WorldWideScience

Sample records for multipotent adult germline

  1. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells.

    Science.gov (United States)

    Reyes, M; Verfaillie, C M

    2001-06-01

    Mesenchymal stem cells were isolated and a subpopulation of cells--multipotent adult progenitor cells--were identified that have the potential for multilineage differentiation. Their ability to engraft and differentiate in vivo is under investigation.

  2. File list: Unc.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.10.AllAg.Germline_containing_young_adult ce10 Unclassified Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Unc.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  3. File list: His.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.05.AllAg.Germline_containing_young_adult ce10 Histone Adult Germline containing young adult...archive.biosciencedbc.jp/kyushu-u/ce10/assembled/His.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  4. File list: Oth.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.05.AllAg.Germline_containing_young_adult ce10 TFs and others Adult Germline containing young adult....jp/kyushu-u/ce10/assembled/Oth.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  5. File list: Unc.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.20.AllAg.Germline_containing_young_adult ce10 Unclassified Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Unc.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  6. File list: ALL.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.20.AllAg.Germline_containing_young_adult ce10 All antigens Adult Germline containing young adult...6563,SRX495065,SRX495061,SRX495102,SRX495062,SRX494887,SRX495066 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/ALL.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  7. File list: Unc.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.50.AllAg.Germline_containing_young_adult ce10 Unclassified Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Unc.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  8. File list: InP.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.05.AllAg.Germline_containing_young_adult ce10 Input control Adult Germline containing young adult...X495065,SRX495061,SRX495042,SRX495102 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/InP.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  9. File list: Oth.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.20.AllAg.Germline_containing_young_adult ce10 TFs and others Adult Germline containing young adult....jp/kyushu-u/ce10/assembled/Oth.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  10. File list: InP.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.10.AllAg.Germline_containing_young_adult ce10 Input control Adult Germline containing young adult...X466563,SRX495065,SRX495061,SRX495102 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/InP.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  11. File list: His.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.10.AllAg.Germline_containing_young_adult ce10 Histone Adult Germline containing young adult...archive.biosciencedbc.jp/kyushu-u/ce10/assembled/His.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  12. File list: Pol.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.20.AllAg.Germline_containing_young_adult ce10 RNA polymerase Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  13. File list: His.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.20.AllAg.Germline_containing_young_adult ce10 Histone Adult Germline containing young adult...archive.biosciencedbc.jp/kyushu-u/ce10/assembled/His.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  14. File list: InP.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.50.AllAg.Germline_containing_young_adult ce10 Input control Adult Germline containing young adult...p/kyushu-u/ce10/assembled/InP.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  15. File list: ALL.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.50.AllAg.Germline_containing_young_adult ce10 All antigens Adult Germline containing young adult...e.biosciencedbc.jp/kyushu-u/ce10/assembled/ALL.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  16. File list: Pol.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.50.AllAg.Germline_containing_young_adult ce10 RNA polymerase Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  17. File list: NoD.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adl.05.AllAg.Germline_containing_young_adult ce10 No description Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/NoD.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  18. File list: Pol.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.05.AllAg.Germline_containing_young_adult ce10 RNA polymerase Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  19. File list: NoD.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adl.10.AllAg.Germline_containing_young_adult ce10 No description Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/NoD.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  20. File list: His.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.50.AllAg.Germline_containing_young_adult ce10 Histone Adult Germline containing young adult...osciencedbc.jp/kyushu-u/ce10/assembled/His.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  1. File list: ALL.Adl.05.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.05.AllAg.Germline_containing_young_adult ce10 All antigens Adult Germline containing young adult...4871,SRX494938,SRX495065,SRX495061,SRX494933,SRX495042,SRX495102 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/ALL.Adl.05.AllAg.Germline_containing_young_adult.bed ...

  2. File list: Oth.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.10.AllAg.Germline_containing_young_adult ce10 TFs and others Adult Germline containing young adult....jp/kyushu-u/ce10/assembled/Oth.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  3. File list: Oth.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.50.AllAg.Germline_containing_young_adult ce10 TFs and others Adult Germline containing young adult....jp/kyushu-u/ce10/assembled/Oth.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  4. File list: ALL.Adl.10.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.10.AllAg.Germline_containing_young_adult ce10 All antigens Adult Germline containing young adult...4938,SRX466563,SRX495065,SRX495061,SRX494933,SRX495102,SRX494887 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/ALL.Adl.10.AllAg.Germline_containing_young_adult.bed ...

  5. File list: NoD.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adl.20.AllAg.Germline_containing_young_adult ce10 No description Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/NoD.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  6. File list: NoD.Adl.50.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adl.50.AllAg.Germline_containing_young_adult ce10 No description Adult Germline containing young adult... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/NoD.Adl.50.AllAg.Germline_containing_young_adult.bed ...

  7. File list: InP.Adl.20.AllAg.Germline_containing_young_adult [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adl.20.AllAg.Germline_containing_young_adult ce10 Input control Adult Germline containing young adult...X495061,SRX495102,SRX495062,SRX495066 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/InP.Adl.20.AllAg.Germline_containing_young_adult.bed ...

  8. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys.

    Science.gov (United States)

    Sagrinati, Costanza; Netti, Giuseppe Stefano; Mazzinghi, Benedetta; Lazzeri, Elena; Liotta, Francesco; Frosali, Francesca; Ronconi, Elisa; Meini, Claudia; Gacci, Mauro; Squecco, Roberta; Carini, Marco; Gesualdo, Loreto; Francini, Fabio; Maggi, Enrico; Annunziato, Francesco; Lasagni, Laura; Serio, Mario; Romagnani, Sergio; Romagnani, Paola

    2006-09-01

    Regenerative medicine represents a critical clinical goal for patients with ESRD, but the identification of renal adult multipotent progenitor cells has remained elusive. It is demonstrated that in human adult kidneys, a subset of parietal epithelial cells (PEC) in the Bowman's capsule exhibit coexpression of the stem cell markers CD24 and CD133 and of the stem cell-specific transcription factors Oct-4 and BmI-1, in the absence of lineage-specific markers. This CD24+CD133+ PEC population, which could be purified from cultured capsulated glomeruli, revealed self-renewal potential and a high cloning efficiency. Under appropriate culture conditions, individual clones of CD24+CD133+ PEC could be induced to generate mature, functional, tubular cells with phenotypic features of proximal and/or distal tubules, osteogenic cells, adipocytes, and cells that exhibited phenotypic and functional features of neuronal cells. The injection of CD24+CD133+ PEC but not of CD24-CD133- renal cells into SCID mice that had acute renal failure resulted in the regeneration of tubular structures of different portions of the nephron. More important, treatment of acute renal failure with CD24+CD133+ PEC significantly ameliorated the morphologic and functional kidney damage. This study demonstrates the existence and provides the characterization of a population of resident multipotent progenitor cells in adult human glomeruli, potentially opening new avenues for the development of regenerative medicine in patients who have renal diseases.

  9. Effect of neurturin on multipotent cells isolated from the adult skeletal muscle

    International Nuclear Information System (INIS)

    Vourc'h, Patrick; Lacar, Benjamin; Mignon, Laurence; Lucas, Paul A.; Young, Henry E.; Chesselet, Marie-Francoise

    2005-01-01

    Ligands of the glial cell line-derived neurotrophic factors (GDNF)-family are trophic factors for the development and survival of multiple cell types, however their effects on non-neuronal stem cells are unknown. We examined the action of neurturin on a candidate stem cell population isolated from adult skeletal muscles. When grown as spheres, these cells expressed mRNAs for GDNF, persephin, GFR-α2, GFR-α4 (neurturin receptor), and Ret. Exposure of these cells to neurturin significantly augmented cell numbers via increased cell proliferation. After addition of retinoic acid, the cells exited the cell cycle, developed thin processes, and became immunoreactive for βIII-tubulin, while Ret mRNA expression decreased, without changes in the level of GFR-α2 mRNA. Neurturin induced an outgrowth of processes on these βIII-tubulin positive cells. Neurturin may therefore be beneficial in the use of these multipotent cells isolated from adult muscles for autologous transplants in neurological applications

  10. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells.

    Science.gov (United States)

    Ross, Jeffrey J; Hong, Zhigang; Willenbring, Ben; Zeng, Lepeng; Isenberg, Brett; Lee, Eu Han; Reyes, Morayma; Keirstead, Susan A; Weir, E Kenneth; Tranquillo, Robert T; Verfaillie, Catherine M

    2006-12-01

    Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-beta1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.

  11. Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells.

    Science.gov (United States)

    He, Xiaoli; H'ng, Shiau-Chen; Leong, David T; Hutmacher, Dietmar W; Melendez, Alirio J

    2010-08-01

    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

  12. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands

    International Nuclear Information System (INIS)

    Kishi, Teruki; Takao, Tukasa; Fujita, Kiyohide; Taniguchi, Hideki

    2006-01-01

    Salivary gland stem/progenitor cells are thought to be present in intercalated ductal cells, but the fact is unclear. In this study, we sought to clarify if stem/progenitor cells are present in submandibular glands using colony assay, which is one of the stem cell assay methods. Using a low-density culture of submandibular gland cells of neonatal rats, we developed a novel culture system that promotes single cell colony formation. Average doubling time for the colony-forming cells was 24.7 (SD = ±7.02) h, indicating high proliferative potency. When epidermal growth factor (EGF) and hepatocyte growth factor (HGF) were added to the medium, the number of clonal colonies increased greater than those cultured without growth factors (13.2 ± 4.18 vs. 4.5 ± 1.73). The RT-PCR and immunostaining demonstrated expressing acinar, ductal, and myoepithelial cell lineage markers. This study demonstrated the presence of the salivary gland stem/progenitor cells that are highly proliferative and multipotent in salivary glands

  13. Concise review: adult multipotent stromal cells and cancer: risk or benefit?

    Science.gov (United States)

    Lazennec, Gwendal; Jorgensen, Christian

    2008-06-01

    This review focuses on the interaction between multipotent stromal cells (MSCs) and carcinoma and the possible use of MSCs in cell-based anticancer therapies. MSCs are present in multiple tissues and are defined as cells displaying the ability to differentiate in multiple lineages, including chondrocytes, osteoblasts, and adipocytes. Recent evidence also suggests that they could play a role in the progression of carcinogenesis and that MSCs could migrate toward primary tumors and metastatic sites. It is possible that MSCs could also be involved in the early stages of carcinogenesis through spontaneous transformation. In addition, it is thought that MSCs can modulate tumor growth and metastasis, although this issue remains controversial and not well understood. The immunosuppressive properties and proangiogenic properties of MSCs account, at least in part, for their effects on cancer development. On the other hand, cancer cells also have the ability to enhance MSC migration. This complex dialog between MSCs and cancer cells is certainly critical for the outcome of tumor development. Interestingly, several studies have shown that MSCs engineered to express antitumor factors could be an innovative choice as a cell-mediated gene therapy to counteract tumor growth. More evidence will be needed to understand how MSCs positively or negatively modulate carcinogenesis and to evaluate the safety of MSC use in cell-mediated gene strategies. Disclosure of potential conflicts of interest is found at the end of this article.

  14. Sensitive Tumorigenic Potential Evaluation of Adult Human Multipotent Neural Cells Immortalized by hTERT Gene Transduction.

    Directory of Open Access Journals (Sweden)

    Kee Hang Lee

    Full Text Available Stem cells and therapeutic genes are emerging as a new therapeutic approach to treat various neurodegenerative diseases with few effective treatment options. However, potential formation of tumors by stem cells has hampered their clinical application. Moreover, adequate preclinical platforms to precisely test tumorigenic potential of stem cells are controversial. In this study, we compared the sensitivity of various animal models for in vivo stem cell tumorigenicity testing to identify the most sensitive platform. Then, tumorigenic potential of adult human multipotent neural cells (ahMNCs immortalized by the human telomerase reverse transcriptase (hTERT gene was examined as a stem cell model with therapeutic genes. When human glioblastoma (GBM cells were injected into adult (4-6-week-old Balb/c-nu, adult NOD/SCID, adult NOG, or neonate (1-2-week-old NOG mice, the neonate NOG mice showed significantly faster tumorigenesis than that of the other groups regardless of intracranial or subcutaneous injection route. Two kinds of ahMNCs (682TL and 779TL were primary cultured from surgical samples of patients with temporal lobe epilepsy. Although the ahMNCs were immortalized by lentiviral hTERT gene delivery (hTERT-682TL and hTERT-779TL, they did not form any detectable masses, even in the most sensitive neonate NOG mouse platform. Moreover, the hTERT-ahMNCs had no gross chromosomal abnormalities on a karyotype analysis. Taken together, our data suggest that neonate NOG mice could be a sensitive animal platform to test tumorigenic potential of stem cell therapeutics and that ahMNCs could be a genetically stable stem cell source with little tumorigenic activity to develop regenerative treatments for neurodegenerative diseases.

  15. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    Science.gov (United States)

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  16. Germline stem cells and neo-oogenesis in the adult human ovary.

    Science.gov (United States)

    Liu, Yifei; Wu, Chao; Lyu, Qifeng; Yang, Dongzi; Albertini, David F; Keefe, David L; Liu, Lin

    2007-06-01

    It remains unclear whether neo-oogenesis occurs in postnatal ovaries of mammals, based on studies in mice. We thought to test whether adult human ovaries contain germline stem cells (GSCs) and undergo neo-oogenesis. Rather than using genetic manipulation which is unethical in humans, we took the approach of analyzing the expression of meiotic marker genes and genes for germ cell proliferation, which are required for neo-oogenesis, in adult human ovaries covering an age range from 28 to 53 years old, compared to testis and fetal ovaries served as positive controls. We show that active meiosis, neo-oogenesis and GSCs are unlikely to exist in normal, adult, human ovaries. No early meiotic-specific or oogenesis-associated mRNAs for SPO11, PRDM9, SCP1, TERT and NOBOX were detectable in adult human ovaries using RT-PCR, compared to fetal ovary and adult testis controls. These findings are further corroborated by the absence of early meiocytes and proliferating germ cells in adult human ovarian cortex probed with markers for meiosis (SCP3), oogonium (OCT3/4, c-KIT), and cell cycle progression (Ki-67, PCNA), in contrast to fetal ovary controls. If postnatal oogenesis is confirmed in mice, then this species would represent an exception to the rule that neo-oogenesis does not occur in adults.

  17. Multipotency of Adult Hippocampal NSCs In Vivo Is Restricted by Drosha/NFIB.

    Science.gov (United States)

    Rolando, Chiara; Erni, Andrea; Grison, Alice; Beattie, Robert; Engler, Anna; Gokhale, Paul J; Milo, Marta; Wegleiter, Thomas; Jessberger, Sebastian; Taylor, Verdon

    2016-11-03

    Adult neural stem cells (NSCs) are defined by their inherent capacity to self-renew and give rise to neurons, astrocytes, and oligodendrocytes. In vivo, however, hippocampal NSCs do not generate oligodendrocytes for reasons that have remained enigmatic. Here, we report that deletion of Drosha in adult dentate gyrus NSCs activates oligodendrogenesis and reduces neurogenesis at the expense of gliogenesis. We further find that Drosha directly targets NFIB to repress its expression independently of Dicer and microRNAs. Knockdown of NFIB in Drosha-deficient hippocampal NSCs restores neurogenesis, suggesting that the Drosha/NFIB mechanism robustly prevents oligodendrocyte fate acquisition in vivo. Taken together, our findings establish that adult hippocampal NSCs inherently possess multilineage potential but that Drosha functions as a molecular barrier preventing oligodendrogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Acquisition and Expansion of Adult Rat Bone Marrow Multipotent Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Šulla I.

    2017-03-01

    Full Text Available This study was initiated in order to test a mini-invasive method of mesenchymal stem/progenitor cells (MS/PCs isolation from a rat bone marrow (BM, and subsequently their expansion, differentiation, and evaluation of their immunophenotypic characteristics; and later their preservation as donor cells in an optimal condition for potential autotransplantation. The study group comprised of 6 adult male Sprague-Dawley (S-D rats, weighing 480—690 g. The rats were anaesthetised by isoflurane with room air in a Plexiglas box and maintained by inhalation of a mixture of isoflurane and O2. Their femurs were surgically exposed and their diaphyses double-trephined. Then BM cells were flushed out by saline with heparin and aspirated into a syringe with a solution of DMEM (Dulbecco’s modified eagle’s medium and heparin. The mononuclear cells from the BM were isolated by centrifugation and expanded in a standard culture medium supplemented with ES-FBS (es-cell-qualified foetal bovine serum, L-glutamine and rh LIF (recombinant human leukemia inhibitory factor. Following 14 days of passaging cultures, the cells were split into 2 equal parts. The first culture continued with the original medium. The second culture received additional supplementation with a human FGFβ (fibroblast growth factor beta and EGF (epidermal growth factor. The populations of these cells were analysed by light-microscopy, then the mean fluorescence intensities (MFIs of CD90 and Nestin were evaluated by a tricolour flow cytometry using monoclonal antibodies. The type of general anaesthesia used proved to be appropriate for the surgical phase of the experiments. All rats survived the harvesting of the BM without complications. The total number of mononuclear cells was 1.5—4.0 × 106 per sample and the proportion of CD90/Nestin expressing cells was < 1 %. Following 14 days of expansion, the cells became larger, adherent, with fibrillary morphology; the proportion of cells expressing

  19. Human multipotent adult progenitor cells are nonimmunogenic and exert potent immunomodulatory effects on alloreactive T-cell responses.

    Science.gov (United States)

    Jacobs, Sandra A; Pinxteren, Jef; Roobrouck, Valerie D; Luyckx, Ariane; van't Hof, Wouter; Deans, Robert; Verfaillie, Catherine M; Waer, Mark; Billiau, An D; Van Gool, Stefaan W

    2013-01-01

    Multipotent adult progenitor cells (MAPCs) are bone marrow-derived nonhematopoietic stem cells with a broad differentiation potential and extensive expansion capacity. A comparative study between human mesenchymal stem cells (hMSCs) and human MAPCs (hMAPCs) has shown that hMAPCs have clearly distinct phenotypical and functional characteristics from hMSCs. In particular, hMAPCs express lower levels of MHC class I than hMSCs and cannot only differentiate into typical mesenchymal cell types but can also differentiate in vitro and in vivo into functional endothelial cells. The use of hMSCs as cellular immunomodulatory stem cell products gained much interest since their immunomodulatory capacities in vitro became evident over the last decade. Currently, the clinical grade stem cell product of hMAPCs is already used in clinical trials to prevent graft-versus-host disease (GVHD), as well as for the treatment of acute myocardial infarct, ischemic stroke, and Crohn's disease. Therefore, we studied the immune phenotype, immunogenicity, and immunosuppressive effect of hMAPCs in vitro. We demonstrated that hMAPCs are nonimmunogenic for T-cell proliferation and cytokine production. In addition, hMAPCs exert strong immunosuppressive effects on T-cell alloreactivity and on T-cell proliferation induced by mitogens and recall antigens. This immunomodulatory effect was not MHC restricted, which makes off-the-shelf use promising. The immunosuppressive effect of hMAPCs is partially mediated via soluble factors and dependent on indoleamine 2,3-dioxygenase (IDO) activity. At last, we isolated hMAPCs, the clinical grade stem cell product of hMAPCs, named MultiStem, and hMSCs from one single donor and observed that both the immunogenicity and the immunosuppressive capacities of all three stem cell products are comparable in vitro. In conclusion, hMAPCs have potent immunomodulatory properties in vitro and can serve as a valuable cell source for the clinical use of immunomodulatory cellular

  20. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus

    Science.gov (United States)

    Suh, Hoonkyo; Consiglio, Antonella; Ray, Jasodhara; Sawai, Toru; D'Amour, Kevin A.; Gage, Fred H.

    2007-01-01

    Summary To characterize the properties of adult neural stem cells (NSCs), we generated and analyzed Sox2-GFP transgenic mice. Sox2-GFP cells in the subgranular zone (SGZ) express markers specific for progenitors, but they represent two morphologically distinct populations that differ in proliferation levels. Lentivirus- and retrovirus-mediated fate tracing studies showed that Sox2+ cells in the SGZ have potential to give rise to neurons and astrocytes, revealing their multipotency at the population as well as a single cell level. More interestingly, a subpopulation of Sox2+ cells gives rise to cells that retain Sox2, highlighting Sox2+ cells as a primary source for adult NSCs. In response to mitotic signals, increased proliferation of Sox2+ cells is coupled with the generation of Sox2+ NSCs as well as neuronal precursors. An asymmetric contribution of Sox2+ NSCs may play an important role in maintaining the constant size of the NSC pool and producing newly born neurons during adult neurogenesis. PMID:18371391

  1. Comparisons of phenotype and immunomodulatory capacity among rhesus bone-marrow-derived mesenchymal stem/stromal cells, multipotent adult progenitor cells, and dermal fibroblasts

    Science.gov (United States)

    Wang, Qi; Clarkson, Christina; Graham, Melanie; Donahue, Robert; Hering, Bernhard J.; Verfaillie, Catherine M.; Bansal-Pakala, Pratima; O'Brien, Timothy D.

    2015-01-01

    Background Potent immunomodulatory effects have been reported for mesenchymal stem/stromal cells (MSCs), multipotent adult progenitor cells (MAPCs), and fibroblasts. However, side-by-side comparisons of these cells specifically regarding immunophenotype, gene expression, and suppression of proliferation of CD4+ and CD8+ lymphocyte populations have not been reported. Methods We developed MAPC and MSC lines from rhesus macaque bone marrow and fibroblast cell lines from rhesus dermis and assessed phenotypes based upon differentiation potential, flow cytometric analysis of immunophenotype, and quantitative RT-PCR analysis of gene expression. Using allogeneic lymphocyte proliferation assays, we compared the in vitro immunomodulatory potency of each cell type. Results and Conclusions Extensive phenotypic similarities exist among each cell type, although immunosuppressive potencies are distinct. MAPCs are most potent, and fibroblasts are the least potent cell type. All three cell types demonstrated immunomodulatory capacity such that each may have potential therapeutic applications such as in organ transplantation, where reduced local immune response is desirable. PMID:24825538

  2. Multipotent Adult Progenitor Cells Suppress T Cell Activation in In Vivo Models of Homeostatic Proliferation in a Prostaglandin E2-Dependent Manner

    Science.gov (United States)

    Carty, Fiona; Corbett, Jennifer M.; Cunha, João Paulo M. C. M.; Reading, James L.; Tree, Timothy I. M.; Ting, Anthony E.; Stubblefield, Samantha R.; English, Karen

    2018-01-01

    Lymphodepletion strategies are used in the setting of transplantation (including bone marrow, hematopoietic cell, and solid organ) to create space or to prevent allograft rejection and graft versus host disease. Following lymphodepletion, there is an excess of IL-7 available, and T cells that escape depletion respond to this cytokine undergoing accelerated proliferation. Moreover, this environment promotes the skew of T cells to a Th1 pro-inflammatory phenotype. Existing immunosuppressive regimens fail to control this homeostatic proliferative (HP) response, and thus the development of strategies to successfully control HP while sparing T cell reconstitution (providing a functioning immune system) represents a significant unmet need in patients requiring lymphodepletion. Multipotent adult progenitor cells (MAPC®) have the capacity to control T cell proliferation and Th1 cytokine production. Herein, this study shows that MAPC cells suppressed anti-thymocyte globulin-induced cytokine production but spared T cell reconstitution in a pre-clinical model of lymphodepletion. Importantly, MAPC cells administered intraperitoneally were efficacious in suppressing interferon-γ production and in promoting the expansion of regulatory T cells in the lymph nodes. MAPC cells administered intraperitoneally accumulated in the omentum but were not present in the spleen suggesting a role for soluble factors. MAPC cells suppressed lymphopenia-induced cytokine production in a prostaglandin E2-dependent manner. This study suggests that MAPC cell therapy may be useful as a novel strategy to target lymphopenia-induced pathogenic T cell responses in lymphodepleted patients. PMID:29740426

  3. Assessment of Effects of Si-Ca-P Biphasic Ceramic on the Osteogenic Differentiation of a Population of Multipotent Adult Human Stem Cells

    Directory of Open Access Journals (Sweden)

    Patricia Ros-Tárraga

    2016-11-01

    Full Text Available A new type of bioceramic with osteogenic properties, suitable for hard tissue regeneration, was synthesised. The ceramic was designed and obtained in the Nurse’s A-phase-silicocarnotite subsystem. The selected composition was that corresponding to the eutectoid 28.39 wt % Nurse’s A-phase-71.61 wt % silicocarnotite invariant point. We report the effect of Nurse’s A-phase-silicocarnotite ceramic on the capacity of multipotent adult human mesenchymal stem cells (ahMSCs cultured under experimental conditions, known to adhere, proliferate and differentiate into osteoblast lineage cells. The results at long-term culture (28 days on the material confirmed that the undifferentiated ahMSCs cultured and in contact with the material surface adhered, spread, proliferated, and produced a mineralised extracellular matrix on the studied ceramic, and finally acquired an osteoblastic phenotype. These findings indicate that it underwent an osteoblast differentiation process. All these findings were more significant than when cells were grown on plastic, in the presence and absence of this osteogenic supplement, and were more evident when this supplement was present in the growth medium (GM. The ceramic evaluated herein was bioactive, cytocompatible and capable of promoting the proliferation and differentiation of undifferentiated ahMSCs into osteoblasts, which may be important for bone integration into the clinical setting.

  4. The ERK5 and ERK1/2 signaling pathways play opposing regulatory roles during chondrogenesis of adult human bone marrow-derived multipotent progenitor cells.

    Science.gov (United States)

    Bobick, Brent E; Matsche, Alexander I; Chen, Faye H; Tuan, Rocky S

    2010-07-01

    Adult human bone marrow-derived multipotent progenitor cells (MPCs) are able to differentiate into a variety of specialized cell types, including chondrocytes, and are considered a promising candidate cell source for use in cartilage tissue engineering. In this study, we examined the regulation of MPC chondrogenesis by mitogen-activated protein kinases in an attempt to better understand how to generate hyaline cartilage in the laboratory that more closely resembles native tissue. Specifically, we employed the high-density pellet culture model system to assess the roles of ERK5 and ERK1/2 pathway signaling in MPC chondrogenesis. Western blotting revealed that high levels of ERK5 phosphorylation correlate with low levels of MPC chondrogenesis and that as TGF-beta 3-enhanced MPC chondrogenesis proceeds, phospho-ERK5 levels steadily decline. Conversely, levels of phospho-ERK1/2 paralleled the progression of MPC chondrogenesis. siRNA-mediated knockdown of ERK5 pathway components MEK5 and ERK5 resulted in increased MPC pellet mRNA transcript levels of the cartilage-characteristic marker genes SOX9, COL2A1, AGC, L-SOX5, and SOX6, as well as enhanced accumulation of SOX9 protein, collagen type II protein, and Alcian blue-stainable proteoglycan. In contrast, knockdown of ERK1/2 pathway members MEK1 and ERK1 decreased expression of all chondrogenic markers tested. Finally, overexpression of MEK5 and ERK5 also depressed MPC chondrogenesis, as indicated by diminished activity of a co-transfected collagen II promoter-luciferase reporter construct. In conclusion, our results suggest a novel role for the ERK5 pathway as an important negative regulator of adult human MPC chondrogenesis and illustrate that the ERK5 and ERK1/2 kinase cascades play opposing roles regulating MPC cartilage formation. (c) 2010 Wiley-Liss, Inc.

  5. In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.

    Science.gov (United States)

    Xie, Lin; Zhang, Nan; Marsano, Anna; Vunjak-Novakovic, Gordana; Zhang, Yanru; Lopez, Mandi J

    2013-12-01

    Directed differentiation of adult multipotent stromal cells (MSC) is critical for effective treatment strategies. This study was designed to evaluate the capability of equine MSC from bone marrow (BMSC) and adipose tissue (ASC) on a type I collagen (COLI) scaffold to undergo chondrogenic, osteogenic and adipogenic differentiation and form extracellular matrix (ECM) in vitro. Following determination of surface antigen expression, MSC were loaded into scaffolds in a perfusion bioreactor and loading efficiency was quantified. Cell-scaffold constructs were assessed after loading and 7, 14 and 21 days of culture in stromal or induction medium. Cell number was determined with DNA content, cell viability and spatial uniformity with confocal laser microscopy and cell phenotype and matrix production with light and scanning electron microscopy and mRNA levels. The MSC were positive for CD29 (>90 %), CD44 (>99 %), and CD105 (>60 %). Loading efficiencies were >70 %. The ASC and BMSC cell numbers on scaffolds were affected by culture in induction medium differently. Viable cells remained uniformly distributed in scaffolds for up to 21 days and could be directed to differentiate or to maintain an MSC phenotype. Micro- and ultrastructure showed lineage-specific cell and ECM changes. Lineage-specific mRNA levels differed between ASC and BMSC with induction and changed with time. Based on these results, equine ASC and BMSC differentiate into chondrogenic, osteogenic and adipogenic lineages and form ECM similarly on COLI scaffolds. The collected data supports the potential for equine MSC-COLI constructs to support diverse equine tissue formation for controlled biological studies.

  6. Cell cycle accumulation of the proliferating cell nuclear antigen PCN-1 transitions from continuous in the adult germline to intermittent in the early embryo of C. elegans.

    Science.gov (United States)

    Kocsisova, Zuzana; Kornfeld, Kerry; Schedl, Tim

    2018-05-30

    The proliferating cell nuclear antigen (PCNA or PCN-1 in C. elegans), an essential processivity factor for DNA polymerase δ, has been widely used as a marker of S-phase. In C. elegans early embryos, PCN-1 accumulation is cyclic, localizing to the nucleus during S-phase and the cytoplasm during the rest of the cell cycle. The C. elegans larval and adult germline is an important model systems for studying cell cycle regulation, and it was observed that the cell cycle regulator cyclin E (CYE-1 in C. elegans) displays a non-cyclic, continuous accumulation pattern in this tissue. The accumulation pattern of PCN-1 has not been well defined in the larval and adult germline, and the objective of this study was to determine if the accumulation pattern is cyclic, as in other cells and organisms, or continuous, similar to cyclin E. To study the larval and adult germline accumulation of PCN-1 expressed from its native locus, we used CRISPR/Cas9 technology to engineer a novel allele of pcn-1 that encodes an epitope-tagged protein. S-phase nuclei were labeled using EdU nucleotide incorporation, and FLAG::PCN-1 was detected by antibody staining. All progenitor zone nuclei, including those that were not in S-phase (as they were negative for EdU staining) showed PCN-1 accumulation, indicating that PCN-1 accumulated during all cell cycle phases in the germline progenitor zone. The same result was observed with a GFP::PCN-1 fusion protein expressed from a transgene. pcn-1 loss-of-function mutations were analyzed, and pcn-1 was necessary for robust fertility and embryonic development. In the C. elegans early embryo as well as other organisms, PCN-1 accumulates in nuclei only during S-phase. By contrast, in the progenitor zone of the germline of C. elegans, PCN-1 accumulated in nuclei during all cell cycle stages. This pattern is similar to accumulation pattern of cyclin E. These observations support the model that mitotic cell cycle regulation in the germline stem and progenitor

  7. The oogenic germline starvation response in C. elegans.

    Directory of Open Access Journals (Sweden)

    Hannah S Seidel

    Full Text Available Many animals alter their reproductive strategies in response to environmental stress. Here we have investigated how L4 hermaphrodites of Caenorhabditis elegans respond to starvation. To induce starvation, we removed food at 2 h intervals from very early- to very late-stage L4 animals. The starved L4s molted into adulthood, initiated oogenesis, and began producing embryos; however, all three processes were severely delayed, and embryo viability was reduced. Most animals died via 'bagging,' because egg-laying was inhibited, and embryos hatched in utero, consuming their parent hermaphrodites from within. Some animals, however, avoided bagging and survived long term. Long-term survival did not rely on embryonic arrest but instead upon the failure of some animals to produce viable progeny during starvation. Regardless of the bagging fate, starved animals showed two major changes in germline morphology: All oogenic germlines were dramatically reduced in size, and these germlines formed only a single oocyte at a time, separated from the remainder of the germline by a tight constriction. Both changes in germline morphology were reversible: Upon re-feeding, the shrunken germlines regenerated, and multiple oocytes formed concurrently. The capacity for germline regeneration upon re-feeding was not limited to the small subset of animals that normally survive starvation: When bagging was prevented ectopically by par-2 RNAi, virtually all germlines still regenerated. In addition, germline shrinkage strongly correlated with oogenesis, suggesting that during starvation, germline shrinkage may provide material for oocyte production. Finally, germline shrinkage and regeneration did not depend upon crowding. Our study confirms previous findings that starvation uncouples germ cell proliferation from germline stem cell maintenance. Our study also suggests that when nutrients are limited, hermaphrodites scavenge material from their germlines to reproduce. We discuss

  8. Therapeutic application of multipotent stem cells

    DEFF Research Database (Denmark)

    Mirzaei, Hamed; Sahebkar, Amirhossein; Sichani, Laleh Shiri

    2018-01-01

    Cell therapy is an emerging fields in the treatment of various diseases such as cardiovascular, pulmonary, hepatic, and neoplastic diseases. Stem cells are an integral tool for cell therapy. Multipotent stem cells are an important class of stem cells which have the ability to self-renew through...... been showed that multipotent stem cells exert their therapeutic effects via inhibition/activation of a sequence of cellular and molecular pathways. Although the advantages of multipotent stem cells are numerous, further investigation is still necessary to clarify the biology and safety of these cells...... before they could be considered as a potential treatment for different types of diseases. This review summarizes different features of multipotent stem cells including isolation, differentiation, and therapeutic applications....

  9. Human Germline Genome Editing.

    Science.gov (United States)

    Ormond, Kelly E; Mortlock, Douglas P; Scholes, Derek T; Bombard, Yvonne; Brody, Lawrence C; Faucett, W Andrew; Garrison, Nanibaa' A; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E

    2017-08-03

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors. These groups, as well as the American Society for Reproductive Medicine, Asia Pacific Society of Human Genetics, British Society for Genetic Medicine, Human Genetics Society of Australasia, Professional Society of Genetic Counselors in Asia, and Southern African Society for Human Genetics, endorsed the final statement. The statement includes the following positions. (1) At this time, given the nature and number of unanswered scientific, ethical, and policy questions, it is inappropriate to perform germline gene editing that culminates in human pregnancy. (2) Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing. There should be no prohibition on making public funds available to support this research. (3) Future clinical application of human germline genome editing should not proceed unless, at a minimum, there is (a) a compelling medical rationale, (b) an evidence base that supports its clinical use, (c) an ethical justification, and (d) a transparent public process to solicit and incorporate stakeholder input. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  10. Human Germline Genome Editing

    OpenAIRE

    Ormond, Kelly E.; Mortlock, Douglas P.; Scholes, Derek T.; Bombard, Yvonne; Brody, Lawrence C.; Faucett, W. Andrew; Garrison, Nanibaa’ A.; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E.

    2017-01-01

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Gen...

  11. File list: ALL.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Multipotent_otic_progenitor mm9 All antigens Others Multipotent otic progeni...ncedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  12. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells

    NARCIS (Netherlands)

    Fernandes, H.; Mentink, A.; Bank, R.; Stoop, R.; Blitterswijk, C. van; Boer, J. de

    2010-01-01

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix

  13. Endogenous Collagen Influences Differentiation of Human Multipotent Mesenchymal Stromal Cells

    NARCIS (Netherlands)

    Fernandes, Hugo; Mentink, Anouk; Bank, Ruud; Stoop, Reinout; van Blitterswijk, Clemens; de Boer, Jan

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix

  14. Endogenous Collagen Influences Differentiation of Human Multipotent Mesenchymal Stromal Cells

    NARCIS (Netherlands)

    Fernandes, H.A.M.; Mentink-Leusink, Anouk; Bank, Ruud; Stoop, Reinout; van Blitterswijk, Clemens; de Boer, Jan

    2010-01-01

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix

  15. Identification of a candidate proteomic signature to discriminate multipotent and non-multipotent stromal cells.

    Science.gov (United States)

    Rosu-Myles, Michael; She, Yi-Min; Fair, Joel; Muradia, Gauri; Mehic, Jelica; Menendez, Pablo; Prasad, Shiv S; Cyr, Terry D

    2012-01-01

    Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC) (CD105+) and non-multipotent (CD105-) stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.

  16. Identification of a candidate proteomic signature to discriminate multipotent and non-multipotent stromal cells.

    Directory of Open Access Journals (Sweden)

    Michael Rosu-Myles

    Full Text Available Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC (CD105+ and non-multipotent (CD105- stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.

  17. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice

    Energy Technology Data Exchange (ETDEWEB)

    Pocar, Paola, E-mail: paola.pocar@unimi.it; Fiandanese, Nadia; Berrini, Anna; Secchi, Camillo; Borromeo, Vitaliano

    2017-05-01

    Endocrine disruptors (EDs) are compounds known to promote transgenerational inheritance of adult-onset disease in subsequent generations after maternal exposure during fetal gonadal development. This study was designed to establish whether gestational and lactational exposure to the plasticizer di(2-ethylhexyl)phthalate (DEHP) at environmental doses promotes transgenerational effects on reproductive health in female offspring, as adults, over three generations in the mouse. Gestating F0 mouse dams were exposed to 0, 0.05, 5 mg/kg/day DEHP in the diet from gestational day 0.5 until the end of lactation. The incidence of adult-onset disease in reproductive function was recorded in F1, F2 and F3 female offspring. In adult F1 females, DEHP exposure induced reproductive adverse effects with: i) altered ovarian follicular dynamics with reduced primordial follicular reserve and a larger growing pre-antral follicle population, suggesting accelerated follicular recruitment; ii) reduced oocyte quality and embryonic developmental competence; iii) dysregulation of the expression profile of a panel of selected ovarian and pre-implantation embryonic genes. F2 and F3 female offspring displayed the same altered reproductive morphological phenotype and gene expression profiles as F1, thus showing transgenerational transmission of reproductive adverse effects along the female lineage. These findings indicate that in mice exposure to DEHP at doses relevant to human exposure during gonadal sex determination significantly perturbs the reproductive indices of female adult offspring and subsequent generations. Evidence of transgenerational transmission has important implications for the reproductive health and fertility of animals and humans, significantly increasing the potential biohazards of this toxicant. - Highlights: • Maternal exposure to DEHP transgenerationally affects female reproductive health. • DEHP reduced ovarian follicular reserve up to the third generation. • DEHP

  18. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice

    International Nuclear Information System (INIS)

    Pocar, Paola; Fiandanese, Nadia; Berrini, Anna; Secchi, Camillo; Borromeo, Vitaliano

    2017-01-01

    Endocrine disruptors (EDs) are compounds known to promote transgenerational inheritance of adult-onset disease in subsequent generations after maternal exposure during fetal gonadal development. This study was designed to establish whether gestational and lactational exposure to the plasticizer di(2-ethylhexyl)phthalate (DEHP) at environmental doses promotes transgenerational effects on reproductive health in female offspring, as adults, over three generations in the mouse. Gestating F0 mouse dams were exposed to 0, 0.05, 5 mg/kg/day DEHP in the diet from gestational day 0.5 until the end of lactation. The incidence of adult-onset disease in reproductive function was recorded in F1, F2 and F3 female offspring. In adult F1 females, DEHP exposure induced reproductive adverse effects with: i) altered ovarian follicular dynamics with reduced primordial follicular reserve and a larger growing pre-antral follicle population, suggesting accelerated follicular recruitment; ii) reduced oocyte quality and embryonic developmental competence; iii) dysregulation of the expression profile of a panel of selected ovarian and pre-implantation embryonic genes. F2 and F3 female offspring displayed the same altered reproductive morphological phenotype and gene expression profiles as F1, thus showing transgenerational transmission of reproductive adverse effects along the female lineage. These findings indicate that in mice exposure to DEHP at doses relevant to human exposure during gonadal sex determination significantly perturbs the reproductive indices of female adult offspring and subsequent generations. Evidence of transgenerational transmission has important implications for the reproductive health and fertility of animals and humans, significantly increasing the potential biohazards of this toxicant. - Highlights: • Maternal exposure to DEHP transgenerationally affects female reproductive health. • DEHP reduced ovarian follicular reserve up to the third generation. • DEHP

  19. Lessons for Inductive Germline Determination

    Science.gov (United States)

    Seervai, Riyad N.H.; Wessel, Gary M.

    2015-01-01

    SUMMARY Formation of the germline in an embryo marks a fresh round of reproductive potential, yet the developmental stage and location within the embryo where the primordial germ cells (PGCs) form differs wildly among species. In most animals, the germline is formed either by an inherited mechanism, in which maternal provisions within the oocyte drive localized germ-cell fate once acquired in the embryo, or an inductive mechanism that involves signaling between cells that directs germ-cell fate. The inherited mechanism has been widely studied in model organisms such as Drosophila melanogaster, Caenorhabditis elegans, Xenopus laevis, and Danio rerio. Given the rapid generation time and the effective adaptation for laboratory research of these organisms, it is not coincidental that research on these organisms has led the field in elucidating mechanisms for germline specification. The inductive mechanism, however, is less well understood and is studied primarily in the mouse (Mus musculus). In this review, we compare and contrast these two fundamental mechanisms for germline determination, beginning with the key molecular determinants that play a role in the formation of germ cells across all animal taxa. We next explore the current understanding of the inductive mechanism of germ-cell determination in mice, and evaluate the hypotheses for selective pressures on these contrasting mechanisms. We then discuss the hypothesis that the transition between these determination mechanisms, which has happened many times in phylogeny, is more of a continuum than a binary change. Finally, we propose an analogy between germline determination and sex determination in vertebrates—two of the milestones of reproduction and development—in which animals use contrasting strategies to activate similar pathways. PMID:23450642

  20. Whole-genome sequencing of spermatocytic tumors provides insights into the mutational processes operating in the male germline

    DEFF Research Database (Denmark)

    Giannoulatou, Eleni; Maher, Geoffrey J; Ding, Zhihao

    2017-01-01

    Adult male germline stem cells (spermatogonia) proliferate by mitosis and, after puberty, generate spermatocytes that undertake meiosis to produce haploid spermatozoa. Germ cells are under evolutionary constraint to curtail mutations and maintain genome integrity. Despite constant turnover...

  1. Germline progenitors escape the widespread phenomenon of homolog pairing during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Eric F Joyce

    Full Text Available Homolog pairing, which plays a critical role in meiosis, poses a potential risk if it occurs in inappropriate tissues or between nonallelic sites, as it can lead to changes in gene expression, chromosome entanglements, and loss-of-heterozygosity due to mitotic recombination. This is particularly true in Drosophila, which supports organismal-wide pairing throughout development. Discovered over a century ago, such extensive pairing has led to the perception that germline pairing in the adult gonad is an extension of the pairing established during embryogenesis and, therefore, differs from the mechanism utilized in most species to initiate pairing specifically in the germline. Here, we show that, contrary to long-standing assumptions, Drosophila meiotic pairing in the gonad is not an extension of pairing established during embryogenesis. Instead, we find that homologous chromosomes are unpaired in primordial germ cells from the moment the germline can be distinguished from the soma in the embryo and remain unpaired even in the germline stem cells of the adult gonad. We further establish that pairing originates immediately after the stem cell stage. This pairing occurs well before the initiation of meiosis and, strikingly, continues through the several mitotic divisions preceding meiosis. These discoveries indicate that the spatial organization of the Drosophila genome differs between the germline and the soma from the earliest moments of development and thus argue that homolog pairing in the germline is an active process as versus a passive continuation of pairing established during embryogenesis.

  2. File list: Oth.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Multipotent_otic_progenitor mm9 TFs and others Others Multipotent otic progeni...tor SRX736459,SRX736458,SRX736460,SRX736461 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  3. File list: DNS.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Multipotent_otic_progenitor mm9 DNase-seq Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  4. File list: His.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  5. File list: His.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  6. File list: His.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Multipotent_otic_progenitor mm9 Histone Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  7. File list: Pol.Oth.50.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.AllAg.Multipotent_otic_progenitor mm9 RNA polymerase Others Multipotent otic progeni...tor SRX736457,SRX736456 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.50.AllAg.Multipotent_otic_progenitor.bed ...

  8. File list: Oth.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Multipotent_otic_progenitor mm9 TFs and others Others Multipotent otic progeni...tor SRX736459,SRX736458,SRX736460,SRX736461 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  9. File list: Unc.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Multipotent_otic_progenitor mm9 Unclassified Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  10. File list: Unc.Oth.10.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Multipotent_otic_progenitor mm9 Unclassified Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Multipotent_otic_progenitor.bed ...

  11. File list: Pol.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.AllAg.Multipotent_otic_progenitor mm9 RNA polymerase Others Multipotent otic progeni...tor SRX736456,SRX736457 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  12. Concomitant multipotent and unipotent dental pulp progenitors and their respective contribution to mineralised tissue formation

    Directory of Open Access Journals (Sweden)

    S Dimitrova-Nakov

    2012-05-01

    Full Text Available Upon in vitro induction or in vivo implantation, the stem cells of the dental pulp display hallmarks of odontoblastic, osteogenic, adipogenic or neuronal cells. However, whether these phenotypes result from genuine multipotent cells or from coexistence of distinct progenitors is still an open question. Furthermore, determining whether a single cell-derived progenitor is capable of undergoing a differentiation cascade leading to tissue repair in situ is important for the development of cell therapy strategies. Three clonal pulp precursor cell lines (A4, C5, H8, established from embryonic ED18 first molars of mouse transgenic for a recombinant plasmid adeno-SV40, were induced to differentiate towards the odonto/osteogenic, chondrogenic or adipogenic programme. Expression of phenotypic markers of each lineage was evaluated by RT-PCR, histochemistry or immunocytochemistry. The clones were implanted into mandibular incisors or calvaria of adult mice. The A4 clone was capable of being recruited towards at least 3 mesodermal lineages in vitro and of contributing to dentin-like or bone formation, in vivo, thus behaving as a multipotent cell. In contrast, the C5 and H8 clones displayed a more restricted potential. Flow cytometric analysis revealed that isolated monopotent and multipotent clones could be distinguished by a differential expression of CD90. Altogether, isolation of these clonal lines allowed demonstrating the coexistence of multipotential and restricted-lineage progenitors in the mouse pulp. These cells may further permit unravelling specificities of the different types of pulp progenitors, hence facilitating the development of cell-based therapies of the dental pulp or other cranio-facial tissues.

  13. Germline V repertoires: Origin, maintenance, diversification.

    Science.gov (United States)

    Steele, E J; Lindley, R A

    2018-06-01

    In our view, Melvin Cohn (Scand J Immunol. 2018;87:e12640) has set out the logical guidelines towards a resolution of the very real enigma of the selectability of vertebrate germline Ig V repertoires under the current evolutionary paradigm…" A somatically derived repertoire scrambles this (germline VL + VH) substrate so that its specificities are lost, making it un-selectable in the germline. Consequently, evolution faced an incompatibility." It is argued here in Reply that a reverse transcriptase-based soma-to-germline process (S->G) targeting germline V segment arrays goes some considerable way to resolving fundamental contradictions on the origin, maintenance and then real-time adaptive diversification of these limited sets of V segments encoded within various V repertoire arrays. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  14. Germline APC mutations in hepatoblastoma.

    Science.gov (United States)

    Yang, Adeline; Sisson, Rebecca; Gupta, Anita; Tiao, Greg; Geller, James I

    2018-04-01

    Conflicting reports on the frequency of germline adenomatous polyposis coli (APC) gene mutations in patients with hepatoblastoma (HB) have called into question the clinical value of APC mutation testing on apparently sporadic HB. An Institutional Review Board approved retrospective review of clinical data collected from patients with HB who received APC testing at our institution was conducted. All HB patients seen at Cincinnati Children's Hospital Medical Center were eligible for testing. Potential genotype/phenotype correlations were assessed. As of July 2015, 29 patients with HB had received constitutional APC testing. Four (14%) were found to have APC pathogenic truncations of the APC protein and in addition two (7%) had APC missense variants of unknown clinical significance. Two patients (7%) had family histories indicative of familial adenomatous polyposis (FAP). Response to chemotherapy tracked differently in APC pathogenic cases, with a slower imaging response despite an equivalent or slightly faster α-fetoprotein (AFP) response. The prevalence of pathogenic APC variants in apparently sporadic HB may be higher than previously detected. Differences in time to imaging response, despite similar AFP response, may impact surgical planning. All patients with HB warrant germline APC mutation testing for underlying FAP. © 2017 Wiley Periodicals, Inc.

  15. Prenatal Exposure to the Environmental Obesogen Tributyltin Predisposes Multipotent Stem Cells to Become Adipocytes

    Science.gov (United States)

    Kirchner, Séverine; Kieu, Tiffany; Chow, Connie; Casey, Stephanie; Blumberg, Bruce

    2010-01-01

    The environmental obesogen hypothesis proposes that pre- and postnatal exposure to environmental chemicals contributes to adipogenesis and the development of obesity. Tributyltin (TBT) is an agonist of both retinoid X receptor (RXR) and peroxisome proliferator-activated receptor γ (PPARγ). Activation of these receptors can elevate adipose mass in adult mice exposed to the chemical in utero. Here we show that TBT sensitizes human and mouse multipotent stromal stem cells derived from white adipose tissue [adipose-derived stromal stem cells (ADSCs)] to undergo adipogenesis. In vitro exposure to TBT, or the PPARγ activator rosiglitazone increases adipogenesis, cellular lipid content, and expression of adipogenic genes. The adipogenic effects of TBT and rosiglitazone were blocked by the addition of PPARγ antagonists, suggesting that activation of PPARγ mediates the effect of both compounds on adipogenesis. ADSCs from mice exposed to TBT in utero showed increased adipogenic capacity and reduced osteogenic capacity with enhanced lipid accumulation in response to adipogenic induction. ADSCs retrieved from animals exposed to TBT in utero showed increased expression of PPARγ target genes such as the early adipogenic differentiation gene marker fatty acid-binding protein 4 and hypomethylation of the promoter/enhancer region of the fatty acid-binding protein 4 locus. Hence, TBT alters the stem cell compartment by sensitizing multipotent stromal stem cells to differentiate into adipocytes, an effect that could likely increase adipose mass over time. PMID:20160124

  16. Identification of multipotent stem cells from adult dog periodontal ligament.

    Science.gov (United States)

    Wang, Wen-Jun; Zhao, Yu-Ming; Lin, Bi-Chen; Yang, Jie; Ge, Li-Hong

    2012-08-01

    Periodontal diseases, which are characterized by destruction of the connective tissues responsible for restraining the teeth within the jaw, are the main cause of tooth loss. Periodontal regeneration mediated by human periodontal ligament stem cells (hPDLSCs) may offer an alternative strategy for the treatment of periodontal disease. Dogs are a widely used large-animal model for the study of periodontal-disease progression, tissue regeneration, and dental implants, but little attention has been paid to the identification of the cells involved in this species. This study aimed to characterize stem cells isolated from canine periodontal ligament (cPDLSCs). The cPDLSCs, like hPDLSCs, showed clonogenic capability and expressed the mesenchymal stem cell markers STRO-1, CD146, and CD105, but not CD34. After induction of osteogenesis, cPDLSCs showed calcium accumulation in vitro. Moreover, cPDLSCs also showed both adipogenic and chondrogenic potential. Compared with cell-free controls, more cementum/periodontal ligament-like structures were observed in CB-17/SCID mice into which cPDLSCs had been transplanted. These results suggest that cPDLSCs are clonogenic, highly proliferative, and have multidifferentiation potential, and that they could be used as a new cellular therapeutic approach to facilitate successful and more predictable regeneration of periodontal tissue using a canine model of periodontal disease. © 2012 Eur J Oral Sci.

  17. Discovery of a stem-like multipotent cell fate.

    Science.gov (United States)

    Paffhausen, Emily S; Alowais, Yasir; Chao, Cara W; Callihan, Evan C; Creswell, Karen; Bracht, John R

    2018-01-01

    Adipose derived stem cells (ASCs) can be obtained from lipoaspirates and induced in vitro to differentiate into bone, cartilage, and fat. Using this powerful model system we show that after in vitro adipose differentiation a population of cells retain stem-like qualities including multipotency. They are lipid (-), retain the ability to propagate, express two known stem cell markers, and maintain the capacity for trilineage differentiation into chondrocytes, adipocytes, and osteoblasts. However, these cells are not traditional stem cells because gene expression analysis showed an overall expression profile similar to that of adipocytes. In addition to broadening our understanding of cellular multipotency, our work may be particularly relevant to obesity-associated metabolic disorders. The adipose expandability hypothesis proposes that inability to differentiate new adipocytes is a primary cause of metabolic syndrome in obesity, including diabetes and cardiovascular disease. Here we have defined a differentiation-resistant stem-like multipotent cell population that may be involved in regulation of adipose expandability in vivo and may therefore play key roles in the comorbidities of obesity.

  18. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes

    DEFF Research Database (Denmark)

    Elabd, Christian; Chiellini, Chiara; Carmona, Mamen

    2009-01-01

    adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta......In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent......-agonists and atrial natriuretic peptide, and release of adiponectin and leptin. Herein, we show that, upon chronic exposure to a specific PPARgamma but not to a PPARbeta/delta or a PPARalpha agonist, hMADS cell-derived white adipocytes are able to switch to a brown phenotype by expressing both uncoupling protein one...

  19. Co-Culturing of Multipotent Mesenchymal Stromal Cells with Autological and Allogenic Lymphocytes.

    Science.gov (United States)

    Kapranov, N M; Davydova, Yu O; Gal'tseva, I V; Petinati, N A; Bakshinskaitė, M V; Drize, N I; Kuz'mina, L A; Parovichnikova, E N; Savchenko, V G

    2018-03-01

    We studied the effect of autologous and allogeneic lymphocytes on multipotent mesenchymal stromal cells in co-culture. It is shown that changes in multipotent mesenchymal stromal cells and in lymphocytes did not depend on the source of lymphocytes. Contact with lymphocytes triggers expression of HLA-DR molecules on multipotent mesenchymal stromal cells and these cells lose their immune privilege. In multipotent mesenchymal stromal cells, the relative level of expression of factors involved in immunomodulation (IDO1, PTGES, and IL-6) and expression of adhesion molecule ICAM1 increased, while expression of genes involved in the differentiation of multipotent mesenchymal stromal cells remained unchanged. Priming of multipotent mesenchymal stromal cells with IFN did not affect these changes. In turn, lymphocytes underwent activation, expression of HLA-DR increased, subpopulation composition of lymphocytes changed towards the increase in the content of naïve T cells. These findings are important for cell therapy.

  20. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration.

    Science.gov (United States)

    Bobkova, N V; Poltavtseva, R A; Samokhin, A N; Sukhikh, G T

    2013-11-01

    Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.

  1. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries.

    Science.gov (United States)

    Zhang, Hua; Zheng, Wenjing; Shen, Yan; Adhikari, Deepak; Ueno, Hiroo; Liu, Kui

    2012-07-31

    It has been generally accepted for more than half a century that, in most mammalian species, oocytes cannot renew themselves in postnatal or adult life, and that the number of oocytes is already fixed in fetal or neonatal ovaries. This assumption, however, has been challenged over the past decade. In this study, we have taken an endogenous genetic approach to this question and generated a multiple fluorescent Rosa26(rbw/+);Ddx4-Cre germline reporter mouse model for in vivo and in vitro tracing of the development of female germline cell lineage. Through live cell imaging and de novo folliculogenesis experiments, we show that the Ddx4-expressing cells from postnatal mouse ovaries did not enter mitosis, nor did they contribute to oocytes during de novo folliculogenesis. Our results provide evidence that supports the traditional view that no postnatal follicular renewal occurs in mammals, and no mitotically active Ddx4-expressing female germline progenitors exist in postnatal mouse ovaries.

  2. Epigenetic modulation of cancer-germline antigen gene expression in tumorigenic human mesenchymal stem cells: implications for cancer therapy

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Burns, Jorge S; Nielsen, Ole

    2009-01-01

    Cancer-germline antigens are promising targets for cancer immunotherapy, but whether such therapies will also eliminate the primary tumor stem cell population remains undetermined. We previously showed that long-term cultures of telomerized adult human bone marrow mesenchymal stem cells can...... spontaneously evolve into tumor-initiating, mesenchymal stem cells (hMSC-TERT20), which have characteristics of clinical sarcoma cells. In this study, we used the hMSC-TERT20 tumor stem cell model to investigate the potential of cancer-germline antigens to serve as tumor stem cell targets. We found...... of cancer-germline antigens in hMSC-TERT20 cells, while their expression levels in primary human mesenchymal stem cells remained unaffected. The expression pattern of cancer-germline antigens in tumorigenic mesenchymal stem cells and sarcomas, plus their susceptibility to enhancement by epigenetic...

  3. TGF-β superfamily signaling in testis formation and early male germline development.

    Science.gov (United States)

    Young, Julia C; Wakitani, Shoichi; Loveland, Kate L

    2015-09-01

    The TGF-β ligand superfamily contains at least 40 members, many of which are produced and act within the mammalian testis to facilitate formation of sperm. Their progressive expression at key stages and in specific cell types determines the fertility of adult males, influencing testis development and controlling germline differentiation. BMPs are essential for the interactive instructions between multiple cell types in the early embryo that drive initial specification of gamete precursors. In the nascent foetal testis, several ligands including Nodal, TGF-βs, Activins and BMPs, serve as key masculinizing switches by regulating male germline pluripotency, somatic and germline proliferation, and testicular vascularization and architecture. In postnatal life, local production of these factors determine adult testis size by regulating Sertoli cell multiplication and differentiation, in addition to specifying germline differentiation and multiplication. Because TGF-β superfamily signaling is integral to testis formation, it affects processes that underlie testicular pathologies, including testicular cancer, and its potential to contribute to subfertility is beginning to be understood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. CSR-1 and P granules suppress sperm-specific transcription in the C. elegans germline.

    Science.gov (United States)

    Campbell, Anne C; Updike, Dustin L

    2015-05-15

    Germ granules (P granules) in C. elegans are required for fertility and function to maintain germ cell identity and pluripotency. Sterility in the absence of P granules is often accompanied by the misexpression of soma-specific proteins and the initiation of somatic differentiation in germ cells. To investigate whether this is caused by the accumulation of somatic transcripts, we performed mRNA-seq on dissected germlines with and without P granules. Strikingly, we found that somatic transcripts do not increase in the young adult germline when P granules are impaired. Instead, we found that impairing P granules causes sperm-specific mRNAs to become highly overexpressed. This includes the accumulation of major sperm protein (MSP) transcripts in germ cells, a phenotype that is suppressed by feminization of the germline. A core component of P granules, the endo-siRNA-binding Argonaute protein CSR-1, has recently been ascribed with the ability to license transcripts for germline expression. However, impairing CSR-1 has very little effect on the accumulation of its mRNA targets. Instead, we found that CSR-1 functions with P granules to prevent MSP and sperm-specific mRNAs from being transcribed in the hermaphrodite germline. These findings suggest that P granules protect germline integrity through two different mechanisms, by (1) preventing the inappropriate expression of somatic proteins at the level of translational regulation, and by (2) functioning with CSR-1 to limit the domain of sperm-specific expression at the level of transcription. © 2015. Published by The Company of Biologists Ltd.

  5. In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells

    Directory of Open Access Journals (Sweden)

    Vishnubalaji Radhakrishnan

    2012-01-01

    Full Text Available Abstract Background Multipotent stem cells have been successfully isolated from various tissues and are currently utilized for tissue-engineering and cell-based therapies. Among the many sources, skin has recently emerged as an attractive source for multipotent cells because of its abundance. Recent literature showed that skin stromal cells (SSCs possess mesoderm lineage differentiation potential; however, the endothelial differentiation and angiogenic potential of SSC remains elusive. In our study, SSCs were isolated from human neonatal foreskin (hNFSSCs and adult dermal skin (hADSSCs using explants cultures and were compared with bone marrow (hMSC-TERT and adipose tissue-derived mesenchymal stem cells (hADMSCs for their potential differentiation into osteoblasts, adipocytes, and endothelial cells. Results Concordant with previous studies, both MSCs and SSCs showed similar morphology, surface protein expression, and were able to differentiate into osteoblasts and adipocytes. Using an endothelial induction culture system combined with an in vitro matrigel angiogenesis assay, hNFSSCs and hADSSCs exhibited the highest tube-forming capability, which was similar to those formed by human umbilical vein endothelial cells (HUVEC, with hNFSSCs forming the most tightly packed, longest, and largest diameter tubules among the three cell types. CD146 was highly expressed on hNFSSCs and HUVEC followed by hADSSCs, and hMSC-TERT, while its expression was almost absent on hADMSCs. Similarly, higher vascular density (based on the expression of CD31, CD34, vWF, CD146 and SMA was observed in neonatal skin, followed by adult dermal skin and adipose tissue. Thus, our preliminary data indicated a plausible relationship between vascular densities, and the expression of CD146 on multipotent cells derived from those tissues. Conclusions Our data is the first to demonstrate that human dermal skin stromal cells can be differentiated into endothelial lineage. Hence, SSCs

  6. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells.

    Science.gov (United States)

    Fernandes, Hugo; Mentink, Anouk; Bank, Ruud; Stoop, Reinout; van Blitterswijk, Clemens; de Boer, Jan

    2010-05-01

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix mainly composed of collagen type I. Here we assessed the potential role of endogenous collagen synthesis in hMSC differentiation and stem cell maintenance. We observed a sharp reduction in proliferation rate of hMSCs in the absence of ascorbic acid, concomitant with a reduction in osteogenesis in vitro and bone formation in vivo. In line with a positive role for collagen type I in osteogenesis, gene expression profiling of hMSCs cultured in the absence of ascorbic acid demonstrated increased expression of genes involved in adipogenesis and chondrogenesis and a reduction in expression of osteogenic genes. We also observed that matrix remodeling and anti-osteoclastogenic signals were high in the presence of ascorbic acid. The presence of collagen type I during the expansion phase of hMSCs did not affect their osteogenic and adipogenic differentiation potential. In conclusion, the collagenous matrix supports both proliferation and differentiation of osteogenic hMSCs but, on the other hand, presents signals stimulating matrix remodeling and inhibiting osteoclastogenesis.

