WorldWideScience

Sample records for multiple generation mechanisms

  1. Fundamental principles of nanostructures and multiple exciton generation effect in quantum dots

    International Nuclear Information System (INIS)

    Turaeva, N.; Oksengendler, B.; Rashidova, S.

    2011-01-01

    In this work the theoretical aspects of the effect of multiple exciton generation in QDs has been studied. The statistic theory of multiple exciton generation in quantum dots is presented based on the Fermi approach to the problem of multiple generation of elementary particles at nucleon-nucleon collisions. Our calculations show that the quantum efficiencies of multiple exciton generation in various quantum dots at absorption of single photon are in a good agreement with the experimental data. The microscopic mechanism of this effect is based on the theory of electronic 'shaking'. In the work the deviation of averaged multiplicity of MEG effect from the Poisson law of fluctuations has been investigated. Besides, the role of interface electronic states of quantum dot and ligand has been considered by means of quantum mechanics. The size optimization of quantum dot has been arranged to receive the maximum multiplicity of MEG effect. (authors)

  2. Multiple exciton generation in quantum dot-based solar cells

    Science.gov (United States)

    Goodwin, Heather; Jellicoe, Tom C.; Davis, Nathaniel J. L. K.; Böhm, Marcus L.

    2018-01-01

    Multiple exciton generation (MEG) in quantum-confined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one charge-carrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.

  3. Statistics, synergy, and mechanism of multiple photogeneration of excitons in quantum dots: Fundamental and applied aspects

    International Nuclear Information System (INIS)

    Oksengendler, B. L.; Turaeva, N. N.; Uralov, I.; Marasulov, M. B.

    2012-01-01

    The effect of multiple exciton generation is analyzed based on statistical physics, quantum mechanics, and synergetics. Statistical problems of the effect of multiple exciton generation (MEG) are broadened and take into account not only exciton generation, but also background excitation. The study of the role of surface states of quantum dots is based on the synergy of self-catalyzed electronic reactions. An analysis of the MEG mechanism is based on the idea of electronic shaking using the sudden perturbation method in quantum mechanics. All of the above-mentioned results are applied to the problem of calculating the limiting efficiency to transform solar energy into electric energy. (authors)

  4. Acoustic emission generated by dislocation mechanisms during the deformation of metals

    International Nuclear Information System (INIS)

    Heiple, C.R.

    1978-01-01

    Acoustic emission is a transient elastic wave generated by the rapid release of energy within a material. A wide variety of mechanisms have been proposed as possible sources of acoustic emission. Proposed mechanisms have included crack propagation, precipitate fracture, twin formation, martensite formation, dislocation motion and/or multiplication. This paper is concerned with acoustic emission generated by dislocation mechanisms operating during plastic deformation. Twinning and martensitic phase transformations are excluded even though dislocation motion is involved in the nucleation and growth of twins and the growth of martensite

  5. Acoustic emission generated by dislocation mechanisms during the deformation of metals

    Energy Technology Data Exchange (ETDEWEB)

    Heiple, C.R.

    1978-01-01

    Acoustic emission is a transient elastic wave generated by the rapid release of energy within a material. A wide variety of mechanisms have been proposed as possible sources of acoustic emission. Proposed mechanisms have included crack propagation, precipitate fracture, twin formation, martensite formation, dislocation motion and/or multiplication. This paper is concerned with acoustic emission generated by dislocation mechanisms operating during plastic deformation. Twinning and martensitic phase transformations are excluded even though dislocation motion is involved in the nucleation and growth of twins and the growth of martensite.

  6. Balancing Structure for Multiple Generator

    Directory of Open Access Journals (Sweden)

    LUPU Ciprian

    2014-05-01

    Full Text Available This paper presents a strategy to (rebalance a multiple generator control system structure on maintaining the global output in case of load and functioning disturbances. Applicability is proved on a control structure of the two and three sources connected in parallel to produce energy, a situation that has been encountered more and more these days especially in the renewable energy industry (wind, solar and small generators etc.

  7. Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations.

    Science.gov (United States)

    Shama, L N S; Wegner, K M

    2014-11-01

    Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short-term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry-over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  8. Using automatic item generation to create multiple-choice test items.

    Science.gov (United States)

    Gierl, Mark J; Lai, Hollis; Turner, Simon R

    2012-08-01

    Many tests of medical knowledge, from the undergraduate level to the level of certification and licensure, contain multiple-choice items. Although these are efficient in measuring examinees' knowledge and skills across diverse content areas, multiple-choice items are time-consuming and expensive to create. Changes in student assessment brought about by new forms of computer-based testing have created the demand for large numbers of multiple-choice items. Our current approaches to item development cannot meet this demand. We present a methodology for developing multiple-choice items based on automatic item generation (AIG) concepts and procedures. We describe a three-stage approach to AIG and we illustrate this approach by generating multiple-choice items for a medical licensure test in the content area of surgery. To generate multiple-choice items, our method requires a three-stage process. Firstly, a cognitive model is created by content specialists. Secondly, item models are developed using the content from the cognitive model. Thirdly, items are generated from the item models using computer software. Using this methodology, we generated 1248 multiple-choice items from one item model. Automatic item generation is a process that involves using models to generate items using computer technology. With our method, content specialists identify and structure the content for the test items, and computer technology systematically combines the content to generate new test items. By combining these outcomes, items can be generated automatically. © Blackwell Publishing Ltd 2012.

  9. Tag cloud generation for results of multiple keywords queries

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Lage, Ricardo Gomes

    2013-01-01

    In this paper we study tag cloud generation for retrieved results of multiple keyword queries. It is motivated by many real world scenarios such as personalization tasks, surveillance systems and information retrieval tasks defined with multiple keywords. We adjust the state-of-the-art tag cloud...... generation techniques for multiple keywords query results. Consequently, we conduct the extensive evaluation on top of three distinct collaborative tagging systems. The graph-based methods perform significantly better for the Movielens and Bibsonomy datasets. Tag cloud generation based on maximal coverage...

  10. Multiple output timing and trigger generator

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Robert M. [Los Alamos National Laboratory; Dale, Gregory E [Los Alamos National Laboratory

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  11. Neural mechanisms of sequence generation in songbirds

    Science.gov (United States)

    Langford, Bruce

    Animal models in research are useful for studying more complex behavior. For example, motor sequence generation of actions requiring good muscle coordination such as writing with a pen, playing an instrument, or speaking, may involve the interaction of many areas in the brain, each a complex system in itself; thus it can be difficult to determine causal relationships between neural behavior and the behavior being studied. Birdsong, however, provides an excellent model behavior for motor sequence learning, memory, and generation. The song consists of learned sequences of notes that are spectrographically stereotyped over multiple renditions of the song, similar to syllables in human speech. The main areas of the songbird brain involve in singing are known, however, the mechanisms by which these systems store and produce song are not well understood. We used a custom built, head-mounted, miniature motorized microdrive to chronically record the neural firing patterns of identified neurons in HVC, a pre-motor cortical nucleus which has been shown to be important in song timing. These were done in Bengalese finch which generate a song made up of stereotyped notes but variable note sequences. We observed song related bursting in neurons projecting to Area X, a homologue to basal ganglia, and tonic firing in HVC interneurons. Interneuron had firing rate patterns that were consistent over multiple renditions of the same note sequence. We also designed and built a light-weight, low-powered wireless programmable neural stimulator using Bluetooth Low Energy Protocol. It was able to generate perturbations in the song when current pulses were administered to RA, which projects to the brainstem nucleus responsible for syringeal muscle control.

  12. Multiple Scattering in Random Mechanical Systems and Diffusion Approximation

    Science.gov (United States)

    Feres, Renato; Ng, Jasmine; Zhang, Hong-Kun

    2013-10-01

    This paper is concerned with stochastic processes that model multiple (or iterated) scattering in classical mechanical systems of billiard type, defined below. From a given (deterministic) system of billiard type, a random process with transition probabilities operator P is introduced by assuming that some of the dynamical variables are random with prescribed probability distributions. Of particular interest are systems with weak scattering, which are associated to parametric families of operators P h , depending on a geometric or mechanical parameter h, that approaches the identity as h goes to 0. It is shown that ( P h - I)/ h converges for small h to a second order elliptic differential operator on compactly supported functions and that the Markov chain process associated to P h converges to a diffusion with infinitesimal generator . Both P h and are self-adjoint (densely) defined on the space of square-integrable functions over the (lower) half-space in , where η is a stationary measure. This measure's density is either (post-collision) Maxwell-Boltzmann distribution or Knudsen cosine law, and the random processes with infinitesimal generator respectively correspond to what we call MB diffusion and (generalized) Legendre diffusion. Concrete examples of simple mechanical systems are given and illustrated by numerically simulating the random processes.

  13. Multiple Chaotic Central Pattern Generators with Learning for Legged Locomotion and Malfunction Compensation

    DEFF Research Database (Denmark)

    Ren, Guanjiao; Chen, Weihai; Dasgupta, Sakyasingha

    2015-01-01

    on a simulated annealing algorithm. In a normal situation, the CPGs synchronize and their dynamics are identical. With leg malfunction or disability, the CPGs lose synchronization leading to independent dynamics. In this case, the learning mechanism is applied to automatically adjust the remaining legs...... in a physical simulation of a quadruped as well as a hexapod robot and finally in a real six-legged walking machine called AMOSII. The experimental results presented here reveal that using multiple CPGs with learning is an effective approach for adaptive locomotion generation where, for instance, different body...... chaotic CPG controller has difficulties dealing with leg malfunction. Specifically, in the scenarios presented here, its movement permanently deviates from the desired trajectory. To address this problem, we extend the single chaotic CPG to multiple CPGs with learning. The learning mechanism is based...

  14. Multiple-event probability in general-relativistic quantum mechanics. II. A discrete model

    International Nuclear Information System (INIS)

    Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo

    2007-01-01

    We introduce a simple quantum mechanical model in which time and space are discrete and periodic. These features avoid the complications related to continuous-spectrum operators and infinite-norm states. The model provides a tool for discussing the probabilistic interpretation of generally covariant quantum systems, without the confusion generated by spurious infinities. We use the model to illustrate the formalism of general-relativistic quantum mechanics, and to test the definition of multiple-event probability introduced in a companion paper [Phys. Rev. D 75, 084033 (2007)]. We consider a version of the model with unitary time evolution and a version without unitary time evolution

  15. Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Shree Krishna Sharma

    2016-01-01

    Full Text Available The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks.

  16. Harmonic generation with multiple wiggler schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, R.; De Salvo, L.; Pierini, P. [Universita degli Studi, Milano (Italy)

    1995-02-01

    In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.

  17. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation.

    Directory of Open Access Journals (Sweden)

    Guoshi Li

    2017-10-01

    Full Text Available The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh and norepinephrine (NE and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.

  18. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation

    KAUST Repository

    Sun, Jingya; Yu, Weili; Usman, Anwar; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Alarousu, Erkki; Takanabe, Kazuhiro; Mohammed, Omar F.

    2014-01-01

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag 2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices. © 2014 American Chemical Society.

  19. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation

    KAUST Repository

    Sun, Jingya

    2014-02-20

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag 2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices. © 2014 American Chemical Society.

  20. Progressive multiple sclerosis: from pathogenic mechanisms to treatment.

    Science.gov (United States)

    Correale, Jorge; Gaitán, María I; Ysrraelit, María C; Fiol, Marcela P

    2017-03-01

    During the past decades, better understanding of relapsing-remitting multiple sclerosis disease mechanisms have led to the development of several disease-modifying therapies, reducing relapse rates and severity, through immune system modulation or suppression. In contrast, current therapeutic options for progressive multiple sclerosis remain comparatively disappointing and challenging. One possible explanation is a lack of understanding of pathogenic mechanisms driving progressive multiple sclerosis. Furthermore, diagnosis is usually retrospective, based on history of gradual neurological worsening with or without occasional relapses, minor remissions or plateaus. In addition, imaging methods as well as biomarkers are not well established. Magnetic resonance imaging studies in progressive multiple sclerosis show decreased blood-brain barrier permeability, probably reflecting compartmentalization of inflammation behind a relatively intact blood-brain barrier. Interestingly, a spectrum of inflammatory cell types infiltrates the leptomeninges during subpial cortical demyelination. Indeed, recent magnetic resonance imaging studies show leptomeningeal contrast enhancement in subjects with progressive multiple sclerosis, possibly representing an in vivo marker of inflammation associated to subpial demyelination. Treatments for progressive disease depend on underlying mechanisms causing central nervous system damage. Immunity sheltered behind an intact blood-brain barrier, energy failure, and membrane channel dysfunction may be key processes in progressive disease. Interfering with these mechanisms may provide neuroprotection and prevent disability progression, while potentially restoring activity and conduction along damaged axons by repairing myelin. Although most previous clinical trials in progressive multiple sclerosis have yielded disappointing results, important lessons have been learnt, improving the design of novel ones. This review discusses mechanisms involved

  1. Motion laws synthesis for cam mechanisms with multiple follower displacement

    Science.gov (United States)

    Podgornyj, Yu I.; Skeeba, V. Yu; Kirillov, A. V.; Martynova, T. G.; Skeeba, P. Yu

    2018-03-01

    The research discusses the cam mechanisms design. The analysis of specialized literature indicates that the synthesis of the cam mechanisms laws of motion is currently done mainly by a standard set of acceleration curves. In some cases, the designer needs to synthesize a new acceleration law which should be task-specific and enforce a certain production step. The values of the technological loads and inertia forces loads generated by the mechanism are calculated to analyze the slay mechanism behavior in the production of closely woven fabrics. Mathematical packages MathCad and SolidWorks are used in calculations. As a result of the research, the authors propose the methodology for synthesizing the slay mechanism with multiple follower displacements for the point of contact between the reed and the fabric edge. Theoretical studies have been tested on a specific machine model (STB loom). The authors have synthesized the motion law of the filling threads beat-up mechanism for the production of strong fabrics. New basic and closing cam profiles are proposed. The results are designed to enhance the possibilities of the looms and to recommend the most efficient equipment operation modes for the producers.

  2. Mechanisms of multiple production processes

    International Nuclear Information System (INIS)

    Dremin, I.M.

