Thompson Sampling: An Optimal Finite Time Analysis
Kaufmann, Emilie; Munos, Rémi
2012-01-01
The question of the optimality of Thompson Sampling for solving the stochastic multi-armed bandit problem had been open since 1933. In this paper we answer it positively for the case of Bernoulli rewards by providing the first finite-time analysis that matches the asymptotic rate given in the Lai and Robbins lower bound for the cumulative regret. The proof is accompanied by a numerical comparison with other optimal policies, experiments that have been lacking in the literature until now for the Bernoulli case.
Multistage stochastic optimization
Pflug, Georg Ch
2014-01-01
Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book
Finite time exergoeconomic performance optimization of a thermoacoustic heat engine
Xuxian Kan, Lingen Chen, Fengrui Sun, Feng Wu
2011-01-01
Full Text Available Finite time exergoeconomic performance optimization of a generalized irreversible thermoacoustic heat engine with heat resistance, heat leakage, thermal relaxation, and internal dissipation is investigated in this paper. Both the real part and the imaginary part of the complex heat transfer exponent change the optimal profit rate versus efficiency relationship quantitatively. The operation of the generalized irreversible thermoacoustic engine is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the generalized irreversible thermoacoustic engine is performed by taking profit rate as the objective. The analytical formulas about the profit rate and thermal efficiency of the thermoacoustic engine are derived. Furthermore, the comparative analysis of the influences of various factors on the relationship between optimal profit rate and the thermal efficiency of the generalized irreversible thermoacoustic engine is carried out by detailed numerical examples. The optimal zone on the performance of the thermoacoustic heat engine is obtained by numerical analysis. The results obtained herein may be useful for the selection of the operation parameters for real thermoacoustic heat engines.
Optimal initial condition of passive tracers for their maximal mixing in finite time
Farazmand, Mohammad
2016-01-01
The efficiency of a fluid mixing device is often limited by fundamental laws and/or design constraints, such that a perfectly homogeneous mixture cannot be obtained in finite time. Here, we address the natural corollary question: Given the best available mixer, what is the optimal initial tracer pattern that leads to the most homogeneous mixture after a prescribed finite time? For ideal passive tracers, we show that this optimal initial condition coincides with the right singular vector (corresponding to the smallest singular value) of a suitably truncated Koopman operator. The truncation of the Koopman operator is made under the assumption that there is a small length-scale threshold $\\ell_\
Optimization Problem of Multistage Rocket
V. B. Tawakley
1972-04-01
Full Text Available The necessary conditions for the existence of minimum of a function of initial and final values of mass, position and velocity components and time of a multistage rocket have been reviewed when the thrust levels in each stage are considered to bounded and variation in gravity with height has been taken into account. The nature of the extremal subarcs comprising the complete extremal are has been studied. A few simple examples have been given as illustrations.
Finite-Time Anti-Disturbance Inverse Optimal Attitude Tracking Control of Flexible Spacecraft
Chutiphon Pukdeboon
2013-01-01
Full Text Available We propose a new robust optimal control strategy for flexible spacecraft attitude tracking maneuvers in the presence of external disturbances. An inverse optimal control law is designed based on a Sontag-type formula and a control Lyapunov function. An adapted extended state observer is used to compensate for the total disturbances. The proposed controller can be expressed as the sum of an inverse optimal control and an adapted extended state observer. It is shown that the developed controller can minimize a cost functional and ensure the finite-time stability of a closed-loop system without solving the associated Hamilton-Jacobi-Bellman equation directly. For an adapted extended state observer, the finite-time convergence of estimation error dynamics is proven using a strict Lyapunov function. An example of multiaxial attitude tracking maneuvers is presented and simulation results are included to show the performance of the developed controller.
Computing Finite-Time Lyapunov Exponents with Optimally Time Dependent Reduction
Babaee, Hessam; Farazmand, Mohammad; Sapsis, Themis; Haller, George
2016-11-01
We present a method to compute Finite-Time Lyapunov Exponents (FTLE) of a dynamical system using Optimally Time-Dependent (OTD) reduction recently introduced by H. Babaee and T. P. Sapsis. The OTD modes are a set of finite-dimensional, time-dependent, orthonormal basis {ui (x , t) } |i=1N that capture the directions associated with transient instabilities. The evolution equation of the OTD modes is derived from a minimization principle that optimally approximates the most unstable directions over finite times. To compute the FTLE, we evolve a single OTD mode along with the nonlinear dynamics. We approximate the FTLE from the reduced system obtained from projecting the instantaneous linearized dynamics onto the OTD mode. This results in a significant reduction in the computational cost compared to conventional methods for computing FTLE. We demonstrate the efficiency of our method for double Gyre and ABC flows. ARO project 66710-EG-YIP.
Positive role of glassy dynamics in finite-time optimization by threshold algorithms
Hasegawa, M.
2011-01-01
The optimization mechanism of threshold algorithms is investigated in the solving process of a random Euclidean traveling salesman problem. A series of computer experiments previously designed for simulated annealing is conducted with algorithms such as generalized simulated annealing. The results show that if the threshold function decays fast enough, a previous positive view of slow relaxation dynamics in finite-time optimization by simulated annealing is still applicable regardless of the algorithm. These dynamics work effectively as an optimizer at around an intermediate temperature, which can be identified by using the Deborah number.
Finite-Time Thermoeconomic Optimization of a Solar-Driven Heat Engine Model
Fernando Angulo-Brown
2011-01-01
Full Text Available In the present paper, the thermoeconomic optimization of an irreversible solar-driven heat engine model has been carried out by using finite-time/finite-size thermodynamic theory. In our study we take into account losses due to heat transfer across finite time temperature differences, heat leakage between thermal reservoirs and internal irreversibilities in terms of a parameter which comes from the Clausius inequality. In the considered heat engine model, the heat transfer from the hot reservoir to the working fluid is assumed to be Dulong-Petit type and the heat transfer to the cold reservoir is assumed of the Newtonian type. In this work, the optimum performance and two design parameters have been investigated under two objective functions: the power output per unit total cost and the ecological function per unit total cost. The effects of the technical and economical parameters on the thermoeconomic performance have been also discussed under the aforementioned two criteria of performance.
韩帮军; 潘军; 范秀敏; 马登哲
2004-01-01
The recursion relation of preventive maintenance (PM) cycle is built up concerning the concept of effective age and age setback factor proposed in this paper, which illustrates the dynamic relationship between failure rate and preventive maintenance activity. And the nonlinear optimal PM policy model satisfying the reliability constraints in finite time horizon following Weibull distribution is proposed. The model built in this paper avoids the shortcoming of steady analytical PM model in infinite time horizon and can be used to aid scheduling the maintenance plan and providing decision supporting for job shop scheduling.
Optimal Multistage Algorithm for Adjoint Computation
Aupy, Guillaume; Herrmann, Julien; Hovland, Paul; Robert, Yves
2016-01-01
We reexamine the work of Stumm and Walther on multistage algorithms for adjoint computation. We provide an optimal algorithm for this problem when there are two levels of checkpoints, in memory and on disk. Previously, optimal algorithms for adjoint computations were known only for a single level of checkpoints with no writing and reading costs; a well-known example is the binomial checkpointing algorithm of Griewank and Walther. Stumm and Walther extended that binomial checkpointing algorithm to the case of two levels of checkpoints, but they did not provide any optimality results. We bridge the gap by designing the first optimal algorithm in this context. We experimentally compare our optimal algorithm with that of Stumm and Walther to assess the difference in performance.
Optimal initial condition of passive tracers for their maximal mixing in finite time
Farazmand, Mohammad
2017-05-01
The efficiency of fluid flow for mixing passive tracers is often limited by fundamental laws and/or design constraints, such that a perfectly homogeneous mixture cannot be obtained in finite time. Here we address the natural corollary question: Given a fluid flow, what is the optimal initial tracer pattern that leads to the most homogeneous mixture after a prescribed finite time? For ideal passive tracers, we show that this optimal initial condition coincides with the right singular vector (corresponding to the smallest singular value) of a suitably truncated Perron-Frobenius (PF) operator. The truncation of the PF operator is made under the assumption that there is a small length-scale threshold ℓν under which the tracer blobs are considered, for all practical purposes, completely mixed. We demonstrate our results on two examples: a prototypical model known as the sine flow and a direct numerical simulation of two-dimensional turbulence. Evaluating the optimal initial condition through this framework requires only the position of a dense grid of fluid particles at the final instance and their preimages at the initial instance of the prescribed time interval. As such, our framework can be readily applied to flows where such data are available through numerical simulations or experimental measurements.
Optimal Selling Time in Stock Market over a Finite Time Horizon
S.C.P. YAM; S.P. YUNG; W. ZHOU
2012-01-01
In this paper,we examine the best time to sell a stock at a price being as close as possible to its highest price over a finite time horizon [0,T],where the stock price is modelled by a geometric Brownian motion and the 'closeness' is measured by the relative error of the stock price to its highest price over [0,T]. More precisely,we want to optimize the expression:V*=sup0≤τ≤T IE[Vτ/MT],where (Vt)t≥0 is a geometric Brownish motion with constant drift α and constant volatility σ ＞ 0,Mt =max0≤s≤t Vs is the running maximum of the stock price,and the supremum is taken over all possible stopping times 0 ＜ τ ＜ Tadapted to the natural filtration (Ft)t≥0 of the stock price.The above problem has been considered by Shiryaev,Xu and Zhou (2008) and Du Toit and Peskir (2009).In this paper we provide an independent proof that when α =1/2σ2,a selling strategy is optimal if and only if it sells the stock either at the terminal time T or at the moment when the stock price hits its maximum price so far.Besides,when α ＞ 1/2σ2,selling the stock at the terminal time T is the unique optimal selling strategy.Our approach to the problem is purely probabilistic and has been inspired by relating the notion of dominant stopping pτ of a stopping time τ to the optimal stopping strategy arisen in the classical "Secretary Problem".
Sharma Arjun
2011-01-01
Full Text Available The present study investigates the performance of the solar-driven Stirling engine system to maximize the power output and thermal efficiency using the non-linearized heat loss model of the solar dish collector and the irreversible cycle model of the Stirling engine. Finite time thermodynamic analysis has been done for combined system to calculate the finite-rate heat transfer, internal heat losses in the regenerator, conductive thermal bridging losses and finite regeneration process time. The results indicate that exergy efficiency of dish system increases as the effectiveness of regenerator increases but decreases with increase in regenerative time coefficient. It is also found that optimal range of collector temperature and corresponding concentrating ratio are 1000 K~1400 K and 1100~1400, respectively in order to get maximum value of exergy efficiency. It is reported that the exergy efficiency of this dish system can reach the maximum value when operating temperature and concentrating ratio are 1150 K and 1300, respectively.
Huijun Feng, Lingen Chen, Fengrui Sun
2010-11-01
Full Text Available An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP and profit rate of the universal heat pump cycle model are derived, respectively. By means of numerical calculations, heat conductance distributions between hot- and cold-side heat exchangers are optimized by taking the maximum profit rate as objective. There exist an optimal heat conductance distribution and an optimal thermal capacity rate matching between the working fluid and heat reservoirs which lead to a double maximum profit rate. The effects of internal irreversibility, total heat exchanger inventory, thermal capacity rate of the working fluid and heat capacity ratio of the heat reservoirs on the optimal finite time exergoeconomic performance of the cycle are discussed in detail. The results obtained herein include the optimal finite time exergoeconomic performances of endoreversible and irreversible, constant- and variable-temperature heat reservoir Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles.
Optimization of solar-powered Stirling heat engine with finite-time thermodynamics
Yaqi, Li [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xi' an Research Institute of Hi-Tech, Xi' an, Shaanxi 710025 (China); Yaling, He; Weiwei, Wang [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)
2011-01-15
A mathematical model for the overall thermal efficiency of the solar-powered high temperature differential dish-Stirling engine with finite-rate heat transfer, regenerative heat losses, conductive thermal bridging losses and finite regeneration processes time is developed. The model takes into consideration the effect of the absorber temperature and the concentrating ratio on the thermal efficiency; radiation and convection heat transfer between the absorber and the working fluid as well as convection heat transfer between the heat sink and the working fluid. The results show that the optimized absorber temperature and concentrating ratio are at about 1100 K and 1300, respectively. The thermal efficiency at optimized condition is about 34%, which is not far away from the corresponding Carnot efficiency at about 50%. Hence, the present analysis provides a new theoretical guidance for designing dish collectors and operating the Stirling heat engine system. (author)
Particle swarm optimization of ascent trajectories of multistage launch vehicles
Pontani, Mauro
2014-02-01
Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state
Juan C. Chimal-Eguía
2012-12-01
Full Text Available This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT. Using an endoreversible Curzon–Ahlborn (CA heat engine as a model for actual thermal engines, three different criteria for thermal efficiency were analyzed: maximum power output, ecological function, and maximum power density. By means of this procedure, the performance of the CA heat engine with a nonlinear heat transfer law (the Stefan–Boltzmann law was studied to describe the heat exchanges between the working substance and its thermal reservoirs. The specific case of the Müser engine for all the criteria was analyzed. The results confirmed some previous findings using other procedures and additionally new results for the Müser engine performance were obtained.
Optimization of organic Rankine cycle power systems considering multistage axial turbine design
Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo
2017-01-01
Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...... is presented and validated with the best available data from literature. The methodology allows the identification of the most suitable working fluid considering the trade-off between cycle and multistage turbine designs. The results of the optimization of cycle and turbine suggest that the fluid n...
A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization
Daqing Wu
2012-01-01
Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.
A Multi-Stage Optimization Model With Minimum Energy Consumption-Wireless Mesh Networks
S. Krishnakumar
2012-09-01
Full Text Available Optimization models related with routing, bandwidth utilization and power consumption are developed in the wireless mesh computing environment using the operations research techniques such as maximal flow model, transshipment model and minimax optimizing algorithm. The Path creation algorithm is used to find the multiple paths from source to destination.A multi-stage optimization model is developed by combining the multi-path optimization model, optimization model in capacity utilization and energy optimization model and minimax optimizing algorithm. The input to the multi-stage optimization model is a network with many source and destination. The optimal solution obtained from this model is a minimum energy consuming path from source to destination along with the maximum data rate over each link. The performance is evaluated by comparing the data rate values of superimposed algorithm and minimax optimizing algorithm. The main advantage of this model is the reduction of traffic congestion in the network.
Lu, Can-can; Bai, Long
2017-06-01
The nonlinear dissipation heat devices are proposed by means of generalizing the low-dissipation heat devices to the quadratic order case. The dimensionless formulas of the output (input) power and the efficiency (coefficient of performance) for the nonlinear dissipation heat engines (refrigerators) are derived in terms of characteristic parameters for heat devices and the dimensional analysis. Based on the trade-off criterion, the optimal performance of the nonlinear dissipation heat devices is discussed in depth, and some system-specific properties for the nonlinear dissipation heat devices under the trade-off optimization are also uncovered. Our results may provide practical insight for designing actual heat engines and refrigerators.
Application of multi-stage Monte Carlo method for solving machining optimization problems
Miloš Madić
2014-08-01
Full Text Available Enhancing the overall machining performance implies optimization of machining processes, i.e. determination of optimal machining parameters combination. Optimization of machining processes is an active field of research where different optimization methods are being used to determine an optimal combination of different machining parameters. In this paper, multi-stage Monte Carlo (MC method was employed to determine optimal combinations of machining parameters for six machining processes, i.e. drilling, turning, turn-milling, abrasive waterjet machining, electrochemical discharge machining and electrochemical micromachining. Optimization solutions obtained by using multi-stage MC method were compared with the optimization solutions of past researchers obtained by using meta-heuristic optimization methods, e.g. genetic algorithm, simulated annealing algorithm, artificial bee colony algorithm and teaching learning based optimization algorithm. The obtained results prove the applicability and suitability of the multi-stage MC method for solving machining optimization problems with up to four independent variables. Specific features, merits and drawbacks of the MC method were also discussed.
Mortgage Loan Portfolio Optimization Using Multi-Stage Stochastic Programming
Rasmussen, Kourosh Marjani; Clausen, Jens
2007-01-01
reduction and LP relaxation are used to obtain near optimal solutions for large problem instances. Our results show that the standard Danish mortgagor should hold a more diversified portfolio of mortgage loans, and that he should rebalance the portfolio more frequently than current practice....
Finite-time stability and control
Amato, Francesco; Ariola, Marco; Cosentino, Carlo; De Tommasi, Gianmaria
2014-01-01
Finite-time stability (FTS) is a more practical concept than classical Lyapunov stability, useful for checking whether the state trajectories of a system remain within pre-specified bounds over a finite time interval. In a linear systems framework, FTS problems can be cast as convex optimization problems and solved by the use of effective off-the-shelf computational tools such as LMI solvers. Finite-time Stability and Control exploits this benefit to present the practical applications of FTS and finite-time control-theoretical results to various engineering fields. The text is divided into two parts: · linear systems; and · hybrid systems. The building of practical motivating examples helps the reader to understand the methods presented. Finite-time Stability and Control is addressed to academic researchers and to engineers working in the field of robust process control. Instructors teaching graduate courses in advanced control will also find parts of this book useful for the...
Qin, Nan; Bak, Claus Leth; Abildgaard, Hans
2017-01-01
cost and the generator reactive power output cost. The problem is formulated in a multi-stage optimal reactive power flow (MORPF) framework, solved by the nonlinear programming techniques via a rolling process. The voltage uncertainty caused by wind power forecasting errors is considered in the optimal......This paper proposes an automatic voltage control (AVC) system for power systems with limited continuous voltage control capability. The objective is to minimize the operational cost over a period, which consists of the power loss in the grid, the shunt switching cost, the transformer tap change...
Learning representations for object classification using multi-stage optimal component analysis.
Wu, Yiming; Liu, Xiuwen; Mio, Washington
2008-01-01
Learning data representations is a fundamental challenge in modeling neural processes and plays an important role in applications such as object recognition. Optimal component analysis (OCA) formulates the problem in the framework of optimization on a Grassmann manifold and a stochastic gradient method is used to estimate the optimal basis. OCA has been successfully applied to image classification problems arising in a variety of contexts. However, as the search space is typically very high dimensional, OCA optimization often requires expensive computational cost. In multi-stage OCA, we first hierarchically project the data onto several low-dimensional subspaces using standard techniques, then OCA learning is performed hierarchically from the lowest to the highest levels to learn about a subspace that is optimal for data discrimination based on the K-nearest neighbor classifier. One of the main advantages of multi-stage OCA lies in the fact that it greatly improves the computational efficiency of the OCA learning algorithm without sacrificing the recognition performance, thus enhancing its applicability to practical problems. In addition to the nearest neighbor classifier, we illustrate the effectiveness of the learned representations on object classification used in conjunction with classifiers such as neural networks and support vector machines.
Optimal design of multistage chemostats in series using different microbial growth kinetics
Qasim, Muhammad [Petroleum Engineering Technology, Abu Dhabi Polytechnic (United Arab Emirates)
2013-07-01
In this paper, the optimum design of multistage chemostats (CSTRs) was investigated. The optimal design was based on the minimum overall reactor volume using different volume for each chemostat. The paper investigates three different microbial growth kinetics; Monod kinetics, Contois kinetics and the Logistic equation. The total dimensionless residence time (theta Total) was set as the optimization objective function that was minimized by varying the intermediate dimensionless substrate concentration (alfa i). The effect of inlet substrate concentration (S0) to the first reactor on the optimized total dimensionless residence time was investigated at a constant conversion of 0.90. In addition, the effect of conversion on the optimized total dimensionless residence time was also investigated at constant inlet substrate concentration (S0). For each case, optimization was done using up to five chemostats in series.
Yu, Jia; Ji, Lucheng; Li, Weiwei; Yi, Weilin
2016-06-01
Adjoint method is an important tool for design refinement of multistage compressors. However, the radial static pressure distribution deviates during the optimization procedure and deteriorates the overall performance, producing final designs that are not well suited for realistic engineering applications. In previous development work on multistage turbomachinery blade optimization using adjoint method and thin shear-layer N-S equations, the entropy production is selected as the objective function with given mass flow rate and total pressure ratio as imposed constraints. The radial static pressure distribution at the interfaces between rows is introduced as a new constraint in the present paper. The approach is applied to the redesign of a five-stage axial compressor, and the results obtained with and without the constraint on the radial static pressure distribution at the interfaces between rows are discussed in detail. The results show that the redesign without the radial static pressure distribution constraint (RSPDC) gives an optimal solution that shows deviations on radial static pressure distribution, especially at rotor exit tip region. On the other hand, the redesign with the RSPDC successfully keeps the radial static pressure distribution at the interfaces between rows and make sure that the optimization results are applicable in a practical engineering design.
2013-01-01
有限时间热力学所得结果具有普适性，其研究结果已成为热物理学的一个重要基础。许多学者利用有限时间热力学方法对单级和多级正、反向两热源热力循环最优性能和最优构型进行了大量研究，获得了一些比经典热力学对于工程设计和优化更具有实际指导意义的新结论。综述了利用有限时间热力学理论对不同传热规律下单级和多级正、反向两热源热力循环最优性能和最优构型研究的最新进展，包括不同传热规律下内可逆和不可逆卡诺热机、制冷机和热泵循环的最优性能研究进展，两热源热机、制冷和热泵循环最优构型及多级复杂热力系统最优构型研究进展。%The results obtained by using finite time thermodynamics (FTT) are universal and have become one of important foundations of thermo-physics. A large number of researches have been carried out in the performance optimizations and optimal configurations of single-and multi-stage two-heat-reservoir direct and inverse thermodynamic cycles by using FTT. The obtained new results have more important practical significance for engineering design and optimization than those obtained by using classical thermodynamics. This paper reviews the new advances of the optimal performances and optimal configurations of single and multi-stage two-heat-reservoir direct and inverse thermodynamic cycles following different heat transfer laws, including the new advances of the optimal performances of endoreversible and irreversible Carnot heat engine, Carnot refrigerator and Carnot heat pump cycles under different heat transfer laws, and the new advances of the optimal configurations of two-heat-reservoir heat engine, refrigerator and heat pump cycles, as well as multi-stage complex thermodynamic cycles with different heat transfer laws.
Optimization on Production-Inventory Problem with Multistage and Varying Demand
Duan Gang
2012-01-01
Full Text Available This paper addresses production-inventory problem for the manufacturer by explicitly taking into account multistage and varying demand. A nonlinear hybrid integer constrained optimization is modeled to minimize the total cost including setup cost and holding cost in the planning horizon. A genetic algorithm is developed for the problem. A series of computational experiments with different sizes is used to demonstrate the efficiency and universality of the genetic algorithm in terms of the running time and solution quality. At last the combination of crossover probability and mutation probability is tested for all problems and a law is found for large size.
Liu, Huolong; Li, Mingzhong
2014-07-01
In this work, one-dimensional population balance models (PBMs) have been developed to model a pulsed top-spray fluidized bed granulation. The developed PBMs have linked the key binder solution spray operating factors of the binder spray rate, atomizing air pressure and pulsed frequency of spray with the granule properties to predict granule growth behaviour in the pulsed spray fluidized bed granulation process at different operating conditions with accuracy. A multi-stage open optimal control strategy based on the developed PBMs was proposed to reduce the model mismatch, in which through adjusting the trajectory of the evolution of the granule size distribution at predefined sample intervals, to determine the optimal operating variables related to the binder spray including the spray rate of binding liquid, atomizing air pressure and pulsed frequency of spray. The effectiveness of the proposed modelling and multi-stage open optimal control strategies has been validated by experimental and simulation tests. Copyright © 2014 Elsevier B.V. All rights reserved.
Optimization Strategies for Single-Stage, Multi-Stage and Continuous ADRs
Shirron, Peter J.
2014-01-01
Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components.
Zeng, Q.; Fang, J.; Chen, Z.
2016-01-01
sited and sized in the integrated energy system. The problem model is formulated as a multi-stage integer nonlinear optimization. The objective is to minimize the investment plus operation costs by determining the optimal location, capacity, and installation time of P2G. Case studies are simulated...
Optimal Control for Multistage Nonlinear Dynamic System of Microbial Bioconversion in Batch Culture
Lei Wang
2011-01-01
Full Text Available In batch culture of glycerol biodissimilation to 1,3-propanediol (1,3-PD, the aim of adding glycerol is to obtain as much 1,3-PD as possible. Taking the yield intensity of 1,3-PD as the performance index and the initial concentration of biomass, glycerol, and terminal time as the control vector, we propose an optimal control model subject to a multistage nonlinear dynamical system and constraints of continuous state. A computational approach is constructed to seek the solution of the above model. Firstly, we transform the optimal control problem into the one with fixed terminal time. Secondly, we transcribe the optimal control model into an unconstrained one based on the penalty functions and an extension of the state space. Finally, by approximating the control function with simple functions, we transform the unconstrained optimal control problem into a sequence of nonlinear programming problems, which can be solved using gradient-based optimization techniques. The convergence analysis and optimality function of the algorithm are also investigated. Numerical results show that, by employing the optimal control, the concentration of 1,3-PD at the terminal time can be increased, compared with the previous results.
Qiaorui Si
2013-01-01
Full Text Available The implementation of energy-saving and emission-reduction techniques has become a worldwide consensus. Thus, special attention should be provided to the field of pump optimization. With the objective of focusing on multiobjective optimization problems in low-specific-speed pumps, 10 parameters were carefully selected in this study for an L27(310 orthogonal experiment. The parameters include the outlet width of the impeller blade, blade number, and inlet setting angle of the guide vane. The numerical calculation appropriate for forecasting the performance of multistage pumps, such as the head, efficiency, and shaft power, was analyzed. Results were obtained after calculating the two-stage flow field of the pump through computational fluid dynamics (CFD methods. A matrix method was proposed to optimize the results of the orthographic experiment. The optimal plan was selected according to the weight of each factor. Calculated results indicate that the inlet setting angle of the guide vane influences efficiency significantly and that the outlet angle of blades has an effect on the head and shaft power. A prototype was produced with the optimal plan for testing. The efficiency rating of the prototype reached 58.61%; maximum shaft power was within the design requirements, which verifies that the proposed method is feasible for pump optimization.
Optimal Design of Multistage Two-Dimensional Cellular-Cored Sandwich Panel Heat Exchanger
Yongcun Zhang
2014-08-01
Full Text Available For a two-dimensional (2D cellular-cored sandwich panel heat exchanger, there exists an optimum cell size to achieve the maximum heat transfer with the prescribed pressure drop when the length is fixed and the two plates are isothermal. However, in engineering design, it is difficult to find 2D cellular materials with the ideal cell size because the cell size selected must be from those commercially available, which are discrete, not continuous. In order to obtain the maximum heat dissipation, an innovative design scheme is proposed for the sandwich panel heat exchanger which is divided into multiple stages in the direction of fluid flow where the 2D cellular material in each stage has a specific cell size. An analytical model is presented to evaluate the thermal performance of the multistage sandwich panel heat exchanger when all 2D cellular materials have the same porosity. Also, a new parameter named equivalent cell size (ECS is defined, which is dependent on the cell size and length of cellular material in all stages. Results show that the maximum heat dissipation design of the multistage sandwich panel heat exchanger can be converted to make the ECS equal to the optimal cell size of the single-stage exchanger.
Nishida, Yoshifumi; Kobayashi, Hiromi; Nishida, Hideo; Sugimura, Kazuyuki
2013-05-01
The effect of the design parameters of a return channel on the performance of a multistage centrifugal compressor was numerically investigated, and the shape of the return channel was optimized using a multiobjective optimization method based on a genetic algorithm to improve the performance of the centrifugal compressor. The results of sensitivity analysis using Latin hypercube sampling suggested that the inlet-to-outlet area ratio of the return vane affected the total pressure loss in the return channel, and that the inlet-to-outlet radius ratio of the return vane affected the outlet flow angle from the return vane. Moreover, this analysis suggested that the number of return vanes affected both the loss and the flow angle at the outlet. As a result of optimization, the number of return vane was increased from 14 to 22 and the area ratio was decreased from 0.71 to 0.66. The radius ratio was also decreased from 2.1 to 2.0. Performance tests on a centrifugal compressor with two return channels (the original design and optimized design) were carried out using two-stage test apparatus. The measured flow distribution exhibited a swirl flow in the center region and a reversed swirl flow near the hub and shroud sides. The exit flow of the optimized design was more uniform than that of the original design. For the optimized design, the overall two-stage efficiency and pressure coefficient were increased by 0.7% and 1.5%, respectively. Moreover, the second-stage efficiency and pressure coefficient were respectively increased by 1.0% and 3.2%. It is considered that the increase in the second-stage efficiency was caused by the increased uniformity of the flow, and the rise in the pressure coefficient was caused by a decrease in the residual swirl flow. It was thus concluded from the numerical and experimental results that the optimized return channel improved the performance of the multistage centrifugal compressor.
Multistage Stochastic Programming and its Applications in Energy Systems Modeling and Optimization
Golari, Mehdi
Electric energy constitutes one of the most crucial elements to almost every aspect of life of people. The modern electric power systems face several challenges such as efficiency, economics, sustainability, and reliability. Increase in electrical energy demand, distributed generations, integration of uncertain renewable energy resources, and demand side management are among the main underlying reasons of such growing complexity. Additionally, the elements of power systems are often vulnerable to failures because of many reasons, such as system limits, weak conditions, unexpected events, hidden failures, human errors, terrorist attacks, and natural disasters. One common factor complicating the operation of electrical power systems is the underlying uncertainties from the demands, supplies and failures of system components. Stochastic programming provides a mathematical framework for decision making under uncertainty. It enables a decision maker to incorporate some knowledge of the intrinsic uncertainty into the decision making process. In this dissertation, we focus on application of two-stage and multistage stochastic programming approaches to electric energy systems modeling and optimization. Particularly, we develop models and algorithms addressing the sustainability and reliability issues in power systems. First, we consider how to improve the reliability of power systems under severe failures or contingencies prone to cascading blackouts by so called islanding operations. We present a two-stage stochastic mixed-integer model to find optimal islanding operations as a powerful preventive action against cascading failures in case of extreme contingencies. Further, we study the properties of this problem and propose efficient solution methods to solve this problem for large-scale power systems. We present the numerical results showing the effectiveness of the model and investigate the performance of the solution methods. Next, we address the sustainability issue
Optimal phasing of district heating network investments using multi-stage stochastic programming
Romain Stephane Claude Lambert
2016-06-01
Full Text Available Most design optimisation studies for district heating systems have focused on the optimal sizing of network assets and on the location of production units. However, the strategic value of the flexibility in phasing of the inherently modular heat networks, which is an important aspect in many feasibility studies for district heating schemes in the UK, is almost always neglected in the scientific literature. This paper considers the sequential problem faced by a decision-maker in the phasing of long-term investments into district heating networks and their expansions. The problem is formulated as a multi-stage stochastic programme to determine the annual capital expenditure that maximises the expected net present value of the project. The optimisation approach is illustrated by applying it to the hypothetical case of the UK’s Marston Vale eco town. It was found that the approach is capable of simulating the optimal growth of a network, from both a single heat source or separate islands of growth, as well as the optimal marginal expansion of an existing district heating network. The proposed approach can be used by decision makers as a framework to determine both the optimal phasing and extension of district heating networks and can be adapted simply to various, more complex real-life situations by introducing additional constraints and parameters. The versatility of the base formulation also makes it a powerful approach regardless of the size of the network and also potentially applicable to cooling networks.
Liu, Shibing; Yang, Bingen
2017-10-01
Flexible multistage rotor systems with water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Filling a technical gap in the literature, this effort proposes a method of optimal bearing placement that minimizes the vibration amplitude of a WLRB-supported flexible rotor system with a minimum number of bearings. In the development, a new model of WLRBs and a distributed transfer function formulation are used to define a mixed continuous-and-discrete optimization problem. To deal with the case of uncertain number of WLRBs in rotor design, a virtual bearing method is devised. Solution of the optimization problem by a real-coded genetic algorithm yields the locations and lengths of water-lubricated rubber bearings, by which the prescribed operational requirements for the rotor system are satisfied. The proposed method is applicable either to preliminary design of a new rotor system with the number of bearings unforeknown or to redesign of an existing rotor system with a given number of bearings. Numerical examples show that the proposed optimal bearing placement is efficient, accurate and versatile in different design cases.
Yao, W.; Chen, X.; Ouyang, Q.; Van Tooren, M.
2011-01-01
Optimization procedure is one of the key techniques to address the computational and organizational complexities of multidisciplinary design optimization (MDO). Motivated by the idea of synthetically exploiting the advantage of multiple existing optimization procedures and meanwhile complying with
Schwanenberg, D.; Naumann, S.; Allen, C.
2014-12-01
Hydroelectric power systems are characterized by variability and uncertainty in yield and water resources obligations. Market volatility and the growing number of operational constraints for flood control, navigation, environmental obligations and ancillary services (including load balancing requirements for renewable resources) further the need to quantify sources of uncertainty. This research presents an integrated framework to handle several sources of uncertainty. Main focus is on the meteorological forecast uncertainty based on deterministic and probabilistic Numerical Weather Predictions (NWP), its consistent propagation through load and streamflow forecasts, and the generation of scenario trees with novel multi-dimensional distance metrics. The scenario trees enable us to extend a deterministic optimization setup to a multi-stage stochastic optimization approach as the mathematical formulation of the short-term system management. The Federal Columbia River Power System (FCRPS), managed by the Bonneville Power Administration, the US Army Corps of Engineers and the Bureau of Reclamation, serves as a large-scale test case for the application of the new framework. We proof the feasibility of the new approach and verify the operational applicability within a real-time environment.
Overall Traveling-Wave-Tube Efficiency Improved By Optimized Multistage Depressed Collector Design
Vaden, Karl R.
2002-01-01
Depressed Collector Design The microwave traveling wave tube (TWT) is used widely for space communications and high-power airborne transmitting sources. One of the most important features in designing a TWT is overall efficiency. Yet, overall TWT efficiency is strongly dependent on the efficiency of the electron beam collector, particularly for high values of collector efficiency. For these reasons, the NASA Glenn Research Center developed an optimization algorithm based on simulated annealing to quickly design highly efficient multistage depressed collectors (MDC's). Simulated annealing is a strategy for solving highly nonlinear combinatorial optimization problems. Its major advantage over other methods is its ability to avoid becoming trapped in local minima. Simulated annealing is based on an analogy to statistical thermodynamics, specifically the physical process of annealing: heating a material to a temperature that permits many atomic rearrangements and then cooling it carefully and slowly, until it freezes into a strong, minimum-energy crystalline structure. This minimum energy crystal corresponds to the optimal solution of a mathematical optimization problem. The TWT used as a baseline for optimization was the 32-GHz, 10-W, helical TWT developed for the Cassini mission to Saturn. The method of collector analysis and design used was a 2-1/2-dimensional computational procedure that employs two types of codes, a large signal analysis code and an electron trajectory code. The large signal analysis code produces the spatial, energetic, and temporal distributions of the spent beam entering the MDC. An electron trajectory code uses the resultant data to perform the actual collector analysis. The MDC was optimized for maximum MDC efficiency and minimum final kinetic energy of all collected electrons (to reduce heat transfer). The preceding figure shows the geometric and electrical configuration of an optimized collector with an efficiency of 93.8 percent. The
Gerist, Saleheh; Maheri, Mahmoud R.
2016-12-01
In order to solve structural damage detection problem, a multi-stage method using particle swarm optimization is presented. First, a new spars recovery method, named Basis Pursuit (BP), is utilized to preliminarily identify structural damage locations. The BP method solves a system of equations which relates the damage parameters to the structural modal responses using the sensitivity matrix. Then, the results of this stage are subsequently enhanced to the exact damage locations and extents using the PSO search engine. Finally, the search space is reduced by elimination of some low damage variables using micro search (MS) operator embedded in the PSO algorithm. To overcome the noise present in structural responses, a method known as Basis Pursuit De-Noising (BPDN) is also used. The efficiency of the proposed method is investigated by three numerical examples: a cantilever beam, a plane truss and a portal plane frame. The frequency response is used to detect damage in the examples. The simulation results demonstrate the accuracy and efficiency of the proposed method in detecting multiple damage cases and exhibit its robustness regarding noise and its advantages compared to other reported solution algorithms.
Hydraulic design to optimize the treatment capacity of Multi-Stage Filtration units
Mushila, C. N.; Ochieng, G. M.; Otieno, F. A. O.; Shitote, S. M.; Sitters, C. W.
2016-04-01
Multi-Stage Filtration (MSF) can provide a robust treatment alternative for surface water sources of variable water quality in rural communities at low operation and maintenance costs. MSF is a combination of Slow Sand Filters (SSFs) and Pre-treatment systems. The general objective of this research was to optimize the treatment capacity of MSF. A pilot plant study was undertaken to meet this objective. The pilot plant was monitored for a continuous 98 days from commissioning till the end of the project. Three main stages of MSF namely: The Dynamic Gravel Filter (DGF), Horizontal-flow Roughing Filter (HRF) and SSF were identified, designed and built. The response of the respective MSF units in removal of selected parameters guiding drinking water quality such as microbiological (Faecal and Total coliform), Suspended Solids, Turbidity, PH, Temperature, Iron and Manganese was investigated. The benchmark was the Kenya Bureau (KEBS) and World Health Organization (WHO) Standards for drinking water quality. With respect to microbiological raw water quality improvement, MSF units achieved on average 98% Faecal and 96% Total coliform removal. Results obtained indicate that implementation of MSF in rural communities has the potential to increase access to portable water to the rural populace with a probable consequent decrease in waterborne diseases. With a reduced down time due to illness, more time would be spent in undertaking other economic activities.
FINITE ELEMENT SIMULATION AND OPTIMIZATION OF MULTISTAGE WARM/HOT FORMING FOR OUTER RACE
无
2002-01-01
A multistage warm/hot forming is simulated for the cross grove outer race of constant velocity joint, using athermo-mechanical coupled rigid viscoplastic finite element method, and specially some problem for process develop-ment and die design are analyzed. A forming test shows that computed results have good agreement with experimentalresults. Above obtained results can be applied to development of multistage warm/hot forming process and die designfor outer race.
Reducing drying energy consumption by adsorbent property optimization in multistage systems
Atuonwu, J.C.; Straten, G. van; Deventer, H.C. van; Boxtel, A.J.B. van
2012-01-01
This work presents a mixed integer nonlinear programming method for the design of energy efficient multistage adsorption dryers within product temperature and moisture constraints. The aim is to find the adsorbent type and properties that minimize specific energy consumption. The results show that t
Azad, Mohammad
2017-06-16
We study problems of optimization of decision and inhibitory trees for decision tables with many-valued decisions. As cost functions, we consider depth, average depth, number of nodes, and number of terminal/nonterminal nodes in trees. Decision tables with many-valued decisions (multi-label decision tables) are often more accurate models for real-life data sets than usual decision tables with single-valued decisions. Inhibitory trees can sometimes capture more information from decision tables than decision trees. In this paper, we create dynamic programming algorithms for multi-stage optimization of trees relative to a sequence of cost functions. We apply these algorithms to prove the existence of totally optimal (simultaneously optimal relative to a number of cost functions) decision and inhibitory trees for some modified decision tables from the UCI Machine Learning Repository.
Honglei ZHAO; Songtao WANG; Wanjin HAN; Guotai FENG
2008-01-01
A three-stage axial turbine was redesigned by jointly applying S2 flow surface direct problem calculation methods and multistage local optimization methods. A genetic algorithm and artificial neural network were jointly adopted during optimization. A three-dimensional viscosity Navier-Stokes equation solver was applied for flow computation. H-O-H-topology grid was adopted as computation grid, that is, an H-topology grid was adopted for inlet and outlet segment, whereas an O-topology grid was adopted for stator zone and rotor zone. Through the optimization design, the total efficiency increases 1.1%, thus indicating that the total performance is improved and the design objective is achieved.
Shaojun Xia, Lingen Chen, Fengrui Sun
2012-01-01
Full Text Available A multistage endoreversible Carnot heat engine system operating with a finite thermal capacity high-temperature black photon fluid reservoir and the heat transfer law is investigated in this paper. Optimal control theory is applied to derive the continuous Hamilton-Jacobi-Bellman (HJB equations, which determine the optimal fluid temperature configurations for maximum power output under the conditions of fixed initial time and fixed initial temperature of the driving fluid. Based on the general optimization results, the analytical solution for the case with pseudo-Newtonian heat transfer law is further obtained. Since there are no analytical solutions for the radiative heat transfer law, the continuous HJB equations are discretized and the dynamic programming (DP algorithm is adopted to obtain the complete numerical solutions, and the relationships among the maximum power output of the system, the process period and the fluid temperatures are discussed in detail. The optimization results obtained for the radiative heat transfer law are also compared with those obtained for pseudo-Newtonian heat transfer law and stage-by-stage optimization strategy. The obtained results can provide some theoretical guidelines for the optimal designs and operations of solar energy conversion and transfer systems.
Optimization of Adaboost Algorithm for Sonar Target Detection in a Multi-Stage ATR System
Lin, Tsung Han (Hank)
2011-01-01
JPL has developed a multi-stage Automated Target Recognition (ATR) system to locate objects in images. First, input images are preprocessed and sent to a Grayscale Optical Correlator (GOC) filter to identify possible regions-of-interest (ROIs). Second, feature extraction operations are performed using Texton filters and Principal Component Analysis (PCA). Finally, the features are fed to a classifier, to identify ROIs that contain the targets. Previous work used the Feed-forward Back-propagation Neural Network for classification. In this project we investigate a version of Adaboost as a classifier for comparison. The version we used is known as GentleBoost. We used the boosted decision tree as the weak classifier. We have tested our ATR system against real-world sonar images using the Adaboost approach. Results indicate an improvement in performance over a single Neural Network design.
M. Saravanan
2014-03-01
Full Text Available A Hybrid flow shop scheduling is characterized ‘n’ jobs ‘m’ machines with ‘M’ stages by unidirectional flow of work with a variety of jobs being processed sequentially in a single-pass manner. The paper addresses the multi-stage hybrid flow shop scheduling problems with missing operations. It occurs in many practical situations such as stainless steel manufacturing company. The essential complexity of the problem necessitates the application of meta-heuristics to solve hybrid flow shop scheduling. The proposed Simulated Annealing algorithm (SA compared with Particle Swarm Optimization (PSO with the objective of minimization of makespan. It is show that the SA algorithm is efficient in finding out good quality solutions for the hybrid flow shop problems with missing operations.
Black hole thermodynamics in finite time
Gruber, Christine
2016-01-01
Finite-time thermodynamics provides the means to revisit ideal thermodynamic equilibrium processes in the light of reality and investigate the energetic "price of haste", i.e. the consequences of carrying out a process in finite time, when perfect equilibrium cannot be awaited due to economic reasons or the nature of the process. Employing the formalism of geometric thermodynamics, a lower bound on the energy dissipated during a process is derived from the thermodynamic length of that process. The notion of length is hereby defined via a metric structure on the space of equilibrium thermodynamics, spanned by a set of thermodynamic variables describing the system. Since the aim of finite-time thermodynamics is to obtain realistic limitations on idealized scenarios, it is a useful tool to reassess the efficiency of thermodynamic processes. We examine its implications for black hole thermodynamics, in particular scenarios inspired by the Penrose process, a thought experiment by which work can be extracted from a...
Finite-Time Approach to Microeconomic and Information Exchange Processes
Serghey A. Amelkin
2009-07-01
Full Text Available Finite-time approach allows one to optimize regimes of processes in macrosystems when duration of the processes is restricted. Driving force of the processes is difference of intensive variables: temperatures in thermodynamics, values in economics, etc. In microeconomic systems two counterflow fluxes appear due to the only driving force. They are goods and money fluxes. Another possible case is two fluxes with the same direction. The processes of information exchange can be described by this formalism.
