations in all hospital wastewater effluents. In contrast, the bla KPC gene was detected at lower concentration than other genes and it was only detected in three of the seven effluents analyzed. To the best of our knowledge, this study quantified for the first time the abundance of bla KPC , bla NDM , and bla OXA-48 -like genes in wastewater effluents from Tunisian hospitals, highlighting the widespread distribution of these carbapenemase genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Recovery of ammonia and production of high-grade phosphates from digester effluents (municipal and livestock)

    Science.gov (United States)

    Phosphorus (P) recovery of anaerobically digested swine wastewater and side-stream municipal wastewater via magnesium precipitation was enhanced by combining it with the recovery of ammonia (NH3) through gas-permeable membranes and low-rate aeration. The low-rate aeration stripped the natural carbon...

  15. Natural and Synthetic Estrogens in Wastewater Treatment Plant Effluent and the Coastal Ocean

    Science.gov (United States)

    2013-09-01

    isotopes (12C, 13C) is used routinely to identify synthetic steroid doping in athletics and livestock applications. 36 Chapter 4 will present...Suri (2009). "Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed- use areas." Environmental Monitoring...halogenated estrogens at picomolar levels in wastewater effluent and coastal seawater. The method was validated using treated effluent from the

  16. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia

    KAUST Repository

    Alidina, Mazahirali

    2014-04-01

    Emerging trace organic chemicals (TOrCs) released into the environment via discharge of wastewater effluents have been detected in rivers and lakes worldwide, raising concerns due to their potential persistence, toxicity and bioaccumulation. This study provides the first reconnaissance of TOrC occurrence in wastewater effluents within Saudi Arabia. Four wastewater treatment plants (WWTPs 1-4) located in Western Saudi Arabia were sampled hourly over twelve-hour periods, for a total of six sampling events. All samples were analyzed for a wide range of TOrC encompassing pharmaceuticals, personal care products and household chemicals. Treatment and capacities of the plants varied from non-nitrifying to full biological nutrient removal providing a representative cross section of different types of plants operational within the country. A comparison of TOrC occurrence in effluents in Saudi Arabia with respective effluent qualities in the United States revealed similar levels for most TOrC. Overall, the occurrence of TOrC was higher at two of the plants. The higher TOrC concentrations at WWTP 1 are likely due to the non-nitrifying biological treatment process. The unique TOrC occurrence observed in the WWTP 3 effluent was unlike any other plant and was attributed to the influence of a large number of international visitors in its sewershed. The occurrence of TOrC in this plant was not expected to be representative of the occurrence elsewhere in the country. Bimodal diurnal variation expected for a range of TOrC was not observed, though some hourly variation in TOrC loading was noted for WWTP 3. Since water reclamation and reuse have received increasing interest in Saudi Arabia within the last few years, results from this study provide a good foundation in deciding whether advanced treatment is necessary to attenuate TOrC deemed to be of concern in effluents, or if natural treatment such as managed aquifer recharge provides sufficient protection to public health. © 2014

  17. Effects of ozone, ultraviolet and peracetic acid disinfection of a primary-treated municipal effluent on the immune system of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Hébert, N; Gagné, F; Cejka, P; Bouchard, B; Hausler, R; Cyr, D G; Blaise, C; Fournier, M

    2008-08-01

    Municipal sewage effluents are complex mixtures that are known to compromise the health condition of aquatic organisms. The aim of this study was to evaluate the impacts of various wastewater disinfection processes on the immune system of juvenile rainbow trout (Oncorhynchus mykiss). The trout were exposed to a primary-treated effluent for 28 days before and after one of each of the following treatments: ultraviolet (UV) radiation, ozonation and peracetic acid. Immune function was characterized in leucocytes from the anterior head kidney by the following three parameters: phagocytosis activity, natural cytotoxic cells (NCC) function and lymphocyte (B and T) proliferation assays. The results show that the fish mass to length ratio was significantly decreased for the primary-treated and all three disinfection processes. Exposure to the primary-treated effluent led to a significant increase in macrophage-related phagocytosis; the addition of a disinfection step was effective in removing this effect. Both unstimulated and mitogen-stimulated T lymphocyte proliferation in fish decreased dramatically in fish exposed to the ozonated effluent compared to fish exposed to either the primary-treated effluent or to aquarium water. Stimulation of T lymphocytes proliferation was observed with the peracetic acid treatment group. In conclusion, the disinfection strategy used can modify the immune system in fish at the level of T lymphocyte proliferation but was effective to remove the effects on phagocytosis activity.

  18. Surveillance of Antibiotic-Resistant Bacteria from Wastewater Effluents Across the United States

    Science.gov (United States)

    This presentation will inform the audience of the purpose and importance of the antibiotic resistant bacteria surveillances that have been conducted to date. And an overview of why the EPA is looking into this problem in wastewater effluents.

  19. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals.

    Science.gov (United States)

    Santos, Lúcia H M L M; Gros, Meritxell; Rodriguez-Mozaz, Sara; Delerue-Matos, Cristina; Pena, Angelina; Barceló, Damià; Montenegro, M Conceição B S M

    2013-09-01

    The impact of effluent wastewaters from four different hospitals: a university (1456 beds), a general (350 beds), a pediatric (110 beds) and a maternity hospital (96 beds), which are conveyed to the same wastewater treatment plant (WWTP), was evaluated in the receiving urban wastewaters. The occurrence of 78 pharmaceuticals belonging to several therapeutic classes was assessed in hospital effluents and WWTP wastewaters (influent and effluent) as well as the contribution of each hospital in WWTP influent in terms of pharmaceutical load. Results indicate that pharmaceuticals are widespread pollutants in both hospital and urban wastewaters. The contribution of hospitals to the input of pharmaceuticals in urban wastewaters widely varies, according to their dimension. The estimated total mass loadings were 306 g d(-1) for the university hospital, 155 g d(-1) for the general one, 14 g d(-1) for the pediatric hospital and 1.5 g d(-1) for the maternity hospital, showing that the biggest hospitals have a greater contribution to the total mass load of pharmaceuticals. Furthermore, analysis of individual contributions of each therapeutic group showed that NSAIDs, analgesics and antibiotics are among the groups with the highest inputs. Removal efficiency can go from over 90% for pharmaceuticals like acetaminophen and ibuprofen to not removal for β-blockers and salbutamol. Total mass load of pharmaceuticals into receiving surface waters was estimated between 5 and 14 g/d/1000 inhabitants. Finally, the environmental risk posed by pharmaceuticals detected in hospital and WWTP effluents was assessed by means of hazard quotients toward different trophic levels (algae, daphnids and fish). Several pharmaceuticals present in the different matrices were identified as potentially hazardous to aquatic organisms, showing that especial attention should be paid to antibiotics such as ciprofloxacin, ofloxacin, sulfamethoxazole, azithromycin and clarithromycin, since their hazard quotients

  20. Unsupervised Analysis of the Effects of a Wastewater Treatment Plant Effluent on the Fathead Minnow Ovarian Transcriptome

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents contain complex mixtures of chemicals, potentially including endocrine active chemicals (EACs), pharmaceuticals, and other contaminants of emerging concern (CECs). Due to the complex and variable nature of effluents, biological monitori...

  1. Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin, Northeast China.

    Science.gov (United States)

    Wen, Qinxue; Yang, Lian; Duan, Ruan; Chen, Zhiqiang

    2016-05-01

    The development and proliferation of antibiotic resistance in pathogenic and environmental microorganisms is of great concern for public health. In this study, the distribution and removal efficiency of intI1 and eight subtypes of antibiotic resistance genes (ARGs) for tetracycline, sulfonamides, beta-lactams resistance in four municipal wastewater treatment plants (WWTPs) in Harbin, which locates in Songhua River basin in cold areas of China, were monitored by real-time fluorescent quantitative PCR. The results showed that intI1 and 6 ARGs except for blaTEM and blaSHV were detected in wastewater and sludge samples and 0.3-2.7 orders of magnitude of ARGs removal efficiency in the four WWTPs were observed. The investigation on the removal of ARGs of different treatment units in one WWTP showed that the biological treatment unit played the most important role in ARGs removal (1.2-1.8 orders of magnitude), followed by UV disinfection, while primary physical treatment units can hardly remove any ARGs. Although all the WWTPs can remove ARGs effectively, ARGs concentrations are still relatively high in the effluent, their further attenuation should be investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  3. Class 1 Integrons and the Antiseptic Resistance Gene (qacEΔ1) in Municipal and Swine Slaughterhouse Wastewater Treatment Plants and Wastewater-Associated Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Wan, Min Tao; Chou, Chin Cheng

    2015-06-02

    Class 1 integrons are mobile gene elements (MGEs) containing qacEΔ1 that are resistant to quaternary ammonium compound (QAC) disinfectants. This study compared the abundances of class 1 integrons and antiseptic resistance genes in municipal (M) and swine slaughterhouse (S) wastewater treatment plants (WWTPs) and investigated the presence of class 1 integrons and antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolated from wastewater samples. The abundances of intI1 and qacEΔ1 genes in 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR), and 113 MRSA isolates recovered from the wastewater samples were detected class 1 integrons and linked antiseptic resistance genes (qacEΔ1), and minimum inhibitory concentrations (MICs) for QAC antiseptics. The intI1 and qacEΔ1 genes were detected in all the wastewater samples, and they were more abundant in S-WWTP samples than in M-WWTP samples. A higher percentage of MRSA isolates carried qacEΔ1 in MRSA from swine wastewater samples (62.8%) than in municipal MRSA (3.7%). All the MRSA isolates showed high MICs for antiseptic agents. This study provides important evidence regarding the abundances of intI1 and qacEΔ1 genes in municipal and swine slaughterhouse wastewater, and antiseptic-resistant MRSA strains were detected in swine slaughterhouse wastewater.

  4. Vermistabilization of Municipal Wastewater Sludge with Eisenia fetida

    Directory of Open Access Journals (Sweden)

    A Parvaresh, H Movahedian, L Hamidian

    2004-10-01

    Full Text Available Sludges are stabilized to reduce pathogens, eliminate offensive odors and inhibit, reduce or eliminate the potential for putrification. In this study, stabilization of municipal wastewater sludge with and without earthworms (Eisenia fetida was tested in a pilot study. The earthworms were fed at the optimum level of 0.75 kg-feed/kg-worm/day. Decomposition and stabilization of wastewater sludge occurred both in the presence and in the absence of earthworms during 9 weeks but the process was accelerated in their presence. Phosphorus content increased in the sludge with earthworms but decreased in it without them. Nitrogen content in the resulting vermicompost showed no difference with its quantity in the original substrate while it increased in the control treatment.

  5. The State of Water and Wastewater Management in the Municipalities of the Polesie National Park

    Directory of Open Access Journals (Sweden)

    Krzysztof Jóżwiakowski

    2017-11-01

    Full Text Available The aim of the work is to present the current state of water and wastewater management in the municipalities where the Polesie National Park (PNP is located. The PNP is situated in Lublin Voivodeship, in the area of six municipalities: Sosnowica, Hańsk, Urszulin, Stary Brus, Wierzbica and Ludwin. The data used in this paper, were obtained on the basis of the surveys conducted in these municipalities in 2016 by the Department of Environmental Engineering and Geodesy of the University of Life Sciences in Lublin. In the analyzed communes, there was a very large disproportion between the usage of sewerage and the water supply network. It has been shown that 79.1% of the inhabitants living in the afore-mentioned communes used the water supply network and only 22.5% of them used sewerage. In the discussed communities there are 9 collective, mechanical and biological wastewater treatment plants with a capacity of over 5 m3d-1. On the farms located in the scattered areas, which are not connected to the sewerage, wastewater is discharged mainly to the septic tanks. In four out of the six analyzed municipalities, there were 2345 septic tanks registered. Domestic sewage from some farms is purified in household wastewater treatment plants (395 pieces. The plants with the drainage systems are prevalent (84.9%, which may contribute to the groundwater quality degradation. In order to protect the natural environment within the communes that form the PNP, it is necessary to undertake the actions that will contribute to the improvement of the current state of water and wastewater management. While solving the existing problems related to water supply and wastewater treatment, it is strongly required to adhere to the principle of sustainable development and use highly effective systems in order to ensure that the ecological effects are appropriate.

  6. Comparison of dilution factors for German wastewater treatment plant effluents in receiving streams to the fixed dilution factor from chemical risk assessment.

    Science.gov (United States)

    Link, Moritz; von der Ohe, Peter C; Voß, Katharina; Schäfer, Ralf B

    2017-11-15

    Incomplete removal during wastewater treatment leads to frequent detection of compounds such as pharmaceuticals and personal care products in municipal effluents. A fixed standard dilution factor of 10 for effluents entering receiving water bodies is used during the exposure assessment of several chemical risk assessments. However, the dilution potential of German receiving waters under low flow conditions is largely unknown and information is sparse for other European countries. We calculated dilution factors for two datasets differing in spatial extent and wastewater treatment plant (WWTP) size: a national dataset comprising 1225 large WWTPs in Central and Northern Germany and a federal dataset for 678 WWTPs of a single state in Southwest Germany. We found that the fixed factor approach overestimates the dilution potential of 60% and 40% of receiving waters in the national and the federal dataset, with median dilution factors of 5 and 14.5, respectively. Under mean flow conditions, 8% of calculated dilution factors were below 10, with a median dilution factor of 106. We also calculated regional dilution factors that accounted for effluent inputs from upstream WWTPs. For the national and the federal dataset, 70% and 60% of calculated regional dilution factors fell below 10 under mean low flow conditions, respectively. Decrease of regional dilution potential in small receiving streams was mainly driven by the next WWTP upstream with a 2.5 fold drop of median regional dilution factors. Our results show that using the standard dilution factor of 10 would result in the underestimation of environmental concentrations for authorised chemicals by a factor of 3-5 for about 10% of WWTPs, especially during low flow conditions. Consequently, measured environmental concentrations might exceed predicted environmental concentrations and ecological risks posed by effluents could be much higher, suggesting that a revision of current risk assessment practices may be required

  7. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  8. The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments.

    Science.gov (United States)

    Burd, B; Macdonald, T; Bertold, S

    2013-09-15

    We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r(2)=0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production "saturated". The δ(15)N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process.

    Science.gov (United States)

    Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H

    2008-01-01

    For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.

  10. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  11. Stabilisation of Biological Phosphorus Removal from Municipal Wastewater

    DEFF Research Database (Denmark)

    Krühne, Ulrich

    variations of the influent wastewater concentrations and are not yet always guaranteed. Even though the scientific knowledge and practical experience has reached a high level of understanding of the involved key-processes it is still necessary to apply chemical precipitation of phosphorus during the time...... periods, where the complete BPR can not be achieved. The understanding of the main phenomena involved into such failure of BPR and the development of operational or control strategies to overcome these deficiencies are the main areas of investigation of this thesis. Investigations of the failure of BPR...... and increased hydraulic load, with subsequent re-establishment of normal conditions. A process disturbance of this type results in an increase in the phosphate concentration level in the effluent, shortly after the wastewater returns to normal strength. During the first part of the thesis it was examined...

  12. Treatability studies of alternative wastewaters for Metal Finishing Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Wittry, D.M.; Martin, H.L.

    1994-01-01

    The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility that uses precipitation and filtration, which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. Upon the completion of stored waste treatment, the LETF will be shut down, because production of nuclear materials for reactors stopped at the end of the Cold War. The economic use of the LETF for the treatment of alternative wastewater streams is being evaluated through laboratory bench-scale treatability studies

  13. Polishing ponds as tertiary treatment of municipal wastewater. Part one: Full scale experimental evaluation of effects on effluent characteristic; Stagni biologici nel trattamento terziario dei liquami urbani. Parte I: Valutazione sperimentale a scala reale degli effetti sulle caratteristiche all`effluente finale

    Energy Technology Data Exchange (ETDEWEB)

    Tatano, Fabio

    1997-04-01

    The application of polishing ponds as tertiary treatment of municipal wastewater, is quite common in Germany. Nowadays, the wastewater treatment plants in the most industrialized Countries achieve high treatment efficiencies in the biological phase; then, it seems necessary to study - in these plants - the treatment efficiencies and the improvements achievable with polishing ponds inserted as tertiary treatment. This Part One of the paper describes the results of a full scale experimental evaluation of the treatment efficiency of the polishing ponds in a wastewater treatment plant situated in the Ruhr River Region (Germany).

  14. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  15. Molecular-based detection of potentially pathogenic bacteria in membrane bioreactor (MBR) systems treating municipal wastewater: a case study

    KAUST Repository

    Harb, Moustapha

    2016-12-24

    Although membrane bioreactor (MBR) systems provide better removal of pathogens compared to conventional activated sludge processes, they do not achieve total log removal. The present study examines two MBR systems treating municipal wastewater, one a full-scale MBR plant and the other a lab-scale anaerobic MBR. Both of these systems were operated using microfiltration (MF) polymeric membranes. High-throughput sequencing and digital PCR quantification were utilized to monitor the log removal values (LRVs) of associated pathogenic species and their abundance in the MBR effluents. Results showed that specific removal rates vary widely regardless of the system employed. Each of the two MBR effluents’ microbial communities contained genera associated with opportunistic pathogens (e.g., Pseudomonas, Acinetobacter) with a wide range of log reduction values (< 2 to >5.5). Digital PCR further confirmed that these bacterial groups included pathogenic species, in several instances at LRVs different than those for their respective genera. These results were used to evaluate the potential risks associated both with the reuse of the MBR effluents for irrigation purposes and with land application of the activated sludge from the full-scale MBR system.

  16. Influence of different flow conditions on the occurrence and behavior of potentially hazardous organic xenobiotics in the influent and effluent of a municipal sewage treatment plant in Germany: an effect-directed approach

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Peter [University of Trier (Germany). Department of Hydrology; Max-Planck-Institute for Chemistry, Mainz (Germany). Particle Chemistry Dept.; Bierl, Reinhard [University of Trier (Germany). Department of Hydrology

    2012-12-15

    Flow conditions in the sewer systems are particularly important for the chemical and toxicological characteristics of raw and treated wastewater. Nevertheless, this topic has not been thoroughly investigated to date. In this study, composite wastewater samples were taken daily from the influent and effluent of a municipal sewage treatment plant. Polarity-based fractionation of the samples was carried out through sequential solid phase extractions. Biological testing of single and recombinant fractions was performed using bioluminescence inhibition assay according to DIN EN ISO 11348-2. Selected compounds (pharmaceuticals and polycyclic aromatic hydrocarbons) were also included in the chemical analysis by liquid chromatography coupled with tandem mass spectrometry and gas chromatography coupled with mass spectrometry. By analyzing different flow conditions, this study clarifies how these fractions contribute to the total toxicity of organic substances in wastewater. Additionally, it demonstrates the extent to which the potentially hazardous effects of the fractions can be reduced at the examined sewage treatment plant. Summarizing, medium to highly polar organic compounds were particularly relevant for the total toxicity of organic xenobiotics. For rising wastewater flow under wet weather conditions, we observed a significant decrease in the overall toxicity of the organic pollutants and specifically in the toxic effects of the moderately polar fraction 2. The results provide the starting point for an important risk assessment regarding the occurrence and behavior of potentially toxic xenobiotics by differentiated polarity in municipal wastewater for varying flow conditions. (orig.)

  17. Reuse of wastewater effluents in Saudi Arabia

    International Nuclear Information System (INIS)

    Ishaq, A.M.; Al-Suwaiyan, M.S.

    2002-01-01

    In the initial phase of a six-year study, laboratory investigations were carried out to establish conservative estimates of the contaminant removals that are possible by the recharge of local secondary effluents through a sand dune. In the preliminary laboratory study, chlorinated effluent was found to be more suitable than unchlorinated wastewater with respect to the development of anaerobic conditions and headlosses. In the main laboratory study, a 5-m high Plexiglass sand box column was used to investigate conservative predictions for the removal of contaminants. The average removals of BOD, COD, and TOC were over 65%, 65%, and 55%, respectively. The COD was primarily removed in the first 200 cm of the column. The effluent had a residual TOC of 1.66 mg/l and consisted of humic substances. The average removal of microbial indicator organisms: Total Coliform (TC) and Coliphage were over 85% and 66%, respectively. The product water contained only nominal amounts of TC (Average - 21.5 MPN/100 ml) and Coliphage (Average - 6 PFU/100 ml). The porous media largely remained unaffected by the recharge operation. In the second phase, a 'field recharge system' was constructed and recharge operations were carried out over a two year period resulting in the following observations. a. The quality of the end product will depend entirely on the quality of the secondary effluent. b. With the soil aquifer treatment system (SATS) under consideration, it was possible to achieve product water meeting the recharge standards with respect to heavy metals, pH, BOD, TOC, fecal coliform and total coliform. c. The product water met the standards for restricted and unrestricted irrigation. (author)

  18. Reuse of wastewater effluents in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Ishaq, A.M.; Al-Suwaiyan, M.S. [King Fahd Univ. of Petroleum and Minerals, Dept. of Civil Engineering, Dhahran (Saudi Arabia)

    2002-06-15

    In the initial phase of a six-year study, laboratory investigations were carried out to establish conservative estimates of the contaminant removals that are possible by the recharge of local secondary effluents through a sand dune. In the preliminary laboratory study, chlorinated effluent was found to be more suitable than unchlorinated wastewater with respect to the development of anaerobic conditions and headlosses. In the main laboratory study, a 5-m high Plexiglass sand box column was used to investigate conservative predictions for the removal of contaminants. The average removals of BOD, COD, and TOC were over 65%, 65%, and 55%, respectively. The COD was primarily removed in the first 200 cm of the column. The effluent had a residual TOC of 1.66 mg/l and consisted of humic substances. The average removal of microbial indicator organisms: Total Coliform (TC) and Coliphage were over 85% and 66%, respectively. The product water contained only nominal amounts of TC (Average - 21.5 MPN/100 ml) and Coliphage (Average - 6 PFU/100 ml). The porous media largely remained unaffected by the recharge operation. In the second phase, a 'field recharge system' was constructed and recharge operations were carried out over a two year period resulting in the following observations. a. The quality of the end product will depend entirely on the quality of the secondary effluent. b. With the soil aquifer treatment system (SATS) under consideration, it was possible to achieve product water meeting the recharge standards with respect to heavy metals, pH, BOD, TOC, fecal coliform and total coliform. c. The product water met the standards for restricted and unrestricted irrigation. (author)

  19. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch Surface Water and Wastewater.

    Directory of Open Access Journals (Sweden)

    Hetty Blaak

    Full Text Available The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source.The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs, seven municipal wastewater treatment plants (mWWTPs, and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes: ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol.Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR. In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×10(2, 4.0×10(4, 1.8×10(7, and 4.1×10(7 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX-M-15.In

  20. Pilot-scale UV/H2O2 advanced oxidation process for municipal reuse water: Assessing micropollutant degradation and estrogenic impacts on goldfish (Carassius auratus L.).

    Science.gov (United States)

    Shu, Zengquan; Singh, Arvinder; Klamerth, Nikolaus; McPhedran, Kerry; Bolton, James R; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2016-09-15

    Low concentrations (ng/L-μg/L) of emerging micropollutant contaminants in municipal wastewater treatment plant effluents affect the possibility to reuse these waters. Many of those micropollutants elicit endocrine disrupting effects in aquatic organisms resulting in an alteration of the endocrine system. A potential candidate for tertiary municipal wastewater treatment of these micropollutants is ultraviolet (UV)/hydrogen peroxide (H2O2) as an advanced oxidation process (AOP) which was currently applied to treat the secondary effluent of the Gold Bar Wastewater Treatment Plant (GBWWTP) in Edmonton, AB, Canada. A new approach is presented to predict the fluence-based degradation rate constants (kf') of environmentally occurring micropollutants including carbamazepine [(0.87-1.39) × 10(-3) cm(2)/mJ] and 2,4-Dichlorophenoxyacetic acid (2,4-D) [(0.60-0.91) × 10(-3) cm(2)/mJ for 2,4-D] in a medium pressure (MP) UV/H2O2 system based on a previous bench-scale investigation. Rather than using removal rates, this approach can be used to estimate the performance of the MP UV/H2O2 process for degrading trace contaminants of concern found in municipal wastewater. In addition to the ability to track contaminant removal/degradation, evaluation of the MP UV/H2O2 process was also accomplished by identifying critical ecotoxicological endpoints (i.e., estrogenicity) of the treated wastewater. Using quantitative PCR, mRNA levels of estrogen-responsive (ER) genes ERα1, ERα2, ERβ1, ERβ2 and NPR as well as two aromatase encoding genes (CYP19a and CYP19b) in goldfish (Carassius auratus L.) were measured during exposure to the GBWWTP effluent before and after MP UV/H2O2 treatment (a fluence of 1000 mJ/cm(2) and 20 mg/L of H2O2) in spring, summer and fall. Elevated expression of estrogen-responsive genes in goldfish exposed to UV/H2O2 treated effluent (a 7-day exposure) suggested that the UV/H2O2 process may induce acute estrogenic disruption to goldfish principally because

  1. Regulation of wastewater treatment plants in the Ba-Phalaborwa municipality / Q.N. Gopo

    OpenAIRE

    Gopo, Nothando Lilian Queen

    2013-01-01

    South Africa is a water-scarce country and over the years, the quality of water resources has deteriorated due to poor effluent discharge, agricultural, industrial, mining and human activities. The major contributing factors of poorly-treated or inadequately treated wastewater may be attributed to: (a) the poor design and construction of wastewater treatment plants; (b) lack of qualified process controllers; (c) non-compliance with applicable legislation; (d) lack of proper monitoring; and (e...

  2. Using Combined Processes of Filtration and Ultraviolet Irradiation for Effluent Disinfection of Isfahan North Wastewater Treatment Plant in Pilot Scale

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2011-07-01

    Full Text Available This study was carried out to evaluate the secondary effluent disinfection of the Isfahannorth municipal wastewater treatment plant using filtration and UV technology in current operational condition. The combined system was used in series in pilot scale including: Pressure Sand Filter + Low Pressure (LP + Medium Pressure (MP UV Lamps. The UV dose varied according to the initial intensity of lamp, flow rate and influent transmittance. Total coliform (TC, fecal coliform (FC and fecal streptococcus (FS were analyzed as microbiological parameters in all effluent samples. TSS, BOD5, COD, VSS, pH and transmittance (UVT percentage were tested as physicochemical parameters, before and after the units. Results showed that the filtration with loading of 1050 lit/m2.hr, followed by MP lamp with dose of 230 mW.s/cm2 is an effective alternative to reduce the TC/FC and FS in the secondary effluent. The combined disinfection processes that were used in this study, could be met the standards of 1000 TC, and 400FC/100ml for effluent discharge to receiving waters or restricted reuses in the agriculture. This process can also inactivate the FS down to 6-log.Using low-pressure lamps due to low dose radiation for disinfection is not cost-effective. In this study, parasite egg counts due to lack of access to accurate identification techniques for alive cyst detection was not examined.

  3. Antibiotic Resistant Bacteria And Their Associated Resistance Genes in a Conventional Municipal Wastewater Treatment Plant

    KAUST Repository

    Aljassim, Nada I.

    2013-12-01

    With water scarcity as a pressing issue in Saudi Arabia and other Middle Eastern countries, the treatment and reuse of municipal wastewater is increasingly being used as an alternative water source to supplement country water needs. Standards are in place to ensure a safe treated wastewater quality, however they do not regulate pathogenic bacteria and emerging contaminants. Information is lacking on the levels of risk to public health associated with these factors, the efficiency of conventional treatment strategies in removing them, and on wastewater treatment in Saudi Arabia in general. In this study, a municipal wastewater treatment plant in Saudi Arabia is investigated to assess the efficiency of conventional treatment in meeting regulations and removing pathogens and emerging contaminants. The study found pathogenic bacterial genera, antibiotic resistance genes and antibiotic resistant bacteria, many of which were multi-resistant in plant discharges. It was found that although the treatments are able to meet traditional quality guidelines, there remains a risk from the discussed contaminants with wastewater reuse. A deeper understanding of this risk, and suggestions for more thorough guidelines and monitoring are needed.

  4. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent.

    Science.gov (United States)

    Hultman, Jenni; Tamminen, Manu; Pärnänen, Katariina; Cairns, Johannes; Karkman, Antti; Virta, Marko

    2018-04-01

    Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacEΔ1and blaOXA-58) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates.

  5. Removal of novel antiandrogens identified in biological effluents of domestic wastewater by activated carbon.

    Science.gov (United States)

    Ma, Dehua; Chen, Lujun; Liu, Rui

    2017-10-01

    Environmental antiandrogenic (AA) contaminants in effluents from wastewater treatment plants have the potential for negative impacts on wildlife and human health. The aim of our study was to identify chemical contaminants with likely AA activity in the biological effluents and evaluate the removal of these antiandrogens (AAs) during advanced treatment comprising adsorption onto granular activated carbon (GAC). In this study, profiling of AA contaminants in biological effluents and tertiary effluents was conducted using effect-directed analysis (EDA) including high performance liquid chromatography (HPLC) fractionation, a recombinant yeast screen containing androgen receptor (YAS), in combination with mass spectrometry analyses. Analysis of a wastewater secondary effluent from a membrane bioreactor revealed complex profiles of AA activity comprising 14 HPLC fractions and simpler profiles of GAC effluents with only 2 to 4 moderately polar HPLC fractions depending on GAC treatment conditions. Gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-nanospray mass spectrometry analyses of AA fractions in the secondary effluent resulted in detection of over 10 chemical contaminants, which showed inhibition of YAS activity and were potential AAs. The putative AAs included biocides, food additives, flame retardants, pharmaceuticals and industrial contaminants. To our knowledge, it is the first time that the AA properties of N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide (WS3), cetirizine, and oxcarbazepine are reported. The EDA used in this study was proven to be a powerful tool to identify novel chemical structures with AA activity in the complex aquatic environment. The adsorption process to GAC of all the identified antiandrogens, except WS3 and triclosan, fit well with the pseudo-second order kinetics models. Adsorption to GAC could further remove most of the AAs identified in the biological effluents with high efficiencies. Copyright

  6. Determination of nonylphenol isomers in landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry

    Science.gov (United States)

    Zhang, Caixiang; Eganhouse, Robert P.; Pontolillo, James; Cozzarelli, Isabelle M.; Wang, Yanxin

    2012-01-01

    4-Nonylphenols (4-NPs) are known endocrine disruptors and by-products of the microbial degradation of nonylphenol polyethoxylate surfactants. One of the challenges to understanding the toxic effects of nonylphenols is the large number of isomers that may exist in environmental samples. In order to attribute toxic effects to specific compounds, a method is needed for the separation and quantitation of individual nonylphenol isomers. The pre-concentration methods of solvent sublimation, solid-phase extraction or liquid–liquid extraction prior to chromatographic analysis can be problematic because of co-extraction of thousands of compounds typically found in complex matrices such as municipal wastewater or landfill leachate. In the present study, steam distillation extraction (SDE) was found to be an effective pre-concentration method for extraction of 4-NPs from leachate and wastewater, and comprehensive two-dimensional gas chromatography (GC × GC) coupled with fast mass spectral data acquisition by time-of-flight mass spectrometry (ToFMS) enhanced the resolution and identification of 4-NP isomers. Concentrations of eight 4-NP isomers were determined in leachate from landfill cells of different age and wastewater influent and effluent samples. 4-NP isomers were about 3 times more abundant in leachate from the younger cell than the older one, whereas concentrations in wastewater effluent were either below detection limits or <1% of influent concentrations. 4-NP isomer distribution patterns were found to have been altered following release to the environment. This is believed to reflect isomer-specific degradation and accumulation of 4-NPs in the aquatic environment.

  7. Evaluation of rapid methods for in-situ characterization of organic contaminant load and biodegradation rates in winery wastewater.

    Science.gov (United States)

    Carvallo, M J; Vargas, I; Vega, A; Pizarro, G; Pizarr, G; Pastén, P

    2007-01-01

    Rapid methods for the in-situ evaluation of the organic load have recently been developed and successfully implemented in municipal wastewater treatment systems. Their direct application to winery wastewater treatment is questionable due to substantial differences between municipal and winery wastewater. We critically evaluate the use of UV-VIS spectrometry, buffer capacity testing (BCT), and respirometry as rapid methods to determine organic load and biodegradation rates of winery wastewater. We tested three types of samples: actual and treated winery wastewater, synthetic winery wastewater, and samples from a biological batch reactor. Not surprisingly, respirometry gave a good estimation of biodegradation rates for substrate of different complexities, whereas UV-VIS and BCT did not provide a quantitative measure of the easily degradable sugars and ethanol, typically the main components of the COD in the influent. However, our results strongly suggest that UV-VIS and BCT can be used to identify and estimate the concentration of complex substrates in the influent and soluble microbial products (SMP) in biological reactors and their effluent. Furthermore, the integration of UV-VIS spectrometry, BCT, and mathematical modeling was able to differentiate between the two components of SMPs: substrate utilization associated products (UAP) and biomass associated products (BAP). Since the effluent COD in biologically treated wastewaters is composed primarily by SMPs, the quantitative information given by these techniques may be used for plant control and optimization.

  8. Tracing wastewater effluents in surface and groundwaters: a couple approach with organic/inorganic tracers and isotopes

    Science.gov (United States)

    Petelet-Giraud, Emmanuelle; Baran, Nicole; Soulier, Coralie

    2017-04-01

    In the context of land use change, the origins of contamination of water resources are often multiple, including for a single chemical element or molecule. For instance, excess of nitrates in both surface and groundwater can originate from agricultural practices and wastewater effluents. The discrimination of the origins and vectors of contamination in the environment is both an environmental and societal issue in order to define an integrated water resources management at the catchment or water body scale by implementing appropriate measures to effectively struggle against pollution. The objective of this study is to define a methodology for the identification of a "domestic wastewater" contamination within surface waters and groundwater. An ideal tracer should be conservative, persistent in the different water compartments, present in quantity above the detection limit and originate from a single type of pollution source. There is, however, no ideal tracer in the strict sense. Indeed, even chloride which is present in quantity in wastewater, and which behaves conservatively in the environment, is not an univocal tracer of wastewater, as it may come from atmospheric inputs, from the dissolution of evaporitic rocks, from the salting of roads or from fertilizers. To overcome this limitation, in this study, we propose a multi-tracer approach (chemical and isotopic) to identify and validate the relevance of foreseen tracers. Among the relevant tracers of wastewater, the following may be used for their intrinsic or combined discriminant power: 1) organic effluent tracers: nitrogen contents and isotopic ratios of nitrogen and oxygen of nitrates; 2) tracer of detergents: boron contents and boron isotopes; 3) pharmaceuticals tracers: e.g. carbamazepine, ibuprofen, paracetamol, gadolinium anomaly; 4) life-style tracers: e.g. caffeine. The originality of the study relies on small capacities wastewater treatment plants without tertiary treatment process. Results on a

  9. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater.

    Science.gov (United States)

    Tu, Renjie; Jin, Wenbiao; Xi, Tingting; Yang, Qian; Han, Song-Fang; Abomohra, Abd El-Fatah

    2015-12-01

    Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Photochemical degradation of atenolol, carbamazepine, meprobamate, phenytoin and primidone in wastewater effluents

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Mei Mei [Civil, Environmental and Architectural Engineering, 428 UCB, University of Colorado, Boulder, CO 80309 (United States); Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954 (United States); Trenholm, Rebecca [Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954 (United States); Rosario-Ortiz, Fernando L., E-mail: Fernando.rosario@colorado.edu [Civil, Environmental and Architectural Engineering, 428 UCB, University of Colorado, Boulder, CO 80309 (United States)

    2015-01-23

    Highlights: • The photochemical degradation of 5 compounds was evaluated in wastewater effluents. • Attenuation by sensitized photolysis was the most important degradation pathway. • Hydroxyl radical accounted for most of the degradation for aliphatic compounds. • Other transient oxidants could also significantly impact the degradation of the compounds. - Abstract: The photochemical degradation of five pharmaceuticals was examined in two secondary wastewater effluents. The compounds, which included atenolol, carbamazepine, meprobamate, phenytoin and primidone, were evaluated for both direct and sensitized photolysis. In the two wastewaters, direct photolysis did not lead to significant compound degradation; however, sensitized photolysis was an important removal pathway for the five pharmaceuticals. Upon solar irradiation, hydroxyl radical (HO·) was quantified using the hydroxylation of benzene and singlet oxygen ({sup 1}O{sub 2}) formation was monitored following the degradation of furfuryl alcohol. Degradation via sensitized photolysis was observed following five-day exposures for atenolol (69–91%), carbamazepine (67–98%), meprobamate (16–52%), phenytoin (44–85%), and primidone (34–88%). Varying removal is likely a result of the differences in reactivity with transient oxidants. Averaged steady state HO· concentrations ranged from 1.2 to 4.0 × 10{sup −16} M, whereas the concentrations of {sup 1}O{sub 2} were 6.0–7.6 × 10{sup −14} M. Partial removal due to presence of HO· indicates it was not the major sink for most compounds examined. Other transient oxidants, such as {sup 1}O{sub 2} and triplet state effluent organic matter, are likely to play important roles in fates of these compounds.

  11. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP)

    International Nuclear Information System (INIS)

    He Shengbing; Xue Gang

    2010-01-01

    Algal-based immobilization process was applied to treat the effluent from a secondary wastewater treatment plant. Batch test proved that algae could attach onto fiber-bundle carrier in 7 days, and then the algal-based immobilization reactor could reduce TN (total nitrogen) and TP (total phosphorus) significantly within 48 h. Based on the above investigations, the hydraulic retention time (HRT) of the algal-based immobilization reactor in continuous operation mode was determined to be 2 days. During the 91 days of experiment on the treating secondary effluent of Guang-Rao wastewater treatment plant, it was found that the fiber-bundle carrier could collect the heterobacteria and nitrifying bacteria gradually, and thus improved the COD removal efficiency and nitrification performance step by step. Results of the continuous operation indicated that the final effluent could meet the Chinese National First A-level Sewage Discharge Standard when the algal-based immobilization reactor reached steady state.

  12. Modified whole effluent toxicity test to assess and decouple wastewater effects from environmental gradients.

    Directory of Open Access Journals (Sweden)

    Sebastián Sauco

    Full Text Available Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd and salinity controls (SC: without canal water. CWd were prepared by diluting the water effluent (sampled during the pesticide application period with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses.