    1977-01-01

    Theoretical approaches to multiple production processes are discussed. A large number of models proceeds from the notion about common excited system produced by colliding hadrons. This class of models includes the hydrodynamical, statistical, thermodynamical and statistical bootstrap models. Sometimes the production process is due to excitation and decay of two colliding particles. The fragmentation bremsstrahlung and inelastic diffraction models belong to this group. The largest group of models describes the multiple production process as a result of formation of many excited centers. The typical example is the multiperipheral model. An interesting direction is given by the attempts to interrelate the mechanism of multiple production with internal structure of particles that is with their constituents (C-group)'-quarks, gluons, etc. Besides the models there are phenomenological (p group) attempts to connect different features of multiple production. Experimental data indicate the existence of leading and pionization particles thus giving an evidence for applications of different models. The data about increase of total and inclusive cross sections, the behaviour of the mean multiplicity and correlations at high energies provide a clue for further development of multiple production theory

  3. Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints

    International Nuclear Information System (INIS)

    Pothiya, Saravuth; Ngamroo, Issarachai; Kongprawechnon, Waree

    2008-01-01

    This paper presents a new optimization technique based on a multiple tabu search algorithm (MTS) to solve the dynamic economic dispatch (ED) problem with generator constraints. In the constrained dynamic ED problem, the load demand and spinning reserve capacity as well as some practical operation constraints of generators, such as ramp rate limits and prohibited operating zone are taken into consideration. The MTS algorithm introduces additional mechanisms such as initialization, adaptive searches, multiple searches, crossover and restarting process. To show its efficiency, the MTS algorithm is applied to solve constrained dynamic ED problems of power systems with 6 and 15 units. The results obtained from the MTS algorithm are compared to those achieved from the conventional approaches, such as simulated annealing (SA), genetic algorithm (GA), tabu search (TS) algorithm and particle swarm optimization (PSO). The experimental results show that the proposed MTS algorithm approaches is able to obtain higher quality solutions efficiently and with less computational time than the conventional approaches

  4. Generating Cognitive Dissonance in Student Interviews through Multiple Representations

    Science.gov (United States)

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2012-01-01

    This study explores what students understand about enzyme-substrate interactions, using multiple representations of the phenomenon. In this paper we describe our use of the 3 Phase-Single Interview Technique with multiple representations to generate cognitive dissonance within students in order to uncover misconceptions of enzyme-substrate…

  5. Salvage Therapy of Multiple Myeloma: The New Generation Drugs

    Directory of Open Access Journals (Sweden)

    Alessandra Romano

    2014-01-01

    Full Text Available During the past decade, overall results of treatment of multiple myeloma (MM have been improved and survival curves are now significantly better with respect to those obtained with historical treatment. These improvements are linked to a deeper knowledge of the biology of disease and to the introduction in clinical practice of drugs with different mechanism of action such as proteasome inhibitors and immunomodulatory drugs (IMiDs. However, MM remains in most cases an incurable disease. For patients who relapse after treatment with novel agents, the prognosis is dismal and new drugs and therapeutic strategies are required for continued disease control. In this review, we summarize new insights in salvage therapy for relapsed/refractory MM as emerging from recent clinical trials exploring the activity of bendamustine, new generation proteasome inhibitors, novel IMiDs, monoclonal antibodies, and drugs interfering with growth pathways.

  6. Salvage Therapy of Multiple Myeloma: The New Generation Drugs

    Science.gov (United States)

    Romano, Alessandra; Conticello, Concetta; Di Raimondo, Cosimo; Schinocca, Elena; La Fauci, Alessia; Parrinello, Nunziatina Laura; Chiarenza, Annalisa

    2014-01-01

    During the past decade, overall results of treatment of multiple myeloma (MM) have been improved and survival curves are now significantly better with respect to those obtained with historical treatment. These improvements are linked to a deeper knowledge of the biology of disease and to the introduction in clinical practice of drugs with different mechanism of action such as proteasome inhibitors and immunomodulatory drugs (IMiDs). However, MM remains in most cases an incurable disease. For patients who relapse after treatment with novel agents, the prognosis is dismal and new drugs and therapeutic strategies are required for continued disease control. In this review, we summarize new insights in salvage therapy for relapsed/refractory MM as emerging from recent clinical trials exploring the activity of bendamustine, new generation proteasome inhibitors, novel IMiDs, monoclonal antibodies, and drugs interfering with growth pathways. PMID:24967371

  7. Mechanical generation of spin current

    Directory of Open Access Journals (Sweden)

    Mamoru eMatsuo

    2015-07-01

    Full Text Available We focus the recent results on spin-current generation from mechanical motion such as rigid rotation and elastic deformations. Spin transport theory in accelerating frames is constructed by using the low energy expansion of the generally covariant Dirac equation. Related issues on spin-manipulation by mechanical rotation are also discussed.

  8. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2016-06-01

    Full Text Available Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i generation of a three-dimensional (3D human model; (ii human object-based automatic scene calibration; and (iii metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.

  9. Analysis of Heat Generation Mechanism in Ultrasound Infrared Thermography

    International Nuclear Information System (INIS)

    Choi, Man Yong; Lee, Seung Seok; Park, Jeong Hak; Kang, Ki Soo; Kim, Won Tae

    2009-01-01

    Heat generation mechanism of ultrasound infrared thermography is still not well understood, yet and there are two reliable assumptions of heat generation, friction and thermo-mechanical effect. This paper investigates the principal cause of heat generation at fatigue crack with experimental and numerical approach. Our results show most of heat generation is contributed by friction between crack interface and thermo-mechanical effect is a negligible quantity

  10. Mechanism of neutron generation in Z-pinches

    International Nuclear Information System (INIS)

    Vikhrev, V.V.

    1986-01-01

    The review of experimental and theoretical investigations in a mechanism of neutron generation in Z-pinches is presented. Special attention is paid to the thermonuclear mechanism of neutron generation occuring due to the formation of high-temperature plasma regions in Z-pinch sausage-type instabilities. This mechanism is shown to be predominant in charges with the neutron yield more than 10 9 per a charge. Experimental data, which are considered to be contradicting to thermonuclear nature of neutron radiation, are explained

  11. Variable Speed Wind Turbine Based on Multiple Generators Drive-Train Configuration

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2010-01-01

    A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine. A cascaded multilevel converter interface based on the MPMSGs is developed to synthesize a desired high ac sinusoidal...... output voltage, which could be directly connected to the grids. What is more, such arrangement has been made so that the output ac voltage having a selected phase angle difference among the stator windings of multiple generators. A phase angle shift strategy is proposed in this paper, which effectively...... reduce the fluctuation of the electromagnetic torque sum and results in a good performance for the MPMSGs structure. The simulation study is conducted using PSCAD/EMTDC, and the results verify the feasibility of this variable speed wind turbine based on multiple generators drive-train configuration....

  12. Statistical spatial properties of speckle patterns generated by multiple laser beams

    International Nuclear Information System (INIS)

    Le Cain, A.; Sajer, J. M.; Riazuelo, G.

    2011-01-01

    This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as well as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.

  13. Multiple orbital angular momentum generated by dielectric hybrid phase element

    Science.gov (United States)

    Wang, Xuewen; Kuchmizhak, Aleksandr; Hu, Dejiao; Li, Xiangping

    2017-09-01

    Vortex beam carrying multiple orbital angular momentum provides a new degree of freedom to manipulate light leading to the various exciting applications as trapping, quantum optics, information multiplexing, etc. Helical wavefront can be generated either via the geometric or the dynamic phase arising from a space-variant birefringence (q-plate) or from phase accumulation through propagation (spiral-phase-plate), respectively. Using fast direct laser writing technique we fabricate and characterize novel hybrid q-plate generating vortex beam simultaneously carrying two different high-order topological charges, which arise from the spin-orbital conversion and the azimuthal height variation of the recorded structures. We approve the versatile concept to generate multiple-OAM vortex beams combining the spin-orbital interaction and the phase accumulation in a single micro-scale device, a hybrid dielectric phase plate.

  14. Multiple electron generation in a sea of electronic states

    Science.gov (United States)

    Witzel, Wayne; Shabaev, Andrew; Efros, Alexander; Hellberg, Carl; Verne, Jacobs

    2009-03-01

    In traditional bulk semiconductor photovoltaics (PVs), each photon may excite a single electron-hole, wasting excess energy beyond the band-gap as heat. In nanocrystals, multiple excitons can be generated from a single photon, enhancing the PV current. Multiple electron generation (MEG) may result from Coulombic interactions of the confined electrons. Previous investigations have been based on incomplete or over-simplified electronic-state representations. We present results of quantum simulations that include hundreds of thousands of configuration states and show how the complex dynamics, even in a closed electronic system, yields a saturated MEG effect on a femtosecond timescale. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    Science.gov (United States)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  16. Thermo-kinetic mechanisms for grain boundary structure multiplicity, thermal instability and defect interactions

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    Grain boundaries (GBs) provide a source and/or a sink for crystal defects and store elastic energy due to the non-uniform atomic bonding structure of the GB core. GB structures are thermodynamically driven to transition to the lowest energy configuration possible; however to date there has been little evidence to explain why specific GB structures have a low energy state. Furthermore, there is little quantitative demonstration of the significance of physical and GB structure characteristics on the GB energy, thermal stability, and the effect of temporary local GB structure transformations on defect interactions. This paper evaluates the defect interactions and structure stability of multiple Σ5(310) GB structures in bi-crystals of pure aluminium, and systematically investigates the features at 0 K to characterise multiple metastable structures. Structure stability is evaluated by utilising unstable vacancy defects to initiate GB transformations, and using nudged elastic band simulations to quantify this with the activation energy. The emission of stable vacancy defects from the ‘stable’ and metastable grain boundaries is also evaluated in the same manner. A detailed analysis of dislocation nucleation at the atomistic scale demonstrates that local transformations of GB structure between stable and metastable intermediates can provide a mechanism to accommodate the generation of crystal defects. Kinetic (time-dependent) effects that compete with energetic driving forces for structural transformations of GBs are shown to cause a significant effect on the activation properties that may exceed the influence of GB potential energy. The results demonstrate that GB structural multiplicity can be associated with the generation and absorption of dislocations and vacancies. This paper demonstrates the suitability of atomistic simulations coupled with nudged elastic band simulations to evaluate fundamental thermodynamic properties of pure FCC metals. Overall, this paper

  17. Thermo-kinetic mechanisms for grain boundary structure multiplicity, thermal instability and defect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Burbery, N.J. [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Das, R., E-mail: r.das@auckland.ac.nz [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Ferguson, W.G. [Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010 (New Zealand)

    2016-08-15

    Grain boundaries (GBs) provide a source and/or a sink for crystal defects and store elastic energy due to the non-uniform atomic bonding structure of the GB core. GB structures are thermodynamically driven to transition to the lowest energy configuration possible; however to date there has been little evidence to explain why specific GB structures have a low energy state. Furthermore, there is little quantitative demonstration of the significance of physical and GB structure characteristics on the GB energy, thermal stability, and the effect of temporary local GB structure transformations on defect interactions. This paper evaluates the defect interactions and structure stability of multiple Σ5(310) GB structures in bi-crystals of pure aluminium, and systematically investigates the features at 0 K to characterise multiple metastable structures. Structure stability is evaluated by utilising unstable vacancy defects to initiate GB transformations, and using nudged elastic band simulations to quantify this with the activation energy. The emission of stable vacancy defects from the ‘stable’ and metastable grain boundaries is also evaluated in the same manner. A detailed analysis of dislocation nucleation at the atomistic scale demonstrates that local transformations of GB structure between stable and metastable intermediates can provide a mechanism to accommodate the generation of crystal defects. Kinetic (time-dependent) effects that compete with energetic driving forces for structural transformations of GBs are shown to cause a significant effect on the activation properties that may exceed the influence of GB potential energy. The results demonstrate that GB structural multiplicity can be associated with the generation and absorption of dislocations and vacancies. This paper demonstrates the suitability of atomistic simulations coupled with nudged elastic band simulations to evaluate fundamental thermodynamic properties of pure FCC metals. Overall, this paper

  18. Generation of Articulated Mechanisms by Optimization Techniques

    DEFF Research Database (Denmark)

    Kawamoto, Atsushi

    2004-01-01

    optimization [Paper 2] 3. Branch and bound global optimization [Paper 3] 4. Path-generation problems [Paper 4] In terms of the objective of the articulated mechanism design problems, the first to third papers deal with maximization of output displacement, while the fourth paper solves prescribed path...... generation problems. From a mathematical programming point of view, the methods proposed in the first and third papers are categorized as deterministic global optimization, while those of the second and fourth papers are categorized as gradient-based local optimization. With respect to design variables, only...... directly affects the result of the associated sensitivity analysis. Another critical issue for mechanism design is the concept of mechanical degrees of freedom and this should be also considered for obtaining a proper articulated mechanism. The thesis treats this inherently discrete criterion in some...

  19. Mechanisms for generating froissaron

    International Nuclear Information System (INIS)

    Glushko, N.I.; Kobylinski, N.A.; Martynov, E.S.; Shelest, V.P.

    1982-01-01

    From a common point of view, we consider the mechanisms for generating froissaron which arise due to the quasieikonal approximation, the U-matrix approach and the method of continued unitarity. A realistic model for the input pomeron is suggested and the data on high-energy pp-scattering are described. Likeness and difference of asymptotic and preasymptotic regimes for three variants of froissaron are discussed

  20. Generating and executing programs for a floating point single instruction multiple data instruction set architecture

    Science.gov (United States)

    Gschwind, Michael K

    2013-04-16

    Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.

  1. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shixing; Li, Long, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn; Shi, Guangming, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn; Zhu, Cheng; Shi, Yan [National Key Laboratory of Antennas and Microwave Technology, School of Electronic Engineering, Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi' an 710071 (China)

    2016-06-13

    In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effective way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.

  2. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts

    International Nuclear Information System (INIS)

    Lu, J.Z.; Wu, L.J.; Sun, G.F.; Luo, K.Y.; Zhang, Y.K.; Cai, J.; Cui, C.Y.; Luo, X.M.