Search for Compromise Solution of the Multistage Axial Compressor‘s Stochastic Optimization Problem
I.N.Egorov; G.V.Kretinin
1998-01-01
The aim of this paper is to discuss a method of the compromise region determination for the multistge axial flow compressor stochastic optimization problesm.This method is based on the 2-D axisymmetrical mathematical model of the compressor and on the new multicriteria optimization procedure .A specific feature of the multicriteria optimization procedure is a possibility to obtain a set of the Edgeworth-Pareto optimal solutiona within the frame of single optimization task.The paper presents some expamples of the compressor's geometrical parameters multicriteria optimization.
Konstantinos Stamatopoulos
2013-12-01
Full Text Available The aim of the present study was to improve the recovery of polyphenols from olive leaves (OL by optimizing a multistage extraction scheme; provided that the olive leaves have been previously steam blanched. The maximum total phenol content expressed in ppm caffeic acid equivalents was obtained at pH 2, particle size 0.315 mm, solid-liquid ratio 1:7 and aqueous ethanol concentration 70% (v/v. The optimum duration time of each extraction stage and the operation temperature, were chosen based on qualitative and quantitative analysis of oleuropein (OLE, verbascoside, luteolin-7-O-glucoside and apigenin-7-O-glucoside performed by high performance liquid chromatography with diode array detector (HPLC-DAD. The optimum conditions for multistage extraction were 30 min total extraction time (10 min × 3 stages at 85 °C. The 80% of the total yield of polyphenols was obtained at the 1st stage of the extraction. The total extraction yield of oleuropein was found 23 times higher (103.1 mg OLE/g dry weight (d.w. OL compared to the yield (4.6 mg OLE/g d.w. OL obtained by the conventional extraction method (40 °C, 48 h. However, from an energetic and hence from an economical point of view it is preferable to work at 40 °C, since the total extraction yield of polyphenolic compounds was only 17% higher for a double increase in the operating temperature (i.e., 85 °C.
Carpentier, Pierre; Cohen, Guy; De Lara, Michel
2015-01-01
The focus of the present volume is stochastic optimization of dynamical systems in discrete time where - by concentrating on the role of information regarding optimization problems - it discusses the related discretization issues. There is a growing need to tackle uncertainty in applications of optimization. For example the massive introduction of renewable energies in power systems challenges traditional ways to manage them. This book lays out basic and advanced tools to handle and numerically solve such problems and thereby is building a bridge between Stochastic Programming and Stochastic Control. It is intended for graduates readers and scholars in optimization or stochastic control, as well as engineers with a background in applied mathematics.
multi-stage and multi-response process optimization in taguchi method
Shewit`
new model with its optimization procedure is proven to ensure the .... stage will enable the total system to operate. Process. X1, X2 ... developed and implemented ISO 9000 Quality. Management System and got certified. Among other things, it ...
Robust optimization of uncertain multistage inventory systems with inexact data in decision rules
de Ruiter, Frans; Ben-Tal, A.; Brekelmans, Ruud; den Hertog, Dick
2017-01-01
In production-inventory problems customer demand is often subject to uncertainty. Therefore, it is challenging to design production plans that satisfy both demand and a set of constraints on e.g. production capacity and required inventory levels. Adjustable robust optimization (ARO) is a technique t
Input-output finite-time stabilization of linear systems with finite-time boundedness.
Guo, Yang; Yao, Yu; Wang, Shicheng; Ma, Kemao; Liu, Kai; Guo, Jian
2014-07-01
The paper presents linear system Input-Output Finite-Time Stabilization (IO-FTS) method under Finite-Time Boundedness (FTB) constraint. A state feedback controller is designed, via Linear Matrix Inequalities (LMIs), to guarantee the system both IO-FTS and FTB. The proposed methods are applied to the guidance design of a class of terminal guidance systems to suppress disturbances with IO-FTS method and FTB constraints simultaneously satisfied. The simulation results illustrate the effectiveness of the proposed methods.
The Optimal Multistage Effort and Contract of VC’s Joint Investment
Meng Wu
2015-01-01
Full Text Available If the venture project has a great demand of investment, venture entrepreneurs will seek multiple venture capitalists to ensure necessary funding. This paper discusses the decision-making process in the case that multiple venture capitalists invest in a single project. From the beginning of the project till the withdrawal of the investment, the efforts of both parties are long term and dynamic. We consider the Stackelberg game model for venture capital investment in multiple periods. Given the optimal efforts by the entrepreneurs, our results clearly show that as time goes, in every single period entrepreneurs will expect their share of revenue paid to shrink. In other words, they expect a higher ex ante payment and a lower ex post payment. But, in contrast, venture capitalists are expecting exactly the opposite. With a further analysis, we also design an optimal contract in multiple periods. Last but not the least, several issues to be further investigated are proposed as well.
Numerical analysis and optimization of the inlet stage of a multi-stage high pressure compressor
XU Quan-yong; HOU An-ping; XIONG Jin-song; ZHOU Sheng
2007-01-01
An optimization process is used to redesign blades of a high-pressure compressor. An artificial neural network (ANN) method is coupled to Navier-Stokes solvers and is applied to three different redesigns. A new rotor blade of a transonic compressor is designed by modifying thick, stacking line and inlet angle using a 3D approach, with a significant efficiency improvement at the design point. The off-design behavior of this new compressor is also checked afterwards, which shows that the whole performance of the inlet stage is improved over a wide range of mass flow. The losses are reduced, proving the good performance of the optimum. The whole results indicate that the optimization method can find improved design and can be integrated in a design procedure.
Adaptive multi-stage integrators for optimal energy conservation in molecular simulations
Fernández-Pendás, Mario; Sanz-Serna, J M
2015-01-01
We introduce a new Adaptive Integration Approach (AIA) to be used in a wide range of molecular simulations. Given a simulation problem and a step size, the method automatically chooses the optimal scheme out of an available family of numerical integrators. Although we focus on two-stage splitting integrators, the idea may be used with more general families. In each instance, the system-specific integrating scheme identified by our approach is optimal in the sense that it provides the best conservation of energy for harmonic forces. The AIA method has been implemented in the BCAM-modified GROMACS software package. Numerical tests in molecular dynamics and hybrid Monte Carlo simulations of constrained and unconstrained physical systems show that the method successfully realises the fail-safe strategy. In all experiments, and for each of the criteria employed, the AIA is at least as good as, and often significantly outperforms the standard Verlet scheme, as well as fixed parameter, optimized two-stage integrator...
Adaptive multi-stage integrators for optimal energy conservation in molecular simulations
Fernández-Pendás, Mario; Akhmatskaya, Elena; Sanz-Serna, J. M.
2016-12-01
We introduce a new Adaptive Integration Approach (AIA) to be used in a wide range of molecular simulations. Given a simulation problem and a step size, the method automatically chooses the optimal scheme out of an available family of numerical integrators. Although we focus on two-stage splitting integrators, the idea may be used with more general families. In each instance, the system-specific integrating scheme identified by our approach is optimal in the sense that it provides the best conservation of energy for harmonic forces. The AIA method has been implemented in the BCAM-modified GROMACS software package. Numerical tests in molecular dynamics and hybrid Monte Carlo simulations of constrained and unconstrained physical systems show that the method successfully realizes the fail-safe strategy. In all experiments, and for each of the criteria employed, the AIA is at least as good as, and often significantly outperforms the standard Verlet scheme, as well as fixed parameter, optimized two-stage integrators. In particular, for the systems where harmonic forces play an important role, the sampling efficiency found in simulations using the AIA is up to 5 times better than the one achieved with other tested schemes.
Hu, Xiexiaomen; Tutuncu, Azra; Eustes, Alfred; Augustine, Chad
2017-05-01
Enhanced Geothermal Systems (EGS) could potentially use technological advancements in coupled implementation of horizontal drilling and multistage hydraulic fracturing techniques in tight oil and shale gas reservoirs along with improvements in reservoir simulation techniques to design and create EGS reservoirs. In this study, a commercial hydraulic fracture simulation package, Mangrove by Schlumberger, was used in an EGS model with largely distributed pre-existing natural fractures to model fracture propagation during the creation of a complex fracture network. The main goal of this study is to investigate optimum treatment parameters in creating multiple large, planar fractures to hydraulically connect a horizontal injection well and a horizontal production well that are 10,000 ft. deep and spaced 500 ft. apart from each other. A matrix of simulations for this study was carried out to determine the influence of reservoir and treatment parameters on preventing (or aiding) the creation of large planar fractures. The reservoir parameters investigated during the matrix simulations include the in-situ stress state and properties of the natural fracture set such as the primary and secondary fracture orientation, average fracture length, and average fracture spacing. The treatment parameters investigated during the simulations were fluid viscosity, proppant concentration, pump rate, and pump volume. A final simulation with optimized design parameters was performed. The optimized design simulation indicated that high fluid viscosity, high proppant concentration, large pump volume and pump rate tend to minimize the complexity of the created fracture network. Additionally, a reservoir with 'friendly' formation characteristics such as large stress anisotropy, natural fractures set parallel to the maximum horizontal principal stress (SHmax), and large natural fracture spacing also promote the creation of large planar fractures while minimizing fracture complexity.
Finite-time thermodynamics of port-Hamiltonian systems
Delvenne, Jean-Charles; Sandberg, Henrik
2014-01-01
In this paper, we identify a class of time-varying port-Hamiltonian systems that is suitable for studying problems at the intersection of statistical mechanics and control of physical systems. Those port-Hamiltonian systems are able to modify their internal structure as well as their interconnection with the environment over time. The framework allows us to prove the First and Second Laws of thermodynamics, but also lets us apply results from optimal and stochastic control theory to physical systems. In particular, we show how to use linear control theory to optimally extract work from a single heat source over a finite time interval in the manner of Maxwell’s demon. Furthermore, the optimal controller is a time-varying port-Hamiltonian system, which can be physically implemented as a variable linear capacitor and transformer. We also use the theory to design a heat engine operating between two heat sources in finite-time Carnot-like cycles of maximum power, and we compare those two heat engines.
Optimization of squalene extraction from Palm Fatty Acid Distillate (PFAD) in multistage process
Sibuyo, Leah; Widiputri, Diah; Legowo, Evita
2017-01-01
Squalene is a compound widely known as one of the natural antioxidants used in the cosmetic and pharmaceutical industries. As the main source of squalene, which is shark liver oil, is becoming more limited in its availability, attempts have been made to extract squalene from other sources, e.g. from vegetable oils. Research has found that one of the wastes produced by palm oil industry, namely the palm fatty acid distillate (PFAD), contains squalene among other useful compounds. Since Indonesia is one of the largest producers of palm oil, the abundant amount of PFAD becomes very interesting to be a solution in coping with today demand of natural squalene. In this research, the extraction of squalene from PFAD is optimized through a multiple-stage extraction process, where results show a significant increase of squalene yield. Furthermore, the liquid-liquid phase equilibrium data for an extraction using dichloromethane (DCM) were plotted to develop a ternary-phase-diagram between squalene, DCM and free-fatty acids.
A Stochastic Investment Model on a Finite Time Horizon
Tao; Pang
2014-01-01
In this paper,we consider an investment optimization problem on a finite time horizon.One risky and one riskless asset are considered,and transaction costs are ignored.The risky asset prices obey a logarithmic Brownian motion,and interest rates vary according to a Vasicek interest rate model.The goal is to choose optimal investment policies to maximize the expected Hyperbolic Absolute Risk Aversion(HARA)utility of final payoff(wealth).The problem is then reduced to a 1-dimensional stochastic control problem by virtue of the Girsanov transformation.A dynamic programming principle is used to derive the dynamic programming equation(DPE).Explicit solutions are derived under certain conditions.The solutions are then used to derive the optimal investment strategy.
Compositional Finite-Time Stability analysis of nonlinear systems
Tabatabaeipour, Mojtaba; Blanke, Mogens
2014-01-01
for the system but with bounded disturbance. Sufficient conditions for finite-time stability and finite-time boundedness of nonlinear systems as well as a computational method based on sum of squares programming to check the conditions are given. The problem of finite-time stability for a system that consists......This paper, investigates finite-time stability and finite-time boundedness for nonlinear systems with polynomial vector fields. Finite-time stability requires the states of the system to remain a given bounded set in a finite-time interval and finite-time boundedness considers the same problem...... of an interconnection of subsystems is also considered and we show how to decompose the problem into subproblems for each subsystem with coupling constraints. A solution to the problem using sum of squares programming and dual decomposition is presented. The method is demonstrated through some examples....
Finite-Time Singularity Signature of Hyperinflation
Sornette, D; Zhou, W X
2003-01-01
We present a novel analysis extending the recent work of Mizuno et al. [2002] on the hyperinflations of Germany (1920/1/1-1923/11/1), Hungary (1945/4/30-1946/7/15), Brazil (1969-1994), Israel (1969-1985), Nicaragua (1969-1991), Peru (1969-1990) and Bolivia (1969-1985). On the basis of a generalization of Cagan's model of inflation based on the mechanism of ``inflationary expectation'' or positive feedbacks between realized growth rate and people's expected growth rate, we find that hyperinflations can be characterized by a power law singularity culminating at a critical time $t_c$. Mizuno et al.'s double-exponential function can be seen as a discrete time-step approximation of our more general nonlinear ODE formulation of the price dynamics which exhibits a finite-time singular behavior. This extension of Cagan's model, which makes natural the appearance of a critical time $t_c$, has the advantage of providing a well-defined end of the clearly unsustainable hyperinflation regime. We find an excellent and reli...
Glueckstern, P.; Wilson, J.V.; Reed, S.A.
1976-06-01
Design and cost modifications were made to ORNL's Computer Programs MSF-21 and VTE-21 originally developed for the rapid calculation and design optimization of multistage flash (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. The modifications include additional design options to make possible the evaluation of desalting plants based on current technology (the original programs were based on conceptual designs applying advanced and not yet proven technological developments and design features) and new materials and equipment costs updated to mid-1975.
A novel recurrent neural network with finite-time convergence for linear programming.
Liu, Qingshan; Cao, Jinde; Chen, Guanrong
2010-11-01
In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.
Finite-Time Robust Stabilization for Stochastic Neural Networks
Weixiong Jin
2012-01-01
Full Text Available This paper is concerned with the finite-time stabilization for a class of stochastic neural networks (SNNs with noise perturbations. The purpose of the addressed problem is to design a nonlinear stabilizator which can stabilize the states of neural networks in finite time. Compared with the previous references, a continuous stabilizator is designed to realize such stabilization objective. Based on the recent finite-time stability theorem of stochastic nonlinear systems, sufficient conditions are established for ensuring the finite-time stability of the dynamics of SNNs in probability. Then, the gain parameters of the finite-time controller could be obtained by solving a linear matrix inequality and the robust finite-time stabilization could also be guaranteed for SNNs with uncertain parameters. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design method.
Finite-time disturbance attenuation of nonlinear systems
MO LiPo; JIA YingMin; ZHENG ZhiMing
2009-01-01
This paper is devoted to the finite-time disturbance attenuation problem of affine nonlinear systems.Based on the finite time Lyapunov stability theory,some finite-time H_∞ performance criterions are derived.Then the state-feedback control law is designed and the structure of such a controller is investigated.Furthermore,it is shown that the H_∞ controller can also make the closed-loop system satisfy finite-time H_∞ performance for nonlinear homogeneous systems.An example is provided to demonstrate the effectiveness of the presented results.
A unified approach to finite-time hyperbolicity which extends finite-time Lyapunov exponents
Doan, T. S.; Karrasch, D.; Nguyen, T. Y.; Siegmund, S.
A hyperbolicity notion for linear differential equations x˙=A(t)x, t∈[t-,t+], is defined which unifies different existing notions like finite-time Lyapunov exponents (Haller, 2001, [13], Shadden et al., 2005, [24]), uniform or M-hyperbolicity (Haller, 2001, [13], Berger et al., 2009, [6]) and (t-,(t+-t-))-dichotomy (Rasmussen, 2010, [21]). Its relation to the dichotomy spectrum (Sacker and Sell, 1978, [23], Siegmund, 2002, [26]), D-hyperbolicity (Berger et al., 2009, [6]) and real parts of the eigenvalues (in case A is constant) is described. We prove a spectral theorem and provide an approximation result for the spectral intervals.
Blow Up in Finite Time for the Zakharov System
甘在会; 郭柏灵
2009-01-01
@@ In [1],Merle guessed that the solution of Zakharov system always blows up in finite time.In accordance with the guess,in this paper we study the finite time blow-up results for the solution to the Cauchy problem of the generalized Zakharov system with combined power-type nonlinearities in R3:
Bozoev, A. M.; Demidova, E. A.
2016-03-01
At the moment, many fields of Western Siberia are in the later stages of development. In this regard, the multilayer fields are actually involved in the development of hard to recover reserves by conducting well interventions. However, most of these assets may not to be economical profitable without application of horizontal drilling and multi-stage hydraulic fracturing treatment. Moreover, location of frac ports in relative to each other, number of stages, volume of proppant per one stage are the main issues due to the fact that the interference effect could lead to the loss of oil production. The optimal arrangement of horizontal wells with multi-stage hydraulic fracture was defined in this paper. Several analytical approaches have been used to predict the started oil flow rate and chose the most appropriate for field C reservoir J1. However, none of the analytical equations could not take into account the interference effect and determine the optimum number of fractures. Therefore, the simulation modelling was used. Finally, the universal equation is derived for this field C, the reservoir J1. This tool could be used to predict the flow rate of the horizontal well with hydraulic fracturing treatment on the qualitative level without simulation model.
Fleischer, M.; Jacobson, S.
1994-12-31
This paper presents a new empirical approach designed to illustrate the theory developed in Fleischer and Jacobson regarding entropy measures and the finite-time performance of the simulated annealing (SA) algorithm. The theory is tested using several experimental methodologies based on a new structure, generic configuration spaces, and polynomial transformations between NP-hard problems. Both approaches provide several ways to alter the configuration space and its associated entropy measure while preserving the value of the globally optimal solution. This makes it possible to illuminate the extent to which entropy measures impact the finite-time performance of the SA algorithm.
Babaee, Hessam; Farazmand, Mohamad; Haller, George; Sapsis, Themistoklis P.
2017-06-01
High-dimensional chaotic dynamical systems can exhibit strongly transient features. These are often associated with instabilities that have a finite-time duration. Because of the finite-time character of these transient events, their detection through infinite-time methods, e.g., long term averages, Lyapunov exponents or information about the statistical steady-state, is not possible. Here, we utilize a recently developed framework, the Optimally Time-Dependent (OTD) modes, to extract a time-dependent subspace that spans the modes associated with transient features associated with finite-time instabilities. As the main result, we prove that the OTD modes, under appropriate conditions, converge exponentially fast to the eigendirections of the Cauchy-Green tensor associated with the most intense finite-time instabilities. Based on this observation, we develop a reduced-order method for the computation of finite-time Lyapunov exponents (FTLE) and vectors. In high-dimensional systems, the computational cost of the reduced-order method is orders of magnitude lower than the full FTLE computation. We demonstrate the validity of the theoretical findings on two numerical examples.
Babaee, Hessam; Farazmand, Mohamad; Haller, George; Sapsis, Themistoklis P
2017-06-01
High-dimensional chaotic dynamical systems can exhibit strongly transient features. These are often associated with instabilities that have a finite-time duration. Because of the finite-time character of these transient events, their detection through infinite-time methods, e.g., long term averages, Lyapunov exponents or information about the statistical steady-state, is not possible. Here, we utilize a recently developed framework, the Optimally Time-Dependent (OTD) modes, to extract a time-dependent subspace that spans the modes associated with transient features associated with finite-time instabilities. As the main result, we prove that the OTD modes, under appropriate conditions, converge exponentially fast to the eigendirections of the Cauchy-Green tensor associated with the most intense finite-time instabilities. Based on this observation, we develop a reduced-order method for the computation of finite-time Lyapunov exponents (FTLE) and vectors. In high-dimensional systems, the computational cost of the reduced-order method is orders of magnitude lower than the full FTLE computation. We demonstrate the validity of the theoretical findings on two numerical examples.
Finite-time consensus of heterogeneous multi-agent systems
Zhu Ya-Kun; Guan Xin-Ping; Luo Xiao-Yuan
2013-01-01
We investigate the finite-time consensus problem for heterogeneous multi-agent systems composed of first-order and second-order agents.A novel continuous nonlinear distributed consensus protocol is constructed,and finite-time consensus criteria are obtained for the heterogeneous multi-agent systems.Compared with the existing results,the stationary and kinetic consensuses of the heterogeneous multi-agent systems can be achieved in a finite time respectively.Moreover,the leader can be a first-order or a second-order integrator agent.Finally,some simulation examples are employed to verify the efficiency of the theoretical results.
Mandal, Abhishek; Singh, Neera
2017-05-01
Contamination of surface and ground water by pesticides from agricultural runoff and industrial discharge is one of the main causes of aqueous contaminations world over. Biochar, agricultural waste derived highly aromatic substance produced after pyrolysis and carbonification of biomass have exhibited good adsorption capacity for pesticides and can be used to develop on-site bio-purification systems for organic contaminant removal from polluted waters. However, high amounts of adsorbent required in single stage-batch sorption plant increases the cost of water treatment; therefore, multistage plant systems were investigated. Normal (RSBC) and phosphoric acid treated (T-RSBC) rice straw biochars were evaluated for atrazine and imidacloprid sorption and data fitted to the Freundlich isotherm. The adsorption data was modelled to develop single or multi-staged adsorber plants for pesticide removal from water. Both biochars showed significantly high adsorption capacity for imidacloprid and atrazine. Modelling studies using the Freundlich adsorption parameters suggested that the amounts (kg/1000L) of RSBC and T-RSBC for 95% of atrazine removal (10mg/L) in single-, two- and three-staged adsorber plant models were 8.84, 2.44, 1.61kg and 4.47, 1.42, 0.98kg, respectively. Corresponding amounts for 95% imidacloprid removal (10mg/L) were 3.97, 1.22, 0.84kg and 3.98, 1.38, 0.96kg, respectively. Thus, the two-staged model suggested 65-72% reduction in amount of adsorbent required over the single stage model, while the three-staged model suggested 30-34% adsorbent saving over the two-staged plant model. Single and two-staged adsorber plant model findings were validated for atrazine removal using T-RSBC. Results suggested that amounts calculated using modelling studies were fairly accurate. Biochars, as low cost adsorbents for atrazine and imidacloprid removal from contaminated water, can be used to develop low cost adsorber plants based on multiple batch sorption systems for the
Finite-Time Stabilization of Homogeneous Non-Lipschitz Systems
Nawel Khelil
2016-09-01
Full Text Available This paper focuses on the problem of finite-time stabilization of homogeneous, non-Lipschitz systems with dilations. A key contribution of this paper is the design of a virtual recursive Hölder, non-Lipschitz state feedback, which renders the non-Lipschitz systems in the special case dominated by a lower-triangular nonlinear system finite-time stable. The proof is based on a recursive design algorithm developed recently to construct the virtual Hölder continuous, finite-time stabilizer as well as a C1 positive definite and proper Lyapunov function that guarantees finite-time stability of the non-Lipschitz nonlinear systems.
Gadalla, Mohamed; Saghafifar, Mohammad
2016-09-01
One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, single stage desiccant air conditioning systems' coefficient of performance (COP) are relatively low. Therefore, multi-stage solid desiccant air conditioning systems are recommended. In this paper, an integrated double-stage desiccant air conditioning systems and PV/T collector is suggested for hot and humid climates such as the UAE. The results for the PV/T implementation in the double-stage desiccant cooling system are assessed against the PV/T results for a single-stage desiccant air conditioning system. In order to provide a valid comparative evaluation between the single and double stage desiccant air conditioning systems, an identical PV/T module, in terms of dimensions, is incorporated into these systems. The overall required auxiliary air heating is abated by 46.0% from 386.8 MWh to 209.0 MWh by replacing the single stage desiccant air conditioning system with the proposed double stage configuration during June to October. Moreover, the overall averaged solar share during the investigated months for the single and double stage systems are 36.5% and 43.3%.
Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana
2017-01-01
is optimized to utilize the maximum waste heat recovery. The Genetic algorithm and fmincon active-set algorithm are used to optimize the design and operation parameters for the two steam cycles. The optimization aims to find the theoretically optimal combination of the pressure levels and pinch......Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...
2009-08-01
setting in Duc & Siegmund [28]: Definition A.10 (Dynamic partition of IR2). Consider the extended phase space, IR2 × I, associated with the flow...Fluid Dynamics, Cambridge University Press, Cam- bridge, 1967. [8] A. Berger, D. T. Son, and S. Siegmund , Nonautonomous finite-time dynamics, Discrete...28] L. H. Duc and S. Siegmund , Hyperbolicity and invariant manifolds for planar nonau- tonomous systems on finite time intervals, Int. J. Bif. Chaos
Quantification of the degree of mixing in chaotic micromixers using finite time Lyapunov exponents
Sarkar, Aniruddha; Harting, Jens
2010-01-01
Chaotic micromixers such as the staggered herringbone mixer developed by Stroock et al. allow efficient mixing of fluids even at low Reynolds number by repeated stretching and folding of the fluid interfaces. The ability of the fluid to mix well depends on the rate at which "chaotic advection" occurs in the mixer. An optimization of mixer geometries based on the quantification of chaotic advection is a non trivial task which is often performed by time consuming and expensive trial and error experiments. In this paper it is shown that the concept of finite-time Lyapunov exponents is a suitable tool to provide a quantitative measure of the chaotic advection of the flow. By performing lattice Boltzmann simulations of the flow inside a mixer geometry, introducing massless and non-interacting tracer particles and following their trajectories the finite time Lyapunov exponents can be calculated. The applicability of the method is demonstrated by optimizing the geometrical structure of the staggered herringbone mixe...
Triangle Interception Scenario: A Finite-Time Guidance Approach
Yang Guo
2016-01-01
Full Text Available Considering an aircraft threatened by an interceptor, one of the effective penetration strategies is to release a Defender from the aircraft to confront the interceptor. In this case, the aircraft, the Defender, and the interceptor constitute the three-body guidance relationship, and the cooperation of the aircraft and its Defender to achieve the best tactical effects turns into a concerned problem. This paper studies the triangle interception guidance problem via the finite-time theory. The paper presents linear system Input-Output Finite-Time Stabilization (IO-FTS method. The sufficient conditions of the linear system, being IO-FTS, under Finite-Time Boundedness (FTB constraint are proposed, by which the state feedback controllers design method is obtained, via Linear Matrix Inequalities (LMIs. The triangle interception guidance problems are studied in three different cases, where the proposed methods are applied to the guidance design. The simulation results illustrate the effectiveness of the proposed methods.
Rapier, Pascal M.
1982-01-01
A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.
Local dimension and finite time prediction in coupled map lattices
P Muruganandam; G Francisco
2005-03-01
Forecasting, for obvious reasons, often become the most important goal to be achieved. For spatially extended systems (e.g. atmospheric system) where the local nonlinearities lead to the most unpredictable chaotic evolution, it is highly desirable to have a simple diagnostic tool to identify regions of predictable behaviour. In this paper, we discuss the use of the bred vector (BV) dimension, a recently introduced statistics, to identify the regimes where a finite time forecast is feasible. Using the tools from dynamical systems theory and Bayesian modelling, we show the finite time predictability in two-dimensional coupled map lattices in the regions of low BV dimension.
Occurrence of discontinuities in the performance of finite-time quantum Otto cycles
Zheng, Yuanjian; Hänggi, Peter; Poletti, Dario
2016-07-01
We study a quantum Otto cycle in which the strokes are performed in finite time. The cycle involves energy measurements at the end of each stroke to allow for the respective determination of work. We then optimize for the work and efficiency of the cycle by varying the time spent in the different strokes and find that the optimal value of the ratio of time spent on each stroke goes through sudden changes as the parameters of this cycle vary continuously. The position of these discontinuities depends on the optimized quantity under consideration such as the net work output or the efficiency.
Modeling and optimization of unbalanced multi-stage logistic system%非平衡多阶段物流系统建模与优化方法
徐杭; 徐榕; 叶庆泰
2005-01-01
To decompose an unbalanced multi-stage logistic system to multiple independent single-stage logistic systems,a new notion of parameterized interface distribution is presented.For encoding the logistic pattern on each stage,the Prüfer number is used.With the improved decoding procedure,any Prüfer number produced stochastically can be decoded to a feasible logistic pattern,which can match with the capacities of the nodes of the logistic system.With these two innovations,a new modeling method based on parameterized interface distribution and the Prüfer number coding is put forward.The corresponding genetic algorithm,named as PIP-GA,can find better solutions and require less computational time than st-GA.Although requiring a little more consumption of memory,PIP-GA is still an efficient and robust method in the modeling and optimization of unbalanced multi-stage logistic systems.%首先提出了参数化界面分布的新概念,将一个非平衡多阶段物流系统转化为多个相互独立的单一阶段物流系统,然后采用Prüfer数对每个阶段上的物流模式进行编码.通过一种改进的解码方法,任何一个随机产生的Prüfer数都能够被解码为一个与物流系统的节点容量相匹配的可行的物流模式.基于这2点创新,建立了一种新的基于参数化界面分布和Prüfer数编码的系统建模方法,相应的遗传算法称为PIP-GA方法.与st-GA方法相比,PIP-GA不但具有更好的优化结果,而且需要的计算时间更少;虽然所需的存储空间有所增加,PIP-GA仍然是一种有效而稳健的非平衡多阶段物流系统建模与优化方法.
M. Branicki
2010-01-01
Full Text Available We consider issues associated with the Lagrangian characterisation of flow structures arising in aperiodically time-dependent vector fields that are only known on a finite time interval. A major motivation for the consideration of this problem arises from the desire to study transport and mixing problems in geophysical flows where the flow is obtained from a numerical solution, on a finite space-time grid, of an appropriate partial differential equation model for the velocity field. Of particular interest is the characterisation, location, and evolution of transport barriers in the flow, i.e. material curves and surfaces. We argue that a general theory of Lagrangian transport has to account for the effects of transient flow phenomena which are not captured by the infinite-time notions of hyperbolicity even for flows defined for all time. Notions of finite-time hyperbolic trajectories, their finite time stable and unstable manifolds, as well as finite-time Lyapunov exponent (FTLE fields and associated Lagrangian coherent structures have been the main tools for characterising transport barriers in the time-aperiodic situation. In this paper we consider a variety of examples, some with explicit solutions, that illustrate in a concrete manner the issues and phenomena that arise in the setting of finite-time dynamical systems. Of particular significance for geophysical applications is the notion of flow transition which occurs when finite-time hyperbolicity is lost or gained. The phenomena discovered and analysed in our examples point the way to a variety of directions for rigorous mathematical research in this rapidly developing and important area of dynamical systems theory.
Approximating the Finite-Time Ruin Probability under Interest Force
Brekelmans, R.C.M.; De Waegenaere, A.M.B.
2000-01-01
We present an algorithm to determine both a lower and an upper bound for the finite-time probability of ruin for a risk process with constant interest force. We split the time horizon into smaller intervals of equal length and consider the probability of ruin in case premium income for a time interv
Finite-time Control of One-link Mechanical System
Matoba, Shunsuke; Nakamura, Nami; Nakamura, Hisakazu; Akiba, Hideyuki
This paper considers finite-time position control of an one-link mechanical system. The system is modeled by discontinuous differential equations. In this paper, we prove that the Nakamura's local homogeneous controller based on a control Lyapunov function is valid to the position control of the robot manipulators, and show the effectiveness of the controller by experiments.
Finite-Time Stability of Nonautonomous Delayed Systems
孙武军; 孔德兴
2003-01-01
The finite-time stability to linear discontinuous time-varying delayed system was investigated. By applying the method of upper and lower solutions, some sufficient conditions of this kind of stability were obtained.Furthermore, it also developed a monotone iterative technique for obtaining solutions which are obtained as limits of monotone sequences
Finite-time performance analysis for genetic algorithms
无
2002-01-01
Finite-time performance of genetic algorithm with elitist operator in finite solution space is studied, and the relationship between evolution generation and the quality of the solution found best so far is analyzed. The estimating formulations of the expectation value as well as upper bound and lower bound for the evolution generation earliest achieving specific performance are provided.
Tzu-An Chiang
2014-01-01
Full Text Available This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA and three particle swarm optimization (PSO algorithms: the inertia weight method (PSOA_IWM, VMax method (PSOA_VMM, and constriction factor method (PSOA_CFM, which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did.
Chiang, Tzu-An; Che, Z H; Cui, Zhihua
2014-01-01
This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight method (PSOA_IWM), V(Max) method (PSOA_VMM), and constriction factor method (PSOA_CFM), which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did.
多级离心风机的气动优化设计%Aerodynamic optimization design of multistage centrifugal fan
石硕; 张晓非; 张国成
2012-01-01
The optimization of fan plays an important role in energy saving and emission reduction of our industrial and mining enterprises. Based on the theory of aerodynamic performance calculation, in view of inadequate suction and poor efficiency of multistage centrifugal blower, the paper carries out aerodynamic optimization design. In the conditions of limiting the cost and volume of the fan, through the analysis of the structure and aerodynamic performance of the single stage, the paper analyzes the impact loss of impeller, equivalent conical angle, pre-rotation, resonance frequency and other factors. The aerodynamic re-count result shows that the pressure increases by 15. 3% when a blade is added to the impeller and the return-channel and the return-channel size is changed.%风机的优化改造,对我国工矿企业的节能减排有重大的意义.文章基于通风机气动计算基本理论,针对原多级离心风机吸力不足,效率较差的特点,对其进行优化设计.在制造成本,风机体积等改进限制条件下,通过研究单级的结构和气动性能,分析了叶轮进口气流损失、当量扩张角、预旋、频率共振等因素的影响.经气动复算,结果表明,对叶轮和回流器各增加一片叶片并改变回流器尺寸后,整机压力提高15.3％.
Branicki, Michal
2009-01-01
We consider issues associated with the Lagrangian characterisation of flow structures arising in aperiodically time-dependent vector fields that are only known on a finite time interval. A major motivation for the consideration of this problem arises from the desire to study transport and mixing problems in geophysical flows where the flow is obtained from a numerical solution, on a finite space-time grid, of an appropriate partial differential equation model for the velocity field. Of particular interest is the characterisation, location, and evolution of "transport barriers" in the flow, i.e. material curves and surfaces. We argue that a general theory of Lagrangian transport has to account for the effects of transient flow phenomena which are not captured by the infinite-time notions of hyperbolicity even for flows defined for all time. Notions of finite-time hyperbolic trajectories, their finite time stable and unstable manifolds, as well as finite-time Lyapunov exponent (FTLE) fields and associated Lagra...
Multistage Pressure-Retarded Osmosis
Bharadwaj, Devesh; Fyles, Thomas M.; Struchtrup, Henning
2016-10-01
One promising sustainable energy source is the chemical potential difference between salt and freshwater. The membrane process of pressure-retarded osmosis (PRO) has been the most widely investigated means to harvest salinity gradient energy. In this report, we analyse the thermodynamic efficiency of multistage PRO systems to optimize energy recovery from a salinity gradient. We establish a unified description of the efficiencies of the component pumps (P), turbines (T), pressure exchangers (PX), and membrane modules (M) and exploit this model to determine the maximum available work with respect to the volume of the brine produced, the volume of the sea water consumed, or the volume of the freshwater that permeates the membrane. In an idealized series configuration of 1-20 modules (P-M-T), the three optimization conditions have significantly different intermediate operating pressures in the modules, but demonstrate that multistage systems can recover a significantly larger fraction of the available work compared to single-stage PRO. The biggest proportional advantage occurs for one to three modules in series. The available work depends upon the component efficiencies, but the proportional advantage of multistage PRO is retained. We also optimize one- and two-stage PX-M-T and P-M-T configurations with respect to the three volume parameters, and again significantly different optimal operating conditions are found. PX-M-T systems are more efficient than P-M-T systems, and two-stage systems have efficiency advantages that transcend assumed component efficiencies. The results indicate that overall system design with a clear focus on critical optimization parameters has the potential to significantly improve the near-term practical feasibility of PRO.
Hofmann, Tamás; Nebehaj, Esztella; Albert, Levente
2015-05-08
The aim of the present work was the high-performance liquid chromatographic separation and multistage mass spectrometric characterization of the polyphenolic compounds of beech bark, as well as the extraction optimization of the identified compounds. Beech is a common and widely used material in the wood industry, yet its bark is regarded as a by-product. Using appropriate extraction methods these compounds could be extracted and utilized in the future. Different extraction methods (stirring, sonication, microwave assisted extraction) using different solvents (water, methanol:water 80:20 v/v, ethanol:water 80:20 v/v) and time/temperature schedules have been compared basing on total phenol contents (Folin-Ciocâlteu) and MRM peak areas of the identified compounds to investigate optimum extraction efficiency. Altogether 37 compounds, including (+)-catechin, (-)-epicatechin, quercetin-O-hexoside, taxifolin-O-hexosides (3), taxifolin-O-pentosides (4), B-type (6) and C-type (6) procyanidins, syringic acid- and coumaric acid-di-O-glycosides, coniferyl alcohol- and sinapyl alcohol-glycosides, as well as other unknown compounds with defined [M-H](-) m/z values and MS/MS spectra have been tentatively identified. The choice of the method, solvent system and time/temperature parameters favors the extraction of different types of compounds. Pure water can extract compounds as efficiently as mixtures containing organic solvents under high-pressure and high temperature conditions. This supports the implementation of green extraction methods in the future. Extraction times that are too long and high temperatures can result in the decrease of the concentrations. Future investigations will focus on the evaluation of the antioxidant capacity and utilization possibilities of the prepared extracts.
多级离心泵流场优化及验证%Flow Field Optimization and Experimental Verification of Multi-stage Centrifugal Pumps
张权; 周盼; 率志君; 李玩幽
2014-01-01
Fluid exciting force is one of the important vibration sources of centrifugal pump which transmits outward through the pump shell and bearings. So, flow field optimization can effectively reduce the fluid exciting forces and vibration sources to improve the centrifugal pump’s vibration characteristic. In this paper, reduction of vibration and noise of a multi-stage centrifugal pump is studied. To begin with, CFD simulation technology is applied to optimize the flow field of the pump in the two aspects of cutting impeller and changing the shape of the volute. Then, the pressure pulsations and flow field excitation forces before and after the optimization are compared and analyzed. Afterwards, the method of cutting impeller is selected considering the requirements of processing technology. Finally the effectiveness is indirectly verified by analyzing the change of vibration response of the pump’s seats. The results show that cutting impeller and changing the tongue shape can reduce the pressure pulsation and fluid exciting force of the pump under blades’frequencies and octave frequencies, and the rear-seat vibration response after the cutting is reduced by 4 dB.%流体激励力是离心泵主要振源之一。通过对离心泵流场进行优化，可有效降低泵组流体激励力，减小离心泵振动。以多级离心泵的减振降噪为研究目的，运用CFD仿真技术从切割叶轮及改变蜗壳形状两个方面对流场进行优化。通过对比优化前后压力脉动以及流场激励力变化，说明优化情况。最后考虑加工工艺要求，选择切割叶轮的优化方法，并通过机脚振动响应的变化间接验证改善效果。结果表明：切割叶轮与改变隔舌形状对离心泵叶频及其倍频下的压力脉动与流体激励力都有减小，切割叶轮后机脚响应降低了4 dB。
Finite Time Blowup in a Realistic Food-Chain Model
Parshad, Rana
2013-05-19
We investigate a realistic three-species food-chain model, with generalist top predator. The model based on a modified version of the Leslie-Gower scheme incorporates mutual interference in all the three populations and generalizes several other known models in the ecological literature. We show that the model exhibits finite time blowup in certain parameter range and for large enough initial data. This result implies that finite time blowup is possible in a large class of such three-species food-chain models. We propose a modification to the model and prove that the modified model has globally existing classical solutions, as well as a global attractor. We reconstruct the attractor using nonlinear time series analysis and show that it pssesses rich dynamics, including chaos in certain parameter regime, whilst avoiding blowup in any parameter regime. We also provide estimates on its fractal dimension as well as provide numerical simulations to visualise the spatiotemporal chaos.
Finite time convergent control using terminal sliding mode
Yiguang HONG; Guowu YANG; Daizhan CHENG; Sarah SPURGEON
2004-01-01
A method for terminal sliding mode control design is discussed. As we know, one of the strong points of terminal sliding mode control is its finite-time convergence to a given equilibrium of the system under consideration, which may be useful in specific applications. The proposed method, different from many existing terminal sliding model control design methods, is studied, and then feedback laws are designed for a class of nonlinear systems, along with illustrative examples.
Finite-time singularity in the evolution of hyperinflation episodes
Szybisz, Martin A.; Leszek Szybisz
2008-01-01
A model proposed by Sornette, Takayasu, and Zhou for describing hyperinflation regimes based on adaptive expectations expressed in terms of a power law which leads to a finite-time singularity is revisited. It is suggested to express the price index evolution explicitly in terms of the parameters introduced along the theoretical formulation avoiding any combination of them used in the original work. This procedure allows to study unambiguously the uncertainties of such parameters when an erro...
Finite Time and Exact Time Controllability on Compact Manifolds
Jouan, Philippe
2010-01-01
It is first shown that a smooth controllable system on a compact manifold is finite time controllable. The technique of proof is close to the one of Sussmann's orbit theorem, and no rank condition is required. This technique is also used to give a new and elementary proof of the equivalence between controllability for essentially bounded inputs and for piecewise constant ones. Two sufficient conditions for controllability at exact time on a compact manifold are then stated. Some applications,...
Finite time singularities in a class of hydrodynamic models
Ruban, V.P.; Podolsky, D.I.; Juul Rasmussen, J.
2001-01-01
), a finite value of alpha results in a finite energy for a singular, frozen-in vortex filament. This property allows us to study the dynamics of such filaments without the necessity of a regularization procedure for short length scales. The linear analysis of small symmetrical deviations from a stationary...... analytically. They describe the formation of a finite time singularity, with all length scales decreasing like (t*-t)(1/(2-alpha)), where t* is the singularity time....
Arbitrary Finite-time Tracking Control for Magnetic Levitation Systems
Xuan-Toa Tran
2014-10-01
Full Text Available In this paper, an arbitrary finite-time tracking control (AFTC method is developed for magnetic levitation systems with uncertain dynamics and external disturbances. By introducing a novel augmented sliding-mode manifold function, the proposed method can eliminate the singular problem in traditional terminal sliding-mode control, as well as the reaching-phase problem. Moreover, the tracking errors can reach the reference value with faster convergence and better tracking precision in arbitrarily determined finite time. In addition, a fuzzy-arbitrary finite-time tracking control (F-AFTC scheme that combines a fuzzy technique with AFTC to enhance the robustness and sliding performance is also proposed. A fuzzy logic system is used to replace the discontinuous control term. Thus, the chattering phenomenon is resolved without degrading the tracking performance. The stability of the closed-loop system is guaranteed by the Lyapunov theory. Finally, the effectiveness of the proposed methods is illustrated by simulation and experimental study in a real magnetic levitation system.
Finite-Time Singularities in $k=0$ FLRW Cosmologies
Kohli, Ikjyot Singh
2015-01-01
In this paper, we consider a spatially flat FLRW cosmological model with matter obeying a barotropic equation of state $p = w \\mu$, $-1
Arbitrary Finite-time Tracking Control for Magnetic Levitation Systems
Xuan-Toa Tran
2014-10-01
Full Text Available In this paper, an arbitrary finite-time tracking control (AFTC method is developed for magnetic levitation systems with uncertain dynamics and external disturbances. By introducing a novel augmented sliding- mode manifold function, the proposed method can eliminate the singular problem in traditional terminal sliding-mode control, as well as the reaching-phase problem. Moreover, the tracking errors can reach the reference value with faster convergence and better tracking precision in arbitrarily determined finite time. In addition, a fuzzy-arbitrary finite-time tracking control (F- AFTC scheme that combines a fuzzy technique with AFTC to enhance the robustness and sliding performance is also proposed. A fuzzy logic system is used to replace the discontinuous control term. Thus, the chattering phenomenon is resolved without degrading the tracking performance. The stability of the closed-loop system is guaranteed by the Lyapunov theory. Finally, the effectiveness of the proposed methods is illustrated by simulation and experimental study in a real magnetic levitation system.