  13. Peracetic acid as disinfectant of municipal wastewaters; L'acido peracetico nella disinfezione dei reflui urbani

    Energy Technology Data Exchange (ETDEWEB)

    Funari, E. [Istituto Superiore di Sanita' , Laboratorio di Igiene Ambientale, Reparto di Medicina Ambientale, Rome (Italy); Lopez, A. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca sulle Acque, Reparto di Chimica e Tecnologia delle Acque, Bari (Italy)

    2000-09-01

    Based on the currently available literature, this paper is aimed at providing a sort of the <> on the use of peracetic acid (C{sub 3}COOOH{identical_to} Paa) as disinfectant of biologically treated municipal wastewater: the growing interest for this substance, used since many years in other sectors (e.g., food-industry, breweries, etc.) is mainly due to the claimed limited formation, if any, of harmful disinfecting by-products (Dbp) with consequent lack of toxicity in Paa treated wastewaters. Such features are just the opposite of those of chlorine, i.e. the most used disinfectant for municipal wastewater. During chlorine-disinfecting, in fact, numerous harmful organo-chlorinated Dbp are formed and, accordingly, the toxicity of chlorinated effluents results very high. In spite of the above reported <> properties of Paa, its use at large scale facilities is still restricted and this not only because of its costs but even for the limited knowledge concerning: the actual disinfecting effectiveness towards different pathogens, the nature and the toxicological properties of its potential Dbp, and the disinfecting performances at large scale facilities. The present paper, besides reporting an extensive and useful collection of references concerning Paa, provides a critical review on the current knowledge regarding specific Paa features such as: its disinfecting effectiveness towards different pathogenic micro-organisms, the nature and the toxicity of its disinfecting by-products, the environmental impact of Paa treated effluents, and the operative conditions used at large scale wastewater treatment plants. [Italian] Il presente lavoro, basandosi sui dati disponibili in letteratura, si propone di fare il punto sull'impiego dell'acido peracetico (CH{sub 3}COOOH{identical_to} PAA) come disinfettante di reflui urbani depurati. Il crescente interesse nei confronti di questa sostenza, gia' nota come disinfettante in

  14. Vibrio Species in Wastewater Final Effluents and Receiving Watershed in South Africa: Implications for Public Health

    Directory of Open Access Journals (Sweden)

    Allisen N. Okeyo

    2018-06-01

    Full Text Available Wastewater treatment facilities in South Africa are obliged to make provision for wastewater effluent quality management, with the aim of securing the integrity of the surrounding watersheds and environments. The Department of Water Affairs has documented regulatory parameters that have, over the years, served as a guideline for quality monitoring/management purposes. However, these guidelines have not been regularly updated and this may have contributed to some of the water quality anomalies. Studies have shown that promoting the monitoring of the current routinely monitored parameters (both microbial and physicochemical may not be sufficient. Organisms causing illnesses or even outbreaks, such as Vibrio pathogens with their characteristic environmental resilience, are not included in the guidelines. In South Africa, studies that have been conducted on the occurrence of Vibrio pathogens in domestic and wastewater effluent have made it apparent that these pathogens should also be monitored. The importance of effective wastewater management as one of the key aspects towards protecting surrounding environments and receiving watersheds, as well as protecting public health, is highlighted in this review. Emphasis on the significance of the Vibrio pathogen in wastewater is a particular focus.

  15. Wastewater treatment and public health in Nunavut: a microbial risk assessment framework for the Canadian Arctic

    DEFF Research Database (Denmark)

    Daley, Kiley; Jamieson, Rob; Rainham, Daniel

    2017-01-01

    into the terrestrial and aquatic environment at random times. Northern communities rely heavily on their local surroundings as a source of food, drinking water, and recreation, thus creating the possibility of human exposure to wastewater effluent. Human exposure to microbial hazards present in municipal wastewater....... This review offers a conceptual framework and evaluation of current knowledge to enable the first microbial risk assessment of exposure scenarios associated with food-harvesting and recreational activities in Arctic communities, where simplified wastewater systems are being operated....

  16. Evaluation of the performances of wastewater treatment services provided by the metropolitan municipalities in Turkey using Entropy integrated SAW, MOORA and TOPSIS

    OpenAIRE

    Ayyıldız, Ertuğrul; Özçelik, Gökhan

    2018-01-01

    Reusingof the wastewater has a vital importance because of limited natural waterresources all around the world. Recycled wastewater can be used in many areassuch as agriculture, industry, cleaning etc. Treatment of wastewater is one ofthe important tasks of metropolitan municipalities. The aim of this study is toevaluate the performances of wastewater treatment services provided by themetropolitan municipalities in Turkey using Entropy integrated SAW, MOORA andTOPSIS methods. In the scope of ...

  17. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hongjun, E-mail: hjlin@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Wang, Fangyuan; Ding, Linxian; Hong, Huachang [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Chen, Jianrong, E-mail: cjr@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Lu, Xiaofeng [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800 (China)

    2011-09-15

    Highlights: {yields} The first study to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. {yields} The study revealed that most organics in the secondary effluent were low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by PAC-MBR process. {yields} The study suggested that the action of biomass and the PAC is mutual and synergistic. - Abstract: The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH{sub 4}{sup +}-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent.

  18. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment

    International Nuclear Information System (INIS)

    Lin, Hongjun; Wang, Fangyuan; Ding, Linxian; Hong, Huachang; Chen, Jianrong; Lu, Xiaofeng

    2011-01-01

    Highlights: → The first study to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. → The study revealed that most organics in the secondary effluent were low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by PAC-MBR process. → The study suggested that the action of biomass and the PAC is mutual and synergistic. - Abstract: The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH 4 + -N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent.

  19. Low removal of acidic and hydrophilic pharmaceutical products by various types of municipal wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Christian Gagnon

    2012-03-01

    Full Text Available Pharmaceutical substances represent a risk for aquatic environments and their potential impacts on the receiving environment are poorly understood. Municipal effluents are important sources of contaminants including common pharmaceuticals like anti-inflammatory and anti-convulsive substances. The removal of pharmaceuticals, particularly those highly soluble can represent a great challenge to conventional wastewater treatment processes. Hydrophilic drugs (e.g. acidic drugs have properties that can highly influence removal efficiencies of treatment plants. The performance of different wastewater treatment processes for the removal of specific pharmaceutical products that are expected to be poorly removed was investigated. The obtained results were compared to inherent properties of the studied substances. Clofibric acid, carbamazepine, diclofenac, ibuprofen and naproxen were largely found in physicochemical primary-treated effluents at concentrations ranging from 77 to 2384 ng/L. This treatment type showed removal yields lower than 30%. On the other hand, biological treatments with activated sludge under aerobic conditions resulted in much better removal rates (>50% for 5 of the 8 studied substances. Interestingly, this latter type of process showed evidence of selectivity with respect to the size (R2=0.7388, solubility (R2=0.6812, and partitioning (R2=0.9999 of the removed substances; the smallest and least sorbed substances seemed to be removed at better rates, while the persistent carbamazepine (392 ng/L and diclofenac (66 ng/L were poorly removed (<10% after biological treatment. In the case of treatment by aerated lagoons, the most abundant substances were the highly soluble hydroxy-ibuprofen (350-3321 ng/L, followed by naproxen (42-413 n/L and carbamazepine (254-386 ng/L. In order to assess the impacts of all these contaminants of various properties on the environment and human health, we need to better understand the chemical and physical

  20. Fouling Characterization of Forward Osmosis Biomimetic Aquaporin Membranes Used for Water Recovery from Municipal Wastewater

    DEFF Research Database (Denmark)

    Zarebska, Agata; Petrinic, Irena; Hey, Tobias

    , organic, and biological fouling, membrane characterization is not a trivial task. The aim of this work is to characterize fouling of FO biomimetic aquaporin membranes during water recovery from municipal wastewater. Membrane fouling was characterized using Scanning Electron Microscopy, X-ray Dispersive......Generally more than 99.93% of municipal wastewater is composed of water, therefore water recovery can alleviate global water stress which currently exists. Traditional ways to extract water from wastewater by the use of membrane bioreactors combined with reverse osmosis (RO), or micro...... compared to other pressure driven membrane processes, some fouling can occur. This entails that by reducing fouling, increased FO membrane performance can be expected, thus increasing the economic viability of FO processes. Since various types of fouling might occur in membrane systems such as inorganic...

  1. Analysis of Pharmaceutical and Personal Care Compounds in Wastewater Sludge and Aqueous Samples using GC-MS/MS

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitroshkov, Alexandre V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilmore, Tyler J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-15

    The Bioenergy Program at Pacific Northwest National Laboratory (PNNL) is evaluating the feasibility of converting wastewater sludge materials to fuels. Wastewater sludge from various municipalities will be used in the evaluation process and as with any municipal waste, there is the potential for residual contaminates to remain in the sludge following wastewater treatment. Many surveys and studies have confirmed the presence of pharmaceuticals in municipal wastewater and effluents (World Health Organization, 2011). Determination of the presence and concentrations of the contaminants is required to define the proper handling of this sludge. A list of targeted compounds was acquired from the literature and an analytical method was developed for the pharmaceutical and personal care compounds. The presence of organics complicated the analytical techniques and, in some cases, the precision of the results. However, residual concentrations of a range of compounds were detected in the wastewater sludge and the presence and concentrations of these compounds will be considered in identifying the appropriate handling of this material in conduct of research.

  2. Nutrient Removal and Biomass Production in an Outdoor Pilot-Scale Phototrophic Biofilm Reactor for Effluent Polishing

    NARCIS (Netherlands)

    Boelee, N.C.; Janssen, M.; Temmink, H.; Shrestha, R.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m2/day. The areal nitrogen and

  3. A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Young; Seok, Hyun-Woo [Department of Civil and Environmental Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Kwon, Hye-Ok; Choi, Sung-Deuk [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 (Korea, Republic of); Seok, Kwang-Seol [Chemical Research Division, National Institute of Environmental Research, Incheon 22689 (Korea, Republic of); Oh, Jeong Eun [Department of Civil and Environmental Engineering, Pusan National University, Busan 46241 (Korea, Republic of)

    2016-09-01

    Levels of 11 perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were measured in wastewater (influent and effluent) and sludge samples collected from 25 industrial wastewater treatment plants (I-WWTPs) in five industrial sectors (chemicals, electronics, metals, paper, and textiles) in South Korea. The highest ∑{sub 11}PFAAs concentrations were detected in the influent and effluent from the paper (median: 411 ng/L) and textile (median: 106 ng/L) industries, and PFOA and PFOS were the predominant PFAAs (49–66%) in wastewater. Exceptionally high levels of PFAAs were detected in the sludge associated with the electronics (median: 91.0 ng/g) and chemical (median: 81.5 ng/g) industries with PFOS being the predominant PFAA. The discharge loads of 11 PFAAs from I-WWTP were calculated that total discharge loads for the five industries were 0.146 ton/yr. The textile industry had the highest discharge load with 0.055 ton/yr (PFOA: 0.039 ton/yr, PFOS: 0.010 ton/yr). Municipal wastewater contributed more to the overall discharge of PFAAs (0.489 ton/yr) due to the very small industrial wastewater discharge compared to municipal wastewater discharge, but the contribution of PFAAs from I-WWTPs cannot be ignored. - Highlights: • 11 PFAAs in wastewater and sludge from 5 industrial sectors were investigated. • PFOA and PFOS were the dominant in wastewater while PFOS was predominant in sludge. • The total discharge loads from 5 industrial sectors 0.146 ton/yr. • The textile industry showed the highest discharge load with 0.055 ton/yr.

  4. Development of bioelectrochemical systems using various biogas fermenter effluents as inocula and municipal waste liquor as adapting substrate.

    Science.gov (United States)

    Bakonyi, Péter; Koók, László; Keller, Enikő; Bélafi-Bakó, Katalin; Rózsenberszki, Tamás; Saratale, Ganesh Dattatraya; Nguyen, Dinh Duc; Banu, J Rajesh; Nemestóthy, Nándor

    2018-07-01

    The purpose of this research was to improve microbial fuel cell (MFC) performance - treating landfill-derived waste liquor - by applying effluents of various biogas fermenters as inocula. It turned out that the differences of initial microbial community profiles notably influenced the efficiency of MFCs. In fact, the adaptation time (during 3 weeks of operation) has varied significantly, depending on the source of inoculum and accordingly, the obtainable cumulative energy yields were also greatly affected (65% enhancement in case of municipal wastewater sludge inoculum compared to sugar factory waste sludge inoculum). Hence, it could be concluded that the capacity of MFCs to utilize the complex feedstock was heavily dependent on biological factors such as the origin/history of inoculum, the microbial composition as well as proper acclimation period. Therefore, these parameters should be of primary concerns for adequate process design to efficiently generate electricity with microbial fuel cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    Science.gov (United States)

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  6. Different techniques recently used for the treatment of textile dyeing effluents: a review

    International Nuclear Information System (INIS)

    Altaf, A.; Noor, S.; Sharif, Q.M.; Najeebullah, M.

    2010-01-01

    Industrial textile processing comprises the operation of pretreatment dyeing printing and finishing. These production processes produce a substantial amount of chemical pollution. Textile finishing's wastewater, especially dye house effluent, contain different classes of organic dyes, chemicals and auxiliaries. They are colored and have extreme pH, COD and BOD values, and contain different salts, surfactants heavy metals and mineral oils. Therefore, dye bath effluents have to be treated before being discharge into the environment or municipal wastewater reservoir. This paper presents the review of different techniques currently used for the treatment of textile effluent, which are based on carbon adsorption, filtration, chemical precipitation, photo degradation, biodegradation and electrolytic chemical treatment. Membrane Technology has also been applied with the objective of recovering dyes and water. Biological processes could be adopted as a pretreatment decolorization step, combined with conventional treatment system (eg. coagulation flocculation, adsorption on activated carbon) to reduce the COD and BOD, an effective alternative for use by the textile dyeing industries. Electrochemical oxidation is an efficient process for the removal of colour and total organic carbon in reactive dyes textile wastewater. The ozonation is effective for decolorization of several dyes of different classes. Practical application of this process is feasible by treating industrial textile effluent after biological treatment. Processes using membranes technique, very interesting possibilities of separating hydrolyzed dyestuffs, dyeing auxiliaries and reuse treated wastewater in different finishing operation of textile industries. (author)

  7. Inactivation of microorganisms in treated municipal wastewater and biosolids by gamma irradiation

    International Nuclear Information System (INIS)

    2009-01-01

    Increasing growth of the world's population, waste minimization policies and agricultural needs make the recycling of domestic wastewater quite a desirable practice. Factors like environmental and public health risks must be taken into account when considering treated wastewater for field irrigation and biosolids for land application. Pathogens present in wastewater and biosolids may remain active after treatment and there is always a great risk of transmission of infections via consuming crop and vegetables. Therefore it is very important to treat domestic wastewater properly before using it as an irrigation water and as a fertilizer. The work reported herein represents an evaluation of the variations in the population densities of below indicated pathogens monitored during a one year study in Ankara Central Municipal Wastewater Treatment Plant, and the efficiency of gamma irradiation for the inactivation of these important waterborne pathogens. Parasitological investigation Treated wastewater and biosolids - Cryptosporidium sp. - Giardia lamblia - Entamoeba histolytica - Cyclospora cayetanensis - Helminth ova Bacteriological investigation Treated wastewater - Total coliforms - Salmonella sp. - Fecal streptococci - Enterococcus sp. Biosolids - Fecal coliforms - Salmonella sp. (Includes 12 tables, 16 figures)

  8. Isolation and Identification of Cadmium and Lead Resistant Bacteria and their Bacterial Removal from Wastewater

    Directory of Open Access Journals (Sweden)

    Sanaz Abbasi

    2017-01-01

    Full Text Available Municipal and industrial effluents continually release into the environment heavy metals of a variety of physical and chemical forms and at various concentrations. Biological treatment processes have attracted a growing attention for the removal of heavy metals from these effluents. For the purposes of the present study, bacteria that are relatively resistant to heavy metals, such as cadmium and lead, were isolated from municipal waste and purified. They were then subjected to biochemical tests for identification and their minimum inhibitory concentrations were determined. Bacterial minimum inhibitory concentrations were initially measured in flasks containing 25, 50, 75, 100, 150, 300, 500, and 700 ppm of lead and cadmium before superior bacteria at populations of 108 CFU/ml were evaluated in terms of their ability to remove lead and cadmium at concentrations of 50, 100, 150, and 300 ppm from enriched municipal wastewater. Base on the results, Bacillus laterosporous and Yersinia pseudotuberculosis were identified as the resistant bacteria and the minimum lead and cadmium inhibitory concentrations for these bacteria were determined to be 300 and 500 ppm, respectively. Moreover, Bacillus laterosporous and Yersinia pseudotuberculosis recorded maximum removal efficiencies of around 50.6% and 45.7%, respectively, with wastewater containing 100 mg/l of lead and 36.18% and 21.41% in the case of cadmium from wastewater enriched with 100 mg/l of lead and 150 mg/l of cadmium.

  9. Anaerobic degradation of dairy wastewater in intermittent UASB reactors: influence of effluent recirculation.

    Science.gov (United States)

    Couras, C S; Louros, V L; Gameiro, T; Alves, N; Silva, A; Capela, M I; Arroja, L M; Nadais, H

    2015-01-01

    This work studied the influence of effluent recirculation upon the kinetics of anaerobic degradation of dairy wastewater in the feedless phase of intermittent upflow anaerobic sludge bed (UASB) reactors. Several laboratory-scale tests were performed with different organic loads in closed circuit UASB reactors inoculated with adapted flocculent sludge. The data obtained were used for determination of specific substrate removal rates and specific methane production rates, and adjusted to kinetic models. A high initial substrate removal was observed in all tests due to adsorption of organic matter onto the anaerobic biomass which was not accompanied by biological substrate degradation as measured by methane production. Initial methane production rate was about 45% of initial soluble and colloidal substrate removal rate. This discrepancy between methane production rate and substrate removal rate was observed mainly on the first day of all experiments and was attenuated on the second day, suggesting that the feedless period of intermittent UASB reactors treating dairy wastewater should be longer than one day. Effluent recirculation expressively raised the rate of removal of soluble and colloidal substrate and methane productivity, as compared with results for similar assays in batch reactors without recirculation. The observed bed expansion was due to the biogas production and the application of effluent recirculation led to a sludge bed contraction after all the substrates were degraded. The settleability of the anaerobic sludge improved by the introduction of effluent recirculation this effect being more pronounced for the higher loads.

  10. Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater.

    Science.gov (United States)

    Han, Song-Fang; Jin, Wenbiao; Tu, Renjie; Abomohra, Abd El-Fatah; Wang, Zhi-Han

    2016-07-01

    Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the optimization of pretreatment of municipal wastewater and aeration conditions in order to enhance the lipid productivity of Scenedesmus obliquus. Results showed that no significant differences were recorded in lipid productivity of S. obliquus grown in primary settled or sterilized municipal wastewater; however, ultrasound pretreatment of wastewater significantly decreased the lipid production. Whereas, aeration rates of 0.2 vvm significantly increased lipid content by 51 %, with respect to the non-aerated culture, which resulted in maximum lipid productivity (32.5 mg L(-1) day(-1)). Furthermore, aeration enrichment by 2 % CO2 resulted in increase of lipid productivity by 46 % over the CO2 non-enriched aerated culture. Fatty acid profile showed that optimized aeration significantly enhanced monounsaturated fatty acid production, composed mainly of C18:1, by 1.8 times over the non-aerated S. obliquus culture with insignificant changes in polyunsaturated fatty acid proportion; suggesting better biodiesel characteristics for the optimized culture.

  11. Life Cycle Assessment to Municipal Wastewater Treatment Plant; Analisis de Ciclo de Vida de una Planta de Tratamiento de Aguas Residuales Municipales. Caso: PTARM de Yautepec (Morelos, Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J s; Herrera, I; Rodriguez, A

    2011-05-13

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  12. Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2017-07-01

    Nitrogen is limited more and more frequently in wastewater treatment plant (WWTP) effluents because of the concern of causing eutrophication in discharge waters. Twelve leachates from eight landfills in Florida and California were characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was approximately 1146mg/L and 40mg/L, respectively. Solid-phase extraction was used to fractionate the DON based on hydrophobic (recalcitrant fraction) and hydrophilic (bioavailable fraction) chemical properties. The average leachate concentrations of bioavailable (bDON) and recalcitrant (rDON) DON were 16.5mg/L and 18.4mg/L, respectively. The rDON fraction was positively correlated, but with a low R 2 , with total leachate apparent color dissolved UV 254 , chemical oxygen demand (COD), and humic acid (R 2 equals 0.38, 0.49, and 0.40, respectively). The hydrophobic fraction of DON (rDON) was highly colored. This fraction was also associated with over 60% of the total leachate COD. Multiple leachate and wastewater co-treatment simulations were carried out to assess the effects of leachate on total nitrogen wastewater effluent quality using removals for four WWTPs under different scenarios. The calculated pass through of DON suggests that leachate could contribute to significant amounts of nitrogen discharged to aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies.

    Science.gov (United States)

    Egle, L; Rechberger, H; Krampe, J; Zessner, M

    2016-11-15

    Phosphorus (P) is an essential and limited resource. Municipal wastewater is a promising source of P via reuse and could be used to replace P derived from phosphate rocks. The agricultural use of sewage sludge is restricted by legislation or is not practiced in several European countries due to environmental risks posed by organic micropollutants and pathogens. Several technologies have been developed in recent years to recover wastewater P. However, these technologies target different P-containing flows in wastewater treatment plants (effluent, digester supernatant, sewage sludge, and sewage sludge ash), use diverse engineering approaches and differ greatly with respect to P recycling rate, potential of removing or destroying pollutants, product quality, environmental impact and cost. This work compares 19 relevant P recovery technologies by considering their relationships with existing wastewater and sludge treatment systems. A combination of different methods, such as material flow analysis, damage units, reference soil method, annuity method, integrated cost calculation and a literature study on solubility, fertilizing effects and handling of recovered materials, is used to evaluate the different technologies with respect to technical, ecological and economic aspects. With regard to the manifold origins of data an uncertainty concept considering validity of data sources is applied. This analysis revealed that recovery from flows with dissolved P produces clean and plant-available materials. These techniques may even be beneficial from economic and technical perspectives under specific circumstances. However, the recovery rates (a maximum of 25%) relative to the wastewater treatment plant influent are relatively low. The approaches that recover P from sewage sludge apply complex technologies and generally achieve effective removal of heavy metals at moderate recovery rates (~40-50% relative to the WWTP input) and comparatively high costs. Sewage sludge ash is

  14. Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases.

    Science.gov (United States)

    Gentili, Francesco G

    2014-10-01

    The aim of the study was to grow microalgae on mixed municipal and industrial wastewater to simultaneously treat the wastewater and produce biomass and lipids. All algal strains grew in all wastewater mixtures; however, Selenastrum minutum had the highest biomass and lipids yields, up to 37% of the dry matter. Nitrogen and phosphorus removal were high and followed a similar trend in all three strains. Ammonium was reduced from 96% to 99%; this reduction was due to algal growth and not to stripping to the atmosphere, as confirmed by the amount of nitrogen in the dry algal biomass. Phosphate was reduced from 91% to 99%. In all strains used the lipid content was negatively correlated to the nitrogen concentration in the algal biomass. Mixtures of pulp and paper wastewater with municipal and dairy wastewater have great potential to grow algae for biomass and lipid production together with effective wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    Science.gov (United States)

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  16. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems.

    Science.gov (United States)

    Hsieh, Ming-Kai; Li, Heng; Chien, Shih-Hsiang; Monnell, Jason D; Chowdhury, Indranil; Dzombak, David A; Vidic, Radisav D

    2010-12-01

    Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former.

  17. Cultivation of Nannochloropsis sp. in brackish groundwater supplemented with municipal wastewater as a nutrient source

    Directory of Open Access Journals (Sweden)

    Louise Lins de Sousa

    2014-04-01

    Full Text Available The aim of this work was to study growth potential of the green microalgae Nannochloropsis sp. using brackish groundwater from a well in the semi-arid northeast region of Brazil as culture medium. The medium was supplemented with (% 19.4, 22.0, 44.0 and 50.0% of municipal wastewater after UASB treatment as a low-cost nutrient source. The results showed that the culture tested was capable of growing in the brackish groundwater even at salinity levels as low as 2 ppt. Furthermore it was shown that municipal wastewater could be used as a sole nutrient source for Nannochloropsis sp.

  18. Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

    KAUST Repository

    Cheng, Tuoyuan

    2016-01-01

    To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical

  19. Integrated membrane and microbial fuel cell technologies for enabling energy-efficient effluent Re-use in power plants.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Xia, Lichao; Alvarado, Catalina; Kilduff, James E; Keating, John J; Belfort, Georges; Gadhamshetty, Venkataramana

    2017-06-15

    Municipal wastewater is an attractive alternative to freshwater sources to meet the cooling water needs of thermal power plants. Here we offer an energy-efficient integrated microbial fuel cell (MFC)/ultrafiltration (UF) process to purify primary clarifier effluent from a municipal wastewater treatment plant for use as cooling water. The microbial fuel cell was shown to significantly reduce chemical oxygen demand (COD) in the primary settled wastewater effluent upstream of the UF module, while eliminating the energy demand required to deliver dissolved oxygen in conventional aerobic treatment. We investigated surface modification of the UF membranes to control fouling. Two promising hydrophilic monomers were identified in a high-throughput search: zwitterion (2-(Methacryloyloxy)-ethyl-dimethyl-(3-sulfopropyl ammoniumhydroxide, abbreviated BET SO 3 - ), and amine (2-(Methacryloyloxy) ethyl trimethylammonium chloride, abbreviated N(CH 3 ) 3 + ). Monomers were grafted using UV-induced polymerization on commercial poly (ether sulfone) membranes. Filtration of MFC effluent by membranes modified with BET SO 3 - and N(CH 3 ) 3 + exhibited a lower rate of resistance increase and lower energy consumption than the commercially available membrane. The MFC/UF process produced high quality cooling water that meets the Electrical Power Research Institute (EPRI) recommendations for COD, a suite of metals (Fe, Al, Cu, Zn, Si, Mn, S, Ca and Mg), and offered extremely low corrosion rates (<0.05 mm/yr). A series of AC and DC diagnostic tests were used to evaluate the MFC performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Novel passive co-treatment of acid mine drainage and municipal wastewater.

    Science.gov (United States)

    Strosnider, William H J; Winfrey, Brandon K; Nairn, Robert W

    2011-01-01

    A laboratory-scale, four-stage continuous-flow reactor system was constructed to test the viability of high-strength acid mine drainage (AMD) and municipal wastewater (MWW) passive co-treatment. Synthetic AMD of pH 2.6 and acidity of 1870 mg L(-1) as CaCO3 equivalent containing a mean 46, 0.25, 2.0, 290, 55, 1.2, and 390 mg L(-1) of Al, As, Cd, Fe, Mn, Pb, and Zn, respectively, was added at a 1:2 ratio with raw MWW from the City of Norman, OK, to the system which had a total residence time of 6.6 d. During the 135-d experiment, dissolved Al, As, Cd, Fe, Mn, Pb, and Zn concentrations were consistently decreased by 99.8, 87.8, 97.7, 99.8, 13.9, 87.9, and 73.4%, respectively, pH increased to 6.79, and net acidic influent was converted to net alkaline effluent. At a wasting rate of 0.69% of total influent flow, the system produced sludge with total Al, As, Cd, Cr, Cu, Fe, Pb, and Zn concentrations at least an order of magnitude greater than the influent mix, which presents a metal reclamation opportunity. Results indicate that AMD and MWW passive co-treatment is a viable approach to use wastes as resources to improve water quality with minimal use of fossil fuels and refined materials.

  1. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of Indian Creek, Johnson County, Kansas, June 2004 through June 2013

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.

    2014-01-01

    Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was

  2. Elimination of nitrate in secondary effluent of wastewater treatment plants by Fe0 and Pd-Cu/diatomite

    Directory of Open Access Journals (Sweden)

    Yupan Yun

    2018-03-01

    Full Text Available Because total nitrogen (TN, in which nitrate (NO3– is dominant in the effluent of most wastewater treatment plants, cannot meet the requirement of Chinese wastewater discharge standard (<15 mg/L, NO3– elimination has attracted considerable attention. In this research, the novel diatomite-supported palladium-copper catalyst (Pd-Cu/diatomite with zero-valent iron (Fe0 was tried to use for catalytic reduction of nitrate in wastewater. Firstly, specific operational conditions (such as mass ratio of Pd:Cu, catalyst amounts, reaction time and pH of solution were optimized for nitrate reduction in artificial solution. Secondly, the selected optimal conditions were further employed for nitrate elimination of real effluent of a wastewater treatment plant in Beijing, China. Results showed that 67% of nitrate removal and 62% of N2 selectivity could be obtained under the following conditions: 5 g/L Fe0, 3:1 mass ratio (Pd:Cu, 4 g/L catalyst, 2 h reaction time and pH 4.3. Finally, the mechanism of catalytic nitrate reduction was also proposed.

  3. Factors Affecting Distribution of Estrogenicity in the Influents, Effluents, and Biosolids of Canadian Wastewater Treatment Plants.

    Science.gov (United States)

    Shieh, Ben H H; Louie, Alvin; Law, Francis C P

    2016-05-01

    Canadian wastewater treatment plants (WWTPs) release significant amounts of estrogenic chemicals to nearby surface waters. Environmental estrogens have been implicated as the causative agents of many developmental and reproductive problems in animals, including fish. The goals of this study were to assess the estrogenic activity in the influents, effluents, and biosolids of thirteen Canadian WWTPs using the yeast estrogen screen (YES) bioassay and to investigate whether factors, such as wastewater treatment method, sample storage, extraction efficiency, population, and summer/winter temperature had any effects on the distribution of estrogenicity in the WWTPs. Results of the study showed that estrogenicity from the influent to the effluent decreased in seven WWTPs, increased in two WWTPs, and did not change in four WWTPs during the winter. Estrogenic concentrations generally decreased in the order of biosolids > influents > effluents and ranged from 1.57 to 24.6, 1.25E-02 to 3.84E-01, and 9.46E-03 to 3.90E-01 ng estradiol equivalents/g or ml, respectively. The estrogenicity in the final effluents, but not those in the influents and biosolids, was significantly higher in the summer than the winter. Among the WWTP treatment methods, advanced, biological nutrient removal appeared to be the most effective method to remove estrogenic chemicals from wastewaters in Canada. Our studies help to identify factors or mechanisms that affect the distribution of estrogenicity in WWTPs, providing a better understanding on the discharges of estrogenic chemicals from WWTPs.

  4. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS, Volume 2 of 2: Appendices

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level. This report contains appendices A and B. Appendix A contains notices of preparation/notices of intent and EIR/EIS scoping comments. Appendix B contains GeothermEx, Inc., analysis of Geothermal Reservoir Effects and Induced Seismicity

  5. Simultaneous determination of several veterinary pharmaceuticals in effluents from urban, livestock and slaughterhouse wastewater treatment plants using a simple chromatographic method.

    Science.gov (United States)

    Cavenati, Simone; Carvalho, Pedro N; Almeida, C Marisa R; Basto, M Clara P; Vasconcelos, M Teresa S D

    2012-01-01

    Minocycline, oxytetracycline, tetracycline, enrofloxacin and ceftiofur, commonly used veterinary pharmaceuticals, were searched in four urban, two livestock and two slaughterhouse effluents from wastewater treatment plants (WWTPs) in the north of Portugal. A simple method that includes solid-phase extraction followed with analysis by high-performance liquid chromatography with diode array detector was established and applied to the simultaneous determination of the five pharmaceuticals in WWTP effluents. This method, which is expeditious, inexpensive and available in most laboratories, showed to be useful for screening for problematic levels of drugs in WWTP effluents. It is known that several livestock and slaughterhouse effluents (pre-treated or treated) are discharged to the urban network before discharge into the environment. The presence of these drugs in such effluents can constitute a significant environmental problem that should be addressed, by the monitoring of these drugs and by implementation of methodologies that contribute to their decrease/elimination from wastewaters. Minocycline (≤6 μg L(-1)), oxytetracycline (≤7 μg L(-1)), tetracycline (≤6 μg L(-1)) and enrofloxacin (effluents. Detectable levels of enrofloxacin (effluents.

  6. A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications

    Science.gov (United States)

    Wang, Zhiwei; Zheng, Junjian; Tang, Jixu; Wang, Xinhua; Wu, Zhichao

    2016-02-01

    Recovery of nutrients and energy from municipal wastewater has attracted much attention in recent years; however, its efficiency is significantly limited by the low-strength properties of municipal wastewater. Herein, we report a pilot-scale forward osmosis (FO) system using a spiral-wound membrane module to concentrate real municipal wastewater. Under active layer facing feed solution mode, the critical concentration factor (CCF) of this FO system was determined to be 8 with 0.5 M NaCl as draw solution. During long-term operation at a concentration factor of 5, (99.8 ± 0.6)% of chemical oxygen demand and (99.7 ± 0.5)% of total phosphorus rejection rates could be achieved at a flux of 6 L/(m2 h) on average. In comparison, only (48.1 ± 10.5)% and (67.8 ± 7.3)% rejection of ammonium and total nitrogen were observed. Cake enhanced concentration polarization is a major contributor to the decrease of water fluxes. The fouling also led to the occurrence of a cake reduced concentration polarization effect, improving ammonium rejection rate with the increase of operation time in each cycle. This work demonstrates the applicability of using FO process for wastewater concentrating and also limitations in ammonium recovery that need further improvement in future.

  7. UASB reactor startup for the treatment of municipal wastewater followed by advanced oxidation process

    Directory of Open Access Journals (Sweden)

    Z. A. Bhatti

    2014-09-01

    Full Text Available The present study was done to shorten the start-up time of up-flow anaerobic sludge blanket (UASB reactor. Two different nutrients were used during the UASB start-up period, which was designed to decrease the hydraulic retention time (HRT from 48 to 24 and 12 to 6 hrs at average temperatures of 25-34 ºC. In the first stage, start-up was with glucose for 14 days and then the reactor was also fed with macro- and micronutrients as a synthetic nutrient influent (SNI from 15 to 45 days as the second stage. For the control, a second reactor was kept on glucose feeding from day 1 to 45. The removal efficiencies of the chemical oxygen demand (COD were 80% and 98% on the 6th and 32nd day of the first and second stage, respectively. The maximum substrate removal rate of 0.08 mg COD mg-1 VSS d-1 was observed for glucose and synthetic nutrient influent (SNI on the 8th and 40th days, respectively. When the reactor reached the maximum COD removal efficiency it was then shifted to municipal wastewater (MWW mixed with industrial wastewater. The HRT was reduced gradually with a one week gap while treating MWW. For further cleaning, the UASB effluent was treated with 40% waste hydrogen peroxide. The whole integrated treatment process was successful to reduce the COD by 99%, total suspended solids (TSS by 73%, total nitrogen (TN by 84% and turbidity by 67%.

  8. Distribution of effluent injected into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant, southeastern Florida, 1997–2011

    Science.gov (United States)

    King, Jeffrey N.; Decker, Jeremy D.

    2018-02-09

    Nonhazardous, secondarily treated, domestic wastewater (effluent) has been injected about 1 kilometer below land surface into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant in southeastern Florida. The Boulder Zone contains saline, nonpotable water. Effluent transport out of the injection zone is a risk of underground effluent injection. At the North District Wastewater Treatment Plant, injected effluent was detected outside the Boulder Zone. The U.S. Geological Survey, in cooperation with Miami-Dade Water and Sewer Department, investigated effluent transport from the Boulder Zone to overlying permeable zones in the Floridan aquifer system.One conceptual model is presented to explain the presence of effluent outside of the injection zone in which effluent injected into the Boulder Zone was transported to the Avon Park permeable zone, forced by buoyancy and injection pressure. In this conceptual model, effluent injected primarily into the Boulder Zone reaches a naturally occurring feature (a karst-collapse structure) near an injection well, through which the effluent is transported vertically upward to the uppermost major permeable zone of the Lower Floridan aquifer. The effluent is then transported laterally through the uppermost major permeable zone of the Lower Floridan aquifer to another naturally occurring feature northwest of the North District Wastewater Treatment Plant, through which it is then transported vertically upward into the Avon Park permeable zone. In addition, a leak within a monitoring well, between monitoring zones, allowed interflow between the Avon Park permeable zone and the Upper Floridan aquifer. A groundwater flow and effluent transport simulation of the hydrogeologic system at the North District Wastewater Treatment Plant, based on the hypothesized and non-unique conceptualization of the subsurface hydrogeology and flow system, generally replicated measured effluent constituent

  9. Disinfection of Ebola Virus in Sterilized Municipal Wastewater.

    Science.gov (United States)

    Bibby, Kyle; Fischer, Robert J; Casson, Leonard W; de Carvalho, Nathalia Aquino; Haas, Charles N; Munster, Vincent J

    2017-02-01

    Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit) following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids) will require additional verification.

  10. Nutrient loading on subsoils from on-site wastewater effluent, comparing septic tank and secondary treatment systems.

    Science.gov (United States)

    Gill, L W; O'Luanaigh, N; Johnston, P M; Misstear, B D R; O'Suilleabhain, C

    2009-06-01

    The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent and this created significant differences in terms of the potential nitrogen loading to groundwater. The average nitrogen loading per capita at 1.0m depth of unsaturated subsoil equated to 3.9 g total-N/d for the sites receiving secondary treated effluent, compared to 2.1 g total-N/d for the sites receiving septic tank effluent. Relatively high nitrogen loading was, however, found on the septic tank sites discharging effluent into highly permeable subsoil that counteracted any significant denitrification. Phosphorus removal was generally very good on all of the sites although a clear relationship to the soil mineralogy was determined.

  11. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the standard for wastewater treatment plant (WWTP) effluents in China and...

  12. Influent pathogenic bacteria may go straight into effluent in full scale wastewater treatment plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    , it is assumed that the bacteria present in the effluent comprise primarily of those bacteria that thrive/grow in the plants. However, standard techniques for detecting bacteria in the effluent, particularly pathogens, are based on culture-dependent methods, which may give erroneous results by underestimating...... flocs. Some of these are known as pathogens. One of these was from the genus Arcobacter (Campylobacteraceae) and it included one particularly abundant OTU found in both influent and effluent in all 14 investigated WWTPs. This single Arcobacter OTU accounted for up to 14% of all bacteria found......Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be adsorbed onto the activated sludge flocs, consumed by protozoan or to just die off. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. Thus...

  13. Combined treatment of municipal waste-water and landfill leachate by means of membrane bioreactor: an experimental study

    International Nuclear Information System (INIS)

    Iannelli, R.; Lizza, E.; Giraldi, D.