    2017-01-01

    The microstructural response and grain subdivision process in commercially pure (CP) titanium subjected to multiple laser shock peening (LSP) impacts were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. The micro-hardness curves as a function of the impact time were also determined. The deformation-induced grain refinement mechanism of the close-packed hexagonal (hcp) material by laser shock wave was subsequently analyzed. Experimental results showed that uniform equiaxed grains with an average size of less than 50 nm were generated due to the ultra-high plastic strain induced by multiple LSP impacts. Special attention was paid to four types of novel deformation-induced microstructural features, including a layered slip band in the tension deformation zone, and inverse-transformation martensite, micro-twin grating and micro-twin collision in the compression deformation zone. Furthermore, the grain refinement mechanism in the near-surface layer of CP titanium subjected to multiple LSP impacts contains two types of simultaneous subdivision modes: multi-directional mechanical twin (MT)-MT intersections at (sub)micrometer scale, and the intersection between longitudinal secondary MTs and transverse dislocation walls at nanometer scale. In addition, both grain refinement (nanocrystallization) and the existence of a small amount of inverse-transformation martensite induced by multiple LSP impacts contribute to an increase in the micro-hardness of the near-surface layer.

  3. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    Science.gov (United States)

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  4. Two Schemes for Generation of Entanglement for Vibronic Collective States of Multiple Trapped Ions

    International Nuclear Information System (INIS)

    Yang Wenxing; Li Jiahua; Zheng Anshou

    2007-01-01

    We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximally Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglement of multiple coherent and squeezing states with desired amplitudes in a reasonable time.

  5. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  6. New perspectives on mechanisms of sound generation in songbirds

    DEFF Research Database (Denmark)

    Goller, Franz; Larsen, Ole Næsbye

    2002-01-01

    -tone mechanism similar to human phonation with the labia forming a pneumatic valve. The classical avian model proposed that vibrations of the thin medial tympaniform membranes are the primary sound generating mechanism. As a direct test of these two hypotheses we ablated the medial tympaniform membranes in two......The physical mechanisms of sound generation in the vocal organ, the syrinx, of songbirds have been investigated mostly with indirect methods. Recent direct endoscopic observation identified vibrations of the labia as the principal sound source. This model suggests sound generation in a pulse...... atmosphere) as well as direct (labial vibration during tonal sound) measurements of syringeal vibrations support a vibration-based soundgenerating mechanism even for tonal sounds....

  7. Teaching Practice generated stressors and coping mechanisms ...

    African Journals Online (AJOL)

    Teaching Practice generated stressors and coping mechanisms among student teachers in Zimbabwe. ... South African Journal of Education ... We sought to establish stressors and coping mechanisms for student teachers on Teaching Practice from a Christian-related university and a government-owned teachers' college ...

  8. Multiple Export Mechanisms for mRNAs

    Science.gov (United States)

    Delaleau, Mildred; Borden, Katherine L. B.

    2015-01-01

    Nuclear mRNA export plays an important role in gene expression. We describe the mechanisms of mRNA export including the importance of mRNP assembly, docking with the nuclear basket of the nuclear pore complex (NPC), transit through the central channel of the NPC and cytoplasmic release. We describe multiple mechanisms of mRNA export including NXF1 and CRM1 mediated pathways. Selective groups of mRNAs can be preferentially transported in order to respond to cellular stimuli. RNAs can be selected based on the presence of specific cis-acting RNA elements and binding of specific adaptor proteins. The role that dysregulation of this process plays in human disease is also discussed. PMID:26343730

  9. Availability of thermodynamic system with multiple performance parameters based on vector-universal generating function

    International Nuclear Information System (INIS)

    Cai Qi; Shang Yanlong; Chen Lisheng; Zhao Yuguang

    2013-01-01

    Vector-universal generating function was presented to analyze the availability of thermodynamic system with multiple performance parameters. Vector-universal generating function of component's performance was defined, the arithmetic model based on vector-universal generating function was derived for the thermodynamic system, and the calculation method was given for state probability of multi-state component. With the stochastic simulation of the degeneration trend of the multiple factors, the system availability with multiple performance parameters was obtained under composite factors. It is shown by an example that the results of the availability obtained by the binary availability analysis method are somewhat conservative, and the results considering parameter failure based on vector-universal generating function reflect the operation characteristics of the thermodynamic system better. (authors)

  10. The additive congruential random number generator--A special case of a multiple recursive generator

    Science.gov (United States)

    Wikramaratna, Roy S.

    2008-07-01

    This paper considers an approach to generating uniformly distributed pseudo-random numbers which works well in serial applications but which also appears particularly well-suited for application on parallel processing systems. Additive Congruential Random Number (ACORN) generators are straightforward to implement for arbitrarily large order and modulus; if implemented using integer arithmetic, it becomes possible to generate identical sequences on any machine. Previously published theoretical analysis has demonstrated that a kth order ACORN sequence approximates to being uniformly distributed in up to k dimensions, for any given k. ACORN generators can be constructed to give period lengths exceeding any given number (for example, with period length in excess of 230p, for any given p). Results of empirical tests have demonstrated that, if p is greater than or equal to 2, then the ACORN generator can be used successfully for generating double precision uniform random variates. This paper demonstrates that an ACORN generator is a particular case of a multiple recursive generator (and, therefore, also a special case of a matrix generator). Both these latter approaches have been widely studied, and it is to be hoped that the results given in the present paper will lead to greater confidence in using the ACORN generators.

  11. Disconnection as a Mechanism for Cognitive Dysfunction in Multiple Sclerosis

    Science.gov (United States)

    Dineen, R. A.; Vilisaar, J.; Hlinka, J.; Bradshaw, C. M.; Morgan, P. S.; Constantinescu, C. S.; Auer, D. P.

    2009-01-01

    Disconnection of cognitively important processing regions by injury to the interconnecting white matter provides a potential mechanism for cognitive dysfunction in multiple sclerosis. The contribution of tract-specific white matter injury to dysfunction in different cognitive domains in patients with multiple sclerosis has not previously been…

  12. Programmable pulse sequence generator with multiple output lines

    Science.gov (United States)

    Drabczyk, Hubert

    2006-10-01

    This paper presents a novel concept of pulse sequence generator and its prototype as an electronic circuit testing laboratory tool. The generator has multiple output lines and is capable of using control data defining different pulse sequences to be given to the outputs. It is also possible to use different voltage levels in output signal and switch output lines for reading data from driven system. The pulse sequence generator can be used for runtime environment simulation, as hardware tester or auxiliary tool in new designs. Important design factors were to keep cost of the tool low and allow integration with other projects by using flexible architecture. The prototype was based on universal programmer with adjustable power supply, '51 microcontroller and Altera Cyclone chip. The generator communicates witch PC computer via RS232 port. Dedicated software was developed in the course of this project, to control the tool and data transmission. The prototype confirmed the possibility to create an inexpensive multipurpose laboratory tool for programming, testing and simulation of digital devices.

  13. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    Science.gov (United States)

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.

  14. Development of Physics and Control of Multiple Forcing Mechanisms for the Alaska Tsunami Forecast Model

    Science.gov (United States)

    Bahng, B.; Whitmore, P.; Macpherson, K. A.; Knight, W. R.

    2016-12-01

    The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes or other mechanisms in either the Pacific Ocean, Atlantic Ocean or Gulf of Mexico. At the U.S. National Tsunami Warning Center (NTWC), the use of the model has been mainly for tsunami pre-computation due to earthquakes. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. The model has also been used for tsunami hindcasting due to submarine landslides and due to atmospheric pressure jumps, but in a very case-specific and somewhat limited manner. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves approach coastal waters. The shallow-water wave physics is readily applicable to all of the above tsunamis as well as to tides. Recently, the model has been expanded to include multiple forcing mechanisms in a systematic fashion, and to enhance the model physics for non-earthquake events.ATFM is now able to handle multiple source mechanisms, either individually or jointly, which include earthquake, submarine landslide, meteo-tsunami and tidal forcing. As for earthquakes, the source can be a single unit source or multiple, interacting source blocks. Horizontal slip contribution can be added to the sea-floor displacement. The model now includes submarine landslide physics, modeling the source either as a rigid slump, or as a viscous fluid. Additional shallow-water physics have been implemented for the viscous submarine landslides. With rigid slumping, any trajectory can be followed. As for meteo-tsunami, the forcing mechanism is capable of following any trajectory shape. Wind stress physics has also been implemented for the meteo-tsunami case, if required. As an example of multiple

  15. PLANAR MECHANISMS USED FOR GENERATING CURVE LINE TRANSLATION MOTION

    Directory of Open Access Journals (Sweden)

    Ovidiu ANTONESCU

    2015-05-01

    Full Text Available The curve line translation motion can be generated in the particular form of the circular translation, through mono-mobile mechanisms with articulated links of simple parallelogram type (with a fixed side or through transmission with toothed belt with a fixed wheel. Also, the circular translation can be generated through planar mechanisms with two cylindrical gears with a fixed central wheel. It is mentioned that the two cylindrical gearings of the Fergusson mechanisms are both exterior and interior.

  16. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    International Nuclear Information System (INIS)

    Chan, Yea-Kuang; Tsai, Yu-Ching

    2017-01-01

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  17. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yea-Kuang; Tsai, Yu-Ching [Institute of Nuclear Energy Research, Taoyuan City, Taiwan (China). Nuclear Engineering Division

    2017-03-15

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  18. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    International Nuclear Information System (INIS)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung

    1998-06-01

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials

  19. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-06-15

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials.

  20. Optimal planning of multiple distributed generation sources in distribution networks: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    AlRashidi, M.R., E-mail: malrash2002@yahoo.com [Department of Electrical Engineering, College of Technological Studies, Public Authority for Applied Education and Training (PAAET) (Kuwait); AlHajri, M.F., E-mail: mfalhajri@yahoo.com [Department of Electrical Engineering, College of Technological Studies, Public Authority for Applied Education and Training (PAAET) (Kuwait)

    2011-10-15

    Highlights: {yields} A new hybrid PSO for optimal DGs placement and sizing. {yields} Statistical analysis to fine tune PSO parameters. {yields} Novel constraint handling mechanism to handle different constraints types. - Abstract: An improved particle swarm optimization algorithm (PSO) is presented for optimal planning of multiple distributed generation sources (DG). This problem can be divided into two sub-problems: the DG optimal size (continuous optimization) and location (discrete optimization) to minimize real power losses. The proposed approach addresses the two sub-problems simultaneously using an enhanced PSO algorithm capable of handling multiple DG planning in a single run. A design of experiment is used to fine tune the proposed approach via proper analysis of PSO parameters interaction. The proposed algorithm treats the problem constraints differently by adopting a radial power flow algorithm to satisfy the equality constraints, i.e. power flows in distribution networks, while the inequality constraints are handled by making use of some of the PSO features. The proposed algorithm was tested on the practical 69-bus power distribution system. Different test cases were considered to validate the proposed approach consistency in detecting optimal or near optimal solution. Results are compared with those of Sequential Quadratic Programming.

  1. Optimal planning of multiple distributed generation sources in distribution networks: A new approach

    International Nuclear Information System (INIS)

    AlRashidi, M.R.; AlHajri, M.F.

    2011-01-01

    Highlights: → A new hybrid PSO for optimal DGs placement and sizing. → Statistical analysis to fine tune PSO parameters. → Novel constraint handling mechanism to handle different constraints types. - Abstract: An improved particle swarm optimization algorithm (PSO) is presented for optimal planning of multiple distributed generation sources (DG). This problem can be divided into two sub-problems: the DG optimal size (continuous optimization) and location (discrete optimization) to minimize real power losses. The proposed approach addresses the two sub-problems simultaneously using an enhanced PSO algorithm capable of handling multiple DG planning in a single run. A design of experiment is used to fine tune the proposed approach via proper analysis of PSO parameters interaction. The proposed algorithm treats the problem constraints differently by adopting a radial power flow algorithm to satisfy the equality constraints, i.e. power flows in distribution networks, while the inequality constraints are handled by making use of some of the PSO features. The proposed algorithm was tested on the practical 69-bus power distribution system. Different test cases were considered to validate the proposed approach consistency in detecting optimal or near optimal solution. Results are compared with those of Sequential Quadratic Programming.

  2. Multiple mechanisms enable invasive species to suppress native species.

    Science.gov (United States)

    Bennett, Alison E; Thomsen, Meredith; Strauss, Sharon Y

    2011-07-01

    Invasive plants represent a significant threat to ecosystem biodiversity. To decrease the impacts of invasive species, a major scientific undertaking of the last few decades has been aimed at understanding the mechanisms that drive invasive plant success. Most studies and theories have focused on a single mechanism for predicting the success of invasive plants and therefore cannot provide insight as to the relative importance of multiple interactions in predicting invasive species' success. We examine four mechanisms that potentially contribute to the success of invasive velvetgrass Holcus lanatus: direct competition, indirect competition mediated by mammalian herbivores, interference competition via allelopathy, and indirect competition mediated by changes in the soil community. Using a combination of field and greenhouse approaches, we focus on the effects of H. lanatus on a common species in California coastal prairies, Erigeron glaucus, where the invasion is most intense. We found that H. lanatus had the strongest effects on E. glaucus via direct competition, but it also influenced the soil community in ways that feed back to negatively influence E. glaucus and other native species after H. lanatus removal. This approach provided evidence for multiple mechanisms contributing to negative effects of invasive species, and it identified when particular strategies were most likely to be important. These mechanisms can be applied to eradication of H. lanatus and conservation of California coastal prairie systems, and they illustrate the utility of an integrated set of experiments for determining the potential mechanisms of invasive species' success.

  3. Fast generation of multiple resolution instances of raster data sets

    NARCIS (Netherlands)

    Arge, L.; Haverkort, H.J.; Tsirogiannis, C.P.