A finite-time exponent for random Ehrenfest gas
Moudgalya, Sanjay; Chandra, Sarthak [Indian Institute of Technology, Kanpur 208016 (India); Jain, Sudhir R., E-mail: srjain@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)
2015-10-15
We consider the motion of a system of free particles moving on a plane with regular hard polygonal scatterers arranged in a random manner. Calling this the Ehrenfest gas, which is known to have a zero Lyapunov exponent, we propose a finite-time exponent to characterize its dynamics. As the number of sides of the polygon goes to infinity, when polygon tends to a circle, we recover the usual Lyapunov exponent for the Lorentz gas from the exponent proposed here. To obtain this result, we generalize the reflection law of a beam of rays incident on a polygonal scatterer in a way that the formula for the circular scatterer is recovered in the limit of infinite number of vertices. Thus, chaos emerges from pseudochaos in an appropriate limit. - Highlights: • We present a finite-time exponent for particles moving in a plane containing polygonal scatterers. • The exponent found recovers the Lyapunov exponent in the limit of the polygon becoming a circle. • Our findings unify pseudointegrable and chaotic scattering via a generalized collision rule. • Stretch and fold:shuffle and cut :: Lyapunov:finite-time exponent :: fluid:granular mixing.
Robust finite time observer design for multicellular converters
Defoort, Michael; Djemai, Mohamed; Floquet, Thierry; Perruquetti, Wilfrid
2011-11-01
In this article, a nonlinear finite time observer is designed for multicellular converters. The aim is to estimate the capacitor voltages by taking into account the hybrid behaviour of the converter. This article extends the validity of the strong Lyapunov function, proposed in Moreno and Osorio (Moreno, J., and Osorio, M. (2008), 'A Lyapunov Approach to Second Order Sliding Mode Controllers and Observers', in Proceedings of the IEEE Conference on Decision and Control, New Orleans, USA, pp. 2856-2861), in order to deeply study the reaching time estimation and robustness of the homogeneous finite time observer given in Perruquetti et al. (Perruquetti, W., Floquet, T., and Moulay, E. (2008), 'Finite Time Observers: Application to Secure Communication', IEEE Transactions on Automatic Control, 53, 356-360). The proposed approach enables the stabilisation of the observation errors in spite of the presence of perturbations and uncertainties. Some simulations and comparisons with the super-twisting sliding mode observer highlight the efficiency of the proposed strategy.
Multistage Campaigning in Social Networks
Farajtabar, Mehrdad; Harati, Sahar; Song, Le; Zha, Hongyuan
2016-01-01
We consider the problem of how to optimize multi-stage campaigning over social networks. The dynamic programming framework is employed to balance the high present reward and large penalty on low future outcome in the presence of extensive uncertainties. In particular, we establish theoretical foundations of optimal campaigning over social networks where the user activities are modeled as a multivariate Hawkes process, and we derive a time dependent linear relation between the intensity of exogenous events and several commonly used objective functions of campaigning. We further develop a convex dynamic programming framework for determining the optimal intervention policy that prescribes the required level of external drive at each stage for the desired campaigning result. Experiments on both synthetic data and the real-world MemeTracker dataset show that our algorithm can steer the user activities for optimal campaigning much more accurately than baselines.
Song, Haiyu; Yu, Li; Zhang, Dan; Zhang, Wen-An
2012-12-01
This paper is concerned with the finite-time quantized H∞ control problem for a class of discrete-time switched time-delay systems with time-varying exogenous disturbances. By using the sector bound approach and the average dwell time method, sufficient conditions are derived for the switched system to be finite-time bounded and ensure a prescribed H∞ disturbance attenuation level, and a mode-dependent quantized state feedback controller is designed by solving an optimization problem. Two illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.
Geng Jie
2014-08-01
Full Text Available This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system (RCS. Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time sliding mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency (PWPF modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on–off switching-states of RCS thrusters. Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system.
Geng Jie; Sheng Yongzhi; Liu Xiangdong
2014-01-01
This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system (RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time slid-ing mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency (PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on-off switching-states of RCS thrusters. Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system.
Korayem, M H; Nekoo, S R
2015-01-01
This article investigates finite-time optimal and suboptimal controls for time-varying systems with state and control nonlinearities. The state-dependent Riccati equation (SDRE) controller was the main framework. A finite-time constraint imposed on the equation changes it to a differential equation, known as the state-dependent differential Riccati equation (SDDRE) and this equation was applied to the problem reported in this study that provides general formulation and stability analysis. The following four solution methods were developed for solving the SDDRE; backward integration, state transition matrix (STM) and the Lyapunov based method. In the Lyapunov approach, both positive and negative definite solutions to related SDRE were used to provide suboptimal gain for the SDDRE. Finite-time suboptimal control is applied for robotic manipulator, as finite-time constraint strongly decreases state error and operation time. General state-dependent coefficient (SDC) parameterizations for rigid and flexible joint arms (prismatic or revolute joints) are introduced. By including nonlinear control inputs in the formulation, the actuator׳s limits can be inserted directly to the state-space equation of a manipulator. A finite-time SDRE was implemented on a 6R manipulator both in theory and experimentally. And a reduced 3R arm was modeled and tested as a flexible joint robot (FJR). Evaluations of load carrying capacity and operation time were investigated to assess the capability of this approach, both of which showed significant improvement.
Hyperbolic neighborhoods as organizers of finite-time exponential stretching
Balasuriya, Sanjeeva; Ouellette, Nicholas
2016-11-01
Hyperbolic points and their unsteady generalization, hyperbolic trajectories, drive the exponential stretching that is the hallmark of nonlinear and chaotic flow. Typical experimental and observational velocity data is unsteady and available only over a finite time interval, and in such situations hyperbolic trajectories will move around in the flow, and may lose their hyperbolicity at times. Here we introduce a way to determine their region of influence, which we term a hyperbolic neighborhood, which marks fluid elements whose dynamics are instantaneously dominated by the hyperbolic trajectory. We establish, using both theoretical arguments and numerical verification from model and experimental data, that the hyperbolic neighborhoods profoundly impact Lagrangian stretching experienced by fluid elements. In particular, we show that fluid elements traversing a flow experience exponential boosts in stretching while within these time-varying regions, that greater residence time within hyperbolic neighborhoods is directly correlated to larger Finite-Time Lyapunov Exponent (FTLE) values, and that FTLE diagnostics are reliable only when the hyperbolic neighborhoods have a geometrical structure which is regular in a specific sense. Future Fellowship Grant FT130100484 from the Australian Research Council (SB), and a Terman Faculty Fellowship from Stanford University (NO).
MULTISTAGE FLUIDIZED BED REACTOR
Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.
1959-11-01
A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.
Finite Time Analysis of a Tri-Generation Cycle
Brian Agnew
2015-06-01
Full Text Available A review of the literature indicates that current tri-generation cycles show low thermal performance, even when optimised for maximum useful output. This paper presents a Finite Time analysis of a tri-generation cycle that is based upon coupled power and refrigeration Carnot cycles. The analysis applies equally well to Stirling cycles or any cycle that exhibits isothermal heat transfer with the environment and is internally reversible. It is shown that it is possible to obtain a significantly higher energy utilisation factor with this type of cycle by considering the energy transferred during the isothermal compression and expansion processes as useful products thus making the energy utilisation larger than the enthalpy drop of the working fluid of the power cycle. The cycle is shown to have the highest energy utilisation factor when energy is supplied from a low temperature heat source and in this case the output is biased towards heating and cooling.
Sliding mode control method having terminal convergence in finite time
Venkataraman, Subramanian T. (Inventor); Gulati, Sandeep (Inventor)
1994-01-01
An object of this invention is to provide robust nonlinear controllers for robotic operations in unstructured environments based upon a new class of closed loop sliding control methods, sometimes denoted terminal sliders, where the new class will enforce closed-loop control convergence to equilibrium in finite time. Improved performance results from the elimination of high frequency control switching previously employed for robustness to parametric uncertainties. Improved performance also results from the dependence of terminal slider stability upon the rate of change of uncertainties over the sliding surface rather than the magnitude of the uncertainty itself for robust control. Terminal sliding mode control also yields improved convergence where convergence time is finite and is to be controlled. A further object is to apply terminal sliders to robot manipulator control and benchmark performance with the traditional computed torque control method and provide for design of control parameters.
GPU and APU computations of Finite Time Lyapunov Exponent fields
Conti, Christian; Rossinelli, Diego; Koumoutsakos, Petros
2012-03-01
We present GPU and APU accelerated computations of Finite-Time Lyapunov Exponent (FTLE) fields. The calculation of FTLEs is a computationally intensive process, as in order to obtain the sharp ridges associated with the Lagrangian Coherent Structures an extensive resampling of the flow field is required. The computational performance of this resampling is limited by the memory bandwidth of the underlying computer architecture. The present technique harnesses data-parallel execution of many-core architectures and relies on fast and accurate evaluations of moment conserving functions for the mesh to particle interpolations. We demonstrate how the computation of FTLEs can be efficiently performed on a GPU and on an APU through OpenCL and we report over one order of magnitude improvements over multi-threaded executions in FTLE computations of bluff body flows.
Onsager coefficients of a finite-time Carnot cycle.
Izumida, Yuki; Okuda, Koji
2009-08-01
We study a finite-time Carnot cycle of a weakly interacting gas which we can regard as a nearly ideal gas in the limit of T(h)-T(c) --> 0 where T(h) and T(c) are the temperatures of the hot and cold heat reservoirs, respectively. In this limit, we can assume that the cycle is working in the linear-response regime and can calculate the Onsager coefficients of this cycle analytically using the elementary molecular kinetic theory. We reveal that these Onsager coefficients satisfy the so-called tight-coupling condition and this fact explains why the efficiency at the maximal power eta(max) of this cycle can attain the Curzon-Ahlborn efficiency from the viewpoint of the linear-response theory.
Refining and classifying finite-time Lyapunov exponent ridges
Allshouse, Michael R
2015-01-01
While more rigorous and sophisticated methods for identifying Lagrangian based coherent structures exist, the finite-time Lyapunov exponent (FTLE) field remains a straightforward and popular method for gaining some insight into transport by complex, time-dependent two-dimensional flows. In light of its enduring appeal, and in support of good practice, we begin by investigating the effects of discretization and noise on two numerical approaches for calculating the FTLE field. A practical method to extract and refine FTLE ridges in two-dimensional flows, which builds on previous methods, is then presented. Seeking to better ascertain the role of an FTLE ridge in flow transport, we adapt an existing classification scheme and provide a thorough treatment of the challenges of classifying the types of deformation represented by an FTLE ridge. As a practical demonstration, the methods are applied to an ocean surface velocity field data set generated by a numerical model.
Finite-time Consensus for Nonlinear Multi-agent Systems with Fixed Topologies
Shang, Yilun
2009-01-01
In this paper, we study finite-time state consensus problems for continuous nonlinear multi-agent systems. Building on the theory of finite-time Lyapunov stability, we propose sufficient criteria which guarantee the system to reach a consensus in finite time, provided that the underlying directed network contains a spanning tree. Novel finite-time consensus protocols are introduced as examples for applying the criteria. Simulations are also presented to illustrate our theoretical results.
Finite-Time Adaptive Synchronization of a New Hyperchaotic System with Uncertain Parameters
Ma Yongguang
2014-01-01
Full Text Available This paper presents a finite-time adaptive synchronization strategy for a class of new hyperchaotic systems with unknown slave system’s parameters. Based on the finite-time stability theory, an adaptive control law is derived to make the states of the new hyperchaotic systems synchronized in finite-time. Numerical simulations are presented to show the effectiveness of the proposed finite time synchronization scheme.
Champion, Billy Ray
Energy Conservation Measure (ECM) project selection is made difficult given real-world constraints, limited resources to implement savings retrofits, various suppliers in the market and project financing alternatives. Many of these energy efficient retrofit projects should be viewed as a series of investments with annual returns for these traditionally risk-averse agencies. Given a list of ECMs available, federal, state and local agencies must determine how to implement projects at lowest costs. The most common methods of implementation planning are suboptimal relative to cost. Federal, state and local agencies can obtain greater returns on their energy conservation investment over traditional methods, regardless of the implementing organization. This dissertation outlines several approaches to improve the traditional energy conservations models. . Any public buildings in regions with similar energy conservation goals in the United States or internationally can also benefit greatly from this research. Additionally, many private owners of buildings are under mandates to conserve energy e.g., Local Law 85 of the New York City Energy Conservation Code requires any building, public or private, to meet the most current energy code for any alteration or renovation. Thus, both public and private stakeholders can benefit from this research. . The research in this dissertation advances and presents models that decision-makers can use to optimize the selection of ECM projects with respect to the total cost of implementation. A practical application of a two-level mathematical program with equilibrium constraints (MPEC) improves the current best practice for agencies concerned with making the most cost-effective selection leveraging energy services companies or utilities. The two-level model maximizes savings to the agency and profit to the energy services companies (Chapter 2). An additional model presented leverages a single congressional appropriation to implement ECM
梁涛; 李歧强; 丁然
2011-01-01
针对一类带批量分割的多级批处理调度典型问题的特点,提出一种由下而上的由组织优化方法.模拟人类群体"业务办理"机制,构建了带批量分割的批处理过程调度的由组织优化模型,分析了由批次转换和批量分割引起的复杂性,提出了基于友好度的由组织选择策略和基于最小响应的批量分割策略,在此好基接础上,给出了由组织调度优化算法,该方法能够在短时间内获得问题的最优解或近优解,并通过调度实例求解结果验证了该方法的有效性和优越性.%A bottom-up self-organizing approach is presented to optimize a kind of batch scheduling problems with batch splitting in multistage production processes. Firstly, inspired by people's business-processing activities, a self-organizing optimization model is built up for the scheduling of multistage batch processes with batch splitting. Secondly, the complexity resulted from sequence-dependent changeovers and batch splitting is analyzed. Then, a friendship-based selection strategy and a batch splitting strategy based on least response are introduced in detail. Based on the strategies, a self-organizing scheduling optimization algorithm is proposed for the given model. The presented approach can obtain optimal solutions or near-optimal solutions in a short time when solving problems. Finally, numerical examples show the effectiveness and the superiority of this approach.
Finite-time master-slave synchronization and parameter identification for uncertain Lurie systems.
Wang, Tianbo; Zhao, Shouwei; Zhou, Wuneng; Yu, Weiqin
2014-07-01
This paper investigates the finite-time master-slave synchronization and parameter identification problem for uncertain Lurie systems based on the finite-time stability theory and the adaptive control method. The finite-time master-slave synchronization means that the state of a slave system follows with that of a master system in finite time, which is more reasonable than the asymptotical synchronization in applications. The uncertainties include the unknown parameters and noise disturbances. An adaptive controller and update laws which ensures the synchronization and parameter identification to be realized in finite time are constructed. Finally, two numerical examples are given to show the effectiveness of the proposed method.
Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems.
Kanno, Kazutaka; Uchida, Atsushi
2014-03-01
We introduce a method for the calculation of finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems. We apply the method to the Mackey-Glass model with time-delayed feedback. We investigate the standard deviation of the probability distribution of the finite-time Lyapunov exponents when the finite time or the delay time is changed. It is found that the standard deviation decreases in a power-law scaling with the exponent ∼0.5 as the finite time or the delay time is increased. Similar results are obtained for the finite-time Lyapunov spectrum.
Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer
Xuzhong Wu
2015-01-01
Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.
Effects of Finite-time Singularities on Gravitational Waves
Kleidis, K
2016-01-01
We analyze the impact of finite-time singularities on gravitational waves, in the context of $F(R)$ gravity. We investigate which singularities are allowed to occur during the inflationary era, when gravitational waves are considered, and we discuss the quantitative implications of each allowed singularity. As we show, only a pressure singularity, the so-called Type II and also a Type IV singularity are allowed to occur during the inflationary era. In the case of a Type II, the resulting amplitude of the gravitational wave is zero or almost zero, hence this pressure singularity has a significant impact on the primordial gravitational waves. The case of a Type IV singularity is more interesting since as we show, the singularity has no effect on the amplitude of the gravitational waves. Therefore, this result combined with the fact that the Type IV singularity affects only the dynamics of inflation, leads to the conclusion that the Universe passes smoothly through a Type IV singularity.
Finite time convergent learning law for continuous neural networks.
Chairez, Isaac
2014-02-01
This paper addresses the design of a discontinuous finite time convergent learning law for neural networks with continuous dynamics. The neural network was used here to obtain a non-parametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties was the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on discontinuous algorithms was used to adjust the weights of the neural network. The adaptive algorithm was derived by means of a non-standard Lyapunov function that is lower semi-continuous and differentiable in almost the whole space. A compensator term was included in the identifier to reject some specific perturbations using a nonlinear robust algorithm. Two numerical examples demonstrated the improvements achieved by the learning algorithm introduced in this paper compared to classical schemes with continuous learning methods. The first one dealt with a benchmark problem used in the paper to explain how the discontinuous learning law works. The second one used the methane production model to show the benefits in engineering applications of the learning law proposed in this paper.
Finite time singularities in a class of hydrodynamic models
Ruban, V P; Rasmussen, J J
2001-01-01
Models of inviscid incompressible fluid are considered, with the kinetic energy (i.e., the Lagrangian functional) taking the form ${\\cal L}\\sim\\int k^\\alpha|{\\bf v_k}|^2d^3{\\bf k}$ in 3D Fourier representation, where $\\alpha$ is a constant, $0<\\alpha< 1$. Unlike the case $\\alpha=0$ (the usual Eulerian hydrodynamics), a finite value of $\\alpha$ results in a finite energy for a singular frozen-in vortex filament. This property allows us to study the dynamics of such filaments without necessity in some regularization procedure. The linear analysis of small symmetrical deviations from a stationary solution is performed for a pair of anti-parallel vortex filaments and an analog of the Crow instability is found at small wave-numbers. A local approximate Hamiltonian is obtained for nonlinear long-scale dynamics of this system. Self-similar solutions of the corresponding equations are found analytically, which describe finite time singularity formation with all length scales decreasing like $(t^*-t)^{1/(2-\\alph...
On Stochastic Finite-Time Control of Discrete-Time Fuzzy Systems with Packet Dropout
Yingqi Zhang
2012-01-01
Full Text Available This paper is concerned with the stochastic finite-time stability and stochastic finite-time boundedness problems for one family of fuzzy discrete-time systems over networks with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic finite-time stability and stochastic finite-time boundedness and problem formulation are given. Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The stochastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy T-S systems with packet loss. Finally, two illustrative examples are presented to show the validity of the developed methodology.
FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE
Yanlin Ge
2010-01-01
Full Text Available Performance of an air-standard Atkinson cycle is analyzed by using finite-time thermodynamics. The irreversible cycle model which is more close to practice is founded. In this model, the non-linear relation between the specific heats of working fluid and its temperature, the friction loss computed according to the mean velocity of the piston, the internal irreversibility described by using the compression and expansion efficiencies, and heat transfer loss are considered. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between power output and the efficiency of the cycle are derived by detailed numerical examples. Moreover, the effects of internal irreversibility, heat transfer loss and friction loss on the cycle performance are analyzed. The results obtained in this paper may provide guidelines for the design of practical internal combustion engines.
Efficiency, Power and Period of a model quantum heat engine working in a finite time
Bekele, Mulugeta; Dima, Tolasa A.; Alemye, Mekuannent; Chegeno, Warga
We take a spin-half quantum particle undergoing Carnot type cyclic process in a finite time assisted by two heat reservoirs and an external magnetic field. We find that the power of the heat engine is maximum at a particular period of the cyclic process and efficiency at the maximum power is at least half of the Carnot efficiency. We further apply the Omega-criterion for a figure of merit representing a compromise between useful power and lost power determining the corresponding efficiency for the optimization criterion to be at least three fourth of the Carnot efficiency. The authers are thankful to the International Science programme, IPS, Uppsala, Sweden for their support to our research lab.
Backward Finite-Time Lyapunov Exponents in Inertial Flows.
Gunther, Tobias; Theisel, Holger
2017-01-01
Inertial particles are finite-sized objects that are carried by fluid flows and in contrast to massless tracer particles they are subject to inertia effects. In unsteady flows, the dynamics of tracer particles have been extensively studied by the extraction of Lagrangian coherent structures (LCS), such as hyperbolic LCS as ridges of the Finite-Time Lyapunov Exponent (FTLE). The extension of the rich LCS framework to inertial particles is currently a hot topic in the CFD literature and is actively under research. Recently, backward FTLE on tracer particles has been shown to correlate with the preferential particle settling of small inertial particles. For larger particles, inertial trajectories may deviate strongly from (massless) tracer trajectories, and thus for a better agreement, backward FTLE should be computed on inertial trajectories directly. Inertial backward integration, however, has not been possible until the recent introduction of the influence curve concept, which - given an observation and an initial velocity - allows to recover all sources of inertial particles as tangent curves of a derived vector field. In this paper, we show that FTLE on the influence curve vector field is in agreement with preferential particle settling and more importantly it is not only valid for small (near-tracer) particles. We further generalize the influence curve concept to general equations of motion in unsteady spatio-velocity phase spaces, which enables backward integration with more general equations of motion. Applying the influence curve concept to tracer particles in the spatio-velocity domain emits streaklines in massless flows as tangent curves of the influence curve vector field. We demonstrate the correlation between inertial backward FTLE and the preferential particle settling in a number of unsteady vector fields.
Joint Statistics of Finite Time Lyapunov Exponents in Isotropic Turbulence
Johnson, Perry; Meneveau, Charles
2014-11-01
Recently, the notion of Lagrangian Coherent Structures (LCS) has gained attention as a tool for qualitative visualization of flow features. LCS visualize repelling and attracting manifolds marked by local ridges in the field of maximal and minimal finite-time Lyapunov exponents (FTLE), respectively. To provide a quantitative characterization of FTLEs, the statistical theory of large deviations can be used based on the so-called Cramér function. To obtain the Cramér function from data, we use both the method based on measuring moments and measuring histograms (with finite-size correction). We generalize the formalism to characterize the joint distributions of the two independent FTLEs in 3D. The ``joint Cramér function of turbulence'' is measured from the Johns Hopkins Turbulence Databases (JHTDB) isotropic simulation at Reλ = 433 and results are compared with those computed using only the symmetric part of the velocity gradient tensor, as well as with those of instantaneous strain-rate eigenvalues. We also extend the large-deviation theory to study the statistics of the ratio of FTLEs. When using only the strain contribution of the velocity gradient, the maximal FTLE nearly doubles in magnitude and the most likely ratio of FTLEs changes from 4:1:-5 to 8:3:-11, highlighting the role of rotation in de-correlating the fluid deformations along particle paths. Supported by NSF Graduate Fellowship (DGE-1232825), a JHU graduate Fellowship, and NSF Grant CMMI-0941530. CM thanks Prof. Luca Biferale for useful discussions on the subject.
梁涛; 李歧强
2011-01-01
A bottom-up self-organizing scheduling approach is presented to optimize a kind of scheduling problems with batching optimization in multistage batch processes. Firstly, a self-organizing scheduling model framework is built up by constructing kinds of self-organizing units associated with real-world orders, batches and equipment units in the batch processes. The optimal properties of multistage batch scheduling problems are analyzed. Then, batching optimization rules and self-organizing selection strategies are introduced in detail. Based on the strategies, a self-organizing optimal scheduling algorithm is proposed for the given model. Finally, several examples are given and the computational results show that the presented approach can obtain optimal solutions or near-optimal solutions in a short time, which verifies the effectiveness and the superiority of the proposed approach.%针对一类带批次划分的多级批处理过程优化调度问题，提出一种自下而上的自组织调度方法．首先，通过构造与批处理生产过程中的订单、批次和设备相对应的自组织个体，建立自组织调度模型框架；然后，分析多级批处理调度问题的最优性质，提出分批优化规则和自组织选择策略，并在此基础上给出自组织优化调度算法；最后，通过调度实例求解结果表明，所提方法能在短时间内获得问题的最优解或近优解，进而验证了该方法的有效性和优越性．
Coupling methods for multistage sampling
Chauvet, Guillaume
2015-01-01
Multistage sampling is commonly used for household surveys when there exists no sampling frame, or when the population is scattered over a wide area. Multistage sampling usually introduces a complex dependence in the selection of the final units, which makes asymptotic results quite difficult to prove. In this work, we consider multistage sampling with simple random without replacement sampling at the first stage, and with an arbitrary sampling design for further stages. We consider coupling ...
Jun Li, Lingen Chen, Yanlin Ge, Fengrui Sun
2015-01-01
Full Text Available The finite time exergoeconomic performance of the generalized irreversible Carnot heat engine with the losses of heat resistance, heat leakage and internal irreversibility, and with a complex heat transfer law, including generalized convective heat transfer law and generalized radiative heat transfer law is investigated in this paper. The focus of this paper is to obtain the compromised optimization between economics (profit and the energy utilization factor (efficiency for the generalized irreversible Carnot heat engine, by searching the optimum efficiency at maximum profit, which is termed as the finite time exergoeconomic performance bound. The obtained results include those obtained in many literatures and can provide some theoretical guidelines for the design of practical heat engines.
Finite-time consensus for leader-following second-order multi-agent system
Sun, Fenglan; Guan, Zhi-Hong
2013-04-01
The finite-time consensus problems of second-order multi-agent system under fixed and switching network topologies are studied in this article. Based on the graph theory, LaSalle's invariance principle and the homogeneity with dilation, the finite-time consensus protocol of each agent using local information is designed. The leader-following finite-time consensus is analysed in detail. Moreover, some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.
Fast and Robust Control of Excitation Systems:A Finite-time Method
WANG Yu-zhen; CHENG Dai-zhan; HONG Yi-guang; QIN Hua-shu
2001-01-01
Using finite-time control approach, this paper proposes a new design method for nonlinear robust excitation control of a widely used 5th-order model of synchronous generators. The finite-time excitation controller achieved here can improve the system's behaviors in some aspects such as quick convergence and robustness for uncertainties. Simulations demonstrate that the finite-time excitation controller is more effective than some other excitation controllers.
Finite-Time Chaos Control of a Complex Permanent Magnet Synchronous Motor System
Xiaobing Zhou
2014-01-01
Full Text Available This paper investigates the finite-time chaos control of a permanent magnet synchronous motor system with complex variables. Based on the finite-time stability theory, two control strategies are proposed to realize stabilization of the complex permanent magnet synchronous motor system in a finite time. Two numerical simulations have been conducted to demonstrate the validity and feasibility of the theoretical analysis.
Finite time control of a class of time-varying unified chaotic systems.
Ying, Yang; Guopei, Chen
2013-09-01
This paper considers the problem of finite time control for a class of time-varying unified chaotic system. First, based on the finite-time stability theory, a novel adaptive control technique is presented to achieve finite-time stabilization for time-varying unified chaotic system. Comparing with the existing methods, the proposed controller only need to be added on one state variable of systems and it is easy to be implemented. Then, a finite time control technique is provided to realize the tracking of any target function with second-order derivatives. Finally, Simulation results are provided to show the effectiveness of the proposed method.
Meng-Meng Jiang
2016-01-01
Full Text Available Under the weaker assumption on nonlinear functions, the adaptive finite-time stabilization of more general high-order nonlinear systems with dynamic and parametric uncertainties is solved in this paper. To solve this problem, finite-time input-to-state stability (FTISS is used to characterize the unmeasured dynamic uncertainty. By skillfully combining Lyapunov function, sign function, backstepping, and finite-time input-to-state stability approaches, an adaptive state feedback controller is designed to guarantee high-order nonlinear systems are globally finite-time stable.
Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps
Minsong Zhang
2014-01-01
Full Text Available This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs and linear matrix inequalities (LMIs. Numerical examples are given to illustrate the effectiveness of the proposed methodology.
Liu, Ping
2013-07-01
This paper deals with the finite-time stabilization of unified chaotic complex systems with known and unknown parameters. Based on the finite-time stability theory, nonlinear control laws are presented to achieve finite-time chaos control of the determined and uncertain unified chaotic complex systems, respectively. The two controllers are simple, and one of the uncertain unified chaotic complex systems is robust. For the design of a finite-time controller on uncertain unified chaotic complex systems, only some of the unknown parameters need to be bounded. Simulation results for the chaotic complex Lorenz, Lü and Chen systems are presented to validate the design and analysis.
Multistage quadratic stochastic programming
Lau, Karen K.; Womersley, Robert S.
2001-04-01
Quadratic stochastic programming (QSP) in which each subproblem is a convex piecewise quadratic program with stochastic data, is a natural extension of stochastic linear programming. This allows the use of quadratic or piecewise quadratic objective functions which are essential for controlling risk in financial and project planning. Two-stage QSP is a special case of extended linear-quadratic programming (ELQP). The recourse functions in QSP are piecewise quadratic convex and Lipschitz continuous. Moreover, they have Lipschitz gradients if each QP subproblem is strictly convex and differentiable. Using these properties, a generalized Newton algorithm exhibiting global and superlinear convergence has been proposed recently for the two stage case. We extend the generalized Newton algorithm to multistage QSP and show that it is globally and finitely convergent under suitable conditions. We present numerical results on randomly generated data and modified publicly available stochastic linear programming test sets. Efficiency schemes on different scenario tree structures are discussed. The large-scale deterministic equivalent of the multistage QSP is also generated and their accuracy compared.
Kumar, P. Vishwanath; Kaviti, Ajay Kumar; Prakash, Om [Department of Mechanical Engineering, Sagar Institute of Science and Technology, Gandhinagar, Bhopal, M.P. (India); Reddy, K.S. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai (India)
2012-07-01
The available fresh water resources on the earth are limited. About 79% of water available on the earth is salty, only one percent is fresh and the rest 20% is brackish. Desalination of brackish or saline water is a good method to obtain fresh water. Conventional desalination systems are energy intensive. Solar desalination is a cost effective method to obtain potable water because of freely available clean and green energy source. In this paper, a transient mathematical model was developed for the multi-stage evacuated solar desalination system to achieve the optimum system configuration for the maximum year round performance and distillate yield. The effect of various design and operating parameters on the thermal characteristics and performance of the system were analyzed. It was found that an optimum configuration of four stages with 100mm gap between them when supplied with a mass flow rate of 55kg/m2/day would result in best performance throughout the year. The maximum and minimum yields of 28.044 kg/m2/day and 13.335 kg/m2/day for fresh water at a distillate efficiency of 50.989% and 24.245% and overall thermal efficiency of 81.171% and 40.362% are found in the months of March and December respectively owing to the climatic conditions. The yield decreases to 18.614 kg/m2/day and 9.791 kg/m2/day for brine solution at a distillate efficiency of 33.844% and 17.802% and overall thermal efficiency of 53.876% and 29.635% for March and December respectively The maximum yield of 53.211 kg/m2/day is found in March at an operating pressure of 0.03 bar. The multi-stage evacuated solar desalination system is economically viable and can meet the needs of rural and urban communities to necessitate 10 to 30 kg per day of fresh water.
P. Vishwanath Kumar, Ajay Kumar Kaviti, Om Prakash1, K.S. Reddy
2012-01-01
Full Text Available The available fresh water resources on the earth are limited. About 79% of water available on the earth is salty, only one percent is fresh and the rest 20% is brackish. Desalination of brackish or saline water is a good method to obtain fresh water. Conventional desalination systems are energy intensive. Solar desalination is a cost effective method to obtain potable water because of freely available clean and green energy source. In this paper, a transient mathematical model was developed for the multi-stage evacuated solar desalination system to achieve the optimum system configuration for the maximum year round performance and distillate yield. The effect of various design and operating parameters on the thermal characteristics and performance of the system were analyzed. It was found that an optimum configuration of four stages with 100mm gap between them when supplied with a mass flow rate of 55kg/m2/day would result in best performance throughout the year. The maximum and minimum yields of 28.044 kg/m2/day and 13.335 kg/m2/day for fresh water at a distillate efficiency of 50.989% and 24.245% and overall thermal efficiency of 81.171% and 40.362% are found in the months of March and December respectively owing to the climatic conditions. The yield decreases to 18.614 kg/m2/day and 9.791 kg/m2/day for brine solution at a distillate efficiency of 33.844% and 17.802% and overall thermal efficiency of 53.876% and 29.635% for March and December respectively The maximum yield of 53.211 kg/m2/day is found in March at an operating pressure of 0.03 bar. The multi-stage evacuated solar desalination system is economically viable and can meet the needs of rural and urban communities to necessitate 10 to 30 kg per day of fresh water.
向红军; 李治源; 袁建生
2012-01-01
针对多级感应线圈炮中,电枢的速度会影响驱动线圈的最佳触发位置,分析影响电枢受力的变量的特点,给出了电磁力的曲线.基于冲量定理,分析电枢的速度增量与电磁力及其作用时间之间的关系,得出最佳触发位置会随着电枢速度增加而不断提前的结论.为验证理论分析结果,建立感应线圈炮的仿真模型,对不同电枢初始速度下的驱动线圈最佳触发位置进行了仿真.仿真结果和分析完全一致,而且当电枢速度较高时最佳触发位置甚至会提前到电枢处于制动力的位置.通过仿真得到电枢初始速度与驱动线圈最佳触发位置之间的关系曲线,并据此给出多级感应线圈炮的触发控制策略.%The armature velocity may affect the optimal trigger position of driving coils in multistage inductive coilgun. The characteristics of variants in electromagnetic force equation was analyzed and the curve of the force was presented. Based on the impulse theorem, the relation among the velocity increment, the electromagnetic force and its time of operation were analyzed. Then an important result that as the speeding up of armature, the optimal trigger position will be brought forward was got. In order to verify the result of theory analysis, a simulation model of coilgun was built and the optimal trigger position at different initial armature velocity was studied. The simulation result is consistent with the analysis result above; furthermore, when the armature velocity is high, the optimal trigger position maybe located to the brake segment of driving coil. At last, the trigger and control strategy of multistage coilgun is given on the basis of the relationship between optimal trigger position and armature velocity got from simulation.
Non-smooth finite-time stabilization for a class of nonlinear systems
无
2006-01-01
In this paper, global finite-time stabilization problem for a large class of nonlinear control systems is considered. An iterative design approach is given based on Lyapunov function. The finite time stabilizing control laws are constructed in the form of continuous but non-smooth time-invariant feedback.
Robust control of post-stall pitching maneuver based on finite-time observer.
Wu, Dawei; Chen, Mou; Gong, Huajun
2017-09-01
This article presents a robust finite-time maneuver control scheme for the longitudinal attitude dynamic of the aircraft with unsteady aerodynamic disturbances and input saturation. To efficiently eliminate the influence of unsteady aerodynamic disturbances, nonlinear finite-time observers are developed. Despite the existence of the nonlinearity and the coupling between aircraft states and unsteady aerodynamic disturbances, the proposed observers can still precisely estimate the unmeasurable unsteady aerodynamic disturbances in finite time. To attenuate the effect caused by input saturation, a finite-time auxiliary system is constructed. With the error between the desired control input and saturation input as the input of the auxiliary system, the additional signals are generated to compensate for the effect of input saturation. Combined with the finite-time observers and the finite-time auxiliary system, a robust finite-time backstepping attitude control design is developed. The finite-time convergence of all closed-loop system signals is rigorously proved via Lyapunov analysis method under the developed robust attitude control schemes. Finally, simulation results are presented to illustrate the effectiveness of the proposed attitude control approaches. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Finite-Time Stability of Neutral Fractional Time-Delay Systems via Generalized Gronwalls Inequality
Pang Denghao
2014-01-01
Full Text Available This paper studies the finite-time stability of neutral fractional time-delay systems. With the generalized Gronwall inequality, sufficient conditions of the finite-time stability are obtained for the particular class of neutral fractional time-delay systems.
Finite-time synchronization of a class of autonomous chaotic systems
Huini Lin; Jianping Cai
2014-03-01
Some criteria for achieving the finite-time synchronization of a class of autonomous chaotic systems are derived by the finite-time stability theory and Gerschgorin disc theorem. Numerical simulations are shown to illustrate the effectiveness of the proposed method.
Finite-Time Chaos Suppression of Permanent Magnet Synchronous Motor Systems
Yi-You Hou
2014-04-01
Full Text Available This paper considers the problem of the chaos suppression for the Permanent Magnet Synchronous Motor (PMSM system via the finite-time control. Based on Lyapunov stability theory and the finite-time controller are developed such that the chaos behaviors of PMSM system can be suppressed. The effectiveness and accuracy of the proposed methods are shown in numerical simulations.
The Finite-time Ruin Probability for the Jump-Diffusion Model with Constant Interest Force
Tao Jiang; Hai-feng Yan
2006-01-01
In this paper, we consider the finite-time ruin probability for the jump-diffusion Poisson process.Under the assumptions that the claimsizes are subexponentially distributed and that the interest force is constant, we obtain an asymptotic formula for the finite-time ruin probability. The results we obtain extends the
Finite-time analysis of global projective synchronization on coloured networks
Cai Guoliang; Jiang Shengqin; Cai Shuiming; Tian Lixin
2016-03-01
A novel finite-time analysis is given to investigate the global projective synchronization on coloured networks. Some less conservative conditions are derived by utilizing finite-time control techniques and Lyapunov stability theorem. In addition, two illustrative numerical simulations are provided to verify the effectiveness of the proposed theoretical results.
Continuous composite finite-time convergent guidance laws with autopilot dynamics compensation.
He, Shaoming; Lin, Defu
2015-09-01
This paper has proposed two continuous composite finite-time convergent guidance laws to intercept maneuvering targets in the presence of autopilot lag: one is for hit-to-kill and the other is for zeroing the line-of-sight (LOS) angular rate. More specifically, the nonlinear disturbance observer (NDOB) is used to estimate the lumped uncertainty online while the finite-time control technique is used to fulfill the design goal in finite time. The key feature in derivation of the proposed guidance law is that two integral-type Lyapunov functions are used to avoid analytic differentiation of virtual control law encountered with traditional backstepping. The finite-time stability of the closed-loop nonlinear observer-controller system is established using finite-time bounded (FTB) function and Lyapunov function methods. Numerical simulations with some comparisons are carried out to demonstrate the superiority of the proposed method.
Xiaohui Mo
2017-01-01
Full Text Available In this paper, finite-time stabilization problem for a class of nonlinear differential-algebraic systems (NDASs subject to external disturbance is investigated via a composite control manner. A composite finite-time controller (CFTC is proposed with a three-stage design procedure. Firstly, based on the adding a power integrator technique, a finite-time control (FTC law is explicitly designed for the nominal NDAS by only using differential variables. Then, by using homogeneous system theory, a continuous finite-time disturbance observer (CFTDO is constructed to estimate the disturbance generated by an exogenous system. Finally, a composite controller which consists of a feedforward compensation part based on CFTDO and the obtained FTC law is proposed. Rigorous analysis demonstrates that not only the proposed composite controller can stabilize the NDAS in finite time, but also the proposed control scheme exhibits nominal performance recovery property. Simulation examples are provided to illustrate the effectiveness of the proposed control approach.
Progress in Finite Time Thermodynamic Studies for Internal Combustion Engine Cycles
Yanlin Ge
2016-04-01
Full Text Available On the basis of introducing the origin and development of finite time thermodynamics (FTT, this paper reviews the progress in FTT optimization for internal combustion engine (ICE cycles from the following four aspects: the studies on the optimum performances of air standard endoreversible (with only the irreversibility of heat resistance and irreversible ICE cycles, including Otto, Diesel, Atkinson, Brayton, Dual, Miller, Porous Medium and Universal cycles with constant specific heats, variable specific heats, and variable specific ratio of the conventional and quantum working fluids (WFs; the studies on the optimum piston motion (OPM trajectories of ICE cycles, including Otto and Diesel cycles with Newtonian and other heat transfer laws; the studies on the performance limits of ICE cycles with non-uniform WF with Newtonian and other heat transfer laws; as well as the studies on the performance simulation of ICE cycles. In the studies, the optimization objectives include work, power, power density, efficiency, entropy generation rate, ecological function, and so on. The further direction for the studies is explored.
Bin Wang
2016-01-01
Full Text Available This paper studies the application of frequency distributed model for finite time control of a fractional order nonlinear hydroturbine governing system (HGS. Firstly, the mathematical model of HGS with external random disturbances is introduced. Secondly, a novel terminal sliding surface is proposed and its stability to origin is proved based on the frequency distributed model and Lyapunov stability theory. Furthermore, based on finite time stability and sliding mode control theory, a robust control law to ensure the occurrence of the sliding motion in a finite time is designed for stabilization of the fractional order HGS. Finally, simulation results show the effectiveness and robustness of the proposed scheme.
Finite-time consensus for heterogeneous multi-agent systems with mixed-order agents
Sun, Fenglan; Zhu, Wei
2015-08-01
This paper studies the finite-time consensus for heterogeneous multi-agent systems composed of mixed-order agents over fixed and switching topologies. The control protocol of each agent using local information is designed and the detailed analysis of the finite-time consensus for fixed and switching interaction topologies is presented. The design of the finite-time consensus protocol is based on graph theory, matrix theory, and LaSalle's invariance principle. Both theoretical studies and simulation results show the effectiveness of the proposed method and the correctness of the obtained theoretical results.
Robust Finite-Time Control for Spacecraft with Coupled Translation and Attitude Dynamics
Guo-Qiang Wu
2013-01-01
Full Text Available Robust finite-time control for spacecraft with coupled translation and attitude dynamics is investigated in the paper. An error-based spacecraft motion model in six-degree-of-freedom is firstly developed. Then a finite-time controller based on nonsingular terminal sliding mode control technique is proposed to achieve translation and attitude maneuvers in the presence of model uncertainties and environmental perturbations. A finite-time observer is designed and a modified controller is then proposed to deal with uncertainties and perturbations and alleviate chattering. Numerical simulations are finally provided to illustrate the performance of the proposed controllers.
Finite-time stabilization for a class of stochastic nonlinear systems via output feedback.
Zha, Wenting; Zhai, Junyong; Fei, Shumin; Wang, Yunji
2014-05-01
This paper investigates the problem of global finite-time stabilization in probability for a class of stochastic nonlinear systems. The drift and diffusion terms satisfy lower-triangular or upper-triangular homogeneous growth conditions. By adding one power integrator technique, an output feedback controller is first designed for the nominal system without perturbing nonlinearities. Based on homogeneous domination approach and stochastic finite-time stability theorem, it is proved that the solution of the closed-loop system will converge to the origin in finite time and stay at the origin thereafter with probability one. Two simulation examples are presented to illustrate the effectiveness of the proposed design procedure.
Wu, Yuanyuan; Cao, Jinde; Li, Qingbo; Alsaedi, Ahmed; Alsaadi, Fuad E
2017-01-01
This paper deals with the finite-time synchronization problem for a class of uncertain coupled switched neural networks under asynchronous switching. By constructing appropriate Lyapunov-like functionals and using the average dwell time technique, some sufficient criteria are derived to guarantee the finite-time synchronization of considered uncertain coupled switched neural networks. Meanwhile, the asynchronous switching feedback controller is designed to finite-time synchronize the concerned networks. Finally, two numerical examples are introduced to show the validity of the main results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Xiaoyang; Ho, Daniel W C; Cao, Jinde; Xu, Wenying
2016-08-24
This brief investigates the problem of finite-time robust consensus (FTRC) for second-order nonlinear multiagent systems with external disturbances. Based on the global finite-time stability theory of discontinuous homogeneous systems, a novel finite-time convergent discontinuous disturbed observer (DDO) is proposed for the leader-following multiagent systems. The states of the designed DDO are then used to design the control inputs to achieve the FTRC of nonlinear multiagent systems in the presence of bounded disturbances. The simulation results are provided to validate the effectiveness of these theoretical results.