    2005-01-01

    This work presents the results of an experimental study focusing on the applicability of the membrane bioreactor technology for the combined treatment of municipal wastewater and landfill leachate. In the experiment we used both a micro-filtration unit and a traditional secondary settler in an innovative combined process that can present some economic advantages on the pure membrane separation, so as to evaluate and compare the efficiencies of the two adopted technologies. The experiment was carried out in two phases: first, we evaluated the system only with municipal wastewater; then we tested the treatment of a mixture of municipal wastewater and landfill leachate. We obtained good results in both cases for standard quality indicators (COD, TSS, NH 4 ), specific inorganic compounds such as Fe and Zn and microorganisms. The micro-filtrations unit had very good performances with respect to both treatment efficiency and hydraulic behaviour: after the first start-up period, we observed a regular running of the unit with no need for special chemical or mechanical treatment different from the ones adopted ordinarily in the MBR treatment systems [it

  14. Data for comparison of chlorine dioxide and chlorine disinfection power in a real dairy wastewater effluent

    Directory of Open Access Journals (Sweden)

    Maliheh Akhlaghi

    2018-06-01

    Full Text Available Disinfection of water refers to a special operation that is doing to kill or disable causative organisms (i.e. Pathogens and in particular, intestinal bacteria. The aim of this pilot study is comparison of disinfection power of Chlorine dioxide and chlorine in a real dairy wastewater effluent. In this regard, firstly prepared two 220-l tanks made of polyethylene as reaction tanks and filled by effluent of a dairy wastewater treatment plant. Both tanks were equipped with mechanical stirrer. Then a Diaphragm dosing pumps with the maximum capacity of 3.9 l per hour were used for the chlorine dioxide and chlorine (Calcium hypochlorite 0.5 up to 3 ppm injection. Residual level of Chlorine dioxide and Chlorine were measured by portable photometric method DT4B kit, Germany. Finally, the Multiple-Tube Fermentation, Brilliant Green Bile Broth (BGB and Eosin methylene blue Agar (EMB technique was used for microbial analysis and the results were reported as the most probable number index (MPN respectively. The data showed that the residual of chlorine dioxide could stood more active than residual of chlorine in the aqueous environment significantly. Therefore, Use of chlorine dioxide is more effective than chlorine for removal fecal and total coliform from dairy wastewater effluent. Keywords: Disinfection, Chlorine dioxide, Chlorine, Total coliform, Fecal coliform

  15. Using chemical and microbiological indicators to track the impacts from the land application of treated municipal wastewater and other sources on groundwater quality in a karstic springs basin

    Science.gov (United States)

    Katz, Brian G.; Griffin, Dale W.

    2008-08-01

    Multiple chemical constituents (nutrients; N, O, H, C stable isotopes; 64 organic wastewater compounds, 16 pharmaceutical compounds) and microbiological indicators were used to assess the impact on groundwater quality from the land application of approximately 9.5 million liters per day of treated municipal sewage effluent to a sprayfield in the 960-km2 Ichetucknee Springs basin, northern Florida. Enriched stable isotope signatures (δ18O and δ2H) were found in water from the effluent reservoir and a sprayfield monitoring well (MW-7) due to evaporation; however, groundwater samples downgradient from the sprayfield have δ18O and δ2H concentrations that represented recharge of meteoric water. Boron and chloride concentrations also were elevated in water from the sprayfield effluent reservoir and MW-7, but concentrations in groundwater decreased substantially with distance downgradient to background levels in the springs (about 12 km) and indicated at least a tenfold dilution factor. Nitrate-nitrogen isotope (δ15N NO3) values above 10 ‰ in most water samples were indicative of organic nitrogen sources except Blue Hole Spring (δ15N NO3 = 4.6 4.9 ‰), which indicated an inorganic source of nitrogen (fertilizers). The detection of low concentrations the insect repellent N, N-diethyl-metatoluamide (DEET), and other organic compounds associated with domestic wastewater in Devil’s Eye Spring indicated that leakage from a nearby septic tank drainfield likely has occurred. Elevated levels of fecal coliforms and enterococci were found in Blue Hole Spring during higher flow conditions, which likely resulted from hydraulic connections to upgradient sinkholes and are consistent with previoius dye-trace studies. Enteroviruses were not detected in the sprayfield effluent reservoir, but were found in low concentrations in water samples from a downgradient well and Blue Hole Spring during high-flow conditions indicating a human wastewater source. The Upper Floridan aquifer

  16. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.

    Science.gov (United States)

    Tong, Juan; Chen, Yinguang

    2009-07-01

    removal was mainly attributed to the increase of influent SCFA, or rather, the increase of intracellular polyhydroxyalkanoates (PHA) which served as the carbon and energy sources for denitrification and phosphorus uptake. The addition of alkaline fermentation liquid to municipal wastewater, however, increased the effluent COD, which was caused mainly by the increase of influent humic acid, not protein or carbohydrate.

  17. Energy optimization of water and wastewater management for municipal and industrial applications conference

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use and conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  18. Energy optimization of water and wastewater management for municipal and industrial applications conference

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications, Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use on conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  19. Autonomous mobile platform for monitoring air emissions from industrial and municipal wastewater ponds.

    Science.gov (United States)

    Fu, Long; Huda, Quamrul; Yang, Zheng; Zhang, Lucas; Hashisho, Zaher

    2017-11-01

    Significant amounts of volatile organic compounds and greenhouse gases are generated from wastewater lagoons and tailings ponds in Alberta, Canada. Accurate measurements of these air pollutants and greenhouse gases are needed to support management and regulatory decisions. A mobile platform was developed to measure air emissions from tailings pond in the oil sands region of Alberta. The mobile platform was tested in 2015 in a municipal wastewater treatment lagoon. With a flux chamber and a CO 2 /CH 4 sensor on board, the mobile platform was able to measure CO 2 and CH 4 emissions over two days at two different locations in the pond. Flux emission rates of CO 2 and CH 4 that were measured over the study period suggest the presence of aerobic and anaerobic zones in the wastewater treatment lagoon. The study demonstrated the capabilities of the mobile platform in measuring fugitive air emissions and identified the potential for the applications in air and water quality monitoring programs. The Mobile Platform demonstrated in this study has the ability to measure greenhouse gas (GHG) emissions from fugitive sources such as municipal wastewater lagoons. This technology can be used to measure emission fluxes from tailings ponds with better detection of spatial and temporal variations of fugitive emissions. Additional air and water sampling equipment could be added to the mobile platform for a broad range of air and water quality studies in the oil sands region of Alberta.

  20. Effects of Hydraulic Retention Time on the Performance of a Membrane Bioreactor Treating Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Hadi Falahati

    2017-09-01

    Full Text Available There is an increasing demand for effluents of higher quality from wastewater treatment plants due to the more stringent quality standards as well as the increasing pressure on water resources worldwide, which calls for effluent recycle and reuse. Membrane bioreactors (MBRs have been recently gaining rapid popularity as a promising technology for wastewater treatment. In order to improve the quality of the effluent from Shiraz wastewater treatment plant, an on-site pilot-scale membrane bioreactor was operated for 9 months. The pilot plant built at Shiraz wastewater treatment plant consisted of an aerobic reactor and a membrane compartment containing one submerged hollow fiber membrane module. In this study, eleven different aerobic hydraulic retention times (HRT ranging from 2 to 12 hours were tested to determine the membrane capacity and to investigate the performance of the system in removing total ammonia nitrogen, organic matter, total suspended solids, and turbidity.The system recorded a perfectly stable removal efficiency over the whole experimental period, except for the 2-hour aerobic HRT, so that its COD and BOD reductions exceeded 95% and 99%, respectively. Moreover, the system achieved complete nitrification in a stable manner during the whole study period, except for the 2-hour aerobic operation period. TSS concentration was almost zero and turbidity was less than 1 NTU. Membrane capacity measurements showed an average flux of 5.5 Lm-2h-1 with a mean trans-membrane pressure difference of 30 kPa. Results showed that the MBR outperformed the conventional sewage treatment processes. Additionally, it was not affected by aerobic HRT changes (12, 10, 8, 6, 4, and 3h. Based on the effluent qulity, teh system may be recommended for application toward water reuse in industrial and agricultural settings

  1. Effluent quality of a conventional activated sludge and a membrane bioreactor system treating hospital wastewater

    International Nuclear Information System (INIS)

    Pauwels, B.; Ngwa, F.; Deconinck, S.; Verstraete, W.

    2005-01-01

    Two lab scale wastewater treatment plants treating hospital wastewater in parallel were compared in terms of performance characteristics. One plant consisted of a conventional activated sludge system (CAS) and comprised In anoxic and aerobic compartment followed by a settling tank with recycle loop. The second pilot plant was a -late membrane bioreactor (MBR). The wastewater as obtained from the hospital had a variable COD (Chemical Oxygen Demand) ranging from 250 to 2300 mg/L. Both systems were operated at a similar hydraulic residence time of 12 hours. The reference conventional activated sludge system did not meet the regulatory standard for effluent COD of 125 mg /L most of the time. Its COD removal efficiency was 88%. The plate MBR delivered an effluent with a COD value of 50 mg/L or less, and attained an efficiency of 93%. The effluent contained no suspended particles. In addition, the MBR resulted in consistent operational parameters with a flux remaining around 8 -10 L/m/sup 2/.h and a trans membrane pressure <0.1 bar without the need for backwash or chemical cleaning. The CAS and the MBR system performed equally good in terms of TAN removal and EE2 removal. The CAS system typically decreased bacterial groups for about 1 log unit, whereas the MBR decreased these groups for about 3 log units. Enterococci were decreased below the detection limit in the MBR and indicator organisms such as fecal coliforms were decreased for 1.4 log units in the CAS system compared to a 3.6 log removal in the MBR. (author)

  2. Disinfection of Ebola Virus in Sterilized Municipal Wastewater.

    Directory of Open Access Journals (Sweden)

    Kyle Bibby

    2017-02-01

    Full Text Available Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids will require additional verification.

  3. Performance of granular activated carbon to remove micropollutants from municipal wastewater-A meta-analysis of pilot- and large-scale studies.

    Science.gov (United States)

    Benstoem, Frank; Nahrstedt, Andreas; Boehler, Marc; Knopp, Gregor; Montag, David; Siegrist, Hansruedi; Pinnekamp, Johannes

    2017-10-01

    For reducing organic micropollutants (MP) in municipal wastewater effluents, granular activated carbon (GAC) has been tested in various studies. We did systematic literature research and found 44 studies dealing with the adsorption of MPs (carbamazepine, diclofenac, sulfamethoxazole) from municipal wastewater on GAC in pilot- and large-scale plants. Within our meta-analysis we plot the bed volumes (BV [m 3 water /m 3 GAC ]) until the breakthrough criterion of MP-BV20% was reached, dependent on potential relevant parameters (empty bed contact time EBCT, influent DOC DOC 0 and manufacturing method). Moreover, we performed statistical tests (ANOVAs) to check the results for significance. Single adsorbers operating time differs i.e. by 2500% until breakthrough of diclofenac-BV20% was reached (800-20,000 BV). There was still elimination of the "very well/well" adsorbable MPs such as carbamazepine and diclofenac even when the equilibrium of DOC had already been reached. No strong statistical significance of EBCT and DOC 0 on MP-BV20% could be found due to lack of data and the high heterogeneity of the studies using GAC of different qualities. In further studies, adsorbers should be operated ≫20,000 BV for exact calculation of breakthrough curves, and the following parameters should be recorded: selected MPs; DOC 0; UVA 254 ; EBCT; product name, manufacturing method and raw material of GAC; suspended solids (TSS); backwash interval; backwash program and pressure drop within adsorber. Based on our investigations we generally recommend using reactivated GAC to reduce the environmental impact and to carry out tests on pilot scale to collect reliable data for process design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    Science.gov (United States)

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  5. An Assessment of the Spatial and Temporal Variability of Biological Responses to Municipal Wastewater Effluent in Rainbow Darter (Etheostoma caeruleum) Collected along an Urban Gradient

    Science.gov (United States)

    Bragg, Leslie M.; Tetreault, Gerald R.; Bahamonde, Paulina A.; Tanna, Rajiv N.; Bennett, Charles J.; McMaster, Mark E.; Servos, Mark R.

    2016-01-01

    Municipal wastewater effluent (MWWE) and its constituents, such as chemicals of emerging concern, pose a potential threat to the sustainability of fish populations by disrupting key endocrine functions in aquatic organisms. While studies have demonstrated changes in biological markers of exposure of aquatic organisms to groups of chemicals of emerging concern, the variability of these markers over time has not been sufficiently described in wild fish species. The aim of this study was to assess the spatial and temporal variability of biological markers in response to MWWE exposure and to test the consistency of these responses between seasons and among years. Rainbow darter (Etheostoma caeruleum) were collected in spring and fall seasons over a 5-year period in the Grand River, Ontario, Canada. In addition to surface water chemistry (nutrients and selected pharmaceuticals), measures were taken across levels of biological organization in rainbow darter. The measurements of hormone production, gonad development, and intersex severity were temporally consistent and suggested impaired reproduction in male fish collected downstream of MWWE outfalls. In contrast, ovarian development and hormone production in females appeared to be influenced more by urbanization than MWWE. Measures of gene expression and somatic indices were highly variable between sites and years, respectively, and were inconclusive in terms of the impacts of MWWE overall. Robust biomonitoring programs must consider these factors in both the design and interpretation of results, especially when spatial and temporal sampling of biological endpoints is limited. Assessing the effects of contaminants and other stressors on fish in watersheds would be greatly enhanced by an approach that considers natural variability in the endpoints being measured. PMID:27776151

  6. An Assessment of the Spatial and Temporal Variability of Biological Responses to Municipal Wastewater Effluent in Rainbow Darter (Etheostoma caeruleum Collected along an Urban Gradient.

    Directory of Open Access Journals (Sweden)

    Meghan L M Fuzzen

    Full Text Available Municipal wastewater effluent (MWWE and its constituents, such as chemicals of emerging concern, pose a potential threat to the sustainability of fish populations by disrupting key endocrine functions in aquatic organisms. While studies have demonstrated changes in biological markers of exposure of aquatic organisms to groups of chemicals of emerging concern, the variability of these markers over time has not been sufficiently described in wild fish species. The aim of this study was to assess the spatial and temporal variability of biological markers in response to MWWE exposure and to test the consistency of these responses between seasons and among years. Rainbow darter (Etheostoma caeruleum were collected in spring and fall seasons over a 5-year period in the Grand River, Ontario, Canada. In addition to surface water chemistry (nutrients and selected pharmaceuticals, measures were taken across levels of biological organization in rainbow darter. The measurements of hormone production, gonad development, and intersex severity were temporally consistent and suggested impaired reproduction in male fish collected downstream of MWWE outfalls. In contrast, ovarian development and hormone production in females appeared to be influenced more by urbanization than MWWE. Measures of gene expression and somatic indices were highly variable between sites and years, respectively, and were inconclusive in terms of the impacts of MWWE overall. Robust biomonitoring programs must consider these factors in both the design and interpretation of results, especially when spatial and temporal sampling of biological endpoints is limited. Assessing the effects of contaminants and other stressors on fish in watersheds would be greatly enhanced by an approach that considers natural variability in the endpoints being measured.

  7. Environmental transport and fate of endocrine disruptors from non-potable reuse of municipal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, B; Beller, H; Bartel, C M; Kane, S; Campbell, C; Grayson, A; Liu, N; Burastero, S

    2005-11-16

    This project was designed to investigate the important but virtually unstudied topic of the subsurface transport and fate of Endocrine Disrupting Compounds (EDCs) when treated wastewater is used for landscape irrigation (non-potable water reuse). Although potable water reuse was outside the scope of this project, the investigation clearly has relevance to such water recycling practices. The target compounds, which are discussed in the following section and include EDCs such as 4-nonylphenol (NP) and 17{beta}-estradiol, were studied not only because of their potential estrogenic effects on receptors but also because they can be useful as tracers of wastewater residue in groundwater. Since the compounds were expected to occur at very low (part per trillion) concentrations in groundwater, highly selective and sensitive analytical techniques had to be developed for their analysis. This project assessed the distributions of these compounds in wastewater effluents and groundwater, and examined their fate in laboratory soil columns simulating the infiltration of treated wastewater into an aquifer (e.g., as could occur during irrigation of a golf course or park with nonpotable treated water). Bioassays were used to determine the estrogenic activity present in effluents and groundwater, and the results were correlated with those from chemical analysis. In vitro assays for estrogenic activity were employed to provide an integrated measure of estrogenic potency of environmental samples without requiring knowledge or measurement of all bioactive compounds in the samples. For this project, the Las Positas Golf Course (LPGC) in the City of Livermore provided an ideal setting. Since 1978, irrigation of this area with treated wastewater has dominated the overall water budget. For a variety of reasons, a group of 10 monitoring wells were installed to evaluate wastewater impacts on the local groundwater. Additionally, these wells were regularly monitored for tritium ({sup 3}H

  8. Agricultural use of municipal wastewater treatment plant ...

    Science.gov (United States)

    Agricultural use of municipal wastewater treatment plant sewage sludge as a source of per- and polyfluoroalkyl substance (PFAS) contamination in the environment The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  9. Leaching of N-nitrosodimethylamine (NDMA) in turfgrass soils during wastewater irrigation.

    Science.gov (United States)

    Gan, J; Bondarenko, S; Ernst, F; Yang, W; Ries, S B; Sedlak, D L

    2006-01-01

    N-nitrosodimethylamine (NDMA) is a carcinogenic by-product of chlorination that is frequently found in municipal wastewater effluent. NDMA is miscible in water and negligibly adsorbed to soil, and therefore may pose a threat to ground water when treated wastewater is used for landscape irrigation. A field study was performed in the summer months under arid Southern California weather conditions to evaluate the leaching potential of NDMA in turfgrass soils during wastewater irrigation. Wastewater was used to irrigate multiple turfgrass plots at 110 to 160% evapotranspiration rate for about 4 mo, and leachate was continuously collected and analyzed for NDMA. The treated wastewater contained relatively high levels of NDMA (114-1820 ng L(-1); mean 930 ng L(-1)). NDMA was detected infrequently in the leachate regardless of the soil type or irrigation schedule. At a method detection limit of 2 ng L(-1), NDMA was only detected in 9 out of 400 leachate samples and when it was detected, the NDMA concentration was less than 5 ng L(-1). NDMA was relatively persistent in the turfgrass soils during laboratory incubation, indicating that mechanisms other than biotransformation, likely volatilization and/or plant uptake, contributed to the rapid dissipation. Under conditions typical of turfgrass irrigation with wastewater effluent it is unlikely that NDMA will contaminate ground water.

  10. A novel image processing-based system for turbidity measurement in domestic and industrial wastewater.

    Science.gov (United States)

    Mullins, Darragh; Coburn, Derek; Hannon, Louise; Jones, Edward; Clifford, Eoghan; Glavin, Martin

    2018-03-01

    Wastewater treatment facilities are continually challenged to meet both environmental regulations and reduce running costs (particularly energy and staffing costs). Improving the efficiency of operational monitoring at wastewater treatment plants (WWTPs) requires the development and implementation of appropriate performance metrics; particularly those that are easily measured, strongly correlate to WWTP performance, and can be easily automated, with a minimal amount of maintenance or intervention by human operators. Turbidity is the measure of the relative clarity of a fluid. It is an expression of the optical property that causes light to be scattered and absorbed by fine particles in suspension (rather than transmitted with no change in direction or flux level through a fluid sample). In wastewater treatment, turbidity is often used as an indicator of effluent quality, rather than an absolute performance metric, although correlations have been found between turbidity and suspended solids. Existing laboratory-based methods to measure turbidity for WWTPs, while relatively simple, require human intervention and are labour intensive. Automated systems for on-site measuring of wastewater effluent turbidity are not commonly used, while those present are largely based on submerged sensors that require regular cleaning and calibration due to fouling from particulate matter in fluids. This paper presents a novel, automated system for estimating fluid turbidity. Effluent samples are imaged such that the light absorption characteristic is highlighted as a function of fluid depth, and computer vision processing techniques are used to quantify this characteristic. Results from the proposed system were compared with results from established laboratory-based methods and were found to be comparable. Tests were conducted using both synthetic dairy wastewater and effluent from multiple WWTPs, both municipal and industrial. This system has an advantage over current methods as it

  11. Methane production as from the mixture of the urban solid waste lixiviate and municipal wastewater

    International Nuclear Information System (INIS)

    Monroy-Hermosillo, Oscar; Ramírez-Vives, Florina; Rodríguez-Pimentel, Reyna I.; Rodríguez-Pérez, Suyén

    2015-01-01

    The generation of solid wastes and wastewater in Mexico , as other countries, has increased considerably of late years, so its treatment is very important to reduce the pollution. In this work are presented the results on the anaerobic digestion of lixiviate generated with the hydrolysis and acidogenesis of the organic fraction of municipal solid waste recollected in the Universidad Autónoma Metropolitana-Unidad Iztapalapa coffee shop. Theses lixiviated were diluted with municipal wastewater to different organic loads (2,3-20 gCOD/L.d) and after treated anaerobically in UASB reactor. Biogas's average production in the last load of the UASB reactor was up to 12 L/L.d with an efficiency to remove COD on top of 90 % and a production of methane of 0,38 LCH4. gSSV-1. (author)

  12. Electron beam technology for purification of municipal wastewater in the aerosol flow

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Podzorova, E.A.; Bakhtin, O.M.; Lysenko, S.L.; Belyshev, V.A.

    2001-01-01

    The paper summarizes the results from the study on EB and ozone treatment of wastewater in the aerosol flow. It includes the description of the respective pilot plant with output 500 m 3 /day (it is equipped with electron accelerator with electron energy 0.3 MeV and beam power 15 kW), the results of the study on the effects of electron irradiation on various group parameters (colour, COD, BOD 5 , total number of microbes, odour and so on) and content of inorganic and organic pollutants of municipal wastewater in the aerosol flow and the preliminary data on economic feasibility of the purification method. (author)

  13. Synthesis of nanocomposite of cryptocrystalline magnesite-bentonite clay and its application for phosphate removal from municipal effluents

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-07-01

    Full Text Available In the present study, nanocomposite of cryptocrystalline magnesite-bentonite clay was used as a novel technology for removal of phosphates from municipal effluents. Vibratory ball miller was used for fabrication of the composite. Removal...

  14. What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems.

    Science.gov (United States)

    Hocquet, D; Muller, A; Bertrand, X

    2016-08-01

    Hospitals are hotspots for antimicrobial-resistant bacteria (ARB) and play a major role in both their emergence and spread. Large numbers of these ARB will be ejected from hospitals via wastewater systems. In this review, we present quantitative and qualitative data of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli, vancomycin-resistant enterococci and Pseudomonas aeruginosa in hospital wastewaters compared to community wastewaters. We also discuss the fate of these ARB in wastewater treatment plants and in the downstream environment. Published studies have shown that hospital effluents contain ARB, the burden of these bacteria being dependent on their local prevalence. The large amounts of antimicrobials rejected in wastewater exert a continuous selective pressure. Only a few countries recommend the primary treatment of hospital effluents before their discharge into the main wastewater flow for treatment in municipal wastewater treatment plants. Despite the lack of conclusive data, some studies suggest that treatment could favour the ARB, notably ESBL-producing E. coli. Moreover, treatment plants are described as hotspots for the transfer of antibiotic resistance genes between bacterial species. Consequently, large amounts of ARB are released in the environment, but it is unclear whether this release contributes to the global epidemiology of these pathogens. It is reasonable, nevertheless, to postulate that it plays a role in the worldwide progression of antibiotic resistance. Antimicrobial resistance should now be seen as an 'environmental pollutant', and new wastewater treatment processes must be assessed for their capability in eliminating ARB, especially from hospital effluents. Copyright © 2016. Published by Elsevier Ltd.

  15. Toxicity Identification and Evaluation for the Effluent from Wastewater Treatment Plant in Industrial Complex using D.magna

    Science.gov (United States)

    Lee, S.; Keum, H.; Chun Sang, H.

    2015-12-01

    In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  16. Phycoremediation of municipal wastewater by microalgae to produce biofuel.

    Science.gov (United States)

    Singh, Amit Kumar; Sharma, Nikunj; Farooqi, Humaira; Abdin, Malik Zainul; Mock, Thomas; Kumar, Shashi

    2017-09-02

    Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and human health by carrying significant loads of nutrients and pathogens. These contaminants pollute rivers, lakes, and natural reservoirs where they cause eutrophication and pathogen-mediated diseases. However, the high nutrient content of WW makes it an ideal environment for remediation with microalgae that require high nutrient concentrations for growth and are not susceptible to toxins and pathogens. Given that an appropriate algal strain is used for remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I, and Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the highest growth rate and biomass production in 100% WW. It efficiently removed all major nutrients with a removal rate of up to 98% for phosphate after 10 days of growth in 100% municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% increase of biomass and a 115% increase of lipid yield in comparison to growth in control media. The Fatty acid methyl ester (FAME), and fuel properties of lipids isolated from cells grown in WW complied with international standards. The present study provides evidence that the green alga P. kessleri-I effectively remediates municipal WW and can be used to produce biodiesel.

  17. Pharmaceutical Formulation Facilities as Sources of Opioids and Other Pharmaceuticals to Wastewater Treatment Plant Effluents

    Science.gov (United States)

    2010-01-01

    Facilities involved in the manufacture of pharmaceutical products are an under-investigated source of pharmaceuticals to the environment. Between 2004 and 2009, 35 to 38 effluent samples were collected from each of three wastewater treatment plants (WWTPs) in New York and analyzed for seven pharmaceuticals including opioids and muscle relaxants. Two WWTPs (NY2 and NY3) receive substantial flows (>20% of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally effluent had median concentrations ranging from 3.4 to >400 μg/L. Maximum concentrations of oxycodone (1700 μg/L) and metaxalone (3800 μg/L) in samples from NY3 effluent exceeded 1000 μg/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 μg/L. These findings suggest that current manufacturing practices at these PFFs can result in pharmaceuticals concentrations from 10 to 1000 times higher than those typically found in WWTP effluents. PMID:20521847

  18. Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia.

    Science.gov (United States)

    Rafraf, Ikbel Denden; Lekunberri, Itziar; Sànchez-Melsió, Alexandre; Aouni, Mahjoub; Borrego, Carles M; Balcázar, José Luis

    2016-12-01

    Antimicrobial resistance is a growing and significant threat to global public health, requiring better understanding of the sources and mechanisms involved in its emergence and spread. We investigated the abundance of antibiotic resistance genes (ARGs) before and after treatment in five wastewater treatment plants (WWTPs) located in different areas of the Monastir Governorate (Tunisia). Three of these WWTPs (Frina, Sahline and Zaouiet) use a conventional activated sludge process as secondary treatment, whereas the WWTP located in Beni Hassen applies an ultraviolet disinfection step after the activated sludge process and the WWTP located in Moknine treats wastewater using naturally aerated lagoons as a secondary treatment process. The abundance of six ARGs (bla CTX-M , bla TEM , qnrA, qnrS, sul I and ermB) and the class 1 integron-integrase gene (intI1) were determined by quantitative PCR. All ARGs and the intI1 gene were detected in the wastewater samples, except the bla CTX-M gene, which was not detected in both influent and effluent samples from Sahline and Beni Hassen WWTPs, and the qnrS gene, which was not detected neither in the WWTP influent in Moknine nor in the WWTP effluent in Beni Hassen. Although the relative concentration of ARGs was generally found to be similar between samples collected before and after the wastewater treatment, the abundance of bla CTX-M , bla TEM , and qnrS genes was higher in the effluent of the Frina WWTP which, unlike other WWTPs, not only receives domestic or industrial sewage but also untreated hospital waste. To the best of our knowledge, this study quantified for the first time the abundance of ARGs in different Tunisian WWTPs, and the results agree with previous studies suggesting that conventional wastewater treatment does not efficiently reduce ARGs. Therefore, these findings could be useful to improve the design or operation of WWTPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Ozonation performance of WWTP secondary effluent of antibiotic manufacturing wastewater.

    Science.gov (United States)

    Zheng, Shaokui; Cui, Cancan; Liang, Qianjin; Xia, Xinghui; Yang, Fan

    2010-11-01

    The ozonation performance of wastewater treatment plant secondary effluent of oxytetracycline (OTC) manufacturing wastewater was investigated in terms of ozone dosage and initial pH levels when OTC contributed to a negligible fraction in the chemical oxygen demand (COD) ingredients of the medium-organic-strength wastewater with low biodegradability. A particular emphasis was placed on ammonia, OTC, and residual antibacterial activity (RAA) (evaluated using the objective pathogenic bacterium Staphylococcus aureus). It appears that an ozone dosage of 657 mg L⁻¹ (120 min of reaction) was enough to achieve an OTC abatement of 96%, and COD and biochemical oxygen demand removals of 29% and 33%, respectively, at initial levels of 10.4, 1360, and 300 mg L⁻¹ , respectively. There is a clear correlation between complete OTC depletion and complete RAA disappearance with an increase of ozone dosage. The presence of plentiful non-antibiotic refractory substances influenced the determination of the optimum ozone dosage for biodegradability enhancement and OTC/RAA reduction as well as the ozonation transformation of NH(3). The initial pH adjustment from the original level (pH 9) to pH 11 significantly reduced COD removal while RAA and NH(3) levels were not significantly influenced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Performance of Isfahan North Wastewater Treatment Plant in the Removal of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    nahid Navijouy

    2013-08-01

    Full Text Available Listeria and in particular Listeria monocytogenes is considered a ubiquitous foodborne pathogen which can lead listeriosis in human and animals. Listeriosis can be serious and may cause meningitis, septicemia and abortion in pregnant women. Although wastewater or sludge may contaminate foods of plant origin, there are no data on occurrence of Listeria spp. in wastewater and sludge in Iran. The purpose of current investigation was to study the occurrence of Listeria spp. in various samples of wastewater and sludge in Isfahan North wastewater treatment plant. Influent, effluent, raw sludge and dried sludge samples were collected from Isfahan North municipal wastewater treatment plant. L. monocytogenes were enumerated by a three–tube most probable number (MPN assay using enrichment Fraser broth. A total of 65 various samples from five step in 13 visits were collected. The presence of Listeria spp. also was determined using USDA procedure. Then, phenotypically identified L. monocytogenes were further confirmed by Polymerase Chain Reaction amplification. L. monocytogenes isolated from 76.9%, 38.5%, 84.6%, 69.2% and 46.2% of influent, effluent, raw sludge, stabilized sludge and dried sludge respectively. The efficiency of wastewater treatment processes, digester tank and drying bed in removal L. monocytogenes were 69.6%, 64.7% and 73.4% respectively. All phenotypically identified L. monocytogenes were further confirmed by Polymerase Chain Reaction. The results of present study have shown that Listeriaspp. and L. monocytogenes in particular, were present in wastewater treatment plant effluents and sludge at high level. The bacteria may spread on agriculture land and contaminate foods of plant origin. This may cause a risk of spreading disease to human and animals.

  1. Detection of a wide variety of human and veterinary fluoroquinolone antibiotics in municipal wastewater and wastewater-impacted surface water.

    Science.gov (United States)

    He, Ke; Soares, Ana Dulce; Adejumo, Hollie; McDiarmid, Melissa; Squibb, Katherine; Blaney, Lee

    2015-03-15

    As annual sales of antibiotics continue to rise, the mass of these specially-designed compounds entering municipal wastewater treatment systems has also increased. Of primary concern here is that antibiotics can inhibit growth of specific microorganisms in biological processes of wastewater treatment plants (WWTPs) or in downstream ecosystems. Growth inhibition studies with Escherichia coli demonstrated that solutions containing 1-10 μg/L of fluoroquinolones can inhibit microbial growth. Wastewater samples were collected on a monthly basis from various treatment stages of a 30 million gallon per day WWTP in Maryland, USA. Samples were analyzed for the presence of 11 fluoroquinolone antibiotics. At least one fluoroquinolone was detected in every sample. Ofloxacin and ciprofloxacin exhibited detection frequencies of 100% and 98%, respectively, across all sampling sites. Concentrations of fluoroquinolones in raw wastewater were as high as 1900 ng/L for ciprofloxacin and 600 ng/L for ofloxacin. Difloxacin, enrofloxacin, fleroxacin, moxifloxacin, norfloxacin, and orbifloxacin were also detected at appreciable concentrations of 9-170 ng/L. The total mass concentration of fluoroquinolones in raw wastewater was in the range that inhibited E. coli growth, suggesting that concerns over antibiotic presence in wastewater and wastewater-impacted surface water are valid. The average removal efficiency of fluoroquinolones during wastewater treatment was approximately 65%; furthermore, the removal efficiency for fluoroquinolones was found to be negatively correlated to biochemical oxygen demand removal and positively correlated to phosphorus removal. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process.

    Science.gov (United States)

    Ge, Shijian; Peng, Yongzhen; Qiu, Shuang; Zhu, Ao; Ren, Nanqi

    2014-05-15

    This study assessed the technical feasibility of removing nitrogen from municipal wastewater by partial nitrification (nitritation) in a continuous plug-flow step feed process. Nitrite in the effluent accumulated to over 81.5  ± 9.2% but disappeared with the transition of process operation from anoxic/oxic mode to the anaerobic/anoxic/oxic mode. Batch tests showed obvious ammonia oxidizing bacteria (AOB) stimulation (advanced ammonia oxidation rate) and nitrite (NOB) oxidizing bacteria inhibition (reduced nitrite oxidation rate) under transient anoxic conditions. Two main factors contributed to nitritation in this continuous plug-flow process: One was the alternating anoxic and oxic operational condition; the step feed strategy guaranteed timely denitrification in anoxic zones, allowing a reduction in energy supply (nitrite) to NOB. Fluorescence in Situ Hybridization and quantitative real-time polymerase chain reaction analysis indicated that NOB population gradually decreased to 1.0  ± 0.1% of the total bacterial population (dominant Nitrospira spp., 1.55 × 10(9) copies/L) while AOB increased approximately two-fold (7.4  ± 0.9%, 1.25 × 10(10) copies/L) during the above anoxic to anaerobic transition. Most importantly, without addition of external carbon sources, the above wastewater treatment process reached 86.0  ± 4.2% of total nitrogen (TN) removal with only 7.23 ± 2.31 mg/L of TN in the effluent, which met the discharge requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Using Artificial Neural Networks to Determine Significant Factors Affecting the Pricing of WPT Effluent for Industrial Uses in Isfahan

    Directory of Open Access Journals (Sweden)

    Masoud Mirmohamadsaseghi

    2017-03-01

    Full Text Available The evidence indicates increasing trend of use of municipal wastewater treatment effluent as an alternative source of water both in developed and developing countries. Proper pricing of this unconventional water is one of the most effective economic tools to encourage optimum use of fresh water resources. In this study, artificial neural network is employed to identify and assess the factors affecting effluent tariffs supplied to local industries in Isfahan region. Given the wide variety of factors involved in the ultimate value of wastewater traement plant effluent, an assortment of relevant factors  has been considered in this study; the factors include the population served by the treatment plant, volume of effluent produced, maintenance, repair and replacement. costs of operating plants, topography, different water uses in the region, industrial wastewater collection fees, unit cost of pipe and fittings, and the volumes of water supplied from springs and aqueducts  in the region. Neural network modeling is used as a tool to determine the significance of each factor for pricing effluent. Based on the available data and the neural network models, the effects of different model architectures with different intermediate layers and numbers of nodes in each layer on the price of wastewater were investigated to develop aand adopt a final neural network model. Results indicate that the proposed neural network model enjoys a high potential and has been well capable of determining the weights of the parameter affecting in pricing effluent. Based on the the results of this study, the factors with the greatest role in effluent pricing are unit cost of pipe and fittings, industrial use of water, and the costs of plant maintentance, repair and replacement.

  4. Removal of Organic Pollutants from Municipal Wastewater by Applying High-Rate Algal Pond in Addis Ababa, Ethiopia

    Science.gov (United States)

    Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut

    2018-05-01

    The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.

  5. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents.

    Science.gov (United States)

    Loos, Robert; Carvalho, Raquel; António, Diana C; Comero, Sara; Locoro, Giovanni; Tavazzi, Simona; Paracchini, Bruno; Ghiani, Michela; Lettieri, Teresa; Blaha, Ludek; Jarosova, Barbora; Voorspoels, Stefan; Servaes, Kelly; Haglund, Peter; Fick, Jerker; Lindberg, Richard H; Schwesig, David; Gawlik, Bernd M

    2013-11-01

    In the year 2010, effluents from 90 European wastewater treatment plants (WWTPs) were analyzed for 156 polar organic chemical contaminants. The analyses were complemented by effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analyzed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. Analyses of organic substances were performed by solid-phase extraction (SPE) or liquid-liquid extraction (LLE) followed by liquid chromatography tandem mass spectrometry (LC-MS-MS) or gas chromatography high-resolution mass spectrometry (GC-HRMS). Target microcontaminants were pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites), industrial chemicals such as benzotriazoles (corrosion inhibitors), iodinated x-ray contrast agents, and gadolinium magnetic resonance imaging agents; in addition biological endpoints were measured. The obtained results show the presence of 125 substances (80% of the target compounds) in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results allow for an estimation to be made of a European median level for the chemicals investigated in WWTP effluents. The most relevant compounds in the effluent waters with the highest median concentration levels were the artificial sweeteners acesulfame and sucralose, benzotriazoles (corrosion inhibitors), several organophosphate ester flame retardants and plasticizers (e.g. tris(2-chloroisopropyl)phosphate; TCPP), pharmaceutical compounds such as carbamazepine, tramadol, telmisartan, venlafaxine, irbesartan, fluconazole, oxazepam, fexofenadine, diclofenac, citalopram, codeine, bisoprolol, eprosartan, the antibiotics trimethoprim, ciprofloxacine, sulfamethoxazole, and clindamycine, the insect repellent N,N'-diethyltoluamide (DEET), the pesticides

  6. Separate treatment of hospital and urban wastewaters: A real scale comparison of effluents and their effect on microbial communities.