  7. File list: NoD.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.05.AllAg.Multipotent_otic_progenitor mm9 No description Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  8. Identification of a distinct small cell population from human bone marrow reveals its multipotency in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    James Wang

    Full Text Available Small stem cells, such as spore-like cells, blastomere-like stem cells (BLSCs, and very-small embryonic-like stem cells (VSELs have been described in recent studies, although their multipotency in human tissues has not yet been confirmed. Here, we report the discovery of adult multipotent stem cells derived from human bone marrow, which we call StemBios (SB cells. These isolated SB cells are smaller than 6 ìm and are DAPI+ and Lgr5+ (Leucine-Rich Repeat Containing G Protein-Coupled Receptor 5. Because Lgr5 has been characterized as a stem cell marker in the intestine, we hypothesized that SB cells may have a similar function. In vivo cell tracking assays confirmed that SB cells give rise to three types of cells, and in vitro studies demonstrated that SB cells cultured in proprietary media are able to grow to 6-25 ìm in size. Once the SB cells have attached to the wells, they differentiate into different cell lineages upon exposure to specific differentiation media. We are the first to demonstrate that stem cells smaller than 6 ìm can differentiate both in vivo and in vitro. In the future, we hope that SB cells will be used therapeutically to cure degenerative diseases.

  9. Pediatric MDS: GATA screen the germline.

    Science.gov (United States)

    Stieglitz, Elliot; Loh, Mignon L

    2016-03-17

    In this issue of Blood, Wlodarski and colleagues demonstrate that as many as 72% of adolescents diagnosed with myelodysplastic syndrome (MDS) and monosomy 7 harbor germline mutations in GATA2. Although pediatric MDS is a very rare diagnosis, occurring in 0.8 to 4 cases per million, Wlodarski et al screened >600 cases of primary or secondary MDS in children and adolescents who were enrolled in the European Working Group on MDS consortium over a period of 15 years. The overall frequency of germline GATA2 mutations in children with primary MDS was 7%, and 15% in those presenting with advanced disease. Notably, mutations in GATA2 were absent in patients with therapy-related MDS or acquired aplastic anemia.

  10. Embryonic stem cell-like cells derived from adult human testis

    NARCIS (Netherlands)

    Mizrak, S. C.; Chikhovskaya, J. V.; Sadri-Ardekani, H.; van Daalen, S.; Korver, C. M.; Hovingh, S. E.; Roepers-Gajadien, H. L.; Raya, A.; Fluiter, K.; de Reijke, Th M.; de la Rosette, J. J. M. C. H.; Knegt, A. C.; Belmonte, J. C.; van der Veen, F.; de rooij, D. G.; Repping, S.; van Pelt, A. M. M.

    2010-01-01

    Given the significant drawbacks of using human embryonic stem (hES) cells for regenerative medicine, the search for alternative sources of multipotent cells is ongoing. Studies in mice have shown that multipotent ES-like cells can be derived from neonatal and adult testis. Here we report the

  11. The molecular anatomy of spontaneous germline mutations in human testes.

    Directory of Open Access Journals (Sweden)

    Jian Qin

    2007-09-01

    Full Text Available The frequency of the most common sporadic Apert syndrome mutation (C755G in the human fibroblast growth factor receptor 2 gene (FGFR2 is 100-1,000 times higher than expected from average nucleotide substitution rates based on evolutionary studies and the incidence of human genetic diseases. To determine if this increased frequency was due to the nucleotide site having the properties of a mutation hot spot, or some other explanation, we developed a new experimental approach. We examined the spatial distribution of the frequency of the C755G mutation in the germline by dividing four testes from two normal individuals each into several hundred pieces, and, using a highly sensitive PCR assay, we measured the mutation frequency of each piece. We discovered that each testis was characterized by rare foci with mutation frequencies 10(3 to >10(4 times higher than the rest of the testis regions. Using a model based on what is known about human germline development forced us to reject (p < 10(-6 the idea that the C755G mutation arises more frequently because this nucleotide simply has a higher than average mutation rate (hot spot model. This is true regardless of whether mutation is dependent or independent of cell division. An alternate model was examined where positive selection acts on adult self-renewing Ap spermatogonial cells (SrAp carrying this mutation such that, instead of only replacing themselves, they occasionally produce two SrAp cells. This model could not be rejected given our observed data. Unlike the disease site, similar analysis of C-to-G mutations at a control nucleotide site in one testis pair failed to find any foci with high mutation frequencies. The rejection of the hot spot model and lack of rejection of a selection model for the C755G mutation, along with other data, provides strong support for the proposal that positive selection in the testis can act to increase the frequency of premeiotic germ cells carrying a mutation

  12. Clinical Assessment and Diagnosis of Germline Predisposition to Hematopoietic Malignancies: The University of Chicago Experience

    Directory of Open Access Journals (Sweden)

    Ami V. Desai

    2017-12-01

    Full Text Available With the increasing use of clinical genomics to guide cancer treatment and management, there is a rise in the identification of germline cancer predisposition syndromes and a critical need for patients with germline findings to be referred for surveillance and care. The University of Chicago Hematopoietic Malignancies Cancer Risk Team has established a unique approach to patient care for individuals with hereditary hematologic malignancies through close communication and coordination between our pediatric and adult programs. Dedicated program members, including physicians, nurses, genetic counselors, and clinical research assistants, screen individuals for cancer predisposition at initial diagnosis through survivorship, in addition to testing individuals with an established family history of a cancer predisposition syndrome. Sample procurement, such as a skin biopsy at the time of bone marrow aspirate/biopsy in individuals with a positive screen, has facilitated timely identification of clinical germline findings or has served as a pipeline for translational research. Our integrated translational research program has led to the identification of novel syndromes in collaboration with other investigators, which have been incorporated iteratively into our clinical pipeline. Individuals are referred for clinical assessment based on personal and family history, identification of variants in susceptibility genes via molecular tumor testing, and during evaluation for matched related allogeneic stem cell transplantation. Upon referral, genetic counseling incorporates education with mindfulness of the psychosocial issues surrounding germline testing at different ages. The training and role of genetic counselors continues to grow, with the discovery of new predisposition syndromes, in the age of improved molecular diagnostics and new models for service delivery, such as telemedicine. With the identification of new syndromes that may predispose individuals

  13. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    Science.gov (United States)

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  14. Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Cindy Leten

    2016-01-01

    Full Text Available Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683 in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI and magnetic resonance imaging (MRI. Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1 outliers can be detected earlier, (2 GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3 a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents.

  15. Asymmetric distribution of pl10 and bruno2, new members of a conserved core of early germline determinants in cephalochordates

    Directory of Open Access Journals (Sweden)

    Simon eDailey

    2016-01-01

    Full Text Available Molecular fingerprinting of conserved germline and somatic ¨stemness¨ markers in different taxa have been key in defining the mechanism of germline specification (preformation or epigenesis, as well as expression domains of somatic progenitors. The distribution of molecular markers for primordial germ cells (PGCs, including vasa, nanos and piwil1, as well as Vasa antibody staining, support a determinative mechanism of germline specification in the cephalochordate Branchiostoma lanceolatum, similarly to other amphioxus species. pl10 and bruno2, but not bruno4/6, are also expressed in a pattern consistent with these other germline genes, adding to our repertoire of PGC markers in lancelets. Expression of nanos, vasa and the remaining markers (musashi, pufA, pufB, pumilio and piwil2 may define populations of putative somatic progenitors in the tailbud, the amphioxus posterior growth zone, or zones of proliferative activity. Finally, we also identify a novel expression domain for musashi, a classic neural stem cell marker, during notochord development in amphioxus. These results are discussed in the context of germline determination in other taxa, stem cell regulation and regenerative capacity in adult amphioxus.

  16. DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans

    Science.gov (United States)

    Amrit, Francis Raj Gandhi; Steenkiste, Elizabeth Marie; Ratnappan, Ramesh; Chen, Shaw-Wen; McClendon, T. Brooke; Kostka, Dennis; Yanowitz, Judith; Olsen, Carissa Perez; Ghazi, Arjumand

    2016-01-01

    Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation. PMID:26862916

  17. Multipotent Basal Stem Cells, Maintained in Localized Proximal Niches, Support Directed Long-Ranging Epithelial Flows in Human Prostates

    Directory of Open Access Journals (Sweden)

    Mohammad Moad

    2017-08-01

    Full Text Available Sporadic mitochondrial DNA mutations serve as clonal marks providing access to the identity and lineage potential of stem cells within human tissues. By combining quantitative clonal mapping with 3D reconstruction of adult human prostates, we show that multipotent basal stem cells, confined to discrete niches in juxta-urethral ducts, generate bipotent basal progenitors in directed epithelial migration streams. Basal progenitors are then dispersed throughout the entire glandular network, dividing and differentiating to replenish the loss of apoptotic luminal cells. Rare lineage-restricted luminal stem cells, and their progeny, are confined to proximal ducts and provide only minor contribution to epithelial homeostasis. In situ cell capture from clonal maps identified delta homolog 1 (DLK1 enrichment of basal stem cells, which was validated in functional spheroid assays. This study establishes significant insights into niche organization and function of prostate stem and progenitor cells, with implications for disease.

  18. Characterizing the radioresponse of pluripotent and multipotent human stem cells.

    Directory of Open Access Journals (Sweden)

    Mary L Lan

    Full Text Available The potential capability of stem cells to restore functionality to diseased or aged tissues has prompted a surge of research, but much work remains to elucidate the response of these cells to genotoxic agents. To more fully understand the impact of irradiation on different stem cell types, the present study has analyzed the radioresponse of human pluripotent and multipotent stem cells. Human embryonic stem (ES cells, human induced pluripotent (iPS cells, and iPS-derived human neural stem cells (iPS-hNSCs cells were irradiated and analyzed for cell survival parameters, differentiation, DNA damage and repair and oxidative stress at various times after exposure. While irradiation led to dose-dependent reductions in survival, the fraction of surviving cells exhibited dose-dependent increases in metabolic activity. Irradiation did not preclude germ layer commitment of ES cells, but did promote neuronal differentiation. ES cells subjected to irradiation exhibited early apoptosis and inhibition of cell cycle progression, but otherwise showed normal repair of DNA double-strand breaks. Cells surviving irradiation also showed acute and persistent increases in reactive oxygen and nitrogen species that were significant at nearly all post-irradiation times analyzed. We suggest that stem cells alter their redox homeostasis to adapt to adverse conditions and that radiation-induced oxidative stress plays a role in regulating the function and fate of stem cells within tissues compromised by radiation injury.

  19. Asymmetric Distribution of GFAP in Glioma Multipotent Cells

    Science.gov (United States)

    Guichet, Pierre-Olivier; Guelfi, Sophie; Ripoll, Chantal; Teigell, Marisa; Sabourin, Jean-Charles; Bauchet, Luc; Rigau, Valérie; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate. PMID:26953813

  20. Asymmetric Distribution of GFAP in Glioma Multipotent Cells.

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Guichet

    Full Text Available Asymmetric division (AD is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP, in mitotic glioma multipotent cells isolated from glioblastoma (GBM, the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate.

  1. Clerics urge ban on altering germline cells.

    Science.gov (United States)

    Norman, C

    1983-06-24

    A resolution calling for a ban on genetic engineering of human reproductive cells has been signed by leaders of almost every major church group in the United States. Some of the religious leaders, while not certain that a total moratorium should be placed on altering germline cells, signed the statement in order to stimulate public debate on the issue. Legislation has recently been introduced in Congress to set up a committee to monitor genetic engineering and its human applications, but author Jeremy Rifkin, the impetus behind the church leaders' resolution, argues that such tampering threatens the gene pool and should be banned altogether.

  2. Germline mutation rates in mice following in utero exposure to diesel exhaust particles by maternal inhalation

    DEFF Research Database (Denmark)

    Ritz, Caitlin; Ruminski, Wojciech; Hougaard, Karin S.

    2011-01-01

    (PAPs) from industrial environments cause DNA damage and mutations in the sperm of adult male mice. Effects on the female and male germline during critical stages of development (in utero) are unknown. In mice, previous studies have shown that expanded simple tandem repeat (ESTR) loci exhibit high rates......The induction of inherited DNA sequence mutations arising in the germline (i.e., sperm or egg) of mice exposed in utero to diesel exhaust particles (DEPs) via maternal inhalation compared to unexposed controls was investigated in this study. Previous work has shown that particulate air pollutants...... of spontaneous mutation, making this endpoint a valuable tool for studying inherited mutation and genomic instability. In the present study, pregnant C57Bl/6 mice were exposed to 19mg/m3 DEP from gestational day 7 through 19, alongside air exposed controls. Male and female F1 offspring were raised to maturity...

  3. Hypoxia impedes hypertrophic chondrogenesis of human multipotent stromal cells.

    Science.gov (United States)

    Gawlitta, Debby; van Rijen, Mattie H P; Schrijver, Edmée J M; Alblas, Jacqueline; Dhert, Wouter J A

    2012-10-01

    Within the field of bone tissue engineering, the endochondral approach to forming bone substitutes represents a novel concept, where cartilage will undergo hypertrophic differentiation before its conversion into bone. For this purpose, clinically relevant multipotent stromal cells (MSCs), MSCs, can be differentiated into the chondrogenic lineage before stimulating hypertrophy. Controversy exists in literature on the oxygen tensions naturally present during this transition in, for example, the growth plate. Therefore, the present study focused on the effects of different oxygen tensions on the progression of the hypertrophic differentiation of MSCs. Bone marrow-derived MSCs of four human donors were expanded, and differentiation was induced in aggregate cultures. Normoxic (20% oxygen) and hypoxic (5%) conditions were imposed on the cultures in chondrogenic or hypertrophic differentiation media. After 4 weeks, the cultures were histologically examined and by real-time polymerase chain reaction. Morphological assessment showed the chondrogenic differentiation of cultures from all donors under normoxic chondrogenic conditions. In addition, hypertrophic differentiation was observed in cultures derived from all but one donor. The deposition of collagen type X was evidenced in both chondrogenically and hypertrophically stimulated cultures. However, mineralization was exclusively observed in hypertrophically stimulated, normoxic cultures. Overall, the progression of hypertrophy was delayed in hypoxic compared with normoxic groups. The observed delay was supported by the gene expression patterns, especially showing the up-regulation of the late hypertrophic markers osteopontin and osteocalcin under normoxic hypertrophic conditions. Concluding, normoxic conditions are more beneficial for hypertrophic differentiation of MSCs than are hypoxic conditions, as long as the MSCs possess hypertrophic potential. This finding has implications for cartilage tissue engineering as well

  4. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.

    Science.gov (United States)

    Mundell, Nathan A; Labosky, Patricia A

    2011-02-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency.

  5. Oyster vasa-like gene as a marker of the germline cell development in Crassostrea gigas

    International Nuclear Information System (INIS)

    Fabioux, C.; Huvet, A.; Lelong, C.; Robert, R.; Pouvreau, S.; Daniel, J.Y.; Minguant, C.; Le Pennec, M.

    2004-01-01

    The oyster vasa-like gene was previously demonstrated to be specifically expressed in germline cells of adult oysters Crassostrea gigas. In the present study, this gene was used as a molecular marker to establish the developmental pattern of germline cells during oyster ontogenesis, using whole-mount in situ hybridization and real-time PCR. The Oyvlg transcripts appeared to be localized to the vegetal pole of unfertilized oocytes and maternally transmitted to embryos. At early development, these maternal transcripts were observed to segregate into a single blastomere, from the CD macromere of 2-cell stage to the 4d mesentoblast of blastula. From late blastula stage, the mesentoblast divided into two cell clumps that migrated to both sides of the larvae body and that would correspond to primordial germ cells (PGCs). Based on these results, we postulate that the germline of C. gigas is specified at early development by maternal cytoplasmic determinants including Oyvlg mRNAs, in putative PGCs that would differentiate into germinal stem cells in juvenile oysters

  6. Human Germline: A New Research Frontier

    Directory of Open Access Journals (Sweden)

    M. Azim Surani

    2015-06-01

    Full Text Available We recently elucidated the mechanism of human primordial germ cell (hPGC specification and resetting of the epigenome for totipotency. The regulators of hPGC specification also initiate resetting of the epigenome, leading to a comprehensive erasure of DNA methylation, erasure of imprints and X reactivation in early hPGCs in vivo. These studies reveal differences with the mouse model, which are probably due to differences in the regulation of human pluripotency, and in postimplantation development at gastrulation, which indicates the importance of non-rodent models for investigations. Within the extreme hypomethylated environment of the early human germline are loci that are resistant to DNA demethylation, with subsequent predominant expression in neural cells. These loci provide a model for studies on the mechanism of transgenerational epigenetic inheritance, and their response to environmental factors. Such epigenetic mechanism of inheritance could potentially provide greater phenotypic plasticity, with significant consequences for human development and disease.

  7. Methods in Molecular Biology: Germline Stem Cells | Center for Cancer Research

    Science.gov (United States)

    The protocols in Germline Stem Cells are intended to present selected genetic, molecular, and cellular techniques used in germline stem cell research. The book is divided into two parts. Part I covers germline stem cell identification and regulation in model organisms. Part II covers current techniques used in in vitro culture and applications of germline stem cells.

  8. C. elegans AMPKs promote survival and arrest germline development during nutrient stress

    Directory of Open Access Journals (Sweden)

    Masamitsu Fukuyama

    2012-08-01

    Mechanisms controlling development, growth, and metabolism are coordinated in response to changes in environmental conditions, enhancing the likelihood of survival to reproductive maturity. Much remains to be learned about the molecular basis underlying environmental influences on these processes. C. elegans larvae enter a developmentally dormant state called L1 diapause when hatched into nutrient-poor conditions. The nematode pten homologue daf-18 is essential for maintenance of survival and germline stem cell quiescence during this period (Fukuyama et al., 2006; Sigmond et al., 2008, but the details of the signaling network(s in which it functions remain to be elucidated. Here, we report that animals lacking both aak-1 and aak-2, which encode the two catalytic α subunits of AMP-activated protein kinase (AMPK, show reduced viability and failure to maintain mitotic quiescence in germline stem cells during L1 diapause. Furthermore, failure to arrest germline proliferation has a long term consequence; aak double mutants that have experienced L1 diapause develop into sterile adults when returned to food, whereas their continuously fed siblings are fertile. Both aak and daf-18 appear to maintain germline quiescence by inhibiting activity of the common downstream target, TORC1 (TOR Complex 1. In contrast, rescue of the lethality phenotype indicates that aak-2 acts not only in the intestine, as does daf-18, but also in neurons, likely promoting survival by preventing energy deprivation during L1 diapause. These results not only provide evidence that AMPK contributes to survival during L1 diapause in a manner distinct from that by which it controls dauer diapause, but they also suggest that AMPK suppresses TORC1 activity to maintain stem cell quiescence.

  9. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice.

    Science.gov (United States)

    Liu, Jing; Shang, Dantong; Xiao, Yao; Zhong, Pei; Cheng, Hanhua; Zhou, Rongjia

    2017-09-29

    Germline stem cells are essential in the generation of both male and female gametes. In mammals, the male testis produces sperm throughout the entire lifetime, facilitated by testicular germline stem cells. Oocyte renewal ceases in postnatal or adult life in mammalian females, suggesting that germline stem cells are absent from the mammalian ovary. However, studies in mice, rats, and humans have recently provided evidence for ovarian female germline stem cells (FGSCs). A better understanding of the role of FGSCs in ovaries could help improve fertility treatments. Here, we developed a rapid and efficient method for isolating FGSCs from ovaries of neonatal mice. Notably, our FGSC isolation method could efficiently isolate on average 15 cell "strings" per ovary from mice at 1-3 days postpartum. FGSCs isolated from neonatal mice displayed the string-forming cell configuration at mitosis ( i.e. a "stringing" FGSC (sFGSC) phenotype) and a disperse phenotype in postnatal mice. We also found that sFGSCs undergo vigorous mitosis especially at 1-3 days postpartum. After cell division, the sFGSC membranes tended to be connected to form sFGSCs. Moreover, F-actin filaments exhibited a cell-cortex distribution in sFGSCs, and E-cadherin converged in cell-cell connection regions, resulting in the string-forming morphology. Our new method provides a platform for isolating FGSCs from the neonatal ovary, and our findings indicate that FGCSs exhibit string-forming features in neonatal mice. The sFGSCs represent a valuable resource for analysis of ovary function and an in vitro model for future clinical use to address ovarian dysfunction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  11. Hypoxia-controlled EphA3 marks a human endometrium-derived multipotent mesenchymal stromal cell that supports vascular growth.

    Directory of Open Access Journals (Sweden)

    Catherine To

    Full Text Available Eph and ephrin proteins are essential cell guidance cues that orchestrate cell navigation and control cell-cell interactions during developmental tissue patterning, organogenesis and vasculogenesis. They have been extensively studied in animal models of embryogenesis and adult tissue regeneration, but less is known about their expression and function during human tissue and organ regeneration. We discovered the hypoxia inducible factor (HIF-1α-controlled expression of EphA3, an Eph family member with critical functions during human tumour progression, in the vascularised tissue of regenerating human endometrium and on isolated human endometrial multipotent mesenchymal stromal cells (eMSCs, but not in other highly vascularised human organs. EphA3 affinity-isolation from human biopsy tissue yielded multipotent CD29+/CD73+/CD90+/CD146+ eMSCs that can be clonally propagated and respond to EphA3 agonists with EphA3 phosphorylation, cell contraction, cell-cell segregation and directed cell migration. EphA3 silencing significantly inhibited the ability of transplanted eMSCs to support neovascularisation in immunocompromised mice. In accord with established roles of Eph receptors in mediating interactions between endothelial and perivascular stromal cells during mouse development, our findings suggest that HIF-1α-controlled expression of EphA3 on human MSCs functions during the hypoxia-initiated early stages of adult blood vessel formation.

  12. Minisatellite germline mutation rate in the Techa River population

    Energy Technology Data Exchange (ETDEWEB)

    Dubrova, Yuri E. [Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)]. E-mail: yed2@le.ac.uk; Ploshchanskaya, Olga G. [Urals Research Centre for Radiation Medicine, Medgorodok, Chelyabinsk 454076 (Russian Federation); Department of Radiobiology, Chelyabinsk State University, Chelyabinsk 454021 (Russian Federation); Kozionova, Olga S. [Urals Research Centre for Radiation Medicine, Medgorodok, Chelyabinsk 454076 (Russian Federation); Department of Radiobiology, Chelyabinsk State University, Chelyabinsk 454021 (Russian Federation); Akleyev, Alexander V. [Urals Research Centre for Radiation Medicine, Medgorodok, Chelyabinsk 454076 (Russian Federation); Department of Radiobiology, Chelyabinsk State University, Chelyabinsk 454021 (Russian Federation)

    2006-12-01

    Germline mutation at eight minisatellite loci has been studied among the irradiated families from the Techa River population and non-exposed families from the rural area of the Chelyabinsk and Kurgan Oblasts. The groups were matched by ethnicity, parental age, occupation and smoking habit. A statistically significant 1.7-fold increase in mutation rate was found in the germline of irradiated fathers, whereas maternal germline mutation rate in the exposed families was not elevated. Most of the minisatellite loci showed an elevated paternal mutation rate in the exposed group, indicating a generalised increase in minisatellite germline mutation rate in the Techa River population. These data suggest that the elevated minisatellite mutation rate can be attributed to radioactive exposure. The spectra of paternal mutation seen in the unexposed and exposed families were indistinguishable.

  13. Minisatellite germline mutation rate in the Techa River population

    International Nuclear Information System (INIS)

    Dubrova, Yuri E.; Ploshchanskaya, Olga G.; Kozionova, Olga S.; Akleyev, Alexander V.

    2006-01-01

    Germline mutation at eight minisatellite loci has been studied among the irradiated families from the Techa River population and non-exposed families from the rural area of the Chelyabinsk and Kurgan Oblasts. The groups were matched by ethnicity, parental age, occupation and smoking habit. A statistically significant 1.7-fold increase in mutation rate was found in the germline of irradiated fathers, whereas maternal germline mutation rate in the exposed families was not elevated. Most of the minisatellite loci showed an elevated paternal mutation rate in the exposed group, indicating a generalised increase in minisatellite germline mutation rate in the Techa River population. These data suggest that the elevated minisatellite mutation rate can be attributed to radioactive exposure. The spectra of paternal mutation seen in the unexposed and exposed families were indistinguishable

  14. Identification of germline transcriptional regulatory elements in Aedes aegypti

    Science.gov (United States)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  15. Genotype and phenotype spectrum of NRAS germline variants

    NARCIS (Netherlands)

    Altmuller, F.; Lissewski, C.; Bertola, D.; Flex, E.; Stark, Z.; Spranger, S.; Baynam, G.; Buscarilli, M.; Dyack, S.; Gillis, J.; Yntema, H.G.; Pantaleoni, F.; Loon, R.L. van; MacKay, S.; Mina, K.; Schanze, I.; Tan, T.Y.; Walsh, M.; White, S.M.; Niewisch, M.R.; Garcia-Minaur, S.; Plaza, D.; Ahmadian, M.R.; Cave, H.; Tartaglia, M.; Zenker, M.

    2017-01-01

    RASopathies comprise a group of disorders clinically characterized by short stature, heart defects, facial dysmorphism, and varying degrees of intellectual disability and cancer predisposition. They are caused by germline variants in genes encoding key components or modulators of the highly

  16. Developmental expression of "germline"- and "sex determination"-related genes in the ctenophore Mnemiopsis leidyi.

    Science.gov (United States)

    Reitzel, Adam M; Pang, Kevin; Martindale, Mark Q

    2016-01-01

    An essential developmental pathway in sexually reproducing animals is the specification of germ cells and the differentiation of mature gametes, sperm and oocytes. The "germline" genes vasa, nanos and piwi are commonly identified in primordial germ cells, suggesting a molecular signature for the germline throughout animals. However, these genes are also expressed in a diverse set of somatic stem cells throughout the animal kingdom leaving open significant questions for whether they are required for germline specification. Similarly, members of the Dmrt gene family are essential components regulating sex determination and differentiation in bilaterian animals, but the functions of these transcription factors, including potential roles in sex determination, in early diverging animals remain unknown. The phylogenetic position of ctenophores and the genome sequence of the lobate Mnemiopsis leidyi motivated us to determine the compliment of these gene families in this species and determine expression patterns during development. Our phylogenetic analyses of the vasa, piwi and nanos gene families show that Mnemiopsis has multiple genes in each family with multiple lineage-specific paralogs. Expression domains of Mnemiopsis nanos, vasa and piwi, during embryogenesis from fertilization to the cydippid stage, were diverse, with little overlapping expression and no or little expression in what we think are the germ cells or gametogenic regions. piwi paralogs in Mnemiopsis had distinct expression domains in the ectoderm during development. We observed overlapping expression domains in the apical organ and tentacle apparatus of the cydippid for a subset of "germline genes," which are areas of high cell proliferation, suggesting that these genes are involved with "stem cell" specification and maintenance. Similarly, the five Dmrt genes show diverse non-overlapping expression domains, with no clear evidence for expression in future gametogenic regions of the adult. We also

  17. Germline but macrophage-tropic CYBB mutations in kindreds with X-linked predisposition to tuberculous mycobacterial diseases

    OpenAIRE

    2011-01-01

    Abstract Germline mutations in the human CYBB gene, encoding the gp91phox subunit of the phagocyte NADPH oxidase, impair the respiratory burst of phagocytes and result in X-linked chronic granulomatous disease. We report two kindreds in which otherwise healthy male adults show X-linked recessive Mendelian susceptibility to mycobacterial diseases. These patients harbor mutations in CYBB that profoundly reduce the respiratory burst in monocyte-derived macrophages, but not in monocyte...

  18. Changing the Properties of Multipotent Mesenchymal Stromal Cells by IFNγ Administration.

    Science.gov (United States)

    Petinati, N A; Kapranov, N M; Bigil'deev, A E; Popova, M D; Davydova, Yu O; Gal'tseva, I V; Drize, N I; Kuz'mina, L A; Parovichnikova, E N; Savchenko, V G

    2017-06-01

    We studied changes in the population of human multipotent mesenchymal stromal cells activated by IFNγ. The cells were cultured under standard conditions; IFNγ was added in various concentrations for 4 h or over 2 passages. It was shown that the total cell production significantly decreased after long-term culturing with IFNγ, but 4-h exposure did not affect this parameter. After 4-h culturing, the expression levels of IDO1, CSF1, and IL-6 increased by 300, 7, and 2.4 times, respectively, and this increase persisted 1 and 2 days after removal of IFNγ from the culture medium. The expression of class I and II MHC (HLA) on cell surface practically did not change immediately after exposure to IFNγ, but during further culturing, HLA-ABC (MHC I) and HLA-DR (MHC II) expression significantly increased, which abolished the immune privilege in these cells, the property allowing clinical use of allogenic multipotent mesenchymal stromal cells. Multipotent mesenchymal stromal cells can suppress proliferation of lymphocytes. The degree of this suppression depends on individual properties of multipotent mesenchymal stromal cell donor. Treatment with IFNγ did not significantly affect the intensity of inhibition of lymphocyte proliferation by these cells.

  19. Germline Manipulation and Our Future Worlds.

    Science.gov (United States)

    Harris, John

    2015-01-01

    Two genetic technologies capable of making heritable changes to the human genome have revived interest in, and in some quarters a very familiar panic concerning, so-called germline interventions. These technologies are: most recently the use of CRISPR/Cas9 to edit genes in non-viable IVF zygotes and Mitochondrial Replacement Therapy (MRT) the use of which was approved in principle in a landmark vote earlier this year by the United Kingdom Parliament. The possibility of using either of these techniques in humans has encountered the most violent hostility and suspicion. However it is important to be aware that much of this hostility dates back to the fears associated with In Vitro Fertilization (IVF) and other reproductive technologies and by cloning; fears which were baseless at the time concerning both IVF and cloning the use of both of which have proved to be highly beneficial to humanity and which have been effectively regulated and controlled. This paper argues that CRISPR should by pursued through researh until it is safe enough for use in humans but there is no reason to suppose at this stage that such use will be unsafe or unethical (Collins 2015).

  20. Multi-potent Natural Scaffolds Targeting Amyloid Cascade: In Search of Alzheimer's Disease Therapeutics.

    Science.gov (United States)

    Chakraborty, Sandipan

    2017-01-01

    Alzheimer's Disease (AD) once considered a rare disorder emerges as a major health concern in recent times. The disease pathogenesis is very complex and yet to be understood completely. However, "Amyloid Cascade" is the central event in disease pathogenesis. Several proteins of the amyloid cascade are currently being considered as potential targets for AD therapeutics discovery. Many potential compounds are in clinical trials, but till now there is no known cure for the disease. Recent years have witnessed remarkable research interest in the search of novel concepts in drug designing for AD. Multi-targeted ligand design is a paradigm shift in conventional drug discovery. In this process rather than designing ligands targeting a single receptor, novel ligands have been designed/ synthesized that can simultaneously target many pathways involved in disease pathogenesis. Here, recent developments in computational drug designing protocols to identify multi-targeted ligand for AD have been discussed. Therapeutic potential of different multi-potent compounds also has been discussed briefly. Prime emphasis has been given to multi-potent ligand from natural resources. Polyphenols are an interesting group of compounds which show efficacy against a wide range of disease and have the property to exhibit multi-potency. Several groups attempted to identify novel multi-potent phytochemicals for AD therapy. Multi-potency of several polyphenols or compounds synthesized using the poly-phenolic scaffolds have been briefly discussed here. However, the multi-targeted drug designing for AD is still in early stages, more advancement in drug designing method/algorithm developments is urgently required to discover more efficient compounds for AD therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Flow cytometric characterization of culture expanded multipotent mesenchymal stromal cells (MSCs) from horse adipose tissue: towards the definition of minimal stemness criteria.

    Science.gov (United States)

    Pascucci, L; Curina, G; Mercati, F; Marini, C; Dall'Aglio, C; Paternesi, B; Ceccarelli, P

    2011-12-15

    In the last decades, multipotent mesenchymal progenitor cells have been isolated from many adult tissues of different species. The International Society for Cellular Therapy (ISCT) has recently established that multipotent mesenchymal stromal cells (MSCs) is the currently recommended designation. In this study, we used flow cytometry to evaluate the expression of several molecules related to stemness (CD90, CD44, CD73 and STRO-1) in undifferentiated, early-passaged MSCs isolated from adipose tissue of four donor horses (AdMSCs). The four populations unanimously expressed high levels of CD90 and CD44. On the contrary, they were unexpectedly negative to CD73. A small percentage of the cells, finally, showed the expression of STRO-1. This last result might be due to the existence of a small subpopulation of STRO-1+ cells or to a poor cross-reactivity of the antibody. A remarkable donor-to-donor consistency and reproducibility of these findings was demonstrated. The data presented herein support the idea that equine AdMSCs may be easily isolated and selected by adherence to tissue culture plastic and exhibit a surface profile characterized by some peculiar differences in comparison to those described in other species. Continued characterization of these cells will help to clarify several aspects of their biology and may ultimately enable the isolation of specific, purified subpopulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation.

    Directory of Open Access Journals (Sweden)

    Diana Klein

    Full Text Available Here, we identify CD44(+CD90(+CD73(+CD34(-CD45(- cells within the adult human arterial adventitia with properties of multipotency which were named vascular wall-resident multipotent stem cells (VW-MPSCs. VW-MPSCs exhibit typical mesenchymal stem cell characteristics including cell surface markers in immunostaining and flow cytometric analyses, and differentiation into adipocytes, chondrocytes and osteocytes under culture conditions. Particularly, TGFß1 stimulation up-regulates smooth muscle cell markers in VW-MPSCs. Using fluorescent cell labelling and co-localisation studies we show that VW-MPSCs differentiate to pericytes/smooth muscle cells which cover the wall of newly formed endothelial capillary-like structures in vitro. Co-implantation of EGFP-labelled VW-MPSCs and human umbilical vein endothelial cells into SCID mice subcutaneously via Matrigel results in new vessels formation which were covered by pericyte- or smooth muscle-like cells generated from implanted VW-MPSCs. Our results suggest that VW-MPSCs are of relevance for vascular morphogenesis, repair and self-renewal of vascular wall cells and for local capacity of neovascularization in disease processes.

  3. Pharmaceutical induction of ApoE secretion by multipotent mesenchymal stromal cells (MSCs

    Directory of Open Access Journals (Sweden)

    Whitney Mandolin J

    2008-09-01

    Full Text Available Abstract Background Apolipoprotein E (ApoE is a molecular scavenger in the blood and brain. Aberrant function of the molecule causes formation of protein and lipid deposits or "plaques" that characterize Alzheimer's disease (AD and atherosclerosis. There are three human isoforms of ApoE designated ε2, ε3, and ε4. Each isoform differentially affects the structure and function of the protein and thus the development of disease. Homozygosity for ApoE ε4 is associated with atherosclerosis and Alzheimer's disease whereas ApoE ε2 and ε3 tend to be protective. Furthermore, the ε2 form may cause forms of hyperlipoproteinemia. Therefore, introduction of ApoE ε3 may be beneficial to patients that are susceptible to or suffering from these diseases. Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs are adult progenitor cells found in numerous tissues. They are easily expanded in culture and engraft into host tissues when administered appropriately. Furthermore, MSCs are immunosuppressive and have been reported to engraft as allogeneic transplants. In our previous study, mouse MSCs (mMSCs were implanted into the brains of ApoE null mice, resulting in production of small amounts of ApoE in the brain and attenuation of cognitive deficits. Therefore human MSCs (hMSCs are a promising vector for the administration of ApoE ε3 in humans. Results Unlike mMSCs, hMSCs were found not to express ApoE in culture; therefore a molecular screen was performed for compounds that induce expression. PPARγ agonists, neural stem cell conditioned medium, osteo-inductive media, dexamethasone, and adipo-inductive media (AIM were tested. Of the conditions tested, only AIM or dexamethasone induced sustained secretion of ApoE in MSCs and the duration of secretion was only limited by the length of time MSCs could be sustained in culture. Upon withdrawal of the inductive stimuli, the ApoE secretion persisted for a further 14 days. Conclusion The data

  4. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease

    Science.gov (United States)

    Bustamante, Jacinta; Arias, Andres A; Vogt, Guillaume; Picard, Capucine; Galicia, Lizbeth Blancas; Prando, Carolina; Grant, Audrey V; Marchal, Christophe C; Hubeau, Marjorie; Chapgier, Ariane; de Beaucoudrey, Ludovic; Puel, Anne; Feinberg, Jacqueline; Valinetz, Ethan; Jannière, Lucile; Besse, Céline; Boland, Anne; Brisseau, Jean-Marie; Blanche, Stéphane; Lortholary, Olivier; Fieschi, Claire; Emile, Jean-François; Boisson-Dupuis, Stéphanie; Al-Muhsen, Saleh; Woda, Bruce; Newburger, Peter E; Condino-Neto, Antonio; Dinauer, Mary C; Abel, Laurent; Casanova, Jean-Laurent

    2011-01-01

    Germline mutations in CYBB, the human gene encoding the gp91phox subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This ‘experiment of nature’ indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria. PMID:21278736

  5. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries.

    Directory of Open Access Journals (Sweden)

    Jiaqiang Xiong

    Full Text Available Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx. For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now. In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes. Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs. Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs, and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.

  6. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries.

    Science.gov (United States)

    Xiong, Jiaqiang; Lu, Zhiyong; Wu, Meng; Zhang, Jinjin; Cheng, Jing; Luo, Aiyue; Shen, Wei; Fang, Li; Zhou, Su; Wang, Shixuan

    2015-01-01

    Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx). For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now). In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes). Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs). Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs), and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.

  7. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification.

    Science.gov (United States)

    Moretti, Alessandra; Caron, Leslie; Nakano, Atsushi; Lam, Jason T; Bernshausen, Alexandra; Chen, Yinhong; Qyang, Yibing; Bu, Lei; Sasaki, Mika; Martin-Puig, Silvia; Sun, Yunfu; Evans, Sylvia M; Laugwitz, Karl-Ludwig; Chien, Kenneth R

    2006-12-15

    Cardiogenesis requires the generation of endothelial, cardiac, and smooth muscle cells, thought to arise from distinct embryonic precursors. We use genetic fate-mapping studies to document that isl1(+) precursors from the second heart field can generate each of these diverse cardiovascular cell types in vivo. Utilizing embryonic stem (ES) cells, we clonally amplified a cellular hierarchy of isl1(+) cardiovascular progenitors, which resemble the developmental precursors in the embryonic heart. The transcriptional signature of isl1(+)/Nkx2.5(+)/flk1(+) defines a multipotent cardiovascular progenitor, which can give rise to cells of all three lineages. These studies document a developmental paradigm for cardiogenesis, where muscle and endothelial lineage diversification arises from a single cell-level decision of a multipotent isl1(+) cardiovascular progenitor cell (MICP). The discovery of ES cell-derived MICPs suggests a strategy for cardiovascular tissue regeneration via their isolation, renewal, and directed differentiation into specific mature cardiac, pacemaker, smooth muscle, and endothelial cell types.

  8. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2015-05-01

    Full Text Available Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF and posterior circumvallate (CV taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  9. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Science.gov (United States)

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E; Barlow, Linda A

    2015-05-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  10. Germline fumarate hydratase mutations in patients with ovarian mucinous cystadenoma

    DEFF Research Database (Denmark)

    Ylisaukko-oja, Sanna K.; Cybulski, Cezary; Lehtonen, Rainer

    2006-01-01

    Germline mutations in the fumarate hydratase (FH) gene were recently shown to predispose to the dominantly inherited syndrome, hereditary leiomyomatosis and renal cell cancer (HLRCC). HLRCC is characterized by benign leiomyomas of the skin and the uterus, renal cell carcinoma, and uterine...... leiomyosarcoma. The aim of this study was to identify new families with FH mutations, and to further examine the tumor spectrum associated with FH mutations. FH germline mutations were screened from 89 patients with RCC, skin leiomyomas or ovarian tumors. Subsequently, 13 ovarian and 48 bladder carcinomas were...

  11. Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA.

    Science.gov (United States)

    Schrader, Kasmintan A; Cheng, Donavan T; Joseph, Vijai; Prasad, Meera; Walsh, Michael; Zehir, Ahmet; Ni, Ai; Thomas, Tinu; Benayed, Ryma; Ashraf, Asad; Lincoln, Annie; Arcila, Maria; Stadler, Zsofia; Solit, David; Hyman, David M; Hyman, David; Zhang, Liying; Klimstra, David; Ladanyi, Marc; Offit, Kenneth; Berger, Michael; Robson, Mark

    2016-01-01

    Tumor genetic sequencing identifies potentially targetable genetic alterations with therapeutic implications. Analysis has concentrated on detecting tumor-specific variants, but recognition of germline variants may prove valuable as well. To estimate the burden of germline variants identified through routine clinical tumor sequencing. Patients with advanced cancer diagnoses eligible for studies of targeted agents at Memorial Sloan Kettering Cancer Center are offered tumor-normal sequencing with MSK-IMPACT, a 341-gene panel. We surveyed the germline variants seen in 187 overlapping genes with Mendelian disease associations in 1566 patients who had undergone tumor profiling between March and October 2014. The number of presumed pathogenic germline variants (PPGVs) and variants of uncertain significance per person in 187 genes associated with single-gene disorders and the proportions of individuals with PPGVs in clinically relevant gene subsets, in genes consistent with known tumor phenotypes, and in genes with evidence of second somatic hits in their tumors. The mean age of the 1566 patients was 58 years, and 54% were women. Presumed pathogenic germline variants in known Mendelian disease-associated genes were identified in 246 of 1566 patients (15.7%; 95% CI, 14.0%-17.6%), including 198 individuals with mutations in genes associated with cancer susceptibility. Germline findings in cancer susceptibility genes were concordant with the individual's cancer type in only 81 of 198 cases (40.9%; 95% CI, 34.3%-47.9%). In individuals with PPGVs retained in the tumor, somatic alteration of the other allele was seen in 39 of 182 cases (21.4%; 95% CI, 16.1%-28.0%), of which 13 cases did not show a known correlation of the germline mutation and a known syndrome. Mutations in non-cancer-related Mendelian disease genes were seen in 55 of 1566 cases (3.5%; 95% CI, 27.1%-45.4%). Almost every individual had more than 1 variant of uncertain significance (1565 of 1566 patients; 99

  12. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Muratore, Massimo, E-mail: M.Muratore@ed.ac.uk [Institute of Integrated Micro and Nano System, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JF (United Kingdom); Mitchell, Steve [Institute of Molecular Plant Science, School of Biological Science, The University of Edinburgh, Edinburgh EH9 3JF (United Kingdom); Waterfall, Martin [Institute of Immunology and Infection Research, School of Biological Science, The University of Edinburgh, Edinburgh EH9 3JT (United Kingdom)

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  13. Non-multipotent stroma inhibit the proliferation and differentiation of mesenchymal stromal cells in vitro.

    Science.gov (United States)

    Rosu-Myles, Michael; Fair, Joel; Pearce, Nelson; Mehic, Jelica

    2010-10-01

    The ability to expand and maintain bone marrow (BM)-derived mesenchymal stem cells (MSC) in vitro is an important aspect of their therapeutic potential. Despite this, the exact composition of stromal cell types within these cultures and the potential effects of non-stem cells on the maintenance of MSC are poorly understood. C57BL/6J BM stroma was investigated as a model to determine the relationship between MSC and non-multipotent cells in vitro. Whole BM and single-cell derived cultures were characterized using flow cytometry and cell sorting combined with multipotent differentiation. Proliferation of individual stromal populations was evaluated using BrdU. At a single-cell level, MSC were distinguished from committed progenitors, and cells lacking differentiation ability, by the expression of CD105 (CD105+). A 3-fold reduction in the percentage of CD105+ cells was detected after prolonged culture and correlated with loss of MSC. Depletion of CD105+ cells coincided with a 10-20% increase in the frequency of proliferating CD105(-) cells. Removal of CD105(-) stroma caused increased proliferation in CD105+ cells, which could be diminished by conditioned media from parent cultures. Comparison of the multipotent differentiation potential in purified and non-purified CD105+ cells determined that MSC were detectable for at least 3 weeks longer when cultured in the absence of CD105(-) cells. This work identifies a simple model for characterizing the different cellular components present in BM stromal cultures and demonstrates that stromal cells lacking multipotent differentiating capacity greatly reduce the longevity of MSC.

  14. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    International Nuclear Information System (INIS)

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-01-01

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy

  15. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    Science.gov (United States)

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  17. Cancer-germline antigen vaccines and epigenetic enhancers

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Burns, Jorge; Ditzel, Henrik Jorn

    2010-01-01

    IMPORTANCE OF THE FIELD: Immunotherapy holds great potential for disseminated cancer, and cancer-germline (CG) antigens are among the most promising tumor targets. They are widely expressed in different cancer types and are essentially tumor-specific, since their expression in normal tissues is l...

  18. Human germline gene editing: Recommendations of ESHG and ESHRE

    NARCIS (Netherlands)

    de Wert, Guido; Pennings, Guido; Clarke, Angus; Eichenlaub-Ritter, Ursula; van El, Carla G.; Forzano, Francesca; Goddijn, Mariëtte; Heindryckx, Björn; Howard, Heidi C.; Radojkovic, Dragica; Rial-Sebbag, Emmanuelle; Tarlatzis, Basil C.; Cornel, Martina C.

    2018-01-01

    Technological developments in gene editing raise high expectations for clinical applications, first of all for somatic gene editing but in theory also for germline gene editing (GLGE). GLGE is currently not allowed in many countries. This makes clinical applications in these countries impossible

  19. Effects of prenatal exposure to nanoparticles titanium dioxide and carbon black on female germline DNA stability

    DEFF Research Database (Denmark)

    Boisen, Anne Mette Zenner

    Particulate air pollution has been associated with an increased risk of cardiovascular disease and cancer in humans. Air pollution may also adversely affect pregnancy outcome and the integrity of sperm cells DNA. Animal studies have shown that inhalation of air particulates can induce mutations...... in premeiotic sperm cells. The investigation of potential mutagenic risk is of outmost importance, as it may lead to cancer. Furthermore, heritable mutations may be passed on to descendents and thereby pose a permanent genetic risk to the population. The nanosized fraction of particulate air pollution has...... are needed. Expanded simple tandem repeat (ESTR) loci in mice are sensitive markers of mutagenic effects resulting from environmental exposures; Studies on adult mice have revealed that while particulate air pollution induced ESTR mutations in premeiotic sperm cells, the female germline was not affected...

  20. Dietary regulation of developmental programming in ruminants: epigenetic modifications in the germline.

    Science.gov (United States)

    Sinclair, K D; Karamitri, A; Gardner, D S

    2010-01-01

    Ruminants have been utilised extensively to investigate the developmental origins of health and disease, with the sheep serving as the model species of choice to complement dietary studies in the rat and mouse. Surprisingly few studies, however, have investigated delayed effects of maternal undernutrition during pregnancy on adult offspring health and a consistent phenotype, together with underlying mechanistic pathways, has not emerged. Nevertheless, when broad consideration is given to all studies with ruminants it is apparent that interventions that are initiated very early in gestation, and/or prior to conception, lead to greater effects on adult physiology than those that are specifically targeted to late gestation. Effects induced following dietary interventions at the earliest stages of mammalian development have been shown to arise as a consequence of alterations to key epigenetic processes that occur in germ cells and pluripotent embryonic cells. Currently, our understanding of epigenetic programming in the germline is greatest for the mouse, and is considered in detail in this article together with what is known in ruminants. This species imbalance, however, looks set to change as fully annotated genomic maps are developed for domesticated large animal species, and with the advent of 'next-generation' DNA sequencing technologies that have the power to globally map the epigenome at single-base-pair resolution. These developments would help to address such issues as sexually dimorphic epigenetic alterations to DNA methylation that have been found to arise following dietary restrictions during the peri-conceptional period, the effects of paternal nutritional status on epigenetic programming through the germline, and transgenerational studies where, in future, greater emphasis in domesticated ruminants should be placed on traits of agricultural importance.

  1. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids

    Czech Academy of Sciences Publication Activity Database

    Petrenko, Yuriy; Syková, Eva; Kubinová, Šárka

    2017-01-01

    Roč. 8, apr 26 (2017), s. 94 ISSN 1757-6512 R&D Projects: GA MŠk(CZ) LO1309; GA ČR(CZ) GA15-01396S; GA ČR(CZ) GA17-03765S; GA MŠk(CZ) LM2015064 Institutional support: RVO:68378041 Keywords : multipotent mesenchymal stromal cells * three-dimensional spheroids * clinical-grade manufacturing Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 4.211, year: 2016

  2. The adult Drosophila malphigian tubules are maintained by multipotent stem cells | Center for Cancer Research

    Science.gov (United States)

    All animals must excrete the waste products of metabolism. Excretion is performed by the kidney in vertebrates and by the Malpighian tubules in Drosophila. The mammalian kidney has an inherent ability for recovery and regeneration after ischemic injury. Stem cells and progenitor cells have been proposed to be responsible for repair and regeneration of injured renal tissue.

  3. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells

    Directory of Open Access Journals (Sweden)

    Matyunina Lilya V

    2009-12-01

    Full Text Available Abstract Background Accumulating evidence suggests that somatic stem cells undergo mutagenic transformation into cancer initiating cells. The serous subtype of ovarian adenocarcinoma in humans has been hypothesized to arise from at least two possible classes of progenitor cells: the ovarian surface epithelia (OSE and/or an as yet undefined class of progenitor cells residing in the distal end of the fallopian tube. Methods Comparative gene expression profiling analyses were carried out on OSE removed from the surface of normal human ovaries and ovarian cancer epithelial cells (CEPI isolated by laser capture micro-dissection (LCM from human serous papillary ovarian adenocarcinomas. The results of the gene expression analyses were randomly confirmed in paraffin embedded tissues from ovarian adenocarcinoma of serous subtype and non-neoplastic ovarian tissues using immunohistochemistry. Differentially expressed genes were analyzed using gene ontology, molecular pathway, and gene set enrichment analysis algorithms. Results Consistent with multipotent capacity, genes in pathways previously associated with adult stem cell maintenance are highly expressed in ovarian surface epithelia and are not expressed or expressed at very low levels in serous ovarian adenocarcinoma. Among the over 2000 genes that are significantly differentially expressed, a number of pathways and novel pathway interactions are identified that may contribute to ovarian adenocarcinoma development. Conclusions Our results are consistent with the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as the origin of ovarian adenocarcinoma. While our findings do not rule out the possibility that ovarian cancers may also arise from other sources, they are inconsistent with claims that ovarian surface epithelia cannot serve as the origin of ovarian cancer initiating cells.

  4. Germline TERT promoter mutations are rare in familial melanoma

    DEFF Research Database (Denmark)

    Harland, Mark; Petljak, Mia; Robles-Espinoza, Carla Daniela

    2016-01-01

    Germline CDKN2A mutations occur in 40 % of 3-or-more case melanoma families while mutations of CDK4, BAP1, and genes involved in telomere function (ACD, TERF2IP, POT1), have also been implicated in melanomagenesis. Mutation of the promoter of the telomerase reverse transcriptase (TERT) gene (c.-57...... T>G variant) has been reported in one family. We tested for the TERT promoter variant in 675 multicase families wild-type for the known high penetrance familial melanoma genes, 1863 UK population-based melanoma cases and 529 controls. Germline lymphocyte telomere length was estimated in carriers....... The c.-57 T>G TERT promoter variant was identified in one 7-case family with multiple primaries and early age of onset (earliest, 15 years) but not among population cases or controls. One family member had multiple primary melanomas, basal cell carcinomas and a bladder tumour. The blood leukocyte...

  5. Prevalence of deleterious ATM germline mutations in gastric cancer patients.

    Science.gov (United States)

    Huang, Dong-Sheng; Tao, Hou-Quan; He, Xu-Jun; Long, Ming; Yu, Sheng; Xia, Ying-Jie; Wei, Zhang; Xiong, Zikai; Jones, Sian; He, Yiping; Yan, Hai; Wang, Xiaoyue

    2015-12-01

    Besides CDH1, few hereditary gastric cancer predisposition genes have been previously reported. In this study, we discovered two germline ATM mutations (p.Y1203fs and p.N1223S) in a Chinese family with a history of gastric cancer by screening 83 cancer susceptibility genes. Using a published exome sequencing dataset, we found deleterious germline mutations of ATM in 2.7% of 335 gastric cancer patients of different ethnic origins. The frequency of deleterious ATM mutations in gastric cancer patients is significantly higher than that in general population (p=0.0000435), suggesting an association of ATM mutations with gastric cancer predisposition. We also observed biallelic inactivation of ATM in tumors of two gastric cancer patients. Further evaluation of ATM mutations in hereditary gastric cancer will facilitate genetic testing and risk assessment.

  6. Germline Genetic Modification and Identity: the Mitochondrial and Nuclear Genomes.

    Science.gov (United States)

    Scott, Rosamund; Wilkinson, Stephen

    2017-12-01

    In a legal 'first', the UK removed a prohibition against modifying embryos in human reproduction, to enable mitochondrial replacement techniques (MRTs), a move the Government distanced from 'germline genetic modification', which it aligned with modifying the nuclear genome. This paper (1) analyzes the uses and meanings of this term in UK/US legal and policy debates; and (2) evaluates related ethical concerns about identity. It shows that, with respect to identity, MRTs and nuclear genome editing techniques such as CRISPR/Cas-9 (now a policy topic), are not as different as has been supposed. While it does not follow that the two should be treated exactly alike, one of the central reasons offered for treating MRTs more permissively than nuclear genetic modification, and for not regarding MRTs as 'germline genetic modification', is thereby in doubt. Identity cannot, by itself, do the work thus far assigned to it, explicitly or otherwise, in law and policy.

  7. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells

    OpenAIRE

    Braydich-Stolle, Laura; Hussain, Saber; Schlager, John J.; Hofmann, Marie-Claude

    2005-01-01

    Gametogenesis is a complex biological process that is particularly sensitive to environmental insults such as chemicals. Many chemicals have a negative impact on the germline, either by directly affecting the germ cells, or indirectly through their action on the somatic nursing cells. Ultimately, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Recently, nanomaterials such as nanotubes, nanowires, fullerene derivatives (buckyba...

  8. Male germline stem cells in non-human primates

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2017-09-01

    Full Text Available Over the past few decades, several studies have attempted to decipher the biology of mammalian germline stem cells (GSCs. These studies provide evidence that regulatory mechanisms for germ cell specification and migration are evolutionarily conserved across species. The characteristics and functions of primate GSCs are highly distinct from rodent species; therefore the findings from rodent models cannot be extrapolated to primates. Due to limited availability of human embryonic and testicular samples for research purposes, two non-human primate models (marmoset and macaque monkeys are extensively employed to understand human germline development and differentiation. This review provides a broader introduction to the in vivo and in vitro germline stem cell terminology from primordial to differentiating germ cells. Primordial germ cells (PGCs are the most immature germ cells colonizing the gonad prior to sex differentiation into testes or ovaries. PGC specification and migratory patterns among different primate species are compared in the review. It also reports the distinctions and similarities in expression patterns of pluripotency markers (OCT4A, NANOG, SALL4 and LIN28 during embryonic developmental stages, among marmosets, macaques and humans. This review presents a comparative summary with immunohistochemical and molecular evidence of germ cell marker expression patterns during postnatal developmental stages, among humans and non-human primates. Furthermore, it reports findings from the recent literature investigating the plasticity behavior of germ cells and stem cells in other organs of humans and monkeys. The use of non-human primate models would enable bridging the knowledge gap in primate GSC research and understanding the mechanisms involved in germline development. Reported similarities in regulatory mechanisms and germ cell expression profile in primates demonstrate the preclinical significance of monkey models for development of

  9. Germline Variants of Prostate Cancer in Japanese Families.

    Directory of Open Access Journals (Sweden)

    Takahide Hayano

    Full Text Available Prostate cancer (PC is the second most common cancer in men. Family history is the major risk factor for PC. Only two susceptibility genes were identified in PC, BRCA2 and HOXB13. A comprehensive search of germline variants for patients with PC has not been reported in Japanese families. In this study, we conducted exome sequencing followed by Sanger sequencing to explore responsible germline variants in 140 Japanese patients with PC from 66 families. In addition to known susceptibility genes, BRCA2 and HOXB13, we identified TRRAP variants in a mutually exclusive manner in seven large PC families (three or four patients per family. We also found shared variants of BRCA2, HOXB13, and TRRAP from 59 additional small PC families (two patients per family. We identified two deleterious HOXB13 variants (F127C and G132E. Further exploration of the shared variants in rest of the families revealed deleterious variants of the so-called cancer genes (ATP1A1, BRIP1, FANCA, FGFR3, FLT3, HOXD11, MUTYH, PDGFRA, SMARCA4, and TCF3. The germline variant profile provides a new insight to clarify the genetic etiology and heterogeneity of PC among Japanese men.

  10. Cell lineage analysis of the mammalian female germline.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    Full Text Available Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote. We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.

  11. Probing the germline-dependence of epigenetic inheritance using artificial insemination in mice

    Science.gov (United States)

    Bohacek, Johannes; von Werdt, Sarah; Mansuy, Isabelle M.

    2016-01-01

    Abstract We developed a simple, noninvasive artificial insemination technique to study epigenetic germline inheritance in mice. This technique avoids interfering factors introduced by superovulation, surgery, in vitro culture or mating that can confound the transmission of acquired epigenetic information through the germline. Using a stress model, we demonstrate that our method is suited to test the causal involvement of the male germline in transmitting acquired information from father to offspring. PMID:29492284

  12. Deriving multipotent stem cells from mouse spermatogonial stem cells: a new tool for developmental and clinical research

    NARCIS (Netherlands)

    de Rooij, Dirk G.; Mizrak, S. Canan

    2008-01-01

    In recent years, embryonic stem (ES) cell-like cells have been obtained from cultured mouse spermatogonial stem cells (SSCs). These advances have shown that SSCs can transition from being the stem cell-producing cells of spermatogenesis to being multipotent cells that can differentiate into

  13. Parallel germline infiltration of a lentivirus in two Malagasy lemurs.

    Directory of Open Access Journals (Sweden)

    Clément Gilbert

    2009-03-01

    Full Text Available Retroviruses normally infect the somatic cells of their host and are transmitted horizontally, i.e., in an exogenous way. Occasionally, however, some retroviruses can also infect and integrate into the genome of germ cells, which may allow for their vertical inheritance and fixation in a given species; a process known as endogenization. Lentiviruses, a group of mammalian retroviruses that includes HIV, are known to infect primates, ruminants, horses, and cats. Unlike many other retroviruses, these viruses have not been demonstrably successful at germline infiltration. Here, we report on the discovery of endogenous lentiviral insertions in seven species of Malagasy lemurs from two different genera -- Cheirogaleus and Microcebus. Combining molecular clock analyses and cross-species screening of orthologous insertions, we show that the presence of this endogenous lentivirus in six species of Microcebus is the result of one endogenization event that occurred about 4.2 million years ago. In addition, we demonstrate that this lentivirus independently infiltrated the germline of Cheirogaleus and that the two endogenization events occurred quasi-simultaneously. Using multiple proviral copies, we derive and characterize an apparently full length and intact consensus for this lentivirus. These results provide evidence that lentiviruses have repeatedly infiltrated the germline of prosimian species and that primates have been exposed to lentiviruses for a much longer time than what can be inferred based on sequence comparison of circulating lentiviruses. The study sets the stage for an unprecedented opportunity to reconstruct an ancestral primate lentivirus and thereby advance our knowledge of host-virus interactions.

  14. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    Science.gov (United States)

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  15. Germ-line gene therapy and the medical imperative.

    Science.gov (United States)

    Munson, Ronald; Davis, Lawrence H

    1992-06-01

    Somatic cell gene therapy has yielded promising results. If germ cell gene therapy can be developed, the promise is even greater: hundreds of genetic diseases might be virtually eliminated. But some claim the procedure is morally unacceptable. We thoroughly and sympathetically examine several possible reasons for this claim but find them inadequate. There is no moral reason, then, not to develop and employ germ-line gene therapy. Taking the offensive, we argue next that medicine has a prima facie moral obligation to do so.

  16. Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia

    DEFF Research Database (Denmark)

    Garbe, James C; Pepin, Francois; Pelissier, Fanny A

    2012-01-01

    of the cellular and molecular mechanisms that underlies these observations is lacking. In this study, we generated a large collection of normal human mammary epithelial cell strains from women ages 16 to 91 years, derived from primary tissues, to investigate the molecular changes that occur in aging breast cells....... We found that in finite lifespan cultured and uncultured epithelial cells, aging is associated with a reduction of myoepithelial cells and an increase in luminal cells that express keratin 14 and integrin-a6, a phenotype that is usually expressed exclusively in myoepithelial cells in women younger...... than 30 years. Changes to the luminal lineage resulted from age-dependent expansion of defective multipotent progenitors that gave rise to incompletely differentiated luminal or myoepithelial cells. The aging process therefore results in both a shift in the balance of luminal/myoepithelial lineages...