    2012-01-01

    In many GIS applications it is important to study the characteristics of a raster data set at multiple resolutions. Often this is done by generating several coarser resolution rasters from a fine resolution raster. In this paper we describe efficient algorithms for different variants of this

  4. Operating experience with the Harwell thermo-mechanical generators

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1980-06-01

    The Stirling-cycle thermo-mechanical generator (TMG) provides small amounts of electrical power continuously over long periods, while requiring much less fuel than other power sources running from hydrocarbon fuel or radio-isotopes. Two of these 25-watt generators, fuelled by propane, have been used to power the UK National Buoy on two successive missions. A total of more than three years experience at sea has now been accumulated. In addition, a 60-watt version has provided the power for a major lighthouse for more than a year. An early development version of the Thermo-mechanical Generator, adapted to run from the heat of a radio-isotope source, was loaded with strontium 90 titanate in October 1974 and has run continuously in the laboratory ever since. The improvements and changes found necessary in the course of 90,000 generator-hours of running time are described, and the improvements in operational performance and reliability which have resulted are outlined. (author)

  5. Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems

    Science.gov (United States)

    Cruz-Chávez, Marco Antonio

    2015-11-01

    This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.

  6. ON THE TOPOLOGY OF MECHANISMS DESIGNED FOR CURVES GENERATION

    Directory of Open Access Journals (Sweden)

    MEREUTA Elena

    2008-07-01

    Full Text Available The paper presents some mechanisms used for generating simple or complex curves. The mechanisms are shown in different positions and for some special curves the demonstrations are performed.

  7. Docosahexaenoic Acid Reduces Amyloid β Production via Multiple Pleiotropic Mechanisms*

    Science.gov (United States)

    Grimm, Marcus O. W.; Kuchenbecker, Johanna; Grösgen, Sven; Burg, Verena K.; Hundsdörfer, Benjamin; Rothhaar, Tatjana L.; Friess, Petra; de Wilde, Martijn C.; Broersen, Laus M.; Penke, Botond; Péter, Mária; Vígh, László; Grimm, Heike S.; Hartmann, Tobias

    2011-01-01

    Alzheimer disease is characterized by accumulation of the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and a reduced risk in Alzheimer disease in several epidemiological trials; however, the exact underlying molecular mechanism remains to be elucidated. Here, we systematically investigate the effect of DHA on amyloidogenic and nonamyloidogenic APP processing and the potential cross-links to cholesterol metabolism in vivo and in vitro. DHA reduces amyloidogenic processing by decreasing β- and γ-secretase activity, whereas the expression and protein levels of BACE1 and presenilin1 remain unchanged. In addition, DHA increases protein stability of α-secretase resulting in increased nonamyloidogenic processing. Besides the known effect of DHA to decrease cholesterol de novo synthesis, we found cholesterol distribution in plasma membrane to be altered. In the presence of DHA, cholesterol shifts from raft to non-raft domains, and this is accompanied by a shift in γ-secretase activity and presenilin1 protein levels. Taken together, DHA directs amyloidogenic processing of APP toward nonamyloidogenic processing, effectively reducing Aβ release. DHA has a typical pleiotropic effect; DHA-mediated Aβ reduction is not the consequence of a single major mechanism but is the result of combined multiple effects. PMID:21324907

  8. New mechanism for generating density perturbations from inflation

    International Nuclear Information System (INIS)

    Dvali, Gia; Gruzinov, Andrei; Zaldarriaga, Matias

    2004-01-01

    We propose a new mechanism to generate density perturbations in inflationary models. Spatial fluctuations in the decay rate of the inflaton field to ordinary matter lead to fluctuations in the reheating temperature. We argue that in most realistic models of inflation the coupling of the inflaton to normal matter is determined by the vacuum expectation values of fields in the theory. If those fields are light during inflation (this is a generic situation in the minimal models of supersymmetric inflation) they will fluctuate leading to density perturbations through the proposed mechanism. We show that these fluctuations could easily dominate over the ones generated through the standard mechanism. The new scenario has several consequences for inflation model building and observations. The proposed mechanism allows us to generate the observed level of density perturbations with a much lower scale of inflation and thus generically predicts a smaller level of gravitational waves. The relation between the slope of the spectrum of the produced density perturbations and the potential of the inflaton field is different from the standard relations obtained in the context of slow roll inflation. Because the field responsible for the fluctuations is not the inflaton, it can have significantly larger self-couplings and thus density perturbations could be non-Gaussian. The non-Gaussianity can be large enough to be detectable by CMB and large scale structure observations

  9. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals.

    Science.gov (United States)

    Sinha, Ravi; Verdonschot, Nico; Koopman, Bart; Rouwkema, Jeroen

    2017-10-01

    Mechanical signals offer a promising way to control cell and tissue development. It has been established that cells constantly probe their mechanical microenvironment and employ force feedback mechanisms to modify themselves and when possible, their environment, to reach a homeostatic state. Thus, a correct mechanical microenvironment (external forces and mechanical properties and shapes of cellular surroundings) is necessary for the proper functioning of cells. In vitro or in the case of nonbiological implants in vivo, where cells are in an artificial environment, addition of the adequate mechanical signals can, therefore, enable the cells to function normally as in vivo. Hence, a wide variety of approaches have been developed to apply mechanical stimuli (such as substrate stretch, flow-induced shear stress, substrate stiffness, topography, and modulation of attachment area) to cells in vitro. These approaches have not just revealed the effects of the mechanical signals on cells but also provided ways for probing cellular molecules and structures that can provide a mechanistic understanding of the effects. However, they remain lower in complexity compared with the in vivo conditions, where the cellular mechanical microenvironment is the result of a combination of multiple mechanical signals. Therefore, combinations of mechanical stimuli have also been applied to cells in vitro. These studies have had varying focus-developing novel platforms to apply complex combinations of mechanical stimuli, observing the co-operation/competition between stimuli, combining benefits of multiple stimuli toward an application, or uncovering the underlying mechanisms of their action. In general, they provided new insights that could not have been predicted from previous knowledge. We present here a review of several such studies and the insights gained from them, thereby making a case for such studies to be continued and further developed.

  10. Student-Generated Content: Enhancing Learning through Sharing Multiple-Choice Questions

    Science.gov (United States)

    Hardy, Judy; Bates, Simon P.; Casey, Morag M.; Galloway, Kyle W.; Galloway, Ross K.; Kay, Alison E.; Kirsop, Peter; McQueen, Heather A.

    2014-01-01

    The relationship between students' use of PeerWise, an online tool that facilitates peer learning through student-generated content in the form of multiple-choice questions (MCQs), and achievement, as measured by their performance in the end-of-module examinations, was investigated in 5 large early-years science modules (in physics, chemistry and…

  11. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation

    Directory of Open Access Journals (Sweden)

    Spencer Dunaway

    2018-04-01

    Full Text Available Human skin exposed to solar ultraviolet radiation (UVR results in a dramatic increase in the production of reactive oxygen species (ROS. The sudden increase in ROS shifts the natural balance toward a pro-oxidative state, resulting in oxidative stress. The detrimental effects of oxidative stress occur through multiple mechanisms that involve alterations to proteins and lipids, induction of inflammation, immunosuppression, DNA damage, and activation of signaling pathways that affect gene transcription, cell cycle, proliferation, and apoptosis. All of these alterations promote carcinogenesis and therefore, regulation of ROS levels is critical to the maintenance of normal skin homeostasis. Several botanical products have been found to exhibit potent antioxidant capacity and the ability to counteract UV-induced insults to the skin. These natural products exert their beneficial effects through multiple pathways, including some known to be negatively affected by solar UVR. Aging of the skin is also accelerated by UVR exposure, in particular UVA rays that penetrate deep into the epidermis and the dermis where it causes the degradation of collagen and elastin fibers via oxidative stress and activation of matrix metalloproteinases (MMPs. Because natural compounds are capable of attenuating some of the UV-induced aging effects in the skin, increased attention has been generated in the area of cosmetic sciences. The focus of this review is to cover the most prominent phytoproducts with potential to mitigate the deleterious effects of solar UVR and suitability for use in topical application.

  12. The Effects of Multiple Sets of Squats and Jump Squats on Mechanical Variables.

    Science.gov (United States)

    Rossetti, Michael L; Munford, Shawn N; Snyder, Brandon W; Davis, Shala E; Moir, Gavin L

    2017-07-28

    The mechanical responses to two non-ballistic squat and two ballistic jump squat protocols performed over multiple sets were investigated. One protocol from each of the two non-ballistic and ballistic conditions incorporated a pause between the eccentric and concentric phases of the movements in order to determine the influence of the coupling time on the mechanical variables and post-activation potentiation (PAP). Eleven men (age: 21.9 ± 1.8 years; height: 1.79 ± 0.05 m; mass: 87.0 ± 7.4 kg) attended four sessions where they performed multiple sets of squats and jump squats with a load equivalent to 30% 1-repeititon maximum under one of the following conditions: 1) 3 × 4 repetitions of non-ballistic squats (30N-B); 2) 3 × 4 repetitions of non-ballistic squats with a 3-second pause between the eccentric and concentric phases of each repetition (30PN-B); 3) 3 × 4 repetitions of ballistic jump squats (30B); 4) 3 × 4 repetitions of ballistic jump squats with a 3-second pause between the eccentric and concentric phases of each repetition (30PB). Force plates were used to calculate variables including average vertical velocity, average vertical force (GRF), and average power output (PO). Vertical velocities during the ballistic conditions were significantly greater than those attained during the non-ballistic conditions (mean differences: 0.21 - 0.25 m/s, p0.05). Ballistic jump squats may be an effective exercise for developing PO given the high velocities and forces generated in these exercises. Furthermore, the completion of multiple sets of jump squats may induce PAP to enhance PO. The coupling times between the eccentric and concentric phases of the jump squats should be short in order to maximize the GRF and PO across the sets.

  13. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan (China); Cao, Hui [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hongjie [Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL (United States); Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiang, Ming, E-mail: xiangming@mails.tjmu.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  14. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    International Nuclear Information System (INIS)

    Wang, Jun; Cao, Hui; Wang, Hongjie; Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli; Xiang, Ming

    2015-01-01

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4 + CD25 + Foxp3 + regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation

  15. Mechanisms of elastic wave generation in solids by ion impact

    International Nuclear Information System (INIS)

    Deemer, B.; Murphy, J.; Claytor, T.

    1990-01-01

    This study is directed at understanding the mechanisms of acoustic signal generation by modulated beams of energetic ions as a function of ion energy. Interaction of ions with solids initiates a range of processes including sputtering, ion implantation, ionization, both internal and external, as well as thermal deposition in the solid. Accumulated internal stress also occurs by generation of dislocations resulting from, inelastic nuclear scattering of the incident ion beam. With respect to elastic wave generation, two potential mechanisms are thermoelastic induced stress and momentum transfer. The latter process includes contributions of momentum transfer from the incident beam and from ions ejected via sputtering. Other aspects of the generation process include the potential for shock wave generation since the mean particle velocity for a wide range of ion energies exceeds the velocity of sound in solids. This study seeks to distinguish the contribution of these mechanisms by studying the signature, angular distribution and energy dependence of the elastic wave response in the time domain and to use this information to understand technologically important processes such as implantation and sputtering

  16. A simple method for generating exactly solvable quantum mechanical potentials

    CERN Document Server

    Williams, B W

    1993-01-01

    A simple transformation method permitting the generation of exactly solvable quantum mechanical potentials from special functions solving second-order differential equations is reviewed. This method is applied to Gegenbauer polynomials to generate an attractive radial potential. The relationship of this method to the determination of supersymmetric quantum mechanical superpotentials is discussed, and the superpotential for the radial potential is also derived. (author)

  17. Multiple sclerosis : Mechanisms of myelin phagocytosis and lesion expansion

    NARCIS (Netherlands)

    Hendrickx, D.A.E.

    2018-01-01

    Multiple sclerosis (MS) is characterized by immune activation and focal demyelination in the central nervous system. The aim of this thesis was to gain more insight into the mechanisms of myelin phagocytosis by resident microglia and infiltrating macrophages. We first evaluated the expression of the

  18. Port-Hamiltonian approaches to motion generation for mechanical systems

    NARCIS (Netherlands)

    Sakai, Satoru; Stramigioli, Stefano

    This paper gives new motion generation methods for mechanical port-Hamiltonian systems. First, we propose a generation method based on an asymptotic stabilization method without damping assignment. This asymptotic stabilization method preserves the Hamiltonian structure in the closed-loop system

  19. A method for the generation of random multiple Coulomb scattering angles

    International Nuclear Information System (INIS)

    Campbell, J.R.

    1995-06-01

    A method for the random generation of spatial angles drawn from non-Gaussian multiple Coulomb scattering distributions is presented. The method employs direct numerical inversion of cumulative probability distributions computed from the universal non-Gaussian angular distributions of Marion and Zimmerman. (author). 12 refs., 3 figs

  20. Collaboration Mechanism for Equipment Instruction of Multiple Energy Systems

    Science.gov (United States)

    Wang, Dong; Wang, Tuo; Wang, Qi; Zhang, Zhao; Zhao, Mingyu; Wang, Yinghui

    2018-01-01

    When multiple energy systems execute optimization instructions simultaneously, and the same equipment is Shared, the instruction conflict may occur. Aiming at the above problems, taking into account the control objectives of each system, the characteristics of different systems, such as comprehensive clean energy, energy efficiency, and peak filling, etc., designed the instruction coordination mechanism for the daemon. This mechanism mainly acts on the main station of the system, and form a final optimization instruction. For some specific scenarios, the collaboration mechanism of unlocking the terminal is supplemented. The mechanism determines the specific execution instructions based on the arrival time of the instruction. Finally, the experiment in Tianjin eco-city shows that this algorithm can meet the instruction and collaboration requirements of multi-energy systems, and ensure the safe operation of the equipment.

  1. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang; Zhang, Jiaming; Thoroddsen, Sigurdur T

    2013-01-01

    of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions

  2. Multiple-shock initiation via statistical crack mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dienes, J.K.; Kershner, J.D.

    1998-12-31

    Statistical Crack Mechanics (SCRAM) is a theoretical approach to the behavior of brittle materials that accounts for the behavior of an ensemble of microcracks, including their opening, shear, growth, and coalescence. Mechanical parameters are based on measured strain-softening behavior. In applications to explosive and propellant sensitivity it is assumed that closed cracks act as hot spots, and that the heating due to interfacial friction initiates reactions which are modeled as one-dimensional heat flow with an Arrhenius source term, and computed in a subscale grid. Post-ignition behavior of hot spots is treated with the burn model of Ward, Son and Brewster. Numerical calculations using SCRAM-HYDROX are compared with the multiple-shock experiments of Mulford et al. in which the particle velocity in PBX 9501 is measured with embedded wires, and reactions are initiated and quenched.