    Science.gov (United States)

    Chonova, Teofana; Keck, François; Labanowski, Jérôme; Montuelle, Bernard; Rimet, Frédéric; Bouchez, Agnès

    2016-01-15

    Hospital wastewaters (HWW) contain wider spectrum and higher quantity of pharmaceuticals than urban wastewaters (UWW), but they are generally discharged in sewers without pretreatment. Since traditional urban wastewater treatment plants (WWTP) are not designed to treat HWWs, treated effluents may still contain pollutants that could impair receiving aquatic environments. Hence, a better understanding of the effect of pharmaceuticals in the environment is required. Biofilms are effective "biological sensors" for assessing the environmental effects of pharmaceuticals due to their ability to respond rapidly to physical, chemical and biological fluctuations by changes in their structure and composition. This study evaluated the efficiency of biological treatment with conventional activated sludge system performed parallel on HWW and UWW. Furthermore, six successive monthly colonizations of biofilms were done on autoclaved stones, placed in grid-baskets in the hospital treated effluents (HTE) and urban treated effluents (UTE). The biomass of these biofilms as well as the structure and diversity of their bacterial communities were investigated. Results showed better treatment efficiency for phosphate and nitrite/nitrate during the treatment of UWW. Pharmaceuticals from all investigated therapeutic classes (beta-blockers, nonsteroidal anti-inflammatory drugs, antibiotics, analgesics and anticonvulsants) were efficiently removed, except for carbamazepine. The removal efficiency of the antibiotics, NSAIDs and beta-blockers was higher during the treatment of HWW. HTE and UTE shaped the bacterial communities in different ways. Higher concentrations of pharmaceuticals in the HTE caused adapted development of the microbial community, leading to less developed biomass and lower bacterial diversity. Seasonal changes in solar irradiance and temperature, caused changes in the community composition of biofilms in both effluents. According to the removal efficiency of pharmaceuticals

  7. Municipal wastewater affects adipose deposition in male mice and increases 3T3-L1 cell differentiation

    International Nuclear Information System (INIS)

    Biasiotto, Giorgio; Zanella, Isabella; Masserdotti, Alice; Pedrazzani, Roberta; Papa, Matteo; Caimi, Luigi; Di Lorenzo, Diego

    2016-01-01

    Trace concentration of EDs (endocrine disrupting compounds) in water bodies caused by wastewater treatment plant effluents is a recognized problem for the health of aquatic organisms and their potential to affect human health. In this paper we show that continuous exposure of male mice from early development to the adult life (140 days) to unrestricted drinking of wastewater collected from a municipal sewage treatment plant, is associated with an increased adipose deposition and weight gain during adulthood because of altered body homeostasis. In parallel, bisphenol A (BPA) at the administration dose of 5 μg/kg/body weight, shows an increasing effect on total body weight and fat mass. In vitro, a solid phase extract (SPE) of the wastewater (eTW), caused stimulation of 3T3-L1 adipocyte differentiation at dilutions of 0.4 and 1 % in the final culture medium which contained a concentration of BPA of 40 nM and 90 nM respectively. Pure BPA also promoted adipocytes differentiation at the concentration of 50 and 80 μM. BPA effect in 3T3-L1 cells was associated to the specific activation of the estrogen receptor alpha (ERα) in undifferentiated cells and the estrogen receptor beta (ERβ) in differentiated cells. BPA also activated the Peroxisome Proliferator Activated Receptor gamma (PPARγ) upregulating a minimal 3XPPARE luciferase reporter and the PPARγ-target promoter of the aP2 gene in adipose cells, while it was not effective in preadipocytes. The pure estrogen receptor agonist diethylstilbestrol (DES) played an opposite action to that of BPA inhibiting PPARγ activity in adipocytes, preventing cell differentiation, activating ERα in preadipocytes and inhibiting ERα and ERβ regulation in adipocytes. The results of this work show that the drinking of chemically-contaminated wastewater promotes fat deposition in male mice and that EDs present in sewage are likely responsible for this effect through a nuclear receptor-mediated mechanism. - Highlights: • Sewage

  8. Municipal wastewater affects adipose deposition in male mice and increases 3T3-L1 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Biasiotto, Giorgio; Zanella, Isabella [Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia (Italy); Department of Molecular and Translational Medicine, University of Brescia, Brescia (Italy); Masserdotti, Alice [Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia (Italy); Pedrazzani, Roberta [DIMI Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, I-25123 Brescia (Italy); Papa, Matteo [DICATAM Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, via Branze 43, I-25123 Brescia (Italy); Caimi, Luigi [Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia (Italy); Department of Molecular and Translational Medicine, University of Brescia, Brescia (Italy); Di Lorenzo, Diego, E-mail: diego.dilorenzo@yahoo.it [Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia (Italy)

    2016-04-15

    Trace concentration of EDs (endocrine disrupting compounds) in water bodies caused by wastewater treatment plant effluents is a recognized problem for the health of aquatic organisms and their potential to affect human health. In this paper we show that continuous exposure of male mice from early development to the adult life (140 days) to unrestricted drinking of wastewater collected from a municipal sewage treatment plant, is associated with an increased adipose deposition and weight gain during adulthood because of altered body homeostasis. In parallel, bisphenol A (BPA) at the administration dose of 5 μg/kg/body weight, shows an increasing effect on total body weight and fat mass. In vitro, a solid phase extract (SPE) of the wastewater (eTW), caused stimulation of 3T3-L1 adipocyte differentiation at dilutions of 0.4 and 1 % in the final culture medium which contained a concentration of BPA of 40 nM and 90 nM respectively. Pure BPA also promoted adipocytes differentiation at the concentration of 50 and 80 μM. BPA effect in 3T3-L1 cells was associated to the specific activation of the estrogen receptor alpha (ERα) in undifferentiated cells and the estrogen receptor beta (ERβ) in differentiated cells. BPA also activated the Peroxisome Proliferator Activated Receptor gamma (PPARγ) upregulating a minimal 3XPPARE luciferase reporter and the PPARγ-target promoter of the aP2 gene in adipose cells, while it was not effective in preadipocytes. The pure estrogen receptor agonist diethylstilbestrol (DES) played an opposite action to that of BPA inhibiting PPARγ activity in adipocytes, preventing cell differentiation, activating ERα in preadipocytes and inhibiting ERα and ERβ regulation in adipocytes. The results of this work show that the drinking of chemically-contaminated wastewater promotes fat deposition in male mice and that EDs present in sewage are likely responsible for this effect through a nuclear receptor-mediated mechanism. - Highlights: • Sewage

  9. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents

    Science.gov (United States)

    Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the standard for wastewater treatment plant (WWTP) effluents in China and other countries, fecal coliform is the only microbial indicator, raising concerns about the potential for pathogen t...

  10. Coagulation and electrocoagulation for co-treatment of stabilized landfill leachate and municipal wastewater

    Directory of Open Access Journals (Sweden)

    Mohini Verma

    2018-04-01

    Full Text Available Landfill leachate and municipal wastewater at various ratios (1:20, 1:10, 1:7 and 1:5 were subjected to coagulation and electrocoagulation (EC. Alum was used in conventional coagulation at pH 6 and aluminum plate as electrode was used in EC at a current density of 386 A/m2 with 5 cm inter electrode spacing. Treatment efficiency was assessed from removal of chemical oxygen demand (COD, total suspended solids (TSS, turbidity, ammonia, nitrate and phosphate. At 1:5 ratio of landfill leachate to municipal wastewater, highest COD removal was with 3.8 g/L alum whereas highest turbidity removal was with 3.3 g/L alum during coagulation. EC exhibited almost similar removal efficiency for all the parameters at different ratios tested except for COD which was considerably higher at 1:20 ratio. Aluminum consumption from electrode was 0.7 g/L following EC as compared to 3.8 g/L alum used in coagulation. The amount of sludge produced was found to be higher with EC as compared to coagulation which could be due to the fact that the electrochemical method was performed for a longer duration than conventional coagulation. For minimal sludge generation, EC reaction time should be ∼30 min. Further studies with EC process on costing and sludge generation will help to advance the technology for wastewater treatment.

  11. Removal of phthalates and pharmaceuticals from municipal wastewater by graphene adsorption process.

    Science.gov (United States)

    Yang, Gordon C C; Tang, Pei-Ling

    2016-01-01

    In this work graphene was used for evaluation of its adsorption behavior and performance in removing phthalate esters and pharmaceuticals in municipal wastewater. Di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), acetaminophen (ACE), caffeine (CAF), cephalexin (CLX), and sulfamethoxazole (SMX) were emerging contaminants (ECs) with detection frequencies over 92% in a one-year monitoring of the occurrence of ECs in influent samples of a sewage treatment plant in Taiwan. Thus, these ECs were selected as the target contaminants for removal by graphene adsorption process. Experimental results showed that the adsorption isotherm data were fitted well to Langmuir model equation. It was also found that the adsorption process obeyed the pseudo-second-order kinetics. A graphene dosage of 0.1 g/L and adsorption time of 12 h were found to be the optimal operating conditions for the ECs of concern in model solutions in a preliminary study. By using the determined optimal operating conditions for removal of such ECs in actual municipal wastewater, removal efficiencies for various ECs were obtained and given as follows: (1) DnBP, 89%, (2) DEHP, 86%, (3) ACE, 43%, (4) CAF, 84%, (5) CLX, 81%, and (6) SMX, 34%.

  12. Inventing Wastewater: The Social and Scientific Construction of Effluent in the Northeastern United States

    Science.gov (United States)

    Brideau, J. M.; Ng, M.; Hoover, J. H.; Hale, R. L.; Thomas, B.; Vogel, R. M.; Northeast ConsortiumHydrologic Synthesis Summer Institute, 2010--Biogeochemistry

    2010-12-01

    Title: Inventing Wastewater: The Social and Scientific Construction of Effluent in the Northeastern United States Authors: Jeffrey Brideau, Melissa Ng, Joseph Hoover, Rebecca Hale, Brian Thomas, and Richard Vogel Presented by: Jeffrey Brideau B.A., M.A., PhD Candidate, Department of History, University of Maryland Regulation of pollution is a prevalent part of contemporary American society. Scientists and policy makers have established acceptable effluent thresholds, with the ostensible goal of protecting human and stream health. However, this ubiquity of regulation is a recent phenomenon, and institutional mechanisms for effluent control were virtually non-existent in the early 20th century. Nonetheless, these same decades witnessed the emergence of nascent efforts at water pollution abatement. This project aims to explore social and scientific perceptions of wastewater, and begins with the simple premise that socio-cultural values underlay human decision-making in water management, and that wastewater is imbued with a matrix of human values that are continuously renegotiated. So what were the primary motivations for abatement efforts? Were they aesthetic and olfactory, or scientific concern for public and stream health? This paper proposes that there are social as well as scientific thresholds for pollutant loads. Collaborating with a team of interdisciplinary researchers we have created and aggregated discrete data sets to model, using export coefficient and linear regression modeling techniques, historic pollutant loading in the Northeastern United States. Concurrently, we have drawn on historical narratives of agitation by abatement advocates, nuisance laws, regulatory regimes, and changing scientific understanding; and contrasting the modeling results with these narratives allows this project to quantitatively determine where social thresholds lay in relation to their scientific counterparts. This project’s novelty lies in its use of existing narratives of

  13. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    International Nuclear Information System (INIS)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang

    2014-01-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ( 1 H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE

  14. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2014-05-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE.

  15. Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Young [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada)], E-mail: daeyoung.lee@ec.gc.ca; Lauder, Heather; Cruwys, Heather; Falletta, Patricia [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada); Beaudette, Lee A. [Environmental Science and Technology Centre, Environment Canada, 335 River Road South, Ottawa, Ontario, K1A 0H3 (Canada)], E-mail: lee.beaudette@ec.gc.ca

    2008-07-15

    Conventional microbial water quality test methods are well known for their technical limitations, such as lack of direct pathogen detection capacity and low throughput capability. The microarray assay has recently emerged as a promising alternative for environmental pathogen monitoring. In this study, bacterial pathogens were detected in municipal wastewater using a microarray equipped with short oligonucleotide probes targeting 16S rRNA sequences. To date, 62 probes have been designed against 38 species, 4 genera, and 1 family of pathogens. The detection sensitivity of the microarray for a waterborne pathogen Aeromonas hydrophila was determined to be approximately 1.0% of the total DNA, or approximately 10{sup 3}A. hydrophila cells per sample. The efficacy of the DNA microarray was verified in a parallel study where pathogen genes and E. coli cells were enumerated using real-time quantitative PCR (qPCR) and standard membrane filter techniques, respectively. The microarray and qPCR successfully detected multiple wastewater pathogen species at different stages of the disinfection process (i.e. secondary effluents vs. disinfected final effluents) and at two treatment plants employing different disinfection methods (i.e. chlorination vs. UV irradiation). This result demonstrates the effectiveness of the DNA microarray as a semi-quantitative, high throughput pathogen monitoring tool for municipal wastewater.

  16. Removal of micropollutants from municipal wastewater by graphene adsorption and simultaneous electrocoagulation/electrofiltration process.

    Science.gov (United States)

    Yang, Gordon C C; Tang, Pei-Ling; Yen, Chia-Heng

    2017-04-01

    In this work the optimal operating conditions for removing selected micropollutants (also known as emerging contaminants, ECs) from actual municipal wastewater by graphene adsorption (GA) and simultaneous electrocoagulation/electrofiltration (EC/EF) process, respectively, were first determined and evaluated. Then, performance and mechanisms for the removal of selected phthalates and pharmaceuticals from municipal wastewater simultaneously by the GA and EC/EF process were further assessed. ECs of concern included di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), acetaminophen (ACE), caffeine (CAF), cefalexin (CLX) and sulfamethoxazole (SMX). It was found that GA plus EC/EF process yielded the following removal efficiencies: DnBP, 89 ± 2%; DEHP, 85 ± 3%; ACE, 99 ± 2%; CAF, 94 ± 3%; CLX, 100 ± 0%; and SMX, 98 ± 2%. Carbon adsorption, size exclusion, electrostatic repulsion, electrocoagulation, and electrofiltration were considered as the main mechanisms for the removal of target ECs by the integrated process indicated above.

  17. Denaturing Gradient Gel Electrophoretic Analysis of Ammonia-Oxidizing Bacterial Community Structure in the Lower Seine River: Impact of Paris Wastewater Effluents

    NARCIS (Netherlands)

    Cébron, A.; Coci, M.; Garnier, J.; Laanbroek, H.J.

    2004-01-01

    The Seine River is strongly affected by the effluents from the Achères wastewater treatment plant (WWTP) downstream of the city of Paris. We have shown that the effluents introduce large amounts of ammonia and inoculate the receiving medium with nitrifying bacteria. The aim of the present study

  18. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: Impact of Paris wastewater effluents

    NARCIS (Netherlands)

    Cebron, A.; Coci, M.; Garnier, J.; Laanbroek, H.J.

    2004-01-01

    The Seine River is strongly affected by the effluents from the Acheres wastewater treatment plant (WWTP) downstream of the city of Paris. We have shown that the effluents introduce large amounts of ammonia and inoculate the receiving medium with nitrifying bacteria. The aim of the present study was

  19. Genotoxicity of the disinfection by-products resulting from peracetic acid- or hypochlorite-disinfected sewage wastewater.

    Science.gov (United States)

    Crebelli, R; Conti, L; Monarca, S; Feretti, D; Zerbini, I; Zani, C; Veschetti, E; Cutilli, D; Ottaviani, M

    2005-03-01

    Wastewater disinfection is routinely carried out to prevent the spread of human pathogens present in wastewater effluents. To this aim, chemical and physical treatments are applied to the effluents before their emission in water bodies. In this study, the influence of two widely used disinfectants, peracetic acid (PAA) and sodium hypochlorite (NaClO), on the formation of mutagenic by-products was investigated. Wastewater samples were collected before and after disinfection, in winter and in summer, at a pilot plant installed in a municipal wastewater-treatment plant. Samples were adsorbed using silica C18 cartridges and the concentrates were tested for mutagenicity in the Salmonella typhimurium reversion test with strains TA98 and TA100. Non-concentrated water samples were tested with two plant genotoxicity assays (the Allium cepa root anaphase aberration test and the Tradescantia/micronucleus test). Mutagenicity assays in bacteria and in Tradescantia showed borderline mutagenicity in some of the wastewater samples, independent of the disinfection procedure applied. Negative results were obtained in the A. cepa anaphase aberration test. These results indicate that, in the conditions applied, wastewater disinfection with PAA and NaClO does not lead to the formation of significant amounts of genotoxic by-products.

  20. Coastal California Wastewater Effluent as a Resource for Seawater Desalination Brine Commingling

    Directory of Open Access Journals (Sweden)

    Kelly E. Rodman

    2018-03-01

    Full Text Available California frequently experiences water scarcity, especially in high population areas. This has generated increased interest in using the Pacific Ocean as a water resource, with seawater desalination becoming a popular solution. To mitigate the environmental impacts of the high salinity brine from seawater desalination, California recommends commingling brine with wastewater effluent before ocean discharge. Results reveal that throughout the California coast, approximately 4872 MLD (1287 MGD of treated wastewater are discharged into the ocean and might be available as dilution water. Most of this dilution water resource is produced in Southern California (3161 MLD or 835 MGD and the San Francisco Bay Area (1503 MLD or 397 MGD, which are also the areas with the highest need for alternative water sources. With this quantity of dilution water, in principle, over 5300 MLD (1400 MGD of potable water could be produced in California through seawater desalination. Furthermore, this study provides a survey of the treatment levels and typical discharge violations of ocean wastewater treatment facilities in California.

  1. The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments

    International Nuclear Information System (INIS)

    Burd, B.; Macdonald, T.; Bertold, S.

    2013-01-01

    Highlights: • High river particulate flux results in low sediment P/B due to large burrowers. • Sewage deposition results in high P/B from biomass depletion and bacterial increase. • Heterotrophic production was 56% of oxidized OC flux with 35% growth efficiency. • Production was correlated with organic/inorganic flux – biomass was not. • δ 15 N patterns illustrate feeding strategies of key taxa near the outfall. -- Abstract: We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r 2 = 0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production “saturated”. The δ 15 N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast

  2. Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Wastewaters. Results from a 4-year multidisciplinary field project in Sweden, France, Northern Ireland and Greece

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Stig [Svaloef Weibull AB, Svaloef (Sweden); Cuingnet, Christian; Clause, Pierre [Association pour le Developpement des Culture Energetiques, Lille (France); Jakobsson, Ingvar [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Dawson, Malcolm [Queens Univ., Northern Ireland (United Kingdom); Backlund, Arne [A and B Backlund ApS, Charlottenlund (Denmark); Mavrogianopoulus, George [Agricultural Univ. of Athens (Greece)

    2003-01-01

    This report summarises results and experiences gathered from field trials with recycling of pre-treated wastewater, diverted human urine mixed with water, and municipal sludge, within plantations of willow species specifically selected for biomass production. Experimental sites were established in Sweden (Roma), France (Orchies), Northern Ireland (Culmore) and Greece (Larissa). The project was carried out during a 4-year period with financial support from the EU FAIR Programme. The experimental sites were supplied with primary effluent from municipal treatment plants (Culmore and Larissa), stored industrial effluent from a chicory processing plant (Orchies), biologically treated and stored municipal wastewater (Roma) and human urine mixture from diverting low-flush toilets mixed with water (Roma). Application rates of the wastewaters or the urine mixture were equivalent to the calculated evapotranspiration rate at each site. Wastewaters were also applied up to three times this value to evaluate any possible negative effects. Estimations and evaluations were carried out mainly concerning: biomass growth, potential biological attacks of the plantations, plant water requirements, fertilisation effects of the wastewater, plant uptake of nutrients and heavy metals from applied wastewater, possible soil or groundwater impact, sanitary aspects, and potentials for removal in the soil-plant filter of nutrients and biodegradable organic material from applied wastewater. The results clearly indicated that biomass production in young willow plantations could be enhanced substantially after recycling of wastewater resources. The impact on soil and groundwater of nutrients (nitrogen and phosphorus) and heavy metals (copper, zinc, lead and cadmium) was limited, even when the application of water and nutrients exceeded the plant requirements. Also, the soil-plant system seemed to function as a natural treatment filter for pre-treated (primary settled) wastewater, with a treatment

  3. Development of permeate flux model for municipal wastewater treatment using membrane bioreactor

    International Nuclear Information System (INIS)

    Geissler, S.; Zhou, H.; Zytner, R.; Melin, T.

    2002-01-01

    In municipal wastewater treatment, membrane filtration technologies receive great attention because they usually produce the better quality effluent, generate less sludge and require a smaller aeration tank volume. However, one main challenge of using membranes is membrane fouling, which results in a permeate flux decrease or transmembrane pressure increase over the time. Many efforts have been directed to develop the mechanistic permeate flux model to correlate the permeate flux with process parameters. However, their applicability has been largely thwarted due to complicated membrane fouling mechanisms and the interactions of many factors affecting the membrane bioreactor. This paper proposes a semi-empirical permeate flux model for the membrane bioreactor (MBR) process using ZENON immersed hollow fibre membrane modules. The semi-empirical model was proposed by assuming that the permeate flux is equal to transmembrane pressure divided by total resistance. The total resistance is divided into two components: an inside membrane resistance and an outer fouling layer resistance. These membrane resistances are then related to the ageing of membrane used. Good correlation was found between the predicted and measured flux, with the mean absolute deviation being less than 4%. The observations also identified some general rules for operating membrane systems. Ideally, it is advisable that high pressure periods be avoided as this leads to a faster increase of non-reversal membrane resistance. It was also observed that membrane preservatives should be washed out carefully prior to use. (author)

  4. Denaturing Gradient Gel Electrophoretic Analysis of Ammonia-Oxidizing Bacterial Community Structure in the Lower Seine River: Impact of Paris Wastewater Effluents

    NARCIS (Netherlands)

    Cébron, A.; Coci, M.; Garnier, J.; Laanbroek, H.J.

    2004-01-01

    The Seine River is strongly affected by the effluents from the Achères wastewater treatment plant (WWTP) downstream of the city of Paris. We have shown that the effluents introduce large amounts of ammonia and inoculate the receiving medium with nitrifying bacteria. The aim of the present study was

  5. A comparison of the suitability of different willow varieties to treat on-site wastewater effluent in an Irish climate.

    Science.gov (United States)

    Curneen, S J; Gill, L W

    2014-01-15

    Short rotation coppiced willow trees can be used to treat on-site wastewater effluent with the advantage that, if planted in a sealed basin and sized correctly, they produce no effluent discharge. This paper has investigated the evapotranspiration rate of four different willow varieties while also monitoring the effects of three different effluent types on each variety. The willow varieties used are all cultivars of Salix viminalis. The effluents applied were primary (septic tank) effluent, secondary treated effluent and rain water (control). The results obtained showed that the addition of effluent had a positive effect on the evapotranspiration. The willows were also found to uptake a high proportion of the nitrogen and phosphorus from the primary and secondary treated effluents added during the first year. The effect of the different effluents on the evapotranspiration rate has been used to design ten full scale on-site treatment systems which are now being monitored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Removal of Chromium and Cadmium from Wastewater in Waste Stabilization Ponds, Yazd-Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Samaei

    2016-04-01

    Full Text Available Background: Heavy metals have destructive and irreversible effects on the human, plants and animals. Some industries in Yazd enter industrial wastewater to municipal wastewater collection system. This can lead to high levels of heavy metals in wastewater and in turn in the wastewater treatment plant effluent. Methods: This study was carried out during four months from December 22, 2009 to May 20, 2010. The experiment was performed on the inflow, outlet of anaerobic pond and first and second facultative ponds of wastewater treatment plant and then transferred to the laboratory and measured by atomic absorption spectroscopy. Results: The results of the experiments showed that the average cadmium concentrations in the inflow, anaerobic pond outlet, and first and second facultative pond outlet were 0.0066, 0.0087, 0.0076, and 0.0083μg/l, respectively. The average amounts of chromium in the inflow, anaerobic pond outlet, and first and second facultative pond outlet were 0.0076, 0.0065, 0.0043, and 0.0056 μg/l, respectively. Cadmium concentration in the effluent was higher than standard. Conclusion: The comparison of the obtained data with Iranian standards for wastewater treatment for reuse in irrigation shows that the cadmium concentration exceeded the standard and the chromium concentration was lower than the standard. Therefore, it is not suitable for reuse in the crop farms and aquatic life

  7. An optimization based framework for design and retrofit of municipal wastewater treatment plants: Case study on side-stream nitrogen removal technologies

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    2014-01-01

    Existing WWTPs need retrofitting due to several d iffe rent reasons such as: change in the wastewater flow and co mposition, change in the effluent limitat ions , as well as changes in the wastewater treatment trends. Specifically, increased nitrogen limitations in the regulations for the WWTP ef...

  8. Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant

    International Nuclear Information System (INIS)

    Liu Yousheng; Ying Guangguo; Shareef, Ali; Kookana, Rai S.

    2012-01-01

    We investigated the occurrence and removal of four benzotriazoles (BTs) (benzotriazole: BT; 5-methyl-benzotriazole: 5-TTri; 5-chloro-benzotriazole: CBT; 5,6-dimethyl-benzotriazole: XTri) and six UV filters (benzophenone-3: BP-3; 3-(4-methylbenzylidene)camphor: 4-MBC; octyl 4-methoxycinnamate: OMC; 2-(3-t-butyl-2-hydroxy-5-methylphenyl)-5-chloro benzotriazole: UV-326; 2-(2′-Hydroxy-5′-octylphenyl)-benzotriazole: UV-329; octocrylene: OC) in a full scale municipal wastewater treatment in South Australia. BT, 5-TTri and BP-3 were found as the dominant compounds detected in the wastewater samples with average concentrations up to 5706 ± 928 ng/L, 6758 ± 1438 ng/L and 2086 ± 1027 ng/L in influent, and up to 2439 ± 233 ng/L, 610 ± 237 ng/L and 153 ± 121 ng/L in effluent, respectively. In the biosolid, 4-MBC and OC were found with the highest concentrations of 962 ± 135 ng/g and 465 ± 65 ng/g, respectively. Sorption onto sludge played a dominant role in the removal for UV filters, especially for 4-MBC, UV-326 and OC, which accounted for 54%–92% of influent loads, while biological degradation played a significant role for the other compounds. Highlights: ► Selected benzotriazoles (BTs) and UV filters were removed at various rates in a full scale WWTP. ► High aqueous phase removals were achieved for UV filters, and low to moderate removals for benzotriazoles. ► Sorption played a dominant role in elimination of UV filters, while degradation is the main factor for the others. - Various removal rates were achieved for benzotriazoles and UV filters by sorption and degradation processes in different stages of WWTPs.

  9. Efficiency of electrical coagulation process using aluminum electrodes for municipal wastewater treatment: a case study at Karaj wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Samad Gholami Yengejeh

    2017-05-01

    Full Text Available Background: The reuse of treated municipal wastewater is an important source of water for different purposes. This study evaluated the efficiency of the electrocoagulation process in removing turbidity, total suspended solids (TSS, chemical oxygen demand (COD, nitrate, and phosphate from wastewater at the treatment facility in Karaj, Iran. Methods: This experimental study was performed at a pilot scale and in a batch system. A 4-liter tank made from safety glass with 4 plate electrodes made from aluminum was unipolarly connected to a direct current power supply with a parallel arrangement. Wastewater samples were taken from the influent at the Karaj wastewater treatment facility. Rates of turbidity, TSS, COD, nitrate, and phosphate removal under different conditions were determined. Results: The highest efficiency of COD, TSS, nitrate, turbidity, and phosphate elimination was achieved at a voltage of 30 volts and a reaction time of 30 minutes. The rates were 88.43%, 87.39%, 100%, 80.52%, and 82.69%, respectively. Conclusion: Based on the results of this study, electrocoagulation is an appropriate method for use in removing nitrate, phosphate, COD, turbidity, and TSS from wastewater.

  10. Effects of UV light disinfection on antibiotic-resistant coliforms in wastewater effluents

    International Nuclear Information System (INIS)

    Meckes, M.C.

    1982-01-01

    Total coliforms and total coliforms resistant to streptomycin, tetracycline, or chloramphenicol were isolated from filtered activated sludge effluents before and after UV light irradiation. Although the UV irradiation effectively disinfected the wastewater effluent, the percentage of the total surviving coliform population resistant to tetracycline or chloramphenicol was significantly higher than the percentage of the total coliform population resistant to those antibiotics before UV irradiation. This finding was attributed to the mechanism of R-factor mediated resistance to tetracycline. No significant difference was noted for the percentage of the surviving total coliform population resistant to streptomycin before or after UV irradiation. Multiple drug resistant to patterns of 300 total coliform isolates revealed that 82% were resistant to two or more antibiotics. Furthermore, 46% of these isolates were capable of transferring antibiotic resistance to a sensitive strain of Escherichia coli

  11. Environmental impacts of polluted effluents on human health

    International Nuclear Information System (INIS)

    Ahmad, M.S.

    2005-01-01

    One of the major environmental problems confronting Pakistan is water pollution. Human health is being affected by water pollution. The major sources of pollution for surface and groundwater resources are municipal sewage and industrial wastewater. The indiscriminate discharges of untreated sewage and industrial effluents into the water bodies have affected not only the water quality but also human health. Groundwater is also being contaminated by the discharge of untreated sewage into land. Water pollution is responsible for water borne diseases such as hepatitis, dysentery, typhoid, cholera, paratyphoid fever etc. This paper presents a general overview of the wastewater pollution in Pakistan, an evaluation and a specific reference to Lahore city and the effects on human health. Finally, sustainable treatment methods have been proposed to mitigate the water pollution problem. The analysis of water bodies at wastewater discharge points shows depletion of Dissolved Oxygen (DO) and high levels of E. Coli. There is an evidence of groundwater pollution in many areas due to the discharge of wastewater on open land. To protect the water sources from contamination, appropriate treatment methods/treatment technologies have also been discussed in this paper. In the end conclusion and recommendations are given. (author)

  12. Environmental impacts of polluted effluents on human health

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M S [NESPAK, Lahore (Pakistan). Geo-Environmental Engineering Div.

    2005-07-15

    One of the major environmental problems confronting Pakistan is water pollution. Human health is being affected by water pollution. The major sources of pollution for surface and groundwater resources are municipal sewage and industrial wastewater. The indiscriminate discharges of untreated sewage and industrial effluents into the water bodies have affected not only the water quality but also human health. Groundwater is also being contaminated by the discharge of untreated sewage into land. Water pollution is responsible for water borne diseases such as hepatitis, dysentery, typhoid, cholera, paratyphoid fever etc. This paper presents a general overview of the wastewater pollution in Pakistan, an evaluation and a specific reference to Lahore city and the effects on human health. Finally, sustainable treatment methods have been proposed to mitigate the water pollution problem. The analysis of water bodies at wastewater discharge points shows depletion of Dissolved Oxygen (DO) and high levels of E. Coli. There is an evidence of groundwater pollution in many areas due to the discharge of wastewater on open land. To protect the water sources from contamination, appropriate treatment methods/treatment technologies have also been discussed in this paper. In the end conclusion and recommendations are given. (author)

  13. Sekhukhune District Municipality workshop proceedings: Wastewater treatment: Towards improved water quality to promote social and economic development

    CSIR Research Space (South Africa)

    Ntombela, C

    2013-09-01

    Full Text Available The aim of the workshop was to reinforce, at the strategic decision-making level within the municipality, the significance of properly managed wastewater treatment facilities towards improved water quality....

  14. Treated Wastewater Changes the Export of Dissolved Inorganic Carbon and Its Isotopic Composition and Leads to Acidification in Coastal Oceans.

    Science.gov (United States)

    Yang, Xufeng; Xue, Liang; Li, Yunxiao; Han, Ping; Liu, Xiangyu; Zhang, Longjun; Cai, Wei-Jun

    2018-04-25

    Human-induced changes in carbon fluxes across the land-ocean interface can influence the global carbon cycle, yet the impacts of rapid urbanization and establishment of wastewater treatment plants (WWTPs) on coastal ocean carbon cycles are poorly known. This is unacceptable as at present ∼64% of global municipal wastewater is treated before discharge. Here, we report surface water dissolved inorganic carbon (DIC) and sedimentary organic carbon concentrations and their isotopic compositions in the rapidly urbanized Jiaozhou Bay in northeast China as well as carbonate parameters in effluents of three large WWTPs around the bay. Using DIC, δ 13 C DIC and total alkalinity (TA) data and a tracer model, we determine the contributions to DIC from wastewater DIC input, net ecosystem production, calcium carbonate precipitation, and CO 2 outgassing. Our study shows that high-DIC and low-pH wastewater effluent represents an important source of DIC and acidification in coastal waters. In contrast to the traditional view of anthropogenic organic carbon export and degradation, we suggest that with the increase of wastewater discharge and treatment rates, wastewater DIC input may play an increasingly more important role in the coastal ocean carbon cycle.

  15. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological

  16. Cross-flow filtration with different ceramic membranes for polishing wastewater treatment plant effluent

    DEFF Research Database (Denmark)

    Farsi, Ali; Hammer Jensen, Sofie; Roslev, Peter

    Nowadays the need for sustainable water treatment is essential because water shortages are increasing. Depending on the wastewater treatment plant (WWTP) effluent constituents, the effluent cannot be simply discharged to environment because it contains toxic ions and organic micropollutants which...... pore size is 15 nm), mesoporous γ-alumina (5 nm), microporous TiO2 (1nm) and microporous hybrid silica (used. The total ions and specified toxic ions (e. g. Cu2+) rejections were measured using conductivity measurements and atomic adsorption...... spectroscopy, respectively. The type and the molecular size of removed organic compounds were determined using pH, full spectrum UV and size exclusion HPLC. Inorganic N-compound rejections were calculated by N-autoanalyzer. The retention of humic like substances measured by UV254 (Fig.1) decreased almost...

  17. Performance of the Subsurface Flow Wetland in Batch Flow for Municipal Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Abolfazle Rahmani sani

    2009-06-01

    Full Text Available Subsurface flow wetlands are one of the natural treatment methods used for municipal and industrial wastewater treatment that are economical in terms of energy consumption and cost-effectiveness. Much research has been conducted on wetland operation with continuous flow but not enough information is available on batch flow. This study investigates wetland efficiency in batch flow. For the purposes of this research, two pretreatment units of the anaerobic pond type with digestion pits and two subsurface flow wetlands with a 2-day detention time were built on the pilot scale. The cells were charged with sand of 5 mm effective size, uniformity coefficient of 1.5, and a porosity of 35%. One wetland cell and one pretreatment unit were used as control. The municipal wastewater selected to be monitored for the one-year study period had a flow rate of 26 m3/day and average BOD5 of 250mg/l, TSS of 320mg/l, TKN of 35mg/l, TP of 12mg/l and TC of 2×108 MPN/100ml from Sabzevar Wastewater Treatment Plant. The average removal efficiencies of BOD5,TSS,TKN,TP, and TC in the continuous flow for the combined control pretreatment and wetland cell were 77.2%, 92%, 91%, 89%, 96.5% while the same values for the batch flow for the combined experimental pretreatment and wetland cell were 92%, 97%, 97.5%, 97%, and 99.75%, respectively. The removal efficiency in the subsurface flow wetlands in the batch flow was higher than that of the continuous flow. Thus, for wastewaters with a high pollution level, the batch flow can be used in cell operation in cases where there is not enough land for spreading the wetland cell.

  18. Systematic study of the contamination of wastewater treatment plant effluents by organic priority compounds in Almeria province (SE Spain).

    Science.gov (United States)

    Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, José L; Garrido Frenich, Antonia

    2013-03-01

    The occurrence of priority organic pollutants in wastewater (WW) effluents was evaluated in a semi-arid area, characterized by a high agricultural and tourism activity, as Almeria province (Southeastern Spain). Twelve wastewater treatment plants (WWTPs) were sampled in three campaigns during 2011, obtaining a total of 33 WW samples, monitoring 226 compounds, including pesticides, polycyclic aromatic hydrocarbons (PAHs), phenolic compounds and volatile organic compounds (VOCs). Certain banned organochlorine pesticides such as aldrin, pentachlorobenzene, o,p'-DDD and endosulfan lactone were found, and the most frequently detected pesticides were herbicides (diuron, triazines). PAHs and VOCs were also detected, noting that some of these pollutants were ubiquitous. Regarding phenolic compounds, 4-tertoctylphenol was found in all the WW samples at high concentration levels (up to 89.7 μg/L). Furthermore, it was observed that WW effluent samples were less contaminated in the second and third sampling periods, which corresponded to dry season. This evaluation revealed that despite the WW was treated in the WWTP, organic contaminants are still being detected in WW effluents and therefore they are released into the environment. Finally the risk of environmental threat due to the presence of some compounds in WWTP effluents, especially concerning 4-tertoctylphenol must be indicated. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Prevalence and characterisation of non-cholerae Vibrio spp. in final effluents of wastewater treatment facilities in two districts of the Eastern Cape Province of South Africa: implications for public health.

    Science.gov (United States)

    Okoh, Anthony I; Sibanda, Timothy; Nongogo, Vuyokazi; Adefisoye, Martins; Olayemi, Osuolale O; Nontongana, Nolonwabo

    2015-02-01

    Vibrios and other enteric pathogens can be found in wastewater effluents of a healthy population. We assessed the prevalence of three non-cholerae vibrios in wastewater effluents of 14 wastewater treatment plants (WWTP) in Chris Hani and Amathole district municipalities in the Eastern Cape Province of South Africa for a period of 12 months. With the exception of WWTP10 where presumptive vibrios were not detected in summer and spring, presumptive vibrios were detected in all seasons in other WWTP effluents. When a sample of 1,000 presumptive Vibrio isolates taken from across all sampling sites were subjected to molecular confirmation for Vibrio, 668 were confirmed to belong to the genus Vibrio, giving a prevalence rate of 66.8 %. Further, molecular characterisation of 300 confirmed Vibrio isolates revealed that 11.6 % (35) were Vibrio parahaemolyticus, 28.6 % (86) were Vibrio fluvialis and 28 % (84) were Vibrio vulnificus while 31.8 % (95) belonged to other Vibrio spp. not assayed for in this study. Antibiogram profiling of the three Vibrio species showed that V. parahaemolyticus was ≥50 % susceptible to 8 of the test antibiotics and ≥50 % resistant to only 5 of the 13 test antibiotics, while V. vulnificus showed a susceptibility profile of ≥50 % to 7 of the test antibiotics and a resistance profile of ≥50 % to 6 of the 13 test antibiotics. V. fluvialis showed ≥50 % resistance to 8 of the 13 antibiotics used while showing ≥50 % susceptibility to only 4 antibiotics used. All three Vibrio species were susceptible to gentamycin, cefuroxime, meropenem and imipenem. Multiple antibiotic resistance patterns were also evident especially against such antibiotics as tetracyclin, polymixin B, penicillin G, sulfamethazole and erythromycin against which all Vibrio species were resistant. These results indicate a significant threat to public health, more so in the Eastern Cape Province of South Africa which is characterised by widespread poverty, with more than a

  20. Radionuclide content of wastewater and solid waste from a low-level effluent treatment plant

    International Nuclear Information System (INIS)

    Muhamat Omar; Zalina Laili; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin

    2010-01-01

    A study on radioactivity levels of wastewater and solid waste from a Low-level Effluent Treatment Plant has been carried out. The measurement of radionuclide concentration was carried out using gamma spectrometry. Natural and anthropogenic radionuclides were detected in solid radioactive waste recovered from the treatment plant. The presence of radionuclides in waste water varies depending on activities carried out in laboratories and facilities connected to the plant. (author)

  1. Antibiotic susceptibility profiles of some Vibrio strains isolated from wastewater final effluents in a rural community of the Eastern Cape Province of South Africa

    Directory of Open Access Journals (Sweden)

    Igbinosa Etinosa O

    2010-05-01

    Full Text Available Abstract Background To evaluate the antibiogram and antibiotic resistance genes of some Vibrio strains isolated from wastewater final effluents in a rural community of South Africa. V. vulnificus (18, V. metschnikovii (3, V. fluvialis (19 and V. parahaemolyticus (12 strains were isolated from final effluents of a wastewater treatment plant (WWTP located in a rural community of South Africa. The disk diffusion method was used for the characterization of the antibiogram of the isolates. Polymerase chain reaction (PCR was employed to evaluate the presence of established antibiotic resistance genes using specific primer sets. Results The Vibrio strains showed the typical multidrug-resistance phenotype of an SXT element. They were resistant to sulfamethoxazole (Sul, trimethoprim (Tmp, cotrimoxazole (Cot, chloramphenicol (Chl, streptomycin (Str, ampicillin (Amp, tetracycline (Tet nalidixic acid (Nal, and gentamicin (Gen. The antibiotic resistance genes detected includes dfr18 and dfrA1 for trimethoprim; floR, tetA, strB, sul2 for chloramphenicol, tetracycline, streptomycin and sulfamethoxazole respectively. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and environmental Vibrio species. Conclusions These results demonstrate that final effluents from wastewater treatment plants are potential reservoirs of various antibiotics resistance genes. Moreover, detection of resistance genes in Vibrio strains obtained from the wastewater final effluents suggests that these resistance determinants might be further disseminated in habitats downstream of the sewage plant, thus constituting a serious health risk to the communities reliant on the receiving waterbodies.