Wu, Yuanyuan; Cao, Jinde; Alofi, Abdulaziz; Al-Mazrooei, Abdullah; Elaiw, Ahmed
2015-09-01
This paper deals with the finite-time boundedness and stabilization problem for a class of switched neural networks with time-varying delay and parametric uncertainties. Based on Lyapunov-like function method and average dwell time technique, some sufficient conditions are derived to guarantee the finite-time boundedness of considered uncertain switched neural networks. Furthermore, the state feedback controller is designed to solve the finite-time stabilization problem. Moreover, the proposed sufficient conditions can be simplified into the form of linear matrix equalities for conveniently using Matlab LMI toolbox. Finally, two numerical examples are given to show the effectiveness of the main results.
Sun, Yongzheng; Li, Wang; Zhao, Donghua
2012-06-01
In this paper, the finite-time stochastic outer synchronization between two different complex dynamical networks with noise perturbation is investigated. By using suitable controllers, sufficient conditions for finite-time stochastic outer synchronization are derived based on the finite-time stability theory of stochastic differential equations. It is noticed that the coupling configuration matrix is not necessary to be symmetric or irreducible, and the inner coupling matrix need not be symmetric. Finally, numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of control parameters on the settling time is also numerically demonstrated.
Sheng, Shiqi; Tu, Z C
2014-01-01
The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [ M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck Phys. Rev. Lett. 105 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.
Manipulating Multistage Interconnection Networks Using Fundamental Arrangements
E. Gur
2010-12-01
Full Text Available Optimizing interconnection networks is a prime object in switching schemes. In this work the authors present a novel approach for obtaining a required channel arrangement in a multi-stage interconnectionnetwork, using a new concept – a fundamental arrangement. The fundamental arrangement is an initial N-1 stage switch arrangement that allows obtaining any required output channel arrangement given an input arrangement, using N/2 binary switches at each stage. The paper demonstrates how a fundamental arrangement can be achieved and how, once this is done, any required arrangement may be obtained within 2(N-1 steps.
Finite time control for MIMO nonlinear system based on higher-order sliding mode.
Liu, Xiangjie; Han, Yaozhen
2014-11-01
Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm.
Guo Yong
2014-04-01
Full Text Available This paper investigates two finite-time controllers for attitude control of spacecraft based on rotation matrix by an adaptive backstepping method. Rotation matrix can overcome the drawbacks of unwinding which makes a spacecraft perform a large-angle maneuver when a small-angle maneuver in the opposite rotational direction is sufficient to achieve the objective. With the use of adaptive control, the first robust finite-time controller is continuous without a chattering phenomenon. The second robust finite-time controller can compensate external disturbances with unknown bounds. Theoretical analysis shows that both controllers can make a spacecraft following a time-varying reference attitude signal in finite time and guarantee the stability of the overall closed-loop system. Numerical simulations are presented to demonstrate the effectiveness of the proposed control schemes.
Liu Ping
2013-01-01
This paper deals with the finite-time stabilization of unified chaotic complex systems with known and unknown parameters.Based on the finite-time stability theory,nonlinear control laws are presented to achieve finite-time chaos control of the determined and uncertain unified chaotic complex systems,respectively.The two controllers are simple,and one of the uncertain unified chaotic complex systems is robust.For the design of a finite-time controller on uncertain unified chaotic complex systems,only some of the unknown parameters need to be bounded.Simulation results for the chaotic complex Lorenz,Lü and Chen systems are presented to validate the design and analysis.
Robust finite-time tracking control for nonlinear suspension systems via disturbance compensation
Pan, Huihui; Jing, Xingjian; Sun, Weichao
2017-05-01
This paper focuses on the finite-time tracking control with external disturbance for active suspension systems. In order to compensate unknown disturbance efficiently, a disturbance compensator with finite-time convergence property is studied. By analyzing the discontinuous phenomenon of classical disturbance compensation techniques, this study presents a simple approach to construct a continuous compensator satisfying the finite-time disturbance rejection performance. According to the finite-time separation principle, the design procedures of the nominal controller for the suspension system without disturbance and the disturbance compensator can be implemented in a completely independent manner. Therefore, the overall control law for the closed-loop system is continuous, which offers some distinct advantages over the existing discontinuous ones. From the perspective of practical implementation, the continuous controller can avoid effectively the unexpected chattering in active suspension control. Comparative experimental results are presented and discussed to illustrate the advantage and effectiveness of the proposed control strategy.
Finite-time stabilization control for discontinuous time-delayed networks: New switching design.
Zhang, Ling-Ling; Huang, Li-Hong; Cai, Zuo-Wei
2016-03-01
This paper discusses the finite-time stabilization problem for time-varying delayed neural networks (DNNs) with discontinuous activation functions. By using fixed point theory and set-valued analysis, we establish the existence theorem of equilibrium point. In order to stabilize the states of this class of discontinuous DNNs in finite time, we design two different kinds of switching controllers which are described by discontinuous functions. Under the framework of Filippov solutions, several new and effective criteria are derived to realize finite-time stabilization of discontinuous DNNs based on the famous finite-time stability theory. Besides, the upper bounds of the settling time of stabilization are estimated. Numerical examples are finally provided to illustrate the correctness of the proposed design method and theoretical results.
Finite-Time Consensus for Multiagent Systems With Cooperative and Antagonistic Interactions.
Meng, Deyuan; Jia, Yingmin; Du, Junping
2016-04-01
This paper deals with finite-time consensus problems for multiagent systems that are subject to hybrid cooperative and antagonistic interactions. Two consensus protocols are constructed by employing the nearest neighbor rule. It is shown that under the presented protocols, the states of all agents can be guaranteed to reach an agreement in a finite time regarding consensus values that are the same in modulus but may not be the same in sign. In particular, the second protocol can enable all agents to reach a finite-time consensus with a settling time that is not dependent upon the initial states of agents. Simulation results are given to demonstrate the effectiveness and finite-time convergence of the proposed consensus protocols.
Distributed finite-time containment control for double-integrator multiagent systems.
Wang, Xiangyu; Li, Shihua; Shi, Peng
2014-09-01
In this paper, the distributed finite-time containment control problem for double-integrator multiagent systems with multiple leaders and external disturbances is discussed. In the presence of multiple dynamic leaders, by utilizing the homogeneous control technique, a distributed finite-time observer is developed for the followers to estimate the weighted average of the leaders' velocities at first. Then, based on the estimates and the generalized adding a power integrator approach, distributed finite-time containment control algorithms are designed to guarantee that the states of the followers converge to the dynamic convex hull spanned by those of the leaders in finite time. Moreover, as a special case of multiple dynamic leaders with zero velocities, the proposed containment control algorithms also work for the case of multiple stationary leaders without using the distributed observer. Simulations demonstrate the effectiveness of the proposed control algorithms.
Finite-Time Control for Robust Tracking Consensus in MASs With an Uncertain Leader.
Lu, Xiaoqing; Wang, Yaonan; Yu, Xinghuo; Lai, Jingang
2016-03-31
This paper investigates the finite-time control for robust tracking consensus problems of multiagent systems with an uncertain leader for situations where the state of the considered active leader may not be measured and the directed network topology is time-varying. Based on the neighbor-based state-estimation rule and a new Lyapunov stability analysis method, a continuous and nonlinear distributed tracking protocol using only relative position information is designed, under which each agent can follow the leader in finite time if the input (acceleration) of the leader is known, and the tracking errors can converge to a bounded region in finite time if the input of the leader is unknown. In particular, a special continuous distributed tracking protocol with bounded control inputs is introduced to track the active leader in finite time. Numerical simulations are also given to illustrate the effectiveness of the theoretic results.
Neural Network Observer-Based Finite-Time Formation Control of Mobile Robots
Caihong Zhang
2014-01-01
Full Text Available This paper addresses the leader-following formation problem of nonholonomic mobile robots. In the formation, only the pose (i.e., the position and direction angle of the leader robot can be obtained by the follower. First, the leader-following formation is transformed into special trajectory tracking. And then, a neural network (NN finite-time observer of the follower robot is designed to estimate the dynamics of the leader robot. Finally, finite-time formation control laws are developed for the follower robot to track the leader robot in the desired separation and bearing in finite time. The effectiveness of the proposed NN finite-time observer and the formation control laws are illustrated by both qualitative analysis and simulation results.
Finite-Time Stabilization of Dynamic Nonholonomic Wheeled Mobile Robots with Parameter Uncertainties
Hua Chen
2013-01-01
settling time. The systematic strategy combines the theory of finite-time stability with a new switching control design method. Finally, the simulation result illustrates the effectiveness of the proposed controller.
Ran, Dechao; Chen, Xiaoqian; Misra, Arun K.
2017-07-01
This paper investigates the finite time coordinated formation control problem for spacecraft formation flying (SFF) under the assumption of directed communication topology. By using the neighborhood state measurements, a robust finite time coordinated formation controller is firstly designed based on the nonsingular terminal sliding mode surface. To address the special case that the desired trajectory of the formation is only accessible to a subset of spacecraft in the formation, an adaptive finite time coordinated formation controller is also proposed by designing a novel sliding mode surface. In both cases, the external disturbances are explicitly taken into account. Rigorous theoretical analysis proves that the proposed control schemes ensure that the closed-loop system can track the desired time-varying trajectory in finite time. Numerical simulations are presented that not only highlights the closed-loop performance benefits from the proposed control algorithms, but also illustrates the effectiveness in the presence of external disturbances when compared with the existing coordinated formation control schemes.
Sequential maneuvering decisions based on multi-stage influence diagram in air combat
无
2007-01-01
A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat.The model based on the multi-stage influence diagram graphically describes the elements of decision process,and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's Dreferences under uncertain conditions.Considering an active opponent,the opponent's maneuvers can be modeled stochastically.The solution of multistage influence diagram Can be obtained by converting the multistage influence diagram into a two-level optimization problem.The simulation results show the model is effective.
Finite time extinction for nonlinear fractional evolution equations and related properties.
Jesus Ildefonso Diaz; Teresa Pierantozzi; Luis Vazquez
2016-01-01
The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly,...
Finite-time consensus for leader-following multi-agent systems over switching network topologies
Sun, Feng-Lan; Zhu, Wei
2013-11-01
Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader-following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.
Finite-Time Attractivity for Diagonally Dominant Systems with Off-Diagonal Delays
T. S. Doan
2012-01-01
Full Text Available We introduce a notion of attractivity for delay equations which are defined on bounded time intervals. Our main result shows that linear delay equations are finite-time attractive, provided that the delay is only in the coupling terms between different components, and the system is diagonally dominant. We apply this result to a nonlinear Lotka-Volterra system and show that the delay is harmless and does not destroy finite-time attractivity.
多效干燥过程的排产调度优化%Optimal plan and scheduling of multi-stage drying system
李红; 伍联营; 商凤英; 吕世强; 胡仰栋
2012-01-01
Because industrial drying is one of the most energy-intensive batch unit operations, a scheduling plan of multi-effect drying was studied. Based on the rate of drying curve, operation time in each effect of multi-effect drying process was designed to be the same. An optimal plan and scheduling of multi-effect drying model was established. Defining the number of effects and the drying time as the decision variables, the minimum annual cost model of the batch n-effect drying process could be expressed as a mixed-integer non-linear programming (MINLP) problem, which could be solved by the GAMS software. An example of slit drying process (effect from 1 to 5) was analyzed with the model. The results indicated that the 4-effect drying was the optimal, and it could save 26% of the cost each year compared to the 1-effect drying. Optimal Gantt chart of scheduled process was also presented. According to the Gantt chart, the least period and the optimal operation process could be determined. It indicated that the batch multi-effect drying process could achieve continuous production.%针对干燥过程是一个高能耗的间歇单元操作,对多效干燥过程进行了排产调度研究.根据干燥速率曲线,将各效干燥过程设计为等操作时间,建立了多效干燥过程排产调度的优化模型.以效数和干燥器干燥时间为决策变量,以年费用最小为目标表达为一个混合整数非线性规划(MINLP)的数学模型,利用GAMS进行求解.以淤泥1～5效干燥为算例进行了优化调度分析,结果表明:在4效时年费用最小；与1效干燥相比,在最优条件下年生产费用可节约26％.同时获得了最优排产调度的Gantt图,从而可以得出干燥设备的最小操作周期,据此对多效干燥过程进行排产,使间歇多效干燥过程可以实现连续化生产,对多效干燥的工业化具有一定的意义.
李辉; 付博; 杨超; 赵斌; 唐显虎
2013-01-01
为了更好利用储能系统平抑大容量风电场功率波动,提出采用多级全钒液流电池(vanadium redox flow battery,VRB)储能的功率优化分配控制策略.首先,在建立VRB等效电路基础上,采用交直流变换器级联多重双向直流变换器作为VRB储能系统接口,分别建立了以稳定直流母线电压为目标的DC/AC变换器矢量控制策略,以电池荷电状态为约束的VRB充放电切换的DC/DC变换器双闭环控制策略.其次,以每级电池组的荷电状态值作为吞吐功率的优选目标,以外部端电压作为电池安全充放电的约束条件,提出多级VRB组的功率优化分配策略.最后,以不同荷电状态(state of charge,SOC)值下的2级VRB储能系统为例,对其在风速波动情况下的风电功率平抑效果以及各个储能单元充放电运行性能进行仿真,并与功率平均分配策略进行对比.结果表明,所提出的多级VRB储能系统功率优化分配和控制策略能很好的平滑风电功率波动,又能减少单台VRB组的充放电次数,并确保电池工作于安全运行区域.%In order to make better use of energy storage system to reduce the fluctuation of active power for large-scale wind farm,this paper proposes the optimization power distribution control strategies of the multistage vanadium redox flow battery (VRB) storage.Firstly,based on the equivalent circuit of a VRB and by using the interface of the DC/AC converter cascade multiple bi-directional DC/DC converter,a vector control strategy of DC/AC converter is presented to keep the stable DC bus voltage,and a double closed loop control strategy of DC/DC converter is established to switch charge-discharge style as a constraint of state of charge (SOC) on a single VRB.Secondly,by taking SOC value of each battery as priority target selection of output power,and by using the limit of external terminal voltage as the constraint conditions for battery safety charging and discharging,an optimization
Spiegel, Holger; Schinkel, Helga; Kastilan, Robin; Dahm, Pia; Boes, Alexander; Scheuermayer, Matthias; Chudobová, Ivana; Maskus, Dominika; Fendel, Rolf; Schillberg, Stefan; Reimann, Andreas; Fischer, Rainer
2015-04-01
We demonstrated the successful optimization of a recombinant multi-subunit malaria vaccine candidate protein for production in the methylotrophic yeast Pichia pastoris by the identification and subsequent removal of two protease cleavage sites. After observing protein degradation in the culture supernatant of a fed-batch fermentation, the predominant proteolytic fragment of the secreted recombinant protein was analyzed by mass spectrometry. The MS data indicated the cleavage of an amino acid sequence matching the yeast KEX2-protease consensus motif EKRE. The cleavage in this region was completely abolished by the deletion of the EKRE motif in a modified variant. This modified variant was produced, purified, and used for immunization of rabbits, inducing high antigen specific antibody titers (2 × 10(6) ). Total IgG from rabbit immune sera recognized different stages of Plasmodium falciparum parasites in immunofluorescence assays, indicating native folding of the vaccine candidate. However, the modified variant was still degraded, albeit into different fragments. Further analysis by mass spectrometry and N-terminal sequencing revealed a second cleavage site downstream of the motif PEVK. We therefore removed a 17-amino-acid stretch including the PEVK motif, resulting in the subsequent production of the full-length recombinant vaccine candidate protein without significant degradation, with a yield of 53 mg per liter culture volume. We clearly demonstrate that the proteolytic degradation of recombinant proteins by endogenous P. pastoris proteases can be prevented by the identification and removal of such cleavage sites. This strategy is particularly relevant for the production of recombinant subunit vaccines, where product yield and stability play a more important role than for the production of a stringently-defined native sequence which is necessary for most therapeutic molecules.
Sliding Mode Cooperative Control for Multirobot Systems: A Finite-Time Approach
Masood Ghasemi
2013-01-01
Full Text Available Finite-time stability in dynamical systems theory involves systems whose trajectories converge to an equilibrium state in finite time. In this paper, we use the notion of finite-time stability to apply it to the problem of coordinated motion in multiagent systems. We consider a group of agents described by Euler-Lagrange dynamics along with a leader agent with an objective to reach and maintain a desired formation characterized by steady-state distances between the neighboring agents in finite time. We use graph theoretic notions to characterize communication topology in the network determined by the information flow directions and captured by the graph Laplacian matrix. Furthermore, using sliding mode control approach, we design decentralized control inputs for individual agents that use only data from the neighboring agents which directly communicate their state information to the current agent in order to drive the current agent to the desired steady state. We further extend these results to multiagent systems involving underactuated dynamical agents such as mobile wheeled robots. For this case, we show that while the position variables can be coordinated in finite time, the orientation variables converge to the steady states asymptotically. Finally, we validate our results experimentally using a wheeled mobile robot platform.
An approach to design semi-global finite-time observers for a class of nonlinear systems
DENG XiuCheng; SHEN YanJun
2009-01-01
In this paper, the problem of designing semi-global finite-time observers for a class of nonlinear systems is investigated. Based on the theories of finite-time stability, an approach to designing semi-global finite-time observers for the nonlinear systems is presented. It has been shown that, after the finite time, the designed finite-time observer realizes the accurate reconstruction of the states of the nonlinear system. A numerical example is given to illustrate the effectiveness and validity of the method.
Finite time extinction for nonlinear fractional evolution equations and related properties
Jesus Ildefonso Diaz
2016-08-01
Full Text Available The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time.
Robust finite-time tracking control of nonholonomic mobile robots without velocity measurements
Shi, Shang; Yu, Xin; Khoo, Suiyang
2016-02-01
The problem of robust finite-time trajectory tracking of nonholonomic mobile robots with unmeasurable velocities is studied. The contributions of the paper are that: first, in the case that the angular velocity of the mobile robot is unmeasurable, a composite controller including the observer-based partial state feedback control and the disturbance feed-forward compensation is designed, which guarantees that the tracking errors converge to zero in finite time. Second, if the linear velocity as well as the angular velocity of mobile robot is unmeasurable, with a stronger constraint, the finite-time trajectory tracking control of nonholonomic mobile robot is also addressed. Finally, the effectiveness of the proposed control laws is demonstrated by simulation.
Controlling chaos in power system based on finite-time stability theory
Zhao Hui; Ma Ya-Jun; Liu Si-Jia; Gao Shi-Gen; Zhong Dan
2011-01-01
Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse,which severely threatens the secure and stable operation of the power system.Based on the finite-time stability theory,two control strategies are presented to achieve finite-time chaos control.In addition,the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time.Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme.The research in this paper may help to maintain the secure operation of power systems.
Finite-Time Control for Attitude Tracking Maneuver of Rigid Satellite
Mingyi Huo
2014-01-01
Full Text Available The problem of finite-time control for attitude tracking maneuver of a rigid spacecraft is investigated. External disturbance, unknown inertia parameters are addressed. As stepping stone, a sliding mode controller is designed. It requires the upper bound of the lumped uncertainty including disturbance and inertia matrix. However, this upper bound may not be easily obtained. Therefore, an adaptive sliding mode control law is then proposed to release that drawback. Adaptive technique is applied to estimate that bound. It is proved that the closed-loop attitude tracking system is finite-time stable. The tracking errors of the attitude and the angular velocity are asymptotically stabilized. Moreover, the upper bound on the lumped uncertainty can be exactly estimated in finite time. The attitude tracking performance with application of the control scheme is evaluated through a numerical example.
Estimates for the Finite-time Ruin Probability with Insurance and Financial Risks
Min ZHOU; Kai-yong WANG; Yue-bao WANG
2012-01-01
The paper gives estimates for the finite-time ruin probability with insurance and financial risks.When the distribution of the insurance risk belongs to the class (L)(γ) for some γ ＞ 0 or the subexponential distribution class,we abtain some asymptotic equivalent relationships for the finite-time ruin probability,respectively. When the distribution of the insurance risk belongs to the dominated varying-tailed distribution class,we obtain asymptotic upper bound and lower bound for the finite-time ruin probability,where for the asymptotic upper bound,we completely get rid of the restriction of mutual independence on insurance risks,and for the lower bound,we only need the insurance risks to have a weak positive association structure.The obtained results extend and improve some existing results.
Finite-Time Consensus with a Time-Varying Reference State and Switching Topology
Jian-Yong Wang
2017-01-01
Full Text Available The finite-time consensus problem in the networks of multiple mobile agents is comprehensively investigated. In order to resolve this problem, a novel nonlinear information exchange protocol is proposed. The proposed protocol ensures that the states of the agents are converged to a weighted-average consensus in finite time if the communication topology is a weighted directed graph with a spanning tree and each strongly connected component is detail-balanced. Furthermore, the proposed protocol is also able to solve the finite-time consensus problem of networks with a switching topology. Finally, computer simulations are presented to demonstrate and validate the effectiveness of the theoretical analysis under the proposed protocol.
Finite-Time Consensus of Multiagent Systems With a Switching Protocol.
Liu, Xiaoyang; Lam, James; Yu, Wenwu; Chen, Guanrong
2016-04-01
In this paper, we study the problem of finite-time consensus of multiagent systems on a fixed directed interaction graph with a new protocol. Existing finite-time consensus protocols can be divided into two types: 1) continuous and 2) discontinuous, which were studied separately in the past. In this paper, we deal with both continuous and discontinuous protocols simultaneously, and design a centralized switching consensus protocol such that the finite-time consensus can be realized in a fast speed. The switching protocol depends on the range of the initial disagreement of the agents, for which we derive an exact bound to indicate at what time a continuous or a discontinuous protocol should be selected to use. Finally, we provide two numerical examples to illustrate the superiority of the proposed protocol and design method.
Passivity control with practically finite-time convergence for large space structures
Hu, Quan; Li, Jinyue; Zhang, Jingrui
2017-02-01
A nonlinear output feedback control law based on passivity is proposed to reduce the vibration of large space structures. The considered system is assumed to be equipped with collocated actuators and sensors. The concept of practically finite-time stability is first developed to describe the finite-time convergence of a passive system. Then, an output feedback is introduced to drive the trajectories of a passive system into a small set around the origin in finite time. Finally, the proposed control strategy is applied to the vibration suppression of large space structures with distributed thrusters and velocity sensors or torque outputting devices and angular rate sensors. Numerical simulations are conducted to validate the effectiveness of the proposed controller.
Guaranteed Cost Finite-Time Control of Fractional-Order Positive Switched Systems
Leipo Liu
2017-01-01
Full Text Available The problem of guaranteed cost finite-time control of fractional-order positive switched systems (FOPSS is considered in this paper. Firstly, a new cost function is defined. Then, by constructing linear copositive Lyapunov functions and using the average dwell time (ADT approach, a state feedback controller and a static output feedback controller are constructed, respectively, and sufficient conditions are derived to guarantee that the corresponding closed-loop systems are guaranteed cost finite-time stable (GCFTS. Such conditions can be easily solved by linear programming. Finally, two examples are given to illustrate the effectiveness of the proposed method.
Adaptive Fuzzy Sliding Mode Control of MEMS Gyroscope with Finite Time Convergence
Jianxin Ren
2016-01-01
Full Text Available This paper presents adaptive fuzzy finite time sliding mode control of microelectromechanical system gyroscope with uncertainty and external disturbance. Firstly, fuzzy system is employed to approximate the uncertainty nonlinear dynamics. Secondly, nonlinear sliding mode hypersurface and double exponential reaching law are selected to design the finite time convergent sliding mode controller. Thirdly, based on Lyapunov methods, adaptive laws are presented to adjust the fuzzy weights and the system can be guaranteed to be stable. Finally, the effectiveness of the proposed method is verified with simulation.
Finite-time control of DC-DC buck converters via integral terminal sliding modes
Chiu, Chian-Song; Shen, Chih-Teng
2012-05-01
This article presents novel terminal sliding modes for finite-time output tracking control of DC-DC buck converters. Instead of using traditional singular terminal sliding mode, two integral terminal sliding modes are introduced for robust output voltage tracking of uncertain buck converters. Different from traditional sliding mode control (SMC), the proposed controller assures finite convergence time for the tracking error and integral tracking error. Furthermore, the singular problem in traditional terminal SMC is removed from this article. When considering worse modelling, adaptive integral terminal SMC is derived to guarantee finite-time convergence under more relaxed stability conditions. In addition, several experiments show better start-up performance and robustness.
P. Siricharuanun
2016-01-01
Full Text Available A second-order sliding mode control for chaotic synchronization with bounded disturbance is studied. A robust finite-time controller is designed based on super twisting algorithm which is a popular second-order sliding mode control technique. The proposed controller is designed by combining an adaptive law with super twisting algorithm. New results based on adaptive super twisting control for the synchronization of identical Qi three-dimensional four-wing chaotic system are presented. The finite-time convergence of synchronization is ensured by using Lyapunov stability theory. The simulations results show the usefulness of the developed control method.
Finite-time Thin Film Rupture Driven by Generalized Evaporative Loss
Ji, Hangjie
2016-01-01
Rupture is a nonlinear instability resulting in a finite-time singularity as a fluid layer approaches zero thickness at a point. We study the dynamics of rupture in a generalized mathematical model of thin films of viscous fluids with evaporative effects. The governing lubrication model is a fourth-order nonlinear parabolic partial differential equation with a non-conservative loss term due to evaporation. Several different types of finite-time singularities are observed due to balances between evaporation and surface tension or intermolecular forces. Non-self-similar behavior and two classes of self-similar rupture solutions are analyzed and validated against high resolution PDE simulations.
Finite-time thin film rupture driven by modified evaporative loss
Ji, Hangjie; Witelski, Thomas P.
2017-03-01
Rupture is a nonlinear instability resulting in a finite-time singularity as a film layer approaches zero thickness at a point. We study the dynamics of rupture in a generalized mathematical model of thin films of viscous fluids with modified evaporative effects. The governing lubrication model is a fourth-order nonlinear parabolic partial differential equation with a non-conservative loss term. Several different types of finite-time singularities are observed due to balances between conservative and non-conservative terms. Non-self-similar behavior and two classes of self-similar rupture solutions are analyzed and validated against high resolution PDE simulations.
Finite-time Consensus of Heterogeneous Multi-agent Systems with Linear and Nonlinear Dynamics
ZHU Ya-Kun; GUAN Xin-Ping; LUO Xiao-Yuan
2014-01-01
In this paper, the finite-time consensus problems of heterogeneous multi-agent systems composed of both linear and nonlinear dynamics agents are investigated. Nonlinear consensus protocols are proposed for the heterogeneous multi-agent systems. Some suﬃcient conditions for the finite-time consensus are established in the leaderless and leader-following cases. The results are also extended to the case where the communication topology is directed and satisfies a detailed balance condition on coupling weights. At last, some simulation results are given to illustrate the effectiveness of the obtained theoretical results.
Controlling Chaos in permanent magnet synchronous motor based on finite-time stability theory
Wei Du-Qu; Zhang So
2009-01-01
This paper reports that the performance of permanent magnet synchronous motor(PMSM)degrades due to chaos when its systemic parameters fall into a certain area.To control the undesirable chaos in PMSM,a nonlinear controller,which is simple and easy to be constructed,is presented to achieve finite-time chaos control based on the finite-time stability theory.Computer simulation results show that the proposed controller is very effective.The obtained results may help to maintain the industrial servo driven system's security operation.
Finite-time synchronization control of a class of memristor-based recurrent neural networks.
Jiang, Minghui; Wang, Shuangtao; Mei, Jun; Shen, Yanjun
2015-03-01
This paper presents a global and local finite-time synchronization control law for memristor neural networks. By utilizing the drive-response concept, differential inclusions theory, and Lyapunov functional method, we establish several sufficient conditions for finite-time synchronization between the master and corresponding slave memristor-based neural network with the designed controller. In comparison with the existing results, the proposed stability conditions are new, and the obtained results extend some previous works on conventional recurrent neural networks. Two numerical examples are provided to illustrate the effective of the design method.
Finite-time synchronization of fractional-order memristor-based neural networks with time delays.
Velmurugan, G; Rakkiyappan, R; Cao, Jinde
2016-01-01
In this paper, we consider the problem of finite-time synchronization of a class of fractional-order memristor-based neural networks (FMNNs) with time delays and investigated it potentially. By using Laplace transform, the generalized Gronwall's inequality, Mittag-Leffler functions and linear feedback control technique, some new sufficient conditions are derived to ensure the finite-time synchronization of addressing FMNNs with fractional order α:1neural networks. Finally, three numerical examples are presented to show the effectiveness of our proposed theoretical results.
The Finite Time Ruin Probability with the Same Heavy-tailed Insurance and Financial Risks
Yi-qing Chen; Xiang-sheng Xie
2005-01-01
This note complements a recent study in ruin theory with risky investment by establishing the same asymptotic estimate for the finite time ruin probability under a weaker restriction on the financial risks.In particular, our result applies to a critical case that the insurance and financial risks have Pareto-type tails with the same regular index.
Generalized Nehari functionals and finite time blow up of the solutions to Boussinesq equation
Kolkovska, N.; Dimova, M.; Kutev, N.
2015-10-01
We study the Cauchy problem to generalized Boussinesq equation with linear restoring force and combined power type nonlinearities. Generalized Nehari functionals are introduced and their monotonicity and sign preserving properties are established. By means of an extension of the concavity method of Levine and generalized Nehari functionals finite time blow up of the solutions with arbitrary high positive initial energy is proved.
Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions.
Thiffeault, Jean-Luc; Boozer, Allen H.
2001-03-01
Constraints are found on the spatial variation of finite-time Lyapunov exponents of two- and three-dimensional systems of ordinary differential equations. In a chaotic system, finite-time Lyapunov exponents describe the average rate of separation, along characteristic directions, of neighboring trajectories. The solution of the equations is a coordinate transformation that takes initial conditions (the Lagrangian coordinates) to the state of the system at a later time (the Eulerian coordinates). This coordinate transformation naturally defines a metric tensor, from which the Lyapunov exponents and characteristic directions are obtained. By requiring that the Riemann curvature tensor vanish for the metric tensor (a basic result of differential geometry in a flat space), differential constraints relating the finite-time Lyapunov exponents to the characteristic directions are derived. These constraints are realized with exponential accuracy in time. A consequence of the relations is that the finite-time Lyapunov exponents are locally small in regions where the curvature of the stable manifold is large, which has implications for the efficiency of chaotic mixing in the advection-diffusion equation. The constraints also modify previous estimates of the asymptotic growth rates of quantities in the dynamo problem, such as the magnitude of the induced current. (c) 2001 American Institute of Physics.
Finite Time Ruin Probabilities and Large Deviations for Generalized Compound Binomial Risk Models
Yi Jun HU
2005-01-01
In this paper, we extend the classical compound binomial risk model to the case where the premium income process is based on a Poisson process, and is no longer a linear function. For this more realistic risk model, Lundberg type limiting results for the finite time ruin probabilities are derived. Asymptotic behavior of the tail probabilities of the claim surplus process is also investigated.
GLOBAL SOLUTIONS AND FINITE TIME BLOW UP FOR DAMPED KLEIN-GORDON EQUATION
Runzhang XU; Yunhua DING
2013-01-01
We study the Cauchy problem of strongly damped Klein-Gordon equation.Global existence and asymptotic behavior of solutions with initial data in the potential well are derived.Moreover,not only does finite time blow up with initial data in the unstable set is proved,but also blow up results with arbitrary positive initial energy are obtained.
Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing
Ou, Meiying; Li, Shihua; Wang, Chaoli
2013-12-01
This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.
Multistage Relaying Using Interference Networks
Muthuramalingam, Bama; Thangaraj, Andrew
2010-01-01
Wireless networks with multiple nodes that relay information from a source to a destination are expected to be deployed in many applications. Therefore, understanding their design and performance under practical constraints is important. In this work, we propose and study three multihopping decode and forward (MDF) protocols for multistage half-duplex relay networks with no direct link between the source and destination nodes. In all three protocols, we assume no cooperation across relay nodes for encoding and decoding. Numerical evaluation in illustrative example networks and comparison with cheap relay cut-set bounds for half-duplex networks show that the proposed MDF protocols approach capacity in some ranges of channel gains. The main idea in the design of the protocols is the use of coding in interference networks that are created in different states or modes of a half-duplex network. Our results suggest that multistage half-duplex relaying with practical constraints on cooperation is comparable to point...
Stator Indexing in Multistage Compressors
Barankiewicz, Wendy S.
1997-01-01
The relative circumferential location of stator rows (stator indexing) is an aspect of multistage compressor design that has not yet been explored for its potential impact on compressor aerodynamic performance. Although the inlet stages of multistage compressors usually have differing stator blade counts, the aft stages of core compressors can often have stage blocks with equal stator blade counts in successive stages. The potential impact of stator indexing is likely greatest in these stages. To assess the performance impact of stator indexing, researchers at the NASA Lewis Research Center used the 4 ft diameter, four-stage NASA Low Speed Axial Compressor for detailed experiments. This compressor has geometrically identical stages that can circumferentially index stator rows relative to each other in a controlled manner; thus it is an ideal test rig for such investigations.
Exact stabilization of entangled states in finite time by dissipative quantum circuits
Johnson, Peter D.; Ticozzi, Francesco; Viola, Lorenza
2017-07-01
Open quantum systems evolving according to discrete-time dynamics are capable, unlike continuous-time counterparts, to converge to a stable equilibrium in finite time with zero error. We consider dissipative quantum circuits consisting of sequences of quantum channels subject to specified quasi-locality constraints, and determine conditions under which stabilization of a pure multipartite entangled state of interest may be exactly achieved in finite time. Special emphasis is devoted to characterizing scenarios where finite-time stabilization may be achieved robustly with respect to the order of the applied quantum maps, as suitable for unsupervised control architectures. We show that if a decomposition of the physical Hilbert space into virtual subsystems is found, which is compatible with the locality constraint and relative to which the target state factorizes, then robust stabilization may be achieved by independently cooling each component. We further show that if the same condition holds for a scalable class of pure states, a continuous-time quasi-local Markov semigroup ensuring rapid mixing can be obtained. Somewhat surprisingly, we find that the commutativity of the canonical parent Hamiltonian one may associate to the target state does not directly relate to its finite-time stabilizability properties, although in all cases where we can guarantee robust stabilization, a (possibly noncanonical) commuting parent Hamiltonian may be found. Aside from graph states, quantum states amenable to finite-time robust stabilization include a class of universal resource states displaying two-dimensional symmetry-protected topological order, along with tensor network states obtained by generalizing a construction due to Bravyi and Vyalyi [Quantum Inf. Comput. 5, 187 (2005)]. Extensions to representative classes of mixed graph-product and thermal states are also discussed.
Multistage Turbomachinery Flows Simulated Numerically
Hathaway, Michael D.; Adamczyk, John J.; Shabbir, Aamir; Wellborn, Steven R.
1999-01-01
At the NASA Lewis Research Center, a comprehensive assessment was made of the predictive capability of the average passage flow model as applied to multistage axial-flow compressors. This model, which describes the time-averaged flow field within a typical passage of a blade row embedded in a multistage configuration, is being widely used throughout U.S. aircraft industry as an integral part of their design systems. Rotor flow-angle deviation. In this work, detailed data taken within a four and one-half stage large low-speed compressor were used to assess the weaknesses and strengths of the predictive capabilities of the average passage flow model. The low-speed compressor blading is of modern design and employs stator end-bends. Measurements were made with slow- and high response instrumentation. The high-response measurements revealed the velocity components of both the rotor and stator wakes. From the measured wake profiles, we found that the flow exiting the rotors deviated from the rotor exit metal angle to a lesser degree than was predicted by the average passage flow model. This was found to be due to blade boundary layer transition, which recently has been shown to exist on multistage axial compressor rotor and stator blades, but was not accounted for in the average passage model. Consequently, a model that mimics the effects of blade boundary layer transition, Shih k-epsilon model, was incorporated into the average passage model. Simulations that incorporated this transition model showed a dramatic improvement in agreement with data. The altered model thus improved predictive capability for multistage axial-flow compressors, and this was verified by detailed experimental measurement.
Li, Shuai; Li, Yangming; Wang, Zheng
2013-03-01
This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem.
Interconnected Levels of Multi-Stage Marketing
Vedel, Mette; Geersbro, Jens; Ritter, Thomas
2012-01-01
must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other......Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...... different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...
Adaptive Finite-Time Control for a Flexible Hypersonic Vehicle with Actuator Fault
Jie Wang
2013-01-01
Full Text Available The problem of robust fault-tolerant tracking control is investigated. Simulation on the longitudinal model of a flexible air-breathing hypersonic vehicle (FAHV with actuator faults and uncertainties is conducted. In order to guarantee that the velocity and altitude track their desired commands in finite time with the partial loss of actuator effectiveness, an adaptive fault-tolerant control strategy is presented based on practical finite-time sliding mode method. The adaptive update laws are used to estimate the upper bound of uncertainties and the minimum value of actuator efficiency factor. Finally, simulation results show that the proposed control strategy is effective in rejecting uncertainties even in the presence of actuator faults.
Aihua Zhang
2013-01-01
Full Text Available A novel attitude tracking control scheme is presented for overactuated spacecraft to address the attitude stabilization problem in presence of reaction wheel installation deviation, external disturbance and uncertain mass of moment inertia. An adaptive sliding mode control technique is proposed to track the uncertainty. A Lyapunov-based analysis shows that the compensation control law can guarantee that the desired attitude trajectories are followed in finite-time. The key feature of the proposed control strategy is that it globally asymptotically stabilizes the system, even in the presence of reaction wheel installation deviation, external disturbances, and uncertain mass of moment inertia. The attitude track performance using the proposed finite-time compensation control is evaluated through a numerical example.
Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique.
Song, Zhankui; Li, Hongxing; Sun, Kaibiao
2014-01-01
In this paper, a fast terminal sliding mode control (FTSMC) scheme with double closed loops is proposed for the spacecraft attitude control. The FTSMC laws are included both in an inner control loop and an outer control loop. Firstly, a fast terminal sliding surface (FTSS) is constructed, which can drive the inner loop tracking-error and the outer loop tracking-error on the FTSS to converge to zero in finite time. Secondly, FTSMC strategy is designed by using Lyaponov's method for ensuring the occurrence of the sliding motion in finite time, which can hold the character of fast transient response and improve the tracking accuracy. It is proved that FTSMC can guarantee the convergence of tracking-error in both approaching and sliding mode surface. Finally, simulation results demonstrate the effectiveness of the proposed control scheme.
Finite-time H∞ filtering for non-linear stochastic systems
Hou, Mingzhe; Deng, Zongquan; Duan, Guangren
2016-09-01
This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.
Input-output finite-time stabilisation of nonlinear stochastic system with missing measurements
Song, Jun; Niu, Yugang; Jia, Tinggang
2016-09-01
This paper considers the problem of the input-output finite-time stabilisation for a class of nonlinear stochastic system with state-dependent noise. The phenomenon of the missing measurements may occur when state signals are transmitted via communication networks. An estimating method is proposed to compensate the lost state information. And then, a compensator-based controller is designed to ensure the input-output finite-time stochastic stability (IO-FTSS) of the closed-loop system. Some parameters-dependent sufficient conditions are derived and the corresponding solving approach is given. Finally, numerical simulations are provided to demonstrate the feasibility and effectiveness of the developed IO-FTSS scheme.
Local Stable and Unstable Manifolds and Their Control in Nonautonomous Finite-Time Flows
Balasuriya, Sanjeeva
2016-08-01
It is well known that stable and unstable manifolds strongly influence fluid motion in unsteady flows. These emanate from hyperbolic trajectories, with the structures moving nonautonomously in time. The local directions of emanation at each instance in time is the focus of this article. Within a nearly autonomous setting, it is shown that these time-varying directions can be characterised through the accumulated effect of velocity shear. Connections to Oseledets spaces and projection operators in exponential dichotomies are established. Availability of data for both infinite- and finite-time intervals is considered. With microfluidic flow control in mind, a methodology for manipulating these directions in any prescribed time-varying fashion by applying a local velocity shear is developed. The results are verified for both smoothly and discontinuously time-varying directions using finite-time Lyapunov exponent fields, and excellent agreement is obtained.
Finite-time singularities in the dynamical evolution of contact lines
Pelinovsky, D E
2013-01-01
We study finite-time singularities in the linear advection-diffusion equation with a variable speed on a semi-infinite line. The variable speed is determined by an additional condition at the boundary, which models the dynamics of a contact line of a hydrodynamic flow at a 180 contact angle. Using apriori energy estimates, we derive conditions on variable speed that guarantee that a sufficiently smooth solution of the linear advection--diffusion equation blows up in a finite time. Using the class of self-similar solutions to the linear advection-diffusion equation, we find the blow-up rate of singularity formation. This blow-up rate does not agree with previous numerical simulations of the model problem.
Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses
Kaushik, S.C.; Kumar, S. [Indian Inst. of Technology, Centre for Energy Studies, New Delhi (India)
2000-10-01
This communication presents an investigation of a finite time thermodynamic analysis of an endoreversible Stirling heat engine. Finite time thermodynamics has been applied to maximise the power output and the corresponding thermal efficiency of an endoreversible Stirling heat engine with internal heat loss in the regenerator and for the finite heat capacity of the external reservoirs. The effect of the effectiveness of the various heat exchangers, the inlet temperatures of external heat reservoirs on the power output and the corresponding thermal efficiency have been studied. It is seen that an endoreversible Stirling heat engine with an ideal regenerator ({epsilon}{sub R}=1.00) is as efficient as an endoreversible Carnot heat engine. It is also found that the maximum power output increases with the heat capacitance rates and effectiveness of the source/sink side heat exchangers while thermal efficiency increases with the effectiveness of the regenerator. (Author)
Distributed robust finite-time nonlinear consensus protocols for multi-agent systems
Zuo, Zongyu; Tie, Lin
2016-04-01
This paper investigates the robust finite-time consensus problem of multi-agent systems in networks with undirected topology. Global nonlinear consensus protocols augmented with a variable structure are constructed with the aid of Lyapunov functions for each single-integrator agent dynamics in the presence of external disturbances. In particular, it is shown that the finite settling time of the proposed general framework for robust consensus design is upper bounded for any initial condition. This makes it possible for network consensus problems to design and estimate the convergence time offline for a multi-agent team with a given undirected information flow. Finally, simulation results are presented to demonstrate the performance and effectiveness of our finite-time protocols.
Finite-time Partitions for Lagrangian Structure Identification in Gulf Stream Eddy Transport
Fabregat, Alexandre; Poje, Andrew C
2016-01-01
We develop a methodology to identify finite-time Lagrangian structures from data and models using an extension of the Koopman operator-theoretic methods developed for velocity fields with simple (periodic, quasi-periodic) time-dependence. To achieve this, the notion of the Finite Time Ergodic (FiTER) partition is developed and rigorously justified. In combination with a clustering-based approach, the methodology enables identification of the temporal evolution of Lagrangian structures in a classic, benchmark, oceanographic transport problem, namely the cross-stream flux induced by the interaction of a meso- scale Gulf Stream Ring eddy with the main jet. We focus on a single mixing event driven by the interaction between an energetic cold core ring (a cyclone), the strong jet, and a number of smaller scale cyclones and anticyclones. The new methodology enab les reconstruction of Lagrangian structures in three dimensions and analysis of their time-evolution.
Lee, Daero; Vukovich, George; Gui, Haichao
2017-05-01
This paper presents an adaptive variable-structure finite-time control for spacecraft proximity maneuvers under parameter uncertainties, external disturbances and actuator saturation. The coupled six degrees-of-freedom dynamics are modeled for spacecraft relative motion, where the exponential coordinates on the Lie group SE(3) are employed to describe relative configuration. No prior knowledge of inertia matrix and mass of the spacecraft is required for the proposed control law, which implies that the proposed control scheme can be applied in spacecraft systems with large parametric uncertainties in inertia matrix and mass. Finite-time convergence of the feedback system with the proposed control law is established. Numerical simulation results are presented to illustrate the effectiveness of the proposed control law for spacecraft proximity operations with actuator saturation.