  17. In vitro studies on the radiosensitivity of multipotent hemopoietic progenitors in canine bone marrow

    International Nuclear Information System (INIS)

    Kreja, L.; Weinsheimer, W.; Nothdurft, W.

    1991-01-01

    The in vitro radiation response to 280-kV x-rays (does rate 72 cGy/min) of multipotent hemopoietic progenitor cells, mixed colony-forming units (CFU-mix), from canine bone marrow was assayed and compared to the radiation response characteristics of early erythroid progenitors, erythroid burst-forming units (BFU-E). To improve the colony-forming efficiency, the effect of various bone marrow cell separation techniques on colony formation of both progenitors was examined. The separation of bone marrow aspirates by discontinuous buoyant gradient centrifugation using the lymphocyte separation medium Lymphoprep with a density of 1.070 g/ml allowed the establishment of reproducible survival curves. The survival curves for both progenitors were strictly exponential, and CFU-mix were found to be more radiosensitive (D0 = 12 ± 2 cGy) than BFU-E (D0 = 16 ± 2 cGy)

  18. Yolk sac mesenchymal progenitor cells from New World mice (Necromys lasiurus with multipotent differential potential.

    Directory of Open Access Journals (Sweden)

    Phelipe Oliveira Favaron

    Full Text Available Fetal membranes are abundant, ethically acceptable and readily accessible sources of stem cells. In particular, the yolk sac is a source of cell lineages that do not express MHCs and are mainly free from immunological incompatibles when transferred to a recipient. Although data are available especially for hematopoietic stem cells in mice and human, whereas other cell types and species are dramatically underrepresented. Here we studied the nature and differentiation potential of yolk sac derived mesenchymal stem cells from a New World mouse, Necromys lasiurus. Explants from mid-gestation were cultured in DMEM-High glucose medium with 10% defined fetal bovine serum. The cells were characterized by standard methods including immunophenotyping by fluorescence and flow cytometry, growth and differentiation potential and tumorigenicity assays. The first adherent cells were observed after 7 days of cell culture and included small, elongated fibroblast-like cells (92.13% and large, round epithelial-like cells with centrally located nuclei (6.5%. Only the fibroblast-like cells survived the first passages. They were positive to markers for mesenchymal stem cells (Stro-1, CD90, CD105, CD73 and pluripotency (Oct3/4, Nanog as well as precursors of hematopoietic stem cells (CD117. In differentiation assays, they were classified as a multipotent lineage, because they differentiated into osteogenic, adipogenic, and chondrogenic lineages and, finally, they did not develop tumors. In conclusion, mesenchymal progenitor cells with multipotent differentiation potential and sufficient growth and proliferation abilities were able to be obtained from Necromys yolk sacs, therefore, we inferred that these cells may be promising for a wide range of applications in regenerative medicine.

  19. Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells.

    Science.gov (United States)

    Nitta, Masahiro; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Masuda, Maki; Akatsuka, Akira; Hoshi, Akio; Usui, Yukio; Terachi, Toshiro

    2010-05-15

    BACKGROUND.: Postoperative neurogenic bladder dysfunction is a major complication of radical hysterectomy for cervical cancer and is mainly caused by unavoidable damage to the bladder branch of the pelvic plexus (BBPP) associated with colateral blood vessels. Thus, we attempted to reconstitute disrupted BBPP and blood vessels using skeletal muscle-derived multipotent stem cells that show synchronized reconstitution capacity of vascular, muscular, and peripheral nervous systems. METHODS.: Under pentobarbital anesthesia, intravesical pressure by electrical stimulation of BBPP was measured as bladder function. The distal portion of BBPP with blood vessels was then cut unilaterally (experimental neurogenic bladder model). Measurements were performed before, immediately after, and at 4 weeks after transplantation as functional recovery. Stem cells were obtained from the right soleus and gastrocnemius muscles after enzymatic digestion and cell sorting as CD34/45 (Sk-34) and CD34/45 (Sk-DN). Suspended cells were autografted around the damaged region, whereas medium alone and CD45 cells were transplanted as control groups. To determine the morphological contribution of the transplanted cells, stem cells obtained from green fluorescent protein transgenic mouse muscles were transplanted into a nude rat model and were examined by immunohistochemistry and immunoelectron microscopy. RESULTS.: At 4 weeks after surgery, the transplantation group showed significantly higher functional recovery ( approximately 80%) than the two controls ( approximately 28% and 24%). The transplanted cells showed an incorporation into the damaged peripheral nerves and blood vessels after differentiation into Schwann cells, perineurial cells, vascular smooth muscle cells, pericytes, and fibroblasts around the bladder. CONCLUSION.: Transplantation of multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of damaged BBPP.

  20. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    Directory of Open Access Journals (Sweden)

    Di Liddo R

    2016-10-01

    Full Text Available Rosa Di Liddo,1,2 Paola Aguiari,3 Silvia Barbon,1,2 Thomas Bertalot,1 Amit Mandoli,1 Alessia Tasso,1 Sandra Schrenk,1 Laura Iop,3 Alessandro Gandaglia,3 Pier Paolo Parnigotto,2 Maria Teresa Conconi,1,2 Gino Gerosa31Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 2Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, 3Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy Abstract: Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC on acellular aortic (AVL and pulmonary (PVL valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary

  1. Genetic Basis for Developmental Homeostasis of Germline Stem Cell Niche Number: A Network of Tramtrack-Group Nuclear BTB Factors

    Science.gov (United States)

    Chalvet, Fabienne; Netter, Sophie; Dos Santos, Nicolas; Poisot, Emilie; Paces-Fessy, Mélanie; Cumenal, Delphine; Peronnet, Frédérique; Pret, Anne-Marie; Théodore, Laurent

    2012-01-01

    The potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC) niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs), each made of 8–10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab) locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches. PMID:23185495

  2. Germline Hypermethylation of MLH1 and EPCAM Deletions Are a Frequent Cause of Lynch Syndrome

    NARCIS (Netherlands)

    Niessen, Renee C.; Hofstra, Robert M. W.; Westers, Helga; Ligtenberg, Marjolijn J. L.; Kooi, Krista; Jager, Paul O. J.; de Groote, Marloes L.; Dijkhuizen, Trijnie; Olderode-Berends, Maran J. W.; Hollema, Harry; Kleibeuker, Jan H.; Sijmons, Rolf H.

    It was shown that Lynch syndrome can be caused by germline hypermethylation of the MLH1 and MSH2 promoters. Furthermore, it has been demonstrated very recently that germline deletions of the 3' region of EPCAM cause transcriptional read-through which results in silencing of MSH2 by hypermethylation.

  3. Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome.

    NARCIS (Netherlands)

    Niessen, R.C.; Hofstra, R.M.; Westers, H.; Ligtenberg, M.J.L.; Kooi, K.; Jager, P.O.; Groote, M.L. de; Dijkhuizen, T.; Olderode-Berends, M.J.; Hollema, H.; Kleibeuker, J.H.; Sijmons, R.H.

    2009-01-01

    It was shown that Lynch syndrome can be caused by germline hypermethylation of the MLH1 and MSH2 promoters. Furthermore, it has been demonstrated very recently that germline deletions of the 3' region of EPCAM cause transcriptional read-through which results in silencing of MSH2 by hypermethylation.

  4. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia

    NARCIS (Netherlands)

    Georgitsi, Marianthi; Raitila, Anniina; Karhu, Auli; van der Luijt, Rob B.; Aalfs, Cora M.; Sane, Timo; Vierimaa, Outi; Mäkinen, Markus J.; Tuppurainen, Karoliina; Paschke, Ralph; Gimm, Oliver; Koch, Christian A.; Gündogdu, Sadi; Lucassen, Anneke; Tischkowitz, Marc; Izatt, Louise; Aylwin, Simon; Bano, Gul; Hodgson, Shirley; de Menis, Ernesto; Launonen, Virpi; Vahteristo, Pia; Aaltonen, Lauri A.

    2007-01-01

    Germline mutations in the MEN1 gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome, but in up to 20-25% of clinical MEN1 cases, no MEN1 mutations can be found. Recently, a germline mutation in the CDKN1B gene, encoding p27(Kip1), was reported in one suspected MEN1 family with two

  5. C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Michael TeKippe

    2010-07-01

    Full Text Available Reproduction extracts a cost in resources that organisms are then unable to utilize to deal with a multitude of environmental stressors. In the nematode C. elegans, development of the germline shortens the lifespan of the animal and increases its susceptibility to microbial pathogens. Prior studies have demonstrated germline-deficient nematodes to have increased resistance to gram negative bacteria. We show that germline-deficient strains display increased resistance across a broad range of pathogens including gram positive and gram negative bacteria, and the fungal pathogen Cryptococcus neoformans. Furthermore, we show that the FOXO transcription factor DAF-16, which regulates longevity and immunity in C. elegans, appears to be crucial for maintaining longevity in both wild-type and germline-deficient backgrounds. Our studies indicate that germline-deficient mutants glp-1 and glp-4 respond to pathogen infection using common and different mechanisms that involve the activation of DAF-16.

  6. Selfish genetic elements favor the evolution of a distinction between soma and germline.

    Science.gov (United States)

    Johnson, Louise J

    2008-08-01

    Many multicellular organisms have evolved a dedicated germline. This can benefit the whole organism, but its advantages to genetic parasites have not been explored. Here I model the evolutionary success of a selfish element, such as a transposable element or endosymbiont, which is capable of creating or strengthening a germline-soma distinction in a primitively multicellular host, and find that it will always benefit the element to do so. Genes causing germline sequestration can therefore spread in a population even if germline sequestration is maladaptive for the host organism. Costly selfish elements are expected to survive only in sexual populations, so sexual species may experience an additional push toward germline-soma distinction, and hence toward cell differentiation and multicellularity.

  7. Immunoregulatory effect of evodiamine in mice of various germlines.

    Science.gov (United States)

    Hu, Hai-Yan; Song, Zhao-Yang; Deng, Lan; Zhang, Mei-Xia

    2008-08-01

    The aim of this study was to investigate the effect of evodiamine on the proliferation and the immune function of thymocytes and splenocyte of mice from three germlines, which were 8 weeks old masculinity BALB/c, C57BL/6 and F1 hybridization mice. Cells of thymus and spleen were harvested and prepared as unicellular suspension. Cell proliferation was detected by MTT method, while the concentration of IL-2 was detected by ELISA, mRNA levels of bcl-2 and cdk2 in cells treated with evodiamine were detected by RT-PCR, the apoptosis rate and intracellular reactive oxygen species (ROS) concentration were analyzed by FCM, and the protein levels of BCL-2, CDK2 and BAX were determined by fluorescence microscope. The results indicated that at 0.5, 0.75 and 1 micromol/L, evodiamine inhibited the proliferation and externalization of thymocytes and splenocytes stimulated with ConA (p rate increased at a prolong period of time. After treatment with evodiamine for 24 and 48 hours, the cells were divided into two groups, one of which was negatively stained by 2 7-dichlorofluorescein (DCF), which indicated that ROS level decreased significantly in the dying cells. It is concluded that evodiamine inhibits proliferation and induces apoptosis of thymocytes and splenocytes from different germline mice, and at the same time decreases secretion of IL-2 through down-regulating bcl-2 and cdk2 levels.

  8. Foxn1[Cre] Expression in the Male Germline.

    Science.gov (United States)

    Shi, Jianjun; Getun, Irina; Torres, Bivian; Petrie, Howard T

    2016-01-01

    Foxn1 (forkhead box N1), also known as the nude gene or winged-helix nude (Whn), is a forkhead transcription factor thought to be restricted to keratinocytes in the skin and thymus. Consistent with this tissue distribution, spontaneous or targeted mutation of Foxn1 results in the absence of both hair and a thymus. Genetic manipulation of the Foxn1 locus thus represents a powerful tool for tissue specific gene control in the skin and thymus, and tools such as Cre recombinase under control of the Foxn1 locus are widely used for this purpose. Unexpectedly, we show that Foxn1[Cre] exhibits unexpected activity in male germ cells, resulting in ubiquitous targeting of loxP-flanked alleles in all tissues in offspring from Foxn1[Cre] expressing male mice. Inheritance of recombined loxP alleles occurs independently of Cre inheritance (i.e., offspring lacking Cre nonetheless exhibit recombined alleles), suggesting that Foxn1[Cre] induced recombination in male germ cells must occur prior to meiosis in diploid germ cells. Together with previously published data, our results show that Foxn1, and alleles under its control, are expressed in the pre-meiotic male germline, revealing a new tool for germline targeting of genes, and raising important concerns for gender selection when using Foxn1 regulatory elements.

  9. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells.

    Science.gov (United States)

    Braydich-Stolle, Laura; Hussain, Saber; Schlager, John J; Hofmann, Marie-Claude

    2005-12-01

    Gametogenesis is a complex biological process that is particularly sensitive to environmental insults such as chemicals. Many chemicals have a negative impact on the germline, either by directly affecting the germ cells, or indirectly through their action on the somatic nursing cells. Ultimately, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Recently, nanomaterials such as nanotubes, nanowires, fullerene derivatives (buckyballs), and quantum dots have received enormous national attention in the creation of new types of analytical tools for biotechnology and the life sciences. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health and the environment. Thus, there are limited studies available on toxicity of nanoparticles for risk assessment of nanomaterials. The purpose of this study was to assess the suitability of a mouse spermatogonial stem cell line as a model to assess nanotoxicity in the male germline in vitro. The effects of different types of nanoparticles on these cells were evaluated by light microscopy, and by cell proliferation and standard cytotoxicity assays. Our results demonstrate a concentration-dependent toxicity for all types of particles tested, whereas the corresponding soluble salts had no significant effect. Silver nanoparticles were the most toxic while molybdenum trioxide (MoO(3)) nanoparticles were the least toxic. Our results suggest that this cell line provides a valuable model with which to assess the cytotoxicity of nanoparticles in the germ line in vitro.

  10. Germline contamination and leakage in whole genome somatic single nucleotide variant detection.

    Science.gov (United States)

    Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C

    2018-01-31

    The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.

  11. The PiGeOn project: protocol of a longitudinal study examining psychosocial and ethical issues and outcomes in germline genomic sequencing for cancer.

    Science.gov (United States)

    Best, Megan; Newson, Ainsley J; Meiser, Bettina; Juraskova, Ilona; Goldstein, David; Tucker, Kathy; Ballinger, Mandy L; Hess, Dominique; Schlub, Timothy E; Biesecker, Barbara; Vines, Richard; Vines, Kate; Thomas, David; Young, Mary-Anne; Savard, Jacqueline; Jacobs, Chris; Butow, Phyllis

    2018-04-23

    Advances in genomics offer promise for earlier detection or prevention of cancer, by personalisation of medical care tailored to an individual's genomic risk status. However genome sequencing can generate an unprecedented volume of results for the patient to process with potential implications for their families and reproductive choices. This paper describes a protocol for a study (PiGeOn) that aims to explore how patients and their blood relatives experience germline genomic sequencing, to help guide the appropriate future implementation of genome sequencing into routine clinical practice. We have designed a mixed-methods, prospective, cohort sub-study of a germline genomic sequencing study that targets adults with cancer suggestive of a genetic aetiology. One thousand probands and 2000 of their blood relatives will undergo germline genomic sequencing as part of the parent study in Sydney, Australia between 2016 and 2020. Test results are expected within12-15 months of recruitment. For the PiGeOn sub-study, participants will be invited to complete surveys at baseline, three months and twelve months after baseline using self-administered questionnaires, to assess the experience of long waits for results (despite being informed that results may not be returned) and expectations of receiving them. Subsets of both probands and blood relatives will be purposively sampled and invited to participate in three semi-structured qualitative interviews (at baseline and each follow-up) to triangulate the data. Ethical themes identified in the data will be used to inform critical revisions of normative ethical concepts or frameworks. This will be one of the first studies internationally to follow the psychosocial impact on probands and their blood relatives who undergo germline genome sequencing, over time. Study results will inform ongoing ethical debates on issues such as informed consent for genomic sequencing, and informing participants and their relatives of specific

  12. Germ cell transplantation using sexually competent fish: an approach for rapid propagation of endangered and valuable germlines.

    Directory of Open Access Journals (Sweden)

    Sullip K Majhi

    Full Text Available The transplantation of germ cells into adult recipient gonads is a tool with wide applications in animal breeding and conservation of valuable and/or endangered species; it also provides a means for basic studies involving germ cell (GC proliferation and differentiation. Here we describe the establishment of a working model for xenogeneic germ cell transplantation (GCT in sexually competent fish. Spermatogonial cells isolated from juveniles of one species, the pejerrey Odontesthes bonariensis (Atherinopsidae, were surgically transplanted into the gonads of sexually mature Patagonian pejerrey O. hatcheri, which have been partially depleted of endogenous GCs by a combination of Busulfan (40 mg/kg and high water temperature (25 degrees C treatments. The observation of the donor cells' behavior showed that transplanted spermatogonial cells were able to recolonize the recipients' gonads and resume spermatogenesis within 6 months from the GCT. The presence of donor-derived gametes was confirmed by PCR in 20% of the surrogate O. hatcheri fathers at 6 months and crosses with O. bonariensis mothers produced hybrids and pure O. bonariensis, with donor-derived germline transmission rates of 1.2-13.3%. These findings indicate that transplantation of spermatogonial cells into sexually competent fish can shorten considerably the production time of donor-derived gametes and offspring and could play a vital role in germline conservation and propagation of valued and/or endangered fish species.

  13. Effect of BRCA germline mutations on breast cancer prognosis

    Science.gov (United States)

    Baretta, Zora; Mocellin, Simone; Goldin, Elena; Olopade, Olufunmilayo I.; Huo, Dezheng

    2016-01-01

    Abstract Background: The contribution of BRCA germline mutational status to breast cancer patients’ prognosis is unclear. We aimed to systematically review and perform meta-analysis of the available evidence of effects of BRCA germline mutations on multiple survival outcomes of breast cancer patients as a whole and in specific subgroups of interest, including those with triple negative breast cancer, those with Ashkenazi Jewish ancestry, and patients with stage I–III disease. Methods: Sixty studies met all inclusion criteria and were considered for this meta-analysis. These studies involved 105,220 breast cancer patients, whose 3588 (3.4%) were BRCA mutations carriers. The associations between BRCA genes mutational status and overall survival (OS), breast cancer-specific survival (BCSS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) were evaluated using random-effect models. Results: BRCA1 mutation carriers have worse OS than BRCA-negative/sporadic cases (hazard ratio, HR 1.30, 95% CI: 1.11–1.52) and worse BCSS than sporadic/BRCA-negative cases among patients with stage I–III breast cancer (HR 1.45, 95% CI: 1.01–2.07). BRCA2 mutation carriers have worse BCSS than sporadic/BRCA-negative cases (HR 1.29, 95% CI: 1.03–1.62), although they have similar OS. Among triple negative breast cancer, BRCA1/2 mutations carriers had better OS than BRCA-negative counterpart (HR 0.49, 95% CI: 0.26–0.92). Among Ashkenazi Jewish women, BRCA1/2 mutations carriers presented higher risk of death from breast cancer (HR 1.44, 95% CI: 1.05–1.97) and of distant metastases (HR 1.82, 95% CI: 1.05–3.16) than sporadic/BRCA-negative patients. Conclusion: Our results support the evaluation of BRCA mutational status in patients with high risk of harboring BRCA germline mutations to better define the prognosis of breast cancer in these patients. PMID:27749552

  14. Human germline hedgehog pathway mutations predispose to fatty liver.

    Science.gov (United States)

    Guillen-Sacoto, Maria J; Martinez, Ariel F; Abe, Yu; Kruszka, Paul; Weiss, Karin; Everson, Joshua L; Bataller, Ramon; Kleiner, David E; Ward, Jerrold M; Sulik, Kathleen K; Lipinski, Robert J; Solomon, Benjamin D; Muenke, Maximilian

    2017-10-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2 +/- ) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2 +/- mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2 +/- mice exposed to a high-fat diet. Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous

  15. Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.

    Science.gov (United States)

    Wang, Xiaoxi; Page-McCaw, Andrea

    2018-02-07

    Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. © 2018. Published by The Company of Biologists Ltd.

  16. Common germline polymorphisms associated with breast cancer-specific survival

    DEFF Research Database (Denmark)

    Pirie, Ailith; Guo, Qi; Kraft, Peter

    2015-01-01

    in the meta-analysis. Fifty-four of these were evaluated in the full set of 37,954 breast cancer cases with 2,900 events and the two additional variants were evaluated in a reduced sample size of 30,000 samples in order to ensure independence from the previously published studies. Five variants reached...... evaluated in the pooled analysis of over 37,000 breast cancer cases for association with breast cancer-specific survival. Previous associations were evaluated using a one-sided test based on the reported direction of effect. RESULTS: Fifty-six variants from 45 previous publications were evaluated......-specific survival using data from a pooled analysis of eight breast cancer survival genome-wide association studies (GWAS) from the Breast Cancer Association Consortium. METHODS: A literature review was conducted of all previously published associations between common germline variants and three survival outcomes...

  17. Lynch Syndrome Caused by Germline PMS2 Mutations

    DEFF Research Database (Denmark)

    Ten Broeke, Sanne W; Brohet, Richard M; Tops, Carli M

    2015-01-01

    PURPOSE: The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. METHODS: Data were collected from 98...... PMS2 families ascertained from family cancer clinics that included a total of 2,548 family members and 377 proven mutation carriers. To adjust for potential ascertainment bias, a modified segregation analysis model was used to calculate colorectal cancer (CRC) and endometrial cancer (EC) risks....... Standardized incidence ratios (SIRs) were calculated to estimate risks for other Lynch syndrome-associated cancers. RESULTS: The cumulative risk (CR) of CRC for male mutation carriers by age 70 years was 19%. The CR among female carriers was 11% for CRC and 12% for EC. The mean age of CRC development was 52...

  18. Production of Reactive Oxygen Species by Multipotent Stromal Cells/Mesenchymal Stem Cells Upon Exposure to Fas Ligand

    OpenAIRE

    Rodrigues, Melanie; Turner, Omari; Stolz, Donna; Griffith, Linda G.; Wells, Alan

    2011-01-01

    Multipotent stromal cells (MSCs) can be differentiated into osteoblasts and chondrocytes, making these cells candidates to regenerate cranio-facial injuries and lesions in long bones. A major problem with cell replacement therapy, however, is the loss of transplanted MSCs at the site of graft. Reactive oxygen species (ROS) and nonspecific inflammation generated at the ischemic site have been hypothesized to lead to MSCs loss; studies in vitro show MSCs dying both in the presence of ROS or cyt...

  19. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells.

    Science.gov (United States)

    Prescott, Hilary M A; Manning, Craig; Gardner, Aaron; Ritchie, William A; Pizzi, Romain; Girling, Simon; Valentine, Iain; Wang, Chengdong; Jahoda, Colin A B

    2015-01-01

    Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP) cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D) skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca); red panda (Ailurus fulgens); and Asiatic lion (Panthera leo persica). m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF) cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of sample numbers

  20. Giant Panda (Ailuropoda melanoleuca Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Hilary M A Prescott

    Full Text Available Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca; red panda (Ailurus fulgens; and Asiatic lion (Panthera leo persica. m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of

  1. Germline transformation of the Mediterranean fruit fly, Ceratitis capitata

    International Nuclear Information System (INIS)

    McCombs, Susan D.

    2000-01-01

    Gene transfer methodology for insects was first developed in Drosophila melanogaster Meigen using a transposon-mediated system based on the P element (Spradling and Rubin 1982, Rubin and Spradling 1982). In addition to the P element, three unrelated transposons have been used successfully in genetic transformation of D. melanogaster: hobo (Blackman et al. 1989), Minos (Loukeris et al. 1992), and mariner (Lidholm et al. 1993). Routine gene transfer in Drosophila created a great deal of optimism amongst researchers who sought to employ transgenic techniques in other arthropods. However, what followed were years of consistently disappointing results in other insect species. For example, the P element system was tried unsuccessfully in several species, but was eventually shown to be non-functional outside the genus Drosophila (O'Brochta and Handler 1988). Ensuing research in non-drosophilids emphasised testing of other Drosophila systems and development of transposons isolated from other species. After nearly 15 years of intensive effort, the first successes have only recently been reported. Three Drosophila-derived transposon-based systems: hobo from D. melanogaster, mariner from Drosophila mauritiana Tsacas and David and Minos from Drosophila hydei Sturtevant have produced germline transformation in Drosophila virilis Sturtevant (Gomez and Handler 1997, Lozovskaya et al. 1996), Aedes aegypti L. (Coates et al. 1998), and Ceratitis capitata (Wied.) (Loukeris et al. 1995), respectively. Germline transformation was accomplished with two transposon-based systems from non-drosophilids, Hermes from Musca domestica L. and piggyBac from Trichoplusia ni Huebner in A. aegypti and C. capitata, respectively

  2. E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells.

    Directory of Open Access Journals (Sweden)

    Mayu Inaba

    2010-08-01

    Full Text Available Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs are attached to niche component cells (i.e., the hub via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.

  3. Bone marrow-derived multipotent mesenchymal stromal cells from horses after euthanasia.

    Science.gov (United States)

    Schröck, Carmen; Eydt, Carina; Geburek, Florian; Kaiser, Lena; Päbst, Felicitas; Burk, Janina; Pfarrer, Christiane; Staszyk, Carsten

    2017-11-01

    Allogeneic equine multipotent mesenchymal stromal cells (eMSCs) have been proposed for use in regenerative therapies in veterinary medicine. A source of allogeneic eMSCs might be the bone marrow from euthanized horses. The purpose of this study was to compare in vitro characteristics of equine bone marrow derived eMSC (eBM-MSCs) from euthanized horses (eut-MSCs) and from narcotized horses (nar-MSCs). Eut-MSCs and nar-MSCs showed typical eMSC marker profiles (positive: CD44, CD90; negative: CD11a/CD18 and MHCII) and possessed tri-lineage differentiation characteristics. Although CD105 and MHCI expression varied, no differences were detected between eut-MSCs and nar-MSCs. Proliferation characteristics did not differ between eut-MSCs and nar-MSCs, but age dependent decrease in proliferation and increase in MHCI expression was detected. These results suggest the possible use of eut-MSCs for therapeutic applications and production of commercial available eBM-MSC products.

  4. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Naoya; Yamada, Shigeru [Division of Pharmacology, National Institute of Health Sciences (Japan); Asanagi, Miki [Division of Pharmacology, National Institute of Health Sciences (Japan); Faculty of Engineering, Department of Materials Science and Engineering, Yokohama National University (Japan); Sekino, Yuko [Division of Pharmacology, National Institute of Health Sciences (Japan); Kanda, Yasunari, E-mail: kanda@nihs.go.jp [Division of Pharmacology, National Institute of Health Sciences (Japan)

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  5. Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging.

    Science.gov (United States)

    Young, Kira; Borikar, Sneha; Bell, Rebecca; Kuffler, Lauren; Philip, Vivek; Trowbridge, Jennifer J

    2016-10-17

    Declining immune function with age is associated with reduced lymphoid output of hematopoietic stem cells (HSCs). Currently, there is poor understanding of changes with age in the heterogeneous multipotent progenitor (MPP) cell compartment, which is long lived and responsible for dynamically regulating output of mature hematopoietic cells. In this study, we observe an early and progressive loss of lymphoid-primed MPP cells (LMPP/MPP4) with aging, concomitant with expansion of HSCs. Transcriptome and in vitro functional analyses at the single-cell level reveal a concurrent increase in cycling of aging LMPP/MPP4 with loss of lymphoid priming and differentiation potential. Impaired lymphoid differentiation potential of aged LMPP/MPP4 is not rescued by transplantation into a young bone marrow microenvironment, demonstrating cell-autonomous changes in the MPP compartment with aging. These results pinpoint an age and cellular compartment to focus further interrogation of the drivers of lymphoid cell loss with aging. © 2016 Young et al.

  6. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    Science.gov (United States)

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  7. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells.

    Science.gov (United States)

    Korytnikov, Roman; Nostro, Maria Cristina

    2016-05-15

    Generation of pancreatic β-cells from human pluripotent stem cells (hPSCs) has enormous importance in type 1 diabetes (T1D), as it is fundamental to a treatment strategy based on cellular therapeutics. Being able to generate β-cells, as well as other mature pancreatic cells, from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) will also enable the development of platforms that can be used for disease modeling and drug testing for a variety of pancreas-associated diseases, including cystic fibrosis. For this to occur, it is crucial to develop differentiation strategies that are robust and reproducible across cell lines and laboratories. In this article we describe two serum-free differentiation protocols designed to generate specific pancreatic lineages from hPSCs. Our approach employs a variety of cytokines and small molecules to mimic developmental pathways active during pancreatic organogenesis and allows for the in vitro generation of distinct pancreatic populations. The first protocol is designed to give rise to polyhormonal cells that have the potential to differentiate into glucagon-producing cells. The second protocol is geared to generate multipotent pancreatic progenitor cells, which harbor the potential to generate all pancreatic lineages including: monohormonal endocrine cells, acinar, and ductal cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Isolation and characterization of equine peripheral blood-derived multipotent mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Armando de M. Carvalho

    2013-09-01

    Full Text Available The objective of the study was to isolate, cultivate and characterize equine peripheral blood-derived multipotent mesenchymal stromal cells (PbMSCs. Peripheral blood was collected, followed by the isolation of mononuclear cells using density gradient reagents, and the cultivation of adherent cells. Monoclonal mouse anti-horse CD13, mouse anti-horse CD44, and mouse anti-rat CD90 antibodies were used for the immunophenotypic characterization of the surface of the PbMSCs. These cells were also cultured in specific media for adipogenic and chondrogenic differentiation. There was no expression of the CD13 marker, but CD44 and CD90 were expressed in all of the passages tested. After 14 days of cell differentiation into adipocytes, lipid droplets were observed upon Oil Red O (ORO staining. Twenty-one days after chondrogenic differentiation, the cells were stained with Alcian Blue. Although the technique for the isolation of these cells requires improvement, the present study demonstrates the partial characterization of PbMSCs, classifying them as a promising type of progenitor cells for use in equine cell therapy.

  9. [Long-term expansion of multipotent mesenchymal stromal cells under reduced oxygen tension].

    Science.gov (United States)

    Rylova, Iu V; Buravkova, L B

    2013-01-01

    We have shown that the decrease in oxygen tension in the culture medium of multipotent mesenchymal stromal cells (MMSCs) results in a short-term reduction in the proportion of CD73(+)-cells in the population, without effecting the number of cells expressing other constitutive surface markers (CD90 and CD105). In this case, the heterogeneity of the cell population declined: large spread cells disappeared. The proliferative activity of MMSCs significantly increased and remained stable in conditions in which the oxygen content was close to the tissue oxygen levels (5% O2). At lower oxygen concentration, proliferative activity of the cells gradually reduced from passages 3-4. The increase in proliferative activity was not accompanied by increased expression of telomerase gene indicateding the alsance of cell transformation. However, genome-wide analysis of MMSC gene expression level revealed changes in expression of cyclins (CCND2 and PCNA), regulatory subunit cyclin-dependent kinase (CKS2) and an inhibitor of cyclin-dependent kinase (CDKN2C), regulating the cell cycle, which is obviously facilitated the increase in the proliferative capacity of cells at lower oxygen tension.

  10. Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells.

    Science.gov (United States)

    Buravkova, L B; Rylova, Y V; Andreeva, E R; Kulikov, A V; Pogodina, M V; Zhivotovsky, B; Gogvadze, V

    2013-10-01

    Multipotent mesenchymal stromal cells (MMSCs) are minimally differentiated precursors with great potential to transdifferentiate. These cells are quite resistant to oxygen limitation, suggesting that a hypoxic milieu can be physiological for MMSCs. Human MMSCs isolated from adipose tissue were grown at various oxygen concentrations. Alteration in cell immunophenotype was determined by flow cytometry after staining with specific antibodies. Concentrations of glucose and lactate were determined using the Biocon colorimetric test. Cellular respiration was assessed using oxygen electrode. The modes of cell death were analyzed by flow cytometry after staining with Annexin V and propidium iodide. We found that permanent oxygen deprivation attenuated cellular ATP levels in these cells, diminishing mitochondrial ATP production but stimulating glycolytic ATP production. At the same time, permanent hypoxia did not affect MMSCs' viability, stimulated their proliferation and reduced their capacity to differentiate. Further, permanent hypoxia decreased spontaneous cell death by MMSCs. Under hypoxic conditions glycolysis provides sufficient energy to maintain MMSCs in an uncommitted state. These findings are of interest not only for scientific reasons, but also in practical terms. Oxygen concentration makes an essential contribution to MMSC physiology and should be taken into account in the setting of protocols for cellular therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    International Nuclear Information System (INIS)

    Hirata, Naoya; Yamada, Shigeru; Asanagi, Miki; Sekino, Yuko; Kanda, Yasunari

    2016-01-01

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  12. MLL-ENL cooperates with SCF to transform primary avian multipotent cells.

    Science.gov (United States)

    Schulte, Cathleen E; von Lindern, Marieke; Steinlein, Peter; Beug, Hartmut; Wiedemann, Leanne M

    2002-08-15

    The MLL gene is targeted by chromosomal translocations, which give rise to heterologous MLL fusion proteins and are associated with distinct types of acute lymphoid and myeloid leukaemia. To determine how MLL fusion proteins alter the proliferation and/or differentiation of primary haematopoietic progenitors, we introduced the MLL-AF9 and MLL-ENL fusion proteins into primary chicken bone marrow cells. Both fusion proteins caused the sustained outgrowth of immature haematopoietic cells, which was strictly dependent on stem cell factor (SCF). The renewing cells have a long in vitro lifespan exceeding the Hayflick limit of avian cells. Analysis of clonal cultures identified the renewing cells as immature, multipotent progenitors, expressing erythroid, myeloid, lymphoid and stem cell surface markers. Employing a two-step commitment/differentiation protocol involving the controlled withdrawal of SCF, the MLL-ENL-transformed progenitors could be induced to terminal erythroid or myeloid differentiation. Finally, in cooperation with the weakly leukaemogenic receptor tyrosine kinase v-Sea, the MLL-ENL fusion protein gave rise to multilineage leukaemia in chicks, suggesting that other activated, receptor tyrosine kinases can substitute for ligand-activated c-Kit in vivo.

  13. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Handgretinger Rupert

    2010-01-01

    Full Text Available Abstract Background Human multipotent mesenchymal stromal cells (MSC can be isolated from various tissues including bone marrow. Here, MSC participate as bone lining cells in the formation of the hematopoietic stem cell niche. In this compartment, the oxygen tension is low and oxygen partial pressure is estimated to range from 1% to 7%. We analyzed the effect of low oxygen tensions on human MSC cultured with platelet-lysate supplemented media and assessed proliferation, morphology, chromosomal stability, immunophenotype and plasticity. Results After transferring MSC from atmospheric oxygen levels of 21% to 1%, HIF-1α expression was induced, indicating efficient oxygen reduction. Simultaneously, MSC exhibited a significantly different morphology with shorter extensions and broader cell bodies. MSC did not proliferate as rapidly as under 21% oxygen and accumulated in G1 phase. The immunophenotype, however, was unaffected. Hypoxic stress as well as free oxygen radicals may affect chromosomal stability. However, no chromosomal abnormalities in human MSC under either culture condition were detected using high-resolution matrix-based comparative genomic hybridization. Reduced oxygen tension severely impaired adipogenic and osteogenic differentiation of human MSC. Elevation of oxygen from 1% to 3% restored osteogenic differentiation. Conclusion Physiologic oxygen tension during in vitro culture of human MSC slows down cell cycle progression and differentiation. Under physiological conditions this may keep a proportion of MSC in a resting state. Further studies are needed to analyze these aspects of MSC in tissue regeneration.

  14. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    International Nuclear Information System (INIS)

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook; Kim, Sun Kyung; Jang, In Keun; Eom, Young-woo; Park, Joon Seong; Kim, Hugh C.; Song, Kye Yong; Park, Soon Cheol; Lim, Hwan Sub; Kim, Young Jin

    2007-01-01

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types, including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications

  15. Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE

    NARCIS (Netherlands)

    de Wert, Guido; Heindryckx, Björn; Pennings, Guido; Clarke, Angus; Eichenlaub-Ritter, Ursula; van El, Carla G.; Forzano, Francesca; Goddijn, Mariëtte; Howard, Heidi C.; Radojkovic, Dragica; Rial-Sebbag, Emmanuelle; Dondorp, Wybo; Tarlatzis, Basil C.; Cornel, Martina C.

    2018-01-01

    Technological developments in gene editing raise high expectations for clinical applications, including editing of the germline. The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and

  16. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy

    DEFF Research Database (Denmark)

    Møller, Rikke S; Weckhuysen, Sarah; Chipaux, Mathilde

    2016-01-01

    OBJECTIVE: To assess the prevalence of somatic MTOR mutations in focal cortical dysplasia (FCD) and of germline MTOR mutations in a broad range of epilepsies. METHODS: We collected 20 blood-brain paired samples from patients with FCD and searched for somatic variants using deep-targeted gene panel...... sequencing. Germline mutations in MTOR were assessed in a French research cohort of 93 probands with focal epilepsies and in a diagnostic Danish cohort of 245 patients with a broad range of epilepsies. Data sharing among collaborators allowed us to ascertain additional germline variants in MTOR. RESULTS: We...... detected recurrent somatic variants (p.Ser2215Phe, p.Ser2215Tyr, and p.Leu1460Pro) in the MTOR gene in 37% of participants with FCD II and showed histologic evidence for activation of the mTORC1 signaling cascade in brain tissue. We further identified 5 novel de novo germline missense MTOR variants in 6...

  17. A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents.

    OpenAIRE

    Wilkes, David C; Sailer, Verena; Xue, Hui; Cheng, Hongwei; Collins, Colin C; Gleave, Martin; Wang, Yuzhuo; Demichelis, Francesca; Beltran, Himisha; Rubin, Mark Andrew; Rickman, David S

    2017-01-01

    Defects in genes involved in DNA damage repair (DDR) pathway are emerging as novel biomarkers and targets for new prostate cancer drug therapies. A previous report revealed an association between an exceptional response to cisplatin treatment and a somatic loss of heterozygosity (LOH) of FANCA in a patient with metastatic prostate cancer who also harbored a germline FANCA variant (S1088F). Although germline FANCA mutations are the most frequent alterations in patients with Fanconi anemia, ger...

  18. Reconstruction of radical prostatectomy-induced urethral damage using skeletal muscle-derived multipotent stem cells.

    Science.gov (United States)

    Hoshi, Akio; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Akatsuka, Akira; Usui, Yukio; Terachi, Toshiro

    2008-06-15

    Postoperative damage of the urethral rhabdosphincter (URS) and neurovascular bundle (NVB) is a major operative complication of radical prostatectomy. It is generally recognized to be caused by unavoidable surgical damage to the muscle-nerve-blood vessel units around the urethra. We attempted to treat this damage using skeletal muscle-derived stem cells, which are able to reconstitute muscle-nerve-blood vessel units. Cells were enzymatically extracted and sorted by flow cytometry as CD34/45 (Sk-34) and CD34/45 (Sk-DN) cells from green fluorescent protein transgenic mice and rats. URS-NVB damage was induced by manually removing one-third of the total URS and unilateral invasion of NVB in wild-type Sprague-Dawley and node rats. Freshly isolated Sk-34, Sk-34+Sk-DN cells, and cultured Sk-DN cells were directly transplanted into the damaged portion. At 4 and 12 weeks after transplantation, urethral pressure profile by electrical stimulation through the sacral surface (L6-S1) was evaluated as functional recovery. The recovery ratio in the control and transplanted groups was 37.6% and 72.9%, at 4 weeks, and 41.6% and 78.4% at 12 weeks, respectively (Pcells differentiated into numerous skeletal muscle fibers having neuromuscular junctions (innervation) and nerve bundle-related Schwann cells and perineurium, and blood vessel-related endothelial cells and pericyte around the urethra. Thus, we conclude that transplantation of skeletal muscle-derived multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of postoperative damage of URS and NVB after radical prostatectomy.

  19. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.

    Science.gov (United States)

    Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic

    2015-07-15

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.

  20. Organotins Are Potent Activators of PPARγ and Adipocyte Differentiation in Bone Marrow Multipotent Mesenchymal Stromal Cells

    Science.gov (United States)

    Yanik, Susan C.; Baker, Amelia H.; Mann, Koren K.; Schlezinger, Jennifer J.

    2011-01-01

    Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator–activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazone, a PPARγ agonist, bexarotene, an RXR agonist, or a series of organotins. Rosiglitazone and bexarotene potently activated adipocyte differentiation; however, bexarotene had a maximal efficacy of only 20% of that induced by rosiglitazone. Organotins (tributyltin [TBT], triphenyltin, and dibutyltin) also stimulated adipocyte differentiation (EC50 of 10–20nM) but with submaximal, structure-dependent efficacy. In coexposures, both bexarotene and TBT enhanced rosiglitazone-induced adipogenesis. To investigate the contribution of PPARγ to TBT-induced adipogenesis, we examined expression of PPARγ2, as well as its transcriptional target FABP4. TBT-induced PPARγ2 and FABP4 protein expression with an efficacy intermediate between rosiglitazone and bexarotene, similar to lipid accumulation. A PPARγ antagonist and PPARγ-specific small hairpin RNA suppressed TBT-induced differentiation, although to a lesser extent than rosiglitazone-induced differentiation, suggesting that TBT may engage alternate pathways. TBT and bexarotene, but not rosiglitazone, also induced the expression of TGM2 (an RXR target) and ABCA1 (a liver X receptor target). The results show that an environmental contaminant, acting with the same potency as a therapeutic drug, induces PPARγ-dependent adipocyte differentiation in bone marrow MSCs. Activation of multiple nuclear receptor pathways by organotins may have significant implications for bone physiology. PMID:21622945

  1. Clonal chromosomal and genomic instability during human multipotent mesenchymal stromal cells long-term culture.

    Directory of Open Access Journals (Sweden)

    Victoria Nikitina

    Full Text Available Spontaneous mutagenesis often leads to appearance of genetic changes in cells. Although human multipotent mesenchymal stromal cells (hMSC are considered as genetically stable, there is a risk of genomic and structural chromosome instability and, therefore, side effects of cell therapy associated with long-term effects. In this study, the karyotype, genetic variability and clone formation analyses have been carried out in the long-term culture MSC from human gingival mucosa.The immunophenotype of MSC has been examined using flow cytofluorometry and short tandem repeat (STR analysis has been carried out for authentication. The karyotype has been examined using GTG staining and mFISH, while the assessment of the aneuploidy 8 frequency has been performed using centromere specific chromosome FISH probes in interphase cells.The immunophenotype and STR loci combination did not change during the process of cultivation. From passage 23 the proliferative activity of cultured MSCs was significantly reduced. From passage 12 of cultivation, clones of cells with stable chromosome aberrations have been identified and the biggest of these (12% are tetrasomy of chromosome 8. The random genetic and structural chromosomal aberrations and the spontaneous level of chromosomal aberrations in the hMSC long-term cultures were also described.The spectrum of spontaneous chromosomal aberrations in MSC long-term cultivation has been described. Clonal chromosomal aberrations have been identified. A clone of cells with tetrasomy 8 has been detected in passage 12 and has reached the maximum size by passage 18 before and decreased along with the reduction of proliferative activity of cell line by passage 26. At later passages, the MSC line exhibited a set of cells with structural variants of the karyotype with a preponderance of normal diploid cells. The results of our study strongly suggest a need for rigorous genetic analyses of the clone formation in cultured MSCs before

  2. ARTEMIS stabilizes the genome and modulates proliferative responses in multipotent mesenchymal cells

    Directory of Open Access Journals (Sweden)

    Tompkins Kathleen

    2010-10-01

    Full Text Available Abstract Background Unrepaired DNA double-stranded breaks (DSBs cause chromosomal rearrangements, loss of genetic information, neoplastic transformation or cell death. The nonhomologous end joining (NHEJ pathway, catalyzing sequence-independent direct rejoining of DSBs, is a crucial mechanism for repairing both stochastically occurring and developmentally programmed DSBs. In lymphocytes, NHEJ is critical for both development and genome stability. NHEJ defects lead to severe combined immunodeficiency (SCID and lymphoid cancer predisposition in both mice and humans. While NHEJ has been thoroughly investigated in lymphocytes, the importance of NHEJ in other cell types, especially with regard to tumor suppression, is less well documented. We previously reported evidence that the NHEJ pathway functions to suppress a range of nonlymphoid tumor types, including various classes of sarcomas, by unknown mechanisms. Results Here we investigate roles for the NHEJ factor ARTEMIS in multipotent mesenchymal stem/progenitor cells (MSCs, as putative sarcomagenic cells of origin. We demonstrate a key role for ARTEMIS in sarcoma suppression in a sensitized mouse tumor model. In this context, we found that ARTEMIS deficiency led to chromosomal damage but, paradoxically, enhanced resistance and proliferative potential in primary MSCs subjected to various stresses. Gene expression analysis revealed abnormally regulated stress response, cell proliferation, and signal transduction pathways in ARTEMIS-defective MSCs. Finally, we identified candidate regulatory genes that may, in part, mediate a stress-resistant, hyperproliferative phenotype in preneoplastic ARTEMIS-deficient MSCs. Conclusions Our discoveries suggest that Art prevents genome damage and restrains proliferation in MSCs exposed to various stress stimuli. We propose that deficiency leads to a preneoplastic state in primary MSCs and is associated with aberrant proliferative control and cellular stress

  3. Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation

    Directory of Open Access Journals (Sweden)

    Vidane AS

    2014-08-01

    Full Text Available Atanasio S Vidane,1 Aline F Souza,1 Rafael V Sampaio,1 Fabiana F Bressan,2 Naira C Pieri,1 Daniele S Martins,2 Flavio V Meirelles,2 Maria A Miglino,1 Carlos E Ambrósio2 1Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; 2Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, São Paulo, Brazil Abstract: Amnion-derived mesenchymal stem cells (AMSCs are multipotent cells with an enhanced ability to differentiate into multiple lineages. AMSCs can be acquired through noninvasive methods, and therefore are exempt from the typical ethical issues surrounding stem cell use. The objective of this study was to isolate and characterize AMSCs from a cat amniotic membrane for future application in regenerative medicine. The cat AMSCs were harvested after mechanical and enzymatic digestion of amnion. In culture medium, the cat AMSCs adhered to a plastic culture dish and displayed a fibroblast-like morphology. Immunophenotyping assays were positive for the mesenchymal stem cell-specific markers CD73 and CD90 but not the hematopoietic markers CD34, CD45, and CD79. Under appropriate conditions, the cat AMSCs differentiated into osteogenic, chondrogenic, and adipogenic cell lineages. One advantage of cat AMSCs was nonteratogenicity, assessed 4 weeks post injection of undifferentiated AMSCs into immunodeficient mice. These findings suggest that cat amniotic membranes may be an important and useful source of mesenchymal stem cells for clinical applications, especially for cell or tissue replacement in chronic and degenerative diseases. Keywords: amnion, cats, cell differentiation, fetal membranes, mesenchymal cells

  4. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells

    Science.gov (United States)

    Gori, Jennifer L.; Butler, Jason M.; Chan, Yan-Yi; Chandrasekaran, Devikha; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Elemento, Olivier; Wood, Brent L.; Adair, Jennifer E.; Rafii, Shahin; Kiem, Hans-Peter

    2015-01-01

    Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence. PMID:25664855

  5. A Fate Map of the Murine Pancreas Buds Reveals a Multipotent Ventral Foregut Organ Progenitor

    Science.gov (United States)

    Angelo, Jesse R.; Guerrero-Zayas, Mara-Isel; Tremblay, Kimberly D.

    2012-01-01

    The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2–4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification. PMID:22815796

  6. Germline transformation of the western corn rootworm, Diabrotica virgifera virgifera.

    Science.gov (United States)

    Chu, F; Klobasa, W; Wu, P; Pinzi, S; Grubbs, N; Gorski, S; Cardoza, Y; Lorenzen, M D

    2017-08-01

    The western corn rootworm (WCR), a major pest of maize, is notorious for rapidly adapting biochemically, behaviourally and developmentally to a variety of control methods. Despite much effort, the genetic basis of WCR adaptation remains a mystery. Since transformation-based applications such as transposon tagging and enhancer trapping have facilitated genetic dissection of model species such as Drosophila melanogaster, we developed a germline-transformation system for WCR in an effort to gain a greater understanding of the basic biology of this economically important insect. Here we report the use of a fluorescent-marked Minos element to create transgenic WCR. We demonstrate that the transgenic strains express both an eye-specific fluorescent marker and piggyBac transposase. We identified insertion-site junction sequences via inverse PCR and assessed insertion copy number using digital droplet PCR (ddPCR). Interestingly, most WCR identified as transgenic via visual screening for DsRed fluorescence proved to carry multiple Minos insertions when tested via ddPCR. A total of eight unique insertion strains were created by outcrossing the initial transgenic strains to nontransgenic WCR mates. Establishing transgenic technologies for this beetle is the first step towards bringing a wide range of transformation-based tools to bear on understanding WCR biology. © 2017 The Royal Entomological Society.

  7. In vitro propagation of male germline stem cells from piglets.

    Science.gov (United States)

    Zheng, Yi; Tian, Xiue; Zhang, Yaqing; Qin, Jinzhou; An, Junhui; Zeng, Wenxian

    2013-07-01

    To study the effects of serum and growth factors on propagation of porcine male germline stem cells (MGSCs) in vitro and develop a culture system for these stem cells. Fresh testicular cells from neonatal piglets were obtained by mechanical dissociation and collagenase-trypsin digestion. After differential plating, non-adhering cells were cultured in media supplemented with different concentrations of serum (0, 1 %, 2 %, 5 %, 10 %). After 10 days of primary culture, the cells were maintained in media supplemented with different concentrations of growth factors (basic fibroblast growth factor and epidermal growth factor at 1, 5, 10 ng/ml). The number of MGSC-derived colonies with different sizes was determined in each treatment to assess the effects of serum concentrations and growth factors. The number of MGSC-derived colonies was significantly higher in the presence of 1 % rather than 10 % fetal bovine serum (FBS). Basic fibroblast growth factor (bFGF) at 1, 5 ng/ml and epidermal growth factor (EGF) at 5, 10 ng/ml significantly promoted colony formation. Immunocytochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and xenotransplantation assays demonstrated the presence of functional stem cells in cultured cell population. In vitro propagation of porcine MGSCs could be maintained in the presence of 1 % FBS and supplementation of growth factors for 1 month.

  8. Germline-specific H1 variants: the "sexy" linker histones.

    Science.gov (United States)

    Pérez-Montero, Salvador; Carbonell, Albert; Azorín, Fernando

    2016-03-01

    The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.

  9. Exploration of the Germline Genome of the Ciliate Chilodonella uncinata through Single-Cell Omics (Transcriptomics and Genomics

    Directory of Open Access Journals (Sweden)

    Xyrus X. Maurer-Alcalá

    2018-01-01

    Full Text Available Separate germline and somatic genomes are found in numerous lineages across the eukaryotic tree of life, often separated into distinct tissues (e.g., in plants, animals, and fungi or distinct nuclei sharing a common cytoplasm (e.g., in ciliates and some foraminifera. In ciliates, germline-limited (i.e., micronuclear-specific DNA is eliminated during the development of a new somatic (i.e., macronuclear genome in a process that is tightly linked to large-scale genome rearrangements, such as deletions and reordering of protein-coding sequences. Most studies of germline genome architecture in ciliates have focused on the model ciliates Oxytricha trifallax, Paramecium tetraurelia, and Tetrahymena thermophila, for which the complete germline genome sequences are known. Outside of these model taxa, only a few dozen germline loci have been characterized from a limited number of cultivable species, which is likely due to difficulties in obtaining sufficient quantities of “purified” germline DNA in these taxa. Combining single-cell transcriptomics and genomics, we have overcome these limitations and provide the first insights into the structure of the germline genome of the ciliate Chilodonella uncinata, a member of the understudied class Phyllopharyngea. Our analyses reveal the following: (i large gene families contain a disproportionate number of genes from scrambled germline loci; (ii germline-soma boundaries in the germline genome are demarcated by substantial shifts in GC content; (iii single-cell omics techniques provide large-scale quality germline genome data with limited effort, at least for ciliates with extensively fragmented somatic genomes. Our approach provides an efficient means to understand better the evolution of genome rearrangements between germline and soma in ciliates.

  10. Synergistic Effects of a Mixture of Glycosaminoglycans to Inhibit Adipogenesis and Enhance Chondrocyte Features in Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Petar D. Petrov

    2015-11-01

    Full Text Available Background/Aims: Multipotent mesenchymal stem cells affect homeostasis of adipose and joint tissues. Factors influencing their differentiation fate are of interest for both obesity and joint problems. We studied the impact of a mixture of glycosaminoglycans (GAGs (hyaluronic acid: dermatan sulfate 1:0.25, w/w used in an oral supplement for joint discomfort (Oralvisc™ on the differentiation fate of multipotent cells. Methods: Primary mouse embryo fibroblasts (MEFs were used as a model system. Post-confluent monolayer MEF cultures non-stimulated or hormonally stimulated to adipogenesis were chronically exposed to the GAGs mixture, its individual components or vehicle. The appearance of lipid laden cells, lipid accumulation and expression of selected genes at the mRNA and protein level was assessed. Results: Exposure to the GAGs mixture synergistically suppressed spontaneous adipogenesis and induced the expression of cartilage extracellular matrix proteins, aggrecan core protein, decorin and cartilage oligomeric matrix protein. Hormonally-induced adipogenesis in the presence of the GAGs mixture resulted in decreased adipogenic differentiation, down-regulation of adipogenic/lipogenic factors and genes for insulin resistance-related adipokines (resistin and retinol binding protein 4, and up-regulation of oxidative metabolism-related genes. Adipogenesis in the presence of dermatan sulfate, the minor component of the mixture, was not impaired but resulted in smaller lipid droplets and the induction of a more complete brown adipocyte-related transcriptional program in the cells in the adipose state. Conclusions: The Oralvisc™ GAGs mixture can tip the adipogenic/chondrogenic fate balance of multipotent cells away from adipogenesis while favoring chondrocyte related gene expression. The mixture and its dermatan sulfate component also have modulatory effects of interest on hormonally-induced adipogenesis and on metabolic and secretory capabilities of

  11. Molecular analysis on germline mutation caused by low-dose irradiation

    International Nuclear Information System (INIS)

    Uchiyama, R.; Fujikawa, K.; Nishimura, M.; Adzuma, H.; Shimada, Y.; Yamauchi, M.

    2003-01-01

    Full text: Genetic heterogeneity and a low frequency of germline mutation at single-copy gene loci have limited the direct measurement of germline mutation in human populations. Two conflicting results have been reported for the effect of ionizing radiation on germline mutation in human populations. A study conducted on the first-generation progeny of the survivors of the atomic bombs at Hiroshima and Nagasaki found no significant increase in germline mutations. On the other hand, a significant increase in germline mutation was reported among the human population in the Belarus area after the Chernobyl accident in 1986. We investigated the germline mutation at the molecular level using experimental mouse strains with different genetic backgrounds to assess the risk of ionizing radiation on human populations. The C3H male parents were exposed to X ray (0, 0.3, 1, and 3Gy) and mated with unexposed C57BL females after two weeks interval, so as to detect the germline mutation occurred at the spermatid stage. Genomic DNA samples were prepared from the both parents and F1s, and the genomic DNA sequences were compared between parents and offspring at the specific genomic gene loci, such as adenine phosphoribosyl transferase (aprt) gene and cytidine triphosphate synthetase (ctps) gene, using the automated DNA sequencer. Also hypervariable Pc-1 (Ms6-hm) minisatellite repeat locus was analyzed by using Southern blot hybridization technique. Our preliminary results indicated that the changes of the restriction DNA fragment length in offspring did not reflect the occurrence of the mutation, such as point mutation, insertion, and deletion, in the genomic gene loci including the intervening sequence (intron)

  12. Detection of induced male germline mutation: Correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Timothy M. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Lambert, Iain B. [Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Williams, Andrew [Biostatistics and Epidemiology Division, Safe Environments Programme, 6604B, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Douglas, George R. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Yauk, Carole L. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada)]. E-mail: carole_yauk@hc-sc.gc.ca

    2006-06-25

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently-the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.

  13. Detection of induced male germline mutation: Correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays

    International Nuclear Information System (INIS)

    Singer, Timothy M.; Lambert, Iain B.; Williams, Andrew; Douglas, George R.; Yauk, Carole L.

    2006-01-01

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently-the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development

  14. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    Science.gov (United States)

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  15. Novel somatic and germline mutations in intracranial germ cell tumours.

    Science.gov (United States)

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M; Gibbs, Richard A; Leal, Suzanne M; Wheeler, David A; Lau, Ching C

    2014-07-10

    Intracranial germ cell tumours (IGCTs) are a group of rare heterogeneous brain tumours that are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographical and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically five- to eightfold greater in Japan and other East Asian countries than in Western countries, with peak incidence near the time of puberty. About half of the tumours are located in the pineal region. The male-to-female incidence ratio is approximately 3-4:1 overall, but is even higher for tumours located in the pineal region. Owing to the scarcity of tumour specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next-generation sequencing, single nucleotide polymorphism array and expression array. We find the KIT/RAS signalling pathway frequently mutated in more than 50% of IGCTs, including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gains of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional co-repressor and tumour suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, which codes for a histone demethylase and is a coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway.

  16. Novel somatic and germline mutations in intracranial germ cell tumors

    Science.gov (United States)

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D.; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M.; Gibbs, Richard A.; Leal, Suzanne M.; Wheeler, David A.; Lau, Ching C.

    2015-01-01

    Intracranial germ cell tumors (IGCTs) are a group of rare heterogeneous brain tumors which are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographic and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically 5–8 fold greater in Japan and other East Asian countries than in Western countries1 with peak incidence near the time of puberty2. About half of the tumors are located in the pineal region. The male-to-female incidence ratio is approximately 3–4:1 overall but even higher for tumors located in the pineal region3. Due to the scarcity of tumor specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next generation sequencing, SNP array and expression array. We find the KIT/RAS signaling pathway frequently mutated in over 50% of IGCTs including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gain of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional corepressor and tumor suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, a histone demethylase and coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway. PMID:24896186

  17. THE GERMLINE STEM CELL NICHE UNIT IN MAMMALIAN TESTES

    Science.gov (United States)

    Oatley, Jon M.; Brinster, Ralph L.

    2014-01-01

    This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine. PMID:22535892

  18. Pan-cancer analysis reveals technical artifacts in TCGA germline variant calls.

    Science.gov (United States)

    Buckley, Alexandra R; Standish, Kristopher A; Bhutani, Kunal; Ideker, Trey; Lasken, Roger S; Carter, Hannah; Harismendy, Olivier; Schork, Nicholas J

    2017-06-12

    Cancer research to date has largely focused on somatically acquired genetic aberrations. In contrast, the degree to which germline, or inherited, variation contributes to tumorigenesis remains unclear, possibly due to a lack of accessible germline variant data. Here we called germline variants on 9618 cases from The Cancer Genome Atlas (TCGA) database representing 31 cancer types. We identified batch effects affecting loss of function (LOF) variant calls that can be traced back to differences in the way the sequence data were generated both within and across cancer types. Overall, LOF indel calls were more sensitive to technical artifacts than LOF Single Nucleotide Variant (SNV) calls. In particular, whole genome amplification of DNA prior to sequencing led to an artificially increased burden of LOF indel calls, which confounded association analyses relating germline variants to tumor type despite stringent indel filtering strategies. The samples affected by these technical artifacts include all acute myeloid leukemia and practically all ovarian cancer samples. We demonstrate how technical artifacts induced by whole genome amplification of DNA can lead to false positive germline-tumor type associations and suggest TCGA whole genome amplified samples be used with caution. This study draws attention to the need to be sensitive to problems associated with a lack of uniformity in data generation in TCGA data.

  19. A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents.

    Science.gov (United States)

    Wilkes, David C; Sailer, Verena; Xue, Hui; Cheng, Hongwei; Collins, Colin C; Gleave, Martin; Wang, Yuzhuo; Demichelis, Francesca; Beltran, Himisha; Rubin, Mark A; Rickman, David S

    2017-09-01

    Defects in genes involved in DNA damage repair (DDR) pathway are emerging as novel biomarkers and targets for new prostate cancer drug therapies. A previous report revealed an association between an exceptional response to cisplatin treatment and a somatic loss of heterozygosity (LOH) of FANCA in a patient with metastatic prostate cancer who also harbored a germline FANCA variant (S1088F). Although germline FANCA mutations are the most frequent alterations in patients with Fanconi anemia, germline alterations are less common in prostate cancer. We hypothesized that the germline S1088F FANCA variant in combination with FANCA LOH was deleterious for FANCA function and contributed to the patient's exceptional response to cisplatin. We show that although it properly localizes to the nucleus, the S1088F FANCA mutant protein disrupts the FANC protein complex resulting in increased sensitivity to DNA damaging agents. Because molecular stratification is emerging as a strategy for treating men with metastatic, castrate-resistant prostate cancer harboring specific DDR gene defects, our findings suggest that more biomarker studies are needed to better define clinically relevant germline and somatic alterations. © 2017 Wilkes et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements.