  2. THE USE OF HALLOYSITE TO REDUCE POLLUTIONS CONCENTRATION IN MUNICIPAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    Alicja Machnicka

    2016-12-01

    Full Text Available One of the methods of municipal wastewater treatment allows the use of biofilters. The study used a bed filled halloysite. In operation of the bed, depending on the hydraulic load, the concentration of phosphate, ammonium and organic matter was reduced. Highest reduction of the concentration PO43- (89% and N – NH4+ (81% in the waste water of the hydraulic load – 0,04 m3/m2h was obtained. The concentration of the organic substrate was reduced by approximately 86%.

  3. Automated determination of aliphatic primary amines in wastewater by simultaneous derivatization and headspace solid-phase microextraction followed by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Llop, Anna; Pocurull, Eva; Borrull, Francesc

    2010-01-22

    This paper presents a fully automated method for determining ten primary amines in wastewater at ng/L levels. The method is based on simultaneous derivatization with pentafluorobenzaldehyde (PFBAY) and headspace solid-phase microextraction (HS-SPME) followed by gas chromatography coupled to ion trap tandem mass spectrometry (GC-IT-MS-MS). The influence of main factors on the efficiency of derivatization and of HS-SPME is described in detail and optimized by a central composite design. For all species, the highest enrichment factors were achieved using a 85 microm polyacrylate (PA) fiber exposed in the headspace of stirred water samples (750 rpm) at pH 12, containing 360 g/L of NaCl, at 40 degrees C for 15 min. Under optimized conditions, the proposed method achieved detection limits ranging from 10 to 100 ng/L (except for cyclohexylamine). The optimized method was then used to determine the presence of primary amines in various types of wastewater samples, such as influent and effluent wastewater from municipal and industrial wastewater treatment plants (WWTPs) and a potable water treatment plant. Although the analysis of these samples revealed the presence of up to 1500 microg/L of certain primary amines in influent industrial wastewater, the concentration of these compounds in the effluent and in municipal and potable water was substantially lower, at low microg/L levels. The new derivatization-HS-SPME-GC-IT-MS-MS method is suitable for the fast, reliable and inexpensive determination of primary amines in wastewater in an automated procedure. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Alzate-Gaviria, Liliana M. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Universidad Politecnica de Chiapas, 29010 Tuxtla Gutierrez, Chiapas (Mexico); Perez-Hernandez, Antonino [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109 (Mexico); Eapen, D. [Universidad Politecnica de Chiapas, 29010 Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    Two laboratory scale anaerobic digestion systems for hydrogen production from organic fraction of municipal solid waste (OFMSW) and synthetic wastewater were compared in this study. One of them was formed by a coupled packed bed reactor (PBR) containing 19.4 L of OFMSW and the other an upflow anaerobic sludge bed (UASB) of 3.85 L. The reactors were inoculated with a mixture of non-anaerobic inocula. In the UASB the percentage of hydrogen yield reached 51% v/v and 127NmLH{sub 2}/gvs removed with a hydraulic retention time (HRT) of 24 h. The concentration of synthetic wastewater in the affluent was 7 g COD/L. For the PBR the percentage yield was 47% v/v and 99NmLH{sub 2}/gvs removed with a mass retention time (MRT) of 50 days and the organic load rate of 16 gvs (Grams Volatile Solids)/(kg-day). The UASB and PBR systems presented maximum hydrogen yields of 30% and 23%, respectively, which correspond to 4molH{sub 2}/mol glucose. These values are similar to those reported in the literature for the hydrogen yield (37%) in mesophilic range. The acetic and butyric acids were present in the effluent as by-products in watery phase. In this work we used non-anaerobic inocula made up of microorganism consortium unlike other works where pure inocula or that from anaerobic sludge was used. (author)

  5. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.

    Science.gov (United States)

    Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht

    2010-06-01

    Toxicity testing has become a suitable tool for wastewater evaluation included in several reference documents on best available techniques of the Integrated Pollution Prevention and Control (IPPC) Directive. The IPPC Directive requires that for direct dischargers as well as for indirect dischargers, the same best available techniques should be applied. Within the study, the whole effluent assessment approach of OSPAR has been applied for determining persistent toxicity of indirectly discharged wastewater from the metal surface treatment industry. Twenty wastewater samples from the printed circuit board and electroplating industries which indirectly discharged their wastewater to municipal wastewater treatment plants (WWTP) have been considered in the study. In all factories, the wastewater partial flows were separated in collecting tanks and physicochemically treated in-house. For assessing the behaviour of the wastewater samples in WWTPs, all samples were biologically pretreated for 7 days in the Zahn-Wellens test before ecotoxicity testing. Thus, persistent toxicity could be discriminated from non-persistent toxicity caused, e.g. by ammonium or readily biodegradable compounds. The fish egg test with Danio rerio, the Daphnia magna acute toxicity test, the algae test with Desmodesmus subspicatus, the Vibrio fischeri assay and the plant growth test with Lemna minor have been applied. All tests have been carried out according to well-established DIN or ISO standards and the lowest ineffective dilution (LID) concept. Additionally, genotoxicity was tested in the umu assay. The potential bioaccumulating substances (PBS) were determined by solid-phase micro-extraction and referred to the reference compound 2,3-dimethylnaphthalene. The chemical oxygen demand (COD) and total organic carbon (TOC) values of the effluents were in the range of 30-2,850 mg L(-1) (COD) and 2-614 mg L(-1) (TOC). With respect to the metal concentrations, all samples were not heavily polluted. The

  6. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review.

    Science.gov (United States)

    Tran, Ngoc Han; Reinhard, Martin; Gin, Karina Yew-Hoong

    2018-04-15

    Emerging contaminants, such as antibiotics, pharmaceuticals, personal care products, hormones, and artificial sweeteners, are recognized as new classes of water contaminants due to their proven or potential adverse effects on aquatic ecosystems and human health. This review provides comprehensive data on the occurrence of 60 emerging contaminants (ECs) in influent, treated effluent, sludge, and biosolids in wastewater treatment plants (WWTPs). In particular, data on the occurrence of ECs in the influents and effluents of WWTPs are systematically summarized and categorized according to geographical regions (Asia, Europe, and North America). The occurrence patterns of ECs in raw influent and treated effluents of WWTPs between geographical regions were compared and evaluated. Concentrations of most ECs in raw influent in Asian region tend to be higher than those in European and North American countries. Many antibiotics were detected in the influents and effluents of WWTPs at concentrations close to or exceeding the predicted no-effect concentrations (PNECs) for resistance selection. The efficacy of EC removal by sorption and biodegradation during wastewater treatment processes are discussed in light of kinetics and parameters, such as sorption coefficients (K d ) and biodegradation constants (k biol ), and physicochemical properties (i.e. log K ow and pK a ). Commonly used sampling and monitoring strategies are critically reviewed. Analytical research needs are identified, and novel investigative approaches for future monitoring studies are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mass flows and removal of antibiotics in two municipal wastewater treatment plants.

    Science.gov (United States)

    Li, Bing; Zhang, Tong

    2011-05-01

    The mass flows and removal of 20 antibiotics of seven classes in two wastewater treatment plants (WWTPs) of Hong Kong were investigated in different seasons of a whole year, using bihourly 24h flow proportional composite samples. Antibiotics were detected at concentrations of 3.2-1718, 1.3-1176 and 1.1-233ngL(-1) in influents, secondary and disinfection effluents. Total daily discharges of all the detected antibiotics from effluents of Shatin and Stanley WWTPs were 470-710 and 3.0-5.2gd(-1), respectively. Ampicillin, cefalexin, sulfamethoxazole, sulfadiazine, sulfamethazine, chlortetracycline and vancomycin were effectively (52-100%) eliminated by activated sludge process while ampicillin and cefalexin were effectively (91-99%) eliminated by disinfection. Bihourly variation analysis showed that concentrations of the major antibiotics in influents varied more significantly in Stanley WWTP which served small communities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Non linear relationship between change in awareness in municipal solid waste management and domestic wastewater management - A case of the Jodipan and Ksatrian village, Malang, East Java

    Science.gov (United States)

    Zakiyya, Nida Maisa; Sarli, Prasanti Widyasih; Soewondo, Prayatni

    2017-11-01

    In developing countries the awareness on the importance of sanitation facilities, whether it is for municipal solid waste or domestic wastewater treatment, is still very low. Jodipan and Ksatrian Village, in Malang, East Java, are two slum areas that have recently been improved visually by using simple colorful paints. The visual improvement was expected to increase the resident's awareness on the importance of keeping the area clean; adjacent to the project, a new municipal waste management system was also put in place, changing the president's behaviour towards municipal solid waste. This study focuses on the relationship between community awareness in municipal solid waste management and domestic wastewater management. The result is expected to be an input for the government to enhance wastewater infrastructure program and its sustainability, related to its awareness on municipal solid waste. A descriptive model through questionnaire to 48 households of Jodipan sub district in Kampung Warna-warni and 69 households of Ksatrian sub district in Kampung 3D by random sampling, with an error of 0.1, was used to conduct this research. A nonlinear relationship between the change in awareness in municipal solid waste management (MSW) and domestic wastewater management was observed, with only 0.1312 of determination coefficient. Weak Spearman correlation coefficient number was found, ranging from 0.284 to 0.39, indicating another parameter turned into a role on affecting the awareness of wastewater. Further study about another parameter (eg. social and economic parameter) intervension on sanitation awareness could be investigated.

  9. A new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo

    2014-02-01

    This paper evaluated a novel pilot scale hybrid treatment system which combines rotating hanging media bioreactor (RHMBR), submerged membrane bioreactor (SMBR) along with electrocoagulation (EC) as post treatment to treat organic and nutrient pollutants from municipal wastewater. The results indicated that the highest removal efficiency was achieved at the internal recycling ratio as 400% of the influent flow rate which produced a superior effluent quality with 0.26mgBOD5L(-1), 11.46mgCODCrL(-1), 0.00mgNH4(+)-NL(-1), and 3.81mgT-NL(-1), 0.03mgT-PL(-1). During 16months of operation, NH4(+)-N was completely eliminated and T-P removal efficiency was also up to 100%. It was found that increasing in internal recycling ratio could improve the nitrate and nitrogen removal efficiencies. Moreover, the TSS and coliform bacteria concentration after treatment was less than 5mgL(-1) and 30MPNmL(-1), respectively, regardless of internal recycling ratios and its influent concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Class 1 Integrons and the Antiseptic Resistance Gene (qacEΔ1) in Municipal and Swine Slaughterhouse Wastewater Treatment Plants and Wastewater—Associated Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Wan, Min Tao; Chou, Chin Cheng

    2015-01-01

    Class 1 integrons are mobile gene elements (MGEs) containing qacEΔ1 that are resistant to quaternary ammonium compound (QAC) disinfectants. This study compared the abundances of class 1 integrons and antiseptic resistance genes in municipal (M) and swine slaughterhouse (S) wastewater treatment plants (WWTPs) and investigated the presence of class 1 integrons and antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolated from wastewater samples. The abundances of intI1 and qacEΔ1 genes in 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR), and 113 MRSA isolates recovered from the wastewater samples were detected class 1 integrons and linked antiseptic resistance genes (qacEΔ1), and minimum inhibitory concentrations (MICs) for QAC antiseptics. The intI1 and qacEΔ1 genes were detected in all the wastewater samples, and they were more abundant in S-WWTP samples than in M-WWTP samples. A higher percentage of MRSA isolates carried qacEΔ1 in MRSA from swine wastewater samples (62.8%) than in municipal MRSA (3.7%). All the MRSA isolates showed high MICs for antiseptic agents. This study provides important evidence regarding the abundances of intI1 and qacEΔ1 genes in municipal and swine slaughterhouse wastewater, and antiseptic-resistant MRSA strains were detected in swine slaughterhouse wastewater. PMID:26042365

  11. Balancing the organic load and light supply in symbiotic microalgal–bacterial biofilm reactors treating synthetic municipal wastewater

    NARCIS (Netherlands)

    Boelee, N.C.; Temmink, B.G.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    Symbiotic microalgal–bacterial biofilms can be very attractive for municipal wastewater treatment. Microalgae remove nitrogen and phosphorus and simultaneously produce the oxygen that is required for the aerobic, heterotrophic degradation of organic pollutants. For the application of these biofilms

  12. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China.

    Science.gov (United States)

    Zhang, Chaojie; Yan, Hong; Li, Fei; Zhou, Qi

    2015-02-01

    Perfluorinated acids (PFAs) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. The discharge of wastewater effluent from municipal wastewater treatment plants (WWTPs) is a significant source of PFAs to the environment. In this study, wastewater and sludge samples were collected from two WWTPs in Shanghai, China, to investigate the contamination level and fate of PFAs in different stages of processing. The total concentrations of PFAs (∑PFAs) in influent from plants A and B were 2,452 and 292 ng L(-1), respectively. Perfluoropentanoic acid (1,520 ± 80 ng L(-1) in plant A and 89.2 ± 12.1 ng L(-1) in plant B) was the predominant PFA in influent waters, followed by perfluorooctanoic acid. The concentration of ∑PFAs ranged from 75.0 to 126.0 ng g(-1) dry weight in sludge samples from plant B, with perfluorooctanesulfonic acid as the predominant contaminant. The concentrations and fate of PFAs in different WWTPs vary. The ∑PFAs entering plant A decreased significantly in the final effluent of activated sludge process, while that in plant B increased significantly in the final effluent of sequencing batch reactor system. The concentration changes could be due to the sorption onto sludge, or the degradation of PFAs precursors.

  13. Micropollutant removal during biological wastewater treatment and a subsequent ozonation step

    Energy Technology Data Exchange (ETDEWEB)

    Schaar, Heidemarie, E-mail: hschaar@iwag.tuwien.ac.a [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria); Clara, Manfred; Gans, Oliver [Umweltbundesamt, Spittelauer Lande 5, 1090 Vienna (Austria); Kreuzinger, Norbert [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria)

    2010-05-15

    The design criteria for wastewater treatment plants (WWTP) and the sludge retention time, respectively, have a significant impact on micropollutant removal. The upgrade of an Austrian municipal WWTP to nitrogen removal (best available technology, BAT) resulted in increased elimination of most of the analyzed micropollutants. Substances, such as bisphenol-A, 17alpha-ethinylestradiol and the antibiotics erythromycin and roxithromycin were only removed after the upgrade of the WWTP. Nevertheless, the BAT was not sufficient to completely eliminate these compounds. Thus, a pilot scale ozonation plant was installed for additional treatment of the effluent. The application of 0.6 g O{sub 3} g DOC{sup -1} increased the removal of most of the micropollutants, especially for compounds that were not degraded in the previous biological process, as for example carbamazepine and diclofenac. These results indicated that the ozonation of WWTP effluent is a promising technology to further decrease emissions of micropollutants from the treatment process. - SRT is an important criterion for micropollutant removal in wastewater treatment and the application of ozone is suitable for further removal of micropollutants.

  14. Micropollutant removal during biological wastewater treatment and a subsequent ozonation step

    International Nuclear Information System (INIS)

    Schaar, Heidemarie; Clara, Manfred; Gans, Oliver; Kreuzinger, Norbert

    2010-01-01

    The design criteria for wastewater treatment plants (WWTP) and the sludge retention time, respectively, have a significant impact on micropollutant removal. The upgrade of an Austrian municipal WWTP to nitrogen removal (best available technology, BAT) resulted in increased elimination of most of the analyzed micropollutants. Substances, such as bisphenol-A, 17α-ethinylestradiol and the antibiotics erythromycin and roxithromycin were only removed after the upgrade of the WWTP. Nevertheless, the BAT was not sufficient to completely eliminate these compounds. Thus, a pilot scale ozonation plant was installed for additional treatment of the effluent. The application of 0.6 g O 3 g DOC -1 increased the removal of most of the micropollutants, especially for compounds that were not degraded in the previous biological process, as for example carbamazepine and diclofenac. These results indicated that the ozonation of WWTP effluent is a promising technology to further decrease emissions of micropollutants from the treatment process. - SRT is an important criterion for micropollutant removal in wastewater treatment and the application of ozone is suitable for further removal of micropollutants.

  15. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2004-09-01

    The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon. Copyright 2004 Elsevier Ltd.

  16. Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006-09

    Science.gov (United States)

    Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert

    2012-01-01

    Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen

  17. Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment.

    Science.gov (United States)

    Hey, Tobias; Bajraktari, Niada; Davidsson, Åsa; Vogel, Jörg; Madsen, Henrik Tækker; Hélix-Nielsen, Claus; Jansen, Jes la Cour; Jönsson, Karin

    2018-02-01

    Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps to protect humans and the environment from adverse effects. Membrane technology has gained increasing attention as an alternative to conventional wastewater treatment due to increased urbanization. Among the available membrane technologies, microfiltration (MF) and forward osmosis (FO) have been selected for this study due to their specific characteristics, such as compactness and efficient removal of particles. In this study, two treatment concepts were evaluated with regard to their specific electricity, energy and area demands. Both concepts would fulfil the Swedish discharge demands for small- and medium-sized wastewater treatment plants at full scale: (1) direct MF and (2) direct FO with seawater as the draw solution. The framework of this study is based on a combination of data obtained from bench- and pilot-scale experiments applying direct MF and FO, respectively. Additionally, available complementary data from a Swedish full-scale wastewater treatment plant and the literature were used to evaluate the concepts in depth. The results of this study indicate that both concepts are net positive with respect to electricity and energy, as more biogas can be produced compared to that using conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area-efficient manner with techniques that are already commercially available and with future membrane technology.

  18. Hydrothermal liquefaction of municipal wastewater cultivated algae: Increasing overall sustainability and value streams of algal biofuels

    Science.gov (United States)

    Roberts, Griffin William

    The forefront of the 21st century presents ongoing challenges in economics, energy, and environmental remediation, directly correlating with priorities for U.S. national security. Displacing petroleum-derived fuels with clean, affordable renewable fuels represents a solution to increase energy independence while stimulating economic growth and reducing carbon-based emissions. The U.S. government embodied this goal by passing the Energy Independence and Security Act (EISA) in 2007, mandating 36 billion gallons of annual biofuel production by 2022. Algae possess potential to support EISA goals and have been studied for the past 30-50 years as an energy source due to its fast growth rates, noncompetitive nature to food markets, and ability to grow using nutrient waste streams. Algae biofuels have been identified by the National Research Council to have significant sustainability concerns involving water, nutrient, and land use. Utilizing municipal wastewater to cultivate algae provides both water and nutrients needed for growth, partially alleviating these concerns. This dissertation demonstrates a pathway for algae biofuels which increases both sustainability and production of high-value products. Algae are cultivated in pilot-scale open ponds located at the Lawrence Wastewater Treatment Plant (Lawrence, KS) using solely effluent from the secondary clarifier, prior to disinfection and discharge, as both water and nutrient sources. Open ponds were self-inoculated by wastewater effluent and produced a mixed-species culture of various microalgae and macroalgae. Algae cultivation provided further wastewater treatment, removing both nitrogen and phosphorus, which have devastating pollution effects when discharged to natural watersheds, especially in large draining watersheds like the Gulf Coast. Algae demonstrated significant removal of other trace metals such as iron, manganese, barium, aluminum, and zinc. Calcium did not achieve high removal rate but did present a

  19. Agricultural reuse of municipal wastewater through an integral water reclamation management.

    Science.gov (United States)

    Intriago, Juan Carlo; López-Gálvez, Francisco; Allende, Ana; Vivaldi, Gaetano Alessandro; Camposeo, Salvatore; Nicolás Nicolás, Emilio; Alarcón, Juan José; Pedrero Salcedo, Francisco

    2018-05-01

    The DESERT-prototype, a state-of-the-art compact combination of water treatment technologies based on filtration and solar-based renewable energy, was employed to reclaim water for agricultural irrigation. Water reclaimed through the DESERT-prototype (PW) from a secondary effluent of a wastewater treatment plant, as well as conventional irrigation water (CW) and the secondary effluent (SW) itself, were employed to cultivate baby romaine lettuces in a greenhouse in Murcia (Spain), by means of drip and sprinkler irrigation methods, thus establishing six treatments. Assessments of physicochemical and microbiological quality of irrigation water, as well as agronomic and microbiological quality of crops from all treatments, showed that results associated to PW complied in all cases with relevant standards and guidelines. In contrast, results linked to SW and CW presented certain non-compliance cases of water and crop microbiological quality. These assessments lead to conclude that the DESERT-prototype is an appropriate technology for safe water reclamation oriented to agricultural production, that can be complemented by a proper irrigation method in reaching safety targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH.

    Science.gov (United States)

    Ortega-Gómez, E; Esteban García, B; Ballesteros Martín, M M; Fernández Ibáñez, P; Sánchez Pérez, J A

    2014-10-15

    This study analyses the use of the solar photo-Fenton treatment in compound parabolic collector photo-reactors at neutral pH for the inactivation of wild enteric Escherichia coli and total coliform present in secondary effluents of a municipal wastewater treatment plant (SEWWTP). Control experiments were carried out to find out the individual effects of mechanical stress, pH, reactants concentration, and UVA radiation as well as the combined effects of UVA-Fe and UVA-H2O2. The synergistic germicidal effect of solar-UVA with 50 mg L(-1) of H2O2 led to complete disinfection (up to the detection limit) of total coliforms within 120 min. The disinfection process was accelerated by photo-Fenton, achieving total inactivation in 60 min reducing natural bicarbonate concentration found in the SEWWTP from 250 to 100 mg L(-1) did not give rise to a significant enhancement in bacterial inactivation. Additionally, the effect of hydrogen peroxide and iron dosage was evaluated. The best conditions were 50 mg L(-1) of H2O2 and 20 mg L(-1) of Fe(2+). Due to the variability of the SEWWTP during autumn and winter seasons, the inactivation kinetic constant varied between 0.07 ± 0.04 and 0.17 ± 0.04 min(-1). Moreover, the water treated by solar photo-Fenton fulfilled the microbiological quality requirement for wastewater reuse in irrigation as per the WHO guidelines and in particular for Spanish legislation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Potential chemical and microbiological risks on human health from urban wastewater reuse in agriculture. Case study of wastewater effluents in Spain.

    Science.gov (United States)

    Muñoz, Ivan; Tomàs, Núria; Mas, Jordi; García-Reyes, Juan Fracisco; Molina-Díaz, Antonio; Fernández-Alba, Amadeo R

    2010-05-01

    Potential health risks derived from wastewater reuse in agriculture have been evaluated with Risk Assessment modelling techniques, in a case study involving the effluents of two Spanish wastewater treatment plants. One of the plants applies primary and secondary treatment, and the other one applies an additional tertiary treatment. Health risks were assessed on the basis of ingesting contaminated food, due to exposure to: (i) 22 chemical pollutants, namely pharmaceuticals and personal care products (PPCPs), and priority pollutants included in the European Framework Directive, and (ii) microorganisms, namely enterovirus. Chemical Risk Assessment has been carried out following the European Commission's technical guidelines, while risks from exposure to viruses have been evaluated by means of Quantitative Microbial Risk Assessment, assuming a virus to coliform ratio of 1:10(5). The results of the chemical assessment show that there is a margin of safety above 100 for all substances, with the exception of gemfibrozil, for which the mean margin of safety (MOS) is above 100, but the lower bound of MOS with a 95 % confidence interval lies in the 3-4 range. A MOS under 100 was also found for 2,3,7,8-TCDD in one of the effluents. The assessment of risks from viruses shows a very low probability of infection. The overall results show that risks are lower for the plant applying tertiary treatment, especially concerning microbiological parameters.

  2. Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment

    DEFF Research Database (Denmark)

    Hey, Tobias; Bajraktari, Niada; Davidsson, Åsa

    2018-01-01

    electricity, energy and area demands. Both concepts would fulfil the Swedish discharge demands for small- and medium-sized wastewater treatment plants at full scale: (1) direct MF and (2) direct FO with seawater as the draw solution. The framework of this study is based on a combination of data obtained from...... positive with respect to electricity and energy, as more biogas can be produced compared to that using conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area...

  3. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L

    2017-04-01

    Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with

  4. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The presen...

  5. Problems with textile wastewater discharge

    International Nuclear Information System (INIS)

    Rantala, Pentti

    1987-01-01

    The general character of textile industry wastewaters is briefly discussed. General guidelines and practice in Finland when discharging textile industry wastewaters to municipal sewer systems is described. A survey revealed that most municipalities experience some problems due to textile industry wastewaters. Pretreatment is not always practiced and in some cases pretreatment is not operated efficiently. (author)

  6. Treatment of Wastewater by Ozone Produced in Dielectric Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Rita Bhatta

    2015-01-01

    Full Text Available There is rapid diminishing of water resources in many countries due to, for example, population growth and constant reduction in fresh water supply. The sewage wastewater, industrial effluents, and municipal wastewater are directly and indiscriminately discharged into rivers and lakes and thus primarily cause water pollution in Nepal. This has increased the water crisis and also causes environmental deterioration. Therefore, the need for the development of an effective, cheap, and environmentally friendly process for the treatment of wastewater before discharging into aquatic environment has emerged. Treatment by ozone produced from dielectric barrier discharge is one of the emerging technologies for such application. The ozonation process is more effective for disinfection and degradation of organic pollutants from water. The current study describes the treatment of wastewater of selected site within Kathmandu. Results on various physicochemical and microbial parameters of the inlet and outlet samples are discussed. Our results showed slight increase in pH, decrease in chemical oxygen demand, and significant increase in dissolved oxygen after ozonation. Importantly, ozonation caused total reduction of fecal coliform.

  7. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    Science.gov (United States)

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  8. Monitoring and control of UV and UV-TiO2 disinfections for municipal wastewater reclamation using artificial neural networks

    International Nuclear Information System (INIS)

    Lin, Chuang-Hung; Yu, Ruey-Fang; Cheng, Wen-Po; Liu, Chun-Ru

    2012-01-01

    Highlights: ► ANN models can effectively control both UV and UV-TiO 2 disinfections for wastewater reuse. ► Comparing to UV disinfection, UV-TiO 2 disinfection can save 13.2–15.7% of UV dosage and capacity. ► SS decreases disinfection efficiency when UV doses were 2 . - Abstract: The use of ultraviolet (UV) irradiation as a physical wastewater disinfection has increased in recent years, especially for wastewater reuse. The UV-TiO 2 can generate OH radicals, which is highly effective to inactivate microorganisms in wastewater disinfection. However, both UV and UV-TiO 2 disinfections create multiple physical, chemical, and bio-chemical phenomena that affect their germicidal efficiency. It is difficult to build a precise control model using existing mathematic models. This study applies artificial neural network (ANN) models to control UV and UV-TiO 2 disinfections. Experimental results indicate that the ANN models, which precisely generate relationships among multiple monitored parameters, total coliform counts in influent and effluent, and UV doses, can be used as control models for UV and UV-TiO 2 disinfections. A novel ANN control strategy is applied to control UV and UV-TiO 2 disinfection processes to meet three total coliform count limits for three wastewater reuse purposes. The proposed controlled strategy effectively controls UV and UV-TiO 2 disinfection, resulting in acceptable total coliform counts in effluent for the three wastewater reuse purposes. The required UV doses for UV-TiO 2 disinfection were lower than those for UV disinfection, resulting in energy saving and capacity reduction of 13.2–15.7%.

  9. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents.

    Science.gov (United States)

    Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua

    2017-03-07

    Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.

  10. SBR treatment of tank truck cleaning wastewater: sludge characteristics, chemical and ecotoxicological effluent quality.

    Science.gov (United States)

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Geuens, Luc; Blust, Ronny; Dries, Jan

    2017-08-02

    A lab-scale activated sludge sequencing batch reactor (SBR) was used to treat tank truck cleaning (TTC) wastewater with different operational strategies (identified as different stages). The first stage was an adaptation period for the seed sludge that originated from a continuous fed industrial plant treating TTC wastewater. The first stage was followed by a dynamic reactor operation based on the oxygen uptake rate (OUR). Thirdly, dynamic SBR control based on OUR treated a daily changing influent. Lastly, the reactor was operated with a gradually shortened fixed cycle. During operation, sludge settling evolved from nearly no settling to good settling sludge in 16 days. The sludge volume index improved from 200 to 70 mL gMLSS -1 in 16 days and remained stable during the whole reactor operation. The average soluble chemical oxygen demand (sCOD) removal varied from 87.0% to 91.3% in the different stages while significant differences in the food to mass ratio were observed, varying from 0.11 (stage I) to 0.37 kgCOD.(kgMLVSS day) -1 (stage III). Effluent toxicity measurements were performed with Aliivibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. Low sensitivity of Aliivibrio was observed. A few samples were acutely toxic for Daphnia; 50% of the tested effluent samples showed an inhibition of 100% for Pseudokirchneriella.

  11. Contribution of domestic wastewater to the total pollutant loading influent to a municipal wastewater treatment plant; Contribuciond e las aguas residuales domesticas a la carga total que accede a una EDAr municipal

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Perez de Siles, L. A.; Rojas Moreno, F. J.; Gonzalez Jimenez, M. M.

    2004-07-01

    A study on the purely domestic wastewater from Cordoba city (Abril to july 2003) has found a pollutant loading very high on these domestic wastewaters, by showing mean values of suspended solid, BOD{sub 5} and COD equal to respectively 452 mg/l, 505 mg/1 and 793 mg/l. This pollutants power probably emanates from the products for domestic cleaning used in our homes and must be associated to chemicals as citrates, oxalates, surfactants, polialcohols, organics complexing, ammonium compounds..., which show high value of pollutant loading up to 200 mg/l of BOD{sub 5} per ml of product have been measured on a commercial domestic dishwasher, and 9.000 mg/l of DQO for a domestic smoothing. Furthermore, the increasing use of pre-cooked foods can add to domestic wastewater fats, oils, and flours which can also increase the BOD:5 and COD values of these effluents. On the other hand, the measured pollutant loading or domestic wastewater from monofamily homes has been lower than those from multifamily buildings. Finally, due to the fact that the Golondrina's WWTP (Cordoba, 1991) was designed for treat values of suspended solids, BOD, and COD lower than those actually detected, its treatment processes should be probably modified in a near future. (Author) 24 refs.

  12. Potential investigation of Reusing Ardabil Municipal Wastewater Treatment Plant Sludge Based on AHP and TOPSIS Models

    Directory of Open Access Journals (Sweden)

    Bizhan Maghsoudlou Kamali

    2013-07-01

    Full Text Available Introduction :By ever-increasing of population, shortage of water resources and the necessity of wastewater treatment, huge volumes of sludge that is a byproduct of wastewater treatment, requires to be disposed in environmentally secure ways. The target of specifying strategic preferences of reuse of sludge has been to find the correct way of disposal or beneficial use of sludge. Material and methods: In this study, to select the best alternative for reuse of wastewater sludge two systematic methods are introduced, which four alternatives for reuse of sludge (use in agriculture, use in green space, biogas, desert combat are introduced and they are compared by four main parameters including: 1- physicochemical 2-biological 3 - economic, social and cultural, and 4 - environmental pollution situation, that each contains some criteria. In this study, first each of the related parameters and criteria are compared by the expert groups of and through questionnaire. Then these weights are entered into Expert Choice software for the analyze of AHP model and paired comparisons and weightings have been done on the related parameters and criteria. Ultimately, the output of the software is entered into TOPSIS software for the analyze of TOPSIS model until the best alternative is selected. Results: sludge of Ardabil municipal wastewater treatment plant, according to standards and EPA regulations is eligible to class B, and due to the chemical in terms of heavy metals have special (excellent quality and contains considerable quantities of organic substance, nutrients and micronutrients which indicates the fertilizer value of the sludge. Conclusion: The result of this comparison has shown that the application of sludge in green spaces is the most appropriate alternative and then use in agriculture, biogas alternative, and desert combat alternative are, respectively, placed in the second to fourth preference for the reuse of sludge derived from municipal

  13. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution

    Science.gov (United States)

    Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu

    2011-01-01

    Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.

  14. Deactivation of Legionella Pneumophila in municipal wastewater by ozone generated in arrays of microchannel plasmas

    Science.gov (United States)

    Dong, Shengkun; Li, Jun; Kim, Min-Hwan; Cho, Jinhoon; Park, Sung-Jin; Nguyen, Thanh H.; Eden, J. Gary

    2018-06-01

    A greater than four log10 reduction in the concentration of Legionella pneumophila in municipal wastewater has been achieved in 1 min with ozone produced by a microchannel plasma reactor. Requiring less than 22 W of electrical power, and ambient air as the feedstock gas, the microplasma ozone generator is robust and a promising alternative to conventional corona and dielectric barrier discharge (DBD) technologies. Contrary to previous studies, the Ct model for pathogen deactivation (i.e. rate proportional to the product of the available disinfectant concentration and the exposure duration) is found to be valid for L. pneumophila. Accordingly, wastewater-specific Ct equations have been developed to predict the deactivation of L. pneumophila in the secondary wastewater environment. Inactivation of this pathogen was found to be dependent on temperature only in the absence of wastewater organic matter (WOM). In the presence of WOM, pathogen deactivation is controlled by the disinfection contact time, initial ozone concentration (varied between 15 and 281 µg l‑1), and initial WOM loading. The data reported here will assist in the implementation of plasma ozone generators for L. pneumophila deactivation in cooling towers, point-of-use systems, and wastewater reclamation facilities.

  15. Ultrafiltration (UF Pilot Plant for Municipal Wastewater Reuse in Agriculture: Impact of the Operation Mode on Process Performance

    Directory of Open Access Journals (Sweden)

    Dario Falsanisi

    2010-11-01

    Full Text Available Following increasing interest in the use of UltraFiltration (UF membrane processes as an alternative advanced disinfection technique, the performance of a UF pilot plant was investigated under two opposite operating conditions (“stressed operating condition” versus “conventional operating condition”. The results indicate that for both conditions, the reclaimed effluent complied with the Italian regulations for unrestricted wastewater reuse (i.e., Total Suspended Solids (TSS < 10 mg/L; Chemical Oxygen Demand (COD < 100 mg/L and Escherichia coli < 10 CFU/100 mL. On the other hand, when compared with the Title 22 of the California Wastewater Reclamation Criteria, only the effluent produced under the “conventional operating condition” met the stipulated water quality standards (i.e., TSS and turbidity undetectable and total coliforms < 2.2 CFU/100 mL. It should be noted that, in spite of the nominal cut-off size, total coliforms breakthrough was indeed occasionally observed. A localized membrane pore micro-enlargement mechanism was hypothesized to explain the total coliforms propagation in the ultrafiltered effluent, as monitoring of the membrane permeability and transmembrane pressure highlighted that gel/cake formation had only a minor contribution to the overall membrane fouling mechanism with respect to pore plugging and pore narrowing mechanisms.

  16. Environmental and public health implications of wastewater quality ...

    African Journals Online (AJOL)

    The reuse of treated effluent (for agriculture and as supplement for drinking water needs) is currently receiving attention as a reliable water source. This paper is aimed at reviewing the environmental and health impacts of untreated or inadequately treated wastewater effluents. The quality of wastewater effluents is ...

  17. Municipal wastewater characteristics in Thailand and effects of soft intervention measures in households on pollutant discharge reduction.

    Science.gov (United States)

    Tsuzuki, Y; Koottatep, T; Jiawkok, S; Saengpeng, S

    2010-01-01

    In developing countries with large Millennium Development Goals (MDGs) sanitation indicator, pollutant discharge reduction function of wastewater treatment systems should be considered. In this paper, pollutant generations per capita (PGCs) and pollutant discharges per capita (PDCs) are estimated as a base dataset for wastewater management in Thailand. PDCs of black water, i.e. toilet wastewater, are found to be much smaller than PGCs of black water. However, PDCs of gray water, i.e. municipal wastewater other than toilet wastewater are large. Gray water is often discharged without treatment and contributes much to ambient water deterioration. Moreover, possible 5-day biological oxygen demand (BOD5) discharge reductions with "soft interventions", i.e. measurements in households to reduce wastewater pollutant discharge such as using a paper filter or a plastic net in kitchen sinks and so on, are estimated as 39, 21 and 34% for BOD5, total Kjeldahl nitrogen (TKN) and phosphate (PO4-P), respectively. For the estimation, environmental accounting housekeeping (EAH) books of domestic wastewater, spreadsheets with pollutant discharges by water usages and possible effects of "soft interventions" are applied. The framework of this study with "soft intervention" effects on pollutant discharge reductions should enhance wastewater management especially in the areas under development of wastewater treatment systems.

  18. Biological nutrient removal from municipal wastewater in sequencing batch biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Arnz, P

    2001-07-01

    Enhanced biological phosphorus removal (EBPR) has only been put into practice in activated sludge systems. In recent years, the Sequencing Batch Biofilm Reactor (SBBR) has emerged as an alternative allowing EBPR to be achieved in a biofilm reactor. High efficiency of phosphate removal was demonstrated in a SBBR fed with synthetic wastewater containing acetate. The aim of this study was to investigate EBPR from municipal wastewater in semi full-scale and laboratory-scale SBBRs. The focus of the investigation in the semi full-scale reactor was on determination of achievable reaction rates and effluent concentrations under varying influent conditions throughout all seasons of a year. Interactions between nitrogen and phosphorus removal and the influence of backwashing on the reactor performance was examined. Summing up, it can be stated that the SBBR proved to be an attractive alternative to activated sludge systems. Phosphorus elimination efficiency was comparable to common systems but biomass sedimentation problems were avoided. In order to further exploit the potential of the SBBR and to achieve reactor performances superior to those of existing systems designing a special biofilm carrier material may allow to increase the phenomenon of simultaneous nitrification/denitrification while maintaining EBPR activity. (orig.) [German] Die vermehrte biologische Phosphorelimination (Bio-P) aus Abwasser wurde bisher nur in Belebtschlammsystemen praktiziert. In den letzten Jahren konnte jedoch gezeigt werden, dass sich durch die Anwendung des Sequencing Batch Biofilm Reactor (SBBR) - Verfahrens auch in Biofilmreaktoren Bio-P verwirklichen laesst. Versuche in Laboranlagen haben ergeben, dass sich eine weitgehende Phosphorelimination aufrecht erhalten laesst, wenn die Reaktoren mit einem ideal zusammengesetzten, synthetischen Abwasser beschickt werden. Ziel dieser Arbeit war es, Bio-P aus kommunalem Abwasser in SBBR-Versuchsanlagen im halbtechnischen und im Labormassstab zu

  19. Fate of nanosilver in wastewater treatment plants and their impact on nitrification activity in sewage sludge; Verhalten von Nanosilber in Klaeranlagen und dessen Einfluss auf die Nitrifikationsleistung in Belebtschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, Michael [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland); HSR Hochschule fuer Technik, Rapperswil (CH). Inst. fuer Umwelt- und Verfahrenstechnik (UMTEC); Zuleeg, Steffen [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland); KUSTER + HAGER Ingenieurbuero AG, St. Gallen (Switzerland); Kaegi, Ralf; Sinnet, Brian; Eugster, Jakob; Boller, Markus; Siegrist, Hansruedi [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland)

    2010-10-15

    The application of nanosilver is increasing. Knowledge on the fate and behavior of nanosilver in wastewater and wastewater treatment plants is scarce. Studies under real world conditions are completely lacking. We studied (1) the impact of nanosilver on the nitrification of sewage sludge, (2) quantified the mass flow of nanosilver in a pilot-plant, and (3) verified the mass balance in a full-scale municipal wastewater treatment plant where nanosilver is introduced to the municipal plant by an indirect discharger. The addition of four different nanosilver additives on ammonia oxidation in activated sludge has been studied in batch-reactors at two concentrations (1, 100 mg/L Ag) with two exposure times (2 h, 6 days). The pilot-plant treating 70 population equivalents of domestic wastewater is operated with a 12 day sludge age. Nanosilver was applied to the activated sludge tank within two sludge ages. The silver concentrations were measured in sludge and effluent samples during dosing and the following two sludge ages. The adsorption and speciation of silver particles has been analyzed using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Influent, effluent and sludge were sampled on a full-scale plant (60 000 equivalent inhabitants) and analyzed for silver. Silver nitrate, metallic nanosilver, nano-scaled silver chloride and microcomposite silver did not show any effect on ammonia oxidation after the addition of 1 mg/L Ag to the activated sludge (corresponding to 250 mg Ag per kg solids). In contrast, 100 mg/L Ag inhibited the nitrification process by 100 % after the addition of silver nitrate and 20-30 % after addition of colloidal polymer-coated nanosilver. A complete mass balance of the pilot-plant, a steady-state system with known fluxes, demonstrates significant enrichment of silver in the sewage sludge (96 %) after the addition of silver chloride to the plant and small losses of silver into the secondary effluent (4

  20. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany

    Directory of Open Access Journals (Sweden)

    Norman Hembach

    2017-07-01

    Full Text Available Seven wastewater treatment plants (WWTPs with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.