  3. Modeling and Generating Strategy Games Mechanics

    DEFF Research Database (Denmark)

    Mahlmann, Tobias

    of the game is, how players may manipulate the game world, etc. We present the Strategy Games Description Language (SGDL), a tree-based approach to model the game mechanics of strategy games. SGDL allows game designers to rapid prototype their game ideas with the help of our customisable game engine. We...... their games to individual players’ preferences by creating game content adaptively to how the player plays (and likes) a game. W we extend the notion of “procedural game content generation” by “game mechanics”. Game mechanics herein refer to the way that objects in a game may interact, what the goal...... present several example games to demonstrate the capabilities of the language and how to model common strategy game elements. Furthermore, we present methods to procedurally generate and evaluate game mechanics modelled in SGDL in terms of enjoyability. We argue that an evolutionary process can be used...

  4. Variate generation for probabilistic fracture mechanics and fitness-for-service studies

    International Nuclear Information System (INIS)

    Walker, J.R.

    1987-01-01

    Atomic Energy of Canada Limited is conducting studies in Probabilistic Fracture Mechanics. These studies are being conducted as part of a fitness-for-service programme in support of CANDU reactors. The Monte Carlo analyses, which form part of the Probabilistic Fracture Mechanics studies, require that variates can be sampled from probability density functions. Accurate pseudo-random numbers are necessary for accurate variate generation. This report details the principles of variate generation, and describes the production and testing of pseudo-random numbers. A new algorithm has been produced for the correct performance of the lattice test for the independence of pseudo-random numbers. Two new pseudo-random number generators have been produced. These generators have excellent randomness properties and can be made fully machine-independent. Versions, in FORTRAN, for VAX and CDC computers are given. Accurate and efficient algorithms for the generation of variates from the specialized probability density functions of Probabilistic Fracture Mechanics are given. 38 refs

  5. Efficient thermo-mechanical generation of electricity from the heat of radioisotopes

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.; Yeats, F.W.

    1975-01-01

    The thermomechanical generator uses a thermomechanical oscillator to convert heat efficiently into a mechanical oscillation which in turn excites a suitable transducer to generate alternating electricity. The thermomechanical oscillator used is based on the Stirling cycle, but avoids the need for rotary motion and for sliding pistons by having a mechanically-resonant, spring-suspended displacer, and by using an oscillating metal diaphragm to provide the mechanical output. The diaphragm drives an alternator consisting of a spring-suspended permanent magnet oscillating between fixed pole pieces which carry the electrical power output windings. Because a thermomechanical generator is much more efficient than a thermo-electric generator at comparable temperatures, it is particularly suitable for use with a radioisotope heat source. The amounts of radioisotope and of shielding required are both greatly reduced. A machine heated by radioisotopes and delivering 10.7W ac at 80Hz began operating in October, 1974. Operating experience with this machine is reported, and these results, together with those obtained with higher-powered machines heated by other means, are used to calculate characteristics and performance of thermo-mechanical radioisotope generators capable of using heat sources such as the waste-management 90 Sr radioisotope sources becoming available from the US nuclear waste management programme. A design to use one of these heat sources in a 52-W underwater generator is described

  6. Mechanism of the free charge carrier generation in the dielectric breakdown

    Science.gov (United States)

    Rahim, N. A. A.; Ranom, R.; Zainuddin, H.

    2017-12-01

    Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.

  7. Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities

    Science.gov (United States)

    Elizondo-Decanini, Juan M

    2014-11-18

    A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

  8. Mechanics of torque generation in the bacterial flagellar motor.

    Science.gov (United States)

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  9. Generation mechanism and properties of plasma double layers

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Lozneanu, E.

    1985-01-01

    The generation mechanism of plasma double layers is studied surveying the results of some experiments. The main mechanism is the same in the cases of collisional and collisionless plasmas. Inelastic quantum collision processes taking place between plasma electrons, accelerated in a local field up to near the same oriented velocity and the neutral particles of the background gases create the necessary conditions for double layer formation. (D.Gy.)

  10. Business environment change and decision making mechanism of nuclear generators

    International Nuclear Information System (INIS)

    Yamashita, Hiroko

    2010-01-01

    Change magnitude of business environment for Japanese nuclear generators is significant. It is rapidly growing in the last several years. There are possibilities that the change might impact to management model of nuclear generators. In the paper, the impact to management model, especially, decision making mechanism of the generators is discussed. (author)

  11. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.

    2009-06-01

    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  12. Multiple optical code-label processing using multi-wavelength frequency comb generator and multi-port optical spectrum synthesizer.

    Science.gov (United States)

    Moritsuka, Fumi; Wada, Naoya; Sakamoto, Takahide; Kawanishi, Tetsuya; Komai, Yuki; Anzai, Shimako; Izutsu, Masayuki; Kodate, Kashiko

    2007-06-11

    In optical packet switching (OPS) and optical code division multiple access (OCDMA) systems, label generation and processing are key technologies. Recently, several label processors have been proposed and demonstrated. However, in order to recognize N different labels, N separate devices are required. Here, we propose and experimentally demonstrate a large-scale, multiple optical code (OC)-label generation and processing technology based on multi-port, a fully tunable optical spectrum synthesizer (OSS) and a multi-wavelength electro-optic frequency comb generator. The OSS can generate 80 different OC-labels simultaneously and can perform 80-parallel matched filtering. We also demonstrated its application to OCDMA.

  13. Multiple-walled BN nanotubes obtained with a mechanical alloying technique

    International Nuclear Information System (INIS)

    Rosas, G.; Sistos, J.; Ascencio, J.A.; Medina, A.; Perez, R.

    2005-01-01

    An experimental method to obtain multiple-walled nanotubes of BN using low energy is presented. The method is based on the use of mechanical alloying techniques with elemental boron powders and nitrogen gas mixed in an autoclave at room temperature. The chemical and structural characteristics of the multiple-walled nanotubes were obtained using different techniques, such as X-ray diffraction, transmission electron microscopy, EELS microanalysis, high-resolution electron microscopy images and theoretical simulations based on the multisliced approach of the electron diffraction theory. This investigation clearly illustrates the production of multiple-wall BN nanotubes at room temperature. These results open up a new kind of synthesis method with low expense and important perspectives for use in large-quantity production. (orig.)

  14. Multiple exciton generation in chiral carbon nanotubes: Density functional theory based computation

    Science.gov (United States)

    Kryjevski, Andrei; Mihaylov, Deyan; Kilina, Svetlana; Kilin, Dmitri

    2017-10-01

    We use a Boltzmann transport equation (BE) to study time evolution of a photo-excited state in a nanoparticle including phonon-mediated exciton relaxation and the multiple exciton generation (MEG) processes, such as exciton-to-biexciton multiplication and biexciton-to-exciton recombination. BE collision integrals are computed using Kadanoff-Baym-Keldysh many-body perturbation theory based on density functional theory simulations, including exciton effects. We compute internal quantum efficiency (QE), which is the number of excitons generated from an absorbed photon in the course of the relaxation. We apply this approach to chiral single-wall carbon nanotubes (SWCNTs), such as (6,2) and (6,5). We predict efficient MEG in the (6,2) and (6,5) SWCNTs within the solar spectrum range starting at the 2Eg energy threshold and with QE reaching ˜1.6 at about 3Eg, where Eg is the electronic gap.

  15. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  16. Bandwidth increasing mechanism by introducing a curve fixture to the cantilever generator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weiqun, E-mail: weiqunliu@home.swjtu.edu.cn; Liu, Congzhi; Ren, Bingyu; Zhu, Qiao; Hu, Guangdi [School of Mechanical Engineering, Southwest Jiaotong University, 610031 Chengdu (China); Yang, Weiqing [School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu (China)

    2016-07-25

    A nonlinear wideband generator architecture by clamping the cantilever beam generator with a curve fixture is proposed. Devices with different nonlinear stiffness can be obtained by properly choosing the fixture curve according to the design requirements. Three available generator types are presented and discussed for polynomial curves. Experimental investigations show that the proposed mechanism effectively extends the operation bandwidth with good power performance. Especially, the simplicity and easy feasibility allow the mechanism to be widely applied for vibration generators in different scales and environments.

  17. Second-Generation Non-Covalent NAAA Inhibitors are Protective in a Model of Multiple Sclerosis.

    Science.gov (United States)

    Migliore, Marco; Pontis, Silvia; Fuentes de Arriba, Angel Luis; Realini, Natalia; Torrente, Esther; Armirotti, Andrea; Romeo, Elisa; Di Martino, Simona; Russo, Debora; Pizzirani, Daniela; Summa, Maria; Lanfranco, Massimiliano; Ottonello, Giuliana; Busquet, Perrine; Jung, Kwang-Mook; Garcia-Guzman, Miguel; Heim, Roger; Scarpelli, Rita; Piomelli, Daniele

    2016-09-05

    Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are endogenous lipid mediators that suppress inflammation. Their actions are terminated by the intracellular cysteine amidase, N-acylethanolamine acid amidase (NAAA). Even though NAAA may offer a new target for anti-inflammatory therapy, the lipid-like structures and reactive warheads of current NAAA inhibitors limit the use of these agents as oral drugs. A series of novel benzothiazole-piperazine derivatives that inhibit NAAA in a potent and selective manner by a non-covalent mechanism are described. A prototype member of this class (8) displays high oral bioavailability, access to the central nervous system (CNS), and strong activity in a mouse model of multiple sclerosis (MS). This compound exemplifies a second generation of non-covalent NAAA inhibitors that may be useful in the treatment of MS and other chronic CNS disorders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fast generation of multiple resolution instances of raster data sets

    DEFF Research Database (Denmark)

    Arge, Lars; Haverkort, Herman; Tsirogiannis, Constantinos

    2012-01-01

    In many GIS applications it is important to study the characteristics of a raster data set at multiple resolutions. Often this is done by generating several coarser resolution rasters from a fine resolution raster. In this paper we describe efficient algorithms for different variants of this prob......In many GIS applications it is important to study the characteristics of a raster data set at multiple resolutions. Often this is done by generating several coarser resolution rasters from a fine resolution raster. In this paper we describe efficient algorithms for different variants...... in the main memory of the computer. We also provide two algorithms that solve this problem in external memory, that is when the input raster is larger than the main memory. The first external algorithm is very easy to implement and requires O(sort(N)) data block transfers from/to the external memory....... For this variant we describe an algorithm that runs in (U logN) time in internal memory, where U is the size of the output. We show how this algorithm can be adapted to perform efficiently in the external memory using O(sort(U)) data transfers from the disk. We have also implemented two of the presented algorithms...

  19. Authority inside the firm: multiple mechanisms of coordination

    OpenAIRE

    Bernard Baudry; Bruno Tinel

    2004-01-01

    In the last twenty years, through a growing awareness of contractual incompleteness, the concept of authority has regained primacy in the analysis of the employment relationship. This article pursues two goals. First, we assess the famous controversy between Coase and Alchian and Demsetz via an analysis of the foundations of intra-firm authority. Second, we argue that intra-firm authority cannot hinge on a single variable and, to the contrary, rests on multiple mechanisms. The employer's auth...

  20. Multiple Sclerosis in the Contemporary Age: Understanding the Millennial Patient with Multiple Sclerosis to Create Next-Generation Care.

    Science.gov (United States)

    Hansen, Madison R; Okuda, Darin T

    2018-02-01

    The average age of onset of multiple sclerosis (MS) is between 20 and 40 years of age. Therefore, most new patients diagnosed with MS within the next 10 to 15 years will be from the millennial generation, representing those born between 1982 and 2000. Certain preferences and trends of this contemporary generation will present new challenges to the MS physician and effective MS care. By first understanding these challenges, relevant and successful solutions can be created to craft a system of care that best benefits the millennial patient with MS. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Direct and indirect stabilisation mechanisms in multiple electron capture

    Energy Technology Data Exchange (ETDEWEB)

    Roncin, P. [Paris-11 Univ., 91 - Orsay (France). Lab. de Collisions Atomiques et Moleculaires; Barat, M. [Paris-11 Univ., 91 - Orsay (France). Lab. de Collisions Atomiques et Moleculaires; Gaboriaud, M.N. [Paris-11 Univ., 91 -Orsay (France). Lab. de Collisions Atomiques et Moleculaires; Szilagyi, Z.S. [Paris-11 Univ., 91 - Orsay (France). Lab. de Collisions Atomiques et Moleculaires; Kazansky, A.K. [Paris-11 Univ., 91 - Orsay (France). Lab. de Collisions Atomiques et Moleculaires

    1995-05-01

    During the last years both experimental and theoretical works have focused on the problem of the stabilisation of two excited electrons on the projectile. In this contribution we would like to give experimental examples of the two suggested mechanisms and their extension to multiple electron capture. Our data are discussed together with those obtained with other experimental techniques and with theoretical predictions. (orig./WL).

  2. Generation and application of tri-dimensional animation in mechanical design

    International Nuclear Information System (INIS)

    Liu Li

    2003-01-01

    The mechanical design can be understood vividly and accurately and can be improved in time when there is any mistake if it is made in tri-dimensional animation. The author introduces the generation process and methods for animation in mechanical design with an example

  3. The electricity generation adequacy problem: Assessing dynamic effects of capacity remuneration mechanisms

    International Nuclear Information System (INIS)

    Hary, Nicolas; Rious, Vincent; Saguan, Marcelo

    2016-01-01

    Following liberalization reforms, the ability of power markets to provide satisfactory incentives for capacity investments has become a major concern. In particular, current energy markets can exhibit a phenomenon of investment cycles, which generate phases of under and over-capacity, and hence additional costs and risks for generation adequacy. To cope with these issues, new mechanisms, called capacity remuneration mechanisms (CRM), have been (or will be) implemented. This paper assesses the dynamic effects of two CRMs, the capacity market and the strategic reserve mechanism, and studies to what extent they can reduce the investment cycles. Generation costs and shortage costs of both mechanisms are also compared to conclude on their effectivity and economic efficiency. A simulation model, based on system dynamics, is developed to study the functioning of both CRMs and the related investment decisions. The results highlight the benefits of deploying CRMs to solve the adequacy issue: shortages are strongly reduced compared to an energy-only market. Besides, the capacity market appears to be more beneficial, since it experiences fewer shortages and generation costs are lower. These comparisons can be used by policy makers (in particular in Europe, where these two CRMs are mainly debated) to determine which CRM to adopt. - Highlights: •A study of the dynamic effects of CRMs on generation investments is provided. •Capacity market and strategic reserve mechanism are compared. •Both CRMs reduce the cyclical tendencies prone to appear in energy-only market. •The capacity market experiences fewer shortages and generation costs are lower.