    Science.gov (United States)

    Guérin, Frédéric; Arnaiz, Olivier; Boggetto, Nicole; Denby Wilkes, Cyril; Meyer, Eric; Sperling, Linda; Duharcourt, Sandra

    2017-04-26

    DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61

  1. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Brandon M.; Leix, Kyle Alexander [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ji, Yajing [Department of Biomedical Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Glaves, Richard Samuel Elliot [Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ash, David E. [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Mohanty, Dillip K., E-mail: Mohan1dk@cmich.edu [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  2. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    International Nuclear Information System (INIS)

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-01-01

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well

  3. The Osteogenic Properties of Multipotent Mesenchymal Stromal Cells in Cultures on TiO2 Sol-Gel-Derived Biomaterial

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2015-01-01

    Full Text Available The biocompatibility of the bone implants is a crucial factor determining the successful tissue regeneration. The aim of this work was to compare cellular behavior and osteogenic properties of rat adipose-derived multipotent stromal cells (ASCs and bone marrow multipotent stromal cells (BMSCs cultured on metallic substrate covered with TiO2 sol-gel-derived nanolayer. The morphology, proliferation rate, and osteogenic differentiation potential of both ASCs and BMSCs propagated on the biomaterials were examined. The potential for osteogenic differentiation of ASCs and BMSCs was determined based on the presence of specific markers of osteogenesis, that is, alkaline phosphatase (ALP, osteopontin (OPN, and osteocalcin (OCL. Additionally, the concentration of calcium and phosphorus in extracellular matrix was determined using energy-dispersive X-ray spectroscopy (SEM-EDX. Obtained results showed that TiO2 layer influenced proliferation activity of ASCs, which manifested by shortening of population doubling time and increase of OPN secretion. However, characteristic features of cells morphology and growth pattern of cultures prompted us to conclude that ultrathin TiO2 layer might also enhance osteodifferentiation of BMSCs. Therefore in our opinion, both populations of MSCs should be used for biological evaluation of biomaterials compatibility, such results may enhance the area of investigations related to regenerative medicine.

  4. Germline RAD51B truncating mutation in a family with cutaneous melanoma

    DEFF Research Database (Denmark)

    Wadt, Karin A W; Aoude, Lauren G; Golmard, Lisa

    2015-01-01

    Known melanoma predisposition genes only account for around 40% of high-density melanoma families. Other rare mutations are likely to play a role in melanoma predisposition. RAD51B plays an important role in DNA repair through homologous recombination, and inactivation of RAD51B has been implicated...... in tumorigenesis. Thus RAD51B is a good candidate melanoma susceptibility gene, and previously, a germline splicing mutation in RAD51B has been identified in a family with early-onset breast cancer. In order to find genetic variants associated with melanoma predisposition, whole-exome sequencing was carried out...... on blood samples from a three-case cutaneous melanoma family. We identified a novel germline RAD51B nonsense mutation, and we demonstrate reduced expression of RAD51B in melanoma cells indicating inactivation of RAD51B. This is only the second report of a germline truncating RAD51B mutation. While...

  5. Xeroderma Pigmentosum: Low Prevalence of Germline XPA Mutations in a Brazilian XP Population

    Directory of Open Access Journals (Sweden)

    Karina Miranda Santiago

    2015-04-01

    Full Text Available Xeroderma pigmentosum (XP is a rare autosomal recessive disorder characterized by DNA repair defects that cause photophobia, sunlight-induced cancers, and neurodegeneration. Prevalence of germline mutations in the nucleotide excision repair gene XPA vary significantly in different populations. No Brazilian patients have been reported to carry a germline mutation in this gene. In this study, the germline mutational status of XPA was determined in Brazilian patients exhibiting major clinical features of XP syndrome. The study was conducted on 27 unrelated patients from select Brazilian families. A biallelic inactivating transition mutation c.619C>T (p.Arg207Ter was identified in only one patient with a history of neurological impairment and mild skin abnormalities. These findings suggest that XP syndrome is rarely associated with inherited disease-causing XPA mutations in the Brazilian population. Additionally, this report demonstrates the effectiveness of genotype-phenotype correlation as a valuable tool to guide direct genetic screening.

  6. Xeroderma pigmentosum: low prevalence of germline XPA mutations in a Brazilian XP population.

    Science.gov (United States)

    Santiago, Karina Miranda; França de Nóbrega, Amanda; Rocha, Rafael Malagoli; Rogatto, Silvia Regina; Achatz, Maria Isabel

    2015-04-22

    Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder characterized by DNA repair defects that cause photophobia, sunlight-induced cancers, and neurodegeneration. Prevalence of germline mutations in the nucleotide excision repair gene XPA vary significantly in different populations. No Brazilian patients have been reported to carry a germline mutation in this gene. In this study, the germline mutational status of XPA was determined in Brazilian patients exhibiting major clinical features of XP syndrome. The study was conducted on 27 unrelated patients from select Brazilian families. A biallelic inactivating transition mutation c.619C>T (p.Arg207Ter) was identified in only one patient with a history of neurological impairment and mild skin abnormalities. These findings suggest that XP syndrome is rarely associated with inherited disease-causing XPA mutations in the Brazilian population. Additionally, this report demonstrates the effectiveness of genotype-phenotype correlation as a valuable tool to guide direct genetic screening.

  7. Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background.

    Science.gov (United States)

    Carstea, Ana Claudia; Pirity, Melinda K; Dinnyes, Andras

    2009-12-31

    In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.

  8. Identification of Germline Genetic Mutations in Pancreatic Cancer Patients

    Science.gov (United States)

    Salo-Mullen, Erin E.; O’Reilly, Eileen; Kelsen, David; Ashraf, Asad M.; Lowery, Maeve; Yu, Kenneth; Reidy, Diane; Epstein, Andrew S.; Lincoln, Anne; Saldia, Amethyst; Jacobs, Lauren M.; Rau-Murthy, Rohini; Zhang, Liying; Kurtz, Robert; Saltz, Leonard; Offit, Kenneth; Robson, Mark; Stadler, Zsofia K.

    2016-01-01

    Background Pancreatic adenocarcinoma (PAC) is part of several cancer predisposition syndromes; however, indications for genetic counseling/testing are not well-defined. We sought to determine mutation prevalence and characteristics that predict for inherited predisposition to PAC. Methods We identified 175 consecutive PAC patients who underwent clinical genetics assessment at Memorial Sloan Kettering between 2011–2014. Clinical data, family history, and germline results were evaluated. Results Among 159 PAC patients who pursued genetic testing, 24 pathogenic mutations were identified (15.1%; 95%CI, 9.5%–20.7%), including BRCA2(n=13), BRCA1(n=4), p16(n=2), PALB2(n=1), and Lynch syndrome(n=4). BRCA1/BRCA2 prevalence was 13.7% in Ashkenazi Jewish(AJ) (n=95) and 7.1% in non-AJ(n=56) patients. In AJ patients with strong, weak, or absent family history of BRCA-associated cancers, mutation prevalence was 16.7%, 15.8%, and 7.4%, respectively. Mean age at diagnosis in all mutation carriers was 58.5y(range 45–75y) compared to 64y(range 27–87y) in non-mutation carriers(P=0.02). Although BRCA2 was the most common mutation identified, no patients with early-onset PAC(≤50y) harbored a BRCA2 mutation and the mean age at diagnosis in BRCA2 carriers was equivalent to non-mutation carriers(P=0.34). Mutation prevalence in early-onset patients(n=21) was 28.6%, including BRCA1(n=2), p16(n=2), MSH2(n=1) and MLH1(n=1). Conclusion Mutations in BRCA2 account for over 50% of PAC patients with an identified susceptibility syndrome. AJ patients had high BRCA1/BRCA2 prevalence regardless of personal/family history, suggesting that ancestry alone indicates a need for genetic evaluation. With the exception of BRCA2-associated PAC, inherited predisposition to PAC is associated with earlier age at PAC diagnosis suggesting that this subset of patients may also represent a population warranting further evaluation. PMID:26440929

  9. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro

    Science.gov (United States)

    Shao, Meiying; Liu, Chao; Song, Yingnan; Ye, Wenduo; He, Wei; Yuan, Guohua; Gu, Shuping; Lin, Congxin; Ma, Liang; Zhang, Yanding; Tian, Weidong; Hu, Tao; Chen, YiPing

    2015-01-01

    The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration. PMID:26243590

  10. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment

    International Nuclear Information System (INIS)

    Iso, Yoshitaka; Spees, Jeffrey L.; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J.

    2007-01-01

    The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion

  11. Persistence of human parvovirus B19 in multipotent mesenchymal stromal cells expressing the erythrocyte P antigen: implications for transplantation

    Science.gov (United States)

    Sundin, Mikael; Lindblom, Anna; Örvell, Claes; Barrett, A.John; Sundberg, Berit; Watz, Emma; Wikman, Agneta; Broliden, Kristina; Le Blanc, Katarina

    2014-01-01

    Multipotent mesenchymal stromal cells (MSC) are used to improve the outcome of hematopoietic stem cell transplantation and in regenerative medicine. However, MSC may harbor persistent viruses that may compromise their clinical benefit. Retrospectively screened, 1 of 20 MSC from healthy donors contained parvovirus B19 (B19) DNA. We found that MSC express the B19 receptor (the globoside P antigen) and a co-receptor (Ku 80), and can transmit B19 to bone marrow cells in vitro, suggesting that the virus can persist in the marrow stroma of healthy individuals. Two stem cell transplant patients received the B19 positive MSC as treatment for graft-versus-host disease. Neither developed viremia nor symptomatic B19 infection. These results demonstrate for the first time that persistent B19 in MSC can infect hematopoietic cells and underscore the importance of monitoring B19 transmission by MSC products. PMID:18804048

  12. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR mediated by low-copy repeats (LCRs. Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ~1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR-mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.

  13. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TFIID component TAF-4

    Science.gov (United States)

    Guven-Ozkan, Tugba; Nishi, Yuichi; Robertson, Scott M.; Lin, Rueyling

    2008-01-01

    In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1–P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres, but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II following fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wildtype OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators. PMID:18854162

  14. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4.

    Science.gov (United States)

    Guven-Ozkan, Tugba; Nishi, Yuichi; Robertson, Scott M; Lin, Rueyling

    2008-10-03

    In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1-P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II after fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wild-type OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators.

  15. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk

    NARCIS (Netherlands)

    Broeke, S.W. ten; Brohet, R.M.; Tops, C.M.; Klift, H.M. van der; Velthuizen, M.E.; Bernstein, I.; Capella Munar, G.; Garcia, E.; Hoogerbrugge, N.; Letteboer, T.G.; Menko, F.H.; Lindblom, A.; Mensenkamp, A.R.; Moller, P.; Os, T.A. van; Rahner, N.; Redeker, B.J.; Sijmons, R.H.; Spruijt, L.; Suerink, M.; Vos, Y.J.; Wagner, A.; Hes, F.J.; Vasen, H.F.A.; Nielsen, M.; Wijnen, J.T.

    2015-01-01

    PURPOSE: The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. METHODS: Data were collected from 98

  16. Lynch Syndrome Caused by Germline PMS2 Mutations: Delineating the Cancer Risk

    NARCIS (Netherlands)

    ten Broeke, Sanne W.; Brohet, Richard M.; Tops, Carli M.; van der Klift, Heleen M.; Velthuizen, Mary E.; Bernstein, Inge; Capellá Munar, Gabriel; Gomez Garcia, Encarna; Hoogerbrugge, Nicoline; Letteboer, Tom G. W.; Menko, Fred H.; Lindblom, Annika; Mensenkamp, Arjen R.; Moller, Pal; van Os, Theo A.; Rahner, Nils; Redeker, Bert J. W.; Sijmons, Rolf H.; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J.; Wagner, Anja; Hes, Frederik J.; Vasen, Hans F.; Nielsen, Maartje; Wijnen, Juul T.

    2015-01-01

    Purpose The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. Methods Data were collected from 98 PMS2

  17. Lynch Syndrome Caused by Germline PMS2 Mutations : Delineating the Cancer Risk

    NARCIS (Netherlands)

    ten Broeke, Sanne W.; Brohet, Richard M.; Tops, Carli M.; van der Klift, Heleen M.; Velthuizen, Mary E.; Bernstein, Inge; Capella Munar, Gabriel; Garcia, Encarna Gomez; Hoogerbrugge, Nicoline; Letteboer, Tom G. W.; Menko, Fred H.; Lindblom, Annika; Mensenkamp, Arjen R.; Moller, Pal; Van Os, Theo A.; Rahner, Nils; Redeker, Bert J. W.; Sijmons, Rolf H.; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J.; Wagner, Anja; Hes, Frederik J.; Vasen, Hans F.; Nielsen, Maartje; Wijnen, Juul T.

    2015-01-01

    Purpose The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. Methods Data were collected from 98 PMS2

  18. Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE.

    Science.gov (United States)

    De Wert, Guido; Heindryckx, Björn; Pennings, Guido; Clarke, Angus; Eichenlaub-Ritter, Ursula; van El, Carla G; Forzano, Francesca; Goddijn, Mariëtte; Howard, Heidi C; Radojkovic, Dragica; Rial-Sebbag, Emmanuelle; Dondorp, Wybo; Tarlatzis, Basil C; Cornel, Martina C

    2018-04-01

    Technological developments in gene editing raise high expectations for clinical applications, including editing of the germline. The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and Recommendations to inform and stimulate ongoing societal debates. This document provides the background to the Recommendations. Germline gene editing is currently not allowed in many countries. This makes clinical applications in these countries impossible now, even if germline gene editing would become safe and effective. What were the arguments behind this legislation, and are they still convincing? If a technique could help to avoid serious genetic disorders, in a safe and effective way, would this be a reason to reconsider earlier standpoints? This Background document summarizes the scientific developments and expectations regarding germline gene editing, legal regulations at the European level, and ethics for three different settings (basic research, preclinical research and clinical applications). In ethical terms, we argue that the deontological objections (e.g., gene editing goes against nature) do not seem convincing while consequentialist objections (e.g., safety for the children thus conceived and following generations) require research, not all of which is allowed in the current legal situation in European countries. Development of this Background document and Recommendations reflects the responsibility to help society understand and debate the full range of possible implications of the new technologies, and to contribute to regulations that are adapted to the dynamics of the field while taking account of ethical considerations and societal concerns.

  19. First report of a de novo germline mutation in the MLH1 gene

    NARCIS (Netherlands)

    Stulp, Rein P; Vos, Yvonne J; Mol, Bart; Karrenbeld, Arend; de Raad, Monique; van der Mijle, Huub J C; Sijmons, Rolf H

    2006-01-01

    Hereditary non-polyposis colorectal carcinoma (HNPCC) is an autosomal dominant disorder associated with colorectal and endometrial cancer and a range of other tumor types. Germline mutations in the DNA mismatch repair (MMR) genes, particularly MLH1, MSH2, and MSH6, underlie this disorder. The vast

  20. Elucidating the impact of neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning.

    Science.gov (United States)

    Anastasaki, Corina; Woo, Albert S; Messiaen, Ludwine M; Gutmann, David H

    2015-06-15

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant neurologic condition characterized by significant clinical heterogeneity, ranging from malignant cancers to cognitive deficits. Recent studies have begun to reveal rare genotype-phenotype correlations, suggesting that the specific germline NF1 gene mutation may be one factor underlying disease heterogeneity. The purpose of this study was to define the impact of the germline NF1 gene mutation on brain neurofibromin function relevant to learning. Herein, we employ human NF1-patient primary skin fibroblasts, induced pluripotent stem cells and derivative neural progenitor cells (NPCs) to demonstrate that NF1 germline mutations have dramatic effects on neurofibromin expression. Moreover, while all NF1-patient NPCs exhibit increased RAS activation and reduced cyclic AMP generation, there was a neurofibromin dose-dependent reduction in dopamine (DA) levels. Additionally, we leveraged two complementary Nf1 genetically-engineered mouse strains in which hippocampal-based learning and memory is DA-dependent to establish that neuronal DA levels and signaling as well as mouse spatial learning are controlled in an Nf1 gene dose-dependent manner. Collectively, this is the first demonstration that different germline NF1 gene mutations differentially dictate neurofibromin function in the brain. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A germline RET proto-oncogene mutation in multiple members of an ...

    African Journals Online (AJOL)

    Background: Multiple endocrine neoplasia type 2A (MEN2A) is a rare cancer associated-syndrome, inherited in an autosomal dominant fashion and caused by germline mutation in RET proto-oncogene. Clinical diagnosis depends on the manifestation of two or more certain endocrine tumors in an individual, such as ...

  2. Sex chromosomes and germline transcriptomics explored by single-cell sequencing and RNA-tomography

    NARCIS (Netherlands)

    Vértesy, Ábel

    2018-01-01

    In our study of germ cell differentiation, we applied two recently developed technologies on the germline of various model organisms: single-cell mRNA sequencing and RNA-tomography. For the first time we could look at gene expression with such a high resolution, and this led us to discover the

  3. Protection of germline gene expression by the C. elegans Argonaute CSR-1.

    Science.gov (United States)

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2013-12-23

    In Caenorhabditis elegans, the Piwi-interacting small RNA (piRNA)-mediated germline surveillance system encodes more than 30,000 unique 21-nucleotide piRNAs, which silence a variety of foreign nucleic acids. What mechanisms allow endogenous germline-expressed transcripts to evade silencing by the piRNA pathway? One likely candidate in a protective mechanism is the Argonaute CSR-1, which interacts with 22G-small RNAs that are antisense to nearly all germline-expressed genes. Here, we use an in vivo RNA tethering assay to demonstrate that the recruitment of CSR-1 to a transcript licenses expression of the transcript, protecting it from piRNA-mediated silencing. Licensing occurs mainly at the level of transcription, as we observe changes in pre-mRNA levels consistent with transcriptional activation when CSR-1 is tethered. Furthermore, the recruitment of CSR-1 to a previously silenced locus transcriptionally activates its expression. Together, these results demonstrate a rare positive role for an endogenous Argonaute pathway in heritably licensing and protecting germline transcripts.

  4. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Shah, S.; Schrader, K.A.; Waanders, E.; Timms, A.E.; Vijai, J.; Miething, C.; Wechsler, J.; Yang, J.; Hayes, J.; Klein, R.J.; Zhang, J.; Wei, L.; Wu, G.; Rusch, M.; Nagahawatte, P.; Ma, J; Chen, S.C.; Song, G.; Cheng, J.; Meyers, P.; Bhojwani, D.; Jhanwar, S.; Maslak, P.; Fleisher, M.; Littman, J.; Offit, L.; Rau-Murthy, R.; Fleischut, M.H.; Corines, M.; Murali, R.; Gao, X.; Manschreck, C.; Kitzing, T.; Murty, V.V.; Raimondi, S.C.; Kuiper, R.P.; Simons, A.; Schiffman, J.D.; Onel, K.; Plon, S.E.; Wheeler, D.A.; Ritter, D.; Ziegler, D.S.; Tucker, K.; Sutton, R.; Chenevix-Trench, G.; Li, J.; Huntsman, D.G.; Hansford, S.; Senz, J.; Walsh, T.; Lee (Helen Dowling Instituut), M. van der; Hahn, C.N.; Roberts, K.G.; King, M.C.; Lo, S.M.; Levine, R.L.; Viale, A.; Socci, N.D.; Nathanson, K.L.; Scott, H.S.; Daly, M.; Lipkin, S.M.; Lowe, S.W.; Downing, J.R.; Altshuler, D.; Sandlund, J.T.; Horwitz, M.S.; Mullighan, C.G.; Offit, K.

    2013-01-01

    Somatic alterations of the lymphoid transcription factor gene PAX5 (also known as BSAP) are a hallmark of B cell precursor acute lymphoblastic leukemia (B-ALL), but inherited mutations of PAX5 have not previously been described. Here we report a new heterozygous germline variant, c.547G>A

  5. Antibody Heavy Chain Variable Domains of Different Germline Gene Origins Diversify through Different Paths

    Directory of Open Access Journals (Sweden)

    Ufuk Kirik

    2017-11-01

    Full Text Available B cells produce antibodies, key effector molecules in health and disease. They mature their properties, including their affinity for antigen, through hypermutation events; processes that involve, e.g., base substitution, codon insertion and deletion, often in association with an isotype switch. Investigations of antibody evolution define modes whereby particular antibody responses are able to form, and such studies provide insight important for instance for development of efficient vaccines. Antibody evolution is also used in vitro for the design of antibodies with improved properties. To better understand the basic concepts of antibody evolution, we analyzed the mutational paths, both in terms of amino acid substitution and insertions and deletions, taken by antibodies of the IgG isotype. The analysis focused on the evolution of the heavy chain variable domain of sets of antibodies, each with an origin in 1 of 11 different germline genes representing six human heavy chain germline gene subgroups. Investigated genes were isolated from cells of human bone marrow, a major site of antibody production, and characterized by next-generation sequencing and an in-house bioinformatics pipeline. Apart from substitutions within the complementarity determining regions, multiple framework residues including those in protein cores were targets of extensive diversification. Diversity, both in terms of substitutions, and insertions and deletions, in antibodies is focused to different positions in the sequence in a germline gene-unique manner. Altogether, our findings create a framework for understanding patterns of evolution of antibodies from defined germline genes.

  6. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells.

    Science.gov (United States)

    Artaza, Jorge N; Bhasin, Shalender; Magee, Thomas R; Reisz-Porszasz, Suzanne; Shen, Ruoquin; Groome, Nigel P; Meerasahib, Mohamed Fareez; Fareez, Meerasaluh M; Gonzalez-Cadavid, Nestor F

    2005-08-01

    Inactivating mutations of the mammalian myostatin gene are associated with increased muscle mass and decreased fat mass; conversely, myostatin transgenic mice that overexpress myostatin in the skeletal muscle have decreased muscle mass and increased fat mass. We investigated the effects of recombinant myostatin protein and antimyostatin antibody on myogenic and adipogenic differentiation of mesenchymal multipotent cells. Accordingly, 10T(1/2) cells were incubated with 5'-azacytidine for 3 d to induce differentiation and then treated with a recombinant protein for myostatin (Mst) carboxy terminal 113 amino acids or a polyclonal anti-Mst antibody for 3, 7, and 14 d. Cells were also cotransfected with a Mst cDNA plasmid expressing the full-length 375-amino acid protein (pcDNA-Mst375) and the silencer RNAs for either Mst (pSil-Mst) or a random sequence (pSil-RS) for 3 or 7 d, and Mst expression was determined. Adipogenesis was evaluated by quantitative image analysis of fat cells before and after oil-red-O staining, immunocytochemistry of adiponectin, and Western blot for CCAAT/enhancer binding protein-alpha. Myogenesis was estimated by quantitative image analysis-immunocytochemistry for MyoD (Myo differentiation protein), myogenin, and myosin heavy chain type II, or by Western blot for myogenin. 5'-Azacytidine-mediated differentiation induced endogenous full-length Mst expression. Recombinant Mst carboxy terminal 113 amino acids inhibited both early and late markers of myogenesis and stimulated both early and late markers of adipogenesis, whereas the antibody against Mst exerted the reverse effects. Myogenin levels at 7 d after transfection of pcDNA-Mst375 were reduced as expected and elevated by pSil-Mst, which blocked efficiently Mst375 expression. In conclusion, myostatin promotes the differentiation of multipotent mesenchymal cells into the adipogenic lineage and inhibits myogenesis.

  7. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    International Nuclear Information System (INIS)

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin α2β1 hi and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 μg/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation

  8. The Therapeutic Effect of Human Embryonic Stem Cell-Derived Multipotent Mesenchymal Stem Cells on Chemical-Induced Cystitis in Rats

    Directory of Open Access Journals (Sweden)

    Sang Wook Lee

    2018-01-01

    Full Text Available Purpose To evaluate the therapeutic effect of human embryonic stem cell (hESC-derived multipotent mesenchymal stem cells (M-MSCs on ketamine-induced cystitis (KC in rats. Methods To induce KC, 10-week-old female rats were injected with 25-mg/kg ketamine hydrochloride twice weekly for 12 weeks. In the sham group, phosphate buffered saline (PBS was injected instead of ketamine. One week after the final injection of ketamine, the indicated doses (0.25, 0.5, and 1×106 cells of M-MSCs (KC+M-MSC group or PBS vehicle (KC group were directly injected into the bladder wall. One week after M-MSC injection, the therapeutic outcomes were evaluated via cystometry, histological analyses, and measurement of gene expression. Next, we compared the efficacy of M-MSCs at a low dose (1×105 cells to that of an identical dose of adult bone marrow (BM-derived MSCs. Results Rats in the KC group exhibited increased voiding frequency and reduced bladder capacity compared to rats of the sham group. However, these parameters recovered after transplantation of M-MSCs at all doses tested. KC bladders exhibited markedly increased mast cell infiltration, apoptosis, and tissue fibrosis. Administration of M-MSCs significantly reversed these characteristic histological alterations. Gene expression analyses indicated that several genes associated with tissue fibrosis were markedly upregulated in KC bladders. However the expression of these genes was significantly suppressed by the administration of M-MSCs. Importantly, M-MSCs ameliorated bladder deterioration in KC rats after injection of a low dose (1×105 of cells, at which point BM-derived MSCs did not substantially improve bladder function. Conclusions This study demonstrates for the first time the therapeutic efficacy of hESC-derived M-MSCs on KC in rats. M-MSCs restored bladder function more effectively than did BM-derived MSCs, protecting against abnormal changes including mast cell infiltration, apoptosis and fibrotic

  9. Germline single nucleotide polymorphisms associated with response of urothelial carcinoma to platinum-based therapy: the role of the host.

    LENUS (Irish Health Repository)

    Gallagher, D J

    2013-09-01

    Variations in urothelial carcinoma (UC) response to platinum chemotherapy are common and frequently attributed to genetic and epigenetic variations of somatic DNA. We hypothesized that variations in germline DNA may contribute to UC chemosensitivity.

  10. Paternal Age Explains a Major Portion of De Novo Germline Mutation Rate Variability in Healthy Individuals.

    Directory of Open Access Journals (Sweden)

    Simon L Girard

    Full Text Available De novo mutations (DNM are an important source of rare variants and are increasingly being linked to the development of many diseases. Recently, the paternal age effect has been the focus of a number of studies that attempt to explain the observation that increasing paternal age increases the risk for a number of diseases. Using disease-free familial quartets we show that there is a strong positive correlation between paternal age and germline DNM in healthy subjects. We also observed that germline CNVs do not follow the same trend, suggesting a different mechanism. Finally, we observed that DNM were not evenly distributed across the genome, which adds support to the existence of DNM hotspots.

  11. Germline Transgenic Methods for Tracking Cells and Testing Gene Function during Regeneration in the Axolotl

    Science.gov (United States)

    Khattak, Shahryar; Schuez, Maritta; Richter, Tobias; Knapp, Dunja; Haigo, Saori L.; Sandoval-Guzmán, Tatiana; Hradlikova, Kristyna; Duemmler, Annett; Kerney, Ryan; Tanaka, Elly M.

    2013-01-01

    The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly overexpress the cell-cycle inhibitor p16INK4a, which negatively regulates spinal cord regeneration. These tissue-specific germline axolotl lines and tightly inducible Cre drivers and LoxP reporter lines render this classical regeneration model molecularly accessible. PMID:24052945

  12. Induction of atherosclerosis in mice and hamsters without germline genetic engineering

    DEFF Research Database (Denmark)

    Bjørklund, Martin Mæng; Hollensen, Anne Kruse; Hagensen, Mette Kallestrup

    2014-01-01

    RATIONALE: Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. OBJECTIVE......: To develop a method for induction of atherosclerosis without germline genetic engineering. METHODS AND RESULTS: Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector...... injection followed by high-fat diet feeding. Plasma proprotein convertase subtilisin/kexin type 9 and total cholesterol increased rapidly and were maintained at high levels, and after 12 weeks, mice had atherosclerotic lesions in the aorta. Histology of the aortic root showed progression of lesions...

  13. Maternal Metabolic Syndrome Programs Mitochondrial Dysfunction via Germline Changes across Three Generations

    Directory of Open Access Journals (Sweden)

    Jessica L. Saben

    2016-06-01

    Full Text Available Maternal obesity impairs offspring health, but the responsible mechanisms are not fully established. To address this question, we fed female mice a high-fat/high-sugar diet from before conception until weaning and then followed the outcomes in the next three generations of offspring, all fed a control diet. We observed that female offspring born to obese mothers had impaired peripheral insulin signaling that was associated with mitochondrial dysfunction and altered mitochondrial dynamic and complex proteins in skeletal muscle. This mitochondrial phenotype persisted through the female germline and was passed down to the second and third generations. Our results indicate that maternal programming of metabolic disease can be passed through the female germline and that the transfer of aberrant oocyte mitochondria to subsequent generations may contribute to the increased risk for developing insulin resistance.

  14. Synchronous Onset of Breast and Pancreatic Cancers: Results of Germline and Somatic Genetic Analysis

    Directory of Open Access Journals (Sweden)

    Michael Castro

    2016-07-01

    Full Text Available Background: Synchronous cancers have occasionally been detected at initial diagnosis among patients with breast and ovarian cancer. However, simultaneous coexistence and diagnosis of breast and pancreas cancer has not previously been reported. Case Report: Paternal transmission of a germline BRCA2 mutation to a patient who was diagnosed at age 40 with locally advanced breast and pancreas cancer is presented. Somatic genomic analysis of both cancers with next-generation DNA sequencing confirmed the germline result and reported a variety of variants of unknown significance alterations, of which two were present in both the breast and pancreas cancers. Discussion: The possibility that genomic alterations could have been responsible for modulating the phenotypic or clinical expression of this rare presentation is considered. The authors call attention to the practice of privatizing the clinicogenetic information gained from genetic testing and call for health policy that will facilitate sharing in order to advance the outcomes of patients diagnosed with hereditary cancers.

  15. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function.

    Directory of Open Access Journals (Sweden)

    Yichang Chen

    2016-07-01

    Full Text Available Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures.

  16. The protein kinase MBK-1 contributes to lifespan extension in daf-2 mutant and germline-deficient Caenorhabditis elegans.

    Science.gov (United States)

    Mack, Hildegard I D; Zhang, Peichuan; Fonslow, Bryan R; Yates, John R

    2017-05-25

    In Caenorhabditis elegans , reduction of insulin/IGF-1 like signaling and loss of germline stem cells both increase lifespan by activating the conserved transcription factor DAF-16 (FOXO). While the mechanisms that regulate DAF-16 nuclear localization in response to insulin/IGF-1 like signaling are well characterized, the molecular pathways that act in parallel to regulate DAF-16 transcriptional activity, and the pathways that couple DAF-16 activity to germline status, are not fully understood at present. Here, we report that inactivation of MBK-1, the C. elegans ortholog of the human FOXO1-kinase DYRK1A substantially shortens the prolonged lifespan of daf-2 and glp-1 mutant animals while decreasing wild-type lifespan to a lesser extent. On the other hand, lifespan-reduction by mutation of the MBK-1-related kinase HPK-1 was not preferential for long-lived mutants. Interestingly, mbk-1 loss still allowed for DAF-16 nuclear accumulation but reduced expression of certain DAF-16 target genes in germline-less, but not in daf-2 mutant animals. These findings indicate that mbk-1 and daf-16 functionally interact in the germline- but not in the daf-2 pathway. Together, our data suggest mbk-1 as a novel regulator of C. elegans longevity upon both, germline ablation and DAF-2 inhibition, and provide evidence for mbk-1 regulating DAF-16 activity in germline-deficient animals.

  17. Comparative proteome approach demonstrates that platelet-derived growth factor C and D efficiently induce proliferation while maintaining multipotency of hMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Sotoca, Ana M., E-mail: a.sotoca@science.ru.nl [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Roelofs-Hendriks, Jose [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Boeren, Sjef [Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen (Netherlands); Kraan, Peter M. van der [Department of Rheumatology Research and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Vervoort, Jacques [Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen (Netherlands); Zoelen, Everardus J.J. van; Piek, Ester [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2013-10-15

    This is the first study that comprehensively describes the effects of the platelet-derived growth factor (PDGF) isoforms C and D during in vitro expansion of human mesenchymal stem cells (hMSCs). Our results show that PDGFs can enhance proliferation of hMSCs without affecting their multipotency. It is of great value to culture and expand hMSCs in a safe and effective manner without losing their multipotency for manipulation and further development of cell-based therapies. Moreover, differential effects of PDGF isoforms have been observed on lineage-specific differentiation induced by BMP2 and Vitamin D3. Based on label-free LC-based quantitative proteomics approach we have furthermore identified specific pathways induced by PDGFs during the proliferation process, showing the importance of bioinformatics tools to study cell function. - Highlights: • PDGFs (C and D) significantly increased the number of multipotent undifferentiated hMSCs. • Enhanced proliferation did not impair the ability to undergo lineage-specific differentiation. • Proteomic analysis confirmed the overall signatures of the ‘intact’ cells.

  18. In Genes We Trust: Germline Engineering, Eugenics, and the Future of the Human Genome.

    Science.gov (United States)

    Powell, Russell

    2015-12-01

    Liberal proponents of genetic engineering maintain that developing human germline modification technologies is morally desirable because it will result in a net improvement in human health and well-being. Skeptics of germline modification, in contrast, fear evolutionary harms that could flow from intervening in the human germline, and worry that such programs, even if well intentioned, could lead to a recapitulation of the scientifically and morally discredited projects of the old eugenics. Some bioconservatives have appealed as well to the value of retaining our "given" human biological nature as a reason for restraining the development and use of human genetic modification technologies even where they would tend to increase well-being. In this article, I argue that germline intervention will be necessary merely to sustain the levels of genetic health that we presently enjoy for future generations-a goal that should appeal to bioliberals and bioconservatives alike. This is due to the population-genetic consequences of relaxed selection pressures in human populations caused by the increasing efficacy and availability of conventional medicine. This heterodox conclusion, which I present as a problem of intergenerational justice, has been overlooked in medicine and bioethics due to certain misconceptions about human evolution, which I attempt to rectify, as well as the sordid history of Darwinian approaches to medicine and social policy, which I distinguish from the present argument. © The Author 2015. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Germline mutations in 40 cancer susceptibility genes among Chinese patients with high hereditary risk breast cancer.

    Science.gov (United States)

    Li, Junyan; Jing, Ruilin; Wei, Hongyi; Wang, Minghao; Qi, Xiaowei; Liu, Haoxi; Liu, Jian; Ou, Jianghua; Jiang, Weihua; Tian, Fuguo; Sheng, Yuan; Li, Hengyu; Xu, Hong; Zhang, Ruishan; Guan, Aihua; Liu, Ke; Jiang, Hongchuan; Ren, Yu; He, Jianjun; Huang, Weiwei; Liao, Ning; Cai, Xiangjun; Ming, Jia; Ling, Rui; Xu, Yan; Hu, Chunyan; Zhang, Jianguo; Guo, Baoliang; Ouyang, Lizhi; Shuai, Ping; Liu, Zhenzhen; Zhong, Ling; Zeng, Zhen; Zhang, Ting; Xuan, Zhaoling; Tan, Xuanni; Liang, Junbin; Pan, Qinwen; Chen, Li; Zhang, Fan; Fan, Linjun; Zhang, Yi; Yang, Xinhua; Li, Jingbo; Chen, Chongjian; Jiang, Jun

    2018-05-12

    Multigene panel testing of breast cancer predisposition genes have been extensively conducted in Europe and America, which is relatively rare in Asia however. In this study, we assessed the frequency of germline mutations in 40 cancer predisposition genes, including BRCA1 and BRCA2, among a large cohort of Chinese patients with high hereditary risk of BC. From 2015 to 2016, consecutive BC patients from 26 centers of China with high hereditary risk were recruited (n=937). Clinical information was collected and next-generation sequencing (NGS) was performed using blood samples of participants to identify germline mutations. In total, we acquired 223 patients with putative germline mutations, including 159 in BRCA1/2, 61 in 15 other BC susceptibility genes and 3 in both BRCA1/2 and non-BRCA1/2 gene. Major mutant non-BRCA1/2 genes were TP53 (n=18), PALB2 (n=11), CHEK2 (n=6), ATM (n=6), and BARD1 (n=5). No factors predicted pathologic mutations in non-BRCA1/2 genes when treated as a whole. TP53 mutations were associated with HER-2 positive BC and younger age at diagnosis; and CHEK2 and PALB2 mutations were enriched in patients with luminal BC. Among high hereditary risk Chinese BC patients, 23.8% contained germline mutations, including 6.8% in non-BRCA1/2 genes. TP53 and PALB2 had a relatively high mutation rates (1.9% and 1.2%). Although no factors predicted for detrimental mutations in non-BRCA1/2 genes, some clinical features were associated with mutations of several particular genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  20. A regulatory network of Drosophila germline stem cell self-renewal

    OpenAIRE

    Yan, Dong; Neumüller, Ralph A.; Buckner, Michael; Ayers, Kathleen; Li, Hua; Hu, Yanhui; Yang-Zhou, Donghui; Pan, Lei; Wang, Xiaoxi; Kelley, Colleen; Vinayagam, Arunachalam; Binari, Richard; Randklev, Sakara; Perkins, Lizabeth A.; Xie, Ting

    2014-01-01

    Stem cells possess the capacity to generate two cells of distinct fate upon division; one cell retaining stem cell identity and the other cell destined to differentiate. These cell fates are established by cell-type-specific genetic networks. To comprehensively identify components of these networks, we performed a large-scale RNAi screen in Drosophila female germline stem cells (GSCs) covering ~25% of the genome. The screen identified 366 genes that affect GSC maintenance, differentiation or ...

  1. Germline Mutations in Cancer Predisposition Genes are Frequent in Sporadic Sarcomas

    OpenAIRE

    Chan, Sock Hoai; Lim, Weng Khong; Ishak, Nur Diana Binte; Li, Shao-Tzu; Goh, Wei Lin; Tan, Gek San; Lim, Kiat Hon; Teo, Melissa; Young, Cedric Ng Chuan; Malik, Simeen; Tan, Mann Hong; Teh, Jonathan Yi Hui; Chin, Francis Kuok Choon; Kesavan, Sittampalam; Selvarajan, Sathiyamoorthy

    2017-01-01

    Associations of sarcoma with inherited cancer syndromes implicate genetic predisposition in sarcoma development. However, due to the apparently sporadic nature of sarcomas, little attention has been paid to the role genetic susceptibility in sporadic sarcoma. To address this, we performed targeted-genomic sequencing to investigate the prevalence of germline mutations in known cancer-associated genes within an Asian cohort of sporadic sarcoma patients younger than 50 years old. We observed 13....

  2. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan.

    Science.gov (United States)

    Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko

    2016-11-01

    Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer.

    Science.gov (United States)

    Esteban-Jurado, Clara; Franch-Expósito, Sebastià; Muñoz, Jenifer; Ocaña, Teresa; Carballal, Sabela; López-Cerón, Maria; Cuatrecasas, Miriam; Vila-Casadesús, Maria; Lozano, Juan José; Serra, Enric; Beltran, Sergi; Brea-Fernández, Alejandro; Ruiz-Ponte, Clara; Castells, Antoni; Bujanda, Luis; Garre, Pilar; Caldés, Trinidad; Cubiella, Joaquín; Balaguer, Francesc; Castellví-Bel, Sergi

    2016-10-01

    Colorectal cancer (CRC) is one of the most common neoplasms in the world. Fanconi anemia (FA) is a very rare genetic disease causing bone marrow failure, congenital growth abnormalities and cancer predisposition. The comprehensive FA DNA damage repair pathway requires the collaboration of 53 proteins and it is necessary to restore genome integrity by efficiently repairing damaged DNA. A link between FA genes in breast and ovarian cancer germline predisposition has been previously suggested. We selected 74 CRC patients from 40 unrelated Spanish families with strong CRC aggregation compatible with an autosomal dominant pattern of inheritance and without mutations in known hereditary CRC genes and performed germline DNA whole-exome sequencing with the aim of finding new candidate germline predisposition variants. After sequencing and data analysis, variant prioritization selected only those very rare alterations, producing a putative loss of function and located in genes with a role compatible with cancer. We detected an enrichment for variants in FA DNA damage repair pathway genes in our familial CRC cohort as 6 families carried heterozygous, rare, potentially pathogenic variants located in BRCA2/FANCD1, BRIP1/FANCJ, FANCC, FANCE and REV3L/POLZ. In conclusion, the FA DNA damage repair pathway may play an important role in the inherited predisposition to CRC.

  4. Neurotransmitter Transporter-Like: a male germline-specific SLC6 transporter required for Drosophila spermiogenesis.

    Directory of Open Access Journals (Sweden)

    Nabanita Chatterjee

    2011-01-01

    Full Text Available The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl, is expressed only in the male germline. Mobilization of a transposon inserted near the 3' end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism.

  5. Fitness loss and germline mutations in barn swallows breeding in Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Ellegren, Hans; Lindgren, Gabriella; Primmer, C.R. [Swedish Univ. of Agricultural Sciences, Animal Breeding and Genetics Dept., Uppsala (Sweden); Moeller, A.P. [Universite Pierre et Marie Curie. Lab. d`Ecologie, Paris, 75 (France)

    1997-10-09

    The severe nuclear accident at Chernobyl in 1986 resulted in the worst reported accidental exposure of radioactive material to free-living organisms. Short-term effects on human populations inhabiting polluted areas include increased incidence of thyroid cancer, infant leukaemia, and congenital malformations in newborns. Two recent studies have reported, although with some controversy, that germline mutation rates were increased in humans and voles living close to Chernobyl, but little is known about the viability of the organisms affected. Here we report an increased frequency of partial albinism, a morphological aberration associated with a loss of fitness, among barn swallows, Hirundo rustica, breeding close to Chernobyl. Heretability estimates indicate that mutations causing albinism were at least partly of germline origin. Furthermore, evidence for an increased germline mutation rate was obtained from segregation analysis at two hypervariable microsatellite loci, indicating that mutation events in barn swallows from Chernobyl were two- to tenfold higher than in birds from control areas in Ukraine and Italy. (author).

  6. Fitness loss and germline mutations in barn swallows breeding in Chernobyl

    International Nuclear Information System (INIS)

    Ellegren, Hans; Lindgren, Gabriella; Primmer, C.R.; Moeller, A.P.

    1997-01-01

    The severe nuclear accident at Chernobyl in 1986 resulted in the worst reported accidental exposure of radioactive material to free-living organisms. Short-term effects on human populations inhabiting polluted areas include increased incidence of thyroid cancer, infant leukaemia, and congenital malformations in newborns. Two recent studies have reported, although with some controversy, that germline mutation rates were increased in humans and voles living close to Chernobyl, but little is known about the viability of the organisms affected. Here we report an increased frequency of partial albinism, a morphological aberration associated with a loss of fitness, among barn swallows, Hirundo rustica, breeding close to Chernobyl. Heretability estimates indicate that mutations causing albinism were at least partly of germline origin. Furthermore, evidence for an increased germline mutation rate was obtained from segregation analysis at two hypervariable microsatellite loci, indicating that mutation events in barn swallows from Chernobyl were two- to tenfold higher than in birds from control areas in Ukraine and Italy. (author)

  7. A Mononucleotide Markers Panel to Identify hMLH1/hMSH2 Germline Mutations

    Directory of Open Access Journals (Sweden)

    M. Pedroni

    2007-01-01

    Full Text Available Hereditary NonPolyposis Colorectal Cancer (Lynch syndrome is an autosomal dominant disease caused by germline mutations in a class of genes deputed to maintain genomic integrity during cell replication, mutations result in a generalized genomic instability, particularly evident at microsatellite loci (Microsatellite Instability, MSI. MSI is present in 85–90% of colorectal cancers that occur in Lynch Syndrome. To standardize the molecular diagnosis of MSI, a panel of 5 microsatellite markers was proposed (known as the “Bethesda panel”. Aim of our study is to evaluate if MSI testing with two mononucleotide markers, such as BAT25 and BAT26, was sufficient to identify patients with hMLH1/hMSH2 germline mutations. We tested 105 tumours for MSI using both the Bethesda markers and the two mononucleotide markers BAT25 and BAT26. Moreover, immunohistochemical evaluation of MLH1 and MSH2 proteins was executed on the tumours with at least one unstable microsatellite, whereas germline hMLH1/hMSH2 mutations were searched for all cases showing two or more unstable microsatellites.

  8. The Canonical E2Fs Are Required for Germline Development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaozhen Yao

    2018-05-01

    Full Text Available A number of cell fate determinations, including cell division, cell differentiation, and programmed cell death, intensely occur during plant germline development. How these cell fate determinations are regulated remains largely unclear. The transcription factor E2F is a core cell cycle regulator. Here we show that the Arabidopsis canonical E2Fs, including E2Fa, E2Fb, and E2Fc, play a redundant role in plant germline development. The e2fa e2fb e2fc (e2fabc triple mutant is sterile, although its vegetative development appears normal. On the one hand, the e2fabc microspores undergo cell death during pollen mitosis. Microspores start to die at the bicellular stage. By the tricellular stage, the majority of the e2fabc microspores are degenerated. On the other hand, a wild type ovule often has one megaspore mother cell (MMC, whereas the majority of e2fabc ovules have two to three MMCs. The subsequent female gametogenesis of e2fabc mutant is aborted and the vacuole is severely impaired in the embryo sac. Analysis of transmission efficiency showed that the canonical E2Fs from both male and female gametophyte are essential for plant gametogenesis. Our study reveals that the canonical E2Fs are required for plant germline development, especially the pollen mitosis and the archesporial cell (AC-MMC transition.

  9. Germline minisatellite mutations in workers occupationally exposed to radiation at the Sellafield nuclear facility

    International Nuclear Information System (INIS)

    Tawn, E Janet; Curwen, Gillian B; Rees, Gwen S; Jonas, Patricia

    2015-01-01

    Germline minisatellite mutation rates were investigated in male workers occupationally exposed to radiation at the Sellafield nuclear facility. DNA samples from 160 families with 255 offspring were analysed for mutations at eight hypervariable minisatellite loci (B6.7, CEB1, CEB15, CEB25, CEB36, MS1, MS31, MS32) by Southern hybridisation. No significant difference was observed between the paternal mutation rate of 5.0% (37 mutations in 736 alleles) for control fathers with a mean preconceptional testicular dose of 9 mSv and that of 5.8% (66 in 1137 alleles) for exposed fathers with a mean preconceptional testicular dose of 194 mSv. Subgrouping the exposed fathers into two dose groups with means of 111 mSv and 274 mSv revealed paternal mutation rates of 6.0% (32 mutations in 536 alleles) and 5.7% (34 mutations in 601 alleles), respectively, neither of which was significantly different in comparisons with the rate for the control fathers. Maternal mutation rates of 1.6% (12 mutations in 742 alleles) for the partners of control fathers and 1.7% (19 mutations in 1133 alleles) for partners of exposed fathers were not significantly different. This study provides evidence that paternal preconceptional occupational radiation exposure does not increase the germline minisatellite mutation rate and therefore refutes suggestions that such exposure could result in a destabilisation of the germline that can be passed on to future generations. (paper)

  10. The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers.

    Science.gov (United States)

    Weigelt, Britta; Bi, Rui; Kumar, Rahul; Blecua, Pedro; Mandelker, Diana L; Geyer, Felipe C; Pareja, Fresia; James, Paul A; Couch, Fergus J; Eccles, Diana M; Blows, Fiona; Pharoah, Paul; Li, Anqi; Selenica, Pier; Lim, Raymond S; Jayakumaran, Gowtham; Waddell, Nic; Shen, Ronglai; Norton, Larry; Wen, Hannah Y; Powell, Simon N; Riaz, Nadeem; Robson, Mark E; Reis-Filho, Jorge S; Chenevix-Trench, Georgia

    2018-02-28

    Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.

  11. Proven germline mosaicism in a father of two children with CHARGE syndrome.

    Science.gov (United States)

    Pauli, S; Pieper, L; Häberle, J; Grzmil, P; Burfeind, P; Steckel, M; Lenz, U; Michelmann, H W

    2009-05-01

    CHARGE syndrome is an autosomal dominant malformation syndrome caused by mutations in the CHD7 gene. The majority of cases are sporadic and only few familial cases have been reported. In these families, mosaicism in one parent, as well as parent- to-child transmission of a CHD7 mutation, has been described. In some further cases, germline mosaicism has been suggested. Here, we report the first case in which germline mosaicism could be demonstrated in a father of two affected children with CHARGE syndrome. The truncating mutation c.7302dupA in exon 34 of the CHD7 gene was found in both affected children but was not detected in parental lymphocytes. However, in DNA extracted from the father's spermatozoa, the c.7302dupA mutation could be identified. Furthermore, mutation analysis of DNA isolated from 59 single spermatozoa revealed that the c.7302dupA mutation occurs in 16 spermatozoa, confirming germline mosaicism in the father of the affected children. This result has a high impact for genetic counselling of the family and for their recurrence risk in further pregnancies.

  12. Somatic and Germline Diversification of a Putative Immunoreceptor within One Phylum: Dscam in Arthropods.

    Science.gov (United States)

    Brites, Daniela; Du Pasquier, Louis

    2015-01-01

    Arthropod Dscam, the homologue of the human Down Syndrome cell adhesion molecule, is a receptor used by the nervous and immune systems. Unlike in vertebrates, evolutionary pressure has selected and maintained a vast Dscam diversity of isoforms, known to specifying neuronal identity during the nervous system differentiation. This chapter examines the different modes of Dscam diversification in the context of arthropods' evolution and that of their immune system, where its role is controversial. In the single Dscam gene of insects and crustaceans, mutually exclusive alternative splicing affects three clusters of duplicated exons encoding the variable parts of the receptor. The Dscam gene produces over 10,000 isoforms. In the more basal arthropods such as centipedes, Dscam diversity results from a combination of many germline genes (over 80) with, in about half of those, the possibility of alternative splicing affecting only one exon cluster. In the even more basal arthropods, such as chelicerates, no splicing possibility is detected, but there exist dozens of germline Dscam genes. Compared to controlling the expression of multiple germline genes, the somatic mutually alternative splicing within a single gene may offer a simplified way of expressing a large Dscam repertoire. Expressed by hemocytes, Dscam is considered a phagocytic receptor but is also encountered in solution. More information is necessary about its binding to pathogens, its role in phagocytosis, its possible role in specifying hemocyte identity, its kinetics of expression, and the regulation of its RNA splicing to understand how its diversity is linked to immunity.

  13. Hermes (Rbpms is a Critical Component of RNP Complexes that Sequester Germline RNAs during Oogenesis

    Directory of Open Access Journals (Sweden)

    Tristan Aguero

    2016-01-01

    Full Text Available The germ cell lineage in Xenopus is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as nanos1, localize to the germ plasm. nanos1 has the essential germline function of blocking somatic gene expression and thus preventing Primordial Germ Cell (PGC loss and sterility. Hermes/Rbpms protein and nanos RNA co-localize within germinal granules, diagnostic electron dense particles found within the germ plasm. Previous work indicates that nanos accumulates within the germ plasm through a diffusion/entrapment mechanism. Here we show that Hermes/Rbpms interacts with nanos through sequence specific RNA localization signals found in the nanos-3′UTR. Importantly, Hermes/Rbpms specifically binds nanos, but not Vg1 RNA in the nucleus of stage I oocytes. In vitro binding data show that Hermes/Rbpms requires additional factors that are present in stage I oocytes in order to bind nanos1. One such factor may be hnRNP I, identified in a yeast-2-hybrid screen as directly interacting with Hermes/Rbpms. We suggest that Hermes/Rbpms functions as part of a RNP complex in the nucleus that facilitates selection of germline RNAs for germ plasm localization. We propose that Hermes/Rbpms is required for nanos RNA to form within the germinal granules and in this way, participates in the germline specific translational repression and sequestration of nanos RNA.

  14. Hermes (Rbpms) is a Critical Component of RNP Complexes that Sequester Germline RNAs during Oogenesis.

    Science.gov (United States)

    Aguero, Tristan; Zhou, Yi; Kloc, Malgorzata; Chang, Patrick; Houliston, Evelyn; King, Mary Lou

    2016-03-01

    The germ cell lineage in Xenopus is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as nanos1 , localize to the germ plasm. nanos1 has the essential germline function of blocking somatic gene expression and thus preventing Primordial Germ Cell (PGC) loss and sterility. Hermes/Rbpms protein and nanos RNA co-localize within germinal granules, diagnostic electron dense particles found within the germ plasm. Previous work indicates that nanos accumulates within the germ plasm through a diffusion/entrapment mechanism. Here we show that Hermes/Rbpms interacts with nanos through sequence specific RNA localization signals found in the nanos -3'UTR. Importantly, Hermes/Rbpms specifically binds nanos , but not Vg1 RNA in the nucleus of stage I oocytes. In vitro binding data show that Hermes/Rbpms requires additional factors that are present in stage I oocytes in order to bind nanos1 . One such factor may be hnRNP I, identified in a yeast-2-hybrid screen as directly interacting with Hermes/Rbpms. We suggest that Hermes/Rbpms functions as part of a RNP complex in the nucleus that facilitates selection of germline RNAs for germ plasm localization. We propose that Hermes/Rbpms is required for nanos RNA to form within the germinal granules and in this way, participates in the germline specific translational repression and sequestration of nanos RNA .

  15. Production of germline transgenic prairie voles (Microtus ochrogaster) using lentiviral vectors.

    Science.gov (United States)

    Donaldson, Zoe R; Yang, Shang-Hsun; Chan, Anthony W S; Young, Larry J

    2009-12-01

    The study of alternative model organisms has yielded tremendous insights into the regulation of behavioral and physiological traits not displayed by more widely used animal models, such as laboratory rats and mice. In particular, comparative approaches often exploit species ideally suited for investigating specific phenomenon. For instance, comparative studies of socially monogamous prairie voles and polygamous meadow voles have been instrumental toward gaining an understanding of the genetic and neurobiological basis of social bonding. However, laboratory studies of less commonly used organisms, such as prairie voles, have been limited by a lack of genetic tools, including the ability to manipulate the genome. Here, we show that lentiviral vector-mediated transgenesis is a rapid and efficient approach for creating germline transgenics in alternative laboratory rodents. Injection of a green fluorescent protein (GFP)-expressing lentiviral vector into the perivitelline space of 23 single-cell embryos yielded three live offspring (13 %), one of which (33%) contained germline integration of a GFP transgene driven by the human ubiquitin-C promoter. In comparison, transfer of 23 uninjected embryos yielded six live offspring (26%). Green fluorescent protein is present in all tissues examined and is expressed widely in the brain. The GFP transgene is heritable and stably expressed until at least the F(2) generation. This technology has the potential to allow investigation of specific gene candidates in prairie voles and provides a general protocol to pursue germline transgenic manipulation in many different rodent species.

  16. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    Science.gov (United States)

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

  17. Tailless-like (TLX) protein promotes neuronal differentiation of dermal multipotent stem cells and benefits spinal cord injury in rats.

    Science.gov (United States)

    Wang, Tao; Ren, Xiaobao; Xiong, Jianqiong; Zhang, Lei; Qu, Jifu; Xu, Wenyue

    2011-04-01

    Spinal cord injury (SCI) remains a formidable challenge in the clinic. In the current study, we examined the effects of the TLX gene on the proliferation and neuronal differentiation of dermal multipotent stem cells (DMSCs) in vitro and the potential of these cells to improve SCI in rats in vivo. DMSCs were stably transfected with TLX-expressing plasmid (TLX/DMSCs). Cell proliferation was examined using the MTT assay, and neuronal differentiation was characterized by morphological observation combined with immunocytochemical/immunofluorescent staining. The in vivo functions of these cells were evaluated by transplantation into rats with SCI, followed by analysis of hindlimb locomotion and post-mortem histology. Compared to parental DMSCs, TLX/DMSCs showed enhanced proliferation and preferential differentiation into NF200-positive neurons in contrast to GFAP-positive astrocytes. When the undifferentiated cells were transplanted into rats with SCI injury, TLX/DMSCs led to significant improvement in locomotor recovery and healing of SCI, as evidenced by reduction in scar tissues and cavities, increase in continuous nerve fibers/axons and enrichment of NF200-positive neurons on the histological level. In conclusion, TLX promotes the proliferation and neuronal differentiation of DMSCs and thus, may serve as a promising therapy for SCI in the clinic.

  18. Th17 Pathway As a Target for Multipotent Stromal Cell Therapy in Dogs: Implications for Translational Research.

    Science.gov (United States)

    Kol, A; Walker, N J; Nordstrom, M; Borjesson, D L

    2016-01-01

    Detrimental Th17 driven inflammatory and autoimmune disease such as Crohn's disease, graft versus host disease and multiple sclerosis remain a significant cause of morbidity and mortality worldwide. Multipotent stromal/stem cell (MSC) inhibit Th17 polarization and activation in vitro and in rodent models. As such, MSC based therapeutic approaches are being investigated as novel therapeutic approaches to treat Th17 driven diseases in humans. The significance of naturally occurring diseases in dogs is increasingly recognized as a realistic platform to conduct pre-clinical testing of novel therapeutics. Full characterization of Th17 cells in dogs has not been completed. We have developed and validated a flow-cytometric method to detect Th17 cells in canine blood. We further demonstrate that Th17 and other IL17 producing cells are present in tissues of dogs with naturally occurring chronic inflammatory diseases. Finally, we have determined the kinetics of a canine specific Th17 polarization in vitro and demonstrate that canine MSC inhibit Th17 polarization in vitro, in a PGE2 independent mechanism. Our findings provide fundamental research tools and suggest that naturally occurring diseases in dogs, such as inflammatory bowel disease, may be harnessed to translate novel MSC based therapeutic strategies that target the Th17 pathway.

  19. Novel Regenerative Therapies Based on Regionally Induced Multipotent Stem Cells in Post-Stroke Brains: Their Origin, Characterization, and Perspective.

    Science.gov (United States)

    Takagi, Toshinori; Yoshimura, Shinichi; Sakuma, Rika; Nakano-Doi, Akiko; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-12-01

    Brain injuries such as ischemic stroke cause severe neural loss. Until recently, it was believed that post-ischemic areas mainly contain necrotic tissue and inflammatory cells. However, using a mouse model of cerebral infarction, we demonstrated that stem cells develop within ischemic areas. Ischemia-induced stem cells can function as neural progenitors; thus, we initially named them injury/ischemia-induced neural stem/progenitor cells (iNSPCs). However, because they differentiate into more than neural lineages, we now refer to them as ischemia-induced multipotent stem cells (iSCs). Very recently, we showed that putative iNSPCs/iSCs are present within post-stroke areas in human brains. Because iNSPCs/iSCs isolated from mouse and human ischemic tissues can differentiate into neuronal lineages in vitro, it is possible that a clearer understanding of iNSPC/iSC profiles and the molecules that regulate iNSPC/iSC fate (e.g., proliferation, differentiation, and survival) would make it possible to perform neural regeneration/repair in patients following stroke. In this article, we introduce the origin and traits of iNSPCs/iSCs based on our reports and recent viewpoints. We also discuss their possible contribution to neurogenesis through endogenous and exogenous iNSPC/iSC therapies following ischemic stroke.

  20. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria-Martinez, Albert [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat de Barcelona, Barcelona (Spain); Barquinero, Jordi [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Banc de Sang i Teixits, Barcelona (Spain); Barbosa-Desongles, Anna; Hurtado, Antoni; Pinos, Tomas [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Seoane, Joan [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Medical Oncology program, Vall d' Hebron Institute of Oncology, Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Poupon, Marie-France [Institut Curie, Paris (France); Morote, Joan [Universitat Autonoma de Barcelona, Barcelona (Spain); Servei d' Urologia. Hospital Vall d' Hebron, Barcelona (Spain); Reventos, Jaume [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Munell, Francina, E-mail: fmunell@ir.vhebron.net [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain)

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  1. Human cadaver multipotent stromal/stem cells isolated from arteries stored in liquid nitrogen for 5 years

    Science.gov (United States)

    2014-01-01

    Introduction Regenerative medicine challenges researchers to find noncontroversial, safe and abundant stem cell sources. In this context, harvesting from asystolic donors could represent an innovative and unlimited reservoir of different stem cells. In this study, cadaveric vascular tissues were established as an alternative source of human cadaver mesenchymal stromal/stem cells (hC-MSCs). We reported the successful cell isolation from postmortem arterial segments stored in a tissue-banking facility for at least 5 years. Methods After thawing, hC-MSCs were isolated with a high efficiency (12 × 106) and characterized with flow cytometry, immunofluorescence, molecular and ultrastructural approaches. Results In early passages, hC-MSCs were clonogenic, highly proliferative and expressed mesenchymal (CD44, CD73, CD90, CD105, HLA-G), stemness (Stro-1, Oct-4, Notch-1), pericyte (CD146, PDGFR-β, NG2) and neuronal (Nestin) markers; hematopoietic and vascular markers were negative. These cells had colony and spheroid-forming abilities, multipotency for their potential to differentiate in multiple mesengenic lineages and immunosuppressive activity to counteract proliferation of phytohemagglutinin-stimulated blood mononuclear cells. Conclusions The efficient procurement of stem cells from cadaveric sources, as postmortem vascular tissues, demonstrates that such cells can survive to prolonged ischemic insult, anoxia, freezing and dehydration injuries, thus paving the way for a scientific revolution where cadaver stromal/stem cells could effectively treat patients demanding cell therapies. PMID:24429026

  2. Evaluation of Peripheral Blood and Cord Blood Platelet Lysates in Isolation and Expansion of Multipotent Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Ioanna Christou

    2018-02-01

    Full Text Available Background: Multipotent Mesenchymal Stromal Cells (MSCs are used in tissue engineering and regenerative medicine. The in vitro isolation and expansion of MSCs involve the use of foetal bovine serum (FBS. However, many concerns have been raised regarding the safety of this product. In this study, alternative additives derived either from peripheral or cord blood were tested as an FBS replacement. Methods: Platelet lysates (PL from peripheral and cord blood were used for the expansion of MSCs. The levels of growth factors in peripheral blood (PB and cord blood (CB PLs were determined using the Multiple Reaction Monitoring (MRM. Finally, the cell doubling time (CDT, tri-lineage differentiation and phenotypic characterization of the MSCs expanded with FBS and PLs were determined. Results: MSCs treated with culture media containing FBS and PB-PL, were successfully isolated and expanded, whereas MSCs treated with CB-PL could not be maintained in culture. Furthermore, the MRM analysis yielded differences in growth factor levels between PB-PL and CB-PL. In addition, the MSCs were successfully expanded with FBS and PB-PL and exhibited tri-lineage differentiation and stable phenotypic characteristics. Conclusion: PB-PL could be used as an alternative additive for the production of MSCs culture medium applied to xenogeneic-free expansion and maintenance of MSCs in large scale clinical studies.