  1. Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge.

    Science.gov (United States)

    Kumar, Manish; Ghosh, Pooja; Khosla, Khushboo; Thakur, Indu Shekhar

    2018-05-01

    In the current study, the feasibility of utilizing municipal secondary wastewater sludge for Polyhydroxyalkanoate (PHA) extraction was improved by optimization of various parameters (temperature, duration and concentration of sludge solids). Optimized process parameters resulted in PHA recovery of 0.605 g, significantly higher than un-optimized conditions. The characterization of PHA was carried out by GC-MS, FT-IR and NMR ( 1 H and 13 C) spectroscopy. The PHA profile was found to be dominated by mcl PHA (58%) along with other diverse PHA. The results of the present study show rich diversity of PHA extracted from a raw material which is readily available at minimal cost. In conclusion, exploring the potential of wastes for production of bioplastics not only reduces the cost of bioplastic production, but also provides a sustainable means for waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes.

    Science.gov (United States)

    Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene

    2012-06-01

    Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review

    International Nuclear Information System (INIS)

    Verlicchi, P.; Al Aukidy, M.; Zambello, E.

    2012-01-01

    This review focuses on 118 pharmaceuticals, belonging to seventeen different therapeutic classes, detected in raw urban wastewater and effluent from an activated sludge system, a usual treatment adopted for urban wastewaters worldwide prior to final discharge into surface water bodies. Data pertaining to 244 conventional activated sludge systems and 20 membrane biological reactors are analysed and the observed ranges of variability of each selected compound in their influent and effluent reported, with particular reference to the substances detected most frequently and in higher concentrations. A snapshot of the ability of these systems to remove such compounds is provided by comparing their global removal efficiencies for each substance. Where possible, the study then evaluates the average daily mass load of the majority of detected pharmaceuticals exiting the secondary treatment step. The final part of the review provides an assessment of the environmental risk posed by their presence in the secondary effluent by means of the risk quotient that is the ratio between the average pharmaceutical concentration measured in the secondary effluent and the predicted no-effect concentration. Finally, mass load rankings of the compounds under review are compared with those based on their risk level. This analysis shows that the highest amounts discharged through secondary effluent pertain to one antihypertensive, and several beta-blockers and analgesics/anti-inflammatories, while the highest risk is posed by antibiotics and several psychiatric drugs and analgesics/anti-inflammatories. These results are reported with a view to aiding scientists and administrators in planning measures aiming to reduce the impact of treated urban wastewater discharge into surface water bodies. - Highlights: ► The review refers to 118 pharmaceuticals occurring in raw and treated wastewaters. ► Data from 264 municipal WWTPs with a CAS or an MBR were analysed. ► The removal rates achieved

  4. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review

    Energy Technology Data Exchange (ETDEWEB)

    Verlicchi, P., E-mail: paola.verlicchi@unife.it [Dept. of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Terra and AcquaTech Technopoles, Via Borsari 46, I-44121 Ferrara (Italy); Al Aukidy, M., E-mail: mustafakether.alaukidi@unife.it [Dept. of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Zambello, E., E-mail: elena.zambello@unife.it [Dept. of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Terra and AcquaTech Technopoles, Via Borsari 46, I-44121 Ferrara (Italy)

    2012-07-01

    This review focuses on 118 pharmaceuticals, belonging to seventeen different therapeutic classes, detected in raw urban wastewater and effluent from an activated sludge system, a usual treatment adopted for urban wastewaters worldwide prior to final discharge into surface water bodies. Data pertaining to 244 conventional activated sludge systems and 20 membrane biological reactors are analysed and the observed ranges of variability of each selected compound in their influent and effluent reported, with particular reference to the substances detected most frequently and in higher concentrations. A snapshot of the ability of these systems to remove such compounds is provided by comparing their global removal efficiencies for each substance. Where possible, the study then evaluates the average daily mass load of the majority of detected pharmaceuticals exiting the secondary treatment step. The final part of the review provides an assessment of the environmental risk posed by their presence in the secondary effluent by means of the risk quotient that is the ratio between the average pharmaceutical concentration measured in the secondary effluent and the predicted no-effect concentration. Finally, mass load rankings of the compounds under review are compared with those based on their risk level. This analysis shows that the highest amounts discharged through secondary effluent pertain to one antihypertensive, and several beta-blockers and analgesics/anti-inflammatories, while the highest risk is posed by antibiotics and several psychiatric drugs and analgesics/anti-inflammatories. These results are reported with a view to aiding scientists and administrators in planning measures aiming to reduce the impact of treated urban wastewater discharge into surface water bodies. - Highlights: Black-Right-Pointing-Pointer The review refers to 118 pharmaceuticals occurring in raw and treated wastewaters. Black-Right-Pointing-Pointer Data from 264 municipal WWTPs with a CAS or an

  5. Effects of advanced treatments of wastewater effluents on estrogenic and reproductive health impacts in fish.

    Science.gov (United States)

    Filby, Amy L; Shears, Janice A; Drage, Briane E; Churchley, John H; Tyler, Charles R

    2010-06-01

    Whether the implementation of additional treatments for the removal of estrogens from wastewater treatment works (WwTWs) effluents will eliminate their feminizing effects in exposed wildlife has yet to be established, and this information is crucial for future decisions on investment into WwTWs. Here, granular activated carbon (GAC), ozone (O(3)), and chlorine dioxide (ClO(2)) were investigated for their effectiveness in reducing steroidal estrogen levels in a WwTW effluent and assessments made on the associated estrogenic and reproductive responses in fathead minnows (Pimephales promelas) exposed for 21 days. All treatments reduced the estrogenicity of the standard-treated (STD) effluent, but with different efficacies; ranging between 70-100% for total estrogenicity and 53-100% for individual steroid estrogens. In fish exposed to the GAC- and ClO(2)- (but not O(3)-) treated effluents, there was no induction of plasma vitellogenin (VTG) or reduction in the weight of the fatpad, a secondary sex character in males, as occurred for fish exposed to STD effluent. This finding suggests likely benefits of employing these treatment processes for the reproductive health in wild fish populations living in rivers receiving WwTW discharges. Exposure of pair-breeding minnows to the GAC-treated effluent, however, resulted in a similar inhibition of egg production to that occurring for exposure to the STD effluent (34-40%). These data, together with a lack of effect on egg production of the estrogen, ethinylestradiol (10 ng/L), alone, suggest that chemical/physical properties of the effluents rather than their estrogenicity were responsible for the reproductive effect and that these factor(s) were not remediated for through GAC treatment. Collectively, our findings illustrate the importance of assessing integrative biological responses, rather than biomarkers alone, in the assessment and improvement of WwTW technologies for the protection of wild fish populations.

  6. Investigation of the potential of Cyperus alternifolius in the phytoremediation of palm oil mill effluent

    Science.gov (United States)

    Sa'at, Siti Kamariah Md; Zaman, Nastaein Qamaruz; Yusoff, Suffian Mohd; Ismail, Hirun Azaman

    2017-10-01

    Phytoremediation is an emerging technology nowadays due to demand in environmental sustainability which requires cost-effective solutions in terms of capital and operational cost. The treatment gain attention due to their potential in wastewater treatment especially in organics, nutrients, and heavy metal removal of domestics, agricultural, and industrial wastewater treatment. Plant functions in phytoremediation make the plant selection as an essential element. The plant should have the ability to tolerate with the toxic effluent and able to uptake the contaminant. Cyperus alternifolius (umbrella grass) was chosen as aquatic plant due to the ability to tolerance in municipal and industrial effluent sources with strong and dense root systems. Thus, the objectives of this study are to determine the potential and effectiveness of Cyperus alternifolius in the palm oil mill effluent treatment especially in the removal of organics (COD), nutrients (NH3-N and TP) and suspended solid. The batch experiment was run using Cyperus alternifolius to determine their potential of aerobic pond effluent for 21 days of treatment. Cyperus alternifolius treatment shows the great removal of COD and TSS with 96% and 91%, respectively at the end of 21 days of treatment. Nutrients removal achieved the maximum removal of 92% NH3-N and 99% TP shows after 11 days of treatment and percentage slowly decrease until the end of 21 days of treatment. Cyperus alternifolius had shown potential in the palm oil mill effluent treatment and can be combined with ponding treatment to enhance to water quality prior discharge.

  7. Changes in reproductive biomarkers in an endangered fish species (bonytail chub, Gila elegans) exposed to low levels of organic wastewater compounds in a controlled experiment.

    Science.gov (United States)

    Walker, David B; Paretti, Nicholas V; Cordy, Gail; Gross, Timothy S; Zaugg, Steven D; Furlong, Edward T; Kolpin, Dana W; Matter, William J; Gwinn, Jessica; McIntosh, Dennis

    2009-11-08

    In arid regions of the southwestern United States, municipal wastewater treatment plants commonly discharge treated effluent directly into streams that would otherwise be dry most of the year. A better understanding is needed of how effluent-dependent waters (EDWs) differ from more natural aquatic ecosystems and the ecological effect of low levels of environmentally persistent organic wastewater compounds (OWCs) with distance from the pollutant source. In a controlled experiment, we found 26 compounds common to municipal effluent in treatment raceways all at concentrations fish. Female bonytail chub in treatment tanks had significantly lower concentrations of 17beta-estradiol than control females (p=0.001). The normally inverse relationship between primary male and female sex hormones, expected in un-impaired fish, was greatly decreased in treatment (r=0.00) versus control (r=-0.66) female fish. We found a similar, but not as significant, trend between treatment (r=-0.45) and control (r=-0.82) male fish. Measures of fish condition showed no significant differences between male or female fish housed in effluent or clean water. Inter-sex condition did not occur and testicular and ovarian cells appeared normal for the respective developmental stage and we observed no morphological alteration in fish. The population-level impacts of these findings are uncertain. Studies examining the long-term, generational and behavioral effects to aquatic organisms chronically exposed to low levels of OWC mixtures are needed.

  8. Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea

    DEFF Research Database (Denmark)

    Vaquer-Sunyer, Raquel; Reader, Heather E.; Muthusamy, Saraladevi

    2016-01-01

    ) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll a content, bacterial....... An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop...

  9. Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater.

    Science.gov (United States)

    García-Diéguez, Carlos; Bernard, Olivier; Roca, Enrique

    2013-03-01

    The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that the main model features could be obtained with a minimum of two reactions. A reduced stoichiometric matrix was identified and the kinetic parameters were estimated on the basis of representative known biochemical kinetics (Monod and Haldane). The obtained reduced model takes into account the measured states in the anaerobic wastewater treatment (AWT) plant and reproduces the dynamics of the process fairly accurately. The reduced model can support on-line control, optimization and supervision strategies for AWT plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    Science.gov (United States)

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  11. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    Science.gov (United States)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  12. Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus

    DEFF Research Database (Denmark)

    Ebbers, Benjamin; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Municipal wastewater and sewage sludge is an abundant source of phosphorus (P), but its usage is often limited due to wastewater treatment methods and contaminants, mostly heavy metals (HM's). Three compartment (3C) electrodialysis (ED) was used to simultaneously extract HM's (Cd, Cr, Cu, Ni, Pb...... of heavy metals or recovery of phosphorus using ED, the end-products in wastewater treatment, like anaerobically digested sludge and reject-water streams, are therefore best to be treated....... pH using anaerobically digested sludge. The hydrolysis of OM during anaerobic digestion and the anaerobic conditions allowed for easier extraction of HM's such as Cd, Ni and Zn as they had fewer adsorption places, and improved P availability and extractability. Extraction of P from high...

  13. Advanced tertiary treatment of municipal wastewater using raw and modified diatomite.

    Science.gov (United States)

    Wu, Jinlu; Yang, Y S; Lin, Jinhua

    2005-12-09

    Advanced technology for more efficient and effective wastewater treatment is always timely needed. The feasibility of using raw and modified diatomite for advanced treatment of secondary sewage effluents (SSE) was investigated in this study. Raw diatomite at a dosing rate of 300 mg/l showed a similar potential as activated carbon for removing most organic pollutants and toxic metals from SSE. Its performance was found poor in removal of arsenic and crop nutrient constituents (e.g. ammoniacal nitrogen and phosphate) and remained unsatisfactory even when the dosing rate increased up to 500 mg/l. Where modified diatomite was in lieu of raw diatomite, the removal efficiency for all target constituents was improved by 20-50%. At the dosing rate of 150 mg/l, modified diatomite enabled the post-treated effluents to satisfy the discharge consents, with the levels of all target constituents below the regulatory limits. Modified diatomite has advantages over raw diatomite in improving removal efficiency and reducing the dosing rate required for satisfactory treatment of SSE. It is concluded that modified diatomite is much more effective and efficient than raw diatomite, as an alternative to activated carbon, for economic treatment of SSE.

  14. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant.

    Science.gov (United States)

    Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba

    2016-05-01

    An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Determination and removal of antibiotics in secondary effluent using a horizontal subsurface flow constructed wetland.

    Science.gov (United States)

    Zhang, Chunhui; Ning, Ke; Zhang, Wenwen; Guo, Yuanjie; Chen, Jun; Liang, Chen

    2013-04-01

    Increased attention is currently being directed towards the potential negative effects of antibiotics and other PPCPs discharged into the aquatic environment via municipal WWTP secondary effluents. A number of analytical methods, such as high performance liquid chromatography technologies, including a high performance liquid chromatography-fluorescence method (HPLC-FLD), high performance liquid chromatography-UV detection method (HPLC-UV) and high performance liquid chromatography-mass spectrometry method (HPLC-MS), have been suggested as determination technologies for antibiotic residues in water. In this study, we implement a HPLC-MS/MS combined method to detect and analyze antibiotics in WWTP secondary effluent and apply a horizontal subsurface flow constructed wetland (CW) as an advanced wastewater treatment for removing antibiotics in the WWTP secondary effluent. The results show that there were 2 macrolides, 2 quinolones and 5 sulfas in WWTP secondary effluent among all the 22 antibiotics considered. After the CW advanced treatment, the concentration removal efficiencies and removal loads of 9 antibiotics were 53-100% and 0.004-0.7307 μg m(-2) per day, respectively.

  16. Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Ren, Xianghao

    2016-01-01

    Highlights: • Specially designed fixed-inverter hybrid heat pump system was developed. • Hybrid operation performed better at part loads than single inverter operation. • The applied heat pump can work stably over a wide range of heat load variations. • Heat energy potential of treated effluent was better than influent. • The heat pump’s COP from the field test was 4.06 for heating and 3.64 for cooling. - Abstract: Among many options to improve energy self-sufficiency in sewage treatment plants, heat extraction using a heat pump holds great promise, since wastewater contains considerable amounts of thermal energy. The actual heat energy demand at municipal wastewater treatment plants (WWTPs) varies widely with time; however, the heat pumps typically installed in WWTPs are of the on/off controlled fixed-speed type, thus mostly run intermittently at severe part-load conditions with poor efficiency. To solve this mismatch, a specially designed, fixed-inverter hybrid heat pump system incorporating a fixed-speed compressor and an inverter-driven, variable-speed compressor was developed and tested in a real WWTP. In this hybrid configuration, to improve load response and energy efficiency, the base-heat load was covered by the fixed-speed compressor consuming relatively less energy than the variable-speed type at nominal power, and the remaining varying load was handled by the inverter compressor which exhibits a high load-match function while consuming relatively greater energy. The heat pump system developed reliably extracted heat from the treated effluent as a heat source for heating and cooling purposes throughout the year, and actively responded to the load changes with a high measured coefficient of performance (COP) of 4.06 for heating and 3.64 for cooling. Moreover, this hybrid operation yielded a performance up to 15.04% better on part loads than the single inverter operation, suggesting its effectiveness for improving annual energy saving when

  17. Removal of helminth eggs by centralized and decentralized wastewater treatment plants in South Africa and Lesotho: health implications for direct and indirect exposure to the effluents.

    Science.gov (United States)

    Amoah, Isaac Dennis; Reddy, Poovendhree; Seidu, Razak; Stenström, Thor Axel

    2018-05-01

    Wastewater may contain contaminants harmful to human health; hence, there is the need for treatment before discharge. Centralized wastewater treatment systems are the favored treatment options globally, but these are not necessarily superior in reduction of pathogens as compared to decentralized wastewater treatment systems (collectively called DEWATS). This study was therefore undertaken to assess the soil-transmitted helminth (STH) and Taenia sp. egg reduction efficiency of selected anaerobic baffled reactors and planted gravel filters compared to centralized wastewater treatment plants in South Africa and Lesotho. The risk of ascariasis with exposure to effluents from the centralized wastewater treatment plants was also assessed using the quantitative microbial risk assessment (QMRA) approach. Eggs of Ascaris spp., hookworm, Trichuris spp., Taenia spp., and Toxocara spp. were commonly detected in the untreated wastewater. The DEWATS plants removed between 95 and 100% of the STH and Taenia sp. eggs, with centralized plants removing between 67 and 100%. Helminth egg concentrations in the final effluents from the centralized wastewater treatment plants were consistently higher than those in the WHO recommended guideline (≤ 1 helminth egg/L) for agricultural use resulting in higher risk of ascariasis. Therefore, in conclusion, DEWATS plants may be more efficient in reducing the concentration of helminth eggs in wastewater, resulting in lower risks of STH infections upon exposure.

  18. Survey of onsite wastewater treatment systems in Kristiansand municipality Norway : pollutants removal performance and solutions : performance analysis based on Web-GIS model

    OpenAIRE

    Abbas, Muhammad

    2017-01-01

    In Norway, 16% of the population lives in rural areas where centralized infrastructure for wastewater treatment is neither cost effective and nor sustainable due to topography and long distance to connect a treatment facility. There are 330,000 small decentralized wastewater treatment plants in Norway and out of those 1,500 plants are located in Kristiansand municipality. Eutrophication and fecal contamination in the recipients are the major cause of concern to wastewater disposal from such o...

  19. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS, Volume 1 of 2

    International Nuclear Information System (INIS)

    1994-01-01

    The primary focus of this environmental analysis is on improvements to the Southeast Regional Wastewater Treatment Plant (SRWTP) facilities and disposal to the Geysers for injection. This analysis will be incorporated with an earlier EIR which evaluated system improvements to the SRWTP and twelve disposal alternatives. In July 1993, the Lake County Sanitation District Board of Directors (LACOSAN) selected the Geysers Effluent Pipeline as the preferred alternative to be analyzed in this EIR/EIS. This environmental analysis will primarily focus on improvements to the SRWTP facilities and a 24 inch pipeline designed to carry up to 5,400 gallons per minute of secondarily treated wastewater. The wastewater will be transported from the Lake County Sanitation District's Southeast Regional Wastewater Treatment Plant, Middletown Wastewater Treatment Plant with additional make-up water from Clear Lake to the Southeast portion of the Geysers Geothermal Field in Lake and Sonoma Counties, California

  20. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  1. Spatial and temporal shifts in gross primary productivity, respiration, and nutrient concentrations in urban streams impacted by wastewater treatment plant effluent

    Science.gov (United States)

    Ledford, S. H.; Toran, L.

    2017-12-01

    Impacts of wastewater treatment plant effluent on nutrient retention and stream productivity are highly varied. The working theory has been that large pulses of nutrients from plants may hinder in-stream nutrient retention. We evaluated nitrate, total dissolved phosphorus, and dissolved oxygen in Wissahickon Creek, an urban third-order stream in Montgomery and Philadelphia counties, PA, that receives effluent from four wastewater treatment plants. Wastewater treatment plant effluent had nitrate concentrations of 15-30 mg N/L and total dissolved phosphorus of 0.3 to 1.8 mg/L. Seasonal longitudinal water quality samples showed nitrate concentrations were highest in the fall, peaking at 22 mg N/L, due to low baseflow, but total dissolved phosphorous concentrations were highest in the spring, reaching 0.6 mg/L. Diurnal dissolved oxygen patterns above and below one of the treatment plants provided estimates of gross primary productivity (GPP) and ecosystem respiration (ER). A site 1 km below effluent discharge had higher GPP in April (80 g O2 m-2 d-1) than the site above the plant (28 g O2 m-2 d-1). The pulse in productivity did not continue downstream, as the site 3 km below the plant had GPP of only 12 g O2 m-2 d-1. Productivity fell in June to 1-2 g O2 m-2 d-1 and the differences in productivity above and below plants were minimal. Ecosystem respiration followed a similar pattern in April, increasing from -17 g O2 m-2 d-1 above the plant to -47 g O2 m-2 d-1 1 km below the plant, then decreasing to -8 g O2 m-2 d-1 3 km below the plant. Respiration dropped to -3 g O2 m-2 d-1 above the plant in June but only fell to -9 to -10 g O2 m-2 d-1 at the two downstream sites. These findings indicate that large nutrient pulses from wastewater treatment plants spur productivity and respiration, but that these increases may be strongly seasonally dependent. Examining in-stream productivity and respiration is critical in wastewater impacted streams to understanding the seasonal and

  2. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended......O2, while in high COD effluent a significant increase in API oxidation was observed after treatment with 8mg/L ClO2. This study illustrates the successful degradation of several APIs during treatment of wastewater effluents with chlorine dioxide....

  3. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent.

    Science.gov (United States)

    Katsoyiannis, Ioannis A; Gkotsis, Petros; Castellana, Massimo; Cartechini, Fabricio; Zouboulis, Anastasios I

    2017-04-01

    The operation and efficiency of a modern, high-tech industrial full-scale water treatment plant was investigated in the present study. The treated water was used for the supply of the boilers, producing steam to feed the steam turbine of the power station. The inlet water was the effluent of municipal wastewater treatment plant of the city of Bari (Italy). The treatment stages comprised (1) coagulation, using ferric chloride, (2) lime softening, (3) powdered activated carbon, all dosed in a sedimentation tank. The treated water was thereafter subjected to dual-media filtration, followed by ultra-filtration (UF). The outlet of UF was subsequently treated by reverse osmosis (RO) and finally by ion exchange (IX). The inlet water had total organic carbon (TOC) concentration 10-12 mg/L, turbidity 10-15 NTU and conductivity 3500-4500 μS/cm. The final demineralized water had TOC less than 0.2 mg/L, turbidity less than 0.1 NTU and conductivity 0.055-0.070 μS/cm. Organic matter fractionation showed that most of the final DOC concentration consisted of low molecular weight neutral compounds, while other compounds such as humic acids or building blocks were completely removed. It is notable that this plant was operating under "Zero Liquid Discharge" conditions, implementing treatment of any generated liquid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network

    International Nuclear Information System (INIS)

    Emmanuel, E.; Perrodin, Y.; Keck, G.; Blanchard, J.-M.; Vermande, P.

    2005-01-01

    In hospitals a large variety of substances are in use for medical purposes such as diagnostics and research. After application, diagnostic agents, disinfectants and excreted non-metabolized pharmaceuticals by patients, reach the wastewater. This form of elimination may generate risks for aquatic organisms. The aim of this study was to present: (i) the steps of an ecological risk assessment and management framework related to hospital effluents evacuating into wastewater treatment plant (WWTP) without preliminary treatment; and (ii) the results of its application on wastewater from an infectious and tropical diseases department of a hospital of a large city in southeastern France. The characterization of effects has been made under two assumptions, which were related to: (a) the effects of hospital wastewater on biological treatment process of WWTP, particularly on the community of organisms in charge of the biological decomposition of the organic matter; (b) the effects on aquatic organisms. COD and BOD 5 have been measured for studying global organic pollution. Assessment of halogenated organic compounds was made using halogenated organic compounds absorbable on activated carbon (AOX) concentrations. Heavy metals (arsenic, cadmium, chrome, copper, mercury, nickel, lead and zinc) were measured. Low most probable number (MPP) for faecal coliforms has been considered as an indirect detection of antibiotics and disinfectants presence. For toxicity assessment, bioluminescence assay using Vibrio fischeri photobacteria, 72-h EC 50 algae growth Pseudokirchneriella subcapitata and 24-h EC 50 on Daphnia magna were used. The scenario allows to a semi-quantitative risk characterization. It needs to be improved on some aspects, particularly those linked to: long term toxicity assessment on target organisms (bioaccumulation of pollutants, genotoxicity, etc.); ecotoxicological interactions between pharmaceuticals, disinfectants used both in diagnostics and in cleaning of

  5. Efficiency Evaluation of Filtration with Fluidized Bed for Treatment of Secondary Effluents for Reuse

    OpenAIRE

    Mohammad Hosaini; Rohallah Moradi; Gholam Hossain Safari

    2013-01-01

    Background & Objectives: Recently, deficient in atmospheric drop and discharges of wastewater effluents leads to serious threat for water resource. For that reason, for prevention of water source pollution and also reuse of wastewater effluents, treatment of such effluents seems to be necessary. Methods: In this work, fluidized bed reactor with a filter was used for treatment of effluents from Shahrak Gharb wastewater treatment plant. Various parameters such as BOD5, COD, TS, TP, TN and t...

  6. High-resolution Mass Spectrometry of Skin Mucus for Monitoring Physiological Impacts in Fish Exposed to Wastewater Effluent at a Great Lakes AOC

    Science.gov (United States)

    High-resolution mass spectrometry is advantageous for monitoring physiological impacts and contaminant biotransformation products in fish exposed to complex wastewater effluent. We evaluated this technique using skin mucus from male and female fathead minnows (Pimephales promela...

  7. High‐resolution mass spectrometry of skin mucus for monitoring physiological impacts and contaminant biotransformation products in fathead minnows exposed to wastewater effluent

    Science.gov (United States)

    High‐resolution mass spectrometry is advantageous for monitoring physiological impacts and contaminant biotransformation products in fish exposed to complex wastewater effluent. We evaluated this technique using skin mucus from male and female fathead minnows (Pimephales pr...

  8. Infectivity reduction efficacy of UV irradiation and peracetic acid-UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent.

    Science.gov (United States)

    Weng, ShihChi; Dunkin, Nathan; Schwab, Kellogg J; McQuarrie, James; Bell, Kati; Jacangelo, Joseph G

    2018-09-01

    Peracetic acid (PAA) is a strong oxidant/bactericide that has been applied in various industries (e.g., food processing, pharmaceuticals, medical device sterilization, etc.) as a disinfectant. There is increasing interest in using PAA for wastewater disinfection because it does not form halogenated byproducts, and no post-treatment quenching is required. Previous studies have demonstrated good efficiency in controlling bacteria in wastewater, but limited information is available for viruses, especially those hosted by mammals (e.g., norovirus). Therefore, a study on the infectivity reduction of murine norovirus (MNV) was undertaken to evaluate the disinfection efficacy of PAA or UV alone and in combination with UV irradiation in undisinfected secondary effluent from a municipal wastewater reclamation facility (MWW) and phosphate buffer solution (PBS) at pH 7. Experiments employing MS2 bacteriophage were also performed in parallel for comparison purposes. MS2 infectivity reduction was found to be lower than MNV infectivity reduction for each condition studied - PAA, PAA + UV, and UV disinfection. These data suggest that MS2 may not be an appropriate surrogate to accurately predict the reduction of MNV infectivity. UV irradiation, in a dose range of 5-250 mJ/cm 2 , provided linear log inactivation (-log (N/N 0 )) with a regression slope (cm 2 mJ -1 ) of 0.031-0.034 and 0.165-0.202 for MS2 and MNV, respectively. UV irradiation provided similar inactivation for MS2 and MNV in both suspensions (PBS or MWW). Low infectivity reduction of MS2 was observed when PAA was used alone at a practical dose of 1.5 mg/L and below. A greater reduction of both MNV and MS2 was observed in PAA disinfection experiments using PBS as the microbial suspension medium, than in secondary effluent. Similar results were observed in PAA + UV experiments, in which greater synergistic effects were found in PBS than in MWW. Results of OH radical formation experiments suggest the presence of

  9. Effect of Ozonation and Biological Activated Carbon Treatment of Wastewater Effluents on Formation of N-nitrosamines and Halogenated Disinfection Byproducts.

    Science.gov (United States)

    Chuang, Yi-Hsueh; Mitch, William A

    2017-02-21

    Ozonation followed by biological activated carbon (O 3 /BAC) is being considered as a key component of reverse osmosis-free advanced treatment trains for potable wastewater reuse. Using a laboratory-scale O 3 /BAC system treating two nitrified wastewater effluents, this study characterized the effect of different ozone dosages (0-1.0 mg O 3 /mg dissolved organic carbon) and BAC empty bed contact times (EBCT; 15-60 min) on the formation after chlorination or chloramination of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), 8 N-nitrosamines, and bromate. DBP concentrations were remarkably similar between the two wastewaters across O 3 /BAC conditions. Ozonation increased bromate, TCNM, and N-nitrosodimethylamine, but ozonation was less significant for other DBPs. DBP formation generally decreased significantly with BAC treatment at 15 min EBCT, but little further reduction was observed at higher EBCT where low dissolved oxygen concentrations may have limited biological activity. The O 3 /BAC-treated wastewaters met regulatory levels for trihalomethanes (THMs), haloacetic acids (HAAs), and bromate, although N-nitrosodimethylamine exceeded the California Notification Level in one case. Regulated THMs and HAAs dominated by mass. When DBP concentrations were weighted by measures of their toxic potencies, unregulated haloacetonitriles, haloacetaldehydes, and haloacetamides dominated. Assuming toxicity is additive, the calculated DBP-associated toxicity of the O 3 /BAC-treated chloraminated effluents were comparable or slightly higher than those calculated in a recent evaluation of Full Advanced Treatment trains incorporating reverse osmosis.

  10. Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents.

    Science.gov (United States)

    Fayad, Paul B; Zamyadi, Arash; Broseus, Romain; Prévost, Michèle; Sauvé, Sébastien

    2013-01-01

    This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M(-1) sec(-1) in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M(-1) sec(-1) in ultrapure water and 26 to 149 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M(-1) sec(-1) in ultrapure water and 180 to 368 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L(-1) after contact times of 10 to 60 min. This

  11. Seasonal and diurnal variability of N{sub 2}O emissions from a full-scale municipal wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Daelman, Matthijs R.J., E-mail: m.r.j.daelman@tudelft.nl [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands); Department of Biosystems engineering, Ghent University, Coupure links 653, 9000 Gent (Belgium); Voorthuizen, Ellen M. van [Royal HaskoningDHV, P.O. Box 151, 6500AD Nijmegen (Netherlands); Dongen, Udo G.J.M. van [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands); Volcke, Eveline I.P. [Department of Biosystems engineering, Ghent University, Coupure links 653, 9000 Gent (Belgium); Loosdrecht, Mark C.M. van [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2015-12-01

    During nitrogen removal in conventional activated sludge processes, nitrous oxide can be emitted. With a global warming potential of 298 CO{sub 2}-equivalents it is an important greenhouse gas that affects the sustainability of wastewater treatment. The present study reports nitrous oxide emission data from a 16 month monitoring campaign on a full-scale municipal wastewater treatment. The emission demonstrated a pronounced diurnal and seasonal variability. This variability was compared with the variability of a number of process variables that are commonly available on a municipal wastewater treatment plant. On a seasonal timescale, the occurrence of peaks in the nitrite concentration correlated strongly with the emission. The diurnal trend of the emission coincided with the diurnal trend of the nitrite and nitrate concentrations in the tank, suggesting that suboptimal oxygen concentrations may induce the production of nitrous oxide during both nitrification and denitrification. This study documents an unprecedented dataset that could serve as a reference for further research. - Highlights: • Unique dataset of long-term nitrous oxide emission from activated sludge tanks • Emission exhibited pronounced diurnal variability, superimposed on seasonal trend • Seasonal nitrous oxide emission trend correlated with daily nitrite peaks • Emission’s diurnal trend suggests suboptimal oxygen concentrations as cause.

  12. Monitoring and control of UV and UV-TiO{sub 2} disinfections for municipal wastewater reclamation using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chuang-Hung [Department of Architecture, National United University, Miao-Li 360, Taiwan, ROC (China); Yu, Ruey-Fang, E-mail: rfyu@nuu.edu.tw [Department of Safety, Health and Environmental Engineering, National United University, Miao-Li 360, Taiwan, ROC (China); Cheng, Wen-Po; Liu, Chun-Ru [Department of Safety, Health and Environmental Engineering, National United University, Miao-Li 360, Taiwan, ROC (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ANN models can effectively control both UV and UV-TiO{sub 2} disinfections for wastewater reuse. Black-Right-Pointing-Pointer Comparing to UV disinfection, UV-TiO{sub 2} disinfection can save 13.2-15.7% of UV dosage and capacity. Black-Right-Pointing-Pointer SS decreases disinfection efficiency when UV doses were <10,000 {mu}W s/cm{sup 2}. - Abstract: The use of ultraviolet (UV) irradiation as a physical wastewater disinfection has increased in recent years, especially for wastewater reuse. The UV-TiO{sub 2} can generate OH radicals, which is highly effective to inactivate microorganisms in wastewater disinfection. However, both UV and UV-TiO{sub 2} disinfections create multiple physical, chemical, and bio-chemical phenomena that affect their germicidal efficiency. It is difficult to build a precise control model using existing mathematic models. This study applies artificial neural network (ANN) models to control UV and UV-TiO{sub 2} disinfections. Experimental results indicate that the ANN models, which precisely generate relationships among multiple monitored parameters, total coliform counts in influent and effluent, and UV doses, can be used as control models for UV and UV-TiO{sub 2} disinfections. A novel ANN control strategy is applied to control UV and UV-TiO{sub 2} disinfection processes to meet three total coliform count limits for three wastewater reuse purposes. The proposed controlled strategy effectively controls UV and UV-TiO{sub 2} disinfection, resulting in acceptable total coliform counts in effluent for the three wastewater reuse purposes. The required UV doses for UV-TiO{sub 2} disinfection were lower than those for UV disinfection, resulting in energy saving and capacity reduction of 13.2-15.7%.

  13. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    International Nuclear Information System (INIS)

    Hwang, Sangchul; Martinez, Diana; Perez, Priscilla; Rinaldi, Carlos

    2011-01-01

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP Fe-surf ) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that ∼8.7% of ENP Fe-surf applied were present in the effluent stream. The stable presence of ENP Fe-surf was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP Fe-surf deteriorated the effluent water quality at a statistically significant level (p Fe-surf would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: → Surfactant-coated engineered iron oxide nanoparticles (ENP Fe-surf ) were assessed. → Effluent quality was analyzed from a sequencing batch reactor with ENP Fe-surf . → ∼8.7% of ENP Fe-surf applied was present in the effluent. → ENP Fe-surf significantly (p Fe-surf will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  14. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  15. Disinfection process of municipal wastewater through ultraviolet radiation: Application in the wastewater treatment plant of Jerez de la Frontera; Desinfeccion de aguas residuales urbanas mediante radiacion ultravioleta: Aplicacion enla EDAR de Jerez de la Frontera

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo Davila, I.; Andrades Balao, J. A.; Quiroga Alonso, J. M.

    2002-07-01

    This paper reports the results obtained of the disinfection through ultraviolet radiation of the treated municipal wastewater in the plant of Jerez de la Frontera for possible municipal and tourist/recreational reuse. The results obtained show that 1.265 J/m''2 of UV doses cause nearly a 99, 9% decrease of the studied microorganisms (total coliform, fecal coliform and fecal strepto cocos) in more than 77% of the carried out studies. The disinfection unitary cost, at industrial scale, was 0.03 E/m''3 waste-water, which means the UV radiation treatment is very competitive against others disinfection systems. (Author) 10 refs.

  16. Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area

    International Nuclear Information System (INIS)

    Yan, Qing; Gao, Xu; Chen, You-Peng; Peng, Xu-Ya; Zhang, Yi-Xin; Gan, Xiu-Mei; Zi, Cheng-Fang; Guo, Jin-Song

    2014-01-01

    The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from “negative removal” to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients ( 2 O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological risk to algae. Therefore, further control of PhACs in effluent and sludge is required before their discharge and application to prevent their introduction into the environment. - Highlights: • All the 21 analyzed PhACs were detected in wastewater and 18 in sludge. • The removal of PhACs was insignificant

  17. Review of wastewater problems and wastewater-management planning in the San Francisco Bay region, California

    Science.gov (United States)

    Hines, Walter G.

    1973-01-01

    The San Francisco Bay region has suffered adverse environmental effects related to the discharge of municipal-, industrial-, and agricultural- wastewater and storm-water runoff. Specific pollutional properties of theses discharges are not well understood in all cases although the toxic materials and aquatic-plant nutrients (biostimulants) found in municipal and industrial waterwater are considered to be a major cause of regional water-quality problems. Other water-quality problems in the region are commonly attributed to pesticides found in agricultural wastewater and potentially pathogenic bacteria in municipal-wastewater discharges and in storm-water runoff. The geographical distribution and magnitude of wastewater discharges in the bay region, particularly those from municipalities and industries, is largely a function of population, economic growth, and urban development. As might be expected, the total volume of wastewater has increased in a trend paralleling this growth and development. More significant, perhaps, is the fact that the total volume parameters such as BOD (biochemical oxygen demand), biostimulant concentrations, and toxicity, has increased despite large expenditures on new and improved municipal- and industrial-wastewater-treatment plants. Also, pollutant loadings from other major source, such as agriculture and storm-water runoff, have increased. At the time of writing (1972), many Federal, State, regional, and local agencies are engaged in a comprehensive wastewater-management-planning effort for the entire bay region. Initial objectives of this planning effort are: (1) the consolidation and coordination of loosely integrated wastewater-management facilities and (2) the elimination of wastewater discharges to ecologically sensitive areas, such as fresh-water streams and shallow extremities of San Francisco Bay. There has been some investigation of potential long-range wastewater-management alternatives based upon disposal in deep water in the

  18. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    KAUST Repository

    Seegers, Bridget N.

    2016-06-21

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d−1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  19. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    KAUST Repository

    Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton

    2016-01-01

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d−1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  20. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    Science.gov (United States)

    Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton H.