张炎; 李双喜; 蔡纪宁; 张秋翔; 马智萌
2015-01-01
Because the axial thrust problem has a significant effect on the reliability and efficiency of multistage pumps,it is es-sential to calculate axial thrust and the performance of thrust equalizing mechanism (TEM)precisely.In this paper,The internal flow characteristics of gap seal-balancing disk(GS-BD)and labyrinth seal-balancing disk(LS-BD)were investigated employing the ANSYS-Fluent software.The pressure distribution and balancing performance as well as pump efficiency were studied.The result shows that,the gap between the impeller and the stationary plate is smaller in the LS-BD,which can reduce the leakage through TEMand increase the efficiency of the pump.Under the condition of axial thrust fluctuation,the impeller system can reach new equilibrium state faster in the LS-BD,which can improve the reliability of the pump.In addition,the structure param-eter of labyrinth seal was optimized by studying the influence of radial clearance,cavity depth,tooth thickness,number of cavi-ties on the LS-BD balance performance respectively.These results provide the basis theory guide for the optimization of TEM.%采用 Fluent 软件，对径向柱面间隙密封－平衡盘（GS-BD）、径向迷宫密封－平衡盘（LS-BD）2种平衡装置的内部流场进行数值计算。对比分析了2种平衡装置内部流场的压力分布规律、平衡装置的平衡性能和泵的容积效率。结果表明：与 GS-BD 相比较，LS-BD 中平衡盘端面间的轴向间隙更小，泄漏率更小，泵的容积效率更高，在有轴向力波动的情况下，叶轮轴系可以更迅速地达到新的平衡状态。此外，进行了 LS-BD 平衡装置中迷宫密封参数优化分析，研究了迷宫径向间隙、密封腔深度、齿宽、齿数等结构参数对平衡性能的影响规律，得到了各参数的优选值。研究结果为多级离心泵平衡装置的优化设计提供了理论依据。
The finite-time ruin probability in the presence of Sarmanov dependent financial and insurance risks
YANG Yang; LIN Jin-guan; TAN Zhong-quan
2014-01-01
Consider a discrete-time insurance risk model. Within period i, i ≥ 1, Xi and Yi denote the net insurance loss and the stochastic discount factor of an insurer, respectively. Assume that{(Xi, Yi), i≥1}form a sequence of independent and identically distributed random vectors following a common bivariate Sarmanov distribution. In the presence of heavy-tailed net insurance losses, an asymptotic formula is derived for the finite-time ruin probability.
Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer
Xuzhong Wu; Shengjing Tang; Jie Guo; Yao Zhang
2015-01-01
This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance ...
Some properties of asymmetric Hopfield neural networks with finite time of transition between states
Suleimenov, Ibragim; Mun, Grigoriy; Panchenko, Sergey; Pak, Ivan
2016-11-01
There were implemented samples of asymmetric Hopfield neural networks which have finite time of transition from one state to another. It was shown that in such systems, various oscillation modes could occur. It was revealed that the oscillation of the output signal of certain neuron could be treated as extra logical variable, which describes the state of the neuron. Asymmetric Hopfield neural networks are described in terms of ternary logic. Such logic may be employed in image recognition procedure.
Adaptive backstepping finite-time sliding mode control of spacecraft attitude tracking
Chutiphon Pukdeboon
2015-01-01
This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid-ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con-trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se-cond control law is also designed by combining the second or-der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya-punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed control ers.
Yang, Yana; Hua, Changchun; Guan, Xinping
2016-03-01
Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method.
Xu, Xiaole; Chen, Shengyong; Gao, Lixin
2014-01-01
This paper investigates the finite-time consensus problem of leader-following multiagent systems. The dynamical models for all following agents and the leader are assumed the same general form of linear system, and the interconnection topology among the agents is assumed to be switching and undirected. We mostly consider the continuous-time case. By assuming that the states of neighbouring agents are known to each agent, a sufficient condition is established for finite-time consensus via a neighbor-based state feedback protocol. While the states of neighbouring agents cannot be available and only the outputs of neighbouring agents can be accessed, the distributed observer-based consensus protocol is proposed for each following agent. A sufficient condition is provided in terms of linear matrix inequalities to design the observer-based consensus protocol, which makes the multiagent systems achieve finite-time consensus under switching topologies. Then, we discuss the counterparts for discrete-time case. Finally, we provide an illustrative example to show the effectiveness of the design approach.
Xiaole Xu
2014-01-01
Full Text Available This paper investigates the finite-time consensus problem of leader-following multiagent systems. The dynamical models for all following agents and the leader are assumed the same general form of linear system, and the interconnection topology among the agents is assumed to be switching and undirected. We mostly consider the continuous-time case. By assuming that the states of neighbouring agents are known to each agent, a sufficient condition is established for finite-time consensus via a neighbor-based state feedback protocol. While the states of neighbouring agents cannot be available and only the outputs of neighbouring agents can be accessed, the distributed observer-based consensus protocol is proposed for each following agent. A sufficient condition is provided in terms of linear matrix inequalities to design the observer-based consensus protocol, which makes the multiagent systems achieve finite-time consensus under switching topologies. Then, we discuss the counterparts for discrete-time case. Finally, we provide an illustrative example to show the effectiveness of the design approach.
Simulation of Multistage Turbine Flows
Celestina, M. L.; Mulac, R. A.; Adamczyk, J. J.
1985-01-01
The numerical simulation of turbine flows serves to enhance the understanding of the flow phenomena within multistage turbomachinery components. The direct benefit of this activity is improved modeling capability, which can be used to improve component efficiency and durability. A hierarchy of equations was formulated to assess the difficulty in analyzing the flow field within multistage turbomachinery components. The Navier-Stokes equations provides the most complete description. The simplest description is given by a set of equations that govern the quasi-one-dimensional flow. The number of unknowns to be solved for increases monotonically above the number of equations. The development of the additional set of equations needed to mathematically close the system of equations forms the closure problem associated with that level of description. For the Navier-Stokes equation there is no closure problem. For the quasi-one-dimensional equation set random flow fluctuations, unsteady fluctuations, nonaxisymmetric flow variations, and hub-to-shroud variations on the quasi-one-dimensional flow must be accounted for.
苏海锋; 张建华; 梁志瑞; 牛胜锁
2013-01-01
市场环境下,配电网规划方案全寿命周期经济性变得越来越重要.基于设备全寿命周期成本建立了配电网多阶段网架及开关布置规划新模型,模型同时考虑了规划方案初始投资、运行维护成本、停电成本、报废成本；在满足各阶段负荷发展需求的条件下,以规划项目全寿命周期经济性最优为目标函数确定不同支路的建设时间；建立了配电网停电成本计算模型,该模型反映了停电频率、停电持续时间及停电电量对停电成本的综合影响.提出一种将均值聚类与随机粒子群算法相结合的改进离散粒子群算法对上述模型进行求解,该算法克服了基本粒子群算法的“早熟”问题.该规划方法使得规划方案不仅满足全寿命周期经济性最优,而且兼顾一定的可靠性水平.规划实例验证了上述模型和方法的正确性和有效性.%The life cycle economy of the power distribution network planning scheme is becoming more and more important in power markets. The new model of the distribution network multi-stage planning and the configuration of switches based on the life cycle cost (LCC) of equipment was presented. The initial investment, operation and maintenance cost, outage cost and disposal cost of planning scheme were considered. According to the development of the load, the construction time of the distribution feeders can be decided based on the optimal LCC. The function of fault cost was built, and the function reflected the comprehensive effect of the frequency, duration and quantity of outage to the fault cost. The improved algorithm based on the combined mean clustering algorithm and random particle swarm algorithm was presented. The new algorithm's global searching capability was improved. The distribution network planning method based on LCC is not only reliable, but also the most economical. The new model is feasible and practical by a realistic planning project.
Interconnected Levels of Multi-Stage Marketing
Vedel, Mette; Geersbro, Jens; Ritter, Thomas
2012-01-01
different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...... in a multi-stage marketing context. This understanding assists managers in assessing and balancing different aspects of multi- stage marketing. The triadic perspective also offers avenues for further research.......Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...
Roy T.
2007-01-01
Full Text Available A finite time-horizon deterministic inventory model is developed, taking the demand rate at any instant to be a function of the on-hand inventory (stock-level at that instant. Shortages in inventory are allowed. The effects of inflation and time value of money are considered. Two separate inflation rates: namely, the internal (company and the external (general economy are introduced. A numerical example of the model is discussed. A sensitivity analysis of the optimal solution with respect to the parameters of the model is examined.
Fuzzy-like multiple objective multistage decision making
Xu, Jiuping
2014-01-01
Decision has inspired reflection of many thinkers since the ancient times. With the rapid development of science and society, appropriate dynamic decision making has been playing an increasingly important role in many areas of human activity including engineering, management, economy and others. In most real-world problems, decision makers usually have to make decisions sequentially at different points in time and space, at different levels for a component or a system, while facing multiple and conflicting objectives and a hybrid uncertain environment where fuzziness and randomness co-exist in a decision making process. This leads to the development of fuzzy-like multiple objective multistage decision making. This book provides a thorough understanding of the concepts of dynamic optimization from a modern perspective and presents the state-of-the-art methodology for modeling, analyzing and solving the most typical multiple objective multistage decision making practical application problems under fuzzy-like un...
Wang, Ronghao; Xing, Jianchun; Li, Juelong; Xiang, Zhengrong
2016-10-01
This paper studies the problem of stabilising a sampled-data switched linear system by quantised feedback asynchronously switched controllers. The idea of a quantised feedback asynchronously switched control strategy originates in earlier work reflecting actual system characteristic of switching and quantising, respectively. A quantised scheme is designed depending on switching time using dynamic quantiser. When sampling time, system switching time and controller switching time are all not uniform, the proposed switching controllers guarantee the system to be finite-time stable by a piecewise Lyapunov function and the average dwell-time method. Simulation examples are provided to show the effectiveness of the developed results.
Finite Time Ruin Probability with Variable Interest Rate and Extended Regular Variation
WEI Xiao; HU Yi-jun
2004-01-01
Consider an insurance risk model, in which the surplus process satisfies a recursive equation Un=Un-1(1+rn)-Xn for n≥ 1, where U0=x≥0 is the initial surplus, {rn;n≥1} the interest rate sequence, {Xn;n≥1} the sequence of i.i.d. real-valued random variables with common distribution function F, which denotes the gross loss during the nth year. We investigate the ruin probability within a finite time horizon and give the asymptotic result as x→∞.
Finite-time control for asteroid hovering and landing via terminal sliding-mode guidance
Yang, Hongwei; Bai, Xiaoli; Baoyin, Hexi
2017-03-01
This paper proposes a new nonlinear guidance algorithm applicable for asteroid both hovering and landing. With the new guidance, a spacecraft achieves its target position and velocity in finite-time without the requirement of reference trajectories. The global stability is proven for the controlled system. A parametric analysis is conducted to illustrate the parameters' effects on the guidance algorithm. Simulations of straight landing, hovering to hovering and landing with a prior hovering phase of the highly irregular asteroid 2063 Bacchus are presented and the effectiveness of the proposed method is demonstrated.
Multi-stage complex contagions
Melnik, Sergey; Ward, Jonathan A.; Gleeson, James P.; Porter, Mason A.
2013-03-01
The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks. Agents at different stages—which could, for example, represent differing levels of support for a social movement or differing levels of commitment to a certain product or idea—exert different amounts of influence on their neighbors. We demonstrate that the presence of even one additional stage introduces novel dynamical behavior, including interplay between multiple cascades, which cannot occur in single-stage contagion models. We find that cascades—and hence collective action—can be driven not only by high-stage influencers but also by low-stage influencers.
Fei Chen
2013-01-01
Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.
Haiyang Chen
2015-01-01
Full Text Available This paper is concerned with the robust H∞ finite-time control for discrete delayed nonlinear systems with Markovian jumps and external disturbances. It is usually assumed that the disturbance affects the system states and outputs with the same influence degree of 100%, which is not evident enough to reflect the situation where the disturbance affects these two parts by different influence degrees. To tackle this problem, a probabilistic distribution denoted by binomial sequences is introduced to describe the external disturbance. Throughout the paper, the definitions of the finite-time boundedness (FTB and the H∞ FTB are firstly given respectively. To extend the results further, a model which combines a linear dynamic system and a static nonlinear operator is referred to describe the system under discussion. Then by virtue of state feedback control method, some new sufficient criteria are derived which guarantee the FTB and H∞ FTB performances for the considered system. Finally, an example is provided to demonstrate the effectiveness of the developed control laws.
Finite-time scaling via linear driving: application to the two-dimensional Potts model.
Huang, Xianzhi; Gong, Shurong; Zhong, Fan; Fan, Shuangli
2010-04-01
We apply finite-time scaling to the q-state Potts model with q=3 and 4 on two-dimensional lattices to determine its critical properties. This consists in applying to the model a linearly varying external field that couples to one of its q states to manipulate its dynamics in the vicinity of its criticality and that drives the system out of equilibrium and thus produces hysteresis and in defining an order parameter other than the usual one and a nonequilibrium susceptibility to extract coercive fields. From the finite-time scaling of the order parameter, the coercivity, and the hysteresis area and its derivative, we are able to determine systematically both static and dynamic critical exponents as well as the critical temperature. The static critical exponents obtained in general and the magnetic exponent delta in particular agree reasonably with the conjectured ones. The dynamic critical exponents obtained appear to confirm the proposed dynamic weak universality but unlikely to agree with recent short-time dynamic results for q=4. Our results also suggest an alternative way to characterize the weak universality.
Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhao, Hui
2016-09-01
In this paper, we study the finite-time stability and synchronization problem of a class of memristor-based fractional-order Cohen-Grossberg neural network (MFCGNN) with the fractional order α ∈ (0,1 ]. We utilize the set-valued map and Filippov differential inclusion to treat MFCGNN because it has discontinuous right-hand sides. By using the definition of Caputo fractional-order derivative, the definitions of finite-time stability and synchronization, Gronwall's inequality and linear feedback controller, two new sufficient conditions are derived to ensure the finite-time stability of our proposed MFCGNN and achieve the finite-time synchronization of drive-response systems which are constituted by MFCGNNs. Finally, two numerical simulations are presented to verify the rightness of our proposed theorems.
Zhang, Honglu; Cheng, Jun; Wang, Hailing; Chen, Yiping; Xiang, Huili
2016-07-01
This paper investigates the problem of finite-time event-triggered H∞ boundedness for network-based Markovian jump nonlinear system. An improved model is introduced in terms of network-induced delay. By synthesizing the newly event-triggering conditions, the finite-time H∞ boundedness for networked Markovian jump nonlinear systems are guaranteed. At last, a numerical example is given to illustrate the effectiveness of proposed theoretical results.
Wang, Leimin; Shen, Yi; Sheng, Yin
2016-04-01
This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.
Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems
Ali, Mazhar
2009-07-13
This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference
Charcoal Production via Multistage Pyrolysis
Adetoyese Olajire Oyedun; Ka Leung Lam; Chi Wai Hui
2012-01-01
Interests in charcoal usage have recently been re-ignited because it is believed that charcoal is a muchbetter fuel than wood. The conventional charcoal production consumes a large amount of energy due to the prolonged heating time and cooling time which contribute to the process completing in one to several days. Wood py-rolysis consists of both endothermic and exothermic reactions as well as the decomposition of the different components at different temperature range （hemicellulose： 200-260℃; cellulose： 240-350℃ and lignin： 280-500℃）. Inthis study we propose a multistagepyrolysis which is an approach to carry out pyrolysis with multiple heating stages so as to gain certain processing benefits. We propose a three-stage approach which includes rapid stepwise heating stage to a variable target temperatures of 250 ℃, 300℃, 350 ℃ and 400 ℃, slow and gradual heatingstage to a tinal temperature of 400℃ and adiabatic with cooling stage. The multi-stage pyrolysis process can save 30% energy and the processing time by using a first temperature target of 300 ℃and heating rate of 5℃.min-1 to produce a fixed-carbon yield of 25.73% as opposed to the base case with a fixed-carbon yield of23.18%.
Split-plot designs for multistage experimentation
Kulahci, Murat; Tyssedal, John
2016-01-01
at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....
Efficiency at maximum power output of quantum heat engines under finite-time operation
Wang, Jianhui; He, Jizhou; Wu, Zhaoqi
2012-03-01
We study the efficiency at maximum power, ηm, of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), ηm becomes identical to the Carnot efficiency ηC=1-Tc/Th. For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency ηm at maximum power output is bounded from above by ηC/(2-ηC) and from below by ηC/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency ηCA=1-Tc/Th is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.
On the thermal efficiency of power cycles in finite time thermodynamics
Momeni, Farhang; Morad, Mohammad Reza; Mahmoudi, Ashkan
2016-09-01
The Carnot, Diesel, Otto, and Brayton power cycles are reconsidered endoreversibly in finite time thermodynamics (FTT). In particular, the thermal efficiency of these standard power cycles is compared to the well-known results in classical thermodynamics. The present analysis based on FTT modelling shows that a reduction in both the maximum and minimum temperatures of the cycle causes the thermal efficiency to increase. This is antithetical to the existing trend in the classical references. Under the assumption of endoreversibility, the relation between the efficiencies is also changed to {η }{{Carnot}}\\gt {η }{{Brayton}}\\gt {η }{{Diesel}}\\gt {η }{{Otto}}, which is again very different from the corresponding classical results. The present results benefit a better understanding of the important role of irreversibility on heat engines in classical thermodynamics.
Finite-time barriers to front propagation in two-dimensional fluid flows
Mahoney, John R
2015-01-01
Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear", introduced by Farazmand, Blazevski, and Haller [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our techniqu...
Finite-time synchronization of tunnel-diode-based chaotic oscillators.
Louodop, Patrick; Fotsin, Hilaire; Kountchou, Michaux; Ngouonkadi, Elie B Megam; Cerdeira, Hilda A; Bowong, Samuel
2014-03-01
This paper addresses the problem of finite-time synchronization of tunnel diode based chaotic oscillators. After a brief investigation of its chaotic dynamics, we propose an active adaptive feedback coupling which accomplishes the synchronization of tunnel-diode-based chaotic systems with and without the presence of delay(s), basing ourselves on Lyapunov and on Krasovskii-Lyapunov stability theories. This feedback coupling could be applied to many other chaotic systems. A finite horizon can be arbitrarily established by ensuring that chaos synchronization is achieved at a pre-established time. An advantage of the proposed feedback coupling is that it is simple and easy to implement. Both mathematical investigations and numerical simulations followed by pspice experiment are presented to show the feasibility of the proposed method.
Efficiency at maximum power output of quantum heat engines under finite-time operation.
Wang, Jianhui; He, Jizhou; Wu, Zhaoqi
2012-03-01
We study the efficiency at maximum power, η(m), of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), η(m) becomes identical to the Carnot efficiency η(C)=1-T(c)/T(h). For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency η(m) at maximum power output is bounded from above by η(C)/(2-η(C)) and from below by η(C)/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency η(CA)=1-√(T(c)/T(h)) is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.
Finite-time singularities in f(R, T) gravity and the effect of conformal anomaly
Houndjo, M J S; Campos, J P; Piattella, O F
2012-01-01
We investigate $f(R,T)$ gravity models ($R$ is the curvature scalar and $T$ is the trace of the stress-energy tensor of ordinary matter) that are able to reproduce the four known types of future finite-time singularities. We choose a suitable expression for the Hubble parameter in order to realise the cosmic acceleration and we introduce two parameters, $\\alpha$ and $H_s$, which characterise each type of singularity. We address conformal anomaly and we observe that it cannot remove the sudden singularity or the type IV one, but, for some values of $\\alpha$, the big rip and the type III singularity may be avoided. We also find that, even without taking into account conformal anomaly, the big rip and the type III singularity may be removed thanks to the presence of the $T$ contribution of the $f(R,T)$ theory.
A method to calculate finite-time Lyapunov exponents for inertial particles in incompressible flows
Garaboa-Paz, D.; Pérez-Muñuzuri, V.
2015-10-01
The present study aims to improve the calculus of finite-time Lyapunov exponents (FTLEs) applied to describe the transport of inertial particles in a fluid flow. To this aim, the deformation tensor is modified to take into account that the stretching rate between particles separated by a certain distance is influenced by the initial velocity of the particles. Thus, the inertial FTLEs (iFTLEs) are defined in terms of the maximum stretching between infinitesimally close trajectories that have different initial velocities. The advantages of this improvement, if compared to the standard method (Shadden et al., 2005), are discussed for the double-gyre flow and the meandering jet flow. The new method allows one to identify the initial velocity that inertial particles must have in order to maximize their dispersion.
O. A. Domínguez-Ramírez
2006-01-01
Full Text Available Perception and interaction with virtual surfaces, through kinaesthetic sensation and visual stimuli, is the basic issue of a haptic interface. When the virtual or real object is in a remote location, and guidance is required to perceive kinaesthetic feedback, a haptic guidance scheme is required. In this document, with purpose of haptic-guided exploration, a new scheme for simultaneous control of force and cartesian position is proposed without using inverse kinematics, and without using the dynamic model of PHANToM, though a strict stability analysis includes the dynamic model of PHANToM. We rely on our previously proposed results to propose a new haptic cartesian controller to reduce the burden of computing cartesian forces in PHANToM. Furthermore, a time base generator for finite-time tracking is also proposed to achieve very fast tracking and high precision, which translated into high fidelity kinaesthetic feedback.
Quantum Otto cycle with inner friction: finite-time and disorder effects
Alecce, A.; Galve, F.; Lo Gullo, N.; Dell'Anna, L.; Plastina, F.; Zambrini, R.
2015-07-01
The concept of inner friction, by which a quantum heat engine is unable to follow adiabatically its strokes and thus dissipates useful energy, is illustrated in an exact physical model where the working substance consists of an ensemble of misaligned spins interacting with a magnetic field and performing the Otto cycle. The effect of this static disorder under a finite-time cycle gives a new perspective of the concept of inner friction under realistic settings. We investigate the efficiency and power of this engine and relate its performance to the amount of friction from misalignment and to the temperature difference between heat baths. Finally we propose an alternative experimental implementation of the cycle where the spin is encoded in the degree of polarization of photons.
Refining finite-time Lyapunov exponent ridges and the challenges of classifying them.
Allshouse, Michael R; Peacock, Thomas
2015-08-01
While more rigorous and sophisticated methods for identifying Lagrangian based coherent structures exist, the finite-time Lyapunov exponent (FTLE) field remains a straightforward and popular method for gaining some insight into transport by complex, time-dependent two-dimensional flows. In light of its enduring appeal, and in support of good practice, we begin by investigating the effects of discretization and noise on two numerical approaches for calculating the FTLE field. A practical method to extract and refine FTLE ridges in two-dimensional flows, which builds on previous methods, is then presented. Seeking to better ascertain the role of a FTLE ridge in flow transport, we adapt an existing classification scheme and provide a thorough treatment of the challenges of classifying the types of deformation represented by a FTLE ridge. As a practical demonstration, the methods are applied to an ocean surface velocity field data set generated by a numerical model.
Shocks and finite-time singularities in Hele-Shaw flow
Teodorescu, Razvan [Los Alamos National Laboratory; Wiegmann, P [UNIV OF MONTREAL; Lee, S-y [UNIV OF CHICAGO
2008-01-01
Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most generic (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.
Wang, Yujuan; Song, Yongduan; Krstic, Miroslav
2016-12-14
This paper investigates the problem of achieving rotating formation and containment simultaneously via finite time control schemes for multiagent systems. It is nontrivial to maintain rotating formation where the desired formation structure is time-varying and only neighboring information is available. The underlying problem becomes even more complicated if containment is imposed yet finite time convergence is required at the same time. To tackle this problem, a polar coordinate-based approach is exploited in this paper. Finite time control protocols are established for leader agents and follower agents, respectively, such that three goals are achieved in finite time concurrently: 1) all the agents maintain a stable rotating motion around a common circular center with a common (possibly time-varying) angular velocity; 2) the leader agents form and maintain a prespecified rotating formation structure; and 3) the follower agents converge to the shifting convex hull shaped by the dynamically moving (circling) leaders. It is the polar coordinate expression that simplifies the formulation of the rotating formation-containment problem and facilitates the finite time control design process. The effectiveness of the proposed control scheme is illustrated via both formative mathematical analysis and numerical simulation.
祝颖; 冷乔; 王丽亚; 赵世雄; 郑宇
2015-01-01
This paper aims to minimize the sum of production costs and maintenance costs. The age reduction factor and improvement factor in hazard rate are introduced and with the comprehensive consideration of imperfect and perfect maintenance,a complex non-linear integrated production lot-size and maintenance planning model in a multi-stage system with intermediate buffers is proposed under the assumption of operation-dependent failures.A time-based-decomposition simulated annealing algorithm is designed to solve this problem.Numerical analysis validated the performance of the model.%以最小化生产与维护总成本为目标，通过引入役龄递减因子与失效率递增因子对设备故障率演化进行建模，综合考虑完美维护、非完美维护和故障维修，建立了在带缓冲多阶段的生产系统环境下，基于加工失效假设的生产与维护集成计划模型，并设计基于时间分解的模拟退火算法求解该问题。最后，算例分析验证了模型的有效性。
Robust L2-L∞ Filtering of Time-Delay Jump Systems with Respect to the Finite-Time Interval
Shuping He
2011-01-01
Full Text Available This paper studied the problem of stochastic finite-time boundedness and disturbance attenuation for a class of linear time-delayed systems with Markov jumping parameters. Sufficient conditions are provided to solve this problem. The L2-L∞ filters are, respectively, designed for time-delayed Markov jump linear systems with/without uncertain parameters such that the resulting filtering error dynamic system is stochastically finite-time bounded and has the finite-time interval disturbance attenuation γ for all admissible uncertainties, time delays, and unknown disturbances. By using stochastic Lyapunov-Krasovskii functional approach, it is shown that the filter designing problem is in terms of the solutions of a set of coupled linear matrix inequalities. Simulation examples are included to demonstrate the potential of the proposed results.
Xu, Yong; Lu, Renquan; Shi, Peng; Li, Hongyi; Xie, Shengli
2016-12-15
This paper considers finite-time distributed state estimation for discrete-time nonlinear systems over sensor networks. The Round-Robin protocol is introduced to overcome the channel capacity constraint among sensor nodes, and the multiplicative noise is employed to model the channel fading. In order to improve the performance of the estimator under the situation, where the transmission resources are limited, fading channels with different stochastic properties are used in each round by allocating the resources. Sufficient conditions of the average stochastic finite-time boundedness and the average stochastic finite-time stability for the estimation error system are derived on the basis of the periodic system analysis method and Lyapunov approach, respectively. According to the linear matrix inequality approach, the estimator gains are designed. Finally, the effectiveness of the developed results are illustrated by a numerical example.
Finite-time singularity in the dynamics of the world population, economic and financial indices
Johansen, Anders; Sornette, Didier
2001-05-01
Contrary to common belief, both the Earth's human population and its economic output have grown faster than exponential, i.e., in a super-Malthusian mode, for most of the known history. These growth rates are compatible with a spontaneous singularity occurring at the same critical time 2052±10 signaling an abrupt transition to a new regime. The degree of abruptness can be infered from the fact that the maximum of the world population growth rate was reached in 1970, i.e., about 80 years before the predicted singular time, corresponding to approximately 4% of the studied time interval over which the acceleration is documented. This rounding-off of the finite-time singularity is probably due to a combination of well-known finite-size effects and friction and suggests that we have already entered the transition region to a new regime. As theoretical support, a multivariate analysis coupling population, capital, R&D and technology shows that a dramatic acceleration in the population growth during most of the timespan can occur even though the isolated dynamics do not exhibit it. Possible scenarios for the cross-over and the new regime are discussed.
Numerical investigations on the finite time singularity in two-dimensional Boussinesq equations
Yin, Z
2006-01-01
To investigate the finite time singularity in three-dimensional (3D) Euler flows, the simplified model of 3D axisymmetric incompressible fluids (i.e., two-dimensional Boussinesq approximation equations) is studied numerically. The system describes a cap-like hot zone of fluid rising from the bottom, while the edges of the cap lag behind, forming eye-like vortices. The hot liquid is driven by the buoyancy and meanwhile attracted by the vortices, which leads to the singularity-forming mechanism in our simulation. In the previous 2D Boussinesq simulations, the symmetricial initial data is used. However, it is observed that the adoption of symmetry leads to coordinate singularity. Moreover, as demonstrated in this work that the locations of peak values for the vorticity and the temperature gradient becomes far apart as $t$ approaches the predicted blow-up time. This suggests that the symmetry assumption may be unreasonable for searching solution blow-ups. One of the main contributions of this work is to propose a...
Finite time extinction of super-Brownian motions with deterministic catalyst
REN; Yanxia(任艳霞); WANG; Yongjin(王永进)
2003-01-01
In this paper we consider a super-Brownian motion X with branching mechanism k(x)za, where k(x) ＞ 0 is a bounded Holder continuous function on Rd and infx∈Rd k(x) = 0. We prove that if k(x) ≥‖x‖-1(0 ≤ l ＜∞) for sufficiently large x, then X has compact support property, and for dimension d = 1, if k(x) ≥ exp(-l‖x‖)(0 ≤ l ＜∞) for sufficiently large x, then X also has compact support property. The maximal order of k(x) for finite time extinction is different between d = 1, d = 2 and d ≥3: it is O(‖x‖-(a+1))in one dimension, O(‖x‖-2(log ‖x‖)-(a+1)) in two dimensions, and O(‖x‖2) in higher dimensions. These growth orders also turn out to be the maximum order for the nonexistence of a positive solution for 1/2△u =k(x)uα.
Finite time attitude takeover control for combination via tethered space robot
Lu, Yingbo; Huang, Panfeng; Meng, Zhongjie; Hu, Yongxin; Zhang, Fan; Zhang, Yizhai
2017-07-01
Up to April 6, 2016, there are 17,385 large debris in orbit around the Earth, which poses a serious hazard to near-Earth space activities. As a promising on-orbit debris capture strategy, tethered space robots (TSRs) have wide applications in future on-orbit service owing to its flexibility and great workspace. However, lots of problems may arise in the Tethered Space Robots (TSRs) system from the approaching, capturing, postcapturing and towing phases. The postcapture combination attitude takeover control by the TSR is studied in this paper. Taking control constraints, tether oscillations and external disturbances into consideration, a fast terminal sliding mode control (FTSMC) methodology with dual closed loops for the flexible combination attitude takeover control is designed. The unknown upper bounds of the uncertainties, external disturbances are estimated through adaptive techniques. Stability of the dual closed loop control system and finite time convergence of system states are proved via Lyapunov stability theory. Besides, null space intersection control allocation was adopted to distribute the required control moment over TSR's redundant thrusters. Simulation studies have been conducted to demonstrate the effectiveness of the proposed controller with the conventional sliding mode control(SMC).
Influence of finite-time Lyapunov exponents on winter precipitation over the Iberian Peninsula
D. Garaboa-Paz
2017-05-01
Full Text Available Seasonal forecasts have improved during the last decades, mostly due to an increase in understanding of the coupled ocean–atmosphere dynamics, and the development of models able to predict the atmosphere variability. Correlations between different teleconnection patterns and severe weather in different parts of the world are constantly evolving and changing. This paper evaluates the connection between winter precipitation over the Iberian Peninsula and the large-scale tropospheric mixing over the eastern Atlantic Ocean. Finite-time Lyapunov exponents (FTLEs have been calculated from 1979 to 2008 to evaluate this mixing. Our study suggests that significant negative correlations exist between summer FTLE anomalies and winter precipitation over Portugal and Spain. To understand the mechanisms behind this correlation, summer anomalies of the FTLE have also been correlated with other climatic variables such as the sea surface temperature (SST, the sea level pressure (SLP or the geopotential. The East Atlantic (EA teleconnection index correlates with the summer FTLE anomalies, confirming their role as a seasonal predictor for winter precipitation over the Iberian Peninsula.
Finite-Time Lyapunov Exponents and Lagrangian Coherent Structures in Uncertain Unsteady Flows.
Guo, Hanqi; He, Wenbin; Peterka, Tom; Shen, Han-Wei; Collis, Scott; Helmus, Jonathan
2016-02-29
The objective of this paper is to understand transport behavior in uncertain time-varying flow fields by redefining the finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structure (LCS) as stochastic counterparts of their traditional deterministic definitions. Three new concepts are introduced: the distribution of the FTLE (D-FTLE), the FTLE of distributions (FTLE-D), and uncertain LCS (U-LCS). The D-FTLE is the probability density function of FTLE values for every spatiotemporal location, which can be visualized with different statistical measurements. The FTLE-D extends the deterministic FTLE by measuring the divergence of particle distributions. It gives a statistical overview of how transport behaviors vary in neighborhood locations. The U-LCS, the probabilities of finding LCSs over the domain, can be extracted with stochastic ridge finding and density estimation algorithms. We show that our approach produces better results than existing variance-based methods do. Our experiments also show that the combination of D-FTLE, FTLE-D, and U-LCS can help users understand transport behaviors and find separatrices in ensemble simulations of atmospheric processes.
Foam on troubled water: Capillary induced finite-time arrest of sloshing waves
Viola, Francesco; Brun, P.-T.; Dollet, Benjamin; Gallaire, François
2016-09-01
Interfacial forces exceed gravitational forces on a scale small relative to the capillary length—two millimeters in the case of an air-water interface—and therefore dominate the physics of sub-millimetric systems. They are of paramount importance for various biological taxa and engineering processes where the motion of a liquid meniscus induces a viscous frictional force that exhibits a sublinear dependence in the meniscus velocity, i.e., a power law with an exponent smaller than one. Interested in the fundamental implications of this dependence, we use a liquid-foam sloshing system as a prototype to exacerbate the effect of sublinear friction on the macroscopic mechanics of multi-phase flows. In contrast to classical theory, we uncover the existence of a finite-time singularity in our system yielding the arrest of the fluid's oscillations. We propose a minimal theoretical framework to capture this effect, thereby amending the paradigmatic damped harmonic oscillator model. Our results suggest that, although often not considered at the macroscale, sublinear capillary forces govern the friction at liquid-solid and liquid-liquid interfaces.
Nanosized free-energy transducer F1-ATPase achieves 100% efficiency at finite time operation
Toyabe, Shoichi
2012-01-01
The free-energy transduction at 100% efficiency is not prohibited by thermodynamic laws. However, it is usually reached only at the quasi-static limit such as the macroscopic piston pulled or pushed at the infinitely slow velocity. If we operate the piston quickly, turbulence is inevitable and irreversible heat dissipates through the microscopic degrees of freedom. Here, we evaluated the work performed by the nano-sized biological free-energy transducer F1-ATPase by single-molecule experiments on the basis of nonequilibrium theory. We show that the F1-ATPase achieves a nearly 100% free-energy conversion efficiency even far from quasistatic process for both the mechanical-to-chemical and chemical-to-mechanical transductions. Such a high efficiency at a finite-time operation is not expected for macroscopic engines and highlights a remarkable property of the nano-sized engines working in the energy scale of k_{B}T. Some of the microscopic degrees of freedom may not be hidden but accessible to the F1-ATPase. Henc...
Visual servo walking control for humanoids with finite-time convergence and smooth robot velocities
Delfin, Josafat; Becerra, Hector M.; Arechavaleta, Gustavo
2016-07-01
In this paper, we address the problem of humanoid locomotion guided from information of a monocular camera. The goal of the robot is to reach a desired location defined in terms of a target image, i.e., a positioning task. The proposed approach allows us to introduce a desired time to complete the positioning task, which is advantageous in contrast to the classical exponential convergence. In particular, finite-time convergence is achieved while generating smooth robot velocities and considering the omnidirectional waking capability of the robot. In addition, we propose a hierarchical task-based control scheme, which can simultaneously handle the visual positioning and the obstacle avoidance tasks without affecting the desired time of convergence. The controller is able to activate or inactivate the obstacle avoidance task without generating discontinuous velocity references while the humanoid is walking. Stability of the closed loop for the two task-based control is demonstrated theoretically even during the transitions between the tasks. The proposed approach is generic in the sense that different visual control schemes are supported. We evaluate a homography-based visual servoing for position-based and image-based modalities, as well as for eye-in-hand and eye-to-hand configurations. The experimental evaluation is performed with the humanoid robot NAO.
Characteristic distribution of finite-time Lyapunov exponents for chimera states.
Botha, André E
2016-07-04
Our fascination with chimera states stems partially from the somewhat paradoxical, yet fundamental trait of identical, and identically coupled, oscillators to split into spatially separated, coherently and incoherently oscillating groups. While the list of systems for which various types of chimeras have already been detected continues to grow, there is a corresponding increase in the number of mathematical analyses aimed at elucidating the fundamental reasons for this surprising behaviour. Based on the model systems, there are strong indications that chimera states may generally be ubiquitous in naturally occurring systems containing large numbers of coupled oscillators - certain biological systems and high-Tc superconducting materials, for example. In this work we suggest a new way of detecting and characterising chimera states. Specifically, it is shown that the probability densities of finite-time Lyapunov exponents, corresponding to chimera states, have a definite characteristic shape. Such distributions could be used as signatures of chimera states, particularly in systems for which the phases of all the oscillators cannot be measured directly. For such cases, we suggest that chimera states could perhaps be detected by reconstructing the characteristic distribution via standard embedding techniques, thus making it possible to detect chimera states in systems where they could otherwise exist unnoticed.
Fan, Xiaofei; Zhang, Xian; Wu, Ligang; Shi, Michael
2017-01-01
This paper is concerned with the finite-time stability problem of the delayed genetic regulatory networks (GRNs) with reaction-diffusion terms under Dirichlet boundary conditions. By constructing a Lyapunov-Krasovskii functional including quad-slope integrations, we establish delay-dependent finite-time stability criteria by employing the Wirtinger-type integral inequality, Gronwall inequality, convex technique, and reciprocally convex technique. In addition, the obtained criteria are also reaction-diffusion-dependent. Finally, a numerical example is provided to illustrate the effectiveness of the theoretical results.
Hou, Huazhou; Zhang, Qingling
2016-11-01
In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method.
Droste, Stephanie; Governale, Michele
2016-04-01
We study the finite-time full counting statistics for subgap transport through a single-level quantum dot tunnel-coupled to one normal and one superconducting lead. In particular, we determine the factorial and the ordinary cumulants both for finite times and in the long-time limit. We find that the factorial cumulants violate the sign criterion, indicating a non-binomial distribution, even in absence of Coulomb repulsion due to the presence of superconducting correlations. At short times the cumulants exhibit oscillations which are a signature of the coherent transfer of Cooper pairs between the dot and the superconductor.
Zhong, Qishui; Cheng, Jun; Zhao, Yuqing
2015-07-01
In this paper, a novel method is developed for delay-dependent finite-time boundedness of a class of Markovian switching neural networks with time-varying delays. New sufficient condition for stochastic boundness of Markovian jumping neural networks is presented and proved by an newly augmented stochastic Lyapunov-Krasovskii functional and novel activation function conditions, the state trajectory remains in a bounded region of the state space over a given finite-time interval. Finally, a numerical example is given to illustrate the efficiency and less conservative of the proposed method.
Experiments for Multi-Stage Processes
Tyssedal, John; Kulahci, Murat
2015-01-01
Multi-stage processes are very common in both process and manufacturing industries. In this article we present a methodology for designing experiments for multi-stage processes. Typically in these situations the design is expected to involve many factors from different stages. To minimize...... the required number of experimental runs, we suggest using mirror image pairs of experiments at each stage following the first. As the design criterion, we consider their projectivity and mainly focus on projectivity 3 designs. We provide the methodology for generating these designs for processes with any...
Finite-time singularities in the dynamics of hyperinflation in an economy.
Szybisz, Martín A; Szybisz, Leszek
2009-08-01
The dynamics of hyperinflation episodes is studied by applying a theoretical approach based on collective "adaptive inflation expectations" with a positive nonlinear feedback proposed in the literature. In such a description it is assumed that the growth rate of the logarithmic price, r(t), changes with a velocity obeying a power law which leads to a finite-time singularity at a critical time t(c). By revising that model we found that, indeed, there are two types of singular solutions for the logarithmic price, p(t) . One is given by the already reported form p(t) approximately (t(c)-t)(-alpha) (with alpha>0 ) and the other exhibits a logarithmic divergence, p(t) approximately ln[1/(t(c)-t)] . The singularity is a signature for an economic crash. In the present work we express p(t) explicitly in terms of the parameters introduced throughout the formulation avoiding the use of any combination of them defined in the original paper. This procedure allows to examine simultaneously the time series of r(t) and p(t) performing a linked error analysis of the determined parameters. For the first time this approach is applied for analyzing the very extreme historical hyperinflations occurred in Greece (1941-1944) and Yugoslavia (1991-1994). The case of Greece is compatible with a logarithmic singularity. The study is completed with an analysis of the hyperinflation spiral currently experienced in Zimbabwe. According to our results, an economic crash in this country is predicted for these days. The robustness of the results to changes of the initial time of the series and the differences with a linear feedback are discussed.
Finite-time singularities in the dynamics of hyperinflation in an economy
Szybisz, Martín A.; Szybisz, Leszek
2009-08-01
The dynamics of hyperinflation episodes is studied by applying a theoretical approach based on collective “adaptive inflation expectations” with a positive nonlinear feedback proposed in the literature. In such a description it is assumed that the growth rate of the logarithmic price, r(t) , changes with a velocity obeying a power law which leads to a finite-time singularity at a critical time tc . By revising that model we found that, indeed, there are two types of singular solutions for the logarithmic price, p(t) . One is given by the already reported form p(t)≈(tc-t)-α (with α>0 ) and the other exhibits a logarithmic divergence, p(t)≈ln[1/(tc-t)] . The singularity is a signature for an economic crash. In the present work we express p(t) explicitly in terms of the parameters introduced throughout the formulation avoiding the use of any combination of them defined in the original paper. This procedure allows to examine simultaneously the time series of r(t) and p(t) performing a linked error analysis of the determined parameters. For the first time this approach is applied for analyzing the very extreme historical hyperinflations occurred in Greece (1941-1944) and Yugoslavia (1991-1994). The case of Greece is compatible with a logarithmic singularity. The study is completed with an analysis of the hyperinflation spiral currently experienced in Zimbabwe. According to our results, an economic crash in this country is predicted for these days. The robustness of the results to changes of the initial time of the series and the differences with a linear feedback are discussed.
Finite-time Lyapunov exponent-based analysis for compressible flows
González, D. R.; Speth, R. L.; Gaitonde, D. V.; Lewis, M. J.
2016-08-01
The finite-time Lyapunov exponent (FTLE) technique has shown substantial success in analyzing incompressible flows by capturing the dynamics of coherent structures. Recent applications include river and ocean flow patterns, respiratory tract dynamics, and bio-inspired propulsors. In the present work, we extend FTLE to the compressible flow regime so that coherent structures, which travel at convective speeds, can be associated with waves traveling at acoustic speeds. This is particularly helpful in the study of jet acoustics. We first show that with a suitable choice of integration time interval, FTLE can extract wave dynamics from the velocity field. The integration time thus acts as a pseudo-filter separating coherent structures from waves. Results are confirmed by examining forward and backward FTLE coefficients for several simple, well-known acoustic fields. Next, we use this analysis to identify events associated with intermittency in jet noise pressure probe data. Although intermittent events are known to be dominant causes of jet noise, their direct source in the turbulent jet flow has remained unexplained. To this end, a Large-Eddy Simulation of a Mach 0.9 jet is subjected to FTLE to simultaneously examine, and thus expose, the causal relationship between coherent structures and the corresponding acoustic waves. Results show that intermittent events are associated with entrainment in the initial roll up region and emissive events downstream of the potential-core collapse. Instantaneous acoustic disturbances are observed to be primarily induced near the collapse of the potential core and continue propagating towards the far-field at the experimentally observed, approximately 30° angle relative to the jet axis.
Finite-time Lyapunov exponent-based analysis for compressible flows.
González, D R; Speth, R L; Gaitonde, D V; Lewis, M J
2016-08-01
The finite-time Lyapunov exponent (FTLE) technique has shown substantial success in analyzing incompressible flows by capturing the dynamics of coherent structures. Recent applications include river and ocean flow patterns, respiratory tract dynamics, and bio-inspired propulsors. In the present work, we extend FTLE to the compressible flow regime so that coherent structures, which travel at convective speeds, can be associated with waves traveling at acoustic speeds. This is particularly helpful in the study of jet acoustics. We first show that with a suitable choice of integration time interval, FTLE can extract wave dynamics from the velocity field. The integration time thus acts as a pseudo-filter separating coherent structures from waves. Results are confirmed by examining forward and backward FTLE coefficients for several simple, well-known acoustic fields. Next, we use this analysis to identify events associated with intermittency in jet noise pressure probe data. Although intermittent events are known to be dominant causes of jet noise, their direct source in the turbulent jet flow has remained unexplained. To this end, a Large-Eddy Simulation of a Mach 0.9 jet is subjected to FTLE to simultaneously examine, and thus expose, the causal relationship between coherent structures and the corresponding acoustic waves. Results show that intermittent events are associated with entrainment in the initial roll up region and emissive events downstream of the potential-core collapse. Instantaneous acoustic disturbances are observed to be primarily induced near the collapse of the potential core and continue propagating towards the far-field at the experimentally observed, approximately 30° angle relative to the jet axis.
Luis A. Gallego
2012-01-01
Full Text Available An enhanced genetic algorithm (EGA is applied to solve the long-term transmission expansion planning (LTTEP problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1 generation of an initial population using fast, efficient heuristic algorithms, (2 better implementation of the local improvement phase and (3 efficient solution of linear programming problems (LPs. Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem.
Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza
2016-06-01
Large amplitude oscillation of the power transmission lines, which is also known as galloping phenomenon, has hazardous consequences such as short circuiting and failure of transmission line. In this article, to suppress the undesirable vibrations of the transmission lines, first the governing equations of transmission line are derived via mode summation technique. Then, due to the occurrence of large amplitude vibrations, nonlinear quadratic and cubic terms are included in the derived linear equations. To suppress the vibrations, arbitrary number of the piezoelectric actuators is assumed to exert the actuation forces. Afterwards, a Lyapunov based approach is proposed for the robust adaptive suppression of the undesirable vibrations in the finite time. To compensate the supposed parametric uncertainties with unknown bands, proper adaption laws are introduced. To avoid the vibration devastating consequences as quickly as possible, appropriate control laws are designed. The vibration suppression in the finite time with supposed adaption and control laws is mathematically proved via Lyapunov finite time stability theory. Finally, to illustrate and validate the efficiency and robustness of the proposed finite time control scheme, a parametric case study with three piezoelectric actuators is performed. It is observed that the proposed active control strategy is more efficient and robust than the passive control methods.
Stability on FInite Time Interval and Time—Dependent Bifurcation Analysis of Duffing‘s Equations6
CuncaiHUA; QishaoLU
1999-01-01
The concept of stability on finite time interval is proposed and some stability theorems are established.The delayed bifurcation transition of Duffing's equations with a time-dependent parameter is analyzed.Function is used to predict the bifurcation transition value.The sensitivity of the solutions to initial values and parameters is also studied.
Hua Chen
2015-11-01
Full Text Available In this paper, the global finite-time partial stabilization problem is discussed for a class of nonholonomic mobile wheeled robots with continuous pure state feedback and subject to input saturation. Firstly, for the mobile robot kinematic model, a “3 inputs, 2 chains, 1 generator" nonholonomic chained form systems can be obtained by using a state and input transformation. The continuous, saturated pure state feedback control law is proposed such that the special chained form systems can be stabilized to zero (except an angle variable in a finite time, i.e., finite-time partial stabilization. Secondly, the rigorous stability analysis of the corresponding closed-loop system is presented by applying Lyapunov theorem combined with the finite-time control theory, and the angle variable can be proved to converge to a constant, moreover, its convergent limit may be accurately estimated in advance. Finally, the simulation results show the correctness and the validity of the proposed controller not only for the chained system but also for the original mobile robots system.
Multi-Stage Programs are Generalized Arrows
Megacz, Adam
2010-01-01
The lambda calculus, subject to typing restrictions, provides a syn- tax for the internal language of cartesian closed categories. This paper establishes a parallel result: staging annotations, subject to named level restrictions, provide a syntax for the internal language of Freyd categories, which are known to be in one-to-one correspondence with Arrows. The connection is made by interpreting multi-stage type systems as indexed functors from polynomial categories to their reindexings (Definitions 15 and 16). This result applies only to multi-stage languages which are (1) homogeneous, (2) allow cross-stage persistence and (3) place no restrictions on the use of structural rules in typing derivations. Removing these restrictions and repeating the construction yields generalized arrows, of which Arrows are a particular case. A translation from well-typed multi-stage programs to single-stage GArrow terms is provided. The translation is defined by induction on the structure of the proof that the multi-stage prog...
A Multistage Approach for Image Registration.
Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi
2016-09-01
Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology.
Automated Simultaneous Assembly for Multistage Testing
Breithaupt, Krista; Ariel, Adelaide; Veldkamp, Bernard P.
2005-01-01
This article offers some solutions used in the assembly of the computerized Uniform Certified Public Accountancy (CPA) licensing examination as practical alternatives for operational programs producing large numbers of forms. The Uniform CPA examination was offered as an adaptive multistage test (MST) beginning in April of 2004. Examples of…
Some LCP Decompositions of Multistage Interconnection Networks
无
2006-01-01
Some useful layered cross product decompositons are derived both for general bit permutation networks and for(2n-1)-stage multistage interconnection networks. Several issues in related works are clarified and the rearrangeability of some interesting networks are considered. In particular, the rearrangeability of one class of networks is formulated as a new type of combinatorial design problmes.
Interconnected levels of multi-stage marketing: A triadic approach
Vedel, Mette; Geersbro, Jens; Ritter, Thomas
2012-01-01
Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. ...
Interconnected levels of multi-stage marketing: A triadic approach
Vedel, Mette; Geersbro, Jens; Ritter, Thomas
2012-01-01
Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. ...
Gao, Lijun; Jiang, Xiaoxiao; Wang, Dandan
2016-03-01
This paper investigates the problem of robust finite time H∞ sliding mode control for a class of Markovian switching systems. The system is subjected to the mode-dependent time-varying delay, partly unknown transition rate and unmeasurable state. The main difficulty is that, a sliding mode surface cannot be designed based on the unknown transition rate and unmeasurable state directly. To overcome this obstacle, the set of modes is firstly divided into two subsets standing for known transition rate subset and unknown one, based on which a state observer is established. A component robust finite-time sliding mode controller is also designed to cope with the effect of partially unknown transition rate. It is illustrated that the reachability, finite-time stability, finite-time boundedness, finite-time H∞ state feedback stabilization of sliding mode dynamics can be ensured despite the unknown transition rate. Finally, the simulation results verify the effectiveness of robust finite time control problem.
[Variance estimation considering multistage sampling design in multistage complex sample analysis].
Li, Yichong; Zhao, Yinjun; Wang, Limin; Zhang, Mei; Zhou, Maigeng
2016-03-01
Multistage sampling is a frequently-used method in random sampling survey in public health. Clustering or independence between observations often exists in the sampling, often called complex sample, generated by multistage sampling. Sampling error may be underestimated and the probability of type I error may be increased if the multistage sample design was not taken into consideration in analysis. As variance (error) estimator in complex sample is often complicated, statistical software usually adopt ultimate cluster variance estimate (UCVE) to approximate the estimation, which simply assume that the sample comes from one-stage sampling. However, with increased sampling fraction of primary sampling unit, contribution from subsequent sampling stages is no more trivial, and the ultimate cluster variance estimate may, therefore, lead to invalid variance estimation. This paper summarize a method of variance estimation considering multistage sampling design. The performances are compared with UCVE and the method considering multistage sampling design by simulating random sampling under different sampling schemes using real world data. Simulation showed that as primary sampling unit (PSU) sampling fraction increased, UCVE tended to generate increasingly biased estimation, whereas accurate estimates were obtained by using the method considering multistage sampling design.
Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence
Johnson, Perry L., E-mail: pjohns86@jhu.edu; Meneveau, Charles [Department of Mechanical Engineering and Center for Environmental and Applied Fluid Mechanics, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218 (United States)
2015-08-15
One of the hallmarks of turbulent flows is the chaotic behavior of fluid particle paths with exponentially growing separation among them while their distance does not exceed the viscous range. The maximal (positive) Lyapunov exponent represents the average strength of the exponential growth rate, while fluctuations in the rate of growth are characterized by the finite-time Lyapunov exponents (FTLEs). In the last decade or so, the notion of Lagrangian coherent structures (which are often computed using FTLEs) has gained attention as a tool for visualizing coherent trajectory patterns in a flow and distinguishing regions of the flow with different mixing properties. A quantitative statistical characterization of FTLEs can be accomplished using the statistical theory of large deviations, based on the so-called Cramér function. To obtain the Cramér function from data, we use both the method based on measuring moments and measuring histograms and introduce a finite-size correction to the histogram-based method. We generalize the existing univariate formalism to the joint distributions of the two FTLEs needed to fully specify the Lyapunov spectrum in 3D flows. The joint Cramér function of turbulence is measured from two direct numerical simulation datasets of isotropic turbulence. Results are compared with joint statistics of FTLEs computed using only the symmetric part of the velocity gradient tensor, as well as with joint statistics of instantaneous strain-rate eigenvalues. When using only the strain contribution of the velocity gradient, the maximal FTLE nearly doubles in magnitude, highlighting the role of rotation in de-correlating the fluid deformations along particle paths. We also extend the large-deviation theory to study the statistics of the ratio of FTLEs. The most likely ratio of the FTLEs λ{sub 1} : λ{sub 2} : λ{sub 3} is shown to be about 4:1:−5, compared to about 8:3:−11 when using only the strain-rate tensor for calculating fluid volume
A Quasi-One-Dimensional CFD Model for Multistage Turbomachines
Olivier Léonard; Olivier Adam
2008-01-01
The objective of this paper is to present a fast and reliable CFD model that is able to simulate stationary and transient operations of multistage compressors and turbines. This analysis tool is based on an adapted version of the Euler equations solved by a time-marching, finite-volume method. The Euler equations have been extended by including source terms expressing the blade-flow interactions. These source terms are determined using the velocity triangles and a row-by-row representation of the blading at mid-span. The losses and deviations undergone by the fluid across each blade row are supplied by correlations. The resulting flow solver is a performance prediction tool based only on the machine geometry, offering the possibility of exploring the entire characteristic map of a multistage compressor or turbine. Its efficiency in terms of CPU time makes it possible to couple it to an optimization algorithm or to a gas turbine performance tool. Different test-cases are presented for which the calculated characteristic maps are compared to experimental ones.
Multi-stage apodized pupil Lyot coronagraph experimental results
Abe, L.; Venet, M.; Enya, K.; Kataza, H.; Nakagawa, T.; Tamura, M.
2008-07-01
Prolate (Pupil) Apodized Lyot Coronagraphs (PPALC) are known to offer optimal performances for a Lyot-type Coronagraph configuration, i.e. with an opaque occulting focal mask. One additional benefit of PPALC is its possible use in a multi-stage configuration. In theory, the coronagraphic performance can be QN, where Q is the energy rejection factor of one stage (the first one), and N the number of stages. Several ground-based telescopes are considering PPALC as an option for their high-contrast instrumentation (e.g. Gemini/GPI, EELT/EPICS, Subaru HiCIAO). Although the PPALC suffers from several limitations, several works are currently focused on fabricating entrance pupil apodizers and trying to find ways to overcome chromatism issues. In this work, we present the first experimental results from Multi-Stage PPALC (MS-PPALC) that was done in the context of the Japanese space telescope SPICA coronagraph project. Our entrance pupil apodizers use small diameter High Energy Beam Sensitive glass (HEBS-glass) from Canyon Materials Inc. The current results show modest coronagraphic performance due to uncompensated phase aberrations inherent to HEBS-glass material. In addition, and due to these uncompensated phase aberrations, the present optical configuration is an altered version of the originally planned set-up. However, we can demonstrate the validity the MS-PPALC concept and compare it to numerical simulations.
Zeng, Qing; Zhang, Baohua; Fang, Jiakun
2017-01-01
power systems. The system operation is optimized and embedded in the planning horizon. A bi-level multi-stage programming problem is formulated to minimize the investment cost plus the operational cost. The upper-level optimizes the expansion plan and determines the network topology as well...
Multistage quantum absorption heat pumps
Correa, Luis A.
2014-04-01
It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N -2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.
JIANG Tao
2008-01-01
We establish an asymptotic relation for the large-deviation probabilities of the maxima of sums of subexponential random variables centered by multiples of order statistics of i.i.d. standard uniform random variables. This extends a corresponding result of Korshunov. As an application, we generalize a result of Tang,the uniform asymptotic estimate for the finite-time ruin probability, to the whole strongly subexponential class.
2008-01-01
We establish an asymptotic relation for the large-deviation probabilities of the maxima of sums of subexponential random variables centered by multiples of order statistics of i.i.d.standard uniform random variables.This extends a corresponding result of Korshunov.As an application,we generalize a result of Tang,the uniform asymptotic estimate for the finite-time ruin probability,to the whole strongly subexponential class.
Yagasaki, Kazuyuki [Department of Mechanical and Systems Engineering, Gifu University, Gifu 501-1193 (Japan)], E-mail: yagasaki@gifu-u.ac.jp
2007-08-20
In experiments for single and coupled pendula, we demonstrate the effectiveness of a new control method based on dynamical systems theory for stabilizing unstable aperiodic trajectories defined on infinite- or finite-time intervals. The basic idea of the method is similar to that of the OGY method, which is a well-known, chaos control method. Extended concepts of the stable and unstable manifolds of hyperbolic trajectories are used here.
Musa, Sarah; Supadi, Siti Suzlin; Omar, Mohd
2014-07-01
Rework is one of the solutions to some of the main issues in reverse logistic and green supply chain as it reduces production cost and environmental problem. Many researchers focus on developing rework model, but to the knowledge of the author, none of them has developed a model for time-varying demand rate. In this paper, we extend previous works and develop multiple batch production system for time-varying demand rate with rework. In this model, the rework is done within the same production cycle.
Van, Mien; Ge, Shuzhi Sam; Ren, Hongliang
2016-04-28
In this paper, a novel finite time fault tolerant control (FTC) is proposed for uncertain robot manipulators with actuator faults. First, a finite time passive FTC (PFTC) based on a robust nonsingular fast terminal sliding mode control (NFTSMC) is investigated. Be analyzed for addressing the disadvantages of the PFTC, an AFTC are then investigated by combining NFTSMC with a simple fault diagnosis scheme. In this scheme, an online fault estimation algorithm based on time delay estimation (TDE) is proposed to approximate actuator faults. The estimated fault information is used to detect, isolate, and accommodate the effect of the faults in the system. Then, a robust AFTC law is established by combining the obtained fault information and a robust NFTSMC. Finally, a high-order sliding mode (HOSM) control based on super-twisting algorithm is employed to eliminate the chattering. In comparison to the PFTC and other state-of-the-art approaches, the proposed AFTC scheme possess several advantages such as high precision, strong robustness, no singularity, less chattering, and fast finite-time convergence due to the combined NFTSMC and HOSM control, and requires no prior knowledge of the fault due to TDE-based fault estimation. Finally, simulation results are obtained to verify the effectiveness of the proposed strategy.
Wang, Yujuan; Song, Yongduan
2017-03-01
In this paper, the problem of containment control of networked multiagent systems is considered with special emphasis on finite-time convergence. A distributed neural adaptive control scheme for containment is developed, which, different from the current state of the art, is able to achieve dynamic containment in finite time with sufficient accuracy despite unknown nonaffine dynamics and mismatched uncertainties. Such a finite-time feature, highly desirable in practice, is made possible by the fraction dynamic surface control design technique based on the concept of virtual fraction filter. In the proposed containment protocol, only the local information from the neighbor followers and the local position information from the neighbor leaders are required. Furthermore, since the available information utilized is local and is embedded into the control scheme through fraction power feedback, rather than direct linear or regular nonlinear feedback, the resultant control scheme is truly distributed. In addition, although mismatched uncertainties and external disturbances are involved, only one single generalized neural parameter needs to be updated in the control scheme, making its design and implementation straightforward and inexpensive. The effectiveness of the developed method is also confirmed by numerical simulation.
A.K. Bhunia
2013-04-01
Full Text Available This paper deals with a deterministic inventory model developed for deteriorating items having two separate storage facilities (owned and rented warehouses due to limited capacity of the existing storage (owned warehouse with linear time dependent demand (increasing over a fixed finite time horizon. The model is formulated with infinite replenishment and the successive replenishment cycle lengths are in arithmetic progression. Partially backlogged shortages are allowed. The stocks of rented warehouse (RW are transported to the owned warehouse (OW in continuous release pattern. For this purpose, the model is formulated as a constrained non-linear mixed integer programming problem. For solving the problem, an advanced genetic algorithm (GA has been developed. This advanced GA is based on ranking selection, elitism, whole arithmetic crossover and non-uniform mutation dependent on the age of the population. Our objective is to determine the optimal replenishment number, lot-size of two-warehouses (OW and RW by maximizing the profit function. The model is illustrated with four numerical examples and sensitivity analyses of the optimal solution are performed with respect to different parameters.
卢志刚; 夏明昭; 张晓辉
2011-01-01
According to the requirements of the carbon dioxide emission reduction planning and taking full account of the progressive and uncertainty of the development of the current carbon dioxide capture and storage technology （CCS）, a model of emission reduction planning in power plants with the goal to minimum general expenses was developed. By introducing technology readiness level factor and considering the future changes in power plants operation parameters, the progressive and uncertainty of the CCS technology were quantified. Emission reduction index of the carbon capture systems was decomposition by the rate of technological progress. An algorithm based on the discrete bacterial colony chemotaxis （DBCC） was used to solve this problem, the optimal allocation and investment strategy of carbon capture systems under different emission reduction scenarios was obtained by the simulation analysis on the practical example. Finally, the impact of different factors on the mitigation costs in different emission reduction scenarios was obtained by sensitivity analysis. The results demonstrate the effectiveness of the model and the optimization algorithm.%根据二氧化碳减排规划的要求，并充分考虑目前二氧化碳捕集和封存（carbon capture and storage，CCS）技术发展的阶段性与不确定性，建立以阶段综合费用最小为目标函数的发电厂减排规划模型。引入技术成熟度因子，并考虑到发电厂运行参数未来的变化，将CCS技术的阶段性与不确定因素进行量化，依据技术进步率对碳捕集系统减排指标进行分解。采用离散细菌群体趋药性算法（discrete bacterial colony chemotaxis，DBCC）进行求解，通过对实际算例的方针分析，得到系统在不同减排场景下的碳捕集系统最优配置方案与碳捕集系统投资策略。最后通过灵敏度分析得到在不同减排场景下各因素对减排成本的影响。结果证明了所提模型以及
李军超; 杨芬芬; 周志强
2015-01-01
Although multi-stage incremental sheet forming has always been adopted instead of single-stage forming to form parts with a steep wall angle or to achieve a high forming performance, it is largely dependent on empirical designs. In order to research multi-stage forming further, the effect of forming stages (n) and angle interval between the two adjacent stages (Δα) on thickness distribution was investigated. Firstly, a finite element method (FEM) model of multi-stage incremental forming was established and experimentally verified. Then, based on the proposed simulation model, different strategies were adopted to form a frustum of cone with wall angle of 30° to research the thickness distribution of multi-pass forming. It is proved that the minimum thickness increases largely and the variance of sheet thickness decreases significantly as the value of n grows. Further, with the increase of Δα, the minimum thickness increases initially and then decreases, and the optimal thickness distribution is achieved with Δα of 10°. Additionally, a formula is deduced to estimate the sheet thickness after multi-stage forming and proved to be effective. And the simulation results fit well with the experimental results.
ZHANG JIA-SHU; XIAO XIAN-CI
2001-01-01
A multistage adaptive higher-order nonlinear finite impulse response (MAHONFIR) filter is proposed to predict chaotic time series. Using this approach, we may readily derive the decoupled parallel algorithm for the adaptation of the coefficients of the MAHONFIR filter, to guarantee a more rapid convergence of the adaptive weights to their optimal values. Numerical simulation results show that the MAHONFIR filters proposed here illustrate a very good performance for making an adaptive prediction of chaotic time series.
Conditional statistical inference with multistage testing designs.
Zwitser, Robert J; Maris, Gunter
2015-03-01
In this paper it is demonstrated how statistical inference from multistage test designs can be made based on the conditional likelihood. Special attention is given to parameter estimation, as well as the evaluation of model fit. Two reasons are provided why the fit of simple measurement models is expected to be better in adaptive designs, compared to linear designs: more parameters are available for the same number of observations; and undesirable response behavior, like slipping and guessing, might be avoided owing to a better match between item difficulty and examinee proficiency. The results are illustrated with simulated data, as well as with real data.
Ricardo Aguilar-López
2016-01-01
Full Text Available This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory; the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical experiments corroborate the satisfactory results of the proposed scheme.
Aguilar-López, Ricardo
2016-01-01
This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory; the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical experiments corroborate the satisfactory results of the proposed scheme. PMID:27738651
Yan, Zhiguo; Song, Yunxia; Park, Ju H
2017-05-01
This paper is concerned with the problems of finite-time stability and stabilization for stochastic Markov systems with mode-dependent time-delays. In order to reduce conservatism, a mode-dependent approach is utilized. Based on the derived stability conditions, state-feedback controller and observer-based controller are designed, respectively. A new N-mode algorithm is given to obtain the maximum value of time-delay. Finally, an example is used to show the merit of the proposed results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
FINITE-TIME RUIN PROBABILITY WITH NQD DOMINATED VARYING-TAILED CLAIMS AND NLOD INTER-ARRIVAL TIMES
Jingzhi LI; Kaiyong WANG; Yuebao WANG
2009-01-01
In 2007, Chen and Ng investigated infinite-time ruin probability with constant interest force and negatively quadrant dependent and extended regularly varying-tailed claims. Following this work, the authors obtain a weakly asymptotic equivalent formula for the finite-time and infinite-time ruin probability with constant interest force, negatively quadrant dependent, and dominated varying-tailed claims and negatively lower orthant dependent inter-arrival times. In particular, when the claims are consistently varying-tailed, an asymptotic equivalent formula is presented.
Duc, Luu Hoang; Chávez, Joseph Páez; Son, Doan Thai; Siegmund, Stefan
2016-01-01
In biochemical networks transient dynamics plays a fundamental role, since the activation of signalling pathways is determined by thresholds encountered during the transition from an initial state (e.g. an initial concentration of a certain protein) to a steady-state. These thresholds can be defined in terms of the inflection points of the stimulus-response curves associated to the activation processes in the biochemical network. In the present work, we present a rigorous discussion as to the suitability of finite-time Lyapunov exponents and metabolic control coefficients for the detection of inflection points of stimulus-response curves with sigmoidal shape.
Abhishek Khanna
2012-01-01
Full Text Available We revisit the problem of optimal power extraction in four-step cycles (two adiabatic and two heat-transfer branches when the finite-rate heat transfer obeys a linear law and the heat reservoirs have finite heat capacities. The heat-transfer branch follows a polytropic process in which the heat capacity of the working fluid stays constant. For the case of ideal gas as working fluid and a given switching time, it is shown that maximum work is obtained at Curzon-Ahlborn efficiency. Our expressions clearly show the dependence on the relative magnitudes of heat capacities of the fluid and the reservoirs. Many previous formulae, including infinite reservoirs, infinite-time cycles, and Carnot-like and non-Carnot-like cycles, are recovered as special cases of our model.
Zhanghua Lian
2015-03-01
Full Text Available Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, open differential-pressure sliding sleeve, and open ball-injection sliding sleeve under a hold-down packer. Moreover, mathematical models were respectively built for the above three cases. According to the Lame formula and Von Mises stress calculation formula for the thick-walled cylinder in the theory of elastic mechanics, a mathematical model was also established to calculate the equivalent stress for tubing string safety evaluation when the fracturing string was under the combined action of inner pressure, external squeezing force and axial stress, and another mathematical model was built for the mechanical strength and safety evaluation of multi-stage fracturing strings. In addition, a practical software was developed for the mechanical safety evaluation of horizontal well multi-stage fracturing strings according to the mathematical model developed for the mechanical calculation of the multi-packer string in horizontal wells. The research results were applied and verified in a gas well of Tahe Oilfield in the Tarim Basin with excellent effects, providing a theoretical basis and a simple and reliable technical means for optimal design and safety evaluation of safe operational parameters of multi-stage fracturing strings in horizontal wells.
Ik Han, Seong; Lee, Jangmyung
2016-11-01
This paper presents finite-time sliding mode control (FSMC) with predefined constraints for the tracking error and sliding surface in order to obtain robust positioning of a robot manipulator with input nonlinearity due to an unknown deadzone and external disturbance. An assumed model feedforward FSMC was designed to avoid tedious identification procedures for the manipulator parameters and to obtain a fast response time. Two constraint switching control functions based on the tracking error and finite-time sliding surface were added to the FSMC to guarantee the predefined tracking performance despite the presence of an unknown deadzone and disturbance. The tracking error due to the deadzone and disturbance can be suppressed within the predefined error boundary simply by tuning the gain value of the constraint switching function and without the addition of an extra compensator. Therefore, the designed constraint controller has a simpler structure than conventional transformed error constraint methods and the sliding surface constraint scheme can also indirectly guarantee the tracking error constraint while being more stable than the tracking error constraint control. A simulation and experiment were performed on an articulated robot manipulator to validate the proposed control schemes.
Dadić, I.
2001-01-01
We study out of equilibrium thermal field theories with switching on the interaction occurring at finite time using the Wigner transforms of two-point functions. For two-point functions we define the concept of a projected function: it is zero if any of the times refers to the time before switching on the interaction; otherwise it depends only on the relative coordinates. This definition includes bare propagators, one-loop self-energies, etc. For the infinite-average-time limit of the Wigner transforms of projected functions we define the analyticity assumptions: (1) The function of energy is analytic above (below) the real axis. (2) The function goes to zero as the absolute value of energy approaches infinity in the upper (lower) semiplane. Without use of the gradient expansion, we obtain the convolution product of projected functions. We sum the Schwinger-Dyson series in closed form. In the calculation of the Keldysh component (both resummed and single self-energy insertion approximation) contributions appear which are not the Fourier transforms of projected functions, signaling the limitations of the method. In the Feynman diagrams there is no explicit energy conservation at vertices; there is an overall energy-smearing factor taking care of the uncertainty relations. The relation between the theories with the Keldysh time path and with the finite time path enables one to rederive the results, such as the cancellation of pinching, collinear, and infrared singularities, hard thermal loop resummation, etc.
Large deviations of the finite-time magnetization of the Curie-Weiss random-field Ising model
Paga, Pierre; Kühn, Reimer
2017-08-01
We study the large deviations of the magnetization at some finite time in the Curie-Weiss random field Ising model with parallel updating. While relaxation dynamics in an infinite-time horizon gives rise to unique dynamical trajectories [specified by initial conditions and governed by first-order dynamics of the form mt +1=f (mt) ] , we observe that the introduction of a finite-time horizon and the specification of terminal conditions can generate a host of metastable solutions obeying second-order dynamics. We show that these solutions are governed by a Newtonian-like dynamics in discrete time which permits solutions in terms of both the first-order relaxation ("forward") dynamics and the backward dynamics mt +1=f-1(mt) . Our approach allows us to classify trajectories for a given final magnetization as stable or metastable according to the value of the rate function associated with them. We find that in analogy to the Freidlin-Wentzell description of the stochastic dynamics of escape from metastable states, the dominant trajectories may switch between the two types (forward and backward) of first-order dynamics. Additionally, we show how to compute rate functions when uncertainty in the quenched disorder is introduced.
J. F. Flores-Resendiz
2015-01-01
Full Text Available This paper addresses the formation control problem without collisions for multiagent systems. A general solution is proposed for the case of any number of agents moving on a plane subject to communication graph composed of cyclic paths. The control law is designed attending separately the convergence to the desired formation and the noncollision problems. First, a normalized version of the directed cyclic pursuit algorithm is proposed. After this, the algorithm is generalized to a more general class of topologies, including all the balanced formation graphs. Once the finite-time convergence problem is solved we focus on the noncollision complementary requirement adding a repulsive vector field to the previous control law. The repulsive vector fields display an unstable focus structure suitably scaled and centered at the position of the rest of agents in a certain radius. The proposed control law ensures that the agents reach the desired geometric pattern in finite time and that they stay at a distance greater than or equal to some prescribed lower bound for all times. Moreover, the closed-loop system does not exhibit undesired equilibria. Numerical simulations and real-time experiments illustrate the good performance of the proposed solution.
Fu, Junjie; Wang, Jinzhi
2016-06-01
In this paper, we study the robust finite-time containment control problem for a class of high-order uncertain nonlinear multi-agent systems modelled as high-order integrator systems with bounded matched uncertainties. When relative state information between neighbouring agents is available, an observer-based distributed controller is proposed for each follower using the sliding mode control technique which solves the finite-time containment control problem under general directed communication graphs. When only relative output information is available, robust exact differentiators and high-order sliding-mode controllers are employed together with the distributed finite-time observers. It is shown that robust finite-time containment control can still be achieved in this situation. An application in the coordination of multiple non-holonomic mobile robots is used as an example to illustrate the effectiveness of the proposed control strategies.
Mohammad Pourmahmood Aghababa
2012-01-01
The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos.This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs.The effects of unknown parameters,model uncertainties and external disturbances are fully taken into account.First,it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed.Second,two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach.Finally,some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers.
Jun Song
2013-01-01
Full Text Available The nonfragile robust finite-time L2-L∞ control problem for a class of nonlinear uncertain systems with uncertainties and time-delays is considered. The nonlinear parameters are considered to satisfy the Lipschitz conditions and the exogenous disturbances are unknown but energy bounded. By using the Lyapunov function approach, the sufficient condition for the existence of nonfragile robust finite-time L2-L∞ controller is given in terms of linear matrix inequalities (LMIs. The finite-time controller is designed such that the resulting closed-loop system is finite-time bounded for all admissible uncertainties and satisfies the given L2-L∞ control index. Simulation results illustrate the validity of the proposed approach.
Yan, Zhiguo; Lin, Zhongwei
2014-01-01
.... Then a different quadratic function approach is proposed to give a sufficient condition for finite-time boundedness of such a class of systems, and its superiority to common quadratic approach is shown...
Exposure Control Using Adaptive Multi-Stage Item Bundles.
Luecht, Richard M.
This paper presents a multistage adaptive testing test development paradigm that promises to handle content balancing and other test development needs, psychometric reliability concerns, and item exposure. The bundled multistage adaptive testing (BMAT) framework is a modification of the computer-adaptive sequential testing framework introduced by…
Biologically based multistage modeling of radiation effects
William Hazelton; Suresh Moolgavkar; E. Georg Luebeck
2005-08-30
This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of
Baoyan Zhu
2015-01-01
Full Text Available Delay-dependent finite-time H∞ controller design problems are investigated for a kind of nonlinear descriptor system via a T-S fuzzy model in this paper. The solvable conditions of finite-time H∞ controller are given to guarantee that the loop-closed system is impulse-free and finite-time bounded and holds the H∞ performance to a prescribed disturbance attenuation level γ. The method given is the ability to eliminate the impulsive behavior caused by descriptor systems in a finite-time interval, which confirms the existence and uniqueness of solutions in the interval. By constructing a nonsingular matrix, we overcome the difficulty that results in an infeasible linear matrix inequality (LMI. Using the FEASP solver and GEVP solver of the LMI toolbox, we perform simulations to validate the proposed methods for a nonlinear descriptor system via the T-S fuzzy model, which shows the application of the T-S fuzzy method in studying the finite-time control problem of a nonlinear system. Meanwhile the method was also applied to the biological economy system to eliminate impulsive behavior at the bifurcation value, stabilize the loop-closed system in a finite-time interval, and achieve a H∞ performance level.
Cortright, Randy; Rozmiarek, Robert; Dally, Brice; Holland, Chris
2017-08-31
The objective of this project was to develop an improved multistage process for the hydrothermal liquefaction (HTL) of biomass to serve as a new front-end, deconstruction process ideally suited to feed Virent’s well-proven catalytic technology, which is already being scaled up. This process produced water soluble, partially de-oxygenated intermediates that are ideally suited for catalytic finishing to fungible distillate hydrocarbons. Through this project, Virent, with its partners, demonstrated the conversion of pine wood chips to drop-in hydrocarbon distillate fuels using a multi-stage fractional conversion system that is integrated with Virent’s BioForming® process. The majority of work was in the liquefaction task and included temperature scoping, solvent optimization, and separations.
The numerical simulation of multistage turbomachinery flows
Adamczyk, John J.; Beach, T. A.; Celestina, M. L.; Mulac, R. A.; To, W. M.
1996-01-01
The effect of the unsteady flow field in a multistage compressor on the time-averaged performance was assessed. The energy transport by the unsteady deterministic flow field was taken into account. The magnitude of the body force resulting from the aerodynamic loading on a blade row was compared to the gradient of the stress tensor associated with the unsteady time-resolved flow field generated by the blade row. The magnitude of the work performed by these forces was compared to the divergence of the energy correlations produced by the unsteady time-resolved flow field. The stress tensor and the energy correlations are non-negligible in the end wall regions. The results suggest that the turbulence is the primary source of flow mixing in the midspan region.
Condition monitoring of multistage printing presses
Wang, W.; Golnaraghi, F.; Ismail, F.
2004-03-01
The main concern in printing quality in multistage presses is doubling. Doubling is caused by imperfections either within stages (units) or in links connecting different stages, mainly resulting from machine vibration, gear damage, and excessive run-out. In this paper, we propose new means for printing quality control via geared system health condition monitoring. The diagnosis is based on the signals acquired from inexpensive magnetic pickups. A new technique is developed to monitor the gear rotation synchronization among different stages in order to isolate possible sources of the doubling problem. A new approach is proposed to determine the gear run-out. Moreover, gear tooth damage detection is conducted using the beta kurtosis and the continuous wavelet transform based on the overall residual signal. The beta kurtosis of original signal average is also shown here to be useful in detecting excessive gear run-out. Test results from printing presses demonstrated the viability of the proposed methods.
Vibration signature analysis of multistage gear transmission
Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.
1989-01-01
An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.
Probabilistic Analysis of Multistage Interconnection Network Performance
1992-04-01
out itndep~endlence of channel loads has b~een pie -co.nr)tited. and channels have been assigned itatnes genleratedl from thle namies of the their nodes...lthe exam pie below: > (setq d8x8 (parse-multistage-network determinist ically-interwired-8x8-rep)) (HA PTER I. j1I:1?F� Nx(’l0 A ( I’ . iI’l.I...performs considerably worse than either. (71.1 I’TI’) I . tI’IIOXI.I.IJTO.\\’.0’ -)? A1 I’L TIPO I’ll Xl7J0IK.K 71 Throughput 12 1 10 8 O 6 4 2 0 0.2 0.4
Vehicle Routing Problem Solving Method for a Cooperative Logistics Network by Using Multi-Stage GA
Onoyama, Takashi; Maekawa, Takuya; Kubota, Sen; Tsuruta, Setsuo; Komoda, Norihisa
A GA applied VRP (Vehicle Routing Problem) solving-method which realizes optimization of a cooperative logistics network is proposed. For this optimization a VRP solving-method that can obtain human expert-level solution, which realizes steady logistics operation, in interactive response time is required. The multi-stage GA enables to obtain the accurate solution under both hard and weak time constraints in interactive response time. Moreover, to realize the stable logistics operation, the daily fluctuation of shipping volume is taken into the fitness value of each individual in GA. The experimental result reveals the proposed method obtains the accurate solution that realizes the stable operation in interactive response time.
Wen, Guoguang; Yu, Yongguang; Peng, Zhaoxia; Rahmani, Ahmed
2016-06-01
This paper investigates the consensus tracking problem for nonlinear multi-agent systems with a time-varying reference state. The consensus reference is taken as a virtual leader, whose output is only its position information that is available to only a subset of a group of followers. The dynamics of each follower consists of two terms: nonlinear inherent dynamics and a simple communication protocol relying only on the position of its neighbours. In this paper, the consensus tracking problem is respectively considered under fixed and switching communication topologies. Some corresponding sufficient conditions are obtained to guarantee the states of followers can converge to the state of the virtual leader in finite time. Rigorous proofs are given by using graph theory, matrix theory, and Lyapunov theory. Simulations are presented to illustrate the theoretical analysis.
Model equation for simulating flows in multistage turbomachinery
Adamczyk, J. J.
1985-01-01
A steady, three-dimensional average-passage equation system is derived for use in simulating multistage turbomachinery flows. These equations describe a steady, viscous flow that is periodic from blade passage to blade passage. From this system of equations, various reduced forms can be derived for use in simulating the three-dimensional flow field within multistage machinery. It is suggested that a properly scaled form of the averaged-passage equation system would provide an improved mathematical model for simulating the flow in multistage machines at design and, in particular, at off-design conditions.
Aerodynamics and flow characterisation of multistage rockets
Srinivas, G.; Prakash, M. V. S.
2017-05-01
The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.
Performance of multistage filtration using different filter media ...
Performance of multistage filtration using different filter media against conventional water treatment systems. ... horizontal flow roughing filter (HRF)) as an alternative water treatment technology to the conventional one. A pilot- ... Article Metrics.
PARALLEL MULTI-STAGE & MULTI-STEP METHOD IN ODES
Xiao-qiu Song
2000-01-01
In this paper, the theory of parallel multi-stage & multi-step method is dis cussed, which is a form of combining Runge-Kutta method with linear multi-step method that can be used for parallel computation.
Zhang, Feng; Duan, Guang-Ren
2014-05-01
This paper tackles the problem of integrated translation and rotation finite-time control of a rigid spacecraft with actuator misalignment and unknown mass property. Due to the system natural couplings, the coupled translational and rotational dynamics of the spacecraft is developed, where a thruster configuration with installation misalignment and unknown mass property are taken into account. By solving an equivalent designated trajectory tracking problem via backstepping philosophy, a robust adaptive integrated finite-time control scheme is proposed to enable the spacecraft track command position and attitude in a pre-determined time, despite of external disturbance, unknown mass property and thruster misalignment. The finite-time closed-loop stability is guaranteed within the Lyapunov framework. Two scenario numerical simulations demonstrate the effect of the designed controller.
Lueptow, Richard M.; Schlick, Conor P.; Umbanhowar, Paul B.; Ottino, Julio M.
2013-11-01
We investigate chaotic advection and diffusion in competitive autocatalytic reactions. To study this subject, we use a computationally efficient method for solving advection-reaction-diffusion equations for periodic flows using a mapping method with operator splitting. In competitive autocatalytic reactions, there are two species, B and C, which both react autocatalytically with species A (A +B -->2B and A +C -->2C). If there is initially a small amount of spatially localized B and C and a large amount of A, all three species will be advected by the velocity field, diffuse, and react until A is completely consumed and only B and C remain. We find that the small scale interactions associated with the chaotic velocity field, specifically the local finite-time Lyapunov exponents (FTLEs), can accurately predict the final average concentrations of B and C after the reaction is complete. The species, B or C, that starts in the region with the larger FTLE has, with high probability, the larger average concentration at the end of the reaction. If species B and C start in regions having similar FTLEs, their average concentrations at the end of the reaction will also be similar. Funded by NSF Grant CMMI-1000469.
Dallaston, M. C.; Tseluiko, D.; Zheng, Z.; Fontelos, M. A.; Kalliadasis, S.
2017-07-01
A thin liquid film coating a planar horizontal substrate may be unstable to perturbations in the film thickness due to unfavourable intermolecular interactions between the liquid and the substrate, which may lead to finite-time rupture. The self-similar nature of the rupture has been studied before by utilising the standard lubrication approximation along with the Derjaguin (or disjoining) pressure formalism used to account for the intermolecular interactions, and a particular form of the disjoining pressure with exponent n = 3 has been used, namely, \\Pi(h)\\propto -1/h3 , where h is the film thickness. In the present study, we use a numerical continuation method to compute discrete solutions to self-similar rupture for a general disjoining pressure exponent n (not necessarily equal to 3), which has not been previously performed. We focus on axisymmetric point-rupture solutions and show for the first time that pairs of solution branches merge as n decreases, starting at nc ≈ 1.485 . We verify that this observation also holds true for plane-symmetric line-rupture solutions for which the critical value turns out to be slightly larger than for the axisymmetric case, n_cplane≈ 1.499 . Computation of the full time-dependent problem also demonstrates the loss of stable similarity solutions and the subsequent onset of cascading, increasingly small structures.
Dallaston, Michael C; Zheng, Zhong; Fontelos, Marco A; Kalliadasis, Serafim
2016-01-01
A thin liquid film coating a planar horizontal substrate may be unstable to perturbations in the film thickness due to unfavourable intermolecular interactions between the liquid and the substrate, which may lead to finite-time rupture. The self-similar nature of the rupture has been studied before by utilizing the standard lubrication approximation along with the Derjaguin (or disjoining) pressure formalism used to account for the intermolecular interactions, and a particular form of the disjoining pressure with exponent $n=3$ has been used, namely, $\\Pi(h)\\propto -1/h^{3}$, where $h$ is the film thickness. In the present study, we use a numerical continuation method to compute discrete solutions to self-similar rupture for a general disjoining pressure exponent $n$. We focus on axisymmetric point-rupture solutions and show that pairs of solution branches merge as $n$ decreases, leading to a critical value $n_c \\approx 1.485$ below which stable similarity solutions do not appear to exist. We verify that this...
Nan Liu
2015-01-01
Full Text Available Consensus tracking problem of the leader-follower multiagent systems is resolved via second-order super-twisting sliding mode control approach. The followers’ states can keep consistent with the leader’s states on sliding surfaces. The proposed approach can ensure the finite-time consensus if the directed graph of the nonlinear system has a directed path under the condition that leader’s control input is unavailable to any followers. It is proved by using the finite-time Lyapunov stability theory. Simulation results verify availability of the proposed approach.
Yu-Long QI; Chen-Chen CAI; Ping-Zhen LANG
2013-01-01
Double-layer,multi-roller plate crusher is a new device,that uses a multi-stage series crushing style to break particles,with the crushing ratio distribution directly influencing the machine's performance.Three crushing ratios of 2.25,2.15 and 2.0 1,used for fuzzy physical programming,were determined.The comparison of the optimized result between the double-layer multi-roller plate crusher and a high pressure roll grinder showed that the double-layer multi-roller plate crusher had a better performance,reducing crushing force and wear.
Using the multistage cube network topology in parallel supercomputers
Siegel, H.J.; Nation, W.G. (Purdue Univ., Lafayette, IN (USA). School of Electrical Engineering); Kruskal, C.P. (Maryland Univ., College Park, MD (USA). Dept. of Computer Science); Napolitano, L.M. Jr. (Sandia National Labs., Livermore, CA (USA))
1989-12-01
A variety of approaches to designing the interconnection network to support communications among the processors and memories of supercomputers employing large-scale parallel processing have been proposed and/or implemented. These approaches are often based on the multistage cube topology. This topology is the subject of much ongoing research and study because of the ways in which the multistage cube can be used. The attributes of the topology that make it useful are described. These include O(N log{sub 2} N) cost for an N input/output network, decentralized control, a variety of implementation options, good data permuting capability to support single instruction stream/multiple data stream (SIMD) parallelism, good throughput to support multiple instruction stream/multiple data stream (MIMD) parallelism, and ability to be partitioned into independent subnetworks to support reconfigurable systems. Examples of existing systems that use multistage cube networks are overviewed. The multistage cube topology can be converted into a single-stage network by associating with each switch in the network a processor (and a memory). Properties of systems that use the multistage cube network in this way are also examined.