  3. Detection of mismatch repair gene germline mutation carrier among Chinese population with colorectal cancer

    International Nuclear Information System (INIS)

    Jin, Hei-Ying; Zhao, Ronghua; Liu, Xiufang; Li, Vicky Ka Ming; Ding, Yijiang; Yang, Bolin; Geng, Jianxiang; Lai, Rensheng; Ding, Shuqing; Ni, Min

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome. The National Cancer Institute (NCI) has recommended the Revised Bethesda guidelines for screening HNPCC. There has been a great deal of research on the value of these tests in other countries. However, literature about the Chinese population is scarce. Our objective is to detect and study microsatellite instability (MSI) and mismatch repair (MMR) gene germline mutation carriers among a Chinese population with colorectal cancer. In 146 prospectively recruited consecutive patients with clinically proven colorectal cancer, MSI carriers were identified by analysis of tumor tissue using multiplex fluorescence polymerase chain reaction (PCR) using the NCI recommended panel and classified into microsatellite instability-low (MSI-L), microsatellite instability-high (MSI-H) and microsatellite stable (MSS) groups. Immunohistochemical staining for MSH2, MSH6 and MLH1 on tissue microarrays (TMAs) was performed, and methylation of the MLH1 promoter was analyzed by quantitative methylation specific PCR (MSP). Germline mutation analysis of blood samples was performed for MSH2, MSH6 and MLH1 genes. Thirty-four out of the 146 colorectal cancers (CRCs, 23.2%) were MSI, including 19 MSI-H CRCs and 15 MSI-L CRCS. Negative staining for MSH2 was found in 8 CRCs, negative staining for MSH6 was found in 6 CRCs. One MSI-H CRC was negative for both MSH6 and MSH2. Seventeen CRCs stained negatively for MLH1. MLH1 promoter methylation was determined in 34 MSI CRCs. Hypermethylation of the MLH1 promoter occurred in 14 (73.7%) out of 19 MSI-H CRCs and 5 (33.3%) out of 15 MSI-L CRCs. Among the 34 MSI carriers and one MSS CRC with MLH1 negative staining, 8 had a MMR gene germline mutation, which accounted for 23.5% of all MSI colorectal cancers and 5.5% of all the colorectal cancers. Five patients harbored MSH2 germline mutations, and three patients harbored MSH6 germline mutations. None of the patients had an MLH

  4. Hair Follicle: A Novel Source of Multipotent Stem Cells for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Mistriotis, Panagiotis

    2013-01-01

    The adult body harbors powerful reservoirs of stem cells that enable tissue regeneration under homeostatic conditions or in response to disease or injury. The hair follicle (HF) is a readily accessible mini organ within the skin and contains stem cells from diverse developmental origins that were shown to have surprisingly broad differentiation potential. In this review, we discuss the biology of the HF with particular emphasis on the various stem cell populations residing within the tissue. We summarize the existing knowledge on putative HF stem cell markers, the differentiation potential, and technologies to isolate and expand distinct stem cell populations. We also discuss the potential of HF stem cells for drug and gene delivery, tissue engineering, and regenerative medicine. We propose that the abundance of stem cells with broad differentiation potential and the ease of accessibility makes the HF an ideal source of stem cells for gene and cell therapies. PMID:23157470

  5. Meta-analysis of expression of l(3)mbt tumor-associated germline genes supports the model that a soma-to-germline transition is a hallmark of human cancers.

    Science.gov (United States)

    Feichtinger, Julia; Larcombe, Lee; McFarlane, Ramsay J

    2014-05-15

    Evidence is starting to emerge indicating that tumorigenesis in metazoans involves a soma-to-germline transition, which may contribute to the acquisition of neoplastic characteristics. Here, we have meta-analyzed gene expression profiles of the human orthologs of Drosophila melanogaster germline genes that are ectopically expressed in l(3)mbt brain tumors using gene expression datasets derived from a large cohort of human tumors. We find these germline genes, some of which drive oncogenesis in D. melanogaster, are similarly ectopically activated in a wide range of human cancers. Some of these genes normally have expression restricted to the germline, making them of particular clinical interest. Importantly, these analyses provide additional support to the emerging model that proposes a soma-to-germline transition is a general hallmark of a wide range of human tumors. This has implications for our understanding of human oncogenesis and the development of new therapeutic and biomarker targets with clinical potential. © 2013 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  6. The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential.

    Science.gov (United States)

    Fiorelli, Roberto; Cebrian-Silla, Arantxa; Garcia-Verdugo, Jose-Manuel; Raineteau, Olivier

    2013-12-01

    Adult neural stem cells (aNSCs) of the forebrain are GFAP-expressing cells that are intercalated within ependymal cells of the subventricular zone (SVZ). Cells showing NSCs characteristics in vitro can also be isolated from the periaqueductal region in the adult spinal cord (SC), but contradicting results exist concerning their glial versus ependymal identity. We used an inducible transgenic mouse line (hGFAP-CreERT2) to conditionally label GFAP-expressing cells in the adult SVZ and SC periaqueduct, and directly and systematically compared their self-renewal and multipotential properties in vitro. We demonstrate that a population of GFAP(+) cells that share the morphology and the antigenic properties of SVZ-NSCs mostly reside in the dorsal aspect of the central canal (CC) throughout the spinal cord. These cells are non-proliferative in the intact spinal cord, but incorporate the S-phase marker EdU following spinal cord injury. Multipotent, clonal YFP-expressing neurospheres (i.e., deriving from recombined GFAP-expressing cells) were successfully obtained from both the intact and injured spinal cord. These spheres however showed limited self-renewal properties when compared with SVZ-neurospheres, even after spinal cord injury. Altogether, these results demonstrate that significant differences exist in NSCs lineages between neurogenic and non-neurogenic regions of the adult CNS. Thus, although we confirm that a population of multipotent GFAP(+) cells co-exists alongside with multipotent ependymal cells within the adult SC, we identify these cells as multipotent progenitors showing limited self-renewal properties. Copyright © 2013 Wiley Periodicals, Inc.

  7. Long-term culture of chicken primordial germ cells isolated from embryonic blood and production of germline chimaeric chickens.

    Science.gov (United States)

    Naito, Mitsuru; Harumi, Takashi; Kuwana, Takashi

    2015-02-01

    Production of germline chimaeric chickens by the transfer of cultured primordial germ cells (PGC) is a useful system for germline manipulation. A novel culture system was developed for chicken PGC isolated from embryonic blood. The isolated PGC were cultured on feeder cells derived from chicken embryonic fibroblast. The cultured PGC formed colonies and they proliferated about 300-times during the first 30 days. The cultured PGC retained the ability to migrate to recipient gonads and were also chicken VASA homologue (CVH)-positive. Female PGC were present in the mixed-sex PGC populations cultured for more than 90 days and gave rise to viable offspring efficiently via germline chimaeric chickens. Male cultured PGC were transferred to recipient embryos and produced putative chimaeric chickens. The DNA derived from the cultured PGC was detected in the sperm samples of male putative chimaeric chickens, but no donor derived offspring were obtained. Donor-derived offspring were also obtained from germline chimaeric chickens by the transfer of frozen-thawed cultured PGC. The culture method for PGC developed in the present study is useful for manipulation of the germline in chickens, such as preservation of genetic resources and gene transfer. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The role of germline promoters and I exons in cytokine-induced gene-specific class switch recombination.

    Science.gov (United States)

    Dunnick, Wesley A; Shi, Jian; Holden, Victoria; Fontaine, Clinton; Collins, John T

    2011-01-01

    Germline transcription precedes class switch recombination (CSR). The promoter regions and I exons of these germline transcripts include binding sites for activation- and cytokine-induced transcription factors, and the promoter regions/I exons are essential for CSR. Therefore, it is a strong hypothesis that the promoter/I exons regions are responsible for much of cytokine-regulated, gene-specific CSR. We tested this hypothesis by swapping the germline promoter and I exons for the murine γ1 and γ2a H chain genes in a transgene of the entire H chain C-region locus. We found that the promoter/I exon for γ1 germline transcripts can direct robust IL-4-induced recombination to the γ2a gene. In contrast, the promoter/I exon for the γ2a germline transcripts works poorly in the context of the γ1 H chain gene, resulting in expression of γ1 H chains that is level. Nevertheless, the small amount of recombination to the chimeric γ1 gene is induced by IFN-γ. These results suggest that cytokine regulation of CSR, but not the magnitude of CSR, is regulated by the promoter/I exons.

  9. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

    Science.gov (United States)

    Saito, Kosuke; Tamaki, Tetsuro; Hirata, Maki; Hashimoto, Hiroyuki; Nakazato, Kenei; Nakajima, Nobuyuki; Kazuno, Akihito; Sakai, Akihiro; Iida, Masahiro; Okami, Kenji

    2015-01-01

    Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL). We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs), which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST). Culture medium was transplanted as a control (NT). In the mouse experiment, facial-nerve-palsy (FNP) scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold) scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.

  10. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

    Directory of Open Access Journals (Sweden)

    Kosuke Saito

    Full Text Available Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL. We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs, which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST. Culture medium was transplanted as a control (NT. In the mouse experiment, facial-nerve-palsy (FNP scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.

  11. Intrinsic Sex-Linked Variations in Osteogenic and Adipogenic Differentiation Potential of Bone Marrow Multipotent Stromal Cells.

    Science.gov (United States)

    Bragdon, Beth; Burns, Robert; Baker, Amelia H; Belkina, Anna C; Morgan, Elise F; Denis, Gerald V; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2015-02-01

    Bone formation and aging are sexually dimorphic. Yet, definition of the intrinsic molecular differences between male and female multipotent mesenchymal stromal cells (MSCs) in bone is lacking. This study assessed sex-linked differences in MSC differentiation in 3-, 6-, and 9-month-old C57BL/6J mice. Analysis of tibiae showed that female mice had lower bone volume fraction and higher adipocyte content in the bone marrow compared to age-matched males. While both males and females lost bone mass in early aging, the rate of loss was higher in males. Similar expression of bone- and adipocyte-related genes was seen in males and females at 3 and 9 months, while at 6 months, females exhibited a twofold greater expression of these genes. Under osteogenic culture conditions, bone marrow MSCs from female 3- and 6-month-old mice expressed similar levels of bone-related genes, but significantly greater levels of adipocyte-related genes, than male MSCs. Female MSCs also responded to rosiglitazone-induced suppression of osteogenesis at a 5-fold lower (10 nM) concentration than male MSCs. Female MSCs grown in estrogen-stripped medium showed similar responses to rosiglitazone as MSCs grown in serum containing estrogen. MSCs from female mice that had undergone ovariectomy before sexual maturity also were sensitive to rosiglitazone-induced effects on osteogenesis. These results suggest that female MSCs are more sensitive to modulation of differentiation by PPARγ and that these differences are intrinsic to the sex of the animal from which the MSCs came. These results also may explain the sensitivity of women to the deleterious effects of rosiglitazone on bone. © 2014 Wiley Periodicals, Inc.

  12. Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro.

    Science.gov (United States)

    Griffiths, Sarah; Baraniak, Priya R; Copland, Ian B; Nerem, Robert M; McDevitt, Todd C

    2013-12-01

    Multipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown. MSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to "rescue" the proliferative capacity of MSCs. hPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS. hPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Effect of hBD2 genetically modified dermal multipotent stem cells on repair of infected irradiated wounds

    International Nuclear Information System (INIS)

    Zong Zhaowen; Li Nan; Xiao Taoyuan

    2010-01-01

    Deficiencies in repair cells and infection are two of the main factors that can hinder the process of wound healing. In the present study, we investigated the ability of human beta-defensin-2 (hBD2) genetically modified dermal multipotent stem cells (dMSCs) to accelerate the healing irradiated wounds complicated by infections. An hBD2 adenovirus expression vector (Adv-hBD2) was firstly constructed and used to infect dMSCs. The antibacterial activity of the supernatant was determined by Kirby-Bauer method and macrodilution broth assay. Time to complete wound healing, residual percentage of wound area, and the number of bacteria under the scar were measured to assess the effects of Adv-hBD2-infected dMSC transplantation on the healing of irradiated wounds complicated by Pseudomonas aeruginosa infection. Results showed that the supernatant from Adv-hBD2-infected dMSCs had obvious antibacterial effects. Transplantation of Adv-hBD2-infected dMSCs killed bacteria in the wound. The complete wound healing time was 19.8±0.45 days, which was significantly shorter than in the control groups (P<0.05). From 14 days after transplantation, the residual wound area was smaller in the experimental group than in the control groups (P<0.05). In conculsion, we found that transplantation of hBD2 genetically modified dMSCs accelerated the healing of wounds complicated by P. aeruginosa infection in whole body irradiated rats. (author)

  14. Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability.

    Science.gov (United States)

    Kropp, Peter A; Dunn, Jennifer C; Carboneau, Bethany A; Stoffers, Doris A; Gannon, Maureen

    2018-04-01

    The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.

  15. Formation of germline chimera Gaok chicken used circulation primordial germ cells (circulation PGCs fresh and thawed

    Directory of Open Access Journals (Sweden)

    Kostaman T

    2014-03-01

    Full Text Available Formation of germline chimeras by transfer of chicken primordial germ cells (PGCs is one of the effective techniques for preservation and regeneration of genetic resources in chickens. This study attempted to form germline chimeras of Gaok chicken buy purifying circulated PGCs of donor embryo before it is transferred to the recipient (White Leghorn chickens=WL and studied the ability of recipient embryo on survival in incubators, and hatchability. This study used 200 fertile eggs of Gaok and 90 fertile WL breed all of the eggs was incubated at 380C and 60% humidity in a portable incubator. PGCs-circulation of the blood collected Gaok embryos at stage 14-16 were taken from the dorsal aorta, and then purified by centrifugation method using nycodenz. PGCs-circulation results further purification frozen in liquid nitrogen before being transferred to the recipient embryo. The results showed that for the development of embryos transferred to the fresh circulation of PGCs-circulation as many as 25 cells can survive up to day 14, while one of the transferred of 50 and 100 cells into recipient embryos was hatched (10%. On the contrari recipient embryos that are transferred to the frozen PGCs-circulation the embryos development was shorter, and only survived until day 10th (treatment 25 cells, day 14th (treatment of 50 cells and day 17th (treatment of 100 cells. It is concluded that the amount of PGCs-circulation embryos transferred to the recipient is one factor that influence the success of the development germline chimeras.

  16. Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Nunes Virginia

    2008-01-01

    Full Text Available Abstract Background Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC. Conclusion This study proposes that variation at putative 8q24 cis-regulator(s of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.

  17. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  18. Germline HVR-II mitochondrial polymorphisms associated with breast cancer in Tunisian women.

    Science.gov (United States)

    Yacoubi Loueslati, B; Troudi, W; Cherni, L; Rhomdhane, K B; Mota-Vieira, L

    2010-08-31

    A high incidence of somatic mtDNA polymorphisms has been reported in a wide variety of human cancers; some of them have been proposed as markers for the early detection of breast cancer. However, little attention has been paid to the potential of germline mitochondrial sequence variations as genetic risk factors for cancer. We performed a case-control study of 70 unrelated Tunisian women with breast cancer and 80 healthy age- and gender-matched blood donors, taking into account clinicopathological data, to evaluate germline polymorphism of mitochondrial HVR-II region as a genetic risk factor for breast cancer. Through direct sequencing, we detected 351 polymorphisms in controls and 248 variants in patients, with 47 and 39 segregating sites, respectively. In both groups, more than 50% of the polymorphisms were due to four variants: 315 ins C, 309 ins C, 263 A>G, and 73 A>G. The HVR-II sequences were also classified into haplotypes on the basis of the polymorphisms. Fifty-nine different haplotypes were found, 20 of them shared between patients and controls. Both groups had specific haplotypes, 18 in breast cancer patients and 21 in controls. Statistical analysis revealed a weak protective effect against breast cancer risk for two mitochondrial polymorphisms - 152 T>C (odds ratio (OR) = 0.33, 95% confidence interval (CI) = 0.12-0.91) and 263 A>G (OR = 0.17, 95%CI = 0.06-0.47). In contrast, an increased risk of breast cancer was detected for the 315+C haplotype (OR = 11.66, 95%CI = 1.44-252.23). We conclude that mitochondrial variants can affect breast cancer risk. More extensive studies, involving different types of cancer and patients with different genetic makeup, will be required to improve our understanding of the effects of germline mtDNA polymorphisms on carcinogenesis.

  19. Understanding the role of p53 in adaptive response to radiation-induced germline mutations

    International Nuclear Information System (INIS)

    Langlois, N.L.; Quinn, J.S.; Somers, C.M.; Boreham, D.R.; Mitchel, R.E.J.

    2003-01-01

    Full text: Radiation-induced adaptive response is now a widely studied area of radiation biology. Studies have demonstrated reduced levels of radiation-induced biological damage when an 'adaptive dose' is given before a higher 'challenge dose' compared to when the challenge dose is given alone. It has been shown in some systems to be a result of inducible cellular repair systems. The adaptive response has been clearly demonstrated in many model systems, however its impact on heritable effects in the mammalian germline has never been studied. Expanded Simple Tandem Repeat (ESTR) loci have been used as markers demonstrating that induced heritable mutations in mice follow a dose-response relationship. Recent data in our laboratory show preliminary evidence of radiation-induced adaptive response suppressing germline mutations at ESTR loci in wild type mice. The frequency of heritable mutations was significantly reduced when a priming dose of 0.1 Gy was given 24 hours prior to a 1 Gy acute challenging dose. We are now conducting a follow-up study to attempt to understand the mechanism of this adaptive response. P53 is known to play a significant role in governing apoptosis, DNA repair and cancer induction. In order to determine what function p53 has in the adaptive response for heritable mutations, we have mated radiation treated Trp53+/- male mice (C57Bl) to untreated, normal females (C57Bl). Using DNA fingerprinting, we are investigating the rate of inherited radiation-induced mutations on pre- and post-meiotic radiation-treated gametocytes by examining mutation frequencies in offspring DNA. If p53 is integral in the mechanism of adaptive response, we should not see an adaptive response in radiation-induced heritable mutations in these mice. This research is significant in that it will provide insight to understanding the mechanism behind radiation-induced adaptive response in the mammalian germline

  20. Use of Germline Polymorphisms in Predicting Concurrent Chemoradiotherapy Response in Esophageal Cancer

    International Nuclear Information System (INIS)

    Chen, Pei-Chun; Chen, Yen-Ching; Lai, Liang-Chuan; Tsai, Mong-Hsun; Chen, Shin-Kuang; Yang, Pei-Wen; Lee, Yung-Chie; Hsiao, Chuhsing K.; Lee, Jang-Ming; Chuang, Eric Y.

    2012-01-01

    Purpose: To identify germline polymorphisms to predict concurrent chemoradiation therapy (CCRT) response in esophageal cancer patients. Materials and Methods: A total of 139 esophageal cancer patients treated with CCRT (cisplatin-based chemotherapy combined with 40 Gy of irradiation) and subsequent esophagectomy were recruited at the National Taiwan University Hospital between 1997 and 2008. After excluding confounding factors (i.e., females and patients aged ≥70 years), 116 patients were enrolled to identify single nucleotide polymorphisms (SNPs) associated with specific CCRT responses. Genotyping arrays and mass spectrometry were used sequentially to determine germline polymorphisms from blood samples. These polymorphisms remain stable throughout disease progression, unlike somatic mutations from tumor tissues. Two-stage design and additive genetic models were adopted in this study. Results: From the 26 SNPs identified in the first stage, 2 SNPs were found to be significantly associated with CCRT response in the second stage. Single nucleotide polymorphism rs16863886, located between SGPP2 and FARSB on chromosome 2q36.1, was significantly associated with a 3.93-fold increase in pathologic complete response to CCRT (95% confidence interval 1.62–10.30) under additive models. Single nucleotide polymorphism rs4954256, located in ZRANB3 on chromosome 2q21.3, was associated with a 3.93-fold increase in pathologic complete response to CCRT (95% confidence interval 1.57–10.87). The predictive accuracy for CCRT response was 71.59% with these two SNPs combined. Conclusions: This is the first study to identify germline polymorphisms with a high accuracy for predicting CCRT response in the treatment of esophageal cancer.

  1. Prospective Evaluation of Germline Alterations in Patients With Exocrine Pancreatic Neoplasms.

    Science.gov (United States)

    Lowery, Maeve A; Wong, Winston; Jordan, Emmet J; Lee, Jonathan W; Kemel, Yelena; Vijai, Joseph; Mandelker, Diana; Zehir, Ahmet; Capanu, Marinela; Salo-Mullen, Erin; Arnold, Angela G; Yu, Kenneth H; Varghese, Anna M; Kelsen, David P; Brenner, Robin; Kaufmann, Erica; Ravichandran, Vignesh; Mukherjee, Semanti; Berger, Michael F; Hyman, David M; Klimstra, David S; Abou-Alfa, Ghassan K; Tjan, Catherine; Covington, Christina; Maynard, Hannah; Allen, Peter J; Askan, Gokce; Leach, Steven D; Iacobuzio-Donahue, Christine A; Robson, Mark E; Offit, Kenneth; Stadler, Zsofia K; O'Reilly, Eileen M

    2018-02-28

    Identification of pathogenic germline alterations (PGAs) has important clinical and therapeutic implications in pancreas cancer. We performed comprehensive germline testing (GT) in an unselected prospective cohort of patients with exocrine pancreatic neoplasms with genotype and phenotype association to facilitate identification of prognostic and/or predictive biomarkers and examine potential therapeutic implications. Six hundred fifteen unselected patients with exocrine pancreatic neoplasms were prospectively consented for somatic tumor and matched sample profiling for 410-468 genes. GT for PGAs in 76 genes associated with cancer susceptibility was performed in an "identified" manner in 356 (57.9%) patients and in an "anonymized" manner in 259 (42.1%) patients, using an institutional review board-approved protocol. Detailed clinical and pathological features, response to platinum, and overall survival (OS) were collected for the identified cohort. OS was analyzed with Kaplan-Meier curves. PGAs were present in 122 (19.8%) of 615 patients involving 24 different genes, including BRCA1/2, ATM, PALB2, and multiple additional genes associated with the DNA damage response pathway. Of 122 patients with germline alterations, 41.8% did not meet current guidelines for GT. The difference in median OS was not statistically significant between patients with and without PGA (50.8 months, 95% confidence interval = 34.5 to not reached, two-sided P = .94). Loss of heterozygosity was found in 60.0% of BRCA1/2. PGAs frequently occur in pancreas exocrine neoplasms and involve multiple genes beyond those previously associated with hereditary pancreatic cancer. These PGAs are therapeutically actionable in about 5% to 10% of patients. These data support routinely offering GT in all pancreatic ductal adenocarcimona patients with a broad panel of known hereditary cancer predisposition genes.

  2. Disease evolution and outcomes in familial AML with germline CEBPA mutations

    DEFF Research Database (Denmark)

    Tawana, Kiran; Wang, Jun; Renneville, Aline

    2015-01-01

    collected from 10 CEBPA-mutated families, representing 24 members with acute myeloid leukemia (AML). Whole-exome (WES) and deep sequencing were performed to genetically profile tumors and define patterns of clonal evolution. Germline CEBPA mutations clustered within the N-terminal and were highly penetrant......, with AML presenting at a median age of 24.5 years (range, 1.75-46 years). In all diagnostic tumors tested (n = 18), double CEBPA mutations (CEBPAdm) were detected, with acquired (somatic) mutations preferentially targeting the C-terminal. Somatic CEBPA mutations were unstable throughout the disease course...

  3. A novel molecular diagnostics platform for somatic and germline precision oncology.

    Science.gov (United States)

    Cabanillas, Rubén; Diñeiro, Marta; Castillo, David; Pruneda, Patricia C; Penas, Cristina; Cifuentes, Guadalupe A; de Vicente, Álvaro; Durán, Noelia S; Álvarez, Rebeca; Ordóñez, Gonzalo R; Cadiñanos, Juan

    2017-07-01

    Next-generation sequencing (NGS) opens new options in clinical oncology, from therapy selection to genetic counseling. However, realization of this potential not only requires succeeding in the bioinformatics and interpretation of the results, but also in their integration into the clinical practice. We have developed a novel NGS diagnostic platform aimed at detecting (1) somatic genomic alterations associated with the response to approved targeted cancer therapies and (2) germline mutations predisposing to hereditary malignancies. Next-generation sequencing libraries enriched in the exons of 215 cancer genes (97 for therapy selection and 148 for predisposition, with 30 informative for both applications), as well as selected introns from 17 genes involved in drug-related rearrangements, were prepared from 39 tumors (paraffin-embedded tissues/cytologies), 36 germline samples (blood) and 10 cell lines using hybrid capture. Analysis of NGS results was performed with specifically developed bioinformatics pipelines. The platform detects single-nucleotide variants (SNVs) and insertions/deletions (indels) with sensitivity and specificity >99.5% (allelic frequency ≥0.1), as well as copy-number variants (CNVs) and rearrangements. Somatic testing identified tailored approved targeted drugs in 35/39 tumors (89.74%), showing a diagnostic yield comparable to that of leading commercial platforms. A somatic EGFR p.E746_S752delinsA mutation in a mediastinal metastasis from a breast cancer prompted its anatomopathologic reassessment, its definite reclassification as a lung cancer and its treatment with gefitinib (partial response sustained for 15 months). Testing of 36 germline samples identified two pathogenic mutations (in CDKN2A and BRCA2 ). We propose a strategy for interpretation and reporting of results adaptable to the aim of the request, the availability of tumor and/or normal samples and the scope of the informed consent. With an adequate methodology, it is possible to

  4. Transgenic mice produced by retroviral transduction of male germ-line stem cells

    OpenAIRE

    Nagano, Makoto; Brinster, Clayton J.; Orwig, Kyle E.; Ryu, Buom-Yong; Avarbock, Mary R.; Brinster, Ralph L.

    2001-01-01

    Male germ-line stem cells are the only cell type in postnatal mammals that have the capability to self-renew and to contribute genes to the next generation. Genetic modification of these cells would provide an opportunity to study the biology of their complex self-renewal and differentiation processes, as well as enable the generation of transgenic animals in a wide range of species. Although retroviral vectors have been used as an efficient method to introduce genes into a variety of cell ty...

  5. Low Base-Substitution Mutation Rate in the Germline Genome of the Ciliate Tetrahymena thermophila

    Science.gov (United States)

    2016-09-15

    Tetrahymena thermophila, a model eukaryote. PLoS Biol. 4:e286. Farlow A, et al. 2015. The spontaneous mutation rate in the fission yeast Schizosaccharomyces...spontane- ous mutations in yeast . Proc Natl Acad Sci U S A. 105:9272–9277. Lynn DH, Doerder FP. 2012. The life and times of Tetrahymena. Methods Cell...Low Base-Substitution Mutation Rate in the Germline Genome of the Ciliate Tetrahymena thermophila Hongan Long1,2,y, David J. Winter3,*,y, Allan Y.-C

  6. A germline chromothripsis event stably segregating in 11 individuals through three generations

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Nazaryan-Petersen, Lusine; Sun, Wei

    2016-01-01

    PURPOSE: Parentally transmitted germ-line chromothripsis (G-CTH) has been identified in only a few cases. Most of these rearrangements were stably transmitted, in an unbalanced form, from a healthy mother to her child with congenital abnormalities probably caused by de novo copy-number changes...... of the DNA damage response, may be related to G-CTH formation. CONCLUSION: G-CTH rearrangements are not always associated with abnormal phenotypes and may be misinterpreted as balanced two-way translocations, suggesting that G-CTH is an underdiagnosed phenomenon.Genet Med 18 5, 494-500....

  7. Impact of germline and somatic missense variations on drug binding sites.

    Science.gov (United States)

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  8. Pilot, Multicenter, Open-Label Evaluation of Safety, Tolerability and Efficacy of a Novel, Topical Multipotent Growth Factor Formulation for the Periorbital Region.

    Science.gov (United States)

    Sundaram, Hema; Gold, Michael; Waldorf, Heidi; Lupo, Mary; Nguyen, Vivien L; Karnik, Jwala

    2015-12-01

    This multicenter, open-label pilot study evaluated safety, efficacy and tolerability of a topical formulation containing a multipotent growth factor resignaling complex (MRCx), when applied to infraorbital and lateral canthal skin. Thirty-nine female subjects with mean age of 56.8 years who had periorbital lines and wrinkles, uneven skin texture, puffiness, and lack of skin firmness were enrolled, and 38 completed the study. All subjects applied the multipotent growth factor formulation bilaterally to the periorbital area, twice daily for 60 days. Efficacy and treatment-related adverse events were evaluated at Baseline and days 14, 30, and 60. Investigators rated the periorbital areas based on 10-point scales. Subjects' self-reported compliance with treatment was greater than 99% throughout the study. At day 60, all subjects had improvement in infraorbital brightness (≥ 2 points), moistness (≥ 2 points), wrinkles (≥ 1 point), sallowness (≥ 1 point), crepiness (≥ 1 point), smooth texture (≥ 1 point), skin tightness (≥ 1 point), and skin tone (≥ 1 point). Investigator-rated assessments showed ≥ 1-point improvement for lateral canthal wrinkles, dyschromia/mottled pigmentation, skin tone, overall brightness, and moistness. Investigator-rated scoring on the Global Aesthetic Improvement Scale (GAIS) demonstrated that 67.6% of subjects were much improved/improved at day 14, and 63.1% remained improved at day 60. Overall, 76.2% and 79.0% of subjects were very pleased/pleased/mostly pleased with the appearance of their infraorbital and lateral canthal areas at day 60. Adverse events comprised one case of mild canthal erythema, and one case of mild eye irritation, both of which were respectively resolved. This pilot study demonstrated that the topical multipotent growth factor formulation was safe, effective and well tolerated for periorbital skin rejuvenation.

  9. EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs

    OpenAIRE

    Ebert, A.; Shelley, B.; Hurley, A.; Onorati, M.; Castiglioni, V.; Patitucci, T.; Svendsen, S.; Mattis, V.; Mcgivern, J.; Schwab, A.; Sareen, D.; Kim, H.; Cattaneo, E.; Svendsen, C.

    2013-01-01

    We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be...

  10. Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development.

    Science.gov (United States)

    Weissman, Irving L

    2015-07-21

    It is obvious that natural selection operates at the level of individuals and collections of individuals. Nearly two decades ago we showed that in multi-individual colonies of protochordate colonial tunicates sharing a blood circulation, there exists an exchange of somatic stem cells and germline stem cells, resulting in somatic chimeras and stem cell competitions for gonadal niches. Stem cells are unlike other cells in the body in that they alone self-renew, so that they form clones that are perpetuated for the life of the organism. Stem cell competitions have allowed the emergence of competitive somatic and germline stem cell clones. Highly successful germline stem cells usually outcompete less successful competitors both in the gonads of the genotype partner from which they arise and in the gonads of the natural parabiotic partners. Therefore, natural selection also operates at the level of germline stem cell clones. In the colonial tunicate Botryllus schlosseri the formation of natural parabionts is prevented by a single-locus highly polymorphic histocompatibility gene called Botryllus histocompatibility factor. This limits germline stem cell predation to kin, as the locus has hundreds of alleles. We show that in mice germline stem cells compete for gonad niches, and in mice and humans, blood-forming stem cells also compete for bone marrow niches. We show that the clonal progression from blood-forming stem cells to acute leukemias by successive genetic and epigenetic events in blood stem cells also involves competition and selection between clones and propose that this is a general theme in cancer.

  11. Combining molecular and immunohistochemical analyses of key drivers in primary melanomas: interplay between germline and somatic variations.

    Science.gov (United States)

    Bruno, William; Martinuzzi, Claudia; Dalmasso, Bruna; Andreotti, Virginia; Pastorino, Lorenza; Cabiddu, Francesco; Gualco, Marina; Spagnolo, Francesco; Ballestrero, Alberto; Queirolo, Paola; Grillo, Federica; Mastracci, Luca; Ghiorzo, Paola

    2018-01-19

    Due to the high mutational somatic burden of Cutaneous Malignant Melanoma (CMM) a thorough profiling of the driver mutations and their interplay is necessary to explain the timing of tumorigenesis or for the identification of actionable genetic events. The aim of this study was to establish the mutation rate of some of the key drivers in melanoma tumorigenesis combining molecular analyses and/or immunohistochemistry in 93 primary CMMs from an Italian cohort also characterized for germline status, and to investigate an interplay between germline and somatic variants. BRAF mutations were present in 68% of cases, while CDKN2A germline mutations were found in 16 % and p16 loss in tissue was found in 63%. TERT promoter somatic mutations were detected in 38% of cases while the TERT -245T>C polymorphism was found in 51% of cases. NRAS mutations were found in 39% of BRAF negative or undetermined cases. NF1 was expressed in all cases analysed. MC1R variations were both considered as a dichotomous variable or scored. While a positive, although not significant association between CDKN2A germline mutations, but not MC1R variants, and BRAF somatic mutation was found, we did not observe other associations between germline and somatic events. A yet undescribed inverse correlation between TERT -245T>C polymorphism and the presence of BRAF mutation was found. It is possible to hypothesize that -245T>C polymorphism could be included in those genotypes which may influence the occurrence of BRAF mutations. Further studies are needed to investigate the role of -245T>C polymorphism as a germline predictor of BRAF somatic mutation status.

  12. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes

    NARCIS (Netherlands)

    Ruijs, M.W.G.; Verhoef, S.; Rookus, M.A.; Pruntel, R.; van der Hout, A.H.; Hogervorst, F.B.L.; Kluijt, I.; Sijmons, R.H.; Aalfs, C.M.; Wagner, A.; Ausems, M.G.E.M.; Hoogerbrugge, N.; van Asperen, C.J.; Gómez García, E.B.; Meijers-Heijboer, H.; ten Kate, L.P.; Menko, F.H.; van 't Veer, L.J.

    2010-01-01

    Background Li-Fraumeni syndrome (LFS) is a rare autosomal dominant cancer predisposition syndrome. Most families fulfilling the classical diagnostic criteria harbour TP53 germline mutations. However, TP53 germline mutations may also occur in less obvious phenotypes. As a result, different criteria

  13. EPHB2 germline variants in patients with colorectal cancer or hyperplastic polyposis

    International Nuclear Information System (INIS)

    Kokko, Antti; Tomlinson, Ian PM; Vahteristo, Pia; Aaltonen, Lauri A; Laiho, Päivi; Lehtonen, Rainer; Korja, Sanna; Carvajal-Carmona, Luis G; Järvinen, Heikki; Mecklin, Jukka-Pekka; Eng, Charis; Schleutker, Johanna

    2006-01-01

    Ephrin receptor B2 (EPHB2) has recently been proposed as a novel tumor suppressor gene in colorectal cancer (CRC). Inactivation of the gene has been shown to correlate with progression of colorectal tumorigenesis, and somatic mutations have been reported in both colorectal and prostate tumors. Here we have analyzed the EPHB2 gene for germline alterations in 101 individuals either with 1) CRC and a personal or family history of prostate cancer (PC), or 2) intestinal hyperplastic polyposis (HPP), a condition associated with malignant degeneration such as serrated adenoma and CRC. Four previously unknown missense alterations were observed, which may be associated with the disease phenotype. Two of the changes, I361V and R568W, were identified in Finnish CRC patients, but not in over 300 Finnish familial CRC or PC patients or more than 200 population-matched healthy controls. The third change, D861N, was observed in a UK HPP patient, but not in additional 40 UK HPP patients or in 200 UK healthy controls. The fourth change R80H, originally identified in a Finnish CRC patient, was also found in 1/106 familial CRC patients and in 9/281 healthy controls and is likely to be a neutral polymorphism. We detected novel germline EPHB2 alterations in patients with colorectal tumors. The results suggest a limited role for these EPHB2 variants in colon tumor predisposition. Further studies including functional analyses are needed to confirm this

  14. Simple detection of germline microsatellite instability for diagnosis of constitutional mismatch repair cancer syndrome.

    Science.gov (United States)

    Ingham, Danielle; Diggle, Christine P; Berry, Ian; Bristow, Claire A; Hayward, Bruce E; Rahman, Nazneen; Markham, Alexander F; Sheridan, Eamonn G; Bonthron, David T; Carr, Ian M

    2013-06-01

    Heterozygous mutations in DNA mismatch repair (MMR) genes result in predisposition to colorectal cancer (hereditary nonpolyposis colorectal cancer or Lynch syndrome). Patients with biallelic mutations in these genes, however, present earlier, with constitutional mismatch repair deficiency cancer syndrome (CMMRD), which is characterized by a spectrum of rare childhood malignancies and café-au-lait skin patches. The hallmark of MMR deficiency, microsatellite instability (MSI), is readily detectable in tumor DNA in Lynch syndrome, but is also present in constitutional DNA of CMMRD patients. However, detection of constitutional or germline MSI (gMSI) has hitherto relied on technically difficult assays that are not routinely applicable for clinical diagnosis. Consequently, we have developed a simple high-throughput screening methodology to detect gMSI in CMMRD patients based on the presence of stutter peaks flanking a dinucleotide repeat allele when amplified from patient blood DNA samples. Using the three different microsatellite markers, the gMSI ratio was determined in a cohort of normal individuals and 10 CMMRD patients, with biallelic germline mutations in PMS2 (seven patients), MSH2 (one patient), or MSH6 (two patients). Subjects with either PMS2 or MSH2 mutations were easily identified; however, this measure was not altered in patients with CMMRD due to MSH6 mutation. © 2013 Wiley Periodicals, Inc.

  15. Spliced DNA Sequences in the Paramecium Germline: Their Properties and Evolutionary Potential

    Science.gov (United States)

    Catania, Francesco; McGrath, Casey L.; Doak, Thomas G.; Lynch, Michael

    2013-01-01

    Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic—often coding—DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation. PMID:23737328

  16. Identification of Two Novel HOXB13 Germline Mutations in Portuguese Prostate Cancer Patients

    Science.gov (United States)

    Maia, Sofia; Cardoso, Marta; Pinto, Pedro; Pinheiro, Manuela; Santos, Catarina; Peixoto, Ana; Bento, Maria José; Oliveira, Jorge; Henrique, Rui; Jerónimo, Carmen; Teixeira, Manuel R.

    2015-01-01

    The HOXB13 germline variant G84E (rs138213197) was recently described in men of European descent, with the highest prevalence in Northern Europe. The G84E mutation has not been found in patients of African or Asian ancestry, which may carry other HOXB13 variants, indicating allelic heterogeneity depending on the population. In order to gain insight into the full scope of coding HOXB13 mutations in Portuguese prostate cancer patients, we decided to sequence the entire coding region of the HOXB13 gene in 462 early-onset or familial/hereditary cases. Additionally, we searched for somatic HOXB13 mutations in 178 prostate carcinomas to evaluate their prevalence in prostate carcinogenesis. Three different patients were found to carry in their germline DNA two novel missense variants, which were not identified in 132 control subjects. Both variants are predicted to be deleterious by different in silico tools. No somatic mutations were found. These findings further support the hypothesis that different rare HOXB13 mutations may be found in different ethnic groups. Detection of mutations predisposing to prostate cancer may require re-sequencing rather than genotyping, as appropriate to the population under investigation. PMID:26176944

  17. Remobilization of Sleeping Beauty transposons in the germline of Xenopus tropicalis

    Directory of Open Access Journals (Sweden)

    Yergeau Donald A

    2011-11-01

    Full Text Available Abstract Background The Sleeping Beauty (SB transposon system has been used for germline transgenesis of the diploid frog, Xenopus tropicalis. Injecting one-cell embryos with plasmid DNA harboring an SB transposon substrate together with mRNA encoding the SB transposase enzyme resulted in non-canonical integration of small-order concatemers of the transposon. Here, we demonstrate that SB transposons stably integrated into the frog genome are effective substrates for remobilization. Results Transgenic frogs that express the SB10 transposase were bred with SB transposon-harboring animals to yield double-transgenic 'hopper' frogs. Remobilization events were observed in the progeny of the hopper frogs and were verified by Southern blot analysis and cloning of the novel integrations sites. Unlike the co-injection method used to generate founder lines, transgenic remobilization resulted in canonical transposition of the SB transposons. The remobilized SB transposons frequently integrated near the site of the donor locus; approximately 80% re-integrated with 3 Mb of the donor locus, a phenomenon known as 'local hopping'. Conclusions In this study, we demonstrate that SB transposons integrated into the X. tropicalis genome are effective substrates for excision and re-integration, and that the remobilized transposons are transmitted through the germline. This is an important step in the development of large-scale transposon-mediated gene- and enhancer-trap strategies in this highly tractable developmental model system.

  18. Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl

    Science.gov (United States)

    Zhu, Wei; Pao, Gerald M; Satoh, Akira; Cummings, Gillian; Monaghan, James R; Harkins, Timothy T; Bryant, Susan V; Voss, S Randal; Gardiner, David M; Hunter, Tony

    2013-01-01

    The capacity for tissue and organ regeneration in humans is dwarfed by comparison to that of salamanders. Emerging evidence suggests that mechanisms learned from the early phase of salamander limb regeneration – wound healing, cellular dedifferentiation and blastemal formation – will reveal therapeutic approaches for tissue regeneration in humans. Here we describe a unique transcriptional fingerprint of regenerating limb tissue in the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells to a germline-like state. Two genes that are required for self-renewal of germ cells in mice and flies, Piwi-like 1 (PL1) and Piwi-like 2 (PL2), are expressed in limb blastemal cells, the basal layer keratinocytes and the thickened apical epithelial cap in the wound epidermis in the regenerating limb. Depletion of PL1 and PL2 by morpholino oligonucleotides decreased cell proliferation and increased cell death in the blastema leading to a significant retardation of regeneration. Examination of key molecules that are known to be required for limb development or regeneration further revealed that FGF8 is transcriptionally downregulated in the presence of the morpholino oligos, indicating PL1 and PL2 might participate in FGF signaling during limb regeneration. Given the requirement for FGF signaling in limb development and regeneration, the results suggest that PL1 and PL2 function to establish a unique germline-like state that is associated with successful regeneration. PMID:22841627

  19. Prevalence of pathogenic germline variants detected by multigene sequencing in unselected Japanese patients with ovarian cancer.

    Science.gov (United States)

    Hirasawa, Akira; Imoto, Issei; Naruto, Takuya; Akahane, Tomoko; Yamagami, Wataru; Nomura, Hiroyuki; Masuda, Kiyoshi; Susumu, Nobuyuki; Tsuda, Hitoshi; Aoki, Daisuke

    2017-12-22

    Pathogenic germline BRCA1 , BRCA2 ( BRCA1/2 ), and several other gene variants predispose women to primary ovarian, fallopian tube, and peritoneal carcinoma (OC), although variant frequency and relevance information is scarce in Japanese women with OC. Using targeted panel sequencing, we screened 230 unselected Japanese women with OC from our hospital-based cohort for pathogenic germline variants in 75 or 79 OC-associated genes. Pathogenic variants of 11 genes were identified in 41 (17.8%) women: 19 (8.3%; BRCA1 ), 8 (3.5%; BRCA2 ), 6 (2.6%; mismatch repair genes), 3 (1.3%; RAD51D ), 2 (0.9%; ATM ), 1 (0.4%; MRE11A ), 1 ( FANCC ), and 1 ( GABRA6 ). Carriers of BRCA1/2 or any other tested gene pathogenic variants were more likely to be diagnosed younger, have first or second-degree relatives with OC, and have OC classified as high-grade serous carcinoma (HGSC). After adjustment for these variables, all 3 features were independent predictive factors for pathogenic variants in any tested genes whereas only the latter two remained for variants in BRCA1/2 . Our data indicate similar variant prevalence in Japanese patients with OC and other ethnic groups and suggest that HGSC and OC family history may facilitate genetic predisposition prediction in Japanese patients with OC and referring high-risk patients for genetic counseling and testing.

  20. Germline mutation rates at tandem repeat loci in DNA-repair deficient mice

    International Nuclear Information System (INIS)

    Barber, Ruth C.; Miccoli, Laurent; Buul, Paul P.W. van; Burr, Karen L.-A.; Duyn-Goedhart, Annemarie van; Angulo, Jaime F.; Dubrova, Yuri E.

    2004-01-01

    Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of non-exposed and irradiated severe combined immunodeficient (scid) and poly(ADP-ribose) polymerase (PARP-1 -/- ) deficient male mice. Non-exposed scid and PARP -/- male mice showed considerably elevated ESTR mutation rates, far higher than those in wild-type isogenic mice and other inbred strains. The irradiated scid and PARP-1 -/- male mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated wild-type isogenic males. ESTR mutation spectra in the scid and PARP-1 -/- strains did not differ from those in the isogenic wild-type strains. Considering these data and the results of previous studies, we propose that a delay in repair of DNA damage in scid and PARP-1 -/- mice could result in replication fork pausing which, in turn, may affect ESTR mutation rate in the non-irradiated males. The lack of mutation induction in irradiated scid and PARP-1 -/- can be explained by the high cell killing effects of irradiation on the germline of deficient mice

  1. Single genome retrieval of context-dependent variability in mutation rates for human germline.

    Science.gov (United States)

    Sahakyan, Aleksandr B; Balasubramanian, Shankar

    2017-01-13

    Accurate knowledge of the core components of substitution rates is of vital importance to understand genome evolution and dynamics. By performing a single-genome and direct analysis of 39,894 retrotransposon remnants, we reveal sequence context-dependent germline nucleotide substitution rates for the human genome. The rates are characterised through rate constants in a time-domain, and are made available through a dedicated program (Trek) and a stand-alone database. Due to the nature of the method design and the imposed stringency criteria, we expect our rate constants to be good estimates for the rates of spontaneous mutations. Benefiting from such data, we study the short-range nucleotide (up to 7-mer) organisation and the germline basal substitution propensity (BSP) profile of the human genome; characterise novel, CpG-independent, substitution prone and resistant motifs; confirm a decreased tendency of moieties with low BSP to undergo somatic mutations in a number of cancer types; and, produce a Trek-based estimate of the overall mutation rate in human. The extended set of rate constants we report may enrich our resources and help advance our understanding of genome dynamics and evolution, with possible implications for the role of spontaneous mutations in the emergence of pathological genotypes and neutral evolution of proteomes.

  2. Germline Mutations of Inhibins in Early-Onset Ovarian Epithelial Tumors

    Science.gov (United States)

    Tournier, Isabelle; Marlin, Régine; Walton, Kelly; Charbonnier, Françoise; Coutant, Sophie; Théry, Jean-Christophe; Charbonnier, Camille; Spurrell, Cailyn; Vezain, Myriam; Ippolito, Lorena; Bougeard, Gaëlle; Roman, Horace; Tinat, Julie; Sabourin, Jean-Christophe; Stoppa-Lyonnet, Dominique; Caron, Olivier; Bressac-de Paillerets, Brigitte; Vaur, Dominique; King, Mary-Claire; Harrison, Craig; Frebourg, Thierry

    2014-01-01

    To identify novel genetic bases of early-onset epithelial ovarian tumors, we used the trio exome sequencing strategy in a patient without familial history of cancer who presented metastatic serous ovarian adenocarcinomas at 21 years of age. We identified a single de novo mutation (c.1157A>G/p.Asn386Ser) within the INHBA gene encoding the βA-subunit of inhibins/activins, which play a key role in ovarian development. In vitro, this mutation alters the ratio of secreted activins and inhibins. In a second patient with early-onset serous borderline papillary cystadenoma, we identified an unreported germline mutation (c.179G>T/p.Arg60Leu) of the INHA gene encoding the α-subunit, the partner of the βA-subunit. This mutation also alters the secreted activin/inhibin ratio, by disrupting both inhibin A and inhibin B biosynthesis. In a cohort of 62 cases, we detected an additional unreported germline mutation of the INHBA gene (c.839G>A/p.Gly280Glu). Our results strongly suggest that inhibin mutations contribute to the genetic determinism of epithelial ovarian tumors. PMID:24302632

  3. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-07-15

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance.

  4. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance. Images PMID:1631137

  5. Different response to hypoxia of adipose-derived multipotent cells from obese subjects with and without metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Wilfredo Oliva-Olivera

    Full Text Available Multiple studies suggest that hypoxia, together with inflammation, could be one of the phenomena involved in the onset and progression of obesity-related insulin resistance. In addition, dysfunction of adipose tissue in obese subjects with metabolic syndrome is associated with decreased angiogenesis. However, some subjects with a high body mass index do not develop metabolic abnormalities associated with obesity. The aim of the current study was to examine the neovascular properties of visceral adipose tissue-derived multipotent mesenchymal cells subjected to hypoxia (hypox-visASCs from normal-weight subjects (Nw and obese patients with metabolic syndrome (MS and without metabolic syndrome (NonMS.This was a 2-year study to enroll subjects who underwent bariatric surgery or cholecystectomy. Eight patients who underwent either bariatric surgery or cholecystectomy (27 patients participated in the study. Visceral adipose tissue samples from Nw, MS and NonMS subjects were processed by enzymatic digestion. VisASCs cultured under hypoxic conditions were characterized by tubule formation assay, ELISA, flow cytometry, migration rate, and qRT-PCR, and the effects of visASCs-conditioned medium on survival and endothelial cell tubule formation were evaluated.Hypox-visASCs from NonMS subjects showed a greater capacity for tubule formation than hypox-visASCs from Nw and MS subjects. The lower percentage of CD140b+/CD44+ and CD140b+/CD184+ cells observed in hypox-visASCs from NonMS subjects compared to MS subjects was accompanied not only by a lower migration rate from the chemotactic effects of stromal cell derived factor 1α, but also by lower levels of NOX5 mRNA expression. While the levels of monocyte chemoattractant protein 1 mRNA expressed by hypox-visASCs correlated positively with the body mass index and waist circumference of the subjects, the concentration of vascular endothelial growth factor present in hypox-visASC-conditioned culture medium

  6. Different response to hypoxia of adipose-derived multipotent cells from obese subjects with and without metabolic syndrome

    Science.gov (United States)

    Moreno-Indias, Isabel; Coín-Aragüez, Leticia; Lhamyani, Said; Alcaide Torres, Juan; Fernández-Veledo, Sonia; Vendrell, Joan; Camargo, Antonio; El Bekay, Rajaa; Tinahones, Francisco José

    2017-01-01

    Background/Objectives Multiple studies suggest that hypoxia, together with inflammation, could be one of the phenomena involved in the onset and progression of obesity-related insulin resistance. In addition, dysfunction of adipose tissue in obese subjects with metabolic syndrome is associated with decreased angiogenesis. However, some subjects with a high body mass index do not develop metabolic abnormalities associated with obesity. The aim of the current study was to examine the neovascular properties of visceral adipose tissue-derived multipotent mesenchymal cells subjected to hypoxia (hypox-visASCs) from normal-weight subjects (Nw) and obese patients with metabolic syndrome (MS) and without metabolic syndrome (NonMS). Methods This was a 2-year study to enroll subjects who underwent bariatric surgery or cholecystectomy. Eight patients who underwent either bariatric surgery or cholecystectomy (27 patients) participated in the study. Visceral adipose tissue samples from Nw, MS and NonMS subjects were processed by enzymatic digestion. VisASCs cultured under hypoxic conditions were characterized by tubule formation assay, ELISA, flow cytometry, migration rate, and qRT-PCR, and the effects of visASCs-conditioned medium on survival and endothelial cell tubule formation were evaluated. Results Hypox-visASCs from NonMS subjects showed a greater capacity for tubule formation than hypox-visASCs from Nw and MS subjects. The lower percentage of CD140b+/CD44+ and CD140b+/CD184+ cells observed in hypox-visASCs from NonMS subjects compared to MS subjects was accompanied not only by a lower migration rate from the chemotactic effects of stromal cell derived factor 1α, but also by lower levels of NOX5 mRNA expression. While the levels of monocyte chemoattractant protein 1 mRNA expressed by hypox-visASCs correlated positively with the body mass index and waist circumference of the subjects, the concentration of vascular endothelial growth factor present in hypox

  7. The globoseries glycosphingolipid SSEA-4 is a marker of bone marrow-derived clonal multipotent stromal cells in vitro and in vivo.

    Science.gov (United States)

    Rosu-Myles, Michael; McCully, Jennifer; Fair, Joel; Mehic, Jelica; Menendez, Pablo; Rodriguez, Rene; Westwood, Carole

    2013-05-01

    The therapeutic potential of multipotent stromal cells (MSC) may be enhanced by the identification of markers that allow their discrimination and enumeration both in vivo and in vitro. Here, we investigated the ability of embryonic stem cell-associated glycosphingolipids to isolate human MSC from both whole-bone-marrow (BM) and stromal cell cultures. Only SSEA-4 was consistently expressed on cells within the CD45loCD105hi marrow fraction and could be used to isolate cells with the capacity to give rise to stromal cultures containing MSC. Human stromal cultures, generated in either the presence or absence of serum, contained heterogeneous cell populations discriminated by the quantity of SSEA-4 epitopes detected on their surface. A low level of surface SSEA-4 (SSEA-4lo) correlated with undetectable levels of the α2,3-sialyltransferase-II enzyme required to synthesize SSEA-4; a reduced proliferative potential; and the loss of fat-, bone-, and cartilage-forming cells during long-term culture. In vitro, single cells with the capacity to generate multipotent stromal cultures were detected exclusively in the SSEA-4hi fraction. Our data demonstrate that a high level of surface epitopes for SSEA-4 provides a definitive marker of MSC from human BM.

  8. Germline Variation at CDKN2A and Associations with Nevus Phenotypes among Members of Melanoma Families

    DEFF Research Database (Denmark)

    Taylor, Nicholas J; Mitra, Nandita; Goldstein, Alisa M

    2017-01-01

    Germline mutations in CDKN2A are frequently identified among melanoma kindreds and are associated with increased atypical nevus counts. However, a clear relationship between pathogenic CDKN2A mutation carriage and other nevus phenotypes including counts of common acquired nevi has not yet been es...

  9. Differential RPA-1 and RAD-51 recruitment in vivo throughout the C. elegans germline, as revealed by laser microirradiation.

    Science.gov (United States)

    Koury, Emily; Harrell, Kailey; Smolikove, Sarit

    2018-01-25

    Studies of the repair pathways associated with DNA double strand breaks (DSBs) are numerous, and provide evidence for cell-cycle specific regulation of homologous recombination (HR) by the regulation of its associated proteins. Laser microirradiation is a well-established method to examine in vitro kinetics of repair and allows for live-imaging of DSB repair from the moment of induction. Here we apply this method to whole, live organisms, introducing an effective system to analyze exogenous, microirradiation-induced breaks in the Caenorhabditis elegans germline. Through this method we observed the sequential kinetics of the recruitment of ssDNA binding proteins RPA-1 and RAD-51 in vivo. We analyze these kinetics throughout different regions of the germline, and thus throughout a range of developmental stages of mitotic and meiotic nuclei. Our analysis demonstrates a largely conserved timing of recruitment of ssDNA binding proteins to DSBs throughout the germline, with a delay of RAD-51 recruitment at mid-pachytene nuclei. Microirradiated nuclei are viable and undergo a slow kinetics of resolution. We observe RPA-1 and RAD-51 colocalization for hours post-microirradiation throughout the germline, suggesting that there are mixed RPA-1/RAD-51 filaments. Finally, through live imaging analysis we observed RAD-51 foci movement with low frequency of coalescence. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. A recurrent germline BAP1 mutation and extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma

    DEFF Research Database (Denmark)

    Wadt, Karin Anna Wallentin; Aoude, L G; Johansson, P

    2015-01-01

    ) and mesothelioma, as previously reported for germline BAP1 mutations. However, mutation carriers from three new families, and one previously reported family, developed basal cell carcinoma (BCC), thus suggesting inclusion of BCC in the phenotypic spectrum of the BAP1 tumor syndrome. This notion is supported...

  11. NanoTIO2 (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice

    DEFF Research Database (Denmark)

    Boisen, Anne Mette Zenner; Shipley, Thomas; Hougaard, Karin Sørig

    2012-01-01

    Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR) loci in mice are sensitive markers of mutagenic effects o...

  12. Reproductive and therapeutic cloning, germline therapy, and purchase of gametes and embryos: comments on Canadian legislation governing reproduction technologies

    Science.gov (United States)

    Bernier, L; Gregoire, D

    2004-01-01

    In this article the three main topics covered in the new legislation are commented on: cloning, germline therapy, and purchase of gametes and embryos. Some important issues also covered in the new legislation, such as privacy and access to information, data protection, identity of donors, and inspection, will not be addressed. PMID:15574437

  13. Association of germline mutation in the PTEN tumour suppressor gene and Proteus and Proteus-like syndromes

    NARCIS (Netherlands)

    Zhou, X.; Hampel, H.; Thiele, H.; Gorlin, R. J.; Hennekam, R. C.; Parisi, M.; Winter, R. M.; Eng, C.

    2001-01-01

    The molecular aetiology of Proteus syndrome (PS) remains elusive. Germline mutations in PTEN cause Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome, which are hereditary hamartoma syndromes. Some features-eg, macrocephaly, lipomatosis, and vascular malformations-can be seen in all three

  14. Molecular and clinical characteristics of MSH6 variants : An analysis of 25 index carriers of a germline variant

    NARCIS (Netherlands)

    Olderode - Berends, Maria; Wu, Ying; Sijmons, RH; Mensink, RGJ; van der Sluis, T; Hordijk-Hos, JM; de Vries, EGE; Hollema, H; Karrenbeld, Arend; Buys, CHCM; van der Zee, AGJ; Hofstra, RMW; Kleibeuker, JH

    The MSH6 gene is one of the mismatch-repair genes involved in hereditary nonpolyposis colorectal cancer (HNPCC). Three hundred sixteen individuals who were known or suspected to have HNPCC were analyzed for MSH6 germline mutations. For 25 index patients and 8 relatives with MSH6 variants, molecular

  15. An Abundant Class of Non-coding DNA Can Prevent Stochastic Gene Silencing in the C. elegans Germline

    DEFF Research Database (Denmark)

    Frøkjær-Jensen, Christian; Jain, Nimit; Hansen, Loren

    2016-01-01

    /or structure. Here, we demonstrate that a pervasive non-coding DNA feature in Caenorhabditis elegans, characterized by 10-base pair periodic An/Tn-clusters (PATCs), can license transgenes for germline expression within repressive chromatin domains. Transgenes containing natural or synthetic PATCs are resistant...

  16. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells.

    Science.gov (United States)

    Vassena, R; Heindryckx, B; Peco, R; Pennings, G; Raya, A; Sermon, K; Veiga, A

    2016-06-01

    With the recent development of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing technology, the possibility to genetically manipulate the human germline (gametes and embryos) has become a distinct technical possibility. Although many technical challenges still need to be overcome in order to achieve adequate efficiency and precision of the technology in human embryos, the path leading to genome editing has never been simpler, more affordable, and widespread. In this narrative review we seek to understand the possible impact of CRISR/Cas9 technology on human reproduction from the technical and ethical point of view, and suggest a course of action for the scientific community. This non-systematic review was carried out using Medline articles in English, as well as technical documents from the Human Fertilisation and Embryology Authority and reports in the media. The technical possibilities of the CRISPR/Cas9 technology with regard to human reproduction are analysed based on results obtained in model systems such as large animals and laboratory rodents. Further, the possibility of CRISPR/Cas9 use in the context of human reproduction, to modify embryos, germline cells, and pluripotent stem cells is reviewed based on the authors' expert opinion. Finally, the possible uses and consequences of CRISPR/cas9 gene editing in reproduction are analysed from the ethical point of view. We identify critical technical and ethical issues that should deter from employing CRISPR/Cas9 based technologies in human reproduction until they are clarified. Overcoming the numerous technical limitations currently associated with CRISPR/Cas9 mediated editing of the human germline will depend on intensive research that needs to be transparent and widely disseminated. Rather than a call to a generalized moratorium, or banning, of this type of research, efforts should be placed on establishing an open, international, collaborative and regulated research

  17. Germline Polymorphisms of the VEGF Pathway Predict Recurrence in Nonadvanced Differentiated Thyroid Cancer.

    Science.gov (United States)

    Marotta, Vincenzo; Sciammarella, Concetta; Capasso, Mario; Testori, Alessandro; Pivonello, Claudia; Chiofalo, Maria Grazia; Gambardella, Claudio; Grasso, Marica; Antonino, Antonio; Annunziata, Annamaria; Macchia, Paolo Emidio; Pivonello, Rosario; Santini, Luigi; Botti, Gerardo; Losito, Simona; Pezzullo, Luciano; Colao, Annamaria; Faggiano, Antongiulio

    2017-02-01

    Tumor angiogenesis is determined by host genetic background rather than environment. Germline single nucleotide polymorphisms (SNPs) of the vascular endothelial growth factor (VEGF) pathway have demonstrated prognostic value in different tumors. Our main objective was to test the prognostic value of germline SNPs of the VEGF pathway in nonadvanced differentiated thyroid cancer (DTC). Secondarily, we sought to correlate analyzed SNPs with microvessel density (MVD). Multicenter, retrospective, observational study. Four referral centers. Blood samples were obtained from consecutive DTC patients. Genotyping was performed according to the TaqMan protocol, including 4 VEGF-A (-2578C>A, -460T>C, +405G>C, and +936C>T) and 2 VEGFR-2 (+1192 C>T and +1719 T>A) SNPs. MVD was estimated by means of CD34 staining. Rate of recurrent structural disease/disease-free survival (DFS). Difference in MVD between tumors from patients with different genotype. Two hundred four patients with stage I-II DTC (mean follow-up, 73 ± 64 months) and 240 patients with low- to intermediate-risk DTC (mean follow-up, 70 ± 60 months) were enrolled. Two "risk" genotypes were identified by combining VEGF-A SNPs -2578 C>A, -460 T>C, and +405 G>C. The ACG homozygous genotype was protective in both stage I-II (odds ratio [OR], 0.08; 95% confidence interval [CI], 0.01 to 1.43; P = 0.018) and low- to intermediate-risk (OR, 0.14; 95% CI, 0.01 to 1.13; P = 0.035) patients. The CTG homozygous genotype was significantly associated with recurrence in stage I-II (OR, 5.47; 95% CI, 1.15 to 26.04; P = 0.018) and was slightly deleterious in low- to intermediate-risk (OR, 3.39; 95% CI, 0.8 to 14.33; P = 0.079) patients. MVD of primary tumors from patients harboring a protective genotype was significantly lower (median MVD, 76.5 ± 12.7 and 86.7 ± 27.9, respectively; P = 0.024). Analysis of germline VEGF-A SNPs could empower a prognostic approach to DTC. Copyright © 2017 by the Endocrine Society

  18. Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline.