  4. Mechanical design of a sodium heated steam generator

    International Nuclear Information System (INIS)

    Chetal, S.C.

    1975-01-01

    FBTR steam generator is a once through type unit consisting of four 12.5 MW thermal modules generating a total of 74 tons per hour of steam at 125 bar and 480 0 C. This paper outlines the mechanical design of such type of steam generator with emphasis on special design problems associated with this type of sodium to water steam heat exchanger, namely, thermal cycling of transition zone where nucleate boiling changes over to film boiling, application of pressure vessel design criteria for transient pressures, thermal stress evaluation resulting from differential expansion between shell and tube in this typical configuration, sodium headers support design, thermal sleeve, design, thermal shock analysis in thick tubes, thermal stress resulting from stratification and stability of expansion bends against vibration. Some of the possible design changes for the future large size steam generator are outlined. (author)

  5. Generation of synthetic time histories compatible with multiple-damping design response spectra

    International Nuclear Information System (INIS)

    Lilhanand, K.; Tseng, W.S.

    1987-01-01

    Seismic design of nuclear power plants as currently practiced requires time history analyses be performed to generate floor response spectra for seismic qualification of piping, equipment, and components. Since design response spectra are normally prescribed in the form of smooth spectra, the generation of synthetic time histories whose response spectra closely match the ''target'' design spectra of multiple damping values, is often required for the seismic time history analysis purpose. Various methods of generation of synthetic time histories compatible with target response spectra have been proposed in the literature. Since the mathematical problem of determining a time history from a given set of response spectral values is not unique, an exact solution is not possible, and all the proposed methods resort to some forms of approximate solutions. In this paper, a new iteration scheme, is described which effectively removes the difficulties encountered by the existing methods. This new iteration scheme can not only improve the accuracy of spectrum matching for a single-damping target spectrum, but also automate the spectrum matching for multiple-damping target spectra. The applicability and limitations as well as the method adopted to improve the numerical stability of this new iteration scheme are presented. The effectiveness of this new iteration scheme is illustrated by two example applications

  6. Multiplicative congruential generators, their lattice structure, its relation to lattice-sublattice transformations and applications in crystallography

    Science.gov (United States)

    Hornfeck, W.; Harbrecht, B.

    2009-11-01

    An analysis of certain types of multiplicative congruential generators - otherwise known for their application to the sequential generation of pseudo-random numbers - reveals their relation to lattice-sublattice transformations and the coordinate description of crystal structures.

  7. Mechanisms of nanotoxicity: generation of reactive oxygen species.

    Science.gov (United States)

    Fu, Peter P; Xia, Qingsu; Hwang, Huey-Min; Ray, Paresh C; Yu, Hongtao

    2014-03-01

    Nanotechnology is a rapidly developing field in the 21(st) century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS). Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium. Copyright © 2014. Published by Elsevier B.V.

  8. Mechanisms of nanotoxicity: Generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Peter P. Fu

    2014-03-01

    Full Text Available Nanotechnology is a rapidly developing field in the 21st century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS. Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium.

  9. Effect of multiple repairs in girth welds of pipelines on the mechanical properties

    International Nuclear Information System (INIS)

    Vega, O.E.; Hallen, J.M.; Villagomez, A.; Contreras, A.

    2008-01-01

    This work presents the results of multiple weld repairs in the same area in seamless API X-52 microalloyed steel pipe. Four conditions of shielded metal arc welding repairs and one as-welded specimen of the girth weld were characterized to determine changes in the microstructure, grain size in the heat affected zone, and to evaluate their effect on the mechanical properties of the weld joints. The mechanical properties by means of tension tests, Charpy-V impact resistance and Vickers hardness of the welds were analyzed. The results indicate that significant changes are not generated in the microstructural constituents of the heat affected zone. Grain growth in the heat affected zone at the specimen mid-thickness with the number of repairs was observed. Tensile strength of the weld joints meets the requirement of the API 1104 standard even after the fourth weld repair. Significant reduction in Charpy-V impact resistance with the number of weld repairs was found when the notch location was in the intersection of the fusion line with the specimen mid-thickness. A significant increase in the Vickers hardness of the heat affected zone occurred after the first repair and a gradual decrease in the Vickers hardness occurred as the number of repairs increases

  10. A generation mechanism for chorus emission

    Directory of Open Access Journals (Sweden)

    V. Y. Trakhtengerts

    1999-01-01

    Full Text Available A chorus generation mechanism is discussed, which is based on interrelation of ELF/VLF noise-like and discrete emissions under the cyclotron wave-particle interactions. A natural ELF/VLF noise radiation is excited by the cyclotron instability mechanism in ducts with enhanced cold plasma density or at the plasmapause. This process is accompanied by a step-like deformation of the energetic electron distribution function in the velocity space, which is situated at the boundary between resonant and nonresonant particles. The step leads to the strong phase correlation of interacting particles and waves and to a new backward wave oscillator (BWO regime of wave generation, when an absolute cyclotron instability arises at the central cross section of the geomagnetic trap, in the form of a succession of discrete signals with growing frequency inside each element. The dynamical spectrum of a separate element is formed similar to triggered ELF/VLF emission, when the strong wavelet starts from the equatorial plane. The comparison is given of the model developed using some satellite and ground-based data. In particular, the appearance of separate groups of chorus signals with a duration 2-10 s can be connected with the preliminary stage of the step formation. BWO regime gives a succession period smaller than the bounce period of energetic electrons between the magnetic mirrors and can explain the observed intervals between chorus elements.Key words. Magnetospheric physics (Energetic particles · trapped. Space plasma physics (wave-particle interactions; waves and instabilities

  11. Automatic Generation System of Multiple-Choice Cloze Questions and its Evaluation

    Directory of Open Access Journals (Sweden)

    Takuya Goto

    2010-09-01

    Full Text Available Since English expressions vary according to the genres, it is important for students to study questions that are generated from sentences of the target genre. Although various questions are prepared, it is still not enough to satisfy various genres which students want to learn. On the other hand, when producing English questions, sufficient grammatical knowledge and vocabulary are needed, so it is difficult for non-expert to prepare English questions by themselves. In this paper, we propose an automatic generation system of multiple-choice cloze questions from English texts. Empirical knowledge is necessary to produce appropriate questions, so machine learning is introduced to acquire knowledge from existing questions. To generate the questions from texts automatically, the system (1 extracts appropriate sentences for questions from texts based on Preference Learning, (2 estimates a blank part based on Conditional Random Field, and (3 generates distracters based on statistical patterns of existing questions. Experimental results show our method is workable for selecting appropriate sentences and blank part. Moreover, our method is appropriate to generate the available distracters, especially for the sentence that does not contain the proper noun.

  12. A mechanical characterisation on multiple timescales of electroconductive magnetorheological elastomers

    Science.gov (United States)

    Schümann, M.; Morich, J.; Kaufhold, T.; Böhm, V.; Zimmermann, K.; Odenbach, S.

    2018-05-01

    Magnetorheological elastomers are a type of smart hybrid material which combines elastic properties of a soft elastomer matrix with magnetic properties of magnetic micro particles. This leads to a material with magnetically controllable mechanical properties of which the magnetorheological effect is the best known. The addition of electroconductive particles to the polymer mix adds electrical properties to the material behaviour. The resulting electrical resistance of the sample can be manipulated by external magnetic fields and mechanical loads. This results in a distinct interplay of mechanical, electrical and magnetic effects with a highly complex time behaviour. In this paper a mechanical characterisation on multiple time scales was conducted to get an insight on the short and long-term electrical and mechanical behaviour of this novel material. The results show a complex resistivity behaviour on several timescales, sensitive to magnetic fields and strain velocity. The observed material exhibits fatigue and relaxation behaviour, whereas the magnetorheological effect appears not to interfere with the piezoresistive properties.

  13. Effect of mechanical vibration generated in oscillating/vibratory ...

    African Journals Online (AJOL)

    Background: Whole body vibration (WBV) exercise has been used in health sciences. Authors have reported that changes on the concentration of plasma biomarkers could be associated with the WBV effects. The aim of this investigation is to assess the consequences of exposition of 25 Hz mechanical vibration generated ...

  14. Multiple single-board-computer system for the KEK positron generator control

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Abe, Isamu; Enomoto, Atsushi; Otake, Yuji; Urano, Takao

    1986-01-01

    The KEK positron generator is controlled by means of a distributed microprocessor network. The control system is composed of three kinds of equipment: device controllers for the linac equipment, operation management stations and a communication network. Individual linac equipment has its own microprocessor-based controller. A multiple single board computer (SBC) system is used for communication control and for equipment surveillance; it has a database containing communication and linac equipment status information. The linac operation management that should be the most soft part in the control system, is separated from the multiple SBC system and is carried out by work-stations. The principle that every processor executes only one task is maintained throughout the control system. This made the software architecture very simple. (orig.)

  15. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    International Nuclear Information System (INIS)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-01-01

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  16. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)

    2013-06-15

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  17. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design, modeling and experiments

    Science.gov (United States)

    Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi

    2018-01-01

    Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.

  18. A generation mechanism for chorus emission

    Directory of Open Access Journals (Sweden)

    V. Y. Trakhtengerts

    Full Text Available A chorus generation mechanism is discussed, which is based on interrelation of ELF/VLF noise-like and discrete emissions under the cyclotron wave-particle interactions. A natural ELF/VLF noise radiation is excited by the cyclotron instability mechanism in ducts with enhanced cold plasma density or at the plasmapause. This process is accompanied by a step-like deformation of the energetic electron distribution function in the velocity space, which is situated at the boundary between resonant and nonresonant particles. The step leads to the strong phase correlation of interacting particles and waves and to a new backward wave oscillator (BWO regime of wave generation, when an absolute cyclotron instability arises at the central cross section of the geomagnetic trap, in the form of a succession of discrete signals with growing frequency inside each element. The dynamical spectrum of a separate element is formed similar to triggered ELF/VLF emission, when the strong wavelet starts from the equatorial plane. The comparison is given of the model developed using some satellite and ground-based data. In particular, the appearance of separate groups of chorus signals with a duration 2-10 s can be connected with the preliminary stage of the step formation. BWO regime gives a succession period smaller than the bounce period of energetic electrons between the magnetic mirrors and can explain the observed intervals between chorus elements.

    Key words. Magnetospheric physics (Energetic particles · trapped. Space plasma physics (wave-particle interactions; waves and instabilities

  19. Grid-Connected Distributed Generation: Compensation Mechanism Basics

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, Alexandra Y [National Renewable Energy Laboratory (NREL), Golden, CO (United States); ; ; ; Zinaman, Owen R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-02

    This short report defines compensation mechanisms for grid-connected, behind-the-meter distributed generation (DG) systems as instruments that comprise three core elements: (1) metering and billing arrangements, (2) sell rate design, and (3) retail rate design. This report describes metering and billing arrangements, with some limited discussion of sell rate design. We detail the three possible arrangements for metering and billing of DG: net energy metering (NEM); buy all, sell all; and net billing.

  20. MP CBM-Z V1.0: design for a new CBM-Z gas-phase chemical mechanism architecture for next generation processors

    OpenAIRE

    Wang, Hui; Lin, Junmin; Wu, Qizhong; Chen, Huansheng; Tang, Xiao; Wang, Zifa; Chen, Xueshun; Cheng, Huaqiong; Wang, Lanning

    2018-01-01

    Precise and rapid air quality simulation and forecasting are limited by the computation performance of the air quality model, and the gas-phase chemistry module is the most time-consuming function in the air quality model. In this study, we designed a new framework for the widely used Carbon Bond Mechanism Z (CBM-Z) gas-phase chemical kinetics kernel to adapt the Single Instruction Multiple Data (SIMD) technology in the next-generation processors for improving its calculation performance. The...

  1. A multiple objective mixed integer linear programming model for power generation expansion planning

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, C. Henggeler; Martins, A. Gomes [INESC-Coimbra, Coimbra (Portugal); Universidade de Coimbra, Dept. de Engenharia Electrotecnica, Coimbra (Portugal); Brito, Isabel Sofia [Instituto Politecnico de Beja, Escola Superior de Tecnologia e Gestao, Beja (Portugal)

    2004-03-01

    Power generation expansion planning inherently involves multiple, conflicting and incommensurate objectives. Therefore, mathematical models become more realistic if distinct evaluation aspects, such as cost and environmental concerns, are explicitly considered as objective functions rather than being encompassed by a single economic indicator. With the aid of multiple objective models, decision makers may grasp the conflicting nature and the trade-offs among the different objectives in order to select satisfactory compromise solutions. This paper presents a multiple objective mixed integer linear programming model for power generation expansion planning that allows the consideration of modular expansion capacity values of supply-side options. This characteristic of the model avoids the well-known problem associated with continuous capacity values that usually have to be discretized in a post-processing phase without feedback on the nature and importance of the changes in the attributes of the obtained solutions. Demand-side management (DSM) is also considered an option in the planning process, assuming there is a sufficiently large portion of the market under franchise conditions. As DSM full costs are accounted in the model, including lost revenues, it is possible to perform an evaluation of the rate impact in order to further inform the decision process (Author)

  2. Generation maintenance scheduling based on multiple ob jectives and their relationship analysis

    Institute of Scientific and Technical Information of China (English)

    Jun-peng ZHAN; Chuang-xin GUO; Qing-hua WU; Lu-liang ZHANG; Hong-jun FU

    2014-01-01

    In a market environment of power systems, each producer pursues its maximal profit while the independent system operator is in charge of the system reliability and the minimization of the total generation cost when generating the generation maintenance scheduling (GMS). Thus, the GMS is inherently a multi-objective optimization problem as its objectives usually conflict with each other. This paper proposes a multi-objective GMS model in a market environment which includes three types of objectives, i.e., each producer’s profit, the system reliability, and the total generation cost. The GMS model has been solved by the group search optimizer with multiple producers (GSOMP) on two test systems. The simulation results show that the model is well solved by the GSOMP with a set of evenly distributed Pareto-optimal solutions obtained. The simulation results also illustrate that one producer’s profit conflicts with another one’s, that the total generation cost does not conflict with the profit of the producer possessing the cheapest units while the total generation cost conflicts with the other producers’ profits, and that the reliability objective conflicts with the other objectives.