How quantitative measures unravel design principles in multi-stage phosphorylation cascades.
Frey, Simone; Millat, Thomas; Hohmann, Stefan; Wolkenhauer, Olaf
2008-09-07
We investigate design principles of linear multi-stage phosphorylation cascades by using quantitative measures for signaling time, signal duration and signal amplitude. We compare alternative pathway structures by varying the number of phosphorylations and the length of the cascade. We show that a model for a weakly activated pathway does not reflect the biological context well, unless it is restricted to certain parameter combinations. Focusing therefore on a more general model, we compare alternative structures with respect to a multivariate optimization criterion. We test the hypothesis that the structure of a linear multi-stage phosphorylation cascade is the result of an optimization process aiming for a fast response, defined by the minimum of the product of signaling time and signal duration. It is then shown that certain pathway structures minimize this criterion. Several popular models of MAPK cascades form the basis of our study. These models represent different levels of approximation, which we compare and discuss with respect to the quantitative measures.
Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination
Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon
2016-01-01
There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955
Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination
Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon
2016-08-01
There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.
Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.
Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon
2016-08-22
There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.
Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.
2010-01-01
Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998
Optimization-Based Approaches to Control of Probabilistic Boolean Networks
Koichi Kobayashi
2017-02-01
Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.
Model equations for simulating flows in multistage turbomachinery
Adamczyk, John J.
1996-01-01
A steady, three dimensional average-passage equation system was derived. The purpose was to simulate multistage turbomachinery flows. These equations describe a steady, viscous flow that is periodic from blade passage to blade passage. Moreover, these equations have a closure problem that is similar to that of the Reynolds-average Navier-Stokes equations. A scaled form of the average-passage equation system could provide an improved mathematical model for simulating the flow in the design and in the off-design conditions of a multistage machine.
Pearce, Charles
2009-01-01
Focuses on mathematical structure, and on real-world applications. This book includes developments in several optimization-related topics such as decision theory, linear programming, turnpike theory, duality theory, convex analysis, and queuing theory.
Ma, Yuechao; Fu, Lei
2016-10-01
This study employs the multiple Lyapunov-like function method and the average dwell-time concept of switching signal to investigate the finite-time H∞ static output-feedback (SOF) control problem for a class of discrete-time switched singular time-delay systems subject to actuator saturation. First, sufficient conditions are presented to guarantee the discrete-time switched singular time-delay system regular, causal and finite-time boundedness. Meanwhile, sufficient conditions are presented to ensure the H∞ disturbance attenuation level, and the design method of H∞ SOF controller is developed by solving matrix inequalities optimisation problem without any decompositions of system matrices and equivalent transformation. Finally, the effectiveness and merit of the theoretical results are shown through some numerical examples and several vivid illustrations.
Information Overload in Multi-Stage Selection Procedures
S.S. Ficco (Stefano); V.A. Karamychev (Vladimir)
2004-01-01
textabstractThe paper studies information processing imperfections in a fully rational decision-making network. It is shown that imperfect information transmission and imperfect information acquisition in a multi-stage selection game yield information overload. The paper analyses the mechanisms resp
Information Overload in Multi-Stage Selection Procedures
S.S. Ficco (Stefano); V.A. Karamychev (Vladimir)
2004-01-01
textabstractThe paper studies information processing imperfections in a fully rational decision-making network. It is shown that imperfect information transmission and imperfect information acquisition in a multi-stage selection game yield information overload. The paper analyses the mechanisms
Using break quantities for tactical optimisation in multistage distribution systems
M.J. Kleijn (Marcel); R. Dekker (Rommert)
1997-01-01
textabstractIn this chapter we discuss a tactical optimisation problem that arises in a multistage distribution system where customer orders can be delivered from any stockpoint. A simple rule to allocate orders to locations is a break quantity rule, which routes large orders to higher-stage stockpo
2011-04-08
... (Multi-Stage Centrifugal Pumps); Allentown, PA Pursuant to its authority under the Foreign-Trade Zones... to the Board for authority to establish a special-purpose subzone at the multi-stage centrifugal pump... status for activity related to the manufacturing of multi-stage centrifugal pumps at the Grundfos...
Neeraj Kumar
2016-05-01
Full Text Available In the present study, the Economic Order Quantity (EOQ model of two-warehouse deals with non-instantaneous deteriorating items, the demand rate considered as stock dependent and model affected by inflation under the pattern of time value of money over a finite planning horizon. Shortages are allowed and partially backordered depending on the waiting time for the next replenishment. The main objective of this work is to minimize the total inventory cost and finding the optimal interval and the optimal order quantity. An algorithm is designed to find the optimum solution of the proposed model. Numerical examples are given to demonstrate the results. Also, the effect of changes in the different parameters on the optimal total cost is graphically presented.
Generalized bounds for convex multistage stochastic programs
Künzi, H; Fandel, G; Trockel, W; Basile, A; Drexl, A; Dawid, H; Inderfurth, K; Kürsten, W; Schittko, U
2005-01-01
This work was completed during my tenure as a scientific assistant and d- toral student at the Institute for Operations Research at the University of St. Gallen. During that time, I was involved in several industry projects in the field of power management, on the occasion of which I was repeatedly c- fronted with complex decision problems under uncertainty. Although usually hard to solve, I quickly learned to appreciate the benefit of stochastic progr- ming models and developed a strong interest in their theoretical properties. Motivated both by practical questions and theoretical concerns, I became p- ticularly interested in the art of finding tight bounds on the optimal value of a given model. The present work attempts to make a contribution to this important branch of stochastic optimization theory. In particular, it aims at extending some classical bounding methods to broader problem classes of practical relevance. This book was accepted as a doctoral thesis by the University of St. Gallen in June 2004.1...
Aster, B; Burba, P; Broekaert, J A
1996-03-01
The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the "DFG-Versuchsfeld Bocholt", VM 5 from "Venner Moor", Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of 10 kD) has been found.
Ping Wen; Kewen Tang; Jicheng Zhou; Panliang Zhang
2015-01-01
Based on the interfacial ligand exchange model and the law of conservation of mass, the multi-stage enantioselective liquid–liquid extraction model has been established to analyze and discuss on multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine (PGL) enantiomers. The influence of phase ratio, extractant concentra-tion, and PF6−concentration on the concentrations of enantiomers in the extract and raffinate was investigated by experiment and simulation. A good agreement between model and experiment was obtained. On this basis, the influence of many parameters such as location of stage, concentration levels, extractant excess, and number of stages on the symmetric separation performance was simulated. The optimal location of feed stage is the middle of fractional extraction equipment. The feed flow must satisfy a restricted relationship on flow ratios and the liquid throughout of centrifugal device. For desired purity specification, the required flow ratios decrease with extractant concentration and increase with PF6−concentration. When the number of stages is 18 stages at extractant excess of 1.0 or 14 stages at extractant excess of 2.0, the eeeq (equal enantiomeric excess) can reach to 99%.
Li, Y.F. [Energy and Environmental Research Center, North China Electric Power University, Beijing 102206 (China); Huang, G.H., E-mail: gordon.huang@uregina.c [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Li, Y.P. [College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Xu, Y.; Chen, W.T. [Energy and Environmental Research Center, North China Electric Power University, Beijing 102206 (China)
2010-01-15
In this study, a multistage interval-stochastic regional-scale energy model (MIS-REM) is developed for supporting electric power system (EPS) planning under uncertainty that is based on a multistage interval-stochastic integer linear programming method. The developed MIS-REM can deal with uncertainties expressed as both probability distributions and interval values existing in energy system planning problems. Moreover, it can reflect dynamic decisions for electricity generation schemes and capacity expansions through transactions at discrete points of a multiple representative scenario set over a multistage context. It can also analyze various energy-policy scenarios that are associated with economic penalties when the regulated targets are violated. A case study is provided for demonstrating the applicability of the developed model, where renewable and non-renewable energy resources, economic concerns, and environmental requirements are integrated into a systematic optimization process. The results obtained are helpful for supporting (a) adjustment or justification of allocation patterns of regional energy resources and services, (b) formulation of local policies regarding energy consumption, economic development, and energy structure, and (c) analysis of interactions among economic cost, environmental requirement, and energy-supply security.
Li, Y.F.; Xu, Y.; Chen, W.T. [Energy and Environmental Research Center, North China Electric Power University, Beijing 102206 (China); Huang, G.H. [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan (Canada); College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Li, Y.P. [College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)
2010-01-15
In this study, a multistage interval-stochastic regional-scale energy model (MIS-REM) is developed for supporting electric power system (EPS) planning under uncertainty that is based on a multistage interval-stochastic integer linear programming method. The developed MIS-REM can deal with uncertainties expressed as both probability distributions and interval values existing in energy system planning problems. Moreover, it can reflect dynamic decisions for electricity generation schemes and capacity expansions through transactions at discrete points of a multiple representative scenario set over a multistage context. It can also analyze various energy-policy scenarios that are associated with economic penalties when the regulated targets are violated. A case study is provided for demonstrating the applicability of the developed model, where renewable and non-renewable energy resources, economic concerns, and environmental requirements are integrated into a systematic optimization process. The results obtained are helpful for supporting (a) adjustment or justification of allocation patterns of regional energy resources and services, (b) formulation of local policies regarding energy consumption, economic development, and energy structure, and (c) analysis of interactions among economic cost, environmental requirement, and energy-supply security. (author)
Chuan Wang
2013-01-01
Full Text Available In order to improve the efficiency of stainless steel stamping multistage pump, quadratic regression orthogonal test, hydraulic design, and computational fluid dynamics (CFD are used to analyze the effect of pump geometric parameters. Sixteen impellers are designed based on the quadratic regression orthogonal test, which have three factors including impeller outlet slope, impeller blade outlet stagger angle, and impeller blade outlet width. Through quadratic regression equation, the function relationship between efficiency values and three factors is established. The optimal combination of geometric parameters is found through the analysis of the regression equation. To further study the influence of blade thickness on the performance of multistage pump, numerical simulations of multistage pump with different blade thicknesses are carried out. The influence law of blade thickness on pump performance is built from the external characteristics and internal flow field. In conclusion, with the increase of blade thickness, the best efficiency point of the pump shifts to the small flow rate direction, and the vortex regions inside the pump at rated flow gradually increase, which is the main reason that pump efficiency decreases along with the increase of the blade thickness at rated flow.
Various multistage ensembles for prediction of heating energy consumption
Radisa Jovanovic
2015-04-01
Full Text Available Feedforward neural network models are created for prediction of daily heating energy consumption of a NTNU university campus Gloshaugen using actual measured data for training and testing. Improvement of prediction accuracy is proposed by using neural network ensemble. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as member of an ensemble. Two conventional averaging methods for obtaining ensemble output are applied; simple and weighted. In order to achieve better prediction results, multistage ensemble is investigated. As second level, adaptive neuro-fuzzy inference system with various clustering and membership functions are used to aggregate the selected ensemble members. Feedforward neural network in second stage is also analyzed. It is shown that using ensemble of neural networks can predict heating energy consumption with better accuracy than the best trained single neural network, while the best results are achieved with multistage ensemble.
Multi-stage decoding of multi-level modulation codes
Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.
1991-01-01
Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).
Realization of Multistage FIR Filters using Pipelining-Interleaving
M. Ciric
2012-11-01
Full Text Available Multistage digital filters can be one of the solutions for the realization of filters with a narrow transition zone. If requirements for the width of transition zone are too strict, then they are the only alternative, and the decimation/interpolation must be performed in several steps. Combining decimation/interpolation operations related to the implementation of multi-channel filters in the PI (pipelining/interleaving technique can give an efficient structure of multichannel multistage filter. Using the advantages offered by newer generations of FPGA chips in terms of digital design structure, it is possible to realize such filters with considerable savings of hardware resources and reduce the effect of finite length codeword. This paper proposes such an efficient implementation and presents the results of such a realization with FPGA components.
Dose-response relationship in multistage carcinogenesis: promoters.
Kitchin, K T; Brown, J. L.; Setzer, R.W.
1994-01-01
Published dose-response curves of promoters of multistage carcinogenesis were selected that met the combined criteria of long study times, multiple doses, and low doses. In rat liver, 12 dose-response studies of 7 different promoters (phenobarbital, 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD], clophen A-50 (a polychlorinated biphenyl), alpha-, beta-, and gamma-hexachlorocyclohexane [HCH], and chloroform) were selected. These promoters were studied for 7-86 weeks and either altered hepatic foci...
Numerical Simulation of Flow Instabilities in High Speed Multistage Compressors
JunHu; ThomasPeters; 等
1999-01-01
In the present paper,a nonlinear multi“actuator disk” model is proposed to analyze the dynamic behavior of flow instabilities,including rotating stall and surge,in high speed multistage axial compressors.The model describes the duct flow fields using two dimensional,compressible and unsteady Euler equations,and accounts for the influences of downstream plenum and throttle in the system as well.It replaces each blade row of multistage compressore with a disk.For numerical calculations,the time marching procedure,using MacCormack two steps scheme,is used.The main pupose of this paper is to predict the mechanism of two dimensional short wavelength rotating stall inception and the interation between blade rows in high speed multistage compressors.It has been demonstrated that the model has the ability to predict those phenomena,and the results show that some system parameters have a strong effect on the stall features as well.Results for a five stage high speed compressor are analyzed in detail,and comparison with the experimental data demonstrates that the model and calculating results are reliable.
Cheng, Jun; Zhu, Hong; Zhong, Shouming; Zeng, Yong; Dong, Xiucheng
2013-11-01
This paper is concerned with the problem of finite-time H∞ control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals. In order to reduce conservatism, a new Lyapunov-Krasovskii functional is constructed. Based on the derived condition, the reliable H∞ control problem is solved, and the system trajectory stays within a prescribed bound during a specified time interval. Finally, numerical examples are given to demonstrate the proposed approach is more effective than some existing ones.
Le Goff, P.; Tondeur, D. [Ecole Nationale Superieure des Industries Chimiques (ENSIC-LSGC), 54 - Villers-les-Nancy (France)
2001-07-01
For all energy conversion systems that use any type of energy (mechanical, electrical, chemical, thermal) to produce a useful energy and a dissipated energy, it is shown that the optimum efficiency (which maximizes the useful power produced), is equal to half of the maximum efficiency (of the system which is supposed to be reversible). It is proposed to name this optimum efficiency 'Carnot efficiency' as a generalization of the case of the thermo-mechanical converter. (J.S.)
Multi-stage full waveform inversion strategy for 2D elastic VTI media
Oh, Ju-Won
2015-08-19
One of the most important issues in the multi-parametric full waveform inversion (FWI) is to find an optimal parameterization, which helps us recover the subsurface anisotropic parameters as well as seismic velocities, with minimal tradeoff. As a result, we analyze three different parameterizations for elastic VTI media in terms of the influence of the S-waves on the gradient direction for c13, the spatial coverage of gradient direction and the degree of trade-offs between the parameters. Based on the dependency results, we design a multi-stage elastic VTI FWI strategy to enhance both the spatial coverage of the FWI and the robustness to the trade-offs among the parameters as well as FWI for the c13 structure.
Dimitris Vasiliadis
2010-01-01
Full Text Available The performance of Multistage Interconnection Networks (MINs under hotspot traffic, where some percentage of the traffic is targeted at single nodes, which are also called hot spots, is of crucial interest. The prioritizing of packets has already been proposed at previous works as alleviation to the tree saturation problem, leading to a scheme that natively supports 2-class priority traffic. In order to prevent hotspot traffic from degrading uniform traffic we expand previous studies by introducing multilayer Switching Elements (SEs at last stages in an attempt to balance between MIN performance and cost. In this paper the performance evaluation of dual-priority, double-buffered, multilayer MINs under single hotspot setups is presented and analyzed using simulation experiments. The findings of this paper can be used by MIN designers to optimally configure their networks.
Multistage depressed collector conceptual design for thin magnetically confined electron beams
Pagonakis, Ioannis Gr.; Wu, Chuanren; Illy, Stefan; Jelonnek, John
2016-04-01
The requirement of higher efficiency in high power microwave devices, such as traveling wave tubes and gyrotrons, guides scientific research to more advanced types of collector systems. First, a conceptual design approach of a multistage depressed collector for a sheet electron beam confined by a magnetic field is presented. The sorting of the electron trajectories, according to their initial kinetic energy, is based on the E × B drift concept. The optimization of the geometrical parameters is based on the analytical equations under several general assumptions. The analysis predicts very high levels of efficiency. Then, a design approach for the application of this type of collector to a gyrotron cylindrical hollow electron beam is also presented with very high levels of efficiency more than 80%.
Nasioudis, Andreas; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F
2011-10-07
The molecular characterization of castor oil ethoxylates (CASEOs) was studied by reverse-phase liquid chromatography (RPLC) mass spectrometry (MS) and multistage mass spectrometry (MS(n)). The developed RPLC method allowed the separation of the various CASEO components, and especially, the baseline separation of multiple nominal isobars (same nominal mass) and isomers (same exact mass). MS and MS(n) were used for the determination and structure elucidation of various structures and for the discrimination of the isobars and isomers. Different ionization techniques and adduct ions were also tested for optimization of the MS detection and the MS(n) fragmentation. A unique fragmentation pathway of ricinoleic acid is proposed, which can be used as a marker of the polymerization process and the topology of ethoxylation in the CASEO. In addition, characteristic neutral losses of ricinoleic acid reveal its (terminal or internal) position in the molecule.
Optimality Functions and Lopsided Convergence
2015-03-16
Problems involving functions defined in terms of integrals or optimization problems (as the maxi - mization in Example 3), functions defined on infinite...optimization methods in finite time. The key technical challenge associate with the above scheme is to establish ( weak ) consistency. In the next...Theorem 4.3. In view of this result, it is clear that ( weak ) consistency will be ensured by epi-convergence of the approximating objective functions and
冯俊娥; 吴臻; 孙甲冰
2005-01-01
The concept of finite-time stability for linear singular system is induced in this paper. Finite-time control problem is considered for linear singular systems with time-varying parametric uncertainties and exogenous disturbances. The disturbance satisfies a dynamical system with para- metric uncertainties. A sufficient condition is presented for robust finite-time stabilization via state feedback. The condition is translated to a feasibility problem involving restricted linear matrix in- equalities (LMIs). A detailed solving method is proposed for the restricted linear matrix inequalities. Finally, an example is given to show the validity of the results.
Keping Liu
2015-01-01
Full Text Available This paper presents a continuous control law of probe, which consists of PD (proportional-derivative controller and nonsingular terminal sliding mode controller for probe descending and landing phases, respectively, in the case of the asteroid irregular shape and low gravity. The probe dynamic model is deduced in the landing site coordinate system firstly. Then the reference trajectory based on optimal polynomial in open-loop state is designed, with the suboptimal fuel consumption. Taking into account different characteristics of phases, PD controller and nonsingular terminal sliding mode controller can be employed in the descending phase and the landing phase, respectively, to track the designed reference trajectory. The controller which used the corresponding control methods can meet the motion characteristics and requirements of each stage. Finally simulation experiments are carried out to demonstrate the effectiveness of the proposed method, which can ensure the safe landing of probe and achieve continuous control.
Unified theory for inhomogeneous thermoelectric generators and coolers including multistage devices
Gerstenmaier, York Christian; Wachutka, Gerhard
2012-11-01
A novel generalized Lagrange multiplier method for functional optimization with inclusion of subsidiary conditions is presented and applied to the optimization of material distributions in thermoelectric converters. Multistaged devices are considered within the same formalism by inclusion of position-dependent electric current in the legs leading to a modified thermoelectric equation. Previous analytical solutions for maximized efficiencies for generators and coolers obtained by Sherman [J. Appl. Phys.JAPIAU0021-897910.1063/1.1735380 31, 1 (1960)], Snyder [Phys. Rev. B1098-012110.1103/PhysRevB.86.045202 86, 045202 (2012)], and Seifert [Phys. Status Solidi APSSABA0031-896510.1002/pssa.200925460 207, 760 (2010)] by a method of local optimization of reduced efficiencies are recovered by independent proof. The outstanding maximization problems for generated electric power and cooling power can be solved swiftly numerically by solution of a differential equation-system obtained within the new formalism. As far as suitable materials are available, the inhomogeneous TE converters can have increased performance by use of purely temperature-dependent material properties in the thermoelectric legs or by use of purely spatial variation of material properties or by a combination of both. It turns out that the optimization domain is larger for the second kind of device which can, thus, outperform the first kind of device.
Chaotic Control with Finite Time of Spacecraft Attitude Dynamics%航天器姿态动力学有限时间的混沌控制
陈恒; 雷腾飞; 尹劲松
2016-01-01
针对一类航天器刚体姿态运动方程，首先对方程中的混沌特性进行了混沌动力学分析研究；其次提出了航天刚体姿态混沌运动的主动-有限时间控制，该控制器可以实现对时间的控制即通过调节终端吸引子的权数实现；最后，通过仿真验证了所提出的控制策略。仿真结果表明，设计的有限时间控制器比传统的控制器具有更强的鲁棒性和快速响应能力。%For a class of rigid spacecraft attitude motion equations,the chaotic dynamics characteristics were analyzed firstly,and then the initiative and finite time control was proposed which can be achieved by adj usting the rights of terminal promoters.The simulation results show that the designed finite-time con-troller has stronger robustness and faster response capacity than the traditional controller.
Abid, Fathi; Guermazi, Dorra
2009-11-01
In this paper, we evaluate a multi-stage information technology investment project, by implementing and resolving Berk, Green and Naik's (2004) model, which takes into account specific features of IT projects and considers the real option to suspend investment at each stage. We present a particular case of the model where the project value is the solution of an optimal control problem with a single state variable. In this case, the model is more intuitive and tractable. The case study confirms the practical potential of the model and highlights the importance of the real-option approach compared to classical discounted cash flow techniques in the valuation of IT projects.
Interconnected levels of Multi-Stage Marketing – A Triadic approach
Vedel, Mette; Geersbro, Jens; Ritter, Thomas
2012-01-01
different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...... must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other......Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...
Interconnected levels of Multi-Stage Marketing – A Triadic approach
Vedel, Mette; Geersbro, Jens; Ritter, Thomas
2012-01-01
must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other......Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...... different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...
Ding, Chuxiong; Hrycushko, Brian; Whitworth, Louis; Li, Xiang; Nedzi, Lucien; Weprin, Bradley; Abdulrahman, Ramzi; Welch, Babu; Jiang, Steve B; Wardak, Zabi; Timmerman, Robert D
2017-07-06
Radiosurgery is an established technique to treat cerebral arteriovenous malformations (AVMs). Obliteration of larger AVMs (> 10-15 cm(3) or diameter > 3 cm) in a single session is challenging with current radiosurgery platforms due to toxicity. We present a novel technique of multistage stereotactic radiosurgery (SRS) for large intracranial arteriovenous malformations (AVM) using the Gamma Knife system. Eighteen patients with large (> 10-15 cm(3) or diameter > 3 cm) AVMs, which were previously treated using a staged SRS technique on the Cyberknife platform, were retrospectively selected for this study. The AVMs were contoured and divided into 3-8 subtargets to be treated sequentially in a staged approach at half to 4 week intervals. The prescription dose ranged from 15 Gy to 20 Gy, depending on the subtarget number, volume, and location. Gamma Knife plans using multiple collimator settings were generated and optimized. The coordinates of each shot from the initial plan covering the total AVM target were extracted based on their relative positions within the frame system. The shots were regrouped based on their location with respect to the subtarget contours to generate subplans for each stage. The delivery time of each shot for a subtarget was decay corrected with (60) Co for staging the treatment course to generate the same dose distribution as that planned for the total AVM target. Conformality indices and dose-volume analysis were performed to evaluate treatment plans. With the shot redistribution technique, the composite dose for the multistaged treatment of multiple subtargets is equivalent to the initial plan for total AVM target. Gamma Knife plans resulted in an average PTV coverage of 96.3 ± 0.9% and a PITV of 1.23 ± 0.1. The resulting Conformality indices, V12Gy and R50 dose spillage values were 0.76 ± 0.05, 3.4 ± 1.8, and 3.1 ± 0.5 respectively. The Gamma Knife system can deliver a multistaged conformal dose to treat large AVMs when correcting for
Research on optical multistage butterfly interconnection and optoelectronic logic operations
Sun, De-Gui; Wang, Na-Xin; He, Li-Ming; Xu, Mai; Liang, Guo-Dong; Zheng, Jie
We briefly study butterfly interconnection construction and propose an experimental approach to implementing multistage butterfly interconnection networks by using a special interconnection grating with the reflection ladder structure and liquid crystal light valves (LCLVs), and implementing the optical butterfly interconnections and primary optical digital logic operations. With this foundation, we analyse and discuss the features of the approach by computer simulations. In terms of our theoretical analyses, we improve the ring-circuit approach, based on the reflection ladder structure gratings, into a more suitable form based on transmission gratings, and we substitute the LCLVs with optoelectronic switches. Finally we give the experimental results of both the transmission grating and optoelectronic switches.
Financial planning via multi-stage stochastic programs
Mulvey, J.
1994-12-31
This paper presents a framework for modeling financial applications, including asset allocation, as multi-stage stochastic programs. Starting with the classic single-period Markowitz model, we show that additional realistic issues can be addressed via multi-period stochastic programming. The advantages of integrating liabilities, assets, and investment goals are discussed. An investor must design a dynamic model for the stochastic parameters and link this process to an integrated asset-liability system if he wants to measure portfolio risk over time. Partial analysis leads to errors in risk evaluation. Algorithms for solving the resulting large-scale nonlinear stochastic programs are described. Topics for future research are proposed.
Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems
Hassan Saberi Nik
2014-01-01
Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.
Fundamentals of reliability engineering applications in multistage interconnection networks
Gunawan, Indra
2014-01-01
This book presents fundamentals of reliability engineering with its applications in evaluating reliability of multistage interconnection networks. In the first part of the book, it introduces the concept of reliability engineering, elements of probability theory, probability distributions, availability and data analysis. The second part of the book provides an overview of parallel/distributed computing, network design considerations, and more. The book covers a comprehensive reliability engineering methods and its practical aspects in the interconnection network systems. Students, engineers, researchers, managers will find this book as a valuable reference source.
Thermochemical production of hydrogen via multistage water splitting processes
Funk, J. E.
1975-01-01
This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.
Improved Multistage Wiener Filters in Nonhomogeneous Clutter Environments
Bin Tang; Xue-Gang Wang; Ke-Song Chen
2008-01-01
A new method combining space-time preprocessing with multistage Wiener filters (STPMWF) is proposed to improve the performance of space-time adaptive processing (STAP) in nonhomogeneous clutter scenario. The new scheme only requires the data from the primary range bin, thus it can suppress discrete interferers efficiently, without calculating the inverse of covariance matrix. Comparing to the original MWF approach, the proposed scheme can be regarded as practical solutions for robust and effective STAP of nonhomogeneous radar data. The theoretical analysis shows that our STPMWF is simple in implementation and fast in convergence. The numeric results by using simulated data exhibit a good agreement with the proposed theory.
Multi-Stage Convex Relaxation Methods for Machine Learning
2013-03-01
relaxation with Lasso (L1 regularization), the multi-stage convex relaxation method can 3 Initialize v̂ = 1 Repeat the following two steps until convergence...observations using the following sparse regression method: ŵ = arg min w 1 n ‖Xw − y‖22 + λ d∑ j=1 g(|wj |) , (9) where g(|wj |) is a...estimation problems. Statistical Science, 27:576–593, 2012. Tong Zhang. Some sharp performance bounds for least squares regression with L1
Wei Wang
2015-01-01
Full Text Available This paper develops a nonsingular terminal sliding mode controller (NTSMC with adaptive disturbance observer (ADOB for finite-time trajectory tracking of a MEMS triaxial vibratory gyroscope, which has parameter variations and external high-amplitude disturbance. A novel sliding mode controller with adaptive disturbance observer is designed to reconfigure the parameter variations and external high-amplitude disturbance and reduce the chattering phenomenon on the sliding surface greatly through setting the switching gain in control signal as a smaller value. The disturbance adaptive law is derived to guarantee the stability of the closed-loop adaptive control system via the Lyapunov criterion. The simulation results are performed to verify the effectiveness of the presented schemes.
Wassim M. Haddad
2012-02-01
Full Text Available In this paper, we combine the two universalisms of thermodynamics and dynamical systems theory to develop a dynamical system formalism for classical thermodynamics. Specifically, using a compartmental dynamical system energy flow model we develop a state-space dynamical system model that captures the key aspects of thermodynamics, including its fundamental laws. In addition, we establish the existence of a unique, continuously differentiable global entropy function for our dynamical system model, and using Lyapunov stability theory we show that the proposed thermodynamic model has finite-time convergent trajectories to Lyapunov stable equilibria determined by the system initial energies. Finally, using the system entropy, we establish the absence of Poincaré recurrence for our thermodynamic model and develop clear and rigorous connections between irreversibility, the second law of thermodynamics, and the entropic arrow of time.
Grafton, Meggie; Reece, Lisa M.; Irazoqui, Pedro P.; Jung, Byunghoo; Summers, Huw D.; Bashir, Rashid; Leary, James F.
2008-02-01
To produce a large increase in total throughput, a multi-stage microfluidics system (US Patent pending) is being developed for flow cytometry and closed system cell sorting. The multi-stage system provides for sorting and re-sorting of cohorts of cells beginning with multiple cells per sorting unit in the initial stages of the microfluidic device and achieving single cell sorting at subsequent stages. This design theoretically promises increases of 2- or 3-orders of magnitude in total cell throughput needed for cytomics applications involving gene chip or proteomics analyses of sorted cell subpopulations. Briefly, silicon wafers and CAD software were used with SU-8 soft photolithography techniques and used as a mold to create Y-shaped, multi-stage microfluidic PDMS chips. PDMS microfluidic chips were fabricated and tested using fluorescent microspheres driven through the chip by a microprocessor-controlled syringe drive and excited on an inverted Nikon fluorescence microscope. Inter-particle spacings were measured and used as experimental data for queuing theory models of multi-stage system performance. A miniaturized electronics system is being developed for a small portable instrument. A variety of LED light sources, waveguides, and APD detectors are being tested to find optimal combinations for creating an LED-APD configuration at the entry points of the Y-junctions for the multi-stage optical PDMS microfluidic chips. The LEDs, APDs, and PDMS chips are being combined into an inexpensive, small portable, closed system sorter suitable for operation inside a standard biohazard hood for both sterility and closed system cell sorting as an alternative to large, expensive, and conventional droplet-based cell sorters.
Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment
Chen, Binlong; Dai, Wenbing; He, Bing; Zhang, Hua; Wang, Xueqing; Wang, Yiguang; Zhang, Qiang
2017-01-01
The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects. PMID:28255348
Multi-stage circulating fluidized bed syngas cooling
Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang
2016-10-11
A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.
Numerical Simulation of Multi-Stage Turbomachinery Flows
Adamczyk, John J.; Hathaway, Michael D.; Shabbir, Aamir; Wellborn, Steven R.
1999-01-01
A comprehensive assessment is made of the predictive capability of the average passage flow model as applied to multi-stage axial flow compressors. The average passage flow model describes the time average flow field within a typical passage of a blade row embedded in a multi-stage configuration. In this work data taken within a four and one-half stage large low speed compressor will be used to assess the weakness and strengths of the predictive capabilities of the average passage flow model. The low speed compressor blading is of modern design and employs stators with end-bends. Measurements were made with slow and high response instrumentation. The high response measurements revealed the velocity components of both the rotor and stator wakes. Based on the measured wake profiles it will be argued that blade boundary layer transition is playing an important role in setting compressor performance. A model which mimics the effects of blade boundary layer transition within the frame work of the average passage model will be presented. Simulations which incorporated this model showed a dramatic improvement in agreement with data.
Towards Multi-Stage Intrusion Detection using IP Flow Records
Muhammad Fahad Umer
2016-10-01
Full Text Available Traditional network-based intrusion detection sys-tems using deep packet inspection are not feasible for modern high-speed networks due to slow processing and inability to read encrypted packet content. As an alternative to packet-based intrusion detection, researchers have focused on flow-based intrusion detection techniques. Flow-based intrusion detection systems analyze IP flow records for attack detection. IP flow records contain summarized traffic information. However, flow data is very large in high-speed networks and cannot be processed in real-time by the intrusion detection system. In this paper, an efficient multi-stage model for intrusion detection using IP flows records is proposed. The first stage in the model classifies the traffic as normal or malicious. The malicious flows are further analyzed by a second stage. The second stage associates an attack type with malicious IP flows. The proposed multi-stage model is efficient because the majority of IP flows are discarded in the first stage and only malicious flows are examined in detail. We also describe the implementation of our model using machine learning techniques.
A jointly optimized subband coder.
Kossentini, F; Chung, W C; Smith, M T
1996-01-01
The mainstream approach to subband coding has been to partition the input signal into subband signals and to code those signals separately with optimal or near-optimal quantizers and entropy coders. A more effective approach, however, is one where the subband coders are optimized jointly so that the average distortion introduced by the subband quantizers is minimized subject to a constraint on the output rate of the subband encoder. A subband coder with jointly optimized multistage residual quantizers and entropy coders is introduced and applied to image coding. The high performance of the coder is attributed to its ability to exploit statistical dependencies within and across the subbands. The efficiency of the multistage residual quantization structure and the effectiveness of the statistical modeling algorithm result in an attractive balance among the reproduction quality, rate, and complexity.
Research on Multi-Stage Inventory Model by Markov Decision Process
Rong, Ke
This paper researched multi-stage inventory system and established limited inventory Markov model, on the other hand it induced DP algorithm of limited inventory Markov model. The results proved that the reorder point of multi-stage inventory system can guarantee demand, and also allows the storage costs to a minimum level in accordance with the above model.
Principles of a novel multistage circulating fluidized bed reactor for biomass gasification
Kersten, Sascha R.A.; Prins, Wolter; Drift, van der Bram; Swaaij, van Wim P.M.
2003-01-01
In this paper a novel multistage circulating fluidized bed reactor has been introduced. The riser of this multistage circulating fluidized bed consists of several segments (seven in the base-case design) in series each built-up out of two opposite cones. Due to the specific shape, a fluidized bed ar
Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard;
2012-01-01
of the heating system in the glass moulding process considering detailed heating mechanisms therefore plays an important part in optimizing the heating system and the subsequent pressing stage in the lens manufacturing process.The current paper deals with three-dimensional transient thermal modelling...... of the multi-stage heating system in a wafer based glass moulding process. In order to investigate the importance of the radiation from the interior and surface of the glass, a simple finite volume code is developed to model one dimensional radiation–conduction heat transfer in the glass wafer for an extreme...... pressures. Finally, the three-dimensional modelling of the multi-stage heating system in the wafer based glass moulding process is simulated with the FEM software ABAQUS for a particular industrial application for mobile phone camera lenses to obtain the temperature distribution in the glass wafer...
Multi-stage methodology to detect health insurance claim fraud.
Johnson, Marina Evrim; Nagarur, Nagen
2016-09-01
Healthcare costs in the US, as well as in other countries, increase rapidly due to demographic, economic, social, and legal changes. This increase in healthcare costs impacts both government and private health insurance systems. Fraudulent behaviors of healthcare providers and patients have become a serious burden to insurance systems by bringing unnecessary costs. Insurance companies thus develop methods to identify fraud. This paper proposes a new multistage methodology for insurance companies to detect fraud committed by providers and patients. The first three stages aim at detecting abnormalities among providers, services, and claim amounts. Stage four then integrates the information obtained in the previous three stages into an overall risk measure. Subsequently, a decision tree based method in stage five computes risk threshold values. The final decision stating whether the claim is fraudulent is made by comparing the risk value obtained in stage four with the risk threshold value from stage five. The research methodology performs well on real-world insurance data.
Multistage CSR microbunching gain development in transport or recirculation arcs
Tsai, Cheng-Ying; Li, Rui; Tennant, Chris
2015-01-01
Coherent synchrotron radiation (CSR) induced microbunching instability has been one of the most challenging issues in the design of modern accelerators. A linear Vlasov solver has been developed [1] and applied to investigate the physical processes of microbunching gain amplification for several example lattices [2]. In this paper, by further extending the concept of stage gain as proposed by Huang and Kim [3], we develop a method to characterize the microbunching development in terms of stage orders that allow the quantitative comparison of optics impacts on microbunching gain for different lattices. We find that the microbunching instability in our demonstrated arcs has a distinguishing feature of multistage amplification (e.g, up to 6th stage amplification for our example transport arcs, in contrast to two-stage amplification for a typical 4-dipole bunch compressor chicane). We also try to connect lattice optics pattern with the obtained stage gain functions by a physical interpretation. This Vlasov analys...
Multistage audiovisual integration of speech: dissociating identification and detection
Eskelund, Kasper; Tuomainen, Jyrki; Andersen, Tobias
2011-01-01
Speech perception integrates auditory and visual information. This is evidenced by the McGurk illusion where seeing the talking face influences the auditory phonetic percept and by the audiovisual detection advantage where seeing the talking face influences the detectability of the acoustic speech...... signal. Here we show that identification of phonetic content and detection can be dissociated as speech-specific and non-specific audiovisual integration effects. To this end, we employed synthetically modified stimuli, sine wave speech (SWS), which is an impoverished speech signal that only observers...... informed of its speech-like nature recognize as speech. While the McGurk illusion only occurred for informed observers the audiovisual detection advantage occurred for naïve observers as well. This finding supports a multi-stage account of audiovisual integration of speech in which the many attributes...
Extracting multistage screening rules from online dating activity data.
Bruch, Elizabeth; Feinberg, Fred; Lee, Kee Yeun
2016-09-20
This paper presents a statistical framework for harnessing online activity data to better understand how people make decisions. Building on insights from cognitive science and decision theory, we develop a discrete choice model that allows for exploratory behavior and multiple stages of decision making, with different rules enacted at each stage. Critically, the approach can identify if and when people invoke noncompensatory screeners that eliminate large swaths of alternatives from detailed consideration. The model is estimated using deidentified activity data on 1.1 million browsing and writing decisions observed on an online dating site. We find that mate seekers enact screeners ("deal breakers") that encode acceptability cutoffs. A nonparametric account of heterogeneity reveals that, even after controlling for a host of observable attributes, mate evaluation differs across decision stages as well as across identified groupings of men and women. Our statistical framework can be widely applied in analyzing large-scale data on multistage choices, which typify searches for "big ticket" items.
Analysis of multi-stage open shop processing systems
Eggermont, Christian; Woeginger, Gerhard J
2011-01-01
We study algorithmic problems in multi-stage open shop processing systems that are centered around reachability and deadlock detection questions. We characterize safe and unsafe system states. We show that it is easy to recognize system states that can be reached from the initial state (where the system is empty), but that in general it is hard to decide whether one given system state is reachable from another given system state. We show that the problem of identifying reachable deadlock states is hard in general open shop systems, but is easy in the special case where no job needs processing on more than two machines (by linear programming and matching theory), and in the special case where all machines have capacity one (by graph-theoretic arguments).
A Cost-Effective Architecture For Optical Multistage Interconnection Network
Mehrnaz Moudi
2013-02-01
Full Text Available In this paper a new architecture for Optical Multistage Interconnection Networks (OMINs has been proposed to avoid crosstalk problem. At the same time, the probablity of losing pass through an optical long connection path is reduced in this architecture. The new architecture is inherent form the standard OMIN by converting two switches of the network to one switch in each row. By reducing the number of switches in new architecture, the reduction in the execution time is considered. The modifying in the number of passes via the same low stage transformation is negligible. The ability of the new architecture to decrease cost and avoid crosstalk has been validated through simulations that show improvement in the network performance in terms of approximately 30% reduction in the execution time.
Integrated quality control architecture for multistage machining processes
Yang, Jie; Liu, Guixiong
2010-12-01
To solve problems concerning the process quality prediction control for the multistage machining processes, a integrated quality control architecture is proposed in this paper. First, a hierarchical multiple criteria decision model is established for the key process and the weight matrix method stratified is discussed. Predictive control of the manufacturing quality is not just for on-site monitoring and control layer, control layer in the enterprise, remote monitoring level of quality exists a variety of target predictive control demand, therefore, based on XML to achieve a unified description of manufacturing quality information, and in different source of quality information between agencies to achieve the transfer and sharing. This will predict complex global quality control, analysis and diagnosis data to lay a good foundation to achieve a more practical, open and standardized manufacturing quality with higher levels of information integration system.
Multistage Hybrid Arabic/Indian Numeral OCR System
Alginaih, Yasser M
2010-01-01
The use of OCR in postal services is not yet universal and there are still many countries that process mail sorting manually. Automated Arabic/Indian numeral Optical Character Recognition (OCR) systems for Postal services are being used in some countries, but still there are errors during the mail sorting process, thus causing a reduction in efficiency. The need to investigate fast and efficient recognition algorithms/systems is important so as to correctly read the postal codes from mail addresses and to eliminate any errors during the mail sorting stage. The objective of this study is to recognize printed numerical postal codes from mail addresses. The proposed system is a multistage hybrid system which consists of three different feature extraction methods, i.e., binary, zoning, and fuzzy features, and three different classifiers, i.e., Hamming Nets, Euclidean Distance, and Fuzzy Neural Network Classifiers. The proposed system, systematically compares the performance of each of these methods, and ensures t...
Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer
Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)
1995-10-01
The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.
Unsihuay-Vila, Clodomiro; Marangon-Lima, J.W.; Souza, A.C Zambroni de [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], emails: clodomirounsihuayvila @gmail.com, marangon@unifei.edu.br, zambroni@unifei.edu.br; Perez-Arriaga, I.J. [Universidad Pontificia Comillas, Madrid (Spain)], email: ipa@mit.edu
2010-07-01
A novel multi objective, multi area and multistage model to long-term expansion-planning of integrated generation and transmission corridors incorporating sustainable energy developing is presented in this paper. The proposed MESEDES model is a multi-regional multi-objective and 'bottom-up' energy model which considers the electricity generation/transmission value-chain, i.e., power generation alternatives including renewable, nuclear and traditional thermal generation along with transmission corridors. The model decides the optimal location and timing of the electricity generation/transmission abroad the multistage planning horizon. The MESEDES model considers three objectives belonging to sustainable energy development criteria such as: a) the minimization of investments and operation costs of : power generation, transmission corridors, energy efficiency (demand side management (DSM) programs) considering CO2 capture technologies; b) minimization of Life Cycle Greenhouse Gas Emissions (LC GHG); c) maximization of the diversification of electricity generation mix. The proposed model consider aspects of the carbon abatement policy under the CDM - Clean Development Mechanism or European Union Greenhouse Gas Emission Trading Scheme. A case study is used to illustrate the proposed framework. (author)
Li Xuan
2016-01-01
Full Text Available The evolving military capability requirements (CRs must be meted continuously by the multi-stage weapon equipment mix production planning (MWEMPP. Meanwhile, the CRs possess complex uncertainties with the variant military tasks in the whole planning horizon. The mean-value deterministic programming technique is difficult to deal with the multi-period and multi-level uncertain decision-making problem in MWEMPP. Therefore, a multi-stage stochastic programming approach is proposed to solve this problem. This approach first uses the scenario tree to quantitatively describe the bi-level uncertainty of the time and quantity of the CRs, and then build the whole off-line planning alternatives assembles for each possible scenario, at last the optimal planning alternative is selected on-line to flexibly encounter the real scenario in each period. A case is studied to validate the proposed approach. The results confirm that the proposed approach can better hedge against each scenario of the CRs than the traditional mean-value deterministic technique.