    Science.gov (United States)

    Hinnant, Taylor D; Alvarez, Arturo A; Ables, Elizabeth T

    2017-09-01

    Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken

  19. Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families.

    Directory of Open Access Journals (Sweden)

    Ching-Ni Jenny Njauw

    Full Text Available BAP1 has been shown to be a target of both somatic alteration in high-risk ocular melanomas (OM and germline inactivation in a few individuals from cancer-prone families. These findings suggest that constitutional BAP1 changes may predispose individuals to metastatic OM and that familial permeation of deleterious alleles could delineate a new cancer syndrome.To characterize BAP1's contribution to melanoma risk, we sequenced BAP1 in a set of 100 patients with OM, including 50 metastatic OM cases and 50 matched non-metastatic OM controls, and 200 individuals with cutaneous melanoma (CM including 7 CM patients from CM-OM families and 193 CM patients from CM-non-OM kindreds.Germline BAP1 mutations were detected in 4/50 patients with metastatic OM and 0/50 cases of non-metastatic OM (8% vs. 0%, p = 0.059. Since 2/4 of the BAP1 carriers reported a family history of CM, we analyzed 200 additional hereditary CM patients and found mutations in 2/7 CM probands from CM-OM families and 1/193 probands from CM-non-OM kindreds (29% vs. 0.52%, p = .003. Germline mutations co-segregated with both CM and OM phenotypes and were associated with the presence of unique nevoid melanomas and highly atypical nevoid melanoma-like melanocytic proliferations (NEMMPs. Interestingly, 7/14 germline variants identified to date reside in C-terminus suggesting that the BRCA1 binding domain is important in cancer predisposition.Germline BAP1 mutations are associated with a more aggressive OM phenotype and a recurrent phenotypic complex of cutaneous/ocular melanoma, atypical melanocytic proliferations and other internal neoplasms (ie. COMMON syndrome, which could be a useful clinical marker for constitutive BAP1 inactivation.

  20. Performance of Lynch syndrome predictive models in quantifying the likelihood of germline mutations in patients with abnormal MLH1 immunoexpression.

    Science.gov (United States)

    Cabreira, Verónica; Pinto, Carla; Pinheiro, Manuela; Lopes, Paula; Peixoto, Ana; Santos, Catarina; Veiga, Isabel; Rocha, Patrícia; Pinto, Pedro; Henrique, Rui; Teixeira, Manuel R

    2017-01-01

    Lynch syndrome (LS) accounts for up to 4 % of all colorectal cancers (CRC). Detection of a pathogenic germline mutation in one of the mismatch repair genes is the definitive criterion for LS diagnosis, but it is time-consuming and expensive. Immunohistochemistry is the most sensitive prescreening test and its predictive value is very high for loss of expression of MSH2, MSH6, and (isolated) PMS2, but not for MLH1. We evaluated if LS predictive models have a role to improve the molecular testing algorithm in this specific setting by studying 38 individuals referred for molecular testing and who were subsequently shown to have loss of MLH1 immunoexpression in their tumors. For each proband we calculated a risk score, which represents the probability that the patient with CRC carries a pathogenic MLH1 germline mutation, using the PREMM 1,2,6 and MMRpro predictive models. Of the 38 individuals, 18.4 % had a pathogenic MLH1 germline mutation. MMRpro performed better for the purpose of this study, presenting a AUC of 0.83 (95 % CI 0.67-0.9; P < 0.001) compared with a AUC of 0.68 (95 % CI 0.51-0.82, P = 0.09) for PREMM 1,2,6 . Considering a threshold of 5 %, MMRpro would eliminate unnecessary germline mutation analysis in a significant proportion of cases while keeping very high sensitivity. We conclude that MMRpro is useful to correctly predict who should be screened for a germline MLH1 gene mutation and propose an algorithm to improve the cost-effectiveness of LS diagnosis.

  1. Lack of GNAQ and GNA11 germ-line mutations in familial melanoma pedigrees with uveal melanoma or blue nevi

    Directory of Open Access Journals (Sweden)

    Jason Ezra Hawkes

    2013-06-01

    Full Text Available Approximately 10% of melanoma cases are familial, but only 25-40% of familial melanoma cases can be attributed to germ-line mutations in the CDKN2A - the most significant high-risk melanoma susceptibility locus identified to date. The pathogenic mutation(s in most of the remaining familial melanoma pedigrees have not yet been identified. The most common mutations in nevi and sporadic melanoma are found in BRAF and NRAS, both of which result in constitutive activation of the MAPK pathway. However, these mutations are not found in uveal melanomas or the intradermal melanocytic proliferations known as blue nevi. Rather, multiple studies report a strong association between these lesions and somatic mutations in Guanine nucleotide-binding protein G(q subunit alpha (GNAQ, Guanine nucleotide-binding protein G(q subunit alpha-11 (GNA11 and BRCA1 associated protein-1 (BAP1. Recently, germ-line mutations in BAP1, the gene encoding a tumor suppressing deubiquitinating enzyme, have been associated with predisposition to a variety of cancers including uveal melanoma, but no studies have examined the association of germ-line mutations in GNAQ and GNA11 with uveal melanoma and blue nevi. We have now done so by sequencing exon 5 of both of these genes in 13 unique familial melanoma pedigrees, members of which have had either uveal or cutaneous melanoma and/or blue nevi. Germ-line DNA from a total of 22 individuals was used for sequencing; however no deleterious mutations were detected. Nevertheless, such candidate gene studies and the discovery of novel germ-line mutations associated with an increased MM susceptibility can lead to a better understanding of the pathways involved in melanocyte transformation, formulation of risk assessment, and the development of specific drug therapies.

  2. RAD50 germline mutations are associated with poor survival in BRCA1/2-negative breast cancer patients.

    Science.gov (United States)

    Fan, Cong; Zhang, Juan; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2018-05-04

    RAD50 is a highly conserved DNA double-strand break (DSB) repair gene. However, the associations between RAD50 germline mutations and the survival and risk of breast cancer have not been fully elucidated. Here, we aimed to investigate the clinical impact of RAD50 germline mutations in a large cohort of unselected breast cancer patients. In this study, RAD50 germline mutations were determined using next-generation sequencing in 7657 consecutive unselected breast cancer patients without BRCA1/2 mutations. We also screened for RAD50 recurrent mutations (L719fs, K994fs, and H1269fs) in 5000 healthy controls using Sanger sequencing. We found that 26 out of 7657 (0.34%) patients had RAD50 pathogenic mutations, and 16 patients carried one of the three recurrent mutations (L719fs, n=6 cases; K994fs, n=5 cases; and H1269fs, n=5 cases); the recurrent mutation rate was 0.21%. The frequency of the three recurrent mutations in the 5000 healthy controls was 0.18% (9/5000). These mutations did not confer an increased risk of breast cancer in the studied patients [odds ratios (OR), 1.16; 95% confidence interval (CI), 0.51-2.63; P = 0.72]. Nevertheless, multivariate analysis revealed that RAD50 pathogenic mutations were an independent unfavourable predictor of recurrence-free survival (RFS) [adjusted hazard ratio (HR) 2.66; 95% CI, 1.18-5.98; P=0.018] and disease-specific survival (DSS) (adjusted HR 4.36; 95% CI, 1.58-12.03; P=0.004) in the entire study cohort. Our study suggested that RAD50 germline mutations are not associated with an increased risk of breast cancer, but patients with RAD50 germline mutations have unfavourable survival compared with patients without these mutations. This article is protected by copyright. All rights reserved. © 2018 UICC.

  3. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    Science.gov (United States)

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  4. Solid renal tumor severity in von Hippel Lindau disease is related to germline deletion length and location.

    Science.gov (United States)

    Maranchie, Jodi K; Afonso, Anoushka; Albert, Paul S; Kalyandrug, Sivaram; Phillips, John L; Zhou, Shubo; Peterson, James; Ghadimi, Bijan M; Hurley, Katheen; Riss, Joseph; Vasselli, James R; Ried, Thomas; Zbar, Berton; Choyke, Peter; Walther, McClellan M; Klausner, Richard D; Linehan, W Marston

    2004-01-01

    von Hippel Lindau disease (VHL) is an autosomal dominant familial cancer syndrome linked to alteration of the VHL tumor suppressor gene. Affected patients are predisposed to develop pheochromocytomas and cystic and solid tumors of the kidney, CNS, pancreas, retina, and epididymis. However, organ involvement varies considerably among families and has been shown to correlate with the underlying germline alteration. Clinically, we observed a paradoxically lower prevalence of renal cell carcinoma (RCC) in patients with complete germline deletion of VHL. To determine if a relationship existed between the type of VHL deletion and disease, we retrospectively evaluated 123 patients from 55 families with large germline VHL deletions, including 42 intragenic partial deletions and 13 complete VHL deletions, by history and radiographic imaging. Each individual and family was scored for cystic or solid involvement of CNS, pancreas, and kidney, and for pheochromocytoma. Germline deletions were mapped using a combination of fluorescent in situ hybridization (FISH) and quantitative Southern and Southern blot analysis. An age-adjusted comparison demonstrated a higher prevalence of RCC in patients with partial germline VHL deletions relative to complete deletions (48.9 vs. 22.6%, p=0.007). This striking phenotypic dichotomy was not seen for cystic renal lesions or for CNS (p=0.22), pancreas (p=0.72), or pheochromocytoma (p=0.34). Deletion mapping revealed that development of RCC had an even greater correlation with retention of HSPC300 (C3orf10), located within the 30-kb region of chromosome 3p, immediately telomeric to VHL (52.3 vs. 18.9%, p <0.001), suggesting the presence of a neighboring gene or genes critical to the development and maintenance of RCC. Careful correlation of genotypic data with objective phenotypic measures will provide further insight into the mechanisms of tumor formation. Copyright 2003 Wiley-Liss, Inc.

  5. Improved injection needles facilitate germline transformation of the buckeye butterfly Junonia coenia.

    Science.gov (United States)

    Beaudette, Kahlia; Hughes, Tia M; Marcus, Jeffrey M

    2014-01-01

    Germline transformation with transposon vectors is an important tool for insect genetics, but progress in developing transformation protocols for butterflies has been limited by high post-injection ova mortality. Here we present an improved glass injection needle design for injecting butterfly ova that increases survival in three Nymphalid butterfly species. Using the needles to genetically transform the common buckeye butterfly Junonia coenia, the hatch rate for injected Junonia ova was 21.7%, the transformation rate was 3%, and the overall experimental efficiency was 0.327%, a substantial improvement over previous results in other butterfly species. Improved needle design and a higher efficiency of transformation should permit the deployment of transposon-based genetic tools in a broad range of less fecund lepidopteran species.

  6. Synchronous lung tumours in a patient with metachronous colorectal carcinoma and a germline MSH2 mutation.

    LENUS (Irish Health Repository)

    Canney, A

    2012-02-01

    Mutations of DNA mismatch repair genes are characterised by microsatellite instability and are implicated in carcinogenesis. This mutation susceptible phenotype has been extensively studied in patients with hereditary non-polyposis colon carcinoma, but little is known of the contribution of such mutations in other tumour types, particularly non-small-cell lung carcinoma. This report describes the occurrence of two synchronous lung tumours, one mimicking a metastatic colon carcinoma, in a male patient with a history of metachronous colonic carcinoma. Immunohistochemistry supported a pulmonary origin for both lesions. Mismatch repair protein immunohistochemistry showed loss of MSH2 and MSH6 expression in both colonic tumours and in one lung tumour showing enteric differentiation. Subsequent mutational analysis demonstrated a deleterious germline mutation of the MSH2 mismatch repair gene. The significance of these findings and the practical diagnostic difficulties encountered in this case are discussed.

  7. Familial adenomatous polyposis patients without an identified APC germline mutation have a severe phenotype

    DEFF Research Database (Denmark)

    Bisgaard, M L; Ripa, R; Knudsen, Anne Louise

    2004-01-01

    BACKGROUND: Development of more than 100 colorectal adenomas is diagnostic of the dominantly inherited autosomal disease familial adenomatous polyposis (FAP). Germline mutations can be identified in the adenomatous polyposis coli (APC) gene in approximately 80% of patients. The APC protein...... comprises several regions and domains for interaction with other proteins, and specific clinical manifestations are associated with the mutation assignment to one of these regions or domains. AIMS: The phenotype in patients without an identified causative APC mutation was compared with the phenotype...... in patients with a known APC mutation and with the phenotypes characteristic of patients with mutations in specific APC regions and domains. PATIENTS: Data on 121 FAP probands and 149 call up patients from 70 different families were extracted from the Danish Polyposis register. METHODS: Differences in 16...

  8. C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation.

    Directory of Open Access Journals (Sweden)

    Wenjing Qi

    2017-05-01

    Full Text Available Activation of the FOXO transcription factor DAF-16 by reduced insulin/IGF signaling (IIS is considered to be beneficial in C. elegans due to its ability to extend lifespan and to enhance stress resistance. In the germline, cell-autonomous DAF-16 activity prevents stem cell proliferation, thus acting tumor-suppressive. In contrast, hypodermal DAF-16 causes a tumorous germline phenotype characterized by hyperproliferation of the germline stem cells and rupture of the adjacent basement membrane. Here we show that cross-talk between DAF-16 and the transforming growth factor ß (TGFß/bone morphogenic protein (BMP signaling pathway causes germline hyperplasia and results in disruption of the basement membrane. In addition to activating MADM/NRBP/hpo-11 gene alone, DAF-16 also directly interacts with both R-SMAD proteins SMA-2 and SMA-3 in the nucleus to regulate the expression of mTORC1 pathway. Knocking-down of BMP genes or each of the four target genes in the hypodermis was sufficient to inhibit germline proliferation, indicating a cell-non-autonomously controlled regulation of stem cell proliferation by somatic tissues. We propose the existence of two antagonistic DAF-16/FOXO functions, a cell-proliferative somatic and an anti-proliferative germline activity. Whereas germline hyperplasia under reduced IIS is inhibited by DAF-16 cell-autonomously, activation of somatic DAF-16 in the presence of active IIS promotes germline proliferation and eventually induces tumor-like germline growth. In summary, our results suggest a novel pathway crosstalk of DAF-16 and TGF-ß/BMP that can modulate mTORC1 at the transcriptional level to cause stem-cell hyperproliferation. Such cell-type specific differences may help explaining why human FOXO activity is considered to be tumor-suppressive in most contexts, but may become oncogenic, e.g. in chronic and acute myeloid leukemia.

  9. C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation.

    Science.gov (United States)

    Qi, Wenjing; Yan, Yijian; Pfeifer, Dietmar; Donner V Gromoff, Erika; Wang, Yimin; Maier, Wolfgang; Baumeister, Ralf

    2017-05-01

    Activation of the FOXO transcription factor DAF-16 by reduced insulin/IGF signaling (IIS) is considered to be beneficial in C. elegans due to its ability to extend lifespan and to enhance stress resistance. In the germline, cell-autonomous DAF-16 activity prevents stem cell proliferation, thus acting tumor-suppressive. In contrast, hypodermal DAF-16 causes a tumorous germline phenotype characterized by hyperproliferation of the germline stem cells and rupture of the adjacent basement membrane. Here we show that cross-talk between DAF-16 and the transforming growth factor ß (TGFß)/bone morphogenic protein (BMP) signaling pathway causes germline hyperplasia and results in disruption of the basement membrane. In addition to activating MADM/NRBP/hpo-11 gene alone, DAF-16 also directly interacts with both R-SMAD proteins SMA-2 and SMA-3 in the nucleus to regulate the expression of mTORC1 pathway. Knocking-down of BMP genes or each of the four target genes in the hypodermis was sufficient to inhibit germline proliferation, indicating a cell-non-autonomously controlled regulation of stem cell proliferation by somatic tissues. We propose the existence of two antagonistic DAF-16/FOXO functions, a cell-proliferative somatic and an anti-proliferative germline activity. Whereas germline hyperplasia under reduced IIS is inhibited by DAF-16 cell-autonomously, activation of somatic DAF-16 in the presence of active IIS promotes germline proliferation and eventually induces tumor-like germline growth. In summary, our results suggest a novel pathway crosstalk of DAF-16 and TGF-ß/BMP that can modulate mTORC1 at the transcriptional level to cause stem-cell hyperproliferation. Such cell-type specific differences may help explaining why human FOXO activity is considered to be tumor-suppressive in most contexts, but may become oncogenic, e.g. in chronic and acute myeloid leukemia.

  10. Germline genetic variants in the Wnt/beta-catenin pathway as predictors of colorectal cancer risk

    Science.gov (United States)

    Hildebrandt, Michelle A.T.; Reyes, Monica E.; Lin, Moubin; He, Yonggang; Nguyen, Son V.; Hawk, Ernest T.; Wu, Xifeng

    2016-01-01

    Background The Wnt/beta-catenin signaling pathway plays a key role in stem cell maintenance in the colorectum. Rare high penetrance genetic mutations in components of this pathway result in familial colorectal cancer, yet the impact of common, germline variants remains unknown. Methods We assessed 172 variants in 26 genes from the Wnt/beta-catenin pathway in 809 CRC cases and 814 healthy controls, followed by replication of the top findings in another 691 cases and 775 controls. In silico informatic tools were used to predict functional effects of variants. Results Eighteen SNPs in the pathway were significantly associated with CRC risk (P <0.05) in the discovery phase. We observed a significant dose-response increase in CRC risk by number of risk genotypes carried (P = 4.19 × 10−8). Gene-based analysis implicated CSNK1D (P = 0.014), FZD3 (P = 0.023), and APC (P = 0.027) as significant for CRC risk. In the replication phase, FZD3:rs11775139 remained significantly associated with reduced risk with a pooled OR of 0.85 (95% CI: 0.76–0.94, P = 0.001). Although borderline significant in the replication population, APC:rs2545162 was highly significant in the pooled analysis - OR: 1.42, 95% CI: 1.16–1.74, P =0.00085. Functional assessment identified several potential biological mechanisms underlying these associations. Conclusions Our findings suggest that common germline variants in the Wnt/beta-catenin pathway maybe involved in CRC development. Impact These variants may be informative in CRC risk assessment to identify individuals at increased risk who would be candidates for screening. PMID:26809274

  11. Pharmacogenetic characterization of naturally occurring germline NT5C1A variants to chemotherapeutic nucleoside analogs

    Science.gov (United States)

    Saliba, Jason; Zabriskie, Ryan; Ghosh, Rajarshi; Powell, Bradford C; Hicks, Stephanie; Kimmel, Marek; Meng, Qingchang; Ritter, Deborah I; Wheeler, David A; Gibbs, Richard A; Tsai, Francis T F; Plon, Sharon E

    2016-01-01

    Background Mutations or alteration in expression of the 5’ nucleotidase gene family can confer altered responses to treatment with nucleoside analogs. While investigating leukemia susceptibility genes, we discovered a very rare p.L254P NT5C1A missense variant in the substrate recognition motif. Given the paucity of cellular drug response data from NT5C1A germline variation, we characterized p.L254P and eight rare variants of NT5C1A from genomic databases. Methods Through lentiviral infection, we created HEK293 cell lines that stably overexpress wildtype NT5C1A, p.L254P, or eight NT5C1A variants reported in the NHLBI Exome Variant server (one truncating and seven missense). IC50 values were determined by cytotoxicity assays after exposure to chemotherapeutic nucleoside analogs (Cladribine, Gemcitabine, 5-Fluorouracil). In addition, we used structure-based homology modeling to generate a 3D model for the C-terminal region of NT5C1A. Results The p.R180X (truncating), p.A214T, and p.L254P missense changes were the only variants that significantly impaired protein function across all nucleotide analogs tested (>5-fold difference versus WT; p<.05). Several of the remaining variants individually displayed differential effects (both more and less resistant) across the analogs tested. The homology model provided a structural framework to understand the impact of NT5C1A mutants on catalysis and drug processing. The model predicted active site residues within NT5C1A motif III and we experimentally confirmed that p.K314 (not p.K320) is required for NT5C1A activity. Conclusion We characterized germline variation and predicted protein structures of NT5C1A. Individual missense changes showed substantial variation in response to the different nucleoside analogs tested, which may impact patients’ responses to treatment. PMID:26906009

  12. Germline disruption of Pten localization causes enhanced sex-dependent social motivation and increased glial production.

    Science.gov (United States)

    Tilot, Amanda K; Gaugler, Mary K; Yu, Qi; Romigh, Todd; Yu, Wanfeng; Miller, Robert H; Frazier, Thomas W; Eng, Charis

    2014-06-15

    PTEN Hamartoma Tumor Syndrome (PHTS) is an autosomal-dominant genetic condition underlying a subset of autism spectrum disorder (ASD) with macrocephaly. Caused by germline mutations in PTEN, PHTS also causes increased risks of multiple cancers via dysregulation of the PI3K and MAPK signaling pathways. Conditional knockout models have shown that neural Pten regulates social behavior, proliferation and cell size. Although much is known about how the intracellular localization of PTEN regulates signaling in cancer cell lines, we know little of how PTEN localization influences normal brain physiology and behavior. To address this, we generated a germline knock-in mouse model of cytoplasm-predominant Pten and characterized its behavioral and cellular phenotypes. The homozygous Pten(m3m4) mice have decreased total Pten levels including a specific drop in nuclear Pten and exhibit region-specific increases in brain weight. The Pten(m3m4) model displays sex-specific increases in social motivation, poor balance and normal recognition memory-a profile reminiscent of some individuals with high functioning ASD. The cytoplasm-predominant protein caused cellular hypertrophy limited to the soma and led to increased NG2 cell proliferation and accumulation of glia. The animals also exhibit significant astrogliosis and microglial activation, indicating a neuroinflammatory phenotype. At the signaling level, Pten(m3m4) mice show brain region-specific differences in Akt activation. These results demonstrate that differing alterations to the same autism-linked gene can cause distinct behavioral profiles. The Pten(m3m4) model is the first murine model of inappropriately elevated social motivation in the context of normal cognition and may expand the range of autism-related behaviors replicated in animal models. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Derepression of the plant Chromovirus LORE1 induces germline transposition in regenerated plants.

    Directory of Open Access Journals (Sweden)

    Eigo Fukai

    2010-03-01

    Full Text Available Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the male germline. Bisulfite sequencing of the 5' LTR and its surrounding region suggests that tissue culture induces a loss of epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define conditions for the use of LORE1a as a genetic tool.

  14. Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers

    Science.gov (United States)

    van der Post, Rachel S; Vogelaar, Ingrid P; Carneiro, Fátima; Guilford, Parry; Huntsman, David; Hoogerbrugge, Nicoline; Caldas, Carlos; Schreiber, Karen E Chelcun; Hardwick, Richard H; Ausems, Margreet G E M; Bardram, Linda; Benusiglio, Patrick R; Bisseling, Tanya M; Blair, Vanessa; Bleiker, Eveline; Boussioutas, Alex; Cats, Annemieke; Coit, Daniel; DeGregorio, Lynn; Figueiredo, Joana; Ford, James M; Heijkoop, Esther; Hermens, Rosella; Humar, Bostjan; Kaurah, Pardeep; Keller, Gisella; Lai, Jennifer; Ligtenberg, Marjolijn J L; O'Donovan, Maria; Oliveira, Carla; Ragunath, Krish; Rasenberg, Esther; Richardson, Susan; Roviello, Franco; Schackert, Hans; Seruca, Raquel; Taylor, Amy; ter Huurne, Anouk; Tischkowitz, Marc; Joe, Sheena Tjon A; van Dijck, Benjamin; van Grieken, Nicole C T; van Hillegersberg, Richard; van Sandick, Johanna W; Vehof, Rianne; van Krieken, J Han; Fitzgerald, Rebecca C

    2015-01-01

    Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3) families with diagnoses of both DGC and LBC (one diagnosis before the age of 50). Additionally, CDH1 testing could be considered in patients with bilateral or familial LBC before the age of 50, patients with DGC and cleft lip/palate, and those with precursor lesions for signet ring cell carcinoma. Given the high mortality associated with invasive disease, prophylactic total gastrectomy at a centre of expertise is advised for individuals with pathogenic CDH1 mutations. Breast cancer surveillance with annual breast MRI starting at age 30 for women with a CDH1 mutation is recommended. Standardised endoscopic surveillance in experienced centres is recommended for those opting not to have gastrectomy at the current time, those with CDH1 variants of uncertain significance and those that fulfil hereditary DGC criteria without germline CDH1 mutations. Expert histopathological confirmation of (early) signet ring cell carcinoma is recommended. The impact of gastrectomy and mastectomy should not be underestimated; these can have severe consequences on a psychological, physiological and metabolic level. Nutritional problems should be carefully monitored. PMID:25979631

  15. TMC-SNPdb: an Indian germline variant database derived from whole exome sequences.

    Science.gov (United States)

    Upadhyay, Pawan; Gardi, Nilesh; Desai, Sanket; Sahoo, Bikram; Singh, Ankita; Togar, Trupti; Iyer, Prajish; Prasad, Ratnam; Chandrani, Pratik; Gupta, Sudeep; Dutt, Amit

    2016-01-01

    Cancer is predominantly a somatic disease. A mutant allele present in a cancer cell genome is considered somatic when it's absent in the paired normal genome along with public SNP databases. The current build of dbSNP, the most comprehensive public SNP database, however inadequately represents several non-European Caucasian populations, posing a limitation in cancer genomic analyses of data from these populations. We present the T: ata M: emorial C: entre-SNP D: ata B: ase (TMC-SNPdb), as the first open source, flexible, upgradable, and freely available SNP database (accessible through dbSNP build 149 and ANNOVAR)-representing 114 309 unique germline variants-generated from whole exome data of 62 normal samples derived from cancer patients of Indian origin. The TMC-SNPdb is presented with a companion subtraction tool that can be executed with command line option or using an easy-to-use graphical user interface with the ability to deplete additional Indian population specific SNPs over and above dbSNP and 1000 Genomes databases. Using an institutional generated whole exome data set of 132 samples of Indian origin, we demonstrate that TMC-SNPdb could deplete 42, 33 and 28% false positive somatic events post dbSNP depletion in Indian origin tongue, gallbladder, and cervical cancer samples, respectively. Beyond cancer somatic analyses, we anticipate utility of the TMC-SNPdb in several Mendelian germline diseases. In addition to dbSNP build 149 and ANNOVAR, the TMC-SNPdb along with the subtraction tool is available for download in the public domain at the following:Database URL: http://www.actrec.gov.in/pi-webpages/AmitDutt/TMCSNP/TMCSNPdp.html. © The Author(s) 2016. Published by Oxford University Press.

  16. Effect of ATM heterozygosity on heritable DNA damage in mice following paternal F0 germline irradiation

    International Nuclear Information System (INIS)

    Baulch, Janet E.; Li, M.-W.; Raabe, Otto G.

    2007-01-01

    The ataxia telangiectasia mutated (ATM) gene product maintains genome integrity and initiates cellular DNA repair pathways following exposures to genotoxic agents. ATM also plays a significant role in meiotic recombination during spermatogenesis. Fertilization with sperm carrying damaged DNA could lead to adverse effects in offspring including developmental defects or increased cancer susceptibility. Currently, there is little information regarding the effect of ATM heterozygosity on germline DNA repair and heritable effects of paternal germline-ionizing irradiation. We used neutral pH comet assays to evaluate spermatozoa 45 days after acute whole-body irradiation of male mice (0.1 Gy, attenuated 137 Cs γ rays) to determine the effect of ATM heterozygosity on delayed DNA damage effects of Type A/B spermatogonial irradiation. Using the neutral pH sperm comet assay, significant irradiation-related differences were found in comet tail length, percent tail DNA and tail extent moment, but there were no observed differences in effect between wild-type and ATM +/- mice. However, evaluation of spermatozoa from third generation descendants of irradiated male mice for heritable chromatin effects revealed significant differences in DNA electrophoretic mobility in the F 3 descendants that were based upon the irradiated F 0 sire's genotype. In this study, radiation-induced chromatin alterations to Type A/B spermatogonia, detected in mature sperm 45 days post-irradiation, led to chromatin effects in mature sperm three generations later. The early cellular response to and repair of DNA damage is critical and appears to be affected by ATM zygosity. Our results indicate that there is potential for heritable genetic or epigenetic changes following Type A/B spermatogonial irradiation and that ATM heterozygosity increases this effect

  17. Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder.

    Science.gov (United States)

    Hyakuna, Nobuyuki; Muramatsu, Hideki; Higa, Takeshi; Chinen, Yasutsugu; Wang, Xinan; Kojima, Seiji

    2015-03-01

    Germline mutations in CBL have been identified in patients with Noonan syndrome-like phenotypes, while juvenile myelomonocytic leukemia (JMML) harbors duplication of a germline CBL, resulting in acquired isodisomy. The association between moyamoya disease and Noonan syndrome carrying a PTPN11 mutation has recently been reported. We present a patient with JMML who developed moyamoya disease and neovascular glaucoma. Our patient exhibited a Noonan syndrome-like phenotype. Genetic analysis revealed acquired isodisomy and a germline heterozygous mutation in CBL. This is a rare case of CBL mutation associated with moyamoya disease. Prolonged RAS pathway signaling may cause disruption of cerebrovascular development. © 2014 Wiley Periodicals, Inc.

  18. DAF-18/PTEN signals through AAK-1/AMPK to inhibit MPK-1/MAPK in feedback control of germline stem cell proliferation.

    Directory of Open Access Journals (Sweden)

    Patrick Narbonne

    2017-04-01

    Full Text Available Under replete growth conditions, abundant nutrient uptake leads to the systemic activation of insulin/IGF-1 signalling (IIS and the promotion of stem cell growth/proliferation. Activated IIS can stimulate the ERK/MAPK pathway, the activation of which also supports optimal stem cell proliferation in various systems. Stem cell proliferation rates can further be locally refined to meet the resident tissue's need for differentiated progeny. We have recently shown that the accumulation of mature oocytes in the C. elegans germ line, through DAF-18/PTEN, inhibits adult germline stem cell (GSC proliferation, despite high systemic IIS activation. We show here that this feedback occurs through a novel cryptic signalling pathway that requires PAR-4/LKB1, AAK-1/AMPK and PAR-5/14-3-3 to inhibit the activity of MPK-1/MAPK, antagonize IIS, and inhibit both GSC proliferation and the production of additional oocytes. Interestingly, our results imply that DAF-18/PTEN, through PAR-4/LKB1, can activate AAK-1/AMPK in the absence of apparent energy stress. As all components are conserved, similar signalling cascades may regulate stem cell activities in other organisms and be widely implicated in cancer.

  19. Human Serum is as Efficient as Fetal Bovine Serum in Supporting Proliferation and Differentiation of Human Multipotent Stromal (Mesenchymal) Stem Cells In Vitro and In Vivo

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Haack-Sørensen, Mandana; Al-Nbaheen, May

    2011-01-01

    BACKGROUND: Human multipotent stromal (skeletal, mesenchymal) stem cells (hMSC) are employed in an increasing number of clinical trials for tissue regeneration of age-related degenerative diseases. However, routine use of fetal bovine sera (FBS) for their in vitro expansion is not optimal and may......) or adipocytic markers (PPAR-gamma2, lipoprotein lipase (LPL), aP2), respectively. In order to test for the functional capacity of hMSC-TERT that have been maintained in long-term cultures in the presence of HuS vs. FBS, the cells were mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) and implanted...... subcutaneously in immune deficient mice. hMSC maintained in HuS vs. FBS formed comparable heterotopic bone. DISCUSSION: Human serum can support proliferation and differentiation of hMSC in vitro and can maintain their bone forming capacity in vivo. The use of human serum in cell cultures of hMSC intended...

  20. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    OpenAIRE

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-...

  1. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    International Nuclear Information System (INIS)

    Kast, Karin; Schackert, Hans K; Neuhann, Teresa M; Görgens, Heike; Becker, Kerstin; Keller, Katja; Klink, Barbara; Aust, Daniela; Distler, Wolfgang; Schröck, Evelin

    2012-01-01

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes

  2. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kast, Karin [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Schackert, Hans K [Department of Surgical Research, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Neuhann, Teresa M [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Medical Genetic Center, Munich (Germany); Görgens, Heike [Department of Surgical Research, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Becker, Kerstin [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Keller, Katja [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Klink, Barbara [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany); Aust, Daniela [Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Distler, Wolfgang [Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Schröck, Evelin [Institute for Clinical Genetics, Technische Universität Dresden, Dresden (Germany)

    2012-11-20

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  3. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer

    Directory of Open Access Journals (Sweden)

    Kast Karin

    2012-11-01

    Full Text Available Abstract Background Hereditary Breast and Ovarian Cancer Syndrome (HBOCS and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR genes MLH1, MSH2, MSH6 or PMS2 are very rare. Case presentation We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Conclusions Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  4. A novel germline POLE mutation causes an early onset cancer prone syndrome mimicking constitutional mismatch repair deficiency.

    Science.gov (United States)

    Wimmer, Katharina; Beilken, Andreas; Nustede, Rainer; Ripperger, Tim; Lamottke, Britta; Ure, Benno; Steinmann, Diana; Reineke-Plaass, Tanja; Lehmann, Ulrich; Zschocke, Johannes; Valle, Laura; Fauth, Christine; Kratz, Christian P

    2017-01-01

    In a 14-year-old boy with polyposis and rectosigmoid carcinoma, we identified a novel POLE germline mutation, p.(Val411Leu), previously found as recurrent somatic mutation in 'ultramutated' sporadic cancers. This is the youngest reported cancer patient with polymerase proofreading-associated polyposis indicating that POLE mutation p.(Val411Leu) may confer a more severe phenotype than previously reported POLE and POLD1 germline mutations. The patient had multiple café-au-lait macules and a pilomatricoma mimicking the clinical phenotype of constitutional mismatch repair deficiency. We hypothesize that these skin features may be common to different types of constitutional DNA repair defects associated with polyposis and early-onset cancer.

  5. Germline truncating-mutations in BRCA1 and MSH6 in a patient with early onset endometrial cancer.

    Science.gov (United States)

    Kast, Karin; Neuhann, Teresa M; Görgens, Heike; Becker, Kerstin; Keller, Katja; Klink, Barbara; Aust, Daniela; Distler, Wolfgang; Schröck, Evelin; Schackert, Hans K

    2012-11-20

    Hereditary Breast and Ovarian Cancer Syndrome (HBOCS) and Hereditary Non-Polyposis Colorectal Cancer Syndrome (HNPCC, Lynch Syndrome) are two tumor predisposition syndromes responsible for the majority of hereditary breast and colorectal cancers. Carriers of both germline mutations in breast cancer genes BRCA1 or BRCA2 and in mismatch repair (MMR) genes MLH1, MSH2, MSH6 or PMS2 are very rare. We identified germline mutations in BRCA1 and in MSH6 in a patient with increased risk for HBOC diagnosed with endometrial cancer at the age of 46 years. Although carriers of mutations in both MMR and BRCA genes are rare in Caucasian populations and anamnestical and histopathological findings may guide clinicians to identify these families, both syndromes can only be diagnosed through a complete gene analysis of the respective genes.

  6. The effects of MSH2 deficiency on spontaneous and radiation-induced mutation rates in the mouse germline

    International Nuclear Information System (INIS)

    Burr, Karen L-A.; Duyn-Goedhart, Annemarie van; Hickenbotham, Peter; Monger, Karen; Buul, Paul P.W. van; Dubrova, Yuri E.

    2007-01-01

    Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of mismatch repair deficient Msh2 knock-out mice. Spontaneous mutation rates in homozygous Msh2 -/- males were significantly higher than those in isogenic wild-type (Msh2 +/+ ) and heterozygous (Msh2 +/- ) mice. In contrast, the irradiated Msh2 -/- mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated Msh2 +/+ and Msh2 +/- animals. Considering these data and the results of other publications, we propose that the Msh2-deficient mice possess a mutator phenotype in their germline and somatic tissues while the loss of a single Msh2 allele does not affect the stability of heterozygotes

  7. Mei-p26 cooperates with Bam, Bgcn and Sxl to promote early germline development in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    Yun Li

    Full Text Available In the Drosophila female germline, spatially and temporally specific translation of mRNAs governs both stem cell maintenance and the differentiation of their progeny. However, the mechanisms that control and coordinate different modes of translational repression within this lineage remain incompletely understood. Here we present data showing that Mei-P26 associates with Bam, Bgcn and Sxl and nanos mRNA during early cyst development, suggesting that this protein helps to repress the translation of nanos mRNA. Together with recently published studies, these data suggest that Mei-P26 mediates both GSC self-renewal and germline differentiation through distinct modes of translational repression depending on the presence of Bam.

  8. Mei-P26 Cooperates with Bam, Bgcn and Sxl to Promote Early Germline Development in the Drosophila Ovary

    Science.gov (United States)

    Li, Yun; Zhang, Qiao; Carreira-Rosario, Arnaldo; Maines, Jean Z.; McKearin, Dennis M.; Buszczak, Michael

    2013-01-01

    In the Drosophila female germline, spatially and temporally specific translation of mRNAs governs both stem cell maintenance and the differentiation of their progeny. However, the mechanisms that control and coordinate different modes of translational repression within this lineage remain incompletely understood. Here we present data showing that Mei-P26 associates with Bam, Bgcn and Sxl and nanos mRNA during early cyst development, suggesting that this protein helps to repress the translation of nanos mRNA. Together with recently published studies, these data suggest that Mei-P26 mediates both GSC self-renewal and germline differentiation through distinct modes of translational repression depending on the presence of Bam. PMID:23526974

  9. Germ-line origins of mutation in families with hemophilia B: The sex ratio varies with the type of mutation

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.; Bottema, C.D.K.; Schaid, D.J.; Sommer, S.S. (Mayo Clinic/Foundation, Rochester, MN (United States)); Cohen, M.P. (Vanderbilt Univ., Nashville, TN (United States)); Sexauer, C.L. (Children' s Hospital, Oklahoma City, OK (United States))

    1993-01-01

    Previous epidemiological and biochemical studies have generated conflicting estimates of the sex ratio of mutation. Direct genomic sequencing in combination with haplotype analysis extends previous analyses by allowing the precise mutation to be determined in a given family. From analysis of the factor IX gene of 260 consecutive families with hemophilia B, the authors report the germ-line origin of mutation in 25 families. When combined with 14 origins of mutation reported by others and with 4 origins previously reported by them, a total of 25 occur in the female germ line, and 18 occur in the male germ line. The excess of germ-line origins in females does not imply an overall excess mutation rate per base pair in the female germ line. Bayesian analysis of the data indicates that the sex ratio varies with the type of mutation. The aggregate of single-base substitutions shows a male predominance of germ-line mutations (P < .002). The maximum-likelihood estimate of the male predominance is 3.5-fold. Of the single-base substitutions, deletions display a sex ratio of unity. Analysis of the parental age at transmission of a new mutation suggests that germ-line mutations are associated with a small increase in parental age in females but little, if any, increase in males. Although direct genomic sequencing offers a general method for defining the origin of mutation in specific families, accurate estimates of the sex ratios of different mutational classes require large sample sizes and careful correction for multiple biases of ascertainment. The biases in the present data result in an underestimate of the enhancement of mutation in males. 62 refs., 1 fig., 5 tabs.

  10. Pitfalls in molecular analysis for mismatch repair deficiency in a family with biallelic pms2 germline mutations.

    Science.gov (United States)

    Leenen, C H M; Geurts-Giele, W R R; Dubbink, H J; Reddingius, R; van den Ouweland, A M; Tops, C M J; van de Klift, H M; Kuipers, E J; van Leerdam, M E; Dinjens, W N M; Wagner, A

    2011-12-01

    Heterozygous germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause Lynch syndrome. Biallelic mutations in the MMR genes are associated with a childhood cancer syndrome [constitutional mismatch repair deficiency (CMMR-D)]. This is predominantly characterized by hematological malignancies and tumors of the bowel and brain, often associated with signs of neurofibromatosis type 1 (NF1). Diagnostic strategies for selection of patients for MMR gene analysis include analysis of microsatellite instability (MSI) and immunohistochemical (IHC) analysis of MMR proteins in tumor tissue. We report the clinical characterization and molecular analyses of tumor specimens from a family with biallelic PMS2 germline mutations. This illustrates the pitfalls of present molecular screening strategies. Tumor tissues of five family members were analyzed for MSI and IHC. MSI was observed in only one of the analyzed tissues. However, IHC analysis of brain tumor tissue of the index patient and his sister showed absence of PMS2 expression, and germline mutation analyses showed biallelic mutations in PMS2: p.Ser46IIe and p.Pro246fs. The same heterozygous mutations were confirmed in the father and mother, respectively. These data support the conclusion that in case of a clinical phenotype of CMMR-D, it is advisable to routinely combine MSI analysis with IHC analysis for the expression of MMR proteins. With inconclusive or conflicting results, germline mutation analysis of the MMR genes should be considered after thorough counselling of the patients and/or their relatives. © 2011 John Wiley & Sons A/S.

  11. Molecular Background of Colorectal Tumors From Patients with Lynch Syndrome Associated With Germline Variants in PMS2.

    Science.gov (United States)

    Ten Broeke, S W; van Bavel, T C; Jansen, A M L; Gómez-García, E; Hes, F J; van Hest, L P; Letteboer, T G W; Olderode-Berends, M J W; Ruano, D; Spruijt, L; Suerink, M; Tops, C M; van Eijk, R; Morreau, H; van Wezel, T; Nielsen, M

    2018-05-11

    Germline variants in the mismatch repair genes MLH1, MSH2 (EPCAM), MSH6, or PMS2 cause Lynch syndrome. Patients with these variants have an increased risk of developing colorectal cancers (CRCs) that differ from sporadic CRCs in genetic and histologic features. It has been a challenge to study CRCs associated with PMS2 variants (PMS2-associated CRCs) because these develop less frequently and in patients of older ages than colorectal tumors with variants in the other mismatch repair genes. We analyzed 20 CRCs associated with germline variants in PMS2, 22 sporadic CRCs, 18 CRCs with germline variants in MSH2, and 24 CRCs from patients with germline variants in MLH1. Tumor tissue blocks were collected from Dutch pathology departments in 2017. After extraction of tumor DNA, we used a platform designed to detect approximately 3000 somatic hotspot variants in 55 genes (including KRAS, APC, CTNNB1, and TP53). Somatic variant frequencies were compared using the Fisher's exact test. None of the PMS2-associated CRCs contained any somatic variants in the catenin beta 1 gene (CTNNB1), which encodes β-catenin, whereas 14/24 MLH1-associated CRCs (58%) contained variants in CTNNB1. Half of PMS2-associated CRCs contained KRAS variants, but only 20% of these were in hotspots that encoded G12D or G13D. These hotspot variants occurred more frequently in CRCs associated with variants in MLH1 (37.5%, P=.44) and MSH2 (and 71.4%, P=.035) than with variants in PMS2. In a genetic analysis of 84 colorectal tumors, we found tumors from patients with PMS2-associated Lynch syndrome to be distinct from colorectal tumors associated with defects in other mismatch repair genes. This might account for differences in development and less frequent occurrence. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Germ-line CAG repeat instability causes extreme CAG repeat expansion with infantile-onset spinocerebellar ataxia type 2

    DEFF Research Database (Denmark)

    Vinther-Jensen, Tua; Ek, Jakob; Duno, Morten

    2013-01-01

    The spinocerebellar ataxias (SCA) are a genetically and clinically heterogeneous group of diseases, characterized by dominant inheritance, progressive cerebellar ataxia and diverse extracerebellar symptoms. A subgroup of the ataxias is caused by unstable CAG-repeat expansions in their respective ...... of paternal germ-line repeat sequence instability of the expanded SCA2 locus.European Journal of Human Genetics advance online publication, 10 October 2012; doi:10.1038/ejhg.2012.231....

  13. Allele-specific expression in the germline of patients with familial pancreatic cancer: An unbiased approach to cancer gene discovery

    OpenAIRE

    Tan, Aik Choon; Fan, Jian-Bing; Karikari, Collins; Bibikova, Marina; Garcia, Eliza Wickham; Zhou, Lixin; Barker, David; Serre, David; Feldmann, Georg; Hruban, Ralph H.; Klein, Alison P.; Goggins, Michael; Couch, Fergus J.; Hudson, Thomas J.; Winslow, Raimond L.

    2007-01-01

    Physiologic allele-specific expression (ASE) in germline tissues occurs during random X-chromosome inactivation1 and in genomic imprinting,2 wherein the two alleles of a gene in a heterozygous individual are not expressed equally. Recent studies have confirmed the existence of ASE in apparently non-imprinted autosomal genes;3–14 however, the extent of ASE in the human genome is unknown. We explored ASE in lymphoblastoid cell lines of 145 individuals using an oligonucleotide array based assay....

  14. The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences.

    Science.gov (United States)

    Arnaiz, Olivier; Mathy, Nathalie; Baudry, Céline; Malinsky, Sophie; Aury, Jean-Marc; Denby Wilkes, Cyril; Garnier, Olivier; Labadie, Karine; Lauderdale, Benjamin E; Le Mouël, Anne; Marmignon, Antoine; Nowacki, Mariusz; Poulain, Julie; Prajer, Malgorzata; Wincker, Patrick; Meyer, Eric; Duharcourt, Sandra; Duret, Laurent; Bétermier, Mireille; Sperling, Linda

    2012-01-01

    Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of -45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a -10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the

  15. The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences.

    Directory of Open Access Journals (Sweden)

    Olivier Arnaiz

    Full Text Available Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of -45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a -10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a

  16. Germline variants in Hamartomatous Polyposis Syndrome-associated genes from patients with one or few hamartomatous polyps

    DEFF Research Database (Denmark)

    Jelsig, Anne Marie; Brusgaard, Klaus; Hansen, Tine Plato

    2016-01-01

    OBJECTIVE: A subgroup of patients with hamartomatous polyps in the GI tract has a hereditary Hamartomatous Polyposis Syndrome with an increased risk of cancer. The distinction between patients with one or few polyps and patients with a syndrome can be difficult. A pathogenic germline mutation can...... significance of genetic variants can be difficult to interpret. A family history of polyps, cancer, or extraintestinal findings or a minimum of 3-5 polyps seems to be relevant information to include before genetic testing....

  17. NanoTIO2 (UV-Titan does not induce ESTR mutations in the germline of prenatally exposed female mice

    Directory of Open Access Journals (Sweden)

    Boisen Anne Mette

    2012-06-01

    Full Text Available Abstract Background Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR loci in mice are sensitive markers of mutagenic effects on male germ cells resulting from environmental exposures; however, female germ cells have received little attention. Oocytes may be vulnerable during stages of active cell division (e.g., during fetal development. Accordingly, an increase in germline ESTR mutations in female mice prenatally exposed to radiation has previously been reported. Here we investigate the effects of nanoparticles on the female germline. Since pulmonary exposure to nanosized titanium dioxide (nanoTiO2 produces a long-lasting inflammatory response in mice, it was chosen for the present study. Findings Pregnant C57BL/6 mice were exposed by whole-body inhalation to the nanoTiO2 UV-Titan L181 (~42.4 mg UV-Titan/m3 or filtered clean air on gestation days (GD 8–18. Female C57BL/6 F1 offspring were raised to maturity and mated with unexposed CBA males. The F2 descendents were collected and ESTR germline mutation rates in this generation were estimated from full pedigrees (mother, father, offspring of F1 female mice (192 UV-Titan-exposed F2 offspring and 164 F2 controls. ESTR mutation rates of 0.029 (maternal allele and 0.047 (paternal allele in UV-Titan-exposed F2 offspring were not statistically different from those of F2 controls: 0.037 (maternal allele and 0.061 (paternal allele. Conclusions We found no evidence for increased ESTR mutation rates in F1 females exposed in utero to UV-Titan nanoparticles from GD8-18 relative to control females.

  18. Hyperthyroidism caused by a germline activating mutation of the thyrotropin receptor gene: difficulties in diagnosis and therapy.

    Science.gov (United States)

    Bertalan, Rita; Sallai, Agnes; Sólyom, János; Lotz, Gábor; Szabó, István; Kovács, Balázs; Szabó, Eva; Patócs, Attila; Rácz, Károly

    2010-03-01

    Germline activating mutations of the thyrotropin receptor (TSHR) gene have been considered as the only known cause of sporadic nonautoimmune hyperthyroidism in the pediatric population. Here we describe the long-term follow-up and evaluation of a patient with sporadic nonautoimmune primary hyperthyroidism who was found to have a de novo germline activating mutation of the TSHR gene. The patient was an infant who presented at the age of 10 months in an unconscious state with exsiccation, wet skin, fever, and tachycardia. Nonautoimmune primary hyperthyroidism was diagnosed, and brain magnetic resonance imaging and computed tomography showed also Arnold-Chiari malformation type I. Continuous propylthiouracil treatment resulted in a prolonged clinical cure lasting for 10 years. At the age of 11 years and 5 months the patient underwent subtotal thyroidectomy because of symptoms of trachea compression caused by a progressive multinodular goiter. However, 2 months after surgery, hormonal evaluation indicated recurrent hyperthyroidism and the patient was treated with propylthiouracil during the next 4 years. At the age of 15 years the patient again developed symptoms of trachea compression. Radioiodine treatment resulted in a regression of the recurrent goiter and a permanent cure of hyperthyroidism without relapse during the last 3 years of his follow-up. Sequencing of exon 10 of the TSHR gene showed a de novo heterozygous germline I630L mutation, which has been previously described as activating mutation at somatic level in toxic thyroid nodules. The I630L mutation of the TSHR gene occurs not only at somatic level in toxic thyroid nodules, but also its presence in germline is associated with nonautoimmune primary hyperthyroidism. Our case report demonstrates that in this disorder a continuous growth of the thyroid occurs without any evidence of elevated TSH due to antithyroid drug overdosing. This may justify previous recommendations for early treatment of affected

  19. Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes.

    Science.gov (United States)

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Otsuki, Taiichiro; Fukuoka, Kazuya; Hasegawa, Seiki; Nakano, Takashi; Hashimoto-Tamaoki, Tomoko

    2015-02-01

    We detected low levels of acetylation for histone H3 tail lysines in malignant mesothelioma (MM) cell lines resistant to histone deacetylase inhibitors. To identify the possible genetic causes related to the low histone acetylation levels, whole-exome sequencing was conducted with MM cell lines established from eight patients. A mono-allelic variant of BRD1 was common to two MM cell lines with very low acetylation levels. We identified 318 homozygous protein-damaging variants/mutations (18-78 variants/mutations per patient); annotation analysis showed enrichment of the molecules associated with mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes and co-activators that facilitate initiation of transcription. In seven of the patients, we detected a combination of variants in histone modifiers or transcription factors/co-factors, in addition to variants in mSWI/SNF. Direct sequencing showed that homozygous mutations in SMARCA4, PBRM1 and ARID2 were somatic. In one patient, homozygous germline variants were observed for SMARCC1 and SETD2 in chr3p22.1-3p14.2. These exhibited extended germline homozygosity and were in regions containing somatic mutations, leading to a loss of BAP1 and PBRM1 expression in MM cell line. Most protein-damaging variants were heterozygous in normal tissues. Heterozygous germline variants were often converted into hemizygous variants by mono-allelic deletion, and were rarely homozygous because of acquired uniparental disomy. Our findings imply that MM might develop through the somatic inactivation of mSWI/SNF complex subunits and/or histone modifiers, including BAP1, in subjects that have rare germline variants of these transcription regulators and/or transcription factors/co-factors, and in regions prone to mono-allelic deletion during oncogenesis. © 2014 UICC.

  20. Germline activating MTOR mutation arising through gonadal mosaicism in two brothers with megalencephaly and neurodevelopmental abnormalities.

    Science.gov (United States)

    Mroske, Cameron; Rasmussen, Kristen; Shinde, Deepali N; Huether, Robert; Powis, Zoe; Lu, Hsiao-Mei; Baxter, Ruth M; McPherson, Elizabeth; Tang, Sha

    2015-11-05

    In humans, Mammalian Target of Rapamycin (MTOR) encodes a 300 kDa serine/ threonine protein kinase that is ubiquitously expressed, particularly at high levels in brain. MTOR functions as an integrator of multiple cellular processes, and in so doing either directly or indirectly regulates the phosphorylation of at least 800 proteins. While somatic MTOR mutations have been recognized in tumors for many years, and more recently in hemimegalencephaly, germline MTOR mutations have rarely been described. We report the successful application of family-trio Diagnostic Exome Sequencing (DES) to identify the underlying molecular etiology in two brothers with multiple neurological and developmental lesions, and for whom previous testing was non-diagnostic. The affected brothers, who were 6 and 23 years of age at the time of DES, presented symptoms including but not limited to mild Autism Spectrum Disorder (ASD), megalencephaly, gross motor skill delay, cryptorchidism and bilateral iris coloboma. Importantly, we determined that each affected brother harbored the MTOR missense alteration p.E1799K (c.5395G>A). This exact variant has been previously identified in multiple independent human somatic cancer samples and has been shown to result in increased MTOR activation. Further, recent independent reports describe two unrelated families in whom p.E1799K co-segregated with megalencephaly and intellectual disability (ID); in both cases, p.E1799K was shown to have originated due to germline mosaicism. In the case of the family reported herein, the absence of p.E1799K in genomic DNA extracted from the blood of either parent suggests that this alteration most likely arose due to gonadal mosaicism. Further, the p.E1799K variant exerts its effect by a gain-of-function (GOF), autosomal dominant mechanism. Herein, we describe the use of DES to uncover an activating MTOR missense alteration of gonadal mosaic origin that is likely to be the causative mutation in two brothers who present

  1. Association Between Germline Mutation in VSIG10L and Familial Barrett Neoplasia

    Science.gov (United States)

    Fecteau, Ryan E.; Kong, Jianping; Kresak, Adam; Brock, Wendy; Song, Yeunjoo; Fujioka, Hisashi; Elston, Robert; Willis, Joseph E.; Lynch, John P.; Markowitz, Sanford D.; Guda, Kishore; Chak, Amitabh

    2016-01-01

    IMPORTANCE Esophageal adenocarcinoma and its precursor lesion Barrett esophagus have seen a dramatic increase in incidence over the past 4 decades yet marked genetic heterogeneity of this disease has precluded advances in understanding its pathogenesis and improving treatment. OBJECTIVE To identify novel disease susceptibility variants in a familial syndrome of esophageal adenocarcinoma and Barrett esophagus, termed familial Barrett esophagus, by using high-throughput sequencing in affected individuals from a large, multigenerational family. DESIGN, SETTING, AND PARTICIPANTS We performed whole exome sequencing (WES) from peripheral lymphocyte DNA on 4 distant relatives from our multiplex, multigenerational familial Barrett esophagus family to identify candidate disease susceptibility variants. Gene variants were filtered, verified, and segregation analysis performed to identify a single candidate variant. Gene expression analysis was done with both quantitative real-time polymerase chain reaction and in situ RNA hybridization. A 3-dimensional organotypic cell culture model of esophageal maturation was utilized to determine the phenotypic effects of our gene variant. We used electron microscopy on esophageal mucosa from an affected family member carrying the gene variant to assess ultrastructural changes. MAIN OUTCOMES AND MEASURES Identification of a novel, germline disease susceptibility variant in a previously uncharacterized gene. RESULTS A multiplex, multigenerational family with 14 members affected (3 members with esophageal adenocarcinoma and 11 with Barrett esophagus) was identified, and whole-exome sequencing identified a germline mutation (S631G) at a highly conserved serine residue in the uncharacterized gene VSIG10L that segregated in affected members. Transfection of S631G variant into a 3-dimensional organotypic culture model of normal esophageal squamous cells dramatically inhibited epithelial maturation compared with the wild-type. VSIG10L exhibited

  2. Association Between Germline Mutation in VSIG10L and Familial Barrett Neoplasia.

    Science.gov (United States)

    Fecteau, Ryan E; Kong, Jianping; Kresak, Adam; Brock, Wendy; Song, Yeunjoo; Fujioka, Hisashi; Elston, Robert; Willis, Joseph E; Lynch, John P; Markowitz, Sanford D; Guda, Kishore; Chak, Amitabh

    2016-10-01

    Esophageal adenocarcinoma and its precursor lesion Barrett esophagus have seen a dramatic increase in incidence over the past 4 decades yet marked genetic heterogeneity of this disease has precluded advances in understanding its pathogenesis and improving treatment. To identify novel disease susceptibility variants in a familial syndrome of esophageal adenocarcinoma and Barrett esophagus, termed familial Barrett esophagus, by using high-throughput sequencing in affected individuals from a large, multigenerational family. We performed whole exome sequencing (WES) from peripheral lymphocyte DNA on 4 distant relatives from our multiplex, multigenerational familial Barrett esophagus family to identify candidate disease susceptibility variants. Gene variants were filtered, verified, and segregation analysis performed to identify a single candidate variant. Gene expression analysis was done with both quantitative real-time polymerase chain reaction and in situ RNA hybridization. A 3-dimensional organotypic cell culture model of esophageal maturation was utilized to determine the phenotypic effects of our gene variant. We used electron microscopy on esophageal mucosa from an affected family member carrying the gene variant to assess ultrastructural changes. Identification of a novel, germline disease susceptibility variant in a previously uncharacterized gene. A multiplex, multigenerational family with 14 members affected (3 members with esophageal adenocarcinoma and 11 with Barrett esophagus) was identified, and whole-exome sequencing identified a germline mutation (S631G) at a highly conserved serine residue in the uncharacterized gene VSIG10L that segregated in affected members. Transfection of S631G variant into a 3-dimensional organotypic culture model of normal esophageal squamous cells dramatically inhibited epithelial maturation compared with the wild-type. VSIG10L exhibited high expression in normal squamous esophagus with marked loss of expression in Barrett

  3. Germline-specific MATH-BTB substrate adaptor MAB1 regulates spindle length and nuclei identity in maize.

    Science.gov (United States)

    Juranič, Martina; Srilunchang, Kanok-orn; Krohn, Nádia Graciele; Leljak-Levanic, Dunja; Sprunck, Stefanie; Dresselhaus, Thomas

    2012-12-01

    Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle-dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s).

  4. Germline-Specific MATH-BTB Substrate Adaptor MAB1 Regulates Spindle Length and Nuclei Identity in Maize[W

    Science.gov (United States)

    Juranić, Martina; Srilunchang, Kanok-orn; Krohn, Nádia Graciele; Leljak-Levanić, Dunja; Sprunck, Stefanie; Dresselhaus, Thomas

    2012-01-01

    Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle–dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s). PMID:23250449

  5. Male germline recombination of a conditional allele by the widely used Dermo1-cre (Twist2-cre) transgene.

    Science.gov (United States)

    He, Yun; Sun, Xiumei; Wang, Li; Mishina, Yuji; Guan, Jun-Lin; Liu, Fei

    2017-09-01

    Conditional gene knockout using the Cre/loxP system is instrumental in advancing our understanding of the function of genes in a wide range of disciplines. It is becoming increasingly apparent in the literature that recombination mediated by some Cre transgenes can occur in unexpected tissues. Dermo1-Cre (Twist2-Cre) has been widely used to target skeletal lineage cells as well as other mesoderm-derived cells. Here we report that Dermo1-Cre exhibits spontaneous male germline recombination activity leading to a Cre-mediated recombination of a floxed Ptk2 (Protein tyrosine kinase 2, also known as Fak [Focal adhesion kinase]) allele but not a floxed Rb1cc1 (RB1 inducible coiled-coil 1, also known as Fip200 [FAK-family Interacting Protein of 200 kDa]) allele at high frequency. This ectopic germline activity of Dermo1-Cre occurred in all or none manner in a given litter. We demonstrated that the occurrence of germline recombination activity of Dermo1-Cre transgene can be avoided by using female mice as parental Dermo1-Cre carriers. © 2017 Wiley Periodicals, Inc.

  6. The effect of tributyltin chloride on Caenorhabditis elegans germline is mediated by a conserved DNA damage checkpoint pathway.