  3. Mechanism of chimera formation during the Multiple Displacement Amplification reaction

    Directory of Open Access Journals (Sweden)

    Stockwell Timothy B

    2007-04-01

    Full Text Available Abstract Background Multiple Displacement Amplification (MDA is a method used for amplifying limiting DNA sources. The high molecular weight amplified DNA is ideal for DNA library construction. While this has enabled genomic sequencing from one or a few cells of unculturable microorganisms, the process is complicated by the tendency of MDA to generate chimeric DNA rearrangements in the amplified DNA. Determining the source of the DNA rearrangements would be an important step towards reducing or eliminating them. Results Here, we characterize the major types of chimeras formed by carrying out an MDA whole genome amplification from a single E. coli cell and sequencing by the 454 Life Sciences method. Analysis of 475 chimeras revealed the predominant reaction mechanisms that create the DNA rearrangements. The highly branched DNA synthesized in MDA can assume many alternative secondary structures. DNA strands extended on an initial template can be displaced becoming available to prime on a second template creating the chimeras. Evidence supports a model in which branch migration can displace 3'-ends freeing them to prime on the new templates. More than 85% of the resulting DNA rearrangements were inverted sequences with intervening deletions that the model predicts. Intramolecular rearrangements were favored, with displaced 3'-ends reannealing to single stranded 5'-strands contained within the same branched DNA molecule. In over 70% of the chimeric junctions, the 3' termini had initiated priming at complimentary sequences of 2–21 nucleotides (nts in the new templates. Conclusion Formation of chimeras is an important limitation to the MDA method, particularly for whole genome sequencing. Identification of the mechanism for chimera formation provides new insight into the MDA reaction and suggests methods to reduce chimeras. The 454 sequencing approach used here will provide a rapid method to assess the utility of reaction modifications.

  4. Attentional mechanisms in the generation of sympathy

    OpenAIRE

    Stephan Dickert; Paul Slovic

    2009-01-01

    Empathic responses, such as sympathy towards others, are a key ingredient in the decision to provide help to those in need. The determinants of empathic responses are usually thought to be the vividness, similarity, and proximity of the victim. However, recent research highlights the role that attention plays in the generation of feelings. We expanded on this idea by investigating whether sympathy depends on cognitive mechanisms such as attention. In two studies we found that sympathy respons...

  5. GenNon-h: Generating multiple sequence alignments on nonhomogeneous phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Kedzierska Anna M

    2012-08-01

    Full Text Available Abstract Background A number of software packages are available to generate DNA multiple sequence alignments (MSAs evolved under continuous-time Markov processes on phylogenetic trees. On the other hand, methods of simulating the DNA MSA directly from the transition matrices do not exist. Moreover, existing software restricts to the time-reversible models and it is not optimized to generate nonhomogeneous data (i.e. placing distinct substitution rates at different lineages. Results We present the first package designed to generate MSAs evolving under discrete-time Markov processes on phylogenetic trees, directly from probability substitution matrices. Based on the input model and a phylogenetic tree in the Newick format (with branch lengths measured as the expected number of substitutions per site, the algorithm produces DNA alignments of desired length. GenNon-h is publicly available for download. Conclusion The software presented here is an efficient tool to generate DNA MSAs on a given phylogenetic tree. GenNon-h provides the user with the nonstationary or nonhomogeneous phylogenetic data that is well suited for testing complex biological hypotheses, exploring the limits of the reconstruction algorithms and their robustness to such models.

  6. A generating mechanism of spiral structure in barred galaxies

    International Nuclear Information System (INIS)

    Thielheim, K.O.; Wolff, H.

    1982-01-01

    The time-dependent response of non-interacting stars to growing oval distortions in disc galaxies is calculated by following their motion numerically and Fourier-analysing their positions. Long-lived spiral density waves are found for fast-growing perturbations as well as in cases in which the perturbation evolves only slowly, compared with a characteristic internal rotation period of the disc. This mechanism of driving a spiral structure in non-self-gravitating stellar discs provides an explanation for the long-lived global spiral patterns, observed in N-body experiments showing an evolving central bar, that is not based on the self-gravitation in the disc. In conjunction with the theory of Lynden-Bell according to which angular momentum transfer in the disc leads to a slow increase of the oval distortion, this effect provides a general mechanism for the generation of spiral structure in barred galaxies. In addition to stellar discs with velocity dispersion, cold discs, with the stars initially in circular motion, which bear great similarity to gaseous discs, are investigated. The linear epicyclic approximation is used to develop an analytical description of the generating mechanism. (author)

  7. Linear modeling of possible mechanisms for parkinson tremor generation

    NARCIS (Netherlands)

    Lohnberg, P.

    1978-01-01

    The power of Parkinson tremor is expressed in terms of possibly changed frequency response functions between relevant variables in the neuromuscular system. The derivation starts out from a linear loopless equivalent model of mechanisms for general tremor generation. Hypothetical changes in this

  8. Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changshuai; Zhu, Xiaohua; Tang, Liping [Southwest Petroleum University, Chengdu (China); Deng, Juan [Avic Chengdu Engine (Group) Co.,Ltd, Chengdu (China)

    2017-03-15

    Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well.

  9. Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor

    International Nuclear Information System (INIS)

    Shi, Changshuai; Zhu, Xiaohua; Tang, Liping; Deng, Juan

    2017-01-01

    Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well

  10. Attentional mechanisms in the generation of sympathy

    Directory of Open Access Journals (Sweden)

    Stephan Dickert

    2009-06-01

    Full Text Available Empathic responses, such as sympathy towards others, are a key ingredient in the decision to provide help to those in need. The determinants of empathic responses are usually thought to be the vividness, similarity, and proximity of the victim. However, recent research highlights the role that attention plays in the generation of feelings. We expanded on this idea by investigating whether sympathy depends on cognitive mechanisms such as attention. In two studies we found that sympathy responses were lower and reaction times were longer when targets were presented with distractors. In addition, online sympathy judgments that allow attentional focusing on a target lead to greater affective responses than judgments made from memory. We conclude that attention is an ingredient in the generation of sympathy, and discuss implications for research on prosocial behaviour and the interaction between attention and emotions.

  11. History, rare, and multiple events of mechanical unfolding of repeat proteins

    Science.gov (United States)

    Sumbul, Fidan; Marchesi, Arin; Rico, Felix

    2018-03-01

    Mechanical unfolding of proteins consisting of repeat domains is an excellent tool to obtain large statistics. Force spectroscopy experiments using atomic force microscopy on proteins presenting multiple domains have revealed that unfolding forces depend on the number of folded domains (history) and have reported intermediate states and rare events. However, the common use of unspecific attachment approaches to pull the protein of interest holds important limitations to study unfolding history and may lead to discarding rare and multiple probing events due to the presence of unspecific adhesion and uncertainty on the pulling site. Site-specific methods that have recently emerged minimize this uncertainty and would be excellent tools to probe unfolding history and rare events. However, detailed characterization of these approaches is required to identify their advantages and limitations. Here, we characterize a site-specific binding approach based on the ultrastable complex dockerin/cohesin III revealing its advantages and limitations to assess the unfolding history and to investigate rare and multiple events during the unfolding of repeated domains. We show that this approach is more robust, reproducible, and provides larger statistics than conventional unspecific methods. We show that the method is optimal to reveal the history of unfolding from the very first domain and to detect rare events, while being more limited to assess intermediate states. Finally, we quantify the forces required to unfold two molecules pulled in parallel, difficult when using unspecific approaches. The proposed method represents a step forward toward more reproducible measurements to probe protein unfolding history and opens the door to systematic probing of rare and multiple molecule unfolding mechanisms.

  12. An Adaptive Test Sheet Generation Mechanism Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Huan-Yu Lin

    2012-01-01

    Full Text Available For test-sheet composition systems, it is important to adaptively compose test sheets with diverse conceptual scopes, discrimination and difficulty degrees to meet various assessment requirements during real learning situations. Computation time and item exposure rate also influence performance and item bank security. Therefore, this study proposes an Adaptive Test Sheet Generation (ATSG mechanism, where a Candidate Item Selection Strategy adaptively determines candidate test items and conceptual granularities according to desired conceptual scopes, and an Aggregate Objective Function applies Genetic Algorithm (GA to figure out the approximate solution of mixed integer programming problem for the test-sheet composition. Experimental results show that the ATSG mechanism can efficiently, precisely generate test sheets to meet the various assessment requirements than existing ones. Furthermore, according to experimental finding, Fractal Time Series approach can be applied to analyze the self-similarity characteristics of GA’s fitness scores for improving the quality of the test-sheet composition in the near future.

  13. Techno-economic assessment and policy of gas power generation considering the role of multiple stakeholders in China

    International Nuclear Information System (INIS)

    Dong Jun; Zhang Xu; Xu Xiaolin

    2012-01-01

    In accordance with the energy planning in China, within the “Twelfth Five-Year” period (2011–2015), the proportion of natural gas among primary energy consumption is expected to increase from the current 4% to 8%. In 2015, about 17 natural gas pipelines will be completed. This paper reviews the current situation of gas power generation, analyzes the main opportunities and obstacles of gas power generation development in China, and conducts a techno-economic assessment of the natural gas power generation, taking into account the role and the interaction of the multiple stakeholders in the natural gas industry chain. Taking a power plant fueled with the natural gas transported by the second West-to-East Pipeline as an example, it is found that the on-grid power price fluctuates upward with the rise of gas price and downward with the increase of annual utilization hours, and the influences of tax policies on the on-grid power price prove to be highly significant. As the analysis and calculation indicate, the environmental benefits of natural gas power generation ought to be strongly emphasized, compared with coal-fired power generation. Finally, this paper puts forward specific policy recommendations, from the perspectives of electricity price, gas price, tax, power grid dispatching, etc. - Highlights: ► Presents the opportunities and obstacles of gas power generation development in China. ► Analyzes the interactions of multiple stakeholders in the natural gas industry chain. ► Conducts a techno-economic assessment on the natural gas power generation. ► Discusses the responsibilities and risks of multiple stakeholders. ► Puts forward policy recommendations, from electricity price, gas price, tax, etc.

  14. Pattern-set generation algorithm for the one-dimensional multiple stock sizes cutting stock problem

    Science.gov (United States)

    Cui, Yaodong; Cui, Yi-Ping; Zhao, Zhigang

    2015-09-01

    A pattern-set generation algorithm (PSG) for the one-dimensional multiple stock sizes cutting stock problem (1DMSSCSP) is presented. The solution process contains two stages. In the first stage, the PSG solves the residual problems repeatedly to generate the patterns in the pattern set, where each residual problem is solved by the column-generation approach, and each pattern is generated by solving a single large object placement problem. In the second stage, the integer linear programming model of the 1DMSSCSP is solved using a commercial solver, where only the patterns in the pattern set are considered. The computational results of benchmark instances indicate that the PSG outperforms existing heuristic algorithms and rivals the exact algorithm in solution quality.

  15. Mechanism for the generation of cavitation maxima by pulsed ultrasound

    International Nuclear Information System (INIS)

    Flynn, H.G.; Church, C.C.

    1984-01-01

    A train of 1-MHz pulses can generate maxima of cavitation activity at pulse lengths of 6 and 60 ms and at pressure amplitudes, P/sub A/, between 5.4 and 9.4 bars (or intensities between 10 and 30 W/cm 2 ). Generation of maxima at P/sub A/ between these limits on pressure amplitude implies that the increase in cavitation activity originates from gas nuclei with radii lying in a critical size range centered at about 0.08 μm. The mechanism proposed for this phenomenon suggests that nuclei in this critical range are unstabilized nuclei generated in one pulse and surviving to the next with an appreciable fraction of the survivors lying in the critical range. Transient cavities that grow from such small nuclei are shown to behave as isolated mechanical systems that on reaching maximum size collapse as imploding spheres. The maximum pressures reached in such imploding cavities would then approximate those calculated for the spherical collapse of cavities. The occurrence of the observed maxima is ascribed to the spherical collapse of transient cavities. 17 references, 5 figures

  16. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  17. A review of porosity-generating mechanisms in crustal shear zones

    Science.gov (United States)

    Fusseis, F.; Regenauer-Lieb, K.; Revets, S.

    2009-04-01

    Knowledge of the spatiotemporal characteristics of permeability is critical for the understanding of fluid migration in rocks. In diagenetic and metamorphic rocks different porosity-generating mechanisms contribute to permeability and so influence fluid migration and fluid/rock interaction. However, little is known about their relative contributions to the porosity architecture of a rock in a tectono-metamorphic environment. This presentation reviews porosity-generating mechanisms that affect fluid migration in shear zones, the most important crustal fluid conduits, in the context of the tectonometamorphic evolution of rocks. Mechanisms that generate porosity can be classified in a) those that involve the direct action of a fluid, b) processes in which a fluid partakes or that are supported by a fluid or c) mechanism that do not involve a fluid. a) Hydraulic fracturing, where it happens through the formation of tensile fractures, occurs where pore fluid pressures equalize the combined lithostatic pressure and strength of the rock (Etheridge et al., 1984, Cox & Etheridge, 1989, Oliver, 1996). Here an internally released (devolatilisation reactions, e.g., Rumble, 1994, Hacker, 1997, Yardley, 1997 and references therein) or externally derived (infiltrating from metamorphic, magmatic or meteoric sources, Baumgartner et al., 1997, Jamtveit et al., 1997, Thompson, 1997, Gleeson et al., 2003) fluid directly causes the mechanical failure of a rock. Where a fluid is in chemical disequilibrium with a rock (undersaturated with regard to a chemical species) minerals will be dissolved, generating dissolution porosity. Rocks ‘leached' by the removal of chemical components by vast amounts of fluid are reported to lose up to 60% of their original volume (e.g., Kerrich et al., 1984, McCaig 1988). Dissolution porosity is probably an underrated porosity-generating mechanism. It can be expected along the entire metamorphic evolution, including diagenesis (Higgs et al., 2007) and

  18. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array

    Science.gov (United States)

    Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-01-01

    In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.