Mazoochi, Alireza; Rahmani, Faezeh; Abbasi Davani, Fereydoun; Ghaderi, Ruhollah
2014-03-01
Dual X-ray bone densitometry may cause some errors in diagnosis due to heterogeneous distribution of adipose tissue. It is necessary to develop a more accurate technique to consider the effects of fat. In this research, a triple energy X-ray method has been introduced and conceptual design of a system consisting of 160 kV X-ray tube, multi-layer K-edge filter and multi-stage detector has been presented. Design calculations have been performed using MCNP4C Monte Carlo code to select the type of filters and detectors with the best thicknesses for better distinguishing materials. The energy peaks (37 keV, 50 keV and 105 keV) can be separated optimally with a multi-layer filter composed of barium (170 μm) and gadolinium (100 μm) as the first and second layers, respectively which are coated on a 1 mm aluminum plate placed between the source and tissue. The transmitted photons have been counted by a multi-stage linear array of detectors consisting of ZnSe(Te) and CsI(Tl) with 400 μm and 5 mm thicknesses, respectively. Monte Carlo simulations show that the triple energy X-ray technique has better accuracy than that of the standard dual energy X-ray technique.
AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS
Crouse, J. E.
1994-01-01
The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified
Multi-stage axial flow compressors characteristics estimation based on system identification
Ma, Wentong; Liu, Yongwen; Su, Ming [Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Nanhua [Guangdong Electric Power Research Institute, 73 Meihua Road, Guangzhou 510600 (China)
2008-02-15
The most troublesome part in the development of a component-based engine models is the compressor module because of the strong dependence of its performance on rotational speed. For this purpose, a performance characteristics estimation method of multi-stage axial flow compressors are proposed in this paper. The newly proposed estimation technique of average infinitesimal stage characteristics satisfies the analogy criterion perfectly due to the use of a new conception of infinitesimal stage and the improved analogy theory. The overall compressor performance characteristics are estimated through a stage by stage calculation based on the improved analogy theory and the average stage characteristics. To minimize the error between the calculated characteristic and the tested characteristic of the compressor at high rotational speeds, the average stages performance characteristics are identified using an optimization method. The technique improves the traditional scaling method by taking into account the effects of air density change and rotational speeds, and it makes use of available data efficiently. In addition, it reflects the own performance characteristics of the original compressor. (author)
Multi-stage axial flow compressors characteristics estimation based on system identification
Ma Wentong [Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: wentongma@sjtu.org; Liu Yongwen; Su Ming [Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu Nanhua [Guangdong Electric Power Research Institute, 73 Meihua Road, Guangzhou 510600 (China)
2008-02-15
The most troublesome part in the development of a component-based engine models is the compressor module because of the strong dependence of its performance on rotational speed. For this purpose, a performance characteristics estimation method of multi-stage axial flow compressors are proposed in this paper. The newly proposed estimation technique of average infinitesimal stage characteristics satisfies the analogy criterion perfectly due to the use of a new conception of infinitesimal stage and the improved analogy theory. The overall compressor performance characteristics are estimated through a stage by stage calculation based on the improved analogy theory and the average stage characteristics. To minimize the error between the calculated characteristic and the tested characteristic of the compressor at high rotational speeds, the average stages performance characteristics are identified using an optimization method. The technique improves the traditional scaling method by taking into account the effects of air density change and rotational speeds, and it makes use of available data efficiently. In addition, it reflects the own performance characteristics of the original compressor.
Multi-stage ytterbium fiber-amplifier seeded by a gain-switched laser diode
Ryser, Manuel; Burn, Andreas; Romano, Valerio
2014-01-01
We demonstrated all-fiber amplification of 11 ps pulses from a gain-switched laser diode at 1064 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 $\\mu$W of fiber-coupled average output power. For the low output pulse energy of 325 fJ we have designed a multi-stage core pumped pre-amplifier in order to keep the contribution of undesired amplified spontaneous emission as low as possible. By using a novel time-domain approach for determining the power spectral density ratio (PSD) of signal to noise, we identified the optimal working point for our pre-amplifier. After the pre-amplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we reached a total gain of 73 dB, resulting in pulse energies of >5.6 $\\mu$J and peak powers of >0.5 MW. The average PSD-ratio of signal to noise we determined to be 18/1 at the output...
Lymphoma diagnosis in histopathology using a multi-stage visual learning approach
Codella, Noel; Moradi, Mehdi; Matasar, Matt; Sveda-Mahmood, Tanveer; Smith, John R.
2016-03-01
This work evaluates the performance of a multi-stage image enhancement, segmentation, and classification approach for lymphoma recognition in hematoxylin and eosin (H and E) stained histopathology slides of excised human lymph node tissue. In the first stage, the original histology slide undergoes various image enhancement and segmentation operations, creating an additional 5 images for every slide. These new images emphasize unique aspects of the original slide, including dominant staining, staining segmentations, non-cellular groupings, and cellular groupings. For the resulting 6 total images, a collection of visual features are extracted from 3 different spatial configurations. Visual features include the first fully connected layer (4096 dimensions) of the Caffe convolutional neural network trained from ImageNet data. In total, over 200 resultant visual descriptors are extracted for each slide. Non-linear SVMs are trained over each of the over 200 descriptors, which are then input to a forward stepwise ensemble selection that optimizes a late fusion sum of logistically normalized model outputs using local hill climbing. The approach is evaluated on a public NIH dataset containing 374 images representing 3 lymphoma conditions: chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). Results demonstrate a 38.4% reduction in residual error over the current state-of-art on this dataset.
Intelligent Search Method Based ACO Techniques for a Multistage Decision Problem EDP/LFP
Mostefa RAHLI
2006-07-01
Full Text Available The implementation of a numerical library of calculation based optimization in electrical supply networks area is in the centre of the current research orientations, thus, our project in a form given is centred on the development of platform NMSS1. It's a software environment which will preserve many efforts as regards calculations of charge, smoothing curves, losses calculation and economic planning of the generated powers [23].The operational research [17] in a hand and the industrial practice in the other, prove that the means and processes of simulation reached a level of very appreciable reliability and mathematical confidence [4, 5, 14]. It is of this expert observation that many processes make confidence to the results of simulation.The handicaps of this approach or methodology are that it makes base its judgments and handling on simplified assumptions and constraints whose influence was deliberately neglected to be added to the cost to spend [14].By juxtaposing the methods of simulation with artificial intelligence techniques, gathering set of numerical methods acquires an optimal reliability whose assurance can not leave doubt.Software environment NMSS [23] can be a in the field of the rallying techniques of simulation and electric network calculation via a graphic interface. In the same software integrate an AI capability via a module expert system.Our problem is a multistage case where are completely dependant and can't be performed separately.For a multistage problem [21, 22], the results obtained from a credible (large size problem calculation, makes the following question: Could choice of numerical methods set make the calculation of a complete problem using more than two treatments levels, a total error which will be the weakest one possible? It is well-known according to algorithmic policy; each treatment can be characterized by a function called mathematical complexity. This complexity is in fact a coast (a weight overloading
Feet swelling in a multistage ultraendurance triathlete: a case study
Knechtle B
2015-10-01
Full Text Available Beat Knechtle,1 Matthias Alexander Zingg,2 Patrizia Knechtle,1 Thomas Rosemann,2 Christoph Alexander Rüst2 1Gesundheitszentrum St Gallen, St Gallen, 2Institute of Primary Care, University of Zurich, Zurich, Switzerland Abstract: Recent studies investigating ultraendurance athletes showed an association between excessive fluid intake and swelling of the lower limbs such as the feet. To date, this association has been investigated in single-stage ultraendurance races, but not in multistage ultraendurance races. In this case study, we investigated a potential association between fluid intake and feet swelling in a multistage ultraendurance race such as a Deca Iron ultratriathlon with ten Ironman triathlons within 10 consecutive days. A 49-year-old well-experienced ultratriathlete competed in autumn 2013 in the Deca Iron ultratriathlon held in Lonata del Garda, Italy, and finished the race as winner within 129:33 hours:minutes. Changes in body mass (including body fat and lean body mass, foot volume, total body water, and laboratory measurements were assessed. Food and fluid intake during rest and competing were recorded, and energy and fluid turnovers were estimated. During the ten stages, the volume of the feet increased, percentage body fat decreased, creatinine and urea levels increased, hematocrit and hemoglobin values decreased, and plasma [Na+] remained unchanged. The increase in foot volume was significantly and positively related to fluid intake during the stages. The poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. This case report shows that the volume of the foot increased during the ten stages, and the increase in volume was significantly and positively related to fluid intake during the stages. Furthermore, the poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. The continuous feet swelling during the race was
Exploiting tumor shrinkage through temporal optimization of radiotherapy
Unkelbach, Jan; Hong, Theodore; Papp, David; Ramakrishnan, Jagdish; Salari, Ehsan; Wolfgang, John; Bortfeld, Thomas
2013-01-01
In multi-stage radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated mostly by radiobiological considerations, but also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. The paper considers the optimal design of multi-stage treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of multi-stage radiotherapy is formulated as a mathematical optimization problem in which the total dose to the liver is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. We analyze treatments consisting ...
Computer Adaptive Multistage Testing: Practical Issues, Challenges and Principles
Halil Ibrahim SARI
2016-12-01
Full Text Available The purpose of many test in the educational and psychological measurement is to measure test takers’ latent trait scores from responses given to a set of items. Over the years, this has been done by traditional methods (paper and pencil tests. However, compared to other test administration models (e.g., adaptive testing, traditional methods are extensively criticized in terms of producing low measurement accuracy and long test length. Adaptive testing has been proposed to overcome these problems. There are two popular adaptive testing approaches. These are computerized adaptive testing (CAT and computer adaptive multistage testing (ca-MST. The former is a well-known approach that has been predominantly used in this field. We believe that researchers and practitioners are fairly familiar with many aspects of CAT because it has more than a hundred years of history. However, the same thing is not true for the latter one. Since ca-MST is relatively new, many researchers are not familiar with features of it. The purpose of this study is to closely examine the characteristics of ca-MST, including its working principle, the adaptation procedure called the routing method, test assembly, and scoring, and provide an overview to researchers, with the aim of drawing researchers’ attention to ca-MST and encouraging them to contribute to the research in this area. The books, software and future work for ca-MST are also discussed.
Fully Automated Operational Modal Analysis using multi-stage clustering
Neu, Eugen; Janser, Frank; Khatibi, Akbar A.; Orifici, Adrian C.
2017-02-01
The interest for robust automatic modal parameter extraction techniques has increased significantly over the last years, together with the rising demand for continuous health monitoring of critical infrastructure like bridges, buildings and wind turbine blades. In this study a novel, multi-stage clustering approach for Automated Operational Modal Analysis (AOMA) is introduced. In contrast to existing approaches, the procedure works without any user-provided thresholds, is applicable within large system order ranges, can be used with very small sensor numbers and does not place any limitations on the damping ratio or the complexity of the system under investigation. The approach works with any parametric system identification algorithm that uses the system order n as sole parameter. Here a data-driven Stochastic Subspace Identification (SSI) method is used. Measurements from a wind tunnel investigation with a composite cantilever equipped with Fiber Bragg Grating Sensors (FBGSs) and piezoelectric sensors are used to assess the performance of the algorithm with a highly damped structure and low signal to noise ratio conditions. The proposed method was able to identify all physical system modes in the investigated frequency range from over 1000 individual datasets using FBGSs under challenging signal to noise ratio conditions and under better signal conditions but from only two sensors.
Multistage optical smoke detection approach for smoke alarm systems
Nguyen, Truc Kim Thi; Kim, Jong-Myon
2013-05-01
We propose a novel multistage smoke detection algorithm based on inherent optical characteristics such as diffusion, color, and texture of smoke. Moving regions in a video frame are detected by an approximate median background subtraction method using the diffusion behavior of smoke. These moving regions are segmented by a fuzzy C-means (FCM) clustering algorithm that uses the hue and saturation components of moving pixels in the hue-saturation-intensity color space. A decision rule is used to select candidate smoke regions from smoke-colored FCM clusters. An object tracking approach is employed in the candidate smoke region to detect candidate smoke objects in the video frame, and image texture parameters are extracted from these objects using a gray level co-occurrence matrix (GLCM). The thirteen GLCM features are selected to constitute the feature vector by applying principal components analysis, resulting in high-accuracy smoke detection. Finally, a back propagation neural network is utilized as a classifier to discriminate smoke and nonsmoke using the selected feature vector. Experimental results using a standard experimental dataset of video clips demonstrate that the proposed approach outperforms state-of-the-art smoke detection approaches in terms of accuracy, making real-life implementation feasible.
Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations
Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.
1990-01-01
A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
Synthetic Multiple-Imputation Procedure for Multistage Complex Samples
Zhou Hanzhi
2016-03-01
Full Text Available Multiple imputation (MI is commonly used when item-level missing data are present. However, MI requires that survey design information be built into the imputation models. For multistage stratified clustered designs, this requires dummy variables to represent strata as well as primary sampling units (PSUs nested within each stratum in the imputation model. Such a modeling strategy is not only operationally burdensome but also inferentially inefficient when there are many strata in the sample design. Complexity only increases when sampling weights need to be modeled. This article develops a generalpurpose analytic strategy for population inference from complex sample designs with item-level missingness. In a simulation study, the proposed procedures demonstrate efficient estimation and good coverage properties. We also consider an application to accommodate missing body mass index (BMI data in the analysis of BMI percentiles using National Health and Nutrition Examination Survey (NHANES III data. We argue that the proposed methods offer an easy-to-implement solution to problems that are not well-handled by current MI techniques. Note that, while the proposed method borrows from the MI framework to develop its inferential methods, it is not designed as an alternative strategy to release multiply imputed datasets for complex sample design data, but rather as an analytic strategy in and of itself.
Multi-stage FE simulation of hot ring rolling
Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.
2013-05-01
As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.
A cascaded three-phase symmetrical multistage voltage multiplier
Iqbal, Shahid [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Singh, G K [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Besar, R [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Muhammad, G [Faculty of Information Science and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)
2006-10-15
A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM.
Discontinuous Transition of a Multistage Independent Cascade Model on Networks
Hasegawa, Takehisa
2012-01-01
We study a multistage independent cascade (MIC) model in complex networks. This model is parameterized by two probabilities: T1 is the probability that a node adopting a fad increases the awareness of a neighboring susceptible node until it abandons the fad, and T2 is the probability that an adopter directly causes a susceptible node to adopt the fad. We formulate a framework of tree approximation for the MIC model on an uncorrelated network with an arbitrary given degree distribution. As an application, we study this model on a random regular network with degree k=6 to show that it has a rich phase diagram including continuous and discontinuous transition lines for the percolation of fads as well as a continuous transition line for the percolation of susceptible nodes. In particular, the percolation transition of fads is discontinuous (continuous) when T1 is larger (smaller) than a certain value. Furthermore, the phase boundaries drastically change by assigning a finite fraction of initial adopters. We discu...
4 Kelvin Cooling with Innovative Final Stage of Multistage Cryocooler Project
National Aeronautics and Space Administration — Proposed for development is a proof-of-concept prototype for the final stage of a multistage cryocooler. This final stage comprises a high frequency pulse tube cold...
Finite Time Control of the Bullwhip Effect in Supply Chain Network System%供应链网络系统牛鞭效应的有限时间控制
李玲; 孙业国
2013-01-01
文章主要讨论供应链网络系统牛鞭效应的有限时间控制策略问题。首先，构建了不确定环境下供应链库存网络系统状态转移模型；其次，运用有限时间稳定性理论，结合线性矩阵不等式方法，对供应链库存网络系统进行有限时间稳定性分析；再次，基于得到的稳定性结果，设计出使得供应链库存网络系统有限时间稳定的控制策略；最后，数值例子表明有限时间控制策略的有效性。%This paper mainly studies tactful policy related to finite time control of the bullwhip effect supply chain network system. Firstly, it constructs a state transition model of supply chain inventory network system in an uncertain environment. Secondly, it carries out finite time stability analysis on supply chain inventory network system by applying the finite time control theory combined with linear matrix inequalities (LMIs). Thirdly, the control strategy is designed based on the results, which aims to make supply chain inventory network system finite time stable. Finally, a numerical example is given to dem-onstrate the effectiveness of finite time tactful policy.
Zhanghua Lian; Ying Zhang; Xu Zhao; Shidong Ding; Tiejun Lin
2015-01-01
Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, ...
Modelling and Control of the Multi-stage Cable Pulley-driven Flexible-joint Robot
Phongsaen Pitakwatchara
2014-01-01
This work is concerned with the task space impedance control of a robot driven through a multi-stage nonlinear flexible transmission system. Specifically, a two degrees-of-freedom cable pulley-driven flexible-joint robot is considered. Realistic modelling of the system is developed within the bond graph modelling framework. The model captures the nonlinear compliance behaviour of the multi-stage cable pulley transmission system, the spring effect of the augmented counterbalancing mechanism, t...
Thermodynamic Metrics and Optimal Paths
Sivak, David; Crooks, Gavin
2012-05-08
A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.
Multi-Stage Recognition of Speech Emotion Using Sequential Forward Feature Selection
Liogienė Tatjana
2016-07-01
Full Text Available The intensive research of speech emotion recognition introduced a huge collection of speech emotion features. Large feature sets complicate the speech emotion recognition task. Among various feature selection and transformation techniques for one-stage classification, multiple classifier systems were proposed. The main idea of multiple classifiers is to arrange the emotion classification process in stages. Besides parallel and serial cases, the hierarchical arrangement of multi-stage classification is most widely used for speech emotion recognition. In this paper, we present a sequential-forward-feature-selection-based multi-stage classification scheme. The Sequential Forward Selection (SFS and Sequential Floating Forward Selection (SFFS techniques were employed for every stage of the multi-stage classification scheme. Experimental testing of the proposed scheme was performed using the German and Lithuanian emotional speech datasets. Sequential-feature-selection-based multi-stage classification outperformed the single-stage scheme by 12–42 % for different emotion sets. The multi-stage scheme has shown higher robustness to the growth of emotion set. The decrease in recognition rate with the increase in emotion set for multi-stage scheme was lower by 10–20 % in comparison with the single-stage case. Differences in SFS and SFFS employment for feature selection were negligible.
Interval Analysis: Contributions to static and dynamic optimization
De Weerdt, E.
2010-01-01
The field of global optimization has been an active one for many years. By far the most applied methods are gradient and evolutionary based algorithms. The most appearing drawback of those types of methods is that one cannot guarantee that the global solution is found within finite time. Moreover, i
邬树楠; 吴国强; 孙兆伟
2013-01-01
The observer-based relative orbit finite-time control is investigated for rapid proximity to target spacecraft .A finite-time controller ,based on non-singular terminal sliding mode technique ,is firstly proposed to perform proximity maneuver ,w hich can drive relative position and velocity to the expected value in finite time rather than in the asymptotic sense . In the consideration of escape maneuver of non-cooperative spacecraft ,a finite-time observer is then proposed and included in the modified controller to deal with this problem . It should be noted that the acceleration of escape maneuver can be estimated in finite time ,the globally finite-time convergence of closed-loop system is therefore guaranteed . Simulation results are finally provided and discussed to illustrate the performance of the proposed controllers .%针对快速接近非合作目标航天器任务，提出了一种基于观测器的相对轨道有限时间控制算法。首先，基于非奇异的终端滑模技术，设计了一种有限时间控制器。该控制器可使追踪航天器与目标航天器的相对位置和速度在有限时间内达到期望值。其次，考虑到非合作航天器的逃逸机动，在控制器中引入了一种有限时间观测器，该观测器可在有限时间内估计出目标的逃逸加速度，从而保证闭环系统的全局有限时间收敛。最后，通过数值仿真验证了该控制算法的有效性。
Finite-time H∞ Filtering for Uncertain Fuzzy Systems with Time-varying Delays%不确定时变时滞模糊系统的有限时间H∞滤波
陈珺; 庄嘉媚; 刘飞
2011-01-01
研究了一类复杂非线性系统的有限时间H∞滤波问题.针对由Takagi-Sugeno模糊模型描述的复杂非线性系统,同时考虑其存在参数不确定性以及时变时滞的情形,给出系统有限时间有界的充分条件.在一般传统H∞滤波器设计的基础上,结合有限时间有界的概念,导出保证系统在有限时间内,其滤波误差能量小于一个给定上界的H∞滤波器设计方法.通过构造一个适当的Lyapunov-Krasovskii函数,并引入自由权矩阵,得到基于线性矩阵不等式的有限时间H∞滤波器参数的求解方法.自由权矩阵的引入,是一种处理时变时滞项的新方法,具有一定的研究价值.最后,通过仿真示例验证了该方法的有效性.%The finite-time H∞ filtering problem of a class of complex nonlinear systems is studied. The system is described by T-S fuzzy models subject to the parameter uncertainties and time-varying delays. A sufficient condition for finite-time boundedness is given. By introducing the concept of finite-time boundedness to the general H∞ filter, a finite time H∞ filter design approach is proposed, which can guarantee the energy of the filtering error system within a given upper bound in the finite time interval. By constructing an appropriate Lyapunov-Krasovskii function, as well as introducing some free-weighting matrices, the solution of finite-time H∞ filter is derived in terms of linear matrix inequalities. The introduction of free-weight ing matrices is a new method to deal with the items of time-varying delays, so it has some research value in one sense. The simulation results show the effectiveness of the developed approach.
ZHU Limin; HE Gaiyun; SONG Zhanjie
2016-01-01
Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process (MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.
Analysis of experimental characteristics of multistage steam-jet electors of steam turbines
Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.
2017-02-01
A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.
Firat Evirgen
2016-04-01
Full Text Available In this paper, a class of Nonlinear Programming problem is modeled with gradient based system of fractional order differential equations in Caputo's sense. To see the overlap between the equilibrium point of the fractional order dynamic system and theoptimal solution of the NLP problem in a longer timespan the Multistage Variational İteration Method isapplied. The comparisons among the multistage variational iteration method, the variationaliteration method and the fourth order Runge-Kutta method in fractional and integer order showthat fractional order model and techniques can be seen as an effective and reliable tool for finding optimal solutions of Nonlinear Programming problems.
Optimal strategies for pricing general insurance
Emms, P.; Haberman, S.; Savoulli, I.
2006-01-01
Optimal premium pricing policies in a competitive insurance environment are investigated using approximation methods and simulation of sample paths. The market average premium is modelled as a diffusion process, with the premium as the control function and the maximization of the expected total utility of wealth, over a finite time horizon, as the objective. In order to simplify the optimisation problem, a linear utility function is considered and two particular premium strategies are adopted...
Näkki, Simo; Martinez, Jonathan O; Evangelopoulos, Michael; Xu, Wujun; Lehto, Vesa-Pekka; Tasciotti, Ennio
2017-07-19
Approaches to achieve site-specific and targeted delivery that provide an effective solution to reduce adverse, off target side effects are urgently needed for cancer therapy. Here, we utilized a Trojan-horse-like strategy to carry photosensitizer Chlorin e6 conjugated porous silicon multistage nanovectors with tumor homing mesenchymal stem cells for targeted photodynamic therapy and diagnosis. The inherent versatility of multistage nanovectors permitted the conjugation of photosensitizers to enable precise cell death induction (60%) upon photodynamic therapy, while simultaneously retaining the loading capacity to load various payloads, such as antitumor drugs and diagnostic nanoparticles. Furthermore, the mesenchymal stem cells that internalized the multistage nanovectors conserved their proliferation patterns and in vitro affinity to migrate and infiltrate breast cancer cells. In vivo administration of the mesenchymal stem cells carrying photosensitizer-conjugated multistage nanovectors in mice bearing a primary breast tumor confirmed their tropism toward cancer sites exhibiting similar targeting kinetics to control cells. In addition, this approach yielded in a > 70% decrease in local tumor cell viability after in vivo photodynamic therapy. In summary, these results show the proof-of-concept of how photosensitizer conjugated multistage nanovectors transported by stem cells can target tumors and be used for effective site-specific cancer therapy while potentially minimizing potential negative side effects.
2012-03-01
57 A. LINGO Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 viii Page B...applicants, and POC slots available. 21 Stage two is examined using LINGO software. LINGO is a comprehensive opti- mization software package developed by LINDO...formulated and implemented in LINGO . 24 An integer program is used to find a solution to the d-KP, with the objective of maximizing the total quality. Once
非奇异快速终端滑模有限时间收敛制导律%Nonsingular fast terminal sliding mode guidance law with finite-time convergence
张旭; 雷虎民; 李炯; 翟岱亮; 邵雷
2016-01-01
A nonsingular fast terminal sliding mode guidance law with finite-time convergence incorporating dynamics of missile autopilots was proposed for the singular problems of common fast terminal sliding mode control. Firstly, the nonlinear target-missile dy-namic model incorporating dynamics of missile autopilots was derived. Secondly, the nonsingular fast terminal sliding mode surface was proposed for the singular problems of common fast terminal sliding mode control, and then the guidance law with finite-time conver-gence was derived, whose stability was analyzed subsequently. Thirdly, the finite-time convergent character of the proposed guidance law was analyzed and proved combining with the finite-time stable theorem. Simulation results show that the proposed guidance law could achieve finite-time convergence of line-of-sight rate and impact the target correctly in the case of different types and different magnitudes of target maneuvers, whose miss distances and interception time are lower than the common sliding mode guidance law.%针对普通快速终端滑模控制方法所产生的奇异问题，设计了考虑导弹自动驾驶仪动态特性的非奇异快速终端滑模有限时间收敛制导律。首先，推导了考虑导弹自动驾驶仪动态特性的非线性弹目相对运动学模型；其次，针对普通快速终端滑模控制的奇异问题，设计了非奇异快速终端滑模面，推导了有限时间收敛制导律，并对其稳定性进行了分析；再次，结合有限时间稳定性理论，对所设计制导律的有限时间收敛特性进行了分析和证明。仿真结果表明，所设计的制导律在目标做不同类型和大小机动的情况下，均能实现视线角速率有限时间收敛并准确命中目标，且其脱靶量和拦截时间均小于传统滑模制导律。
Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows
Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.
2016-09-01
A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.
Bayesian synthetic evaluation of multistage reliability growth with instant and delayed fix modes
无
2008-01-01
In the multistage reliability growth tests with instant and delayed fix modes, the failure data can be assumed to follow Weibull processes with different parameters at different stages. For the Weibull process within a stage, by the proper selection of prior distribution form and the parameters, a concise posterior distribution form is obtained, thus simplifying the Bayesian analysis. In the multistage tests, the improvement factor is used to convert the posterior of one stage to the prior of the subsequent stage. The conversion criterion is carefully analyzed to determine the distribution parameters of the subsequent stage's variable reasonably. Based on the mentioned results, a new synthetic Bayesian evaluation program and algorithm framework is put forward to evaluate the multistage reliability growth tests with instant and delayed fix modes. The example shows the effectiveness and flexibility of this method.
M. Q. Suo
2013-01-01
Full Text Available An inventory-theory-based inexact multistage stochastic programming (IB-IMSP method is developed for planning water resources systems under uncertainty. The IB-IMSP is based on inexact multistage stochastic programming and inventory theory. The IB-IMSP cannot only effectively handle system uncertainties represented as probability density functions and discrete intervals but also efficiently reflect dynamic features of system conditions under different flow levels within a multistage context. Moreover, it can provide reasonable transferring schemes (i.e., the amount and batch of transferring as well as the corresponding transferring period associated with various flow scenarios for solving water shortage problems. The applicability of the proposed IB-IMSP is demonstrated by a case study of planning water resources management. The solutions obtained are helpful for decision makers in not only identifying different transferring schemes when the promised water is not met, but also making decisions of water allocation associated with different economic objectives.
Simulation of three-dimensional viscous flow within a multistage turbine
Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Barnett, Mark
1989-01-01
This work outlines a procedure for simulating the flow field within multistage turbomachinery which includes the effects of unsteadiness, compressibility, and viscosity. The associated modeling equations are the average passage equation system which governs the time-averaged flow field within a typical passage of a blade row embedded within a multistage configuration. The results from a simulation of a low aspect ratio stage and a one-half turbine will be presented and compared with experimental measurements. It will be shown that the secondary flow field generated by the rotor causes the aerodynamic performance of the downstream vane to be significantly different from that of an isolated blade row.
Simulation of 3-D viscous flow within a multi-stage turbine
Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Barnett, Mark
1989-01-01
This work outlines a procedure for simulating the flow field within multistage turbomachinery which includes the effects of unsteadiness, compressibility, and viscosity. The associated modeling equations are the average passage equation system which governs the time-averaged flow field within a typical passage of a blade row embedded within a multistage configuration. The results from a simulation of a low aspect ratio stage and a one-half turbine will be presented and compared with experimental measurements. It will be shown that the secondary flow field generated by the rotor causes the aerodynamic performance of the downstream vane to be significantly different from that of an isolated blade row.
Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses
Zhao, Y.; Aarnink, A.J.A.; Jong, de, P.; Ogink, N. W. M.; Groot Koerkamp, P.W.G.
2011-01-01
Emissions of air pollutants from livestock houses may raise environmental problems and pose hazards to public health. They can be reduced by scrubbers installed at the air outlets of livestock houses. In this study, three multi-stage scrubbers were evaluated in terms of their effectiveness in reducing emissions of airborne dust, total bacteria, ammonia, and CO2 from pig houses in winter. The three multi-stage scrubbers were one double-stage scrubber (acid stage+ bio-filter), one double-stage ...
Continuous-data diagnostic tests for paratuberculosis as a multistage disease
Toft, Nils; Nielsen, Søren Saxmose; Jørgensen, Erik
2005-01-01
We devised a general method for interpretation of multistage diseases using continuous-data diagnostic tests. As an example, we used paratuberculosis as a multistage infection with 2 stages of infection as well as a noninfected state. Using data from a Danish research project, a fecal culture...... testing scheme was linked to an indirect ELISA and adjusted for covariates (parity, age at first calving, and days in milk). We used the log-transformed optical densities in a Bayesian network to obtain the probabilities for each of the 3 infection stages for a given optical density (adjusted...
Maisotsenko cycle applications in multi-stage ejector recycling module for chemical production
Levchenko, D. O.; Artyukhov, A. E.; Yurko, I. V.
2017-08-01
The article is devoted to the theoretical bases of multistage (multi-level) utilization modules as part of chemical plants (on the example of the technological line for obtaining nitrogen fertilizers). The possibility of recycling production waste (ammonia vapors, dust and substandard nitrogen fertilizers) using ejection devices and waste heat using Maisotsenko cycle technology (Maisotsenko heat and mass exchanger (HMX), Maisotsenko power cycles and recuperators, etc.) is substantiated. The principle of operation of studied recycling module and prospects for its implementation are presented. An improved technological scheme for obtaining granular fertilizers and granules with porous structure with multistage (multi-level) recycling module is proposed.
A series-type multistage production system with random demand
Ying-Chieh Chen
2003-07-01
Full Text Available We propose a mathematical model which considers the series-type product structure with nÃ¢ÂˆÂ’1 predecessors. Our objective is to obtain the optimal production functions, in the planning horizon [0,T], based on the assumptions (1 that the cost of production unit is a linear function of production quantity in a time unit, (2 that sales of finished goods occur at the end of planning horizon, and (3 that product demand is a random variable. Then the phenomenon of optimal solution is discussed.
Optimal concentration and temperatures of solar thermal power plants
2012-01-01
Using simple, finite-time, thermodynamic models of solar thermal power plants, the existence of an optimal solar receiver temperature has previously been demonstrated in literature. Scant attention has been paid, however, to the presence of an optimal level of solar concentration at which the conversion of incident sunlight to electricity (solar-to-electric efficiency) is maximized. This paper addresses that gap. The paper evaluates the impact, on the design of Rankine-cycle solar-trough and ...
Efficient Design of Multi-stage Cascade Waveband Separator
Samrat Ganguly; Rauf Izmailov; Nan Tu; Ting Wang
2003-01-01
We propose a cascade system of filters for realizing a non-uniform waveband separation for optical networks. The use of such separation is required at the DEMUX stage in a optical OXC switching wavebands. The design of the system is based on optimized balanced tree, which minimizes the overall optical loss.
Qu, Jianhua; Meng, Xianlin; You, Hong
2016-06-05
Due to the increasing number of unexpected water source pollution events, selection of the most appropriate disposal technology for a specific pollution scenario is of crucial importance to the security of urban water supplies. However, the formulation of the optimum option is considerably difficult owing to the substantial uncertainty of such accidents. In this research, a multi-stage technical screening and evaluation tool is proposed to determine the optimal technique scheme, considering the areas of pollutant elimination both in drinking water sources and water treatment plants. In stage 1, a CBR-based group decision tool was developed to screen available technologies for different scenarios. Then, the threat degree caused by the pollution was estimated in stage 2 using a threat evaluation system and was partitioned into four levels. For each threat level, a corresponding set of technique evaluation criteria weights was obtained using Group-G1. To identify the optimization alternatives corresponding to the different threat levels, an extension of TOPSIS, a multi-criteria interval-valued trapezoidal fuzzy decision making technique containing the four arrays of criteria weights, to a group decision environment was investigated in stage 3. The effectiveness of the developed tool was elaborated by two actual thallium-contaminated scenarios associated with different threat levels. Copyright © 2016 Elsevier B.V. All rights reserved.
Ramins, Peter; Lesny, Gary G.; Ebihara, Ben T.; Peet, Shelly
1988-01-01
A small, isotropic graphite multistage depressed collector (MDC) and a short permanent magnet refocuser were designed, fabricated, and evaluated in conjunction with a 500-W, continuous-wave (CW), 4.8 to 9.6 GHz traveling wave tube (TWT). A novel performance optimization system and technique were used to optimize the TWT-MDC performance for saturated broad-band operation. The MDC performance was evaluated in both four- and three-stage configurations. Average TWT overall and four-stage collector efficiencies of 43.8 and 82.6 percent, respectively, were obtained for saturated octave-bandwidth operation. The isotropic graphite electrode material performed well, and shows considerable promise. However, considerably more test experience is required before definitive conclusions on its suitability for space and airborne TWT's can be made.
Nonlinear model predictive control of a multistage evaporator system using recurrent neural networks
Atuonwu, J.C.; Cao, Y.; Rangaiah, G.P.; Tade, M.O.
2011-01-01
The use of multistage evaporators, motivated by the energy economy from reusing the flashed steam is common in a wide range of process industries. Such evaporators however present several control problems which manifest in the form of strong interactions among the many process variables, significant
Multistage Effort and the Equity Structure of Venture Investment Based on Reciprocity Motivation
Chuan Ding
2015-01-01
Full Text Available For venture capitals, it is a long process from an entry to its exit. In this paper, the activity of venture investment will be divided into multistages. And, according to the effort level entrepreneurs will choose, the venture capitalists will provide an equity structure at the very beginning. As a benchmark for comparison, we will establish two game models on multistage investment under perfect rationality: a cooperative game model and a noncooperative one. Further, as a cause of pervasive psychological preference behavior, reciprocity motivation will influence the behavior of the decision-makers. Given this situation, Rabin’s reciprocity motivation theory will be applied to the multistage game model of the venture investment, and multistage behavior game model will be established as well, based on the reciprocity motivation. By looking into the theoretical derivations and simulation studies, we find that if venture capitalists and entrepreneurs both have reciprocity preferences, their utility would have been Pareto improvement compared with those under perfect rationality.
Understanding, accepting and controlling risks: A multistage framework for risk communication
Vlek, C.A.J.
1995-01-01
The meanings and functions of cc risk communication a (RC, for shea) are specified on the basis of a multistage framework for handling societal risks. After identifying various reasons for RC, essential components of > are briefly discussed : basic risk communicator positions, different levels of ri
UNDERSTANDING, ACCEPTING AND CONTROLLING RISKS - A MULTISTAGE FRAMEWORK FOR RISK COMMUNICATION
VLEK, CAJ
1995-01-01
The meanings and functions of cc risk communication a (RC, for shea) are specified on the basis of a multistage framework for handling societal risks. After identifying various reasons for RC, essential components of > are briefly discussed : basic risk communicator positions, different levels of ri
Turbulence and Complex Flow Phenomena in Multi-Stage Axial Turbomachines
2007-05-10
J.J., Mulac R.A., Celestina M.L., 1986, "A Model for Closing the Inviscid Form of the Average-Passage Equation System," ASME Paper No. 86-GT-227...Adamczyk J.J.; Celestina M.L.; Beach T.A.; Barnett M., 1990, "Simulation Of Three Dimensional Viscous Flow Within A Multistage Turbine," J. of
Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study
Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G
2011-01-01
Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...
Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration
Sanchez, L.D.; Marin, L.M.; Visscher, J.T.; Rietveld, L.C.
2012-01-01
This paper assesses the operational and design aspects of coagulation and flocculation in upflow gravel filters (CF-UGF) in a multi-stage filtration (MSF) plant. This study shows that CF-UGF units improve the performance of MSF considerably, when the system operates with turbidity above 30 NTU. It s
TwinGrid: A wafer post-processed multistage Micro Patterned Gaseous Detector
Bilevych, Y.; Blanco Carballo, V.M.; Chefdeville, M.; Fransen, M.; van der Graaf, H.; Salm, C.; Schmitz, J.; Timmermans, J.
2009-01-01
This paper presents a new multistage Micro Patterned Gaseous Detector (MPGD) made by wafer post-processing. The device consists of a double metal grid supported by SU-8 structures on top of a Timepix chip. The detector has been operated with He/iC(4)H(10) and Ar/iC(4)H(10) gas mixtures. Cosmic rays
Twingrid: a wafer post-processed multistage micro patterned gaseous detector
Bilevych, Y.; Blanco Carballo, V.M.; Chefdeville, M.A.; Fransen, M.; Graaf, van der H.; Salm, C.; Schmitz, J.; Timmermans, J.
2009-01-01
This paper presents a new multistage Micro Patterned Gaseous Detector (MPGD) made by wafer post-processing. The device consists of a double metal grid supported by SU-8 structures on top of a Timepix chip. The detector has been operated with He/iC4H10 and Ar/iC4H10 gas mixtures. Cosmic rays as well
Multi-stage decoding for multi-level block modulation codes
Lin, Shu
1991-01-01
In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.
Axial liquid mixing in a gas-liquid Multi-Stage Agitated Contactor (MAC)
Breman, B.B; Beenackers, A.A C M; Bouma, M.J; VanderWerf, M.H.
1996-01-01
Data on interstage liquid mixing are reported for a gas-liquid Multi-stage Agitated Contactor (MAC). A dynamic method using heat as a tracer was applied for water, n-octane and monoethylene glycol as liquids both with and without the presence of a dispersed gas phase (air). In all cases, the axial m
Multi-stage kernel-based conditional quantile prediction in time series
de Gooijer, J.G.; Gannoun, A.; Zerom Godefay, D.
2001-01-01
We present a multi-stage conditional quantile predictor for time series of Markovian structure. It is proved that at any quantile level p \\in (0,1), the asymptotic mean squared error (MSE) of the new predictor is smaller than the single-stage conditional quantile predictor. A simulation study
Rojas-Cherto, M.; Peironcely, J.E.; Kasper, P.T.; Hooft, van der J.J.J.; Vos, de R.C.H.; Vreeken, R.; Hankemeier, T.; Reijmers, T.
2012-01-01
Multistage mass spectrometry (MSn) generating so-called spectral trees is a powerful tool in the annotation and structural elucidation of metabolites and is increasingly used in the area of accurate mass LC/MS-based metabolomics to identify unknown, but biologically relevant, compounds. As a consequ
Approximate queueing models for capacitated multi-stage inventory systems under base-stock control
Avsar, Zeynep Müge; Zijm, Willem H.M.
2014-01-01
A queueing analysis is presented for base-stock controlled multi-stage production-inventory systems with capacity constraints. The exact queueing model is approximated by replacing some state-dependent conditional probabilities (that are used to express the transition rates) by constants. Two
Chen, Chih-Hung; Liu, Guan-Zhi; Hwang, Gwo-Jen
2016-01-01
In this study, an integrated gaming and multistage guiding approach was proposed for conducting in-field mobile learning activities. A mobile learning system was developed based on the proposed approach. To investigate the interaction between the gaming and guiding strategies on students' learning performance and motivation, a 2 × 2 experiment was…
Understanding, accepting and controlling risks: A multistage framework for risk communication
Vlek, C.A.J.
1995-01-01
The meanings and functions of cc risk communication a (RC, for shea) are specified on the basis of a multistage framework for handling societal risks. After identifying various reasons for RC, essential components of > are briefly discussed : basic risk communicator positions, different levels of
Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study
Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G
2011-01-01
Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...
Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses
Zhao, Y.; Aarnink, A.J.A.; Jong, de M.C.M.; Ogink, N.W.M.; Groot Koerkamp, P.W.G.
2011-01-01
Emissions of air pollutants from livestock houses may raise environmental problems and pose hazards to public health. They can be reduced by scrubbers installed at the air outlets of livestock houses. In this study, three multi-stage scrubbers were evaluated in terms of their effectiveness in reduci
Bayesian Analysis for Linearized Multi-Stage Models in Quantal Bioassay.
Kuo, Lynn; Cohen, Michael P.
Bayesian methods for estimating dose response curves in quantal bioassay are studied. A linearized multi-stage model is assumed for the shape of the curves. A Gibbs sampling approach with data augmentation is employed to compute the Bayes estimates. In addition, estimation of the "relative additional risk" and the "risk specific…
Chen, Chih-Hung; Liu, Guan-Zhi; Hwang, Gwo-Jen
2016-01-01
In this study, an integrated gaming and multistage guiding approach was proposed for conducting in-field mobile learning activities. A mobile learning system was developed based on the proposed approach. To investigate the interaction between the gaming and guiding strategies on students' learning performance and motivation, a 2 × 2 experiment was…
Multi-stage kernel-based conditional quantile prediction in time series
de Gooijer, J.G.; Gannoun, A.; Zerom Godefay, D.
2001-01-01
We present a multi-stage conditional quantile predictor for time series of Markovian structure. It is proved that at any quantile level p \\in (0,1), the asymptotic mean squared error (MSE) of the new predictor is smaller than the single-stage conditional quantile predictor. A simulation study confir
A Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success
Luong, Ming; Stevens, Jeff
2015-01-01
The Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success, a theoretical stages-of-growth model, explains long-term success in IT outsourcing relationships. Research showed the IT outsourcing relationship life cycle consists of four distinct, sequential stages: contract, transition, support, and partnership. The model was…
Optimal control of switched systems arising in fermentation processes
Liu, Chongyang
2014-01-01
The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models – i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems – for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.
Jingjing Guo
2015-01-01
Full Text Available Triple-porosity model is usually adopted to describe reservoirs with multiscaled pore spaces, including matrix pores, natural fractures, and vugs. Multiple fractures created by hydraulic fracturing can effectively improve the connectivity between existing natural fractures and thus increase well deliverability. However, little work has been done on pressure transient behavior of multistage fractured horizontal wells in triple-porosity reservoirs. Based on source/sink function method, this paper presents a triple-porosity model to investigate the transient pressure dynamics and flux distribution for multistage fractured horizontal wells in fractured-vuggy reservoirs with consideration of stress-dependent natural fracture permeability. The model is semianalytically solved by discretizing hydraulic fractures and Pedrosa’s transformation, perturbation theory, and integration transformation method. Type curves of transient pressure dynamics are generated, and flux distribution among hydraulic fractures for a fractured horizontal well with constant production rate is also discussed. Parametric study shows that major influential parameters on transient pressure responses are parameters pertinent to reservoir properties, interporosity mass transfer, and hydraulic fractures. Analysis of flux distribution indicates that flux density gradually increases from the horizontal wellbore to fracture tips, and the flux contribution of outermost fractures is higher than that of inner fractures. The model can also be extended to optimize hydraulic fracture parameters.