    Science.gov (United States)

    Cheng, Zhe; Tian, Huimin; Chu, Hongran; Wu, Jianjian; Li, Yingying; Wang, Yanhai

    2014-03-21

    Tributyltin (TBT), one of the environmental pollutants, has been shown to impact the reproduction of animals. However, due to the lack of appropriate animal model, analysis of the affected molecular pathways in germ cells is lagging and has been particularly challenging. In the present study, we investigated the effects of tributyltin chloride (TBTCL) on the nematode Caenorhabditis elegans germline. We show that exposure of C. elegans to TBTCL causes significantly elevated level of sterility and embryonic lethality. TBTCL exposure results in an increased number of meiotic DNA double-strand breaks in germ cells, subsequently leading to activated DNA damage checkpoint. Exposing C. elegans to TBTCL causes dose- and time-dependent germline apoptosis. This apoptotic response was blocked in loss-of-function mutants of hus-1 (op241), mrt-2 (e2663) and p53/cep-1 (gk138), indicating that checkpoints and p53 are essential for mediating TBTCL-induced germ cell apoptosis. Moreover, TBTCL exposure can inhibit germ cell proliferation, which is also mediated by the conserved checkpoint pathway. We thereby propose that TBT exhibits its effects on the germline by inducing DNA damage and impaired maintenance of genomic integrity. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Cell surface fucosylation does not affect development of colon tumors in mice with germline Smad3 mutation

    Science.gov (United States)

    Domino, Steven E.; Karnak, David M.; Hurd, Elizabeth A.

    2006-01-01

    Background/Aims: Neoplasia-related alterations in cell surface α(1,2)fucosylated glycans have been reported in multiple tumors including colon, pancreas, endometrium, cervix, bladder, lung, and choriocarcinoma. Spontaneous colorectal tumors from mice with a germline null mutation of transforming growth factor-β signaling gene Smad3 (Madh3) were tested for α(1,2)fucosylated glycan expression. Methods: Ulex Europaeus Agglutinin-I lectin staining, fucosyltransferase gene northern blot analysis, and a cross of mutant mice with Fut2 and Smad3 germline mutations were performed. Results: Spontaneous colorectal tumors from Smad3 (-/-) homozygous null mice were found to express α(1,2)fucosylated glycans in an abnormal pattern compared to adjacent nonneoplastic colon. Northern blot analysis of α(1,2)fucosyltransferase genes Fut1 and Fut2 revealed that Fut2, but not Fut1, steady-state mRNA levels were significantly increased in tumors relative to adjacent normal colonic mucosa. Mutant mice with a Fut2-inactivating germline mutation were crossed with Smad3 targeted mice. In Smad3 (-/-)/Fut2 (-/-) double knock-out mice, UEA-I lectin staining was eliminated from colon and colon tumors, however, the number and size of tumors present by 24 weeks of age did not vary regardless of the Fut2 genotype. Conclusions: In this model of colorectal cancer, cell surface α(1,2)fucosylation does not affect development of colon tumors. PMID:17264540

  8. A novel germline mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene in an Italian family with gigantism.

    Science.gov (United States)

    Urbani, C; Russo, D; Raggi, F; Lombardi, M; Sardella, C; Scattina, I; Lupi, I; Manetti, L; Tomisti, L; Marcocci, C; Martino, E; Bogazzi, F

    2014-10-01

    Acromegaly usually occurs as a sporadic disease, but it may be a part of familial pituitary tumor syndromes in rare cases. Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been associated with a predisposition to familial isolated pituitary adenoma. The aim of the present study was to evaluate the AIP gene in a patient with gigantism and in her relatives. Direct sequencing of AIP gene was performed in fourteen members of the family, spanning among three generations. The index case was an 18-year-old woman with gigantism due to an invasive GH-secreting pituitary adenoma and a concomitant tall-cell variant of papillary thyroid carcinoma. A novel germline mutation in the AIP gene (c.685C>T, p.Q229X) was identified in the proband and in two members of her family, who did not present clinical features of acromegaly or other pituitary disorders. Eleven subjects had no mutation in the AIP gene. Two members of the family with clinical features of acromegaly refused either the genetic or the biochemical evaluation. The Q229X mutation was predicted to generate a truncated AIP protein, lacking the last two tetratricopeptide repeat domains and the final C-terminal α-7 helix. We identified a new AIP germline mutation predicted to produce a truncated AIP protein, lacking its biological properties due to the disruption of the C-terminus binding sites for both the chaperones and the client proteins of AIP.

  9. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

    Science.gov (United States)

    Barberán-Soler, Sergio; Fontrodona, Laura; Ribó, Anna; Lamm, Ayelet T; Iannone, Camilla; Cerón, Julián; Lehner, Ben; Valcárcel, Juan

    2014-09-25

    Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Germline mutations in lysine specific demethylase 1 (LSD1/KDM1A) confer susceptibility to multiple myeloma.

    Science.gov (United States)

    Wei, Xiaomu; Calvo-Vidal, M Nieves; Chen, Siwei; Wu, Gang; Revuelta, Maria V; Sun, Jian; Zhang, Jinghui; Walsh, Michael F; Nichols, Kim E; Joseph, Vijai; Snyder, Carrie; Vachon, Celine M; McKay, James D; Wang, Shu-Ping; Jayabalan, David S; Jacobs, Lauren M; Becirovic, Dina; Waller, Rosalie G; Artomov, Mykyta; Viale, Agnes; Patel, Jayeshkumar; Phillip, Jude M; Chen-Kiang, Selina; Curtin, Karen; Salama, Mohamed; Atanackovic, Djordje; Niesvizky, Ruben; Landgren, Ola; Slager, Susan L; Godley, Lucy A; Churpek, Jane; Garber, Judy E; Anderson, Kenneth C; Daly, Mark J; Roeder, Robert G; Dumontet, Charles; Lynch, Henry T; Mullighan, Charles G; Camp, Nicola J; Offit, Kenneth; Klein, Robert J; Yu, Haiyuan; Cerchietti, Leandro; Lipkin, Steven M

    2018-03-20

    Given the frequent and largely incurable occurrence of multiple myeloma (MM), identification of germline genetic mutations that predispose cells to MM may provide insight into disease etiology and the developmental mechanisms of its cell of origin, the plasma cell. Here we identified familial and early-onset MM kindreds with truncating mutations in lysine-specific demethylase 1 (LSD1/KDM1A), an epigenetic transcriptional repressor that primarily demethylates histone H3 on lysine 4 and regulates hematopoietic stem cell self-renewal. Additionally, we found higher rates of germline truncating and predicted deleterious missense KDM1A mutations in MM patients unselected for family history compared to controls. Both monoclonal gammopathy of unknown significance (MGUS) and MM cells have significantly lower KDM1A transcript levels compared with normal plasma cells. Transcriptome analysis of MM cells from KDM1A mutation carriers shows enrichment of pathways and MYC target genes previously associated with myeloma pathogenesis. In mice, antigen challenge followed by pharmacological inhibition of KDM1A promoted plasma cell expansion, enhanced secondary immune response, elicited appearance of serum paraprotein, and mediated upregulation of MYC transcriptional targets. These changes are consistent with the development of MGUS. Collectively, our findings show KDM1A is the first autosomal dominant MM germline predisposition gene, providing new insights into its mechanistic roles as a tumor suppressor during post-germinal center B cell differentiation. Copyright ©2018, American Association for Cancer Research.

  11. Linking the environment, DAF-7/TGFβ signaling and LAG-2/DSL ligand expression in the germline stem cell niche.

    Science.gov (United States)

    Pekar, Olga; Ow, Maria C; Hui, Kailyn Y; Noyes, Marcus B; Hall, Sarah E; Hubbard, E Jane Albert

    2017-08-15

    The developmental accumulation of proliferative germ cells in the C. elegans hermaphrodite is sensitive to the organismal environment. Previously, we found that the TGFβ signaling pathway links the environment and proliferative germ cell accumulation. Neuronal DAF-7/TGFβ causes a DAF-1/TGFβR signaling cascade in the gonadal distal tip cell (DTC), the germline stem cell niche, where it negatively regulates a DAF-3 SMAD and DAF-5 Sno-Ski. LAG-2, a founding DSL ligand family member, is produced in the DTC and activates the GLP-1/Notch receptor on adjacent germ cells to maintain germline stem cell fate. Here, we show that DAF-7/TGFβ signaling promotes expression of lag-2 in the DTC in a daf-3- dependent manner. Using ChIP and one-hybrid assays, we find evidence for direct interaction between DAF-3 and the lag-2 promoter. We further identify a 25 bp DAF-3 binding element required for the DTC lag-2 reporter response to the environment and to DAF-7/TGFβ signaling. Our results implicate DAF-3 repressor complex activity as a key molecular mechanism whereby the environment influences DSL ligand expression in the niche to modulate developmental expansion of the germline stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  12. Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans.

    Science.gov (United States)

    Chen, Di; Li, Patrick Wai-Lun; Goldstein, Benjamin A; Cai, Waijiao; Thomas, Emma Lynn; Chen, Fen; Hubbard, Alan E; Melov, Simon; Kapahi, Pankaj

    2013-12-26

    Inhibition of DAF-2 (insulin-like growth factor 1 [IGF-1] receptor) or RSKS-1 (S6K), key molecules in the insulin/IGF-1 signaling (IIS) and target of rapamycin (TOR) pathways, respectively, extend lifespan in Caenorhabditis elegans. However, it has not been clear how and in which tissues they interact with each other to modulate longevity. Here, we demonstrate that a combination of mutations in daf-2 and rsks-1 produces a nearly 5-fold increase in longevity that is much greater than the sum of single mutations. This synergistic lifespan extension requires positive feedback regulation of DAF-16 (FOXO) via the AMP-activated protein kinase (AMPK) complex. Furthermore, we identify germline as the key tissue for this synergistic longevity. Moreover, germline-specific inhibition of rsks-1 activates DAF-16 in the intestine. Together, our findings highlight the importance of the germline in the significantly increased longevity produced by daf-2 rsks-1, which has important implications for interactions between the two major conserved longevity pathways in more complex organisms. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Spontaneous germline excision of Tol1, a DNA-based transposable element naturally occurring in the medaka fish genome.

    Science.gov (United States)

    Watanabe, Kohei; Koga, Hajime; Nakamura, Kodai; Fujita, Akiko; Hattori, Akimasa; Matsuda, Masaru; Koga, Akihiko

    2014-04-01

    DNA-based transposable elements are ubiquitous constituents of eukaryotic genomes. Vertebrates are, however, exceptional in that most of their DNA-based elements appear to be inactivated. The Tol1 element of the medaka fish, Oryzias latipes, is one of the few elements for which copies containing an undamaged gene have been found. Spontaneous transposition of this element in somatic cells has previously been demonstrated, but there is only indirect evidence for its germline transposition. Here, we show direct evidence of spontaneous excision in the germline. Tyrosinase is the key enzyme in melanin biosynthesis. In an albino laboratory strain of medaka fish, which is homozygous for a mutant tyrosinase gene in which a Tol1 copy is inserted, we identified de novo reversion mutations related to melanin pigmentation. The gamete-based reversion rate was as high as 0.4%. The revertant fish carried the tyrosinase gene from which the Tol1 copy had been excised. We previously reported the germline transposition of Tol2, another DNA-based element that is thought to be a recent invader of the medaka fish genome. Tol1 is an ancient resident of the genome. Our results indicate that even an old element can contribute to genetic variation in the host genome as a natural mutator.

  14. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    Directory of Open Access Journals (Sweden)

    Colin D Meiklejohn

    2011-08-01

    Full Text Available The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  15. ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo.

    Directory of Open Access Journals (Sweden)

    Åsmund H Eikenes

    2015-01-01

    Full Text Available Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo.

  16. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk.

    Science.gov (United States)

    ten Broeke, Sanne W; Brohet, Richard M; Tops, Carli M; van der Klift, Heleen M; Velthuizen, Mary E; Bernstein, Inge; Capellá Munar, Gabriel; Gomez Garcia, Encarna; Hoogerbrugge, Nicoline; Letteboer, Tom G W; Menko, Fred H; Lindblom, Annika; Mensenkamp, Arjen R; Moller, Pal; van Os, Theo A; Rahner, Nils; Redeker, Bert J W; Sijmons, Rolf H; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J; Wagner, Anja; Hes, Frederik J; Vasen, Hans F; Nielsen, Maartje; Wijnen, Juul T

    2015-02-01

    The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. Data were collected from 98 PMS2 families ascertained from family cancer clinics that included a total of 2,548 family members and 377 proven mutation carriers. To adjust for potential ascertainment bias, a modified segregation analysis model was used to calculate colorectal cancer (CRC) and endometrial cancer (EC) risks. Standardized incidence ratios (SIRs) were calculated to estimate risks for other Lynch syndrome-associated cancers. The cumulative risk (CR) of CRC for male mutation carriers by age 70 years was 19%. The CR among female carriers was 11% for CRC and 12% for EC. The mean age of CRC development was 52 years, and there was a significant difference in mean age of CRC between the probands (mean, 47 years; range, 26 to 68 years) and other family members with a PMS2 mutation (mean, 58 years; range, 31 to 86 years; P PMS2 mutation, and it should be noted that we observed a substantial variation in cancer phenotype within and between families, suggesting the influence of genetic modifiers and lifestyle factors on cancer risks. © 2014 by American Society of Clinical Oncology.

  17. Structural polarity and dynamics of male germline stem cells in the milkweed bug (Oncopeltus fasciatus).

    Science.gov (United States)

    Schmidt, Esther D; Dorn, August

    2004-11-01

    The male germline stem cells (GSCs) of the milkweed bug present an extraordinary structural polarity that is, to our knowledge, unequalled by any other type of stem cells. They consist of a perikaryon and numerous projections arising from the cell pole directed toward the apical cells, the proposed niche of the GSCs. The projections can traverse a considerable distance until their terminals touch the apical cells. From hatching until death, the GSC projections undergo conspicuous changes, the sequence of which has been deduced from observations of all developmental stages. Projection formation starts from lobular cell protrusions showing trabecular ingrowths of the cell membrane. Finger-like projections result from a process of growth and "carving out". The newly formed projections contain mostly only free ribosomes other than a few mitochondria. A stereotyped degradation process commences in the projection terminals: profiles of circular, often concentric, cisternae of rough endoplasmic reticulum appear and turn into myelin bodies, whereas mitochondria become more numerous. The cytoplasm vesiculates, lysosomal bodies appear, and mitochondria become swollen. At the same time, the projection terminals are segregated by transverse ingrowths of the cell membrane. Finally, autophagic vacuoles and myelin bodies fill the segregated terminals, which then rupture. Simultaneously, new projections seem to sprout from the perikaryon of the GSCs. These dynamics, which are not synchronized among the GSCs, indicate that a novel type of signal exchange and transduction between the stem cells and their niche is involved in the regulation of asymmetric versus symmetric division of GSCs.

  18. Germline PRKACA amplification leads to Cushing syndrome caused by 3 adrenocortical pathologic phenotypes.

    Science.gov (United States)

    Carney, J Aidan; Lyssikatos, Charalampos; Lodish, Maya B; Stratakis, Constantine A

    2015-01-01

    We describe the pathology of 5 patients with germline PRKACA copy number gain and Cushing syndrome: 4 males and 1 female, aged 2 to 43 years, including a mother and son. Imaging showed normal or slightly enlarged adrenal glands in 4 patients and a unilateral mass in the fifth. Biochemically, the patients had corticotropin-independent hypercortisolism. Four underwent bilateral adrenalectomy; unilateral adrenalectomy was performed in the patient with the adrenal mass. Pathologically, 3 patients, including the 1 with the tumor (adenoma), had primary pigmented nodular adrenocortical disease with extranodular cortical atrophy and mild intracapsular and extracapsular extension of cortical cells. The other 2 patients had cortical hyperplasia and prominent capsular and extracapsular micronodular cortical hyperplasia. Immunoperoxidase staining revealed differences for synaptophysin, inhibin-A, and Ki-67 (nuclei) in the atrophic cortices (patients 1, 2, and 3) and hyperplastic cortices (patients 4 and 5) and for Ki-67 (nuclei) and vimentin in the extracortical nodules in the 2 groups of patients. β-Catenin stained the cell membrane, cytoplasm, and nuclei of the adenoma. The patients were well at follow-up (1-23 years); 24-hour urinary cortisol excretion was elevated in the patient who had unilateral adrenalectomy. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma.

    Science.gov (United States)

    Coco, Simona; De Mariano, Marilena; Valdora, Francesca; Servidei, Tiziana; Ridola, Vita; Andolfo, Immacolata; Oberthuer, André; Tonini, Gian Paolo; Longo, Luca

    2012-10-01

    The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.

  20. X-ray induced polyploidization in the male germline cells of Poekilocerus pictus (acrididoidea : orthopta)

    International Nuclear Information System (INIS)

    Gururaj, M.E.; Rajasekarasetty, M.R.

    1977-01-01

    After the irradiation of male germline cells of Poekilocerus pictus with 20r, 40r, 80r, 120r doses of X-rays, both first and second meiotic polyploid cells were recovered. While various degrees of polyploidy were encountered in first meiotic cells, second meiotic polyploid cells, second meitoic polyploid cells contained diploid number of half bivalents only. The former never progressed beyond leptotene and showed symptoms of degeneration. Among the latter, a few cells showed either emainingative tendencies like uncoiling and stickiness or failure of cellsted meiosis successfully. It has been shown that the dicentric bridges and/or laggards in anaphase-I interfere with the elongation and regression of the spindle, thereby giving rise to metaphase-II polyploid cells through restitution. The possible role of fragmentation of chromosomes in decreasing the incidence of metaphase-II polyploid cells at higher doses of irradiation and the causes for the differential fate of the first and second meiotic polyploid cells have been discussed. (author)

  1. Germline Mutations and Polymorphisms in the Origins of Cancers in Women

    Directory of Open Access Journals (Sweden)

    Kim M. Hirshfield

    2010-01-01

    Full Text Available Several female malignancies including breast, ovarian, and endometrial cancers can be characterized based on known somatic and germline mutations. Initiation and propagation of tumors reflect underlying genomic alterations such as mutations, polymorphisms, and copy number variations found in genes of multiple cellular pathways. The contributions of any single genetic variation or mutation in a population depend on its frequency and penetrance as well as tissue-specific functionality. Genome wide association studies, fluorescence in situ hybridization, comparative genomic hybridization, and candidate gene studies have enumerated genetic contributors to cancers in women. These include p53, BRCA1, BRCA2, STK11, PTEN, CHEK2, ATM, BRIP1, PALB2, FGFR2, TGFB1, MDM2, MDM4 as well as several other chromosomal loci. Based on the heterogeneity within a specific tumor type, a combination of genomic alterations defines the cancer subtype, biologic behavior, and in some cases, response to therapeutics. Consideration of tumor heterogeneity is therefore important in the critical analysis of gene associations in cancer.

  2. Inherited germline ATRX mutation in two brothers with ATR-X syndrome and osteosarcoma.

    Science.gov (United States)

    Ji, Jianling; Quindipan, Catherine; Parham, David; Shen, Lishuang; Ruble, David; Bootwalla, Moiz; Maglinte, Dennis T; Gai, Xiaowu; Saitta, Sulagna C; Biegel, Jaclyn A; Mascarenhas, Leo

    2017-05-01

    We report a family in which two brothers had an undiagnosed genetic disorder comprised of dysmorphic features, microcephaly, severe intellectual disability (non-verbal), mild anemia, and cryptorchidism. Both developed osteosarcoma. Trio exome sequencing (using blood samples from the younger brother and both parents) was performed and a nonsense NM_000489.4:c.7156C>T (p.Arg2386*) mutation in the ATRX gene was identified in the proband (hemizygous) and in the mother's peripheral blood DNA (heterozygous). The mother is healthy, does not exhibit any clinical manifestations of ATR-X syndrome and there was no family history of cancer. The same hemizygous pathogenic variant was confirmed in the affected older brother's skin tissue by subsequent Sanger sequencing. Chromosomal microarray studies of both brothers' osteosarcomas revealed complex copy number alterations consistent with the clinical diagnosis of osteosarcoma. Recently, somatic mutations in the ATRX gene have been observed as recurrent alterations in both osteosarcoma and brain tumors. However, it is unclear if there is any association between osteosarcoma and germline ATRX mutations, specifically in patients with constitutional ATR-X syndrome. This is the first report of osteosarcoma diagnosed in two males with ATR-X syndrome, suggesting a potential increased risk for cancer in patients with this disorder. © 2017 Wiley Periodicals, Inc.

  3. Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers

    Science.gov (United States)

    Burn, K. Mahala; Shimada, Yuko; Ayers, Kathleen; Lu, Feiyue; Hudson, Andrew M.; Cooley, Lynn

    2014-01-01

    Egg chambers from starved Drosophila females contain large aggregates of processing (P) bodies and cortically enriched microtubules. As this response to starvation is rapidly reversed upon re-feeding females or culturing egg chambers with exogenous bovine insulin, we examined the role of endogenous insulin signaling in mediating the starvation response. We found that systemic Drosophila insulin-like peptides (dILPs) activate the insulin pathway in follicle cells, which then regulate both microtubule and P body organization in the underlying germline cells. This organization is modulated by the motor proteins Dynein and Kinesin. Dynein activity is required for microtubule and P body organization during starvation, while Kinesin activity is required during nutrient-rich conditions. Blocking the ability of egg chambers to form P body aggregates in response to starvation correlated with reduced progeny survival. These data suggest a potential mechanism to maximize fecundity even during periods of poor nutrient availability, by mounting a protective response in immature egg chambers. PMID:25481758

  4. Plasticity of male germline stem cells and their applications in reproductive and regenerative medicine

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2015-06-01

    Full Text Available Spermatogonial stem cells (SSCs, also known as male germline stem cells, are a small subpopulation of type A spermatogonia with the potential of self-renewal to maintain stem cell pool and differentiation into spermatids in mammalian testis. SSCs are previously regarded as the unipotent stem cells since they can only give rise to sperm within the seminiferous tubules. However, this concept has recently been challenged because numerous studies have demonstrated that SSCs cultured with growth factors can acquire pluripotency to become embryonic stem-like cells. The in vivo and in vitro studies from peers and us have clearly revealed that SSCs can directly transdifferentiate into morphologic, phenotypic, and functional cells of other lineages. Direct conversion to the cells of other tissues has important significance for regenerative medicine. SSCs from azoospermia patients could be induced to differentiate into spermatids with fertilization and developmental potentials. As such, SSCs could have significant applications in both reproductive and regenerative medicine due to their unique and great potentials. In this review, we address the important plasticity of SSCs, with focuses on their self-renewal, differentiation, dedifferentiation, transdifferentiation, and translational medicine studies.

  5. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.

    Science.gov (United States)

    Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    Science.gov (United States)

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  7. SMARCB1/INI1 germline mutations contribute to 10% of sporadic schwannomatosis

    Directory of Open Access Journals (Sweden)

    Bourdon Violaine

    2011-01-01

    Full Text Available Abstract Background Schwannomatosis is a disease characterized by multiple non-vestibular schwannomas. Although biallelic NF2 mutations are found in schwannomas, no germ line event is detected in schwannomatosis patients. In contrast, germline mutations of the SMARCB1 (INI1 tumor suppressor gene were described in familial and sporadic schwannomatosis patients. Methods To delineate the SMARCB1 gene contribution, the nine coding exons were sequenced in a series of 56 patients affected with a variable number of non-vestibular schwannomas. Results Nine variants scattered along the sequence of SMARCB1 were identified. Five of them were classified as deleterious. All five patients carrying a SMARCB1 mutation had more multiple schwannomas, corresponding to 10.2% of patients with schwannomatosis. They were also diagnosed before 35 years of age. Conclusions These results suggest that patients with schwannomas have a significant probability of carrying a SMARCB1 mutation. Combined with data available from other studies, they confirm the clinical indications for genetic screening of the SMARCB1 gene.

  8. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination

    DEFF Research Database (Denmark)

    Nazaryan-Petersen, Lusine; Bertelsen, Birgitte; Bak, Mads

    2016-01-01

    Chromothripsis (CTH) is a phenomenon where multiple localized double-stranded DNA breaks result in complex genomic rearrangements. Although the DNA-repair mechanisms involved in CTH have been described, the mechanisms driving the localized "shattering" process remain unclear. High-throughput sequ......Chromothripsis (CTH) is a phenomenon where multiple localized double-stranded DNA breaks result in complex genomic rearrangements. Although the DNA-repair mechanisms involved in CTH have been described, the mechanisms driving the localized "shattering" process remain unclear. High......-throughput sequence analysis of a familial germline CTH revealed an inserted SVAE retrotransposon associated with a 110-kb deletion displaying hallmarks of L1-mediated retrotransposition. Our analysis suggests that the SVAE insertion did not occur prior to or after, but concurrent with the CTH event. We also observed...... L1-endonuclease potential target sites in other breakpoints. In addition, we found four Alu elements flanking the 110-kb deletion and associated with an inversion. We suggest that chromatin looping mediated by homologous Alu elements may have brought distal DNA regions into close proximity...

  9. Sexually Antagonistic Male Signals Manipulate Germline and Soma of C. elegans Hermaphrodites.

    Science.gov (United States)

    Aprison, Erin Z; Ruvinsky, Ilya

    2016-10-24

    Males and females pursue different reproductive strategies, which often bring them into conflict-many traits exist that benefit one sex at a cost to another [1]. Decreased female survival following mating dramatically demonstrates one aspect of this phenomenon [2-5]. Particularly intriguing is the evidence that secreted compounds can shorten lifespan of members of the opposite sex in Drosophila [6] and Caenorhabditid nematodes [7] even without copulation taking place. The purpose of such signals is not clear, however. While it is possible that they could limit subsequent mating with competitors or hasten post-reproductive demise, thus decreasing competition for resources, they are also likely to harm unmated individuals. Why would a system exist that reduces the vigor of potential mates prior to mating? Addressing this question could provide insights into mechanisms and evolution of sexual conflict and reveal sensory inputs that regulate aging. Here, we describe two distinct ways in which Caenorhabditis elegans males cause faster somatic aging of hermaphrodites but also manipulate different aspects of their reproductive physiology. The first, mediated by conserved ascaroside pheromones, delays the loss of germline progenitor cells. The second accelerates development, resulting in faster sexual maturation. These signals promote male reproductive strategy and the effects harmful to hermaphrodites appear to be collateral damage rather than the goal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Aubergine Controls Germline Stem Cell Self-Renewal and Progeny Differentiation via Distinct Mechanisms.

    Science.gov (United States)

    Ma, Xing; Zhu, Xiujuan; Han, Yingying; Story, Benjamin; Do, Trieu; Song, Xiaoqing; Wang, Su; Zhang, Ying; Blanchette, Marco; Gogol, Madelaine; Hall, Kate; Peak, Allison; Anoja, Perera; Xie, Ting

    2017-04-24

    Piwi family protein Aubergine (Aub) maintains genome integrity in late germ cells of the Drosophila ovary through Piwi-associated RNA-mediated repression of transposon activities. Although it is highly expressed in germline stem cells (GSCs) and early progeny, it remains unclear whether it plays any roles in early GSC lineage development. Here we report that Aub promotes GSC self-renewal and GSC progeny differentiation. RNA-iCLIP results show that Aub binds the mRNAs encoding self-renewal and differentiation factors in cultured GSCs. Aub controls GSC self-renewal by preventing DNA-damage-induced Chk2 activation and by translationally controlling the expression of self-renewal factors. It promotes GSC progeny differentiation by translationally controlling the expression of differentiation factors, including Bam. Therefore, this study reveals a function of Aub in GSCs and their progeny, which promotes translation of self-renewal and differentiation factors by directly binding to its target mRNAs and interacting with translational initiation factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Functioning Mediastinal Paraganglioma Associated with a Germline Mutation of von Hippel-Lindau Gene

    Directory of Open Access Journals (Sweden)

    Thibault Bahougne

    2018-05-01

    Full Text Available We report the case of a 21-year old woman presenting with high blood pressure and raised normetanephrine levels. Indium-111-pentetreotide single photon-emission computed tomography with computed tomography (SPECT/CT and 2-deoxy-2-[fluorine-18]fluoro-d-glucose (FDG positron emission tomography/computed tomography (PET/CT imaging showing isolated tracer-uptake by a 2 cm tumor close to the costovertebral angle of the third thoracic vertebra. Thoracic surgery led to normalization of normetanephrine levels. Histological findings were consistent with the presence of a paraganglioma. Mutations in SDHA, SDHB, SDHC, SDHD, RET, SDHAF2, TMEM127, MAX, NF1, FH, MDH2, and EPAS1 were absent, but a heterozygous missense mutation, c.311G > T, was found in exon 1 of the von Hippel-Lindau gene, VHL, resulting in a glycine to valine substitution in the VHL protein at position 104, p.Gly104Val. This same mutation was found in both the mother and the 17-year old sister in whom a small retinal hemangioblastoma was also found. We diagnose an unusual functional mediastinal paraganglioma in this young patient with a germline VHL gene mutation, a mutation previously described as inducing polycythemia and/or pheochromocytoma but not paraganglioma or retinal hemangioblastoma.

  12. Doxycyclin ameliorates a starvation-induced germline tumor in C. elegans daf-18/PTEN mutant background.

    Science.gov (United States)

    Wolf, Tim; Qi, Wenjing; Schindler, Verena; Runkel, Eva Diana; Baumeister, Ralf

    2014-08-01

    Managing available resources is a key necessity of each organism to cope with the environment. The nematode C. elegans responds to nutritional deprivation or harsh environmental conditions with a multitude of developmental adaptations, among them a starvation-induced quiescence at early larval development (L1). daf-18, the C. elegans homolog of the human tumor suppressor gene PTEN, is essential for the maintenance of survival and germline stem cell arrest during the L1 diapause. We show here that daf-18 mutants, independently to their failure to maintain G2 arrest of the primordial germ cells, develop a gonad phenotype after refeeding. This highly penetrant gonadal phenotype is further enhanced by a mutation in shc-1, encoding a protein homologous to the human adaptor ShcA. Features of this phenotype are a tumor-like phenotype encompassing hyper-proliferation of germ cell nuclei and disruption/invasion of the basement membrane surrounding the gonad. The penetrance of this phenotype is reduced by decreasing starvation temperature. In addition, it is also ameliorated in a dose-dependent way by exposure to the antibiotic doxycyclin either during starvation or during subsequent refeeding. Since, in eukaryotic cells, doxycyclin specifically blocks mitochondrial translation, our results suggest that daf-18 and shc-1;daf-18 mutants fail to adapt mitochondrial activity to reduced nutritional availability during early larval developing. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    Science.gov (United States)

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  14. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita.

    Science.gov (United States)

    Ballew, Bari J; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P; Savage, Sharon A

    2013-04-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband's brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.

  15. Preleukemic and second-hit mutational events in an acute myeloid leukemia patient with a novel germline RUNX1 mutation.

    Science.gov (United States)

    Ng, Isaac Ks; Lee, Joanne; Ng, Christopher; Kosmo, Bustamin; Chiu, Lily; Seah, Elaine; Mok, Michelle Meng Huang; Tan, Karen; Osato, Motomi; Chng, Wee-Joo; Yan, Benedict; Tan, Lip Kun

    2018-01-01

    Germline mutations in the RUNX1 transcription factor give rise to a rare autosomal dominant genetic condition classified under the entity: Familial Platelet Disorders with predisposition to Acute Myeloid Leukaemia (FPD/AML). While several studies have identified a myriad of germline RUNX1 mutations implicated in this disorder, second-hit mutational events are necessary for patients with hereditary thrombocytopenia to develop full-blown AML. The molecular picture behind this process remains unclear. We describe a patient of Malay descent with an unreported 7-bp germline RUNX1 frameshift deletion, who developed second-hit mutations that could have brought about the leukaemic transformation from a pre-leukaemic state. These mutations were charted through the course of the treatment and stem cell transplant, showing a clear correlation between her clinical presentation and the mutations present. The patient was a 27-year-old Malay woman who presented with AML on the background of hereditary thrombocytopenia affecting her father and 3 brothers. Initial molecular testing revealed the same novel RUNX1 mutation in all 5 individuals. The patient received standard induction, consolidation chemotherapy, and a haploidentical stem cell transplant from her mother with normal RUNX1 profile. Comprehensive genomic analyses were performed at diagnosis, post-chemotherapy and post-transplant. A total of 8 mutations ( RUNX1 , GATA2 , DNMT3A , BCORL1 , BCOR , 2 PHF6 and CDKN2A ) were identified in the pre-induction sample, of which 5 remained ( RUNX1 , DNMT3A , BCORL1 , BCOR and 1 out of 2 PHF6 ) in the post-treatment sample and none were present post-transplant. In brief, the 3 mutations which were lost along with the leukemic cells at complete morphological remission were most likely acquired leukemic driver mutations that were responsible for the AML transformation from a pre-leukemic germline RUNX1 -mutated state. On the contrary, the 5 mutations that persisted post

  16. Germline MLH1 Mutations Are Frequently Identified in Lynch Syndrome Patients With Colorectal and Endometrial Carcinoma Demonstrating Isolated Loss of PMS2 Immunohistochemical Expression.

    Science.gov (United States)

    Dudley, Beth; Brand, Randall E; Thull, Darcy; Bahary, Nathan; Nikiforova, Marina N; Pai, Reetesh K

    2015-08-01

    Current guidelines on germline mutation testing for patients suspected of having Lynch syndrome are not entirely clear in patients with tumors demonstrating isolated loss of PMS2 immunohistochemical expression. We analyzed the clinical and pathologic features of patients with tumors demonstrating isolated loss of PMS2 expression in an attempt to (1) determine the frequency of germline MLH1 and PMS2 mutations and (2) correlate mismatch-repair protein immunohistochemistry and tumor histology with germline mutation results. A total of 3213 consecutive colorectal carcinomas and 215 consecutive endometrial carcinomas were prospectively analyzed for DNA mismatch-repair protein expression by immunohistochemistry. In total, 32 tumors from 31 patients demonstrated isolated loss of PMS2 immunohistochemical expression, including 16 colorectal carcinomas and 16 endometrial carcinomas. Microsatellite instability (MSI) polymerase chain reaction was performed in 29 tumors from 28 patients with the following results: 28 tumors demonstrated high-level MSI, and 1 tumor demonstrated low-level MSI. Twenty of 31 (65%) patients in the study group had tumors demonstrating histopathology associated with high-level MSI. Seventeen patients underwent germline mutation analysis with the following results: 24% with MLH1 mutations, 35% with PMS2 mutations, 12% with PMS2 variants of undetermined significance, and 29% with no mutations in either MLH1 or PMS2. Three of the 4 patients with MLH1 germline mutations had a mutation that results in decreased stability and quantity of the MLH1 protein that compromises the MLH1-PMS2 protein complex, helping to explain the presence of immunogenic but functionally inactive MLH1 protein within the tumor. The high frequency of MLH1 germline mutations identified in our study has important implications for testing strategies in patients suspected of having Lynch syndrome and indicates that patients with tumors demonstrating isolated loss of PMS2 expression

  17. Comprehensive analysis of BRCA1, BRCA2 and TP53 germline mutation and tumor characterization: a portrait of early-onset breast cancer in Brazil.

    Directory of Open Access Journals (Sweden)

    Dirce Maria Carraro

    Full Text Available Germline mutations in BRCA1, BRCA2 and TP53 genes have been identified as one of the most important disease-causing issues in young breast cancer patients worldwide. The specific defective biological processes that trigger germline mutation-associated and -negative tumors remain unclear. To delineate an initial portrait of Brazilian early-onset breast cancer, we performed an investigation combining both germline and tumor analysis. Germline screening of the BRCA1, BRCA2, CHEK2 (c.1100delC and TP53 genes was performed in 54 unrelated patients <35 y; their tumors were investigated with respect to transcriptional and genomic profiles as well as hormonal receptors and HER2 expression/amplification. Germline mutations were detected in 12 out of 54 patients (22% [7 in BRCA1 (13%, 4 in BRCA2 (7% and one in TP53 (2% gene]. A cancer familial history was present in 31.4% of the unrelated patients, from them 43.7% were carriers for germline mutation (37.5% in BRCA1 and in 6.2% in the BRCA2 genes. Fifty percent of the unrelated patients with hormone receptor-negative tumors carried BRCA1 mutations, percentage increasing to 83% in cases with familial history of cancer. Over-representation of DNA damage-, cellular and cell cycle-related processes was detected in the up-regulated genes of BRCA1/2-associated tumors, whereas cell and embryo development-related processes were over-represented in the up-regulated genes of BRCA1/2-negative tumors, suggesting distinct mechanisms driving the tumorigenesis. An initial portrait of the early-onset breast cancer patients in Brazil was generated pointing out that hormone receptor-negative tumors and positive familial history are two major risk factors for detection of a BRCA1 germline mutation. Additionally, the data revealed molecular factors that potentially trigger the tumor development in young patients.

  18. Frequency of CDH1 germline mutations in gastric carcinoma coming from high- and low-risk areas: metanalysis and systematic review of the literature

    International Nuclear Information System (INIS)

    Corso, Giovanni; Marrelli, Daniele; Pascale, Valeria; Vindigni, Carla; Roviello, Franco

    2012-01-01

    The frequency of E-cadherin germline mutations in countries with different incidence rates for gastric carcinoma has not been well established. The goal of this study was to assess the worldwide frequency of CDH1 germline mutations in gastric cancers coming from low- and high-risk areas. English articles using MEDLINE access (from 1998 to 2011). Search terms included CDH1, E-cadherin, germline mutation, gastric cancer, hereditary, familial and diffuse histotype. The study included all E-cadherin germline mutations identified in gastric cancer patients; somatic mutations and germline mutations reported in other tumors were excluded. The method of this study was scheduled in accordance with the 'PRISMA statement for reporting systematic reviews and meta-analyses'. Countries were classified as low- or middle/high risk-areas for gastric carcinoma incidence. Statistical analysis was performed to correlate the CDH1 mutation frequency with gastric cancer incidence areas. A total of 122 E-cadherin germline mutations have been identified; the majority (87.5%) occurred in gastric cancers coming from low-risk areas. In high-risk areas, we identified 16 mutations in which missense mutations were predominant. (68.8%). We verified a significant association between the mutation frequency and the gastric cancer risk area (p < 0.001: overall identified mutations in low- vs. middle/high-risk areas). E-cadherin genetic screenings performed in low-risk areas for gastric cancer identified a higher frequency of CDH1 germline mutations. This data could open new approaches in the gastric cancer prevention test; before proposing a proband candidate for the CDH1 genetic screening, geographic variability, alongside the family history should be considered

  19. Evidence for a stem cell hierarchy in the adult human breast

    DEFF Research Database (Denmark)

    Villadsen, René; Fridriksdottir, Agla J; Rønnov-Jessen, Lone

    2007-01-01

    Cellular pathways that contribute to adult human mammary gland architecture and lineages have not been previously described. In this study, we identify a candidate stem cell niche in ducts and zones containing progenitor cells in lobules. Putative stem cells residing in ducts were essentially...... in laminin-rich extracellular matrix gels. Staining for the lineage markers keratins K14 and K19 further revealed multipotent cells in the stem cell zone and three lineage-restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites...

  20. Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad.

    Science.gov (United States)

    Carroll, S F; Buckley, C T; Kelly, D J

    2014-06-27

    The objective of this study was to investigate how joint specific biomechanical loading influences the functional development and phenotypic stability of cartilage grafts engineered in vitro using stem/progenitor cells isolated from different source tissues. Porcine bone marrow derived multipotent stromal cells (BMSCs) and infrapatellar fat pad derived multipotent stromal cells (FPSCs) were seeded in agarose hydrogels and cultured in chondrogenic medium, while simultaneously subjected to 10MPa of cyclic hydrostatic pressure (HP). To mimic the endochondral phenotype observed in vivo with cartilaginous tissues engineered using BMSCs, the culture media was additionally supplemented with hypertrophic factors, while the loss of phenotype observed in vivo with FPSCs was induced by withdrawing transforming growth factor (TGF)-β3 from the media. The application of HP was found to enhance the functional development of cartilaginous tissues engineered using both BMSCs and FPSCs. In addition, HP was found to suppress calcification of tissues engineered using BMSCs cultured in chondrogenic conditions and acted to maintain a chondrogenic phenotype in cartilaginous grafts engineered using FPSCs. The results of this study point to the importance of in vivo specific mechanical cues for determining the terminal phenotype of chondrogenically primed multipotent stromal cells. Furthermore, demonstrating that stem or progenitor cells will appropriately differentiate in response to such biophysical cues might also be considered as an additional functional assay for evaluating their therapeutic potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Germline mutations in people descendants occupationally exposed to ionizing radiation from Cesium 137

    International Nuclear Information System (INIS)

    Silva, Juliana Ferreira da

    2016-01-01

    significant differences between exposed and control groups using the Mann-Whitney U test. Thus, our data showed that CNVs are induced by IR exposure in a human population, while the losses were more frequent the gains in the exposed group. In addition, progeny from a population occupationally exposed to IR ∼ 1.15x showed CNV more new than healthy controls. Therefore, with the present study was possible to validate the use of a high resolution method to describe a mutagenic exposure by IR signature, thus legitimized the use of CNVs as a useful biomarker to assess germline mutation military occupationally exposed to RI. In addition to validating the use of this marker, the study also pioneered research germline mutation in humans exposed to RI. (author)

  2. Expanded simple tandem repeat (ESTR) mutation induction in the male germline: Lessons learned from lab mice

    Energy Technology Data Exchange (ETDEWEB)

    Somers, Christopher M. [University of Regina, Department of Biology, 3737 Wascana Parkway, Regina, SK, S4S 0A2 (Canada)]. E-mail: chris.somers@uregina.ca

    2006-06-25

    Expanded simple tandem repeat (ESTR) DNA loci that are unstable in the germline have provided the most sensitive tool ever developed for investigating low-dose heritable mutation induction in laboratory mice. Ionizing radiation exposures have shown that ESTR mutations occur mainly in pre-meiotic spermatogonia and stem cells. The average spermatogonial doubling dose is 0.62-0.69 Gy for low LET, and 0.18-0.34 Gy for high LET radiation. Chemical alkylating agents also cause significant ESTR mutation induction in pre-meiotic spermatogonia and stem cells, but are much less effective per unit dose than radiation. ESTR mutation induction efficiency is maximal at low doses of radiation or chemical mutagens, and may decrease at higher dose ranges. DNA repair deficient mice (SCID and PARP-1) with elevated levels of single and double-strand DNA breaks have spontaneously elevated ESTR mutation frequencies, and surprisingly do not show additional ESTR mutation induction following irradiation. In contrast, ESTR mutation induction in p53 knock-outs is indistinguishable from that of wild-type mice. Studies of sentinel mice exposed in situ to ambient air pollution showed elevated ESTR mutation frequencies in males exposed to high levels of particulate matter. These studies highlight the application of the ESTR assay for assessing environmental hazards under real-world conditions. All ESTR studies to date have shown untargeted mutations that occur at much higher frequencies than predicted. The mechanism of this untargeted mutation induction is unknown, and must be elucidated before we can fully understand the biological significance of ESTR mutations, or use these markers for formal risk assessment. Future studies should focus on the mechanism of ESTR mutation induction, refining dose responses, and developing ESTR markers for other animal species.

  3. Pediatric oncologist willingness to offer germline TP53 testing in osteosarcoma.

    Science.gov (United States)

    Shaul, Eliana; Roth, Michael; Lo, Yungtai; Geller, David S; Hoang, Bang; Yang, Rui; Malkin, David; Gorlick, Richard; Gill, Jonathan

    2018-03-15

    Li-Fraumeni syndrome (LFS) is a cancer predisposition syndrome caused by mutations in the tumor-suppressor gene TP53. Osteosarcoma is a sentinel cancer in LFS. Prior studies using Sanger sequencing platforms have demonstrated that 3% of individuals with osteosarcoma harbor a mutation in TP53. New data from next-generation sequencing have demonstrated that 3.8% of patients with osteosarcoma have a known pathogenic variant, and an additional 5.7% carry exonic variants of unknown significance in TP53. Pediatric oncologists were e-mailed an anonymous 18-question survey assessing their willingness to offer TP53 germline testing to a child with osteosarcoma with or without a family history, and they were evaluated for changes in their choices with the prior data and the new data. One hundred seventy-seven pediatric oncologists (22%) responded to the survey. Respondents were more likely to offer TP53 testing to a patient with a positive family history (77.4% vs 12.4%; P offer TP53 testing once they were provided with the new data (25.4% vs 12.4%; P = .0038). The proportion of providers who responded that they were unsure increased significantly when they were presented with the new data (25.4% vs 10.2%; P = .0002). Potential implications for other family members and the possibility that surveillance imaging would detect new malignancies at an earlier stage were important factors influencing a provider's decision to offer TP53 testing. Recent data increase the proportion of providers willing to offer testing, and this suggests concern on the part of pediatric oncologists that variants of unknown significance may be disease-defining in rare cancers. Cancer 2018;124:1242-50. © 2018 American Cancer Society. © 2018 American Cancer Society.

  4. The clinical phenotype of Lynch syndrome due to germline PMS2 mutations

    Science.gov (United States)

    Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D.; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N.; Lindor, Noralane M.; Young, Joanne; Winship, Ingrid; Dowty, James G.; White, Darren M.; Hopper, John L.; Baglietto, Laura; Jenkins, Mark A.; de la Chapelle, Albert

    2009-01-01

    Background and Aims Although the clinical phenotype of Lynch syndrome (also known as Hereditary Nonpolyposis Colorectal Cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. Methods We performed PMS2 mutation analysis using long range PCR and MLPA for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Results Germline PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2 fold higher and the incidence of endometrial cancer was 7.5 fold higher. In North America, this translates to a cumulative cancer risk to age 70 of 15–20% for colorectal cancer, 15% for endometrial cancer, and 25–32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. Conclusions PMS2 mutations contribute significantly to Lynch syndrome but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed. PMID:18602922

  5. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations.

    Science.gov (United States)

    Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N; Lindor, Noralane M; Young, Joanne; Winship, Ingrid; Dowty, James G; White, Darren M; Hopper, John L; Baglietto, Laura; Jenkins, Mark A; de la Chapelle, Albert

    2008-08-01

    Although the clinical phenotype of Lynch syndrome (also known as hereditary nonpolyposis colorectal cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. We performed PMS2 mutation analysis using long-range polymerase chain reaction and multiplex ligation-dependent probe amplification for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Germ-line PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2-fold higher, and the incidence of endometrial cancer was 7.5-fold higher. In North America, this translates to a cumulative cancer risk to age 70 years of 15%-20% for colorectal cancer, 15% for endometrial cancer, and 25%-32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. PMS2 mutations contribute significantly to Lynch syndrome, but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed.

  6. Risk Profile of the RET A883F Germline Mutation: An International Collaborative Study.

    Science.gov (United States)

    Mathiesen, Jes Sloth; Habra, Mouhammed Amir; Bassett, John Howard Duncan; Choudhury, Sirazum Mubin; Balasubramanian, Sabapathy Prakash; Howlett, Trevor A; Robinson, Bruce G; Gimenez-Roqueplo, Anne-Paule; Castinetti, Frederic; Vestergaard, Peter; Frank-Raue, Karin

    2017-06-01

    The A883F germline mutation of the rearranged during transfection (RET) proto-oncogene causes multiple endocrine neoplasia 2B. In the revised American Thyroid Association (ATA) guidelines for the management of medullary thyroid carcinoma (MTC), the A883F mutation has been reclassified from the highest to the high-risk level, although no well-defined risk profile for this mutation exists. To create a risk profile for the A883F mutation for appropriate classification among the ATA risk levels. Retrospective analysis. International collaboration. Included were 13 A883F carriers. The intervention was thyroidectomy. Earliest age of MTC, regional lymph node metastases, distant metastases, age-related penetrance of MTC and pheochromocytoma (PHEO), overall and disease-specific survival, and biochemical cure rate. One and three carriers were diagnosed at age 7 to 9 years (median, 7.5 years) with a normal thyroid and C-cell hyperplasia, respectively. Nine carriers were diagnosed with MTC at age 10 to 39 years (median, 19 years). The earliest age of MTC, regional lymph node metastasis, and distant metastasis was 10, 20, and 20 years, respectively. Fifty percent penetrance of MTC and PHEO was achieved by age 19 and 34 years, respectively. Five- and 10-year survival rates (both overall and disease specific) were 88% and 88%, respectively. Biochemical cure for MTC at latest follow-up was achieved in 63% (five of eight carriers) with pertinent data. MTC of A883F carriers seems to have a more indolent natural course compared with that of M918T carriers. Our results support the classification of the A883F mutation in the ATA high-risk level. Copyright © 2017 Endocrine Society

  7. Enrichment of Female Germline Stem Cells from Mouse Ovaries Using the Differential Adhesion Method

    Directory of Open Access Journals (Sweden)

    Meng Wu

    2018-04-01

    Full Text Available Background/Aims: The isolation and establishment of female germline stem cells (FGSCs is controversial because of questions regarding the reliability and stability of the isolation method using antibody targeting mouse vasa homologue (MVH, and the molecular mechanism of FGSCs self-renewal remains unclear. Thus, there needs to be a simple and reliable method for sorting FGSCs to study them. Methods: We applied the differential adhesion method to enrich FGSCs (DA-FGSCs from mouse ovaries. Through four rounds of purification and 7-9 subsequent passages, DA-FGSC lines were established. In addition, we assessed the role of the phosphoinositide-3 kinase (PI3K-AKT pathway in regulating FGSC self-renewal. Results: The obtained DA-FGSCs spontaneously differentiated into oocyte-like cells in vitro and formed functional eggs in vivo that were fertilized and produced healthy offspring. AKT was rapidly phosphorylated when the proliferation rate of FGSCs increased after 10 passages, and the addition of a chemical PI3K inhibitor prevented FGSCs self-renewal. Furthermore, over-expression of AKT-induced proliferation and differentiation of FGSCs, c-Myc, Oct-4 and Gdf-9 levels were increased. Conclusions: The differential adhesion method provides a more feasible approach and is an easier procedure to establish FGSC lines than traditional methods. The AKT pathway plays an important role in regulation of the proliferation and maintenance of FGSCs. These findings could help promote stem cell studies and provide a better understanding of causes of ovarian infertility, thereby providing potential treatments for infertility.

  8. Enrichment of Female Germline Stem Cells from Mouse Ovaries Using the Differential Adhesion Method.

    Science.gov (United States)

    Wu, Meng; Xiong, Jiaqiang; Ma, Lingwei; Lu, Zhiyong; Qin, Xian; Luo, Aiyue; Zhang, Jinjin; Xie, Huan; Shen, Wei; Wang, Shixuan

    2018-04-28

    The isolation and establishment of female germline stem cells (FGSCs) is controversial because of questions regarding the reliability and stability of the isolation method using antibody targeting mouse vasa homologue (MVH), and the molecular mechanism of FGSCs self-renewal remains unclear. Thus, there needs to be a simple and reliable method for sorting FGSCs to study them. We applied the differential adhesion method to enrich FGSCs (DA-FGSCs) from mouse ovaries. Through four rounds of purification and 7-9 subsequent passages, DA-FGSC lines were established. In addition, we assessed the role of the phosphoinositide-3 kinase (PI3K)-AKT pathway in regulating FGSC self-renewal. The obtained DA-FGSCs spontaneously differentiated into oocyte-like cells in vitro and formed functional eggs in vivo that were fertilized and produced healthy offspring. AKT was rapidly phosphorylated when the proliferation rate of FGSCs increased after 10 passages, and the addition of a chemical PI3K inhibitor prevented FGSCs self-renewal. Furthermore, over-expression of AKT-induced proliferation and differentiation of FGSCs, c-Myc, Oct-4 and Gdf-9 levels were increased. The differential adhesion method provides a more feasible approach and is an easier procedure to establish FGSC lines than traditional methods. The AKT pathway plays an important role in regulation of the proliferation and maintenance of FGSCs. These findings could help promote stem cell studies and provide a better understanding of causes of ovarian infertility, thereby providing potential treatments for infertility. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia

    Science.gov (United States)

    Ellinghaus, E; Stanulla, M; Richter, G; Ellinghaus, D; te Kronnie, G; Cario, G; Cazzaniga, G; Horstmann, M; Panzer Grümayer, R; Cavé, H; Trka, J; Cinek, O; Teigler-Schlegel, A; ElSharawy, A; Häsler, R; Nebel, A; Meissner, B; Bartram, T; Lescai, F; Franceschi, C; Giordan, M; Nürnberg, P; Heinzow, B; Zimmermann, M; Schreiber, S; Schrappe, M; Franke, A

    2012-01-01

    Acute lymphoblastic leukemia (ALL) is a malignant disease of the white blood cells. The etiology of ALL is believed to be multifactorial and likely to involve an interplay of environmental and genetic variables. We performed a genome-wide association study of 355 750 single-nucleotide polymorphisms (SNPs) in 474 controls and 419 childhood ALL cases characterized by a t(12;21)(p13;q22) — the most common chromosomal translocation observed in childhood ALL — which leads to an ETV6–RUNX1 gene fusion. The eight most strongly associated SNPs were followed-up in 951 ETV6-RUNX1-positive cases and 3061 controls from Germany/Austria and Italy, respectively. We identified a novel, genome-wide significant risk locus at 3q28 (TP63, rs17505102, PCMH=8.94 × 10−9, OR=0.65). The separate analysis of the combined German/Austrian sample only, revealed additional genome-wide significant associations at 11q11 (OR8U8, rs1945213, P=9.14 × 10−11, OR=0.69) and 8p21.3 (near INTS10, rs920590, P=6.12 × 10−9, OR=1.36). These associations and another association at 11p11.2 (PTPRJ, rs3942852, P=4.95 × 10−7, OR=0.72) remained significant in the German/Austrian replication panel after correction for multiple testing. Our findings demonstrate that germline genetic variation can specifically contribute to the risk of ETV6–RUNX1-positive childhood ALL. The identification of TP63 and PTPRJ as susceptibility genes emphasize the role of the TP53 gene family and the importance of proteins regulating cellular processes in connection with tumorigenesis. PMID:22076464

  10. Expanded simple tandem repeat (ESTR) mutation induction in the male germline: Lessons learned from lab mice

    International Nuclear Information System (INIS)

    Somers, Christopher M.

    2006-01-01

    Expanded simple tandem repeat (ESTR) DNA loci that are unstable in the germline have provided the most sensitive tool ever developed for investigating low-dose heritable mutation induction in laboratory mice. Ionizing radiation exposures have shown that ESTR mutations occur mainly in pre-meiotic spermatogonia and stem cells. The average spermatogonial doubling dose is 0.62-0.69 Gy for low LET, and 0.18-0.34 Gy for high LET radiation. Chemical alkylating agents also cause significant ESTR mutation induction in pre-meiotic spermatogonia and stem cells, but are much less effective per unit dose than radiation. ESTR mutation induction efficiency is maximal at low doses of radiation or chemical mutagens, and may decrease at higher dose ranges. DNA repair deficient mice (SCID and PARP-1) with elevated levels of single and double-strand DNA breaks have spontaneously elevated ESTR mutation frequencies, and surprisingly do not show additional ESTR mutation induction following irradiation. In contrast, ESTR mutation induction in p53 knock-outs is indistinguishable from that of wild-type mice. Studies of sentinel mice exposed in situ to ambient air pollution showed elevated ESTR mutation frequencies in males exposed to high levels of particulate matter. These studies highlight the application of the ESTR assay for assessing environmental hazards under real-world conditions. All ESTR studies to date have shown untargeted mutations that occur at much higher frequencies than predicted. The mechanism of this untargeted mutation induction is unknown, and must be elucidated before we can fully understand the biological significance of ESTR mutations, or use these markers for formal risk assessment. Future studies should focus on the mechanism of ESTR mutation induction, refining dose responses, and developing ESTR markers for other animal species

  11. Germline Mutations in Mtap Cooperate with Myc to Accelerate Tumorigenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Yuwaraj Kadariya

    Full Text Available The gene encoding the methionine salvage pathway methylthioadenosine phosphorylase (MTAP is a tumor suppressor gene that is frequently inactivated in a wide variety of human cancers. In this study, we have examined if heterozygosity for a null mutation in Mtap (Mtap(lacZ could accelerate tumorigenesis development in two different mouse cancer models, Eμ-myc transgenic and Pten(+/- .Mtap Eμ-myc and Mtap Pten mice were generated and tumor-free survival was monitored over time. Tumors were also examined for a variety of histological and protein markers. In addition, microarray analysis was performed on the livers of Mtap(lacZ/+ and Mtap (+/+ mice.Survival in both models was significantly decreased in Mtap(lacZ/+ compared to Mtap(+/+ mice. In Eµ-myc mice, Mtap mutations accelerated the formation of lymphomas from cells in the early pre-B stage, and these tumors tended to be of higher grade and have higher expression levels of ornithine decarboxylase compared to those observed in control Eµ-myc Mtap(+/+ mice. Surprisingly, examination of Mtap status in lymphomas in Eµ-myc Mtap(lacZ/+ and Eµ-myc Mtap(+/+ animals did not reveal significant differences in the frequency of loss of Mtap protein expression, despite having shorter latency times, suggesting that haploinsufficiency of Mtap may be playing a direct role in accelerating tumorigenesis. Consistent with this idea, microarray analysis on liver tissue from age and sex matched Mtap(+/+ and Mtap(lacZ/+ animals found 363 transcripts whose expression changed at least 1.5-fold (P<0.01. Functional categorization of these genes reveals enrichments in several pathways involved in growth control and cancer.Our findings show that germline inactivation of a single Mtap allele alters gene expression and enhances lymphomagenesis in Eµ-myc mice.

  12. Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials.

    Science.gov (United States)

    Hoss, Mareike; Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R; Zenke, Martin; Neuss, Sabine

    2013-05-01

    Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer(®) LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level.

  13. Germline mutations in MAP3K6 are associated with familial gastric cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Gaston

    2014-10-01

    Full Text Available Gastric cancer is among the leading causes of cancer-related deaths worldwide. While heritable forms of gastric cancer are relatively rare, identifying the genes responsible for such cases can inform diagnosis and treatment for both hereditary and sporadic cases of gastric cancer. Mutations in the E-cadherin gene, CDH1, account for 40% of the most common form of familial gastric cancer (FGC, hereditary diffuse gastric cancer (HDGC. The genes responsible for the remaining forms of FGC are currently unknown. Here we examined a large family from Maritime Canada with FGC without CDH1 mutations, and identified a germline coding variant (p.P946L in mitogen-activated protein kinase kinase kinase 6 (MAP3K6. Based on conservation, predicted pathogenicity and a known role of the gene in cancer predisposition, MAP3K6 was considered a strong candidate and was investigated further. Screening of an additional 115 unrelated individuals with non-CDH1 FGC identified the p.P946L MAP3K6 variant, as well as four additional coding variants in MAP3K6 (p.F849Sfs*142, p.P958T, p.D200Y and p.V207G. A somatic second-hit variant (p.H506Y was present in DNA obtained from one of the tumor specimens, and evidence of DNA hypermethylation within the MAP3K6 gene was observed in DNA from the tumor of another affected individual. These findings, together with previous evidence from mouse models that MAP3K6 acts as a tumor suppressor, and studies showing the presence of somatic mutations in MAP3K6 in non-hereditary gastric cancers and gastric cancer cell lines, point towards MAP3K6 variants as a predisposing factor for FGC.

  14. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: phenotypic and molecular characterization.

    Science.gov (United States)

    Li, Dong; Opas, Evan E; Tuluc, Florin; Metzger, Daniel L; Hou, Cuiping; Hakonarson, Hakon; Levine, Michael A

    2014-09-01

    Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH. Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism. Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members. We collected clinical and biochemical data from 6 of 11 affected subjects and performed whole-exome sequence analysis on DNA from two affected sisters and their affected father. Functional studies were performed after expression of wild-type and mutant Gα11 proteins in human embryonic kidney-293-CaR cells that stably express calcium-sensing receptors. Whole-exome-sequencing followed by Sanger sequencing revealed a heterozygous mutation, c.179G>T; p.R60L, in GNA11, which encodes the α-subunit of G11, the principal heterotrimeric G protein that couples calcium-sensing receptors to signal activation in parathyroid cells. Functional studies of Gα11 R60L showed increased accumulation of intracellular concentration of free calcium in response to extracellular concentration of free calcium with a significantly decreased EC50 compared with wild-type Gα11. By contrast, R60L was significantly less effective than the oncogenic Q209L form of Gα11 as an activator of the MAPK pathway. Compared to subjects with CASR mutations, patients with GNA11 mutations lacked hypercalciuria and had normal serum magnesium levels. Our findings indicate that the germline gain-of-function mutation of GNA11 is a cause of ADH and implicate a novel role for GNA11 in skeletal growth.

  15. C. elegans nucleostemin is required for larval growth and germline stem cell division.

    Directory of Open Access Journals (Sweden)

    Michelle M Kudron

    2008-08-01

    Full Text Available The nucleolus has shown to be integral for many processes related to cell growth and proliferation. Stem cells in particular are likely to depend upon nucleolus-based processes to remain in a proliferative state. A highly conserved nucleolar factor named nucleostemin is proposed to be a critical link between nucleolar function and stem-cell-specific processes. Currently, it is unclear whether nucleostemin modulates proliferation by affecting ribosome biogenesis or by another nucleolus-based activity that is specific to stem cells and/or highly proliferating cells. Here, we investigate nucleostemin (nst-1 in the nematode C. elegans, which enables us to examine nst-1 function during both proliferation and differentiation in vivo. Like mammalian nucleostemin, the NST-1 protein is localized to the nucleolus and the nucleoplasm; however, its expression is found in both differentiated and proliferating cells. Global loss of C. elegans nucleostemin (nst-1 leads to a larval arrest phenotype due to a growth defect in the soma, while loss of nst-1 specifically in the germ line causes germline stem cells to undergo a cell cycle arrest. nst-1 mutants exhibit reduced levels of rRNAs, suggesting defects in ribosome biogenesis. However, NST-1 is generally not present in regions of the nucleolus where rRNA transcription and processing occurs, so this reduction is likely secondary to a different defect in ribosome biogenesis. Transgenic studies indicate that NST-1 requires its N-terminal domain for stable expression and both its G1 GTPase and intermediate domains for proper germ line function. Our data support a role for C. elegans nucleostemin in cell growth and proliferation by promoting ribosome biogenesis.