  19. Probabilistic evaluation of multiple failures for steam generators tubes by common mode

    International Nuclear Information System (INIS)

    Bloch, M.; Pierrey, J.L.; Dussarte, D.

    1987-11-01

    The reactor safety can be affected when systems or components are subject to phenomena conducting at a wear nontake in account in the conception. This paper presents a methodology which takes in account the non simultaneous failures resulting of this situation. To illustrate this purpose, we give an evaluation of risk of multiple failures for steam generators tubes by common mode (stress corrosion) when the reactor is in normal operation [fr

  20. A multi-state model for the reliability assessment of a distributed generation system via universal generating function

    International Nuclear Information System (INIS)

    Li, Yan-Fu; Zio, Enrico

    2012-01-01

    The current and future developments of electric power systems are pushing the boundaries of reliability assessment to consider distribution networks with renewable generators. Given the stochastic features of these elements, most modeling approaches rely on Monte Carlo simulation. The computational costs associated to the simulation approach force to treating mostly small-sized systems, i.e. with a limited number of lumped components of a given renewable technology (e.g. wind or solar, etc.) whose behavior is described by a binary state, working or failed. In this paper, we propose an analytical multi-state modeling approach for the reliability assessment of distributed generation (DG). The approach allows looking to a number of diverse energy generation technologies distributed on the system. Multiple states are used to describe the randomness in the generation units, due to the stochastic nature of the generation sources and of the mechanical degradation/failure behavior of the generation systems. The universal generating function (UGF) technique is used for the individual component multi-state modeling. A multiplication-type composition operator is introduced to combine the UGFs for the mechanical degradation and renewable generation source states into the UGF of the renewable generator power output. The overall multi-state DG system UGF is then constructed and classical reliability indices (e.g. loss of load expectation (LOLE), expected energy not supplied (EENS)) are computed from the DG system generation and load UGFs. An application of the model is shown on a DG system adapted from the IEEE 34 nodes distribution test feeder.

  1. [Disease concept, etiology and mechanisms of multiple sclerosis].

    Science.gov (United States)

    Kira, Jun-Ichi

    2014-11-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system(CNS). MS is assumed to be caused by a complex interplay between genes and environments. Autoimmune mechanisms targeting CNS myelin has long been proposed, yet it has not been proved. Th17 cells producing interleukin-17 and Th1 cells producing interferon-gamma are postulated to play major roles in initiating inflammation while regulatory T cell functions are dampened. The forth nationwide survey of MS in Japan revealed that MS prevalence showed four-folds increase over 30 years and the increase was especially prominent in female. Thus, westernized life style and improved sanitation are suspected to increase MS susceptibility. Genome-wide association studies in Western MS patients disclosed more than 100 disease-susceptibility genes, most of which are immune-related genes. It therefore supports immune-mediated mechanisms to be operative. Detailed magnetic resonance imaging studies revealed an early atrophy of the cerebral gray matter where T cell infiltration is pathologically scarce. Therefore, neurodegenerative process also takes place in the early course beside neuroinflammation.

  2. Applicability of Alignment and Combination Rules to Burst Pressure Prediction of Multiple-flawed Steam Generator Tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong Woo; Kim, Ji Seok; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Jeon, Jun Young [Doosan Heavy Industries and Consruction, Seoul (Korea, Republic of); Lee, Dong Min [Korea Plant Service and Engineering, Technical Research and Development Institute, Naju (Korea, Republic of)

    2016-05-15

    Alignment and combination rules are provided by various codes and standards. These rules are used to determine whether multiple flaws should be treated as non-aligned or as coplanar, and independent or combined flaws. Experimental results on steam generator (SG) tube specimens containing multiple axial part-through-wall (PTW) flaws at room temperature (RT) are compared with assessment results based on the alignment and combination rules of the codes and standards. In case of axial collinear flaws, ASME, JSME, and BS7910 treated multiple flaws as independent flaws and API 579, A16, and FKM treated multiple flaws as combined single flaw. Assessment results of combined flaws were conservative. In case of axial non-aligned flaws, almost flaws were aligned and assessment results well correlate with experimental data. In case of axial parallel flaws, both effective flaw lengths of aligned flaws and separated flaws was are same because of each flaw length were same. This study investigates the applicability of alignment and combination rules for multiple flaws on the failure behavior of Alloy 690TT steam generator (SG) tubes that widely used in the nuclear power plan. Experimental data of burst tests on Alloy 690TT tubes with single and multiple flaws that conducted at room temperature (RT) by Kim el al. compared with the alignment rules of these codes and standards. Burst pressure of SG tubes with flaws are predicted using limit load solutions that provide by EPRI Handbook.

  3. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity.

    Science.gov (United States)

    Wyman, Stacia K; Knouf, Emily C; Parkin, Rachael K; Fritz, Brian R; Lin, Daniel W; Dennis, Lucas M; Krouse, Michael A; Webster, Philippa J; Tewari, Muneesh

    2011-09-01

    Modification of microRNA sequences by the 3' addition of nucleotides to generate so-called "isomiRs" adds to the complexity of miRNA function, with recent reports showing that 3' modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3' modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications result predominantly from adenylation and uridylation and are seen across tissue types, disease states, and developmental stages. To quantitatively profile 3' nucleotide additions, we developed and validated a novel assay based on NanoString Technologies' nCounter platform. For certain miRNAs, the frequency of modification was altered by processes such as cell differentiation, indicating that 3' modification is a biologically regulated process. To investigate the mechanism of 3' nucleotide additions, we used RNA interference to screen a panel of eight candidate miRNA nucleotidyl transferases for 3' miRNA modification activity in human cells. Multiple enzymes, including MTPAP, PAPD4, PAPD5, ZCCHC6, ZCCHC11, and TUT1, were found to govern 3' nucleotide addition to miRNAs in a miRNA-specific manner. Three of these enzymes-MTPAP, ZCCHC6, and TUT1-have not previously been known to modify miRNAs. Collectively, our results indicate that 3' modification observed in next-generation small RNA sequencing data is a biologically relevant process, and identify enzymatic mechanisms that may lead to new approaches for modulating miRNA activity in vivo.

  4. Generation mechanisms for magnetic-field-aligned electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.-G.

    1977-09-01

    Magnetic-field-aligned electric fields in the magnetosphere can be generated in several different ways, and in this review some possible mechanisms are presented. Observational data now available indicates that more than one of the mechanisms mentioned are operative in the magnetosphere but it is not yet possible to evaluate their relative importance. (author)

  5. Development of microstructure to optimise mechanical performance of power generation equipment

    International Nuclear Information System (INIS)

    Marshall, P.

    1986-11-01

    The factors responsible for the development of microstructure in CEGB construction ceramics and steels is assessed as a function of composition, thermomechanical treatment, thermal ageing and environmental degradation. The relationships between microstructure and mechanical properties (tensile, toughness, creep and fatigue) of relevance to structures operating in power generation equipment is then developed in quantitative terms. The conclusions from the assessment are as follows: 1 The relationship between microstructure and mechanical properties of construction ceramics and steels used in the power generation industry has been assessed. 2 Factors which significantly influence microstructure and thus mechanical properties are chemical composition, thermomechanical treatment, ageing and environmental degradation. The influence of such microstructural changes in tensile, toughness, fatigue and creep properties of ceramics and steels is assessed. 3 The benefits arising from an understanding of materials behaviour are discussed in terms of improved materials and the assessment of plant performance. (author)

  6. Automatic Generation of 3D Building Models with Multiple Roofs

    Institute of Scientific and Technical Information of China (English)

    Kenichi Sugihara; Yoshitugu Hayashi

    2008-01-01

    Based on building footprints (building polygons) on digital maps, we are proposing the GIS and CG integrated system that automatically generates 3D building models with multiple roofs. Most building polygons' edges meet at right angles (orthogonal polygon). The integrated system partitions orthogonal building polygons into a set of rectangles and places rectangular roofs and box-shaped building bodies on these rectangles. In order to partition an orthogonal polygon, we proposed a useful polygon expression in deciding from which vertex a dividing line is drawn. In this paper, we propose a new scheme for partitioning building polygons and show the process of creating 3D roof models.

  7. Note: high precision angle generator using multiple ultrasonic motors and a self-calibratable encoder.

    Science.gov (United States)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan; Eom, Tae Bong

    2011-11-01

    We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20") effectively by applying the equal-division-averaged method. The angle generator configures a position feedback control loop using the readout of the encoder. By combining the ac and dc operation mode, the angle generator produced stepwise angular motion with 0.005" resolution. We also evaluated the performance of the angle generator using a precision angle encoder and an autocollimator. The expanded uncertainty (k = 2) in the angle generation was estimated less than 0.03", which included the calibrated scale error and the nonlinearity error. © 2011 American Institute of Physics

  8. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.

    Science.gov (United States)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-01

    Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 - 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 - 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Waste generated in high-rise buildings construction: a quantification model based on statistical multiple regression.

    Science.gov (United States)

    Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana

    2015-05-01

    Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Analysis of Dynamic Behavior of Multiple-Stage Planetary Gear Train Used in Wind Driven Generator

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2014-01-01

    Full Text Available A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator.

  11. Phantom auditory perception (tinnitus): mechanisms of generation and perception.

    Science.gov (United States)

    Jastreboff, P J

    1990-08-01

    Phantom auditory perception--tinnitus--is a symptom of many pathologies. Although there are a number of theories postulating certain mechanisms of its generation, none have been proven yet. This paper analyses the phenomenon of tinnitus from the point of view of general neurophysiology. Existing theories and their extrapolation are presented, together with some new potential mechanisms of tinnitus generation, encompassing the involvement of calcium and calcium channels in cochlear function, with implications for malfunction and aging of the auditory and vestibular systems. It is hypothesized that most tinnitus results from the perception of abnormal activity, defined as activity which cannot be induced by any combination of external sounds. Moreover, it is hypothesized that signal recognition and classification circuits, working on holographic or neuronal network-like representation, are involved in the perception of tinnitus and are subject to plastic modification. Furthermore, it is proposed that all levels of the nervous system, to varying degrees, are involved in tinnitus manifestation. These concepts are used to unravel the inexplicable, unique features of tinnitus and its masking. Some clinical implications of these theories are suggested.

  12. Electricity generation: regulatory mechanisms to incentive renewable alternative energy sources in Brazil

    International Nuclear Information System (INIS)

    Cavaliero, Carla Kazue Nakao; Silva, E.P. da

    2005-01-01

    The dissemination of renewable alternative energy sources for electricity generation has always being done through regulatory mechanisms, created and managed by the government of each country. Since these sources are more costly to generate, they have received incentives in response to worldwide environmental concerns, above all with regard to the reduction of CO 2 emissions. In Brazil, the electricity generation from renewable alternative sources is experiencing a new phase of growth. Until a short time ago, environmental appeal was the strongest incentive to these sources in Brazil but it was insufficient to attain its objective. With the electricity crisis and the rationing imposed in 2001, another important factor gained awareness: the need to diversify energy sources. Within this context, this work has the objective of analyzing the regulatory mechanisms recently developed to stimulate electricity generation from renewable alternative energy sources in Brazil by following the experience of other countries such as the United States, United Kingdom and Germany

  13. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  14. Gravity- and non-gravity-mediated couplings in multiple-field inflation

    International Nuclear Information System (INIS)

    Bernardeau, Francis

    2010-01-01

    Mechanisms for the generation of primordial non-Gaussian metric fluctuations in the context of multiple-field inflation are reviewed. As long as kinetic terms remain canonical, it appears that nonlinear couplings inducing non-Gaussianities can be split into two types. The extension of the one-field results to multiple degrees of freedom leads to gravity-mediated couplings that are ubiquitous but generally modest. Multiple-field inflation offers however the possibility of generating non-gravity-mediated coupling in isocurvature directions that can eventually induce large non-Gaussianities in the metric fluctuations. The robustness of the predictions of such models is eventually examined in view of a case study derived from a high-energy physics construction.

  15. RESEARCH OF HYDRODYNAMICS OF HEAT GENERATORS FOR MECHANICAL SYSTEMS AUTONOMOUS HEATING

    Directory of Open Access Journals (Sweden)

    E. M. Derbasova

    2014-01-01

    Full Text Available A design of mechanical heat source, allows direct conversion of mechanical energy of the wind flow into thermal energy due to friction forces in a highly viscous fluid. Obtained theoretical dependence for calculating the heat generated by converting mechanical energy into heat. For laminar flow of a highly viscous, fluid in the gap between the stationary and rotating disk heat source. Based on experimental studies to determine the average thickness of the boundary layer between the rotating and fixed disks. The dependences to identify key structural dimensions of mechanical heat sources for heating systems. 

  16. Geophysical Factor Resolving of Rainfall Mechanism for Super Typhoons by Using Multiple Spatiotemporal Components Analysis

    Science.gov (United States)

    Huang, Chien-Lin; Hsu, Nien-Sheng

    2016-04-01

    This study develops a novel methodology to resolve the geophysical cause of typhoon-induced rainfall considering diverse dynamic co-evolution at multiple spatiotemporal components. The multi-order hidden patterns of complex hydrological process in chaos are detected to understand the fundamental laws of rainfall mechanism. The discovered spatiotemporal features are utilized to develop a state-of-the-art descriptive statistical model for mechanism validation, modeling and further prediction during typhoons. The time series of hourly typhoon precipitation from different types of moving track, atmospheric field and landforms are respectively precede the signal analytical process to qualify each type of rainfall cause and to quantify the corresponding affected degree based on the measured geophysical atmospheric-hydrological variables. This study applies the developed methodology in Taiwan Island which is constituted by complex diverse landform formation. The identified driving-causes include: (1) cloud height to ground surface; (2) co-movement effect induced by typhoon wind field with monsoon; (3) stem capacity; (4) interaction between typhoon rain band and terrain; (5) structural intensity variance of typhoon; and (6) integrated cloudy density