    2017-02-01

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d-1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  1. Pesticides from wastewater treatment plant effluents affect invertebrate communities.

    Science.gov (United States)

    Münze, Ronald; Hannemann, Christin; Orlinskiy, Polina; Gunold, Roman; Paschke, Albrecht; Foit, Kaarina; Becker, Jeremias; Kaske, Oliver; Paulsson, Elin; Peterson, Märit; Jernstedt, Henrik; Kreuger, Jenny; Schüürmann, Gerrit; Liess, Matthias

    2017-12-01

    We quantified pesticide contamination and its ecological impact up- and downstream of seven wastewater treatment plants (WWTPs) in rural and suburban areas of central Germany. During two sampling campaigns, time-weighted average pesticide concentrations (c TWA ) were obtained using Chemcatcher® passive samplers; pesticide peak concentrations were quantified with event-driven samplers. At downstream sites, receiving waters were additionally grab sampled for five selected pharmaceuticals. Ecological effects on macroinvertebrate structure and ecosystem function were assessed using the biological indicator system SPEAR pesticides (SPEcies At Risk) and leaf litter breakdown rates, respectively. WWTP effluents substantially increased insecticide and fungicide concentrations in receiving waters; in many cases, treated wastewater was the exclusive source for the neonicotinoid insecticides acetamiprid and imidacloprid in the investigated streams. During the ten weeks of the investigation, five out of the seven WWTPs increased in-stream pesticide toxicity by a factor of three. As a consequence, at downstream sites, SPEAR values and leaf litter degradation rates were reduced by 40% and 53%, respectively. The reduced leaf litter breakdown was related to changes in the macroinvertebrate communities described by SPEAR pesticides and not to altered microbial activity. Neonicotinoids showed the highest ecological relevance for the composition of invertebrate communities, occasionally exceeding the Regulatory Acceptable Concentrations (RACs). In general, considerable ecological effects of insecticides were observed above and below regulatory thresholds. Fungicides, herbicides and pharmaceuticals contributed only marginally to acute toxicity. We conclude that pesticide retention of WWTPs needs to be improved. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Directory of Open Access Journals (Sweden)

    Getahun E Agga

    Full Text Available This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie. Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR Gram-negative (Escherichia coli and Salmonella enterica and Gram-positive (enterococci bacteria were determined from individual samples (n = 174. The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44 by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine, low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05 in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  3. Concentrations and Toxic Equivalency of Polychlorinated Biphenyls in Polish Wastewater Treatment Plant Effluents.

    Science.gov (United States)

    Urbaniak, Magdalena; Kiedrzyńska, Edyta

    2015-10-01

    Wastewater treatment plants (WWTPs) are widely recognized as important sources of toxic contaminants such as polychlorinated biphenyls (PCBs). An example is given in the present paper, where concentrations of 12 dioxin-like PCBs (dl-PCBs) congeners were investigated in effluents from 14 WWTPs of different sizes, using gas chromatography tandem-mass spectrometry. The results obtained demonstrate that the smallest WWTPs are characterized by the highest total dl-PCB concentration of 102.69 pg/L, roughly twice those of medium-size and large WWTPs, i.e. 41.14 and 48.29 pg/L, respectively. In all cases, the concentrations obtained were generated mostly by increased contributions of PCB-77, PCB-105 and PCB-118 which constituted 48 %-59 % of the mean dl-PCB concentration. The results also reveal a predominance of mono-ortho over non-ortho PCBs. All three types of WWTP effluent were found to have similar toxic equivalency (TEQ) values, ranging from 0.31 for large to 0.37 pg TEQ/L for medium WWTPs.

  4. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment

    KAUST Repository

    Wei, Chunhai

    2011-01-01

    The critical flux and chemical cleaning-in-place (CIP) in a long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment were investigated. Steady filtration under high flux (30 L/(m2 h)) was successfully achieved due to effective membrane fouling control by sub-critical flux operation and chemical CIP with sodium hypochlorite (NaClO) in both trans-membrane pressure (TMP) controlling mode (cleaning with high concentration NaClO of 2000-3000 mg/L in terms of effective chorine was performed when TMP rose to 15 kPa) and time controlling mode (cleanings were performed weekly and monthly respectively with low concentration NaClO (500-1000 mg/L) and high concentration NaClO (3000 mg/L)). Microscopic analysis on membrane fibers before and after high concentration NaClO was also conducted. Images of scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that NaClO CIP could effectively remove gel layer, the dominant fouling under sub-critical flux operation. Porosity measurements indicated that NaClO CIP could partially remove pore blockage fouling. The analyses from fourier transform infrared spectrometry (FTIR) with attenuated total reflectance accessory (ATR) and energy dispersive spectrometer (EDS) demonstrated that protein-like macromolecular organics and inorganics were the important components of the fouling layer. The analysis of effluent quality before and after NaClO CIP showed no obvious effect on effluent quality. © 2010 Elsevier Ltd.

  5. Glocal assessment of integrated wastewater treatment and recovery concepts using partial nitritation/Anammox and microalgae for environmental impacts.

    Science.gov (United States)

    Khiewwijit, Rungnapha; Rijnaarts, Huub; Temmink, Hardy; Keesman, Karel J

    2018-07-01

    This study explored the feasibility and estimated the environmental impacts of two novel wastewater treatment configurations. Both include combined bioflocculation and anaerobic digestion but apply different nutrient removal technologies, i.e. partial nitritation/Anammox or microalgae treatment. The feasibility of such configurations was investigated for 16 locations worldwide with respect to environmental impacts, such as net energy yield, nutrient recovery and effluent quality, CO 2 emission, and area requirements. The results quantitatively support the applicability of partial nitritation/Anammox in tropical regions and some locations in temperate regions, whereas microalgae treatment is only applicable the whole year round in tropical regions that are close to the equator line. Microalgae treatment has an advantage over the configuration with partial nitritation/Anammox with respect to aeration energy and nutrient recovery, but not with area requirements. Differential sensitivity analysis points out the dominant influence of microalgal biomass yield and wastewater nutrient concentrations on area requirements and effluent quality. This study provides initial selection criteria for worldwide feasibility and corresponding environmental impacts of these novel municipal wastewater treatment plant configurations. Copyright © 2018. Published by Elsevier B.V.

  6. Factorial design of a solar photocatalytic process to treatment of wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Adriana Ribeiro; Paterniani, Jose Euclides Stipp [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: adriana.francisco@agr.unicamp.br; Kuwakino, Adriana Yuri [Universidade Estadual de Campinas (CESET/UNICAMP), Limeira, SP (Brazil). Centro Superior de Educacao Tecnologica

    2008-07-01

    Advanced treatments are attributed to improving the quality of various types of waste such as the sanitary wastewater. The heterogeneous photocatalysis is an alternative that allows to improve the effluents conditions. This is possible because many chemical compounds of environmental concern can be degraded using UV radiation on a semiconductor. However, to enable the efficiency of the process photocatalytic is necessary to conduct a study of optimization to establish favorable conditions between selected variables. The aim of this work was a reactor solar photocatalytic optimization using factorial design 2{sup k}, depending on variables: mass (TiO{sub 2}), time (min) and flow of air (L min{sup -1}), using as analytical response the removal of color. The experiment was conducted at the Faculty of Agricultural Engineering (FEAGRI) and it was used the sanitary wastewater of there. The results indicated that there were significant efficiency using combinations mass = 1000 mg L{sup -1}, time = 360 min and flow of air = 5 L min{sup -1}. In the calculations of factorial design, the time showed a marked positive effect of 7.76, while the flow of air, when in excess, had an inhibitor behavior, even getting positive effect. (author)

  7. Influence of humic acid addition on the degradation of pharmaceuticals by biofilms in effluent wastewater

    DEFF Research Database (Denmark)

    Tang, Kai; Escola Casas, Monica; Ooi, Gordon Tze Hoong

    2017-01-01

    in relation to the biodegradation of pharmaceuticals by suspended biofilm carriers adapted to polishing effluent water from a tertiary sewage treatment plant. Twelve out of 22 investigated pharmaceuticals were significantly biodegradable. The biodegradation rate constants of ten of those compounds were......The degradation of organic micropollutants in wastewater treatment is suspected to depend on co-degradation i.e. be dependent on concentrations of substrate. This complicates predicting and modelling their fate. The effect of humic acid, as a model for complex organic substrate, was investigated...

  8. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    Science.gov (United States)

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0

  9. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater.

    Science.gov (United States)

    Kalčíková, G; Alič, B; Skalar, T; Bundschuh, M; Gotvajn, A Žgajnar

    2017-12-01

    Microplastics in the environment are either a product of the fractionation of larger plastic items or a consequence of the release of microbeads, which are ingredients of cosmetics, through wastewater treatment plant (WWTP) effluents. The aim of this study was to estimate the amount of microbeads that may be released by the latter pathways to surface waters using Ljubljana, Slovenia as a case study. For this purpose, microbeads contained in cosmetics were in a first step characterized for their physical properties and particle size distribution. Subsequently, daily emission of microbeads from consumers to the sewerage system, their fate in biological WWTPs and finally their release into surface waters were estimated for Ljubljana. Most of the particles found in cosmetic products were sewerage system at an average rate of 15.2 mg per person per day. Experiments using a lab-scale sequencing batch biological WWTP confirmed that on average 52% of microbeads are captured in activated sludge. Particle size analyses of the influent and effluent confirmed that smaller particles (up to 60-70 μm) are captured within activated sludge while bigger particles were detected in the effluent. Applying these data to the situation in Ljubljana indicates that about 112,500,000 particles may daily be released into the receiving river, resulting in a microbeads concentration of 21 particles/m 3 . Since polyethylene particles cannot be degraded and thus likely accumulate, the data raise concerns about potential effects in aquatic ecosystems in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ultraviolet and solar photocatalytic ozonation of municipal wastewater: Catalyst reuse, energy requirements and toxicity assessment.

    Science.gov (United States)

    Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B

    2017-11-01

    The present study evaluated the treatment of municipal wastewater containing phenol using solar and ultraviolet (UV) light photocatalytic ozonation processes to explore comparative performance. Important aspects such as catalyst reuse, mineralization of pollutants, energy requirements, and toxicity of treated wastewater which are crucial for practical implementation of the processes were explored. The activity of the photocatalysts did not change significantly even after three consecutive uses despite approximately 2% of the initial quantity of catalyst being lost in each run. Analysis of the change in average oxidation state (AOS) demonstrated the formation of more oxidized degradation products (ΔAOS values of 1.0-1.7) due to mineralization. The energy requirements were determined in terms of electrical energy per order (E EO ) and the collector area per order (A CO ). The E EO (kWh m -3  Order -1 ) values were 26.2 for ozonation, 38-47 for UV photocatalysis and 7-22 for UV photocatalytic ozonation processes. On the other hand, A CO (m 2  m -3  order -1 ) values were 31-69 for solar photocatalysis and 8-13 for solar photocatalytic ozonation. Thus photocatalytic ozonation processes required less energy input compared to the individual processes. The cytotoxicity of the wastewater was analysed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay with Vero cells. The cell viability increased from 28.7% in untreated wastewater to 80% in treated wastewater; thus showing that the treated wastewater was less toxic. The effectiveness of photocatalytic ozonation, recovery and reusability of the photocatalysts, as well as detoxification of the wastewater make this low energy consumption process attractive for wastewater remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Light-Assisted Advanced Oxidation Processes for the Elimination of Chemical and Microbiological Pollution of Wastewaters in Developed and Developing Countries

    Directory of Open Access Journals (Sweden)

    Stefanos Giannakis

    2017-06-01

    Full Text Available In this work, the issue of hospital and urban wastewater treatment is studied in two different contexts, in Switzerland and in developing countries (Ivory Coast and Colombia. For this purpose, the treatment of municipal wastewater effluents is studied, simulating the developed countries’ context, while cheap and sustainable solutions are proposed for the developing countries, to form a barrier between effluents and receiving water bodies. In order to propose proper methods for each case, the characteristics of the matrices and the targets are described here in detail. In both contexts, the use of Advanced Oxidation Processes (AOPs is implemented, focusing on UV-based and solar-supported ones, in the respective target areas. A list of emerging contaminants and bacteria are firstly studied to provide operational and engineering details on their removal by AOPs. Fundamental mechanistic insights are also provided on the degradation of the effluent wastewater organic matter. The use of viruses and yeasts as potential model pathogens is also accounted for, treated by the photo-Fenton process. In addition, two pharmaceutically active compound (PhAC models of hospital and/or industrial origin are studied in wastewater and urine, treated by all accounted AOPs, as a proposed method to effectively control concentrated point-source pollution from hospital wastewaters. Their elimination was modeled and the degradation pathway was elucidated by the use of state-of-the-art analytical techniques. In conclusion, the use of light-supported AOPs was proven to be effective in degrading the respective target and further insights were provided by each application, which could facilitate their divulgation and potential application in the field.

  12. Light-Assisted Advanced Oxidation Processes for the Elimination of Chemical and Microbiological Pollution of Wastewaters in Developed and Developing Countries.

    Science.gov (United States)

    Giannakis, Stefanos; Rtimi, Sami; Pulgarin, Cesar

    2017-06-26

    In this work, the issue of hospital and urban wastewater treatment is studied in two different contexts, in Switzerland and in developing countries (Ivory Coast and Colombia). For this purpose, the treatment of municipal wastewater effluents is studied, simulating the developed countries' context, while cheap and sustainable solutions are proposed for the developing countries, to form a barrier between effluents and receiving water bodies. In order to propose proper methods for each case, the characteristics of the matrices and the targets are described here in detail. In both contexts, the use of Advanced Oxidation Processes (AOPs) is implemented, focusing on UV-based and solar-supported ones, in the respective target areas. A list of emerging contaminants and bacteria are firstly studied to provide operational and engineering details on their removal by AOPs. Fundamental mechanistic insights are also provided on the degradation of the effluent wastewater organic matter. The use of viruses and yeasts as potential model pathogens is also accounted for, treated by the photo-Fenton process. In addition, two pharmaceutically active compound (PhAC) models of hospital and/or industrial origin are studied in wastewater and urine, treated by all accounted AOPs, as a proposed method to effectively control concentrated point-source pollution from hospital wastewaters. Their elimination was modeled and the degradation pathway was elucidated by the use of state-of-the-art analytical techniques. In conclusion, the use of light-supported AOPs was proven to be effective in degrading the respective target and further insights were provided by each application, which could facilitate their divulgation and potential application in the field.

  13. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction

    Science.gov (United States)

    Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Villeneuve, Daniel L.; Lee, Kathy E.; Schroeder, Anthony L.; Mayasich, Joe; Eid, Evan P.; Nelson, Krysta R.; Milsk, Rebecca Y.; Blackwell, Brett R.; Berninger, Jason P.; LaLone, Carlie A.; Blanskma, Chad; Jicha, Terri M.; Elonen, Colleen M.; Johnson, Rodney C.; Ankley, Gerald T.

    2016-01-01

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.

  14. Planning of Eka Hospital Pekanbaru wastewater recycling facility

    Science.gov (United States)

    Jecky, A.; Andrio, D.; Sasmita, A.

    2018-04-01

    The Ministry of Public Works No. 06 2011 required the large scale of water to conserve the water resource, Eka Hospital Pekanbaru have to improve the sewage treatment plant through the wastewater recycling. The effluent from the plant can be used to landscape gardening and non-potable activities. The wastewater recycling design was done by analyzing the existing condition of thesewage treatment plant, determine the effluent quality standards for wastewater recycling, selected of alternative technology and processing, design the treatment unit and analyze the economic aspects. The design of recycling facility by using of combination cartridge filters processing, ultrafiltration membranes, and desinfection by chlorination. The wastewater recycling capacity approximately of 75 m3/day or 75% of the STP effluent. The estimated costs for installation of wastewater recycling and operation and maintenance per month are Rp 111,708,000 and Rp 2,498,000 respectively.

  15. Development and prospects of standardization in the German municipal wastewater sector.

    Science.gov (United States)

    Freimuth, Claudia; Oelmann, Mark; Amann, Erwin

    2018-04-17

    Given the significance of wastewater treatment and disposal for society and the economy together with the omnipresence of standards in the sector, we studied the development and prospects of the rules governing standardization in the German municipal wastewater sector. We thereby provide a detailed description of sector-specific committee-based standardization and significantly contribute to the understanding of this complex arena. We find that the German Association for Water Wastewater and Waste (DWA) has significantly improved its rules on standardization over time by aligning them closer to the generally accepted superordinate standardization principles. However, by focusing on theoretical findings of committee decision-making and committee composition, we argue that there is still scope for improvement with respect to rule reading and rule compliance. We show that the incentives at work in standardization committees are manifold, whereas the representation of the different stakeholder groups needs' remains unbalanced. Due to vested interests and potential strategic behavior of the various agents involved in standardization rule compliance does not necessarily happen naturally. To this end, we claim that the implementation of monitoring mechanisms can be a significant contribution to the institutional design of standardization and briefly discuss the advantages and disadvantages of different schemes. Finally, we show that there is ample need for future research on the optimal design of such a scheme. Even though the analysis relates specifically to the DWA our claims apply to a wide range of standards development organizations. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Analysis of Trace Pharmaceuticals and Related Compounds in Municipal Wastewaters by Preconcentration, Chromatography, Derivatization, and Separation Methods

    Directory of Open Access Journals (Sweden)

    Petra Camilla Lindholm

    2014-05-01

    Full Text Available A significant portion of pharmaceuticals and other organic chemicals consumed by people and animals are released into municipal wastewater treatment plants. Most of them are degraded during the wastewater treatment processes, but some of them degrade only partially and may be widely transported and dispersed into the aquatic environment. This is why efficient and fast analytical methods are needed for detection of organic compounds in wastewaters at trace levels. Because wastewaters often consist of complex matrices and high-molecular mass materials, e.g., lignocellulosic biomass, which may bring challenges to the sample preparation procedures, efficient pre-concentration methods such as solid phase extraction (SPE solid phase microextraction (SPME, or single drop microextraction (SDME are needed. The most common analysis methods are gas chromatography (GC and liquid chromatography (LC coupled with tandem mass spectrometry (MS/MS. The aim of this review is to give an overview of chromatographic and spectroscopic methods when characterizing low- and medium-molecular weight organic pollutants, mainly focusing on pharmaceuticals, biocides, and personal care products in environmental matrices.

  17. THE MUNICIPAL SEWAGE TREATMENT PLANT EFFLUENT POLISHING IN ULTRAFILTRATION

    Directory of Open Access Journals (Sweden)

    Mariusz Dudziak

    2017-08-01

    Full Text Available The effluent from the municipal sewage treatment plant was comparatively treated in the ultrafiltration process using ceramic and polymer membranes. Filtration was carried out in the cross-flow system under the conditions of the transmembrane process pressure 0.1 MPa - the ceramic membrane and 0.2 MPa – the polymer membrane at a temperature of 20°C. The effectiveness of the process had been assessed by various physical and chemical analyses (pH, turbidity, color, absorbance, TOC and phenol index. There was included the toxicological assessment (by applying as an indicator organism the bioluminescence bacteria Aliivibrio fischeri and microbiological assessment of tested samples. During filtration there was studied the hydraulic efficiency of membranes. Is was specified, that the efficiency of the process depends on the conditions of membrane filtration, wherein the better effects of the removal of organic pollutants had been noted in the case of polymer membrane than ceramic membrane. However, the polymer membrane, in the comparison to the ceramic membrane, was more susceptible to pore blocking, which caused the reduction of hydraulic efficiency. Regardless of what type of membrane the permeats were not toxic and did not contain microorganisms.

  18. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Larry B. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); Hladik, Michelle L. [U.S. Geological Survey, 6000 J Street Placer Hall, Sacramento, CA 95819 (United States); Vajda, Alan M. [University of Colorado, Department of Integrative Biology, CB 171, Denver, CO 80217 (United States); Fitzgerald, Kevin C. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); AECOM, 500 West Jefferson St., Ste. 1600, Louisville, KY 40202 (United States); Douville, Chris [City of Boulder, 4049 75th Street, Boulder, CO 80301 (United States)

    2015-10-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m{sup 3} d{sup −1} design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L{sup −1}; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L{sup −1}), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L{sup −1}) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had

  19. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    International Nuclear Information System (INIS)

    Barber, Larry B.; Hladik, Michelle L.; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m 3 d −1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L −1 ; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L −1 ), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L −1 ) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative

  20. Characterization and correlations of various pollution parameters in the tannery effluent

    International Nuclear Information System (INIS)

    Haydar, S.

    2008-01-01

    Wastewater characterization is an integral part of treatment and management strategies for industrial effluents. This paper outlines the results of detailed wastewater characterization studies conducted for a tannery in Sheikhupura, Punjab. The results of this study demonstrated that the composition of tannery wastewater could change continuously due to inherent nature of tannery operations. In general, tannery effluent was alkaline in nature and highly polluted in terms of organic, solids, sulfates, sulfides and chromium content. Basic ingredients of tannery effluent i.e. high alkalinity and substantial portions of BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand) and other pollutants in particulate form rendered it suitable for enhanced pollutant removals at primary stage of treatment using suitable coagulants. Results of primary treatment of wastewater from this tannery suggested that primary treatment alone was not capable of reducing pollutant loads significantly. Hence post-primary biological treatment was required to meet local effluent quality standards. (author)

  1. Occurrence and potential transport of selected pharmaceuticals and other organic wastewater compounds from wastewater-treatment plant influent and effluent to groundwater and canal systems in Miami-Dade County, Florida

    Science.gov (United States)

    Foster, Adam L.; Katz, Brian G.; Meyer, Michael T.

    2012-01-01

    An increased demand for fresh groundwater resources in South Florida has prompted Miami-Dade County to expand its water reclamation program and actively pursue reuse plans for aquifer recharge, irrigation, and wetland rehydration. The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department (WASD) and the Miami-Dade Department of Environmental Resources Management (DERM), initiated a study in 2008 to assess the presence of selected pharmaceuticals and other organic wastewater compounds in the influent and effluent at three regional wastewater-treatment plants (WWTPs) operated by the WASD and at one WWTP operated by the City of Homestead, Florida (HSWWTP).

  2. A study on the migration and transformation law of nitrogen in urine in municipal wastewater transportation and treatment.

    Science.gov (United States)

    Wuang, Ren; Pengkang, Jin; Chenggang, Liang; Xiaochang, Wang; Lei, Zhang

    2013-01-01

    Many studies suggest that the total nitrogen (TN) in urine is around 9,000 mg/L and about 80% of nitrogen in municipal wastewater comes from urine, because nitrogen mainly occurs in the form of urea in fresh human urine. Based on this fact, the study on the migration and transformation law of nitrogen in urine and its influencing factors was carried out. It can be seen from the experimental results that the transformation rate of urea in urine into ammonia nitrogen after standing for 20 days is only about 18.2%, but the urea in urine can be hydrolyzed into ammonia nitrogen rapidly after it is catalyzed directly with free urease or indirectly with microorganism. Adding respectively a certain amount of urease, activated sludge and septic-tank sludge to urine samples can make the maximum transformation rate achieve 85% after 1 day, 2 days and 6 days, respectively. In combination with some corresponding treatment methods, recycling of nitrogen in urine can be achieved. The results are of great significance in guiding denitrification in municipal wastewater treatment.

  3. Control of biological growth in recirculating cooling systems using treated secondary effluent as makeup water with monochloramine.

    Science.gov (United States)

    Chien, Shih-Hsiang; Chowdhury, Indranil; Hsieh, Ming-Kai; Li, Heng; Dzombak, David A; Vidic, Radisav D

    2012-12-01

    Secondary-treated municipal wastewater, an abundant and widely distributed impaired water source, is a promising alternative water source for thermoelectric power plant cooling. However, excessive biological growth is a major challenge associated with wastewater reuse in cooling systems as it can interfere with normal system operation as well as enhance corrosion and scaling problems. Furthermore, possible emission of biological aerosols (e.g., Legionella pneumophila) with the cooling tower drift can lead to public health concerns within the zone of aerosol deposition. In this study, the effectiveness of pre-formed and in-situ-formed monochloramine was evaluated for its ability to control biological growth in recirculating cooling systems using secondary-treated municipal wastewater as the only makeup water source. Bench-scale studies were compared with pilot-scale studies for their ability to predict system behavior under realistic process conditions. Effectiveness of the continuous addition of pre-formed monochloramine and monochloramine formed in-situ through the reaction of free chlorine with ammonia in the incoming water was evaluated in terms of biocide residual and its ability to control both planktonic and sessile microbial populations. Results revealed that monochloramine can effectively control biofouling in cooling systems employing secondary-treated municipal wastewater and has advantages relative to use of free chlorine, but that bench-scale studies seriously underestimate biocide dose and residual requirements for proper control of biological growth in full-scale systems. Pre-formed monochloramine offered longer residence time and more reliable performance than in-situ-formed monochloramine due to highly variable ammonia concentration in the recirculating water caused by ammonia stripping in the cooling tower. Pilot-scale tests revealed that much lower dosing rate was required to maintain similar total chlorine residual when pre-formed monochloramine

  4. Biological effects and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in high-back crucian carp exposed to wastewater treatment plant effluents

    International Nuclear Information System (INIS)

    Liu Jingliang; Wang Renmin; Huang Bin; Lin Chan; Zhou Jiali; Pan Xuejun

    2012-01-01

    Endocrine disrupting chemicals (EDCs) found in wastewater treatment plant (WWTP) effluents have been shown to cause adverse effects, but the uptake of EDCs from effluents (measured in fish muscle) are not known. In this study, the biological effects and bioaccumulation of steroidal and phenolic EDCs were assessed in high-back crucian carp (Carassius auratus) exposed to WWTP effluents for 141 days. Compared with fish controls caged in Dianchi Lake, a significant reduction in gonadosomatic index (GSI) and increase in hepatosomatic index (HSI) and plasma vitellogenin (VTG) levels were observed in effluent-exposed fish. The concentrations of steroids and phenols in effluent-exposed fish showed time-dependent increase during the exposure. In addition, bioconcentration factors (BCFs) for steroids and phenols were between 17 and 59 on day 141. The results confirm that steroids and phenols bioconcentrate in fish muscle and this accumulation may account for the biological effects associated with exposures to WWTP effluents. - Highlights: ► We assess the potential risk of WWTP effluents to fish. ► We investigate the biological responses of EDCs in fish exposed to effluents. ► We estimate the uptake of EDCs originating from WWTP effluents in fish. ► The bioaccumulation of EDCs may account for the biological effects of effluents. - Bioaccumulation of endocrine disrupting chemicals in WWTP effluent-exposed fish.

  5. Determination of proteins and carbohydrates in the effluents from wastewater treatment bioreactors using resonance light-scattering method.

    Science.gov (United States)

    Zhang, Meng-Lin; Sheng, Guo-Ping; Yu, Han-Qing

    2008-07-01

    A simple and sensitive method was developed for the determination of low-concentration proteins and carbohydrates in the effluents from biological wastewater treatment reactors using resonance light-scattering (RLS) technique. Two ionic dyes, Congo red and Neutral red were, respectively used as an RLS probes for the determination of proteins and carbohydrates. This method is based on the interactions between biomacromolecules and dyes, which cause a substantial increase in the resonance scattering signal of dyes in the wavelength range of 200-650 nm. The characteristics of RLS spectra of the macromolecule-dye complexes, influencing factors, and optimum analytical conditions for the measurement were explored. The method was satisfactorily applied to the measurement of proteins and carbohydrates in the effluents from 10 aerobic or anaerobic bioreactors, and a high sensitivity were achieved.

  6. Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments.

    Science.gov (United States)

    Anfruns-Estrada, Eduard; Bruguera-Casamada, Carmina; Salvadó, Humbert; Brillas, Enric; Sirés, Ignasi; Araujo, Rosa M

    2017-12-01

    This work aims at comparing the ability of two kinds of electrochemical technologies, namely electrocoagulation (EC) and electro-Fenton (EF), to disinfect primary and secondary effluents from municipal wastewater treatment plants. Heterotrophic bacteria, Escherichia coli, enterococci, Clostridium perfringens spores, somatic coliphages and eukaryotes (amoebae, flagellates, ciliates and metazoa) were tested as indicator microorganisms. EC with an Fe/Fe cell at 200 A m -2 and natural pH allowed >5 log unit removal of E. coli and final concentration below 1 bacteria mL -1 of coliphages and eukaryotes from both effluents in ca. 60 min, whereas heterotrophic bacteria, enterococci and spores were more resistant. A larger removal was obtained for the primary effluent, probably because the flocs remove higher amount of total organic carbon (TOC), entrapping more easily the microbiota. EF with a boron-doped diamond (BDD) anode and an air-diffusion cathode that produces H 2 O 2 on site was first performed at pH 3.0, with large or even total inactivation of microorganisms within 30 min. A more effective microorganism removal was attained as compared to EC thanks to • OH formed from Fenton's reaction. A quicker disinfection was observed for the secondary effluent owing to its lower TOC content, allowing the attack of greater quantities of electrogenerated oxidants on microorganisms. Wastewater disinfection by EF was also feasible at natural pH (∼7), showing similar abatement of active microorganisms as a result of the synergistic action of generated oxidants like active chlorine and coagulation with iron hydroxides. A sequential EC/EF treatment (30 min each) was more effective for a combined decontamination and disinfection of urban wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment

    KAUST Repository

    Wei, Chunhai

    2014-08-01

    The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50mg/L for general reuse was 6gCOD/L/d and 0.63gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300ml/gCOD (even approaching the theoretical value of 382ml/gCOD). A low biomass production of 0.015-0.026gMLVSS/gCOD and a sustainable flux of 6L/m2/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area. © 2014 Elsevier Ltd.

  8. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment

    KAUST Repository

    Wei, Chunhai; Harb, Moustapha; Amy, Gary L.; Hong, Pei-Ying; Leiknes, TorOve

    2014-01-01

    The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50mg/L for general reuse was 6gCOD/L/d and 0.63gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300ml/gCOD (even approaching the theoretical value of 382ml/gCOD). A low biomass production of 0.015-0.026gMLVSS/gCOD and a sustainable flux of 6L/m2/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area. © 2014 Elsevier Ltd.

  9. Nitrification in Saline Industrial Wastewater

    NARCIS (Netherlands)

    Moussa, M.S.

    2004-01-01

    Biological nitrogen removal is widely and successfully applied for municipal wastewater. However, these experiences are not directly applicable to industrial wastewater, due to its specific composition. High salt levels in many industrial wastewaters affect nitrification negatively and improved

  10. Proposals for future activities agreed upon at the seminar on wastewater treatment in urban areas

    International Nuclear Information System (INIS)

    1987-01-01

    The programme of the seminar was divided into three different sections: - Sewerage systems, - Discharge of industrial wastewater to municipal sewerage systems, - Reduction of nitrogen. For each subject the participants of the seminar agreed upon the following proposal for future activities: Sewerage systems: a) Combined sewer overflows (CSO). Brief state-of-the-art reports should be compiled by the Contracting Parties. The reports should provide information on: - extent of combined sewers (in % of sewered area), - design practices including flow equalization, - rates of inflow/infiltration, - pollution due to CSO, - current research, - trends. A compilation of these reports may hopefully lead to the derivation of suitable effluent standards, which may be expressed as frequencies, total volumes or total amount of pollution load. The effluent standards may be expressed as monthly to yearly values

  11. Quantification of Element Fluxes in Wastewaters: A Nationwide Survey in Switzerland.

    Science.gov (United States)

    Vriens, Bas; Voegelin, Andreas; Hug, Stephan J; Kaegi, Ralf; Winkel, Lenny H E; Buser, Andreas M; Berg, Michael

    2017-10-03

    The number and quantities of trace elements used in industry, (high-tech) consumer products, and medicine are rapidly increasing, but the resulting emissions and waste streams are largely unknown. We assessed the concentrations of 69 elements in digested sewage sludge and effluent samples from 64 municipal wastewater treatment plants as well as in major rivers in Switzerland. This data set, representative of an entire industrialized country, presents a reference point for current element concentrations, average per-capita fluxes, loads discharged to surface waters, and economic waste-stream values. The spatial distribution of many individual elements could be attributed either to predominant geogenic or to anthropogenic inputs. Per-capita element fluxes ranged from 1 mg day -1 (e.g., Zn, Sc, Y, Nb, and Gd) and >1 g day -1 (e.g., for P, Fe, and S). Effluent loads of some elements contributed significantly to riverine budgets (e.g., 24% for Zn, 50% for P, and 83% for Gd), indicating large anthropogenic inputs via the wastewater stream. At various locations, precious metal concentrations in sludge were similar to those in profitable mining ores, with total flux values of up to 6.8 USD per capita per year or 15 USD per metric ton of dry sludge.

  12. Effect of Irrigation with Wastewater on Certain Soil Physical and Chemical properties

    Directory of Open Access Journals (Sweden)

    Farzad Rohani Shahraki

    2005-03-01

    Full Text Available Depending on effluent characteristics, irrigation with wastewater plant effluent can be either beneficial or harmful. To investigate the effects of nine years of irrigation with North Isfahan Wastewater Treatment Plant effluent on physical and chemical properties of soil, a study was carried out using a randomized complete block design with three replications. Treatments included: 1 raw wastewater; 2 effluent from primary settling basin; 3 final plant effluent and 4 well water. To investigate soil physical and chemical properties, samples were taken from depths of 0-5 cm and 5-10 cm from each plot. The results showed that raw wastewater COD and SS were higher than the Iranian Standard limits for use in irrigation. So were BOD5 and turbidity of effluent from primary sedimentation tanks. From the results obtained, the raw wastewater may be considered to be of medium quality. However, regarding other parameters such as EC, SAR, Na and Pb, the quality of the raw wastewater was considerably higher than that of well water. All treatments showed medium infiltrability with respect to chloride concentration. The concentration of lead in well water was higher than in treated wastewater. It should be noted that lead concentration in all samples was less than the standard limits. The average soil bulk density and percentage of moisture in FC did not follow any specific trend. The results indicate that the soil irrigated with effluent over the nine years had a lower bulk density, a higher percentage of moisture, and a lower infiltration compared to adjacent soil not irrigated with wastewater. Analysis of variance for all results did not confirm any significant differences among treatments.

  13. Wastewater disinfection with peracetic acid and UV

    International Nuclear Information System (INIS)

    Caretti, C.; Lubello, C.

    2001-01-01

    Was investigated the synergy between UV and peracetic acid (PAA) through a five months on-site experimental study in a pilot plant fed by the secondary effluent of the central wastewater treatment plant of Pistoia, Italy. This experiment is a part of a larger research project on advanced treatment for municipal wastewater reuse in agriculture. Because of Italy's strict limits on unrestricted wastewater reuse in agriculture (2 CFU total coliform/100 ml), a very high degree of disinfection is necessary. In the investigated experimental conditions, it has been impossible to meet such values through an exclusive use of UV irradiation (the UV unit reaches at most 4 Log inactivation). Low levels of PAA greatly enhance the decline of indicator levels, but higher unsustainable doses are required to hit the Italian limit. Through a poor amount of information on the subject was available in literature, it was tried to find out how the disinfection efficiency could improve by simultaneously using UV and PAA. It was found out that a combined treatment is satisfactory and that it is more advantage of the hydroxyl radicals formation due to the PAA photo lysis. The application of 2 ppm of PAA with an UV dose of 192 mWscm - 2 is enough to meet the Italian limit [it

  14. Optimization and performance evaluation for nutrient removal from palm oil mill effluent wastewater using microalgae

    Science.gov (United States)

    Ibrahim, Raheek I.; Wong, Z. H.; Mohammad, A. W.

    2015-04-01

    Palm oil mill effluent (POME) wastewater was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients. This study was devoted to POME wastewater treatment with microalgae. The main objective was to find the optimum conditions (retention time, and pH) in the microalgae treatment of POME wastewater considering retention time as a most important parameter in algae treatment, since after the optimum conditions there is a diverse effect of time and pH and so, the process becomes costly. According to our knowledge, there is no existing study optimized the retention time and pH with % removal of nutrients (ammonia nitrogen NH3-N, and orthophosphorous PO43-) for microalgae treatment of POME wastewater. In order to achieve with optimization, a central composite rotatable design with a second order polynomial model was used, regression coefficients and goodness of fit results in removal percentages of nutrients (NH3-N, and PO43-) were estimated.WinQSB technique was used to optimize the surface response objective functionfor the developed model. Also experiments were done to validate the model results.The optimum conditions were found to be 18 day retention time for ammonia nitrogen, and pH of 9.22, while for orthophosphorous, 15 days were indicated as the optimum retention time with a pH value of 9.2.

  15. Ecotoxicological risks associated with tannery effluent wastewater.

    Science.gov (United States)

    Shakir, Lubna; Ejaz, Sohail; Ashraf, Muhammad; Qureshi, Naureen Aziz; Anjum, Aftab Ahmad; Iltaf, Imran; Javeed, Aqeel

    2012-09-01

    The problem of water pollution acquires greater relevance in the context of a developing agrarian economy like Pakistan. Even though, the leather industry is a leading economic sector in Pakistan, there is an increasing environmental concern regarding tanneries because they produce large amounts of potentially toxic wastewater containing both trivalent and hexavalent chromium, which are equally hazardous for human population, aquaculture and agricultural activities in the area. Therefore, we defined the scope of the present study as to employ different bioassays to determine the eco-toxic potential of tannery effluent wastewater (TW) and its chromium based components, i.e., potassium dichromate (K(2)Cr(2)O(7)) and chromium sulfate Cr(2)(SO(4))(3). Particle-induced X-ray emission (PIXE) analysis of TW was carried out to determine the concentration of chromium in TW and then equal concentrations of hexavalent (K(2)Cr(2)O(7)) and trivalent chromium Cr(2)(SO(4))(3) were obtained for this study. Cytotoxicity assay, artemia bioassay and phytotoxicity assay was utilized to investigate the eco-toxicological potential of different concentrations of TW, K(2)Cr(2)O(7) and Cr(2)(SO(4))(3). All the dilutions of TW, K(2)Cr(2)O(7) and Cr(2)(SO(4))(3) presented concentration dependent cytotoxic effects in these assays. The data clearly represents that among all three tested materials, different dilutions of K(2)Cr(2)O(7) caused significantly more damage (P<0.001) to vero cell, brine shrimp and germination of maize seeds. Interestingly, the overall toxicity effects of TW treated groups were subsequent to K(2)Cr(2)O(7) treated group. Based on biological evidences presented in this article, it is concluded that hexavalent chromium (K(2)Cr(2)O(7)) and TW has got significant eco-damaging potential clearly elaborating that environmental burden in district Kasur is numerous and high levels of chromium is posing a considerable risk to the human population, aquaculture and agricultural

  16. Reduction of dioxin-like toxicity in effluents by additional wastewater treatment and related effects in fish.

    Science.gov (United States)

    Maier, Diana; Benisek, Martin; Blaha, Ludek; Dondero, Francesco; Giesy, John P; Köhler, Heinz-R; Richter, Doreen; Scheurer, Marco; Triebskorn, Rita

    2016-10-01

    Efficiency of advanced wastewater treatment technologies to reduce micropollutants which mediate dioxin-like toxicity was investigated. Technologies compared included ozonation, powdered activated carbon and granular activated carbon. In addition to chemical analyses in samples of effluents, surface waters, sediments, and fish, (1) dioxin-like potentials were measured in paired samples of effluents, surface waters, and sediments by use of an in vitro biotest (reporter gene assay) and (2) dioxin-like effects were investigated in exposed fish by use of in vivo activity of the mixed-function, monooxygenase enzyme, ethoxyresorufin O-deethylase (EROD) in liver. All advanced technologies studied, based on degradation or adsorption, significantly reduced dioxin-like potentials in samples and resulted in lesser EROD activity in livers of fish. Results of in vitro and in vivo biological responses were not clearly related to quantification of targeted analytes by use of instrumental analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water.

    Science.gov (United States)

    Tang, Junying; Bu, Yuanqing; Zhang, Xu-Xiang; Huang, Kailong; He, Xiwei; Ye, Lin; Shan, Zhengjun; Ren, Hongqiang

    2016-10-01

    The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater.

    Science.gov (United States)

    Huang, Xiao; Dong, Wenyi; Wang, Hongjie; Jiang, Shilong

    2017-10-01

    This study aimed to present an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater. The average COD, NH 4 + -N, TN, and TP removal efficiency were 91.81%, 96.26%, 83.73% and 94.49%, respectively. Temperature plunge and C/N decrease have a certain impact on the modified process. Characteristics of microbial community, function microorganism, and correlation of microbial community with environmental variables in five compartments were carried out by Illumina Miseq high-throughput sequencing. The differences of microbial community were observed and Blastocatella, Flavobacterium and Pseudomonas were the dominant genus. Nitrosomonas and Nitrospira occupied a dominant position in AOB and NOB, respectively. Rhodospirillaceae and Rhodocyclaceae owned a considerable proportion in phosphorus removal bacteria. DO and COD played significant roles on affecting the microbial components. The A-MAO process in this study demonstrated a high potential for nutrient removal from municipal wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    Science.gov (United States)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  20. Green synthesis of palm oil mill effluent-based graphenic adsorbent for the treatment of dye-contaminated wastewater.

    Science.gov (United States)

    Teow, Yeit Haan; Nordin, Nadzirah Ilyiani; Mohammad, Abdul Wahab

    2018-05-12

    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.

  1. Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment

    Science.gov (United States)

    Sanyal, Oishi

    Polyelectrolyte multilayer (PEM) membranes present a special class of nanostructured membranes which have potential applications in a variety of water treatment operations. These membranes are fabricated by the layer-by-layer (LbL) assembly of alternately charged polyelectrolytes on commercial membrane surfaces. A large variety of polyelectrolytes and their varied deposition conditions (pH, number of bilayers etc.) allow very fine tuning of the membrane performance in terms of permeability and rejection. The first part of this thesis is about the application of PEM membranes to the removal of perchlorate ion from water. Being a monovalent ion, it is most effectively removed by a reverse osmosis (RO) membrane. However, these membranes inherently have very low fluxes which lead to high pressure requirements. In our work, we modified the surface of a nanofiltration (NF) membrane by the LbL assembly of oppositely charged polyelectrolytes. The appropriate tuning of the LbL conditions led to the development of a membrane with significantly higher flux than RO membranes but with equivalent perchlorate rejection. This was one of the best trade-offs offered by PEM membranes for monovalent ion rejection as has been reported in literature so far. While PEM membranes have mostly shown great potential in ion-rejection studies, they have seldom been tested for real wastewater effluents. The second part of this thesis, therefore, deals with evaluating the applicability of PEM membranes to treating an electrocoagulation (EC)-treated high strength wastewater. Two types of very commonly used polyelectrolyte combinations were tried out -- one of which was an ionically crosslinked system and the other one was covalently crosslinked. Both the types of PEM membranes showed a high level of COD reduction from the feed stream with higher fluxes than commercial RO membranes. One major challenge in using membranes for wastewater treatment is their fouling propensity. Like many other

  2. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams

    Science.gov (United States)

    Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.

    2011-01-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  3. Annealing optimization in the process of making membrane PSF19%DMFEVA2 for wastewater treatment of palm oil mill effluent

    Science.gov (United States)

    Said, A. A.; Mustafa

    2018-02-01

    A small proportion of the Palm Oil Mill Effluent (POME) treatment has used its wastewater to converted to methane gas which will then be converted again into electrical energy. However, for Palm Oil Mill whose has a value of Chemical Oxygen Demand in its wastewater is less than 60.000 mg / L this can’t so that the purpose wastewater treatment only to reach the standard that can be safe to dispose into the environment. Wastewater treatment systems that are general applied by Palm Oil Mill especially in North Sumatera are aerobic and anaerobic, this method takes a relatively long time due to very dependent on microbial activity. An alternative method for wastewater treatment offered is membrane technology because the process is much more effective, the time is relatively short, and expected to give more optimal result. The optimum membrane obtained is PSF19%DMFEVA2T75 membrane,while the parameter condition of the permeate analysis produced in the treatment of POME wastewater with membrane PSF19%DMFEVA2T75 obtained at pH = 7.0; TSS = 148 mg / L; BOD = 149 mg / L; And COD = 252 mg / L. The results obtained is accordance with the standard of the quality of POME.

  4. Decentralized wastewater treatment using passively aerated biological filter.

    Science.gov (United States)

    Abou-Elela, Sohair I; Hellal, Mohamed S; Aly, Olfat H; Abo-Elenin, Salah A

    2017-10-13

    This study aimed to evaluate the efficiency of a novel pilot-scale passively aerated biological filter (PABF) as a low energy consumption system for the treatment of municipal wastewater. It consists of four similar compartments, each containing 40% of a non-woven polyester fabric as a bio-bed. The PABF was fed with primary treated wastewater under a hydraulic retention time (HRT) of 3.5 hr and a hydraulic loading rate of 5.5 m 2 /m 3 /d. The effect of media depth, HRT, dissolved oxygen (DO) and surface area of the media on the removal efficiency of pollutants was investigated. Results indicated that increasing media depth along the axis of the reactor and consequently increasing the HRT and DO resulted in great removal of different pollutants. A significant increase in the DO levels in the final effluent up to 6.7 mg/l resulted in good nitrification processes. Statistical analysis using SPSS showed that the reactor performance has significant removal efficiency (p filter systems.

  5. Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants.

    Science.gov (United States)

    Kårelid, Victor; Larsson, Gen; Björlenius, Berndt

    2017-05-15

    Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15-20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from carbon product. The performance of the PAC products generally gave better results for individual PhACs in regards to carbon availability. All carbon products showed a specific adsorption for a specific PhAC meaning that knowledge of the target pollutants must be acquired before successful design of a treatment system. In spite of different configurations and operating conditions of the different wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Endocrine potency of wastewater: Contents of endocrine disrupting chemicals and effects measured by in vivo and in vitro assays

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Krüger, Tanja; Long, Manhai

    2011-01-01

    chemical analysis and a battery of bioassays. Influent samples, collected at the first STP grate, and effluent samples, collected after the sewage treatment, were extracted using solid phase extraction. Extracts were analyzed for the content of a range of industrial chemicals with endocrine disrupting...... properties: phthalate metabolites, parabens, industrial phenols, ultraviolet screens, and natural and synthetic steroid estrogens. The endocrine disrupting bioactivity and toxicity of the extracts were analyzed in cell culture assay for the potency to affect the function of the estrogen, androgen, aryl......Industrial and municipal effluents are important sources of endocrine disrupting compounds (EDCs) discharged into the aquatic environment. This study investigated the endocrine potency of wastewater and the cleaning efficiency of two typical urban Danish sewage treatment plants (STPs), using...

  7. Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts

    Science.gov (United States)

    Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...

  8. Investigating dynamic sources of pharmaceuticals: Demographic and seasonal use are more important than down-the-drain disposal in wastewater effluent in a University City setting

    Science.gov (United States)

    Vatovec, Christine; Phillips, Patrick J.; Van Wagoner, Emily; Scott, Tia-Marie; Furlong, Edward T.

    2016-01-01

    Pharmaceutical pollution in surface waters poses risks to human and ecosystem health. Wastewater treatment facilities are primary sources of pharmaceutical pollutants, but little is known about the factors that affect drugs entering the wastewater stream. This paper investigates the effects of student pharmaceutical use and disposal behaviors and an annual demographic shift on pharmaceutical pollution in a university town. We sampled wastewater effluent during a ten-day annual spring student move-out period at the University of Vermont. We then interpreted these data in light of survey results that investigated pharmaceutical purchasing, use, and disposal practices among the university student population. Surveys indicated that the majority of student respondents purchased pharmaceuticals in the previous year. Many students reported having leftover drugs, though only a small portion disposed of them, mainly in the trash.We detected 51 pharmaceuticals in 80% or more of the wastewater effluent samples collected over the ten-day sampling period. Several increased in concentration after students left the area. Concentrations of caffeine and nicotine decreased weakly. Drug disposal among this university student population does not appear to be a major source of pharmaceuticals in wastewater. Increases in pharmaceutical concentration after the students left campus can be tied to an increase in the seasonal use of allergy medications directly related to pollen, as well as a demographic shift to a year-round older population, which supports national data that older people use larger volumes and different types of pharmaceuticals than the younger student population.

  9. Removal of antibiotic resistant E. coli in two Norwegian wastewater treatment plants and by nano- and ultra-filtration processes.

    Science.gov (United States)

    Schwermer, Carsten Ulrich; Krzeminski, Pawel; Wennberg, Aina Charlotte; Vogelsang, Christian; Uhl, Wolfgang

    2018-02-01

    The effectivity of different treatment stages at two large wastewater treatment plants (WWTPs) located in Oslo, Norway, to remove antibiotic resistant Escherichia coli from municipal wastewater was investigated. The WWTPs were effective in reducing the total cultivable E. coli. The E. coli in WWTP samples were mainly resistant to ampicillin (6-27%) and trimethoprim-sulfamethoxazole (5-24%), and, to a lesser extent, tetracycline (3-14%) and ciprofloxacin (0-7%). In the first WWTP, a clear decrease in the percentage of E. coli resistant to these antibiotics was found, with the main removal occurring during physical/chemical treatment. In the second WWTP, the percentage of cultivable resistant E. coli did not display a considerable change. During laboratory-scale membrane filtration of WWTP effluents using ultrafiltration (UF) and nanofiltration (NF) membranes, all E. coli, including those resistant to antibiotics, were removed completely. The results imply that UF and NF processes are potent measures to remove antibiotic resistant bacteria (ARB) during post-treatment of WWTP effluents, thus reducing the potential spread of antibiotic resistance in the receiving aquatic environment.

  10. Characterization, treatment and releases of PBDEs and PAHs in a typical municipal sewage treatment plant situated beside an urban river, East China.

    Science.gov (United States)

    Wang, Xiaowei; Xi, Beidou; Huo, Shouliang; Sun, Wenjun; Pan, Hongwei; Zhang, Jingtian; Ren, Yuqing; Liu, Hongliang

    2013-07-01

    Characterization, treatment and releases of eight polybrominated diphenyl ethers (PBDEs) congeners and sixteen polycyclic aromatic hydrocarbons (PAHs) in wastewater were evaluated along the treatment processes of a typical secondary treatment municipal sewage treatment plant (STP) (in Hefei City) situated the beside Nanfei River, East China. The findings showed that the average concentrations of the total PBDEs in raw wastewater and treated effluent were 188.578 and 36.884 ng/L respectively. Brominated diphenyl ether (BDE) 209 congener, the predominant PBDE in the STP and Nanfei River, could be related to the discharge of car-industry-derived wastes. For PAHs, the average concentrations in raw wastewater and treated effluent were 5758.8 and 2240.4 ng/L respectively, with naphthalene, benzo[a]pyrene and indeno[1,2,3-c,d]pyrene being detected at the highest concentrations. PAHs mainly originate from the combustion of biomass/coal and petroleum. The STP reduced about 80% of the PBDEs and 61% of the PAHs, which were eliminated mainly by sedimentation processes. The removal rates of PBDEs/PAHs increased with the increase of their solid-water partitioning coefficients. Accordingly, the STP's effluent, containing some PBDE congeners (e.g., BDE 47, 99 and 209, etc.) and low-molecular-weight PAHs, could be an important contributor of these contaminants' input to Nanfei River. It resulted in a significant increase of PBDE/PAH concentrations and PAH toxicological risk in the river water downstream. About 4.040 kg/yr of PBDEs and 245.324 kg/yr of PAHs could be released into the Nanfei River. The current conventional wastewater treatment processes should be improved to remove the relatively low-molecular-weight PBDEs/PAHs more effectively.

  11. Different depth intermittent sand filters for laboratory treatment of synthetic wastewater with concentrations close to measured septic tank effluent.

    Science.gov (United States)

    Rodgers, M; Walsh, G; Healy, M G

    2011-01-01

    The objective of this study was to apply hydraulic and chemical oxygen demand (COD) loading rates at the upper limits of the design criteria for buried sand filters to test the sand filter depth design criteria. Over a 274-day study duration, synthetic effluent with a strength of domestic wastewater was intermittently dosed onto two sand filters of 0.2 m diameter, with depths of 0.3 and 0.4 m. Hydraulic and organic carbon loading rates of 105 L m(-2) d(-1) and 40 g COD m(-2) d(-1), respectively, were applied to the filters. The filters did not clog and had good effluent removal capabilities for 274 and 190 days, respectively. However, the 0.3 m-deep filter did experience a reduced performance towards the end of the study period. In the 0.3 and 0.4 m-deep filters, the effluent COD and SS concentrations were less than 86 and 31 mg L(-1), respectively, and nitrification was nearly complete in both these columns. Ortho-phosphorus (PO(4)-P) removal in fine sand and laterite 'upflow' filters, receiving effluent from the 0.3 m-deep filter, was 10% and 44%, respectively.

  12. A river-scale Lagrangian experiment examining controls on phytoplankton dynamics in the presence and absence of treated wastewater effluent high in ammonium

    Science.gov (United States)

    Kraus, Tamara; Carpenter, Kurt; Bergamaschi, Brian; Parker, Alexander; Stumpner, Elizabeth; Downing, Bryan D.; Travis, Nicole; Wilkerson, Frances; Kendall, Carol; Mussen, Timothy

    2017-01-01

    Phytoplankton are critical component of the food web in most large rivers and estuaries, and thus identifying dominant controls on phytoplankton abundance and species composition is important to scientists, managers, and policymakers. Recent studies from a variety of systems indicate that ammonium ( NH+4) in treated wastewater effluent decreases primary production and alters phytoplankton species composition. However, these findings are based mainly on laboratory and enclosure studies, which may not adequately represent natural systems. To test effects of effluent high in ammonium on phytoplankton at the ecosystem scale, we conducted whole-river–scale experiments by halting discharges to the Sacramento River from the regional wastewater treatment plant (WWTP), and used a Lagrangian approach to compare changes in phytoplankton abundance and species composition in the presence (+EFF) and absence (−EFF) of effluent. Over 5 d of downstream travel from 20 km above to 50 km below the WWTP, chlorophyll concentrations declined from 15–25 to ∼2.5 μg L−1, irrespective of effluent addition. Benthic diatoms were dominant in most samples. We found no significant difference in phytoplankton abundance or species composition between +EFF and −EFF conditions. Moreover, greatest declines in chlorophyll occurred upstream of the WWTP where NH+4 concentrations were low. Grazing by clams and zooplankton could not account for observed losses, suggesting other factors such as hydrodynamics and light limitation were responsible for phytoplankton declines. These results highlight the advantages of conducting ecosystem-scale, Lagrangian-based experiments to understand the dynamic and complex interplay between physical, chemical, and biological factors that control phytoplankton populations.

  13. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  14. The effect of advanced treatment of sewage effluents on metal speciation and (bio)availability.

    Science.gov (United States)

    Peters, A; Merrington, G; Leverett, D; Ellor, B; Lofts, S; Gravell, A

    2014-02-01

    The bioavailability of metals can be strongly influenced by dissolved organic carbon (DOC). Wastewater treatment effluents add considerable quantities of DOC and metals to receiving waters, and as effluent controls become more stringent advanced effluent treatments may be needed. We assessed the effects of two types of advanced treatment processes on metal availability in wastewater effluents. Trace metal availability was assessed using diffuse gradients in thin films and predicted through speciation modelling. The results show little difference in metal availability post-advanced treatment. EDTA-like compounds are important metal complexants in the effluents.

  15. Disinfection of Water and Wastewater Using Gamma Irradiation in Isfahan Water and Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Hassan Hashemi

    2011-01-01

    Full Text Available To investigate the effect of gamma irradiation on the disinfection of water and wastewater, water samples were collected from raw and filtered water and wastewater samples were taken from the effluent of the secondary sedimentation, polished effluent (1-day retention time, and also from filtered (rapid sand filter effluent. The samples were irradiated with gamma collimated beam in a batch system using a Co-60 therapeutic gamma radiation machine with a radioactive source emission rate of 405.38CGy/min at different doses of 20-160 Gy and 80-240 Gy, respectively. The samples were analyzed before and after irradiation for total and fecal coliforms. It was observed that nearly 100% reduction was achieved in total and fecal coliforms in water samples treated with a dose of 160 Gy. Depending on effluent quality, disinfection efficiencies achieved using 240 Gy gamma irradiation for inactivation of total coliforms in wastewater samples were 83, 64, and 56 percent for filtered, clarified, and secondary effluents, respectively. The same values were nearly 81, 58, and 46 percent, respectively, for inactivation of fecal coliforms. At lower doses of 120-240Gy, the coliform bacteria were successfully inactivated. It was concluded that a linear correlation holds between the dose delivered and the inactivation of microorganisms, so that inactivation increases with increasing irradiation time.

  16. Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand.

    Science.gov (United States)

    Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj

    2011-04-01

    Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs

  17. Municipal wastewater treatment in Mexico: current status and opportunities for employing ecological treatment systems.

    Science.gov (United States)

    Zurita, Florentina; Roy, Eric D; White, John R

    2012-06-01

    The aim of this paper is to evaluate the current status of municipal wastewater (MWW) treatment in Mexico, as well as to assess opportunities for using ecological treatment systems, such as constructed wetlands. In 2008, Mexico had 2101 MWW treatment plants that treated only 84 m3/s of wastewater (208 m3/s ofMWW were collected in sewer systems). Unfortunately, most treatment plants operate below capacity owing to a lack of maintenance and paucity of properly trained personnel. The main types of treatment systems applied in Mexico are activated sludge and waste stabilization ponds, which treat 44.3% and 18% of the MWW collected, respectively. As in many other developing nations around the world, there is a great need in Mexico for low-cost, low-maintenance wastewater treatment systems that are both economically and environmentally sustainable. In 2005, 24.3 million Mexicans lived in villages of less than 2500 inhabitants and 14.1 million lived in towns with 2500-15,000 inhabitants. An opportunity exists to extend the use of ecological treatment systems to these low population density areas and considerably increase the percentage of MWW that is treated in Mexico. Small-scale and medium-size constructed wetlands have been built successfully in some states, primarily during the past five years. Several barriers need to be overcome to increase the adoption and utilization of ecological wastewater technology in Mexico, including: a lack of knowledge about this technology, scarce technical information in Spanish, and the government's concentration on constructing MWW treatment plants solely in urban areas.

  18. Variations in nitrate isotope composition of wastewater effluents by treatment type in Hong Kong.

    Science.gov (United States)

    Archana, A; Li, Luo; Shuh-Ji, Kao; Thibodeau, Benoit; Baker, David M

    2016-10-15

    Stable isotopes (δ(15)N, δ(18)O) can serve as tracers for sources of nitrogen in the receiving environment. Hong Kong discharges ~3×10(6)m(3)d(-1) of treated wastewater into the ocean from 68 facilities implementing preliminary to tertiary treatment. We sampled treated sewage from 18 plants across 5 treatment types and examined receiving seawater from northeast Hong Kong. We analyzed nitrate and nitrite (NO3(-)+NO2(-), hereafter NOx) ammonium (NH4(+)), phosphate (PO4(+)) concentrations and δ(15)NNOx, δ(18)ONOx. Sewage effluents contained high mean nutrient concentrations (NO3(-)=260μmolL(-1), NH4(+)=1400μmolL(-1), PO4(+)=50μmolL(-1)) with some indication of nitrogen removal in advanced treatment types. Mean δ(15)NNOx of sewage effluents from all plants and treatment types (12‰) was higher than natural sources and varied spatially and seasonally. There was no overall effect of sewage treatment type on δ(15)NNOx. A mass balance model indicated that sewage (>68%) remains a dominant source of nitrate pollution in seawater in Tolo Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [Research of input water ratio's impact on the quality of effluent water from hydrolysis reactor].

    Science.gov (United States)

    Liang, Kang-Qiang; Xiong, Ya; Qi, Mao-Rong; Lin, Xiu-Jun; Zhu, Min; Song, Ying-Hao

    2012-11-01

    Based on high SS/BOD and low C/N ratio of waste water of municipal wastewater treatment plant, the structure of currently existing hydrolysis reactor was reformed to improve the influent quality. In order to strengthen the sludge hydrolysis and improve effluent water quality, two layers water distributors were set up so that the sludge hydrolysis zone was formed between the two layers distribution. For the purpose of the hydrolysis reactor not only plays the role of the primary sedimentation tank but also improves the effluent water biodegradability, input water ratios of the upper and lower water distributor in the experiment were changed to get the best input water ratio to guide the large-scale application of this sort hydrolysis reactor. Results show, four kinds of input water ratio have varying degrees COD and SS removal efficiency, however, input water ratio for 1 : 1 can substantially increase SCOD/COD ratio and VFA concentration of effluent water compared with the other three input water ratios. To improve the effluent biodegradability, input water ratio for 1 : 1 was chosen for the best input water ratio. That was the ratio of flow of upper distributor was 50%, and the ratio of the lower one was 50%, at this case it can reduce the processing burden of COD and SS for follow-up treatment, but also improve the biodegradability of the effluent.

  20. [Enhanced nitrogen and phosphorus removal of wastewater by using sludge anaerobic fermentation liquid as carbon source in a pilot-scale system].

    Science.gov (United States)

    Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He

    2015-03-01

    In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China.

  1. Appling hydrolysis acidification-anoxic–oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant

    International Nuclear Information System (INIS)

    Wu, Changyong; Zhou, Yuexi; Sun, Qingliang; Fu, Liya; Xi, Hongbo; Yu, Yin; Yu, Ruozhen

    2016-01-01

    Highlights: • Hydrolysis acidification-anoxic–oxic process can be used to treat petrochemical wastewater. • The toxicity and treatability changed significantly after hydrolysis acidification. • The type and concentration of organics reduced greatly after treatment. • The effluent shows low acute toxicity by luminescent bacteria assay. • Advanced treatment is recommended for the effluent. - Abstract: A hydrolysis acidification (HA)-anoxic–oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m 3 h −1 ) was operated with the same parameters. The results showed that the BOD 5 /COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L −1 for bench scale reactor and 60.9 mg L −1 for PCWWTP when the influent COD was about 480 mg L −1 on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC–MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L −1 . There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment.

  2. Determination and Distribution of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District, South Africa

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2016-03-01

    Full Text Available Polycyclic aromatic hydrocarbons are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs (Polycyclic aromatic hydrocarbons classified by the United State Environmental Protection Agency as priority pollutants in water and sediments of the Mvudi and Nzhelele Rivers. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using an ultrasonication method. The extracts were purified using an SPE technique and reconstituted in n-hexane before analyses with a gas chromatograph time of flight—mass spectrometer. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174–26.382 mg/L and 27.10–55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs found in both river water and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs.

  3. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Upgrade of deep bed filtration with activated carbon dosage for compact micropollutant removal from wastewater in technical scale.

    Science.gov (United States)

    Löwenberg, Jonas; Zenker, Armin; Krahnstöver, Thérèse; Boehler, Marc; Baggenstos, Martin; Koch, Gerhard; Wintgens, Thomas

    2016-05-01

    The removal of micropollutants from drinking and wastewater by powdered activated carbon (PAC) adsorption has received considerable attention in research over the past decade with various separation options having been investigated. With Switzerland as the first country in the world having adopted a new legislation, which forces about 100 wastewater treatment plants to be upgraded for the removal of organic micropollutants from municipal wastewater, the topic has reached practical relevance. In this study, the process combination of powdered activated carbon (PAC) adsorption and deep bed filtration (DBF) for advanced municipal wastewater treatment was investigated over an extended period exceeding one year of operation in technical scale. The study aimed to determine optimum process conditions to achieve sufficient micropollutant removal in agreement with the new Swiss Water Ordinance under most economic process design. It was shown that the addition of PAC and Fe(3+) as combined coagulation and flocculation agent improved effluent water quality with respect to dissolved organic pollutants as well as total suspended solids (TSS), turbidity and PO4-P concentration in comparison to a DBF operated without the addition of PAC and Fe(3+). Sufficient micropollutant (MP) removal of around 80% was achieved at PAC dosages of 10 mg/L revealing that PAC retained in the filter bed maintained considerable adsorption capacity. In the investigated process combination the contact reactor serves for adsorption as well as for flocculation and allowed for small hydraulic retention times of minimum 10 min while maintaining sufficient MP removal. The flocculation of two different PAC types was shown to be fully concluded after 10-15 min, which determined the flocculation reactor size while both PAC types proved suitable for the application in combination with DBF and showed no significant differences in MP removal. Finally, the capping of PAC dosage during rain water periods, which

  5. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  6. Simultaneous remediation of nutrients from liquid anaerobic digestate and municipal wastewater by the microalga Scenedesmus sp. AMDD grown in continuous chemostats.

    Science.gov (United States)

    Dickinson, K E; Bjornsson, W J; Garrison, L L; Whitney, C G; Park, K C; Banskota, A H; McGinn, P J

    2015-01-01

    The primary aim of this study was to investigate the capacity of a microalga, Scenedesmus sp. AMDD, to remediate nutrients from municipal wastewater, either as the sole nutrient source or after blending with wastewater obtained from the anaerobic digestion of swine manure. A complimentary aim was to study and define the effects of these wastewaters on microalgal growth, biomass productivity and composition which have important implications for a commercial biofuels production system. A microalga, Scenedesmus sp. AMDD, was grown in continuous chemostats in municipal wastewater or wastewater supplemented with 1·6× or 2·4× higher levels of nitrogen (N) obtained through supplementation with anaerobic digestates. Biomass productivity increased with increasing nutrient supplementation, but was limited by light at high cell densities. Cellular quotas of carbon (C), nitrogen and phosphorus (P) all increased in direct proportion to their concentrations in the combined wastewaters. At higher cell densities, total carbohydrate decreased while protein increased. Fatty acid content remained relatively constant. Under high nutrient levels, the fatty acid profiles contained a higher concentration of polyunsaturated fatty acids at the expense of monounsaturated fatty acids. Chlorophyll a was 2·5 times greater in the treatment of greatest nutrient supplementation compared to the treatment with the least. Ammonium (NH4(+)) and phosphate (PO4(3-)) were completely removed by algal growth in all treatments and with maximal removal rates of 41·2 mg N l(-1) d(-1) and 6·7 mg P l(-1) d(-1) observed in wastewater amended with 2·4× higher N level. The study is the first to report stable, long-term continuous algal growth and productivity obtained by combining wastewaters of different sources. The study is supported by detailed analyses of the composition of the cultivated biomass and links composition to the nutrient and light availabilities in the cultures. Simultaneous remediation

  7. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    Science.gov (United States)

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 40 CFR 415.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... CATEGORY Potassium Metal Production Subcategory § 415.113 Effluent limitations guidelines representing the...): There shall be no discharge of process wastewater pollutants to navigable waters. ...

  9. Effects of the dissolved organic carbon of treated municipal wastewater on soil infiltration as related to sodium adsorption ratio and pH

    Science.gov (United States)

    Increasing scarcity of fresh water in arid and semi arid regions means that we must utilize alternative water supplies for irrigation if we are to sustain agricultural production in these regions. Treated municipal wastewaters are being increasingly utilized for irrigation. In general only the salin...

  10. Investigation of the environmental impacts of municipal wastewater treatment plants through a Life Cycle Assessment software tool.

    Science.gov (United States)

    De Feo, G; Ferrara, C

    2017-08-01

    This paper investigates the total and per capita environmental impacts of municipal wastewater treatment in the function of the population equivalent (PE) with a Life Cycle Assessment (LCA) approach using the processes of the Ecoinvent 2.2 database available in the software tool SimaPro v.7.3. Besides the wastewater treatment plant (WWTP), the study also considers the sewerage system. The obtained results confirm that there is a 'scale factor' for the wastewater collection and treatment even in environmental terms, in addition to the well-known scale factor in terms of management costs. Thus, the more the treatment plant size is, the less the per capita environmental impacts are. However, the Ecoinvent 2.2 database does not contain information about treatment systems with a capacity lower than 30 PE. Nevertheless, worldwide there are many sparsely populated areas, where it is not convenient to realize a unique centralized WWTP. Therefore, it would be very important to conduct an LCA study in order to compare alternative on-site small-scale systems with treatment capacity of few PE.

  11. Analysis of pollution removal from wastewater by Ceratophyllum ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... The treatments included raw municipal wastewater (RMW) and treated ... municipal wastewater (from 1.34 to 0.95 ds/m) and the EC of raw ... wastes are generated daily from highly populated cities ... plants is an integral part of the biogeochemical cycle of .... Waste Management and Treatment, 2nd ed.

  12. 40 CFR 415.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.112 Effluent limitations guidelines... available (BPT): There shall be no discharge of process wastewater pollutants to navigable waters. ...

  13. Technical, hygiene, economic, and life cycle assessment of full-scale moving bed biofilm reactors for wastewater treatment in India.

    Science.gov (United States)

    Singh, Anju; Kamble, Sheetal Jaisingh; Sawant, Megha; Chakravarthy, Yogita; Kazmi, Absar; Aymerich, Enrique; Starkl, Markus; Ghangrekar, Makarand; Philip, Ligy

    2018-01-01

    Moving bed biofilm reactor (MBBR) is a highly effective biological treatment process applied to treat both urban and industrial wastewaters in developing countries. The present study investigated the technical performance of ten full-scale MBBR systems located across India. The biochemical oxygen demand, chemical oxygen demand, total suspended solid, pathogens, and nutrient removal efficiencies were low as compared to the values claimed in literature. Plant 1 was considered for evaluation of environmental impacts using life cycle assessment approach. CML 2 baseline 2000 methodology was adopted, in which 11 impact categories were considered. The life cycle impact assessment results revealed that the main environmental hot spot of this system was energy consumption. Additionally, two scenarios were compared: scenario 1 (direct discharge of treated effluent, i.e., no reuse) and scenario 2 (effluent reuse and tap water replacement). The results showed that scenario 2 significantly reduce the environmental impact in all the categories ultimately decreasing the environmental burden. Moreover, significant economic and environmental benefits can be obtained in scenario 2 by replacing the freshwater demand for non-potable uses. To enhance the performance of wastewater treatment plant (WWTP), there is a need to optimize energy consumption and increase wastewater collection efficiency to maximize the operating capacity of plant and minimize overall environmental footprint. It was concluded that MBBR can be a good alternative for upgrading and optimizing existing municipal wastewater treatment plants with appropriate tertiary treatment. Graphical abstract ᅟ.

  14. Anaerobic wastewater treatment in single-and double-stage digesters; Tratamiento anaerobio de aguas residuales en digestores de simple y doble etapa

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Lopez, M.; Vazquez Garcia, M. J.; Pena Caamano, P.; Soto Castineira, M. [Universidad da Coruna (Spain)

    2000-07-01

    Anaerobic treatment are a major alternative in wastewater treatment due to simplicity and lower power requirements, although greater understanding of this process and its technology is needed to make it possible. The most important concepts and parameters developed to treat medium-and high-load effluents are defined and various technologies are discussed, including: anaerobic filter (AF), upflow anaerobic sludge blanket (UASB) reactors, fluidized bed (FB) reactors, expanded granular sludge beds (EGSB). To determine the efficiency in municipal wastewater treatment, a pilot plant was constructed with a UASB reactor, obtaining elimination efficiency values of 60-65% for total COD and 55% for TSS. Finally a comparative chart of aerobic versus anaerobic treatment is provided, high-lighting the major possibilities offered by the latter. (Author) 28 refs.

  15. Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation-electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Mahvi, Amir Hossein, E-mail: ahmahvi@yahoo.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); National Institute of Health Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ebrahimi, Seyed Jamal Al-din [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); Mesdaghinia, Alireza, E-mail: mesdaghinia@sina.tums.ac.ir [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); Gharibi, Hamed, E-mail: hgharibi65@gmail.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); Sowlat, Mohammad Hossein, E-mail: hsowlat@gmail.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: {center_dot} Max removal efficiencies of the reactor for both ammonia and phosphate were 99%. {center_dot} Corresponding efficiencies under actual wastewater conditions were 98%. {center_dot} Optimum removal conditions were neutral pH and current density of 3 A. {center_dot} Lower influent concentration and higher detention time favored removal efficiency. {center_dot} Besides ammonia and phosphate, Al{sup 3+} plate enables removal of nitrite and nitrate. - Abstract: The present study aimed to evaluate the performance of a continuous bipolar ECEO-EF reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent. The reactor was comprised of two distinct units: electrochemical and separation. In the electrochemical unit, Al, stainless steel, and RuO{sub 2}/Ti plates were used. All the measurements were performed according to the standard methods. Maximum efficiency of the reactor for phosphate removal was 99% at pH of 6, current density of 3 A, detention time of 60 min, and influent phosphate concentration of 50 mg/l. The corresponding value for ammonia removal was 99% at a pH of 7 under the same operational conditions as for phosphate removal. For both phosphate and ammonia, the removal efficiency was highest at neutral pH, with higher current densities, and with lower influent concentrations. In addition to removal of phosphate and ammonia, application of the Al{sup 3+} plates enabled the removal of nitrite and nitrate, which may be present in wastewater effluent and are also products of the electrochemical process. The reactor was also able to decrease the concentrations of phosphate, ammonia, and COD under actual wastewater conditions by 98%, 98%, and 72%, respectively. According to the results of the present study, the reactor can be used for efficient removal of ammonia and phosphate from wastewater.

  16. Integrated assessment of wastewater treatment plant effluent estrogenicity in the Upper Murray River, Australia, using the native Murray rainbowfish (Melanotaenia fluviatilis)

    Science.gov (United States)

    Vajda, Alan M.; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S.; Barber, Larry B.

    2016-01-01

    The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L−1. Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall. 

  17. Immunological responses, histopathological finding and disease resistance of blue mussel (Mytilus edulis) exposed to treated and untreated municipal wastewater

    International Nuclear Information System (INIS)

    Akaishi, Fabiola M.; St-Jean, Sylvie D.; Bishay, Farida; Clarke, John; Rabitto, Ines da S.; Oliveira Ribeiro, Ciro A. de

    2007-01-01

    observed in bacterial clearance in mussels exposed to effluents in the RE. The lesions observed in gills in both studies were: infiltration of haemocytes in the tissue, epithelium proliferation, lamellar fusion and dilated haemolymphatic sinus. In summary, untreated municipal wastewater affected the immune system of blue mussels during 21 days of exposure and the effects were reflected in their capability to resist pathogens. And an immune modulation was observed in mussels exposed to untreated sewage in a RE, but this modulation was not reflected in the mussel's capability in eliminating pathogens

  18. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  19. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants.

    Science.gov (United States)

    Mao, Daqing; Yu, Shuai; Rysz, Michal; Luo, Yi; Yang, Fengxia; Li, Fengxiang; Hou, Jie; Mu, Quanhua; Alvarez, P J J

    2015-11-15

    The propagation of antibiotic resistance genes (ARGs) is an emerging health concern worldwide. Thus, it is important to understand and mitigate their occurrence in different systems. In this study, 30 ARGs that confer resistance to tetracyclines, sulfonamides, quinolones or macrolides were detected in two activated sludge wastewater treatment plants (WWTPs) in northern China. Bacteria harboring ARGs persisted through all treatment units, and survived disinfection by chlorination in greater percentages than total Bacteria (assessed by 16S rRNA genes). Although the absolute abundances of ARGs were reduced from the raw influent to the effluent by 89.0%-99.8%, considerable ARG levels [(1.0 ± 0.2) × 10(3) to (9.5 ± 1.8) × 10(5) copies/mL)] were found in WWTP effluent samples. ARGs were concentrated in the waste sludge (through settling of bacteria and sludge dewatering) at (1.5 ± 2.3) × 10(9) to (2.2 ± 2.8) × 10(11) copies/g dry weight. Twelve ARGs (tetA, tetB, tetE, tetG, tetH, tetS, tetT, tetX, sul1, sul2, qnrB, ermC) were discharged through the dewatered sludge and plant effluent at higher rates than influent values, indicating overall proliferation of resistant bacteria. Significant antibiotic concentrations (2%-50% of raw influent concentrations) remained throughout all treatment units. This apparently contributed selective pressure for ARG replication since the relative abundance of resistant bacteria (assessed by ARG/16S rRNA gene ratios) was significantly correlated to the corresponding effluent antibiotic concentrations. Similarly, the concentrations of various heavy metals (which induce a similar bacterial resistance mechanism as antibiotics - efflux pumps) were also correlated to the enrichment of some ARGs. Thus, curtailing the release of antibiotics and heavy metals to sewage systems (or enhancing their removal in pre-treatment units) may alleviate their selective pressure and mitigate ARG proliferation in WWTPs. Copyright © 2015 Elsevier Ltd. All

  20. Cryptosporidium and Giardia removal by secondary and tertiary wastewater treatment.

    Science.gov (United States)

    Taran-Benshoshan, Marina; Ofer, Naomi; Dalit, Vaizel-Ohayon; Aharoni, Avi; Revhun, Menahem; Nitzan, Yeshayahu; Nasser, Abidelfatah M

    2015-01-01

    Wastewater disposal may be a source of environmental contamination by Cryptosporidium and Giardia. This study was conducted to evaluate the prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated wastewater effluents. A prevalence of 100% was demonstrated for Giardia cysts in raw wastewater, at a concentration range of 10 to 12,225 cysts L(-1), whereas the concentration of Cryptosporidium oocysts in raw wastewater was 4 to 125 oocysts L(-1). The removal of Giardia cysts by secondary and tertiary treatment processes was greater than those observed for Cryptosporidium oocysts and turbidity. Cryptosporidium and Giardia were present in 68.5% and 76% of the tertiary effluent samples, respectively, at an average concentration of 0.93 cysts L(-1) and 9.94 oocysts L(-1). A higher detection limit of Cryptosporidium oocysts in wastewater was observed for nested PCR as compared to immune fluorescent assay (IFA). C. hominis was found to be the dominant genotype in wastewater effluents followed by C. parvum and C. andersoni or C. muris. Giardia was more prevalent than Cryptosporidium in the studied community and treatment processes were more efficient for the removal of Giardia than Cryptosporidium. Zoonotic genotypes of Cryptosporidium were also present in the human community. To assess the public health significance of Cryptosporidium oocysts present in tertiary effluent, viability (infectivity) needs to be assessed.