  16. Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism.

    Science.gov (United States)

    Frazier, T W; Embacher, R; Tilot, A K; Koenig, K; Mester, J; Eng, C

    2015-09-01

    PTEN is a tumor suppressor associated with an inherited cancer syndrome and an important regulator of ongoing neural connectivity and plasticity. The present study examined molecular and phenotypic characteristics of individuals with germline heterozygous PTEN mutations and autism spectrum disorder (ASD) (PTEN-ASD), with the aim of identifying pathophysiologic markers that specifically associate with PTEN-ASD and that may serve as targets for future treatment trials. PTEN-ASD patients (n=17) were compared with idiopathic (non-PTEN) ASD patients with (macro-ASD, n=16) and without macrocephaly (normo-ASD, n=38) and healthy controls (n=14). Group differences were evaluated for PTEN pathway protein expression levels, global and regional structural brain volumes and cortical thickness measures, neurocognition and adaptive behavior. RNA expression patterns and brain characteristics of a murine model of Pten mislocalization were used to further evaluate abnormalities observed in human PTEN-ASD patients. PTEN-ASD had a high proportion of missense mutations and showed reduced PTEN protein levels. Compared with the other groups, prominent white-matter and cognitive abnormalities were specifically associated with PTEN-ASD patients, with strong reductions in processing speed and working memory. White-matter abnormalities mediated the relationship between PTEN protein reductions and reduced cognitive ability. The Pten(m3m4) murine model had differential expression of genes related to myelination and increased corpus callosum. Processing speed and working memory deficits and white-matter abnormalities may serve as useful features that signal clinicians that PTEN is etiologic and prompting referral to genetic professionals for gene testing, genetic counseling and cancer risk management; and could reveal treatment targets in trials of treatments for PTEN-ASD.

  17. Germline stem cell gene PIWIL2 mediates DNA repair through relaxation of chromatin.

    Directory of Open Access Journals (Sweden)

    De-Tao Yin

    Full Text Available DNA damage response (DDR is an intrinsic barrier of cell to tumorigenesis initiated by genotoxic agents. However, the mechanisms underlying the DDR are not completely understood despite of extensive investigation. Recently, we have reported that ectopic expression of germline stem cell gene PIWIL2 is associated with tumor stem cell development, although the underlying mechanisms are largely unknown. Here we show that PIWIL2 is required for the repair of DNA-damage induced by various types of genotoxic agents. Upon ultraviolet (UV irradiation, silenced PIWIL2 gene in normal human fibroblasts was transiently activated after treatment with UV light. This activation was associated with DNA repair, because Piwil2-deficienct mouse embryonic fibroblasts (mili(-/- MEFs were defective in cyclobutane pyrimidine dimers (CPD repair after UV treatment. As a result, the UV-treated mili(-/- MEFs were more susceptible to apoptosis, as characterized by increased levels of DNA damage-associated apoptotic proteins, such as active caspase-3, cleaved Poly (ADP-ribose polymerase (PARP and Bik. The impaired DNA repair in the mili(-/- MEFs was associated with the reductions of histone H3 acetylation and chromatin relaxation, although the DDR pathway downstream chromatin relaxation appeared not to be directly affected by Piwil2. Moreover, guanine-guanine (Pt-[GG] and double strand break (DSB repair were also defective in the mili(-/- MEFs treated by genotoxic chemicals Cisplatin and ionizing radiation (IR, respectively. The results indicate that Piwil2 can mediate DNA repair through an axis of Piwil2 → histone acetylation → chromatin relaxation upstream DDR pathways. The findings reveal a new role for Piwil2 in DNA repair and suggest that Piwil2 may act as a gatekeeper against DNA damage-mediated tumorigenesis.

  18. Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Jordan Eboreime

    Full Text Available We used targeted next generation deep-sequencing (Safe Sequencing System to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11 were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10-8 suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments.

  19. Association of the germline TP53 R337H mutation with breast cancer in southern Brazil

    Directory of Open Access Journals (Sweden)

    Srivastava Kumar

    2008-12-01

    Full Text Available Abstract Background The germline TP53-R337H mutation is strongly associated with pediatric adrenocortical tumors (ACT in southern Brazil; it has low penetrance and limited tissue specificity in most families and therefore is not associated with Li-Fraumeni syndrome. However, other tumor types, mainly breast cancer, have been observed in carriers of several unrelated kindreds, raising the possibility that the R337H mutation may also contribute to breast tumorigenesis in a genetic background-specific context. Methods We conducted a case-control study to determine the prevalence of the R337H mutation by sequencing TP53 exon 10 in 123 women with breast cancer and 223 age- and sex-matched control subjects from southern Brazil. Fisher's test was used to compare the prevalence of the R337H. Results The R337H mutation was found in three patients but in none of the controls (p = 0.0442. Among the carriers, two had familial history of cancer meeting the Li-Fraumeni-like criteria. Remarkably, tumors in each of these three cases underwent loss of heterozygosity by eliminating the mutant TP53 allele rather than the wild-type allele. Polymorphisms were identified within the TP53 (R72P and Ins16 and MDM2 (SNP309 genes that may further diminish TP53 tumor suppressor activity. Conclusion These results demonstrate that the R337H mutation can significantly increase the risk of breast cancer in carriers, which likely depends on additional cooperating genetic factors. These findings are also important for understanding how low-penetrant mutant TP53 alleles can differentially influence tumor susceptibility.

  20. Association of the germline TP53 R337H mutation with breast cancer in southern Brazil

    International Nuclear Information System (INIS)

    Assumpção, Juliana G; Zeferino, Luiz Carlos; Dufloth, Rozany M; Brandalise, Silvia Regina; Yunes, José Andres; Seidinger, Ana Luíza; Mastellaro, Maria José; Ribeiro, Raul C; Zambetti, Gerard P; Ganti, Ramapriya; Srivastava, Kumar; Shurtleff, Sheila; Pei, Deqing

    2008-01-01

    The germline TP53-R337H mutation is strongly associated with pediatric adrenocortical tumors (ACT) in southern Brazil; it has low penetrance and limited tissue specificity in most families and therefore is not associated with Li-Fraumeni syndrome. However, other tumor types, mainly breast cancer, have been observed in carriers of several unrelated kindreds, raising the possibility that the R337H mutation may also contribute to breast tumorigenesis in a genetic background-specific context. We conducted a case-control study to determine the prevalence of the R337H mutation by sequencing TP53 exon 10 in 123 women with breast cancer and 223 age- and sex-matched control subjects from southern Brazil. Fisher's test was used to compare the prevalence of the R337H. The R337H mutation was found in three patients but in none of the controls (p = 0.0442). Among the carriers, two had familial history of cancer meeting the Li-Fraumeni-like criteria. Remarkably, tumors in each of these three cases underwent loss of heterozygosity by eliminating the mutant TP53 allele rather than the wild-type allele. Polymorphisms were identified within the TP53 (R72P and Ins16) and MDM2 (SNP309) genes that may further diminish TP53 tumor suppressor activity. These results demonstrate that the R337H mutation can significantly increase the risk of breast cancer in carriers, which likely depends on additional cooperating genetic factors. These findings are also important for understanding how low-penetrant mutant TP53 alleles can differentially influence tumor susceptibility

  1. Potential Biomedical Application of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges—Biocompatible Scaffolds Inducing Chondrogenic Differentiation of Human Adipose Derived Multipotent Stromal Cells

    Directory of Open Access Journals (Sweden)

    Anna Zimoch-Korzycka

    2016-08-01

    Full Text Available Current regenerative strategies used for cartilage repair rely on biomaterial functionality as a scaffold for cells that may have potential in chondrogenic differentiation. The purpose of the research was to investigate the biocompatibility of enzymatically treated alginate/chitosan hydrosol sponges and their suitability to support chondrogenic differentiation of human adipose derived multipotent stromal cells (hASCs. The alginate/chitosan and enzyme/alginate/chitosan sponges were formed from hydrosols with various proportions and were used as a biomaterial in this study. Sponges were tested for porosity and wettability. The porosity of each sponge was higher than 80%. An equal dose of alginate and chitosan in the composition of sponges improved their swelling ability. It was found that equal concentrations of alginate and chitosan in hydrosols sponges assure high biocompatibility properties that may be further improved by enzymatic treatment. Importantly, the high biocompatibility of these biomaterials turned out to be crucial in the context of hydrosols’ pro-chondrogenic function. After exposure to the chondrogenic conditions, the hASCs in N/A/C and L/A/C sponges formed well developed nodules and revealed increased expression of collagen type II, aggrecan and decreased expression of collagen type I. Moreover, in these cultures, the reactive oxygen species level was lowered while superoxide dismutase activity increased. Based on the obtained results, we conclude that N/A/C and L/A/C sponges may have prospective application as hASCs carriers for cartilage repair.

  2. Enhancement of distribution of dermal multipotent stem cells to bone marrow in rats of total body irradiation by platelet-derived growth factor-AA treatment

    International Nuclear Information System (INIS)

    Zong Zhaowen; Ren Yongchuan; Shen Yue; Chen Yonghua; Ran Xinze; Shi Chunmeng; Cheng Tianmin

    2011-01-01

    Objective: To observe whether dermal multipotent stem cells (dMSCs) treated with platelet-derived growth factor-AA (PDGF-AA) could distribute more frequently to the bone marrow in rats of total body irradiation (TBI). Methods: Male dMSCs were isolated and 10 μg/L PDGF-AA was added to the culture medium and further cultured for 2 h. Then the expression of tenascin-C were examined by Western blot, and the migration ability of dMSCs was assessed in transwell chamber. The pre-treated dMSCs were transplanted by tail vein injection into female rats administered with total body irradiation, and 2 weeks after transplantation, real-time PCR was employed to measure the amount of dMSCs in bone marrow. Non-treated dMSCs served as control.Results PDGF-AA treatment increased the expression of tenascin-C in dMSCs, made (1.79 ± 0.13) × 10 5 cells migrate to the lower chamber under the effect of bone marrow extract, and distributed to bone marrow in TBI rats, significantly more than (1.24 ± 0.09) ×10 5 in non-treated dMSCs (t=8.833, P<0.01). Conclusions: PDGF-AA treatment could enhance the migration ability of dMSCs and increase the amount of dMSCs in bone marrow of TBI rats after transplantation. (authors)

  3. EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs.

    Science.gov (United States)

    Ebert, Allison D; Shelley, Brandon C; Hurley, Amanda M; Onorati, Marco; Castiglioni, Valentina; Patitucci, Teresa N; Svendsen, Soshana P; Mattis, Virginia B; McGivern, Jered V; Schwab, Andrew J; Sareen, Dhruv; Kim, Ho Won; Cattaneo, Elena; Svendsen, Clive N

    2013-05-01

    We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be expanded for long periods using a chopping method that maintained cell-cell contact. Early passage EZ spheres rapidly down-regulated OCT4 and up-regulated SOX2 and nestin expression. They retained the potential to form neural rosettes and consistently differentiated into a range of central and peripheral neural lineages. Thus, they represent a very early neural stem cell with greater differentiation flexibility than other previously described methods. As such, they will be useful for the rapidly expanding field of neurological development and disease modeling, high-content screening, and regenerative therapies based on pluripotent stem cell technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Directory of Open Access Journals (Sweden)

    T.I. Wodewotzky

    2012-12-01

    Full Text Available Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  5. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells has a neutral effect on obesity-induced diabetic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Sebastián D Calligaris

    2013-01-01

    Full Text Available Obesity is a major global health issue. Obese patients develop metabolic syndrome, which is a cluster of clinical features characterized by insulin resistance and dyslipidemia. Its cardiac manifestation, diabetic cardiomyopathy, leads to heart failure. Bone marrow-derived multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSC are envisioned as a therapeutic tool not only for cardiovascular diseases but also for other degenerative conditions. Our aim was to evaluate whether the intravenous administration of MSC modifies cardiac dysfunction in obese mice. To this end, C57BL/6 mice were fed a regular (normal or high-fat diet (obese. Obese animals received the vehicle (obese, a single dose (obese + 1x MSC or three doses (obese + 3x MSC of 0.5x10(6 syngeneic MSC. Two to three months following MSC administration, cardiac function was assessed by cardiac catheterization, at basal condition and after a pharmacological stress. Compared to normal mice, obese mice presented hyperglycemia, hyperinsulinemia, hypercholesterolemia and cardiac dysfunction after stress condition. Exogenous MSC neither improved nor impaired this cardiac dysfunction. Thus, intravenous administration of MSC has neutral effect on obesity-induced diabetic cardiomyopathy

  6. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    International Nuclear Information System (INIS)

    Wodewotzky, T.I.; Lima-Neto, J.F.; Pereira-Júnior, O.C.M.; Sudano, M.J.; Lima, S.A.F.; Bersano, P.R.O.; Yoshioka, S.A.; Landim-Alvarenga, F.C.

    2012-01-01

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium

  7. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wodewotzky, T.I.; Lima-Neto, J.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Pereira-Júnior, O.C.M. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Departamento de Cirurgia e Anestesiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Sudano, M.J.; Lima, S.A.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Bersano, P.R.O. [Departamento de Patologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Yoshioka, S.A. [Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil); Landim-Alvarenga, F.C. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil)

    2012-09-21

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  8. Transcriptome-wide comparison of the impact of Atoh1 and miR-183 family on pluripotent stem cells and multipotent otic progenitor cells.

    Directory of Open Access Journals (Sweden)

    Michael Ebeid

    Full Text Available Over 5% of the global population suffers from disabling hearing loss caused by multiple factors including aging, noise exposure, genetic predisposition, or use of ototoxic drugs. Sensorineural hearing loss is often caused by the loss of sensory hair cells (HCs of the inner ear. A barrier to hearing restoration after HC loss is the limited ability of mammalian auditory HCs to spontaneously regenerate. Understanding the molecular mechanisms orchestrating HC development is expected to facilitate cell replacement therapies. Multiple events are known to be essential for proper HC development including the expression of Atoh1 transcription factor and the miR-183 family. We have developed a series of vectors expressing the miR-183 family and/or Atoh1 that was used to transfect two different developmental cell models: pluripotent mouse embryonic stem cells (mESCs and immortalized multipotent otic progenitor (iMOP cells representing an advanced developmental stage. Transcriptome profiling of transfected cells show that the impact of Atoh1 is contextually dependent with more HC-specific effects on iMOP cells. miR-183 family expression in combination with Atoh1 not only appears to fine tune gene expression in favor of HC fate, but is also required for the expression of some HC-specific genes. Overall, the work provides novel insight into the combined role of Atoh1 and the miR-183 family during HC development that may ultimately inform strategies to promote HC regeneration or maintenance.

  9. Transcriptome-wide comparison of the impact of Atoh1 and miR-183 family on pluripotent stem cells and multipotent otic progenitor cells.

    Science.gov (United States)

    Ebeid, Michael; Sripal, Prashanth; Pecka, Jason; Beisel, Kirk W; Kwan, Kelvin; Soukup, Garrett A

    2017-01-01

    Over 5% of the global population suffers from disabling hearing loss caused by multiple factors including aging, noise exposure, genetic predisposition, or use of ototoxic drugs. Sensorineural hearing loss is often caused by the loss of sensory hair cells (HCs) of the inner ear. A barrier to hearing restoration after HC loss is the limited ability of mammalian auditory HCs to spontaneously regenerate. Understanding the molecular mechanisms orchestrating HC development is expected to facilitate cell replacement therapies. Multiple events are known to be essential for proper HC development including the expression of Atoh1 transcription factor and the miR-183 family. We have developed a series of vectors expressing the miR-183 family and/or Atoh1 that was used to transfect two different developmental cell models: pluripotent mouse embryonic stem cells (mESCs) and immortalized multipotent otic progenitor (iMOP) cells representing an advanced developmental stage. Transcriptome profiling of transfected cells show that the impact of Atoh1 is contextually dependent with more HC-specific effects on iMOP cells. miR-183 family expression in combination with Atoh1 not only appears to fine tune gene expression in favor of HC fate, but is also required for the expression of some HC-specific genes. Overall, the work provides novel insight into the combined role of Atoh1 and the miR-183 family during HC development that may ultimately inform strategies to promote HC regeneration or maintenance.

  10. Haploidentical hematopoietic stem cell transplant with umbilical cord-derived multipotent mesenchymal cell infusion for the treatment of high-risk acute leukemia in children.

    Science.gov (United States)

    Zhu, Ling; Wang, Zhidong; Zheng, Xiaoli; Ding, Li; Han, Dongmei; Yan, Hongmin; Guo, Zikuan; Wang, Hengxiang

    2015-05-01

    In this study, 25 children with high-risk acute leukemia received haploidentical hematopoietic stem cell transplant (haplo-HSCT) with co-transfusion of umbilical cord multipotent mesenchymal cells (UC-MSCs). Adverse effects, hematopoietic recovery, complications and outcome were observed during a median follow-up of 12.8 months (range: 3-25 months). Myeloid engraftment was rapid, and the median time to neutrophil and platelet recovery was 15.12 days and 20.08 days, respectively. Eight patients developed grade I skin acute graft-versus-host disease (aGVHD) that responded well to standard steroid therapy. Of note, cytomegalovirus viremia was observed in most patients (23/25 cases). Patients died mainly of leukemia relapse and pulmonary complication. Fourteen patients are currently alive and remain with full donor chimerism at the time of reporting. The present results suggest further clinical trials to testify the effectiveness of UC-MSCs to prevent aGVHD in haplo-HSCT for treating children with high-risk leukemia.

  11. The effect of the bioactive sphingolipids S1P and C1P on multipotent stromal cells--new opportunities in regenerative medicine.

    Science.gov (United States)

    Marycz, Krzysztof; Śmieszek, Agnieszka; Jeleń, Marta; Chrząstek, Klaudia; Grzesiak, Jakub; Meissner, Justyna

    2015-09-01

    Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) belong to a family of bioactive sphingolipids that act as important extracellular signaling molecules and chemoattractants. This study investigated the influence of S1P and C1P on the morphology, proliferation activity and osteogenic properties of rat multipotent stromal cells derived from bone marrow (BMSCs) and subcutaneous adipose tissue (ASCs). We show that S1P and C1P can influence mesenchymal stem cells (MSCs), each in a different manner. S1P stimulation promoted the formation of cellular aggregates of BMSCs and ASCs, while C1P had an effect on the regular growth pattern and expanded intercellular connections, thereby increasing the proliferative activity. Although osteogenic differentiation of MSCs was enhanced by the addition of S1P, the effectiveness of osteoblast differentiation was more evident in BMSCs, particularly when biochemical and molecular marker levels were considered. The results of the functional osteogenic differentiation assay, which includes an evaluation of the efficiency of extracellular matrix mineralization (SEM-EDX), revealed the formation of numerous mineral aggregates in BMSC cultures stimulated with S1P. Our data demonstrated that in an appropriate combination, the bioactive sphingolipids S1P and C1P may find wide application in regenerative medicine, particularly in bone regeneration with the use of MSCs.

  12. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    Science.gov (United States)

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  13. Infrequent detection of germline allele-specific expression of TGFBR1 in lymphoblasts and tissues of colon cancer patients.

    LENUS (Irish Health Repository)

    Guda, Kishore

    2009-06-15

    Recently, germline allele-specific expression (ASE) of the gene encoding for transforming growth factor-beta type I receptor (TGFBR1) has been proposed to be a major risk factor for cancer predisposition in the colon. Germline ASE results in a lowered expression of one of the TGFBR1 alleles (>1.5-fold), and was shown to occur in approximately 20% of informative familial and sporadic colorectal cancer (CRC) cases. In the present study, using the highly quantitative pyrosequencing technique, we estimated the frequency of ASE in TGFBR1 in a cohort of affected individuals from familial clusters of advanced colon neoplasias (cancers and adenomas with high-grade dysplasia), and also from a cohort of individuals with sporadic CRCs. Cases were considered positive for the presence of ASE if demonstrating an allelic expression ratio <0.67 or >1.5. Using RNA derived from lymphoblastoid cell lines, we find that of 46 informative Caucasian advanced colon neoplasia cases with a family history, only 2 individuals display a modest ASE, with allelic ratios of 1.65 and 1.73, respectively. Given that ASE of TGFBR1, if present, would likely be more pronounced in the colon compared with other tissues, we additionally determined the allele ratios of TGFBR1 in the RNA derived from normal-appearing colonic mucosa of sporadic CRC cases. We, however, found no evidence of ASE in any of 44 informative sporadic cases analyzed. Taken together, we find that germline ASE of TGFBR1, as assayed in lymphoblastoid and colon epithelial cells of colon cancer patients, is a relatively rare event.

  14. Exome sequencing reveals frequent deleterious germline variants in cancer susceptibility genes in women with invasive breast cancer undergoing neoadjuvant chemotherapy.

    Science.gov (United States)

    Ellingson, Marissa S; Hart, Steven N; Kalari, Krishna R; Suman, Vera; Schahl, Kimberly A; Dockter, Travis J; Felten, Sara J; Sinnwell, Jason P; Thompson, Kevin J; Tang, Xiaojia; Vedell, Peter T; Barman, Poulami; Sicotte, Hugues; Eckel-Passow, Jeanette E; Northfelt, Donald W; Gray, Richard J; McLaughlin, Sarah A; Moreno-Aspitia, Alvaro; Ingle, James N; Moyer, Ann M; Visscher, Daniel W; Jones, Katie; Conners, Amy; McDonough, Michelle; Wieben, Eric D; Wang, Liewei; Weinshilboum, Richard; Boughey, Judy C; Goetz, Matthew P

    2015-09-01

    When sequencing blood and tumor samples to identify targetable somatic variants for cancer therapy, clinically relevant germline variants may be uncovered. We evaluated the prevalence of deleterious germline variants in cancer susceptibility genes in women with breast cancer referred for neoadjuvant chemotherapy and returned clinically actionable results to patients. Exome sequencing was performed on blood samples from women with invasive breast cancer referred for neoadjuvant chemotherapy. Germline variants within 142 hereditary cancer susceptibility genes were filtered and reviewed for pathogenicity. Return of results was offered to patients with deleterious variants in actionable genes if they were not aware of their result through clinical testing. 124 patients were enrolled (median age 51) with the following subtypes: triple negative (n = 43, 34.7%), HER2+ (n = 37, 29.8%), luminal B (n = 31, 25%), and luminal A (n = 13, 10.5%). Twenty-eight deleterious variants were identified in 26/124 (21.0%) patients in the following genes: ATM (n = 3), BLM (n = 1), BRCA1 (n = 4), BRCA2 (n = 8), CHEK2 (n = 2), FANCA (n = 1), FANCI (n = 1), FANCL (n = 1), FANCM (n = 1), FH (n = 1), MLH3 (n = 1), MUTYH (n = 2), PALB2 (n = 1), and WRN (n = 1). 121/124 (97.6%) patients consented to return of research results. Thirteen (10.5%) had actionable variants, including four that were returned to patients and led to changes in medical management. Deleterious variants in cancer susceptibility genes are highly prevalent in patients with invasive breast cancer referred for neoadjuvant chemotherapy undergoing exome sequencing. Detection of these variants impacts medical management.

  15. The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Yun; Wang, Shunchang; Luo, Xun; Yang, Yanan; Jian, Fenglei; Wang, Xuemin; Xie, Lucheng

    2014-08-01

    The induction of apoptosis is recognized to be a major mechanism of tributyltin (TBT) toxicity. However, the underlying signaling pathways for TBT-induced apoptosis remain unclear. In this study, using the nematode Caenorhabditis elegans, we examined whether DNA damage response (DDR) pathway and mitogen-activated protein kinase (MAPK) signaling cascades are involved in TBT-induced germline apoptosis and cell cycle arrest. Our results demonstrated that exposing worms to TBT at the dose of 10nM for 6h significantly increased germline apoptosis in N2 strain. Germline apoptosis was absent in strains that carried ced-3 or ced-4 loss-of-function alleles, indicating that both caspase protein CED-3 and Apaf-1 protein CED-4 were required for TBT-induced apoptosis. TBT-induced apoptosis was blocked in the Bcl-2 gain-of-function strain ced-9(n1950), whereas TBT induced a minor increase in the BH3-only protein EGL-1 mutated strain egl-1(n1084n3082). Checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects, and the null mutation of cep-1, the homologue of tumor suppressor gene p53, significantly inhibited TBT-induced apoptosis. Apoptosis in the loss-of-function strains of ERK, JNK and p38 MAPK signaling pathways were completely or mildly suppressed under TBT stress. These results were supported by the results of mRNA expression levels of corresponding genes. The present study indicated that TBT-induced apoptosis required the core apoptotic machinery, and that DDR genes and MAPK pathways played essential roles in signaling the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Germline CDKN2A/P16INK4A mutations contribute to genetic determinism of sarcoma.

    Science.gov (United States)

    Jouenne, Fanélie; Chauvot de Beauchene, Isaure; Bollaert, Emeline; Avril, Marie-Françoise; Caron, Olivier; Ingster, Olivier; Lecesne, Axel; Benusiglio, Patrick; Terrier, Philippe; Caumette, Vincent; Pissaloux, Daniel; de la Fouchardière, Arnaud; Cabaret, Odile; N'Diaye, Birama; Velghe, Amélie; Bougeard, Gaelle; Mann, Graham J; Koscielny, Serge; Barrett, Jennifer H; Harland, Mark; Newton-Bishop, Julia; Gruis, Nelleke; Van Doorn, Remco; Gauthier-Villars, Marion; Pierron, Gaelle; Stoppa-Lyonnet, Dominique; Coupier, Isabelle; Guimbaud, Rosine; Delnatte, Capucine; Scoazec, Jean-Yves; Eggermont, Alexander M; Feunteun, Jean; Tchertanov, Luba; Demoulin, Jean-Baptiste; Frebourg, Thierry; Bressac-de Paillerets, Brigitte

    2017-09-01

    Sarcomas are rare mesenchymal malignancies whose pathogenesis is poorly understood; both environmental and genetic risk factors could contribute to their aetiology. We performed whole-exome sequencing (WES) in a familial aggregation of three individuals affected with soft-tissue sarcoma (STS) without TP53 mutation (Li-Fraumeni-like, LFL) and found a shared pathogenic mutation in CDKN2A tumour suppressor gene. We searched for individuals with sarcoma among 474 melanoma-prone families with a CDKN2A -/+ genotype and for CDKN2A mutations in 190 TP53 -negative LFL families where the index case was a sarcoma. Including the initial family, eight independent sarcoma cases carried a germline mutation in the CDKN2A /p16 INK4A gene. In five out of seven formalin-fixed paraffin-embedded sarcomas, heterozygosity was lost at germline CDKN2A mutations sites demonstrating complete loss of function. As sarcomas are rare in CDKN2A /p16 INK4A carriers, we searched in constitutional WES of nine carriers for potential modifying rare variants and identified three in platelet-derived growth factor receptor ( PDGFRA ) gene. Molecular modelling showed that two never-described variants could impact the PDGFRA extracellular domain structure. Germline mutations in CDKN2A /P16 INK4A , a gene known to predispose to hereditary melanoma, pancreatic cancer and tobacco-related cancers, account also for a subset of hereditary sarcoma. In addition, we identified PDGFRA as a candidate modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making.

    Science.gov (United States)

    Abida, Wassim; Armenia, Joshua; Gopalan, Anuradha; Brennan, Ryan; Walsh, Michael; Barron, David; Danila, Daniel; Rathkopf, Dana; Morris, Michael; Slovin, Susan; McLaughlin, Brigit; Curtis, Kristen; Hyman, David M; Durack, Jeremy C; Solomon, Stephen B; Arcila, Maria E; Zehir, Ahmet; Syed, Aijazuddin; Gao, Jianjiong; Chakravarty, Debyani; Vargas, Hebert Alberto; Robson, Mark E; Joseph, Vijai; Offit, Kenneth; Donoghue, Mark T A; Abeshouse, Adam A; Kundra, Ritika; Heins, Zachary J; Penson, Alexander V; Harris, Christopher; Taylor, Barry S; Ladanyi, Marc; Mandelker, Diana; Zhang, Liying; Reuter, Victor E; Kantoff, Philip W; Solit, David B; Berger, Michael F; Sawyers, Charles L; Schultz, Nikolaus; Scher, Howard I

    2017-07-01

    A long natural history and a predominant osseous pattern of metastatic spread are impediments to the adoption of precision medicine in patients with prostate cancer. To establish the feasibility of clinical genomic profiling in the disease, we performed targeted deep sequencing of tumor and normal DNA from patients with locoregional, metastatic non-castrate, and metastatic castration-resistant prostate cancer (CRPC). Patients consented to genomic analysis of their tumor and germline DNA. A hybridization capture-based clinical assay was employed to identify single nucleotide variations, small insertions and deletions, copy number alterations and structural rearrangements in over 300 cancer-related genes in tumors and matched normal blood. We successfully sequenced 504 tumors from 451 patients with prostate cancer. Potentially actionable alterations were identified in DNA damage repair (DDR), PI3K, and MAP kinase pathways. 27% of patients harbored a germline or a somatic alteration in a DDR gene that may predict for response to PARP inhibition. Profiling of matched tumors from individual patients revealed that somatic TP53 and BRCA2 alterations arose early in tumors from patients who eventually developed metastatic disease. In contrast, comparative analysis across disease states revealed that APC alterations were enriched in metastatic tumors, while ATM alterations were specifically enriched in CRPC. Through genomic profiling of prostate tumors representing the disease clinical spectrum, we identified a high frequency of potentially actionable alterations and possible drivers of disease initiation, metastasis and castration-resistance. Our findings support the routine use of tumor and germline DNA profiling for patients with advanced prostate cancer, for the purpose of guiding enrollment in targeted clinical trials and counseling families at increased risk of malignancy.

  18. A role of BRCA1 and BRCA2 germline mutations in breast cancer susceptibility within Sardinian population

    International Nuclear Information System (INIS)

    Palomba, Grazia; Tanda, Francesco; Farris, Antonio; Orrù, Sandra; Floris, Carlo; Pisano, Marina; Lovicu, Mario; Santona, Maria Cristina; Landriscina, Gennaro; Crisponi, Laura; Palmieri, Giuseppe; Loi, Angela; Monne, Maria; Uras, Antonella; Fancello, Patrizia; Piras, Giovanna; Gabbas, Attilio; Cossu, Antonio; Budroni, Mario; Contu, Antonio

    2009-01-01

    In recent years, numerous studies have assessed the prevalence of germline mutations in BRCA1 and BRCA2 genes in various cohorts. We here extensively investigated the prevalence and geographical distribution of BRCA1-2 mutations in the entire genetically-homogeneous Sardinian population. The occurrence of phenotypic characteristics which may be predictive for the presence of BRCA1-2 germline mutations was also evaluated. Three hundred and forty-eight breast cancer patients presenting a familial recurrence of invasive breast or ovarian carcinoma with at least two affected family members were screened for BRCA1-2 mutations by DHPLC analysis and DNA sequencing. Association of BRCA1 and BRCA2 mutational status with clinical and pathological parameters was evaluated by Pearson's Chi-Squared test. Overall, 8 BRCA1 and 5 BRCA2 deleterious mutations were detected in 35/348 (10%) families; majority (23/35;66%) of mutations was found in BRCA2 gene. The geographical distribution of BRCA1-2 mutations was related to three specific large areas of Sardinia, reflecting its ancient history: a) the Northern area, linguistically different from the rest of the island (where a BRCA2 c.8764-8765delAG mutation with founder effect was predominant); b) the Middle area, land of the ancient Sardinian population (where BRCA2 mutations are still more common than BRCA1 mutations); and c) the South-Western area, with many Phoenician and Carthaginian locations (where BRCA1 mutations are prevalent). We also found that phenotypic features such as high tumor grading and lack of expression of estrogen/progesterone receptors together with age at diagnosis and presence of ovarian cancer in the family may be predictive for the presence of BRCA1-2 germline mutations

  19. Expression of germline markers in three species of amphioxus supports a preformation mechanism of germ cell development in cephalochordates

    Science.gov (United States)

    2013-01-01

    Background In a previous study, we showed that the cephalochordate amphioxus Branchiostoma floridae has localized maternal transcripts of conserved germ cell markers Vasa and Nanos in its early embryos. These results provided strong evidence to support a preformation mechanism for primordial germ cell (PGC) development in B. floridae. Results In this study, we further characterize the expression of B. floridae homologs of Piwi and Tudor, which play important roles in germline development in diverse metazoan animals. We show that maternal mRNA of one of the identified Piwi-like homologs, Bf-Piwil1, also colocalizes with Vasa in the vegetal germ plasm and has zygotic expression in both the putative PGCs and the tail bud, suggesting it may function in both germline and somatic stem cells. More interestingly, one Tudor family gene, Bf-Tdrd7, is only expressed maternally and colocalizes with Vasa in germ plasm, suggesting that it may function exclusively in germ cell specification. To evaluate the conservation of the preformation mechanism among amphioxus species, we further analyze Vasa, Nanos, Piwil1, and Tdrd7 expression in two Asian amphioxus species, B. belcheri and B. japonicum. Their maternal transcripts all localize in similar patterns to those seen in B. floridae. In addition, we labeled putative PGCs with Vasa antibody to trace their dynamic distribution in developing larvae. Conclusions We identify additional germ plasm components in amphioxus and demonstrate the molecular distinction between the putative germline stem cells and somatic stem cells. Moreover, our results suggest that preformation may be a conserved mechanism for PGC specification among Branchiostoma species. Our Vasa antibody staining results suggest that after the late neurula stage, amphioxus PGCs probably proliferate with the tail bud cells during posterior elongation and are deposited near the forming myomere boundaries. Subsequently, these PGCs would concentrate at the ventral tip of the

  20. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site.

    Science.gov (United States)

    Ulaganathan, Vijay K; Sperl, Bianca; Rapp, Ulf R; Ullrich, Axel

    2015-12-24

    Variant rs351855-G/A is a commonly occurring single-nucleotide polymorphism of coding regions in exon 9 of the fibroblast growth factor receptor FGFR4 (CD334) gene (c.1162G>A). It results in an amino-acid change at codon 388 from glycine to arginine (p.Gly388Arg) in the transmembrane domain of the receptor. Despite compelling genetic evidence for the association of this common variant with cancers of the bone, breast, colon, prostate, skin, lung, head and neck, as well as soft-tissue sarcomas and non-Hodgkin lymphoma, the underlying biological mechanism has remained elusive. Here we show that substitution of the conserved glycine 388 residue to a charged arginine residue alters the transmembrane spanning segment and exposes a membrane-proximal cytoplasmic signal transducer and activator of transcription 3 (STAT3) binding site Y(390)-(P)XXQ(393). We demonstrate that such membrane-proximal STAT3 binding motifs in the germline of type I membrane receptors enhance STAT3 tyrosine phosphorylation by recruiting STAT3 proteins to the inner cell membrane. Remarkably, such germline variants frequently co-localize with somatic mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Using Fgfr4 single nucleotide polymorphism knock-in mice and transgenic mouse models for breast and lung cancers, we validate the enhanced STAT3 signalling induced by the FGFR4 Arg388-variant in vivo. Thus, our findings elucidate the molecular mechanism behind the genetic association of rs351855 with accelerated cancer progression and suggest that germline variants of cell-surface molecules that recruit STAT3 to the inner cell membrane are a significant risk for cancer prognosis and disease progression.

  1. A novel heterozygous germline deletion in MSH2 gene in a five generation Chinese family with Lynch syndrome

    OpenAIRE

    Wu, Bin; Ji, Wuyang; Liang, Shengran; Ling, Chao; You, Yan; Xu, Lai; Zhong, Min-Er; Xiao, Yi; Qiu, Hui-Zhong; Lu, Jun-Yang; Banerjee, Santasree

    2017-01-01

    Lynch syndrome (LS) is one of the most common familial forms of colorectal cancer predisposing syndrome with an autosomal dominant mode of inheritance. LS is caused by the germline mutations in DNA mismatch repair (MMR) genes including MSH2, MLH1, MSH6 and PMS2. Clinically, LS is characterized by high incidence of early-onset colorectal cancer as well as endometrial, small intestinal and urinary tract cancers, usually occur in the third to fourth decade of the life. Here we describe a five ge...

  2. The signature of somatic hypermutation appears to be written into the germline IgV segment repertoire.

    Science.gov (United States)

    Blanden, R V; Rothenfluh, H S; Zylstra, P; Weiller, G F; Steele, E J

    1998-04-01

    We present here a unifying hypothesis for the molecular mechanism of somatic hypermutation and somatic gene conversion in IgV genes involving reverse transcription using RNA templates from the V-gene loci to produce cDNA which undergoes homologous recombination with chromosomal V(D)J DNA. Experimental evidence produced over the last 20 years is essentially consistent with this hypothesis. We also review evidence suggesting that somatically generated IgV sequences from B lymphocytes have been fed back to germline DNA over evolutionary time.

  3. Group 3 medulloblastoma in a patient with a GYS2 germline mutation and glycogen storage disease 0a.

    Science.gov (United States)

    Holsten, Till; Tsiakas, Konstantinos; Kordes, Uwe; Bison, Brigitte; Pietsch, Torsten; Rutkowski, Stefan; Santer, René; Schüller, Ulrich

    2018-03-01

    Glycogen storage disease (GSD) 0a is a rare congenital metabolic disease with symptoms in infancy and childhood caused by biallelic GYS2 germline variants. A predisposition to cancer has not been described yet. We report here a boy with GSD 0a, who developed a malignant brain tumor at the age of 4.5 years. The tumor was classified as a group 3 medulloblastoma, and the patient died from cancer 27 months after initial tumor diagnosis. This case appears interesting as group 3 medulloblastoma is so far not known to arise in hereditary syndromes and the biology of sporadic group 3 medulloblastoma is largely unknown.

  4. Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer

    DEFF Research Database (Denmark)

    French, Juliet D; Johnatty, Sharon E; Lu, Yi

    2016-01-01

    Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses...... binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from...

  5. Postnatal stem/progenitor cells derived from the dental pulp of adult chimpanzee

    Directory of Open Access Journals (Sweden)

    Fillos Dimitri

    2008-04-01

    Full Text Available Background Chimpanzee dental pulp stem/stromal cells (ChDPSCs are very similar to human bone marrow derived mesenchymal stem/stromal cells (hBMSCs as demonstrated by the expression pattern of cell surface markers and their multipotent differentiation capability. Results ChDPSCs were isolated from an incisor and a canine of a forty-seven year old female chimpanzee. A homogenous population of ChDPSCs was established in early culture at a high proliferation rate and verified by the expression pattern of thirteen cell surface markers. The ChDPSCs are multipotent and were capable of differentiating into osteogenic, adipogenic and chondrogenic lineages under appropriate in vitro culture conditions. ChDPSCs also express stem cell (Sox-2, Nanog, Rex-1, Oct-4 and osteogenic (Osteonectin, osteocalcin, osteopontin markers, which is comparable to reported results of rhesus monkey BMSCs (rBMSCs, hBMSCs and hDPSCs. Although ChDPSCs vigorously proliferated during the initial phase and gradually decreased in subsequent passages, the telomere length indicated that telomerase activity was not significantly reduced. Conclusion These results demonstrate that ChDPSCs can be efficiently isolated from post-mortem teeth of adult chimpanzees and are multipotent. Due to the almost identical genome composition of humans and chimpanzees, there is an emergent need for defining the new role of chimpanzee modeling in comparative medicine. Teeth are easy to recover at necropsy and easy to preserve prior to the retrieval of dental pulp for stem/stromal cells isolation. Therefore, the establishment of ChDPSCs would preserve and maximize the applications of such a unique and invaluable animal model, and could advance the understanding of cellular functions and differentiation control of adult stem cells in higher primates.

  6. Postnatal stem/progenitor cells derived from the dental pulp of adult chimpanzee.

    Science.gov (United States)

    Cheng, Pei-Hsun; Snyder, Brooke; Fillos, Dimitri; Ibegbu, Chris C; Huang, Anderson Hsien-Cheng; Chan, Anthony W S

    2008-04-22

    Chimpanzee dental pulp stem/stromal cells (ChDPSCs) are very similar to human bone marrow derived mesenchymal stem/stromal cells (hBMSCs) as demonstrated by the expression pattern of cell surface markers and their multipotent differentiation capability. ChDPSCs were isolated from an incisor and a canine of a forty-seven year old female chimpanzee. A homogenous population of ChDPSCs was established in early culture at a high proliferation rate and verified by the expression pattern of thirteen cell surface markers. The ChDPSCs are multipotent and were capable of differentiating into osteogenic, adipogenic and chondrogenic lineages under appropriate in vitro culture conditions. ChDPSCs also express stem cell (Sox-2, Nanog, Rex-1, Oct-4) and osteogenic (Osteonectin, osteocalcin, osteopontin) markers, which is comparable to reported results of rhesus monkey BMSCs (rBMSCs), hBMSCs and hDPSCs. Although ChDPSCs vigorously proliferated during the initial phase and gradually decreased in subsequent passages, the telomere length indicated that telomerase activity was not significantly reduced. These results demonstrate that ChDPSCs can be efficiently isolated from post-mortem teeth of adult chimpanzees and are multipotent. Due to the almost identical genome composition of humans and chimpanzees, there is an emergent need for defining the new role of chimpanzee modeling in comparative medicine. Teeth are easy to recover at necropsy and easy to preserve prior to the retrieval of dental pulp for stem/stromal cells isolation. Therefore, the establishment of ChDPSCs would preserve and maximize the applications of such a unique and invaluable animal model, and could advance the understanding of cellular functions and differentiation control of adult stem cells in higher primates.

  7. The Crystal Structure of the Drosophila Germline Inducer Oskar Identifies Two Domains with Distinct Vasa Helicase- and RNA-Binding Activities

    Directory of Open Access Journals (Sweden)

    Mandy Jeske

    2015-07-01

    Full Text Available In many animals, the germ plasm segregates germline from soma during early development. Oskar protein is known for its ability to induce germ plasm formation and germ cells in Drosophila. However, the molecular basis of germ plasm formation remains unclear. Here, we show that Oskar is an RNA-binding protein in vivo, crosslinking to nanos, polar granule component, and germ cell-less mRNAs, each of which has a role in germline formation. Furthermore, we present high-resolution crystal structures of the two Oskar domains. RNA-binding maps in vitro to the C-terminal domain, which shows structural similarity to SGNH hydrolases. The highly conserved N-terminal LOTUS domain forms dimers and mediates Oskar interaction with the germline-specific RNA helicase Vasa in vitro. Our findings suggest a dual function of Oskar in RNA and Vasa binding, providing molecular clues to its germ plasm function.

  8. Adult neural stem cells: The promise of the future

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2007-01-01

    Full Text Available Philippe TaupinNational Neuroscience Institute, National University of SingaporeAbstract: Stem cells are self-renewing undifferentiated cells that give rise to multiple types of specialized cells of the body. In the adult, stem cells are multipotents and contribute to homeostasis of the tissues and regeneration after injury. Until recently, it was believed that the adult brain was devoid of stem cells, hence unable to make new neurons and regenerate. With the recent evidences that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS, the adult brain has the potential to regenerate and may be amenable to repair. The function(s of NSCs in the adult CNS remains the source of intense research and debates. The promise of the future of adult NSCs is to redefine the functioning and physiopathology of the CNS, as well as to treat a broad range of CNS diseases and injuries.Keywords: neurogenesis, transdifferentiation, plasticity, cellular therapy

  9. Structural polarity and dynamics of male germline stem cells in an insect (milkweed bug Oncopeltus fasciatus).

    Science.gov (United States)

    Dorn, David C; Dorn, August

    2008-01-01

    Knowing the structure opens a door for a better understanding of function because there is no function without structure. Male germline stem cells (GSCs) of the milkweed bug (Oncopeltus fasciatus) exhibit a very extraordinary structure and a very special relationship with their niche, the apical cells. This structural relationship is strikingly different from that known in the fruit fly (Drosophila melanogaster) -- the most successful model system, which allowed deep insights into the signaling interactions between GSCs and niche. The complex structural polarity of male GSCs in the milkweed bug combined with their astonishing dynamics suggest that cell morphology and dynamics are causally related with the most important regulatory processes that take place between GSCs and niche and ensure maintenance, proliferation, and differentiation of GSCs in accordance with the temporal need of mature sperm. The intricate structure of the GSCs of the milkweed bug (and probably of some other insects, i.e., moths) is only accessible by electron microscopy. But, studying singular sections through the apical complex (i.e., GSCs and apical cells) is not sufficient to obtain a full picture of the GSCs; especially, the segregation of projection terminals is not tangible. Only serial sections and their overlay can establish whether membrane ingrowths merely constrict projections or whether a projection terminal is completely cut off. To sequence the GSC dynamics, it is necessary to include juvenile stages, when the processes start and the GSCs occur in small numbers. The fine structural analysis of segregating projection terminals suggests that these terminals undergo autophagocytosis. Autophagosomes can be labeled by markers. We demonstrated acid phosphatase and thiamine pyrophosphatase (TPPase). Both together are thought to identify autophagosomes. Using the appropriate substrate of the enzymes and cerium chloride, the precipitation of electron-dense cerium phosphate granules

  10. Germline mutation in RNASEL predicts increased risk of head and neck, uterine cervix and breast cancer.

    Directory of Open Access Journals (Sweden)

    Bo Eskerod Madsen

    Full Text Available UNLABELLED: THE BACKGROUND: Ribonuclease L (RNASEL, encoding the 2'-5'-oligoadenylate (2-5A-dependent RNase L, is a key enzyme in the interferon induced antiviral and anti-proliferate pathway. Mutations in RNASEL segregate with the disease in prostate cancer families and specific genotypes are associated with an increased risk of prostate cancer. Infection by human papillomavirus (HPV is the major risk factor for uterine cervix cancer and for a subset of head and neck squamous cell carcinomas (HNSCC. HPV, Epstein Barr virus (EBV and sequences from mouse mammary tumor virus (MMTV have been detected in breast tumors, and the presence of integrated SV40 T/t antigen in breast carcinomas correlates with an aggressive phenotype and poor prognosis. A genetic predisposition could explain why some viral infections persist and induce cancer, while others disappear spontaneously. This points at RNASEL as a strong susceptibility gene. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the implication of an abnormal activity of RNase L in the onset and development of viral induced cancers, the study was initiated by searching for germline mutations in patients diagnosed with uterine cervix cancer. The rationale behind is that close to 100% of the cervix cancer patients have a persistent HPV infection, and if a defective RNase L were responsible for the lack of ability to clear the HPV infection, we would expect to find a wide spectrum of mutations in these patients, leading to a decreased RNase L activity. The HPV genotype was established in tumor DNA from 42 patients diagnosed with carcinoma of the uterine cervix and somatic tissue from these patients was analyzed for mutations by direct sequencing of all coding and regulatory regions of RNASEL. Fifteen mutations, including still uncharacterized, were identified. The genotype frequencies of selected single nucleotide polymorphisms (SNPs established in the cervix cancer patients were compared between 382 patients

  11. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available A recently developed strategy of sequencing alternative polyadenylation (APA sites (SAPAS with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here, we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs and differentiated mouse embryonic fibroblast cells (MEFs as controls. As a result, we obtained 99,944 poly(A sites, approximately 40% of which were newly detected in our experiments. These poly(A sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site

  12. Expansion of B-1a cells with germline heavy chain sequence in lupus mice

    Directory of Open Access Journals (Sweden)

    Nichol E Holodick

    2016-03-01

    Full Text Available B6.Sle1.Sle2.Sle3 (B6.TC lupus-prone mice carrying the NZB allele of Cdkn2c, encoding for the cyclin-dependent kinase inhibitor P18INK4, accumulate B-1a cells due to a higher rate of proliferative self-renewal. However, it is unclear whether this affects primarily early appearing B-1a cells of fetal origin or later appearing B-1a cells that emerge from bone marrow. B-1a cells are the major source of natural autoantibodies, and it has been shown that their protective nature is associated with a germline-like sequence, which is characterized by few N-nucleotide insertions and a repertoire skewed towards rearrangements predominated during fetal life, VH11 and VH12. To determine the nature of B-1a cells expanded in B6.TC mice, we amplified immunoglobulin genes by PCR from single cells in mice. Sequencing showed a significantly higher proportion of B-1a cell antibodies display fewer N-additions in B6.TC mice than in B6 control mice. Following this lower number of N-insertions within the CDR-H3 region, the B6.TC B-1a cells display shorter CDR-H3 length than B6 B-1a cells. The absence of N-additions is a surrogate for fetal origin, as TdT expression starts after birth in mice. Therefore, our results suggest that the B-1a cell population is not only expanded in autoimmune B6.TC mice but also qualitatively different with the majority of cells from fetal origin. Accordingly, our sequencing results also demonstrated overuse of VH11 and VH12 in autoimmune B6.TC mice as compared to B6 controls. These results suggest that the development of lupus autoantibodies in these mice is coupled with skewing of the B-1a cell repertoire and possible retention of protective natural antibodies.

  13. RAD51C germline mutations in breast and ovarian cancer cases from high-risk families.

    Directory of Open Access Journals (Sweden)

    Jessica Clague

    Full Text Available BRCA1 and BRCA2 are the most well-known breast cancer susceptibility genes. Additional genes involved in DNA repair have been identified as predisposing to breast cancer. One such gene, RAD51C, is essential for homologous recombination repair. Several likely pathogenic RAD51C mutations have been identified in BRCA1- and BRCA2-negative breast and ovarian cancer families. We performed complete sequencing of RAD51C in germline DNA of 286 female breast and/or ovarian cancer cases with a family history of breast and ovarian cancers, who had previously tested negative for mutations in BRCA1 and BRCA2. We screened 133 breast cancer cases, 119 ovarian cancer cases, and 34 with both breast and ovarian cancers. Fifteen DNA sequence variants were identified; including four intronic, one 5' UTR, one promoter, three synonymous, and six non-synonymous variants. None were truncating. The in-silico SIFT and Polyphen programs were used to predict possible pathogenicity of the six non-synonomous variants based on sequence conservation. G153D and T287A were predicted to be likely pathogenic. Two additional variants, A126T and R214C alter amino acids in important domains of the protein such that they could be pathogenic. Two-hybrid screening and immunoblot analyses were performed to assess the functionality of these four non-synonomous variants in yeast. The RAD51C-G153D protein displayed no detectable interaction with either XRCC3 or RAD51B, and RAD51C-R214C displayed significantly decreased interaction with both XRCC3 and RAD51B (p<0.001. Immunoblots of RAD51C-Gal4 activation domain fusion peptides showed protein levels of RAD51C-G153D and RAD51C-R214C that were 50% and 60% of the wild-type, respectively. Based on these data, the RAD51C-G153D variant is likely to be pathogenic, while the RAD51C- R214C variant is hypomorphic of uncertain pathogenicity. These results provide further support that RAD51C is a rare breast and ovarian cancer susceptibility gene.

  14. BRCA1 and BRCA2 Germline Mutations in Asian and European Populations

    Directory of Open Access Journals (Sweden)

    Ute Hamann

    2017-02-01

    Full Text Available Women who carry a pathogenic mutation in the breast cancer susceptibility genes BRCA1 or BRCA2 (BRCA have markedly increased risks of developing breast and ovarian cancers during their lifetime. It has been estimated that their breast and ovarian cancer risks are in the range of 46-87% and 15-68%, respectively. Therefore it is of utmost clinical importance to identify BRCA mutation carriers in order to target unaffected women for prevention and/or close surveillance and to help affected women choose the best chemotherapy regimen. Genetic testing for BRCA germline mutations is expanding in clinical oncology centers worldwide. Given the high costs of complete BRCA gene screens, a lot of effort has been expended on deciding upon whom to test. Relevant issues involved in decision making include the prior probability of a woman having a BRCA mutation, which is a function of her age and her disease status, her ethnic group, and her family history of breast or ovarian cancer. The frequency and spectrum of mutations in these genes show considerable variation by ethnic groups and by geographic regions. Most studies have been conducted in European and North American populations, while studies in Asian, Hispanic, and African populations are fewer. In most populations, many BRCA mutations were identified, which were distributed all over the genes. However, in some populations, a relatively small number of specific BRCA mutations are recurrent and account for the majority of all mutations in that population. Many of the recurrent mutations are founder mutations, which were derived from a common ancestor. Founder mutations are present in Ashkenazi Jewish, European, and Islander (Faroe, Easter, and Pitcairn populations. Such mutations have also been identified in patients from several Asian, South American, and African countries. Population-specific genetic risk assessment and genetic mutation screening have been facilitated at low costs. Given that mutations

  15. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells

    Science.gov (United States)

    Lin, Zhuoheng; Feng, Xuyang; Jiang, Xue; Songyang, Zhou; Huang, Junjiu

    2015-01-01

    A recently developed strategy of sequencing alternative polyadenylation (APA) sites (SAPAS) with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs) maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here), we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS) and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs) and differentiated mouse embryonic fibroblast cells (MEFs) as controls. As a result, we obtained 99,944 poly(A) sites, approximately 40% of which were newly detected in our experiments. These poly(A) sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA) genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A) switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A) site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site profiles and

  16. A germline mutation in the BRCA1 3'UTR predicts Stage IV breast cancer.

    Science.gov (United States)

    Dorairaj, Jemima J; Salzman, David W; Wall, Deirdre; Rounds, Tiffany; Preskill, Carina; Sullivan, Catherine A W; Lindner, Robert; Curran, Catherine; Lezon-Geyda, Kim; McVeigh, Terri; Harris, Lyndsay; Newell, John; Kerin, Michael J; Wood, Marie; Miller, Nicola; Weidhaas, Joanne B

    2014-06-10

    A germline, variant in the BRCA1 3'UTR (rs8176318) was previously shown to predict breast and ovarian cancer risk in women from high-risk families, as well as increased risk of triple negative breast cancer. Here, we tested the hypothesis that this variant predicts tumor biology, like other 3'UTR mutations in cancer. The impact of the BRCA1-3'UTR-variant on BRCA1 gene expression, and altered response to external stimuli was tested in vitro using a luciferase reporter assay. Gene expression was further tested in vivo by immunoflourescence staining on breast tumor tissue, comparing triple negative patient samples with the variant (TG or TT) or non-variant (GG) BRCA1 3'UTR. To determine the significance of the variant on clinically relevant endpoints, a comprehensive collection of West-Irish breast cancer patients were tested for the variant. Finally, an association of the variant with breast screening clinical phenotypes was evaluated using a cohort of women from the High Risk Breast Program at the University of Vermont. Luciferase reporters with the BRCA1-3'UTR-variant (T allele) displayed significantly lower gene expression, as well as altered response to external hormonal stimuli, compared to the non-variant 3'UTR (G allele) in breast cancer cell lines. This was confirmed clinically by the finding of reduced BRCA1 gene expression in triple negative samples from patients carrying the homozygous TT variant, compared to non-variant patients. The BRCA1-3'UTR-variant (TG or TT) also associated with a modest increased risk for developing breast cancer in the West-Irish cohort (OR=1.4, 95% CI 1.1-1.8, p=0.033). More importantly, patients with the BRCA1-3'UTR-variant had a 4-fold increased risk of presenting with Stage IV disease (p=0.018, OR=3.37, 95% CI 1.3-11.0). Supporting that this finding is due to tumor biology, and not difficulty screening, obese women with the BRCA1-3'UTR-variant had significantly less dense breasts (p=0.0398) in the Vermont cohort. A variant in

  17. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti.

    Science.gov (United States)

    Li, Ming; Bui, Michelle; Yang, Ting; Bowman, Christian S; White, Bradley J; Akbari, Omar S

    2017-12-05

    The development of CRISPR/Cas9 technologies has dramatically increased the accessibility and efficiency of genome editing in many organisms. In general, in vivo germline expression of Cas9 results in substantially higher activity than embryonic injection. However, no transgenic lines expressing Cas9 have been developed for the major mosquito disease vector Aedes aegypti Here, we describe the generation of multiple stable, transgenic Ae. aegypti strains expressing Cas9 in the germline, resulting in dramatic improvements in both the consistency and efficiency of genome modifications using CRISPR. Using these strains, we disrupted numerous genes important for normal morphological development, and even generated triple mutants from a single injection. We have also managed to increase the rates of homology-directed repair by more than an order of magnitude. Given the exceptional mutagenic efficiency and specificity of the Cas9 strains we engineered, they can be used for high-throughput reverse genetic screens to help functionally annotate the Ae. aegypti genome. Additionally, these strains represent a step toward the development of novel population control technologies targeting Ae. aegypti that rely on Cas9-based gene drives. Copyright © 2017 the Author(s). Published by PNAS.

  18. SLX-1 is required for maintaining genomic integrity and promoting meiotic noncrossovers in the Caenorhabditis elegans germline.

    Directory of Open Access Journals (Sweden)

    Takamune T Saito

    2012-08-01

    Full Text Available Although the SLX4 complex, which includes structure-specific nucleases such as XPF, MUS81, and SLX1, plays important roles in the repair of several kinds of DNA damage, the function of SLX1 in the germline remains unknown. Here we characterized the endonuclease activities of the Caenorhabditis elegans SLX-1-HIM-18/SLX-4 complex co-purified from human 293T cells and determined SLX-1 germline function via analysis of slx-1(tm2644 mutants. SLX-1 shows a HIM-18/SLX-4-dependent endonuclease activity toward replication forks, 5'-flaps, and Holliday junctions. slx-1 mutants exhibit hypersensitivity to UV, nitrogen mustard, and camptothecin, but not gamma irradiation. Consistent with a role in DNA repair, recombination intermediates accumulate in both mitotic and meiotic germ cells in slx-1 mutants. Importantly, meiotic crossover distribution, but not crossover frequency, is altered on chromosomes in slx-1 mutants compared to wild type. This alteration is not due to changes in either the levels or distribution of double-strand breaks (DSBs along chromosomes. We propose that SLX-1 is required for repair at stalled or collapsed replication forks, interstrand crosslink repair, and nucleotide excision repair during mitosis. Moreover, we hypothesize that SLX-1 regulates the crossover landscape during meiosis by acting as a noncrossover-promoting factor in a subset of DSBs.

  19. Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers.

    Science.gov (United States)

    Briggs, Sarah; Tomlinson, Ian

    2013-06-01

    Polymerases ε and δ are the main enzymes that replicate eukaryotic DNA. Accurate replication occurs through Watson-Crick base pairing and also through the action of the polymerases' exonuclease (proofreading) domains. We have recently shown that germline exonuclease domain mutations (EDMs) of POLE and POLD1 confer a high risk of multiple colorectal adenomas and carcinoma (CRC). POLD1 mutations also predispose to endometrial cancer (EC). These mutations are associated with high penetrance and dominant inheritance, although the phenotype can be variable. We have named the condition polymerase proofreading-associated polyposis (PPAP). Somatic POLE EDMs have also been found in sporadic CRCs and ECs, although very few somatic POLD1 EDMs have been detected. Both the germline and the somatic DNA polymerase EDMs cause an 'ultramutated', apparently microsatellite-stable, type of cancer, sometimes leading to over a million base substitutions per tumour. Here, we present the evidence for POLE and POLD1 as important contributors to the pathogenesis of CRC and EC, and highlight some of the key questions in this emerging field. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations.

    Science.gov (United States)

    Wang, Xia; Charng, Wu-Lin; Chen, Chun-An; Rosenfeld, Jill A; Al Shamsi, Aisha; Al-Gazali, Lihadh; McGuire, Marianne; Mew, Nicholas Ah; Arnold, Georgianne L; Qu, Chunjing; Ding, Yan; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Walkiewicz, Magdalena; Xia, Fan; Plon, Sharon E; Lupski, James R; Schaaf, Christian P; Yang, Yaping

    2017-04-01

    ABL1 is a proto-oncogene well known as part of the fusion gene BCR-ABL1 in the Philadelphia chromosome of leukemia cancer cells. Inherited germline ABL1 changes have not been associated with genetic disorders. Here we report ABL1 germline variants cosegregating with an autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. The variant c.734A>G (p.Tyr245Cys) was found to occur de novo or cosegregate with disease in five individuals (families 1-3). Additionally, a de novo c.1066G>A (p.Ala356Thr) variant was identified in a sixth individual (family 4). We overexpressed the mutant constructs in HEK 293T cells and observed increased tyrosine phosphorylation, suggesting increased ABL1 kinase activities associated with both the p.Tyr245Cys and p.Ala356Thr substitutions. Our clinical and experimental findings, together with previously reported teratogenic effects of selective BCR-ABL inhibitors in humans and developmental defects in Abl1 knockout mice, suggest that ABL1 has an important role during organismal development.

  1. Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations

    Science.gov (United States)

    Wang, Xia; Charng, Wu-Lin; Chen, Chun-An; Rosenfeld, Jill A.; Shamsi, Aisha Al; Al-Gazali, Lihadh; McGuire, Marianne; Mew, Nicholas Ah; Arnold, Georgianne L.; Qu, Chunjing; Ding, Yan; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Walkiewicz, Magdalena; Xia, Fan; Plon, Sharon E.; Lupski, James R.; Schaaf, Christian P.; Yang, Yaping

    2017-01-01

    ABL1 is a proto-oncogene well known as part of the fusion gene BCR-ABL in the Philadelphia chromosome of leukemia cancer cells1. Inherited germline ABL1 changes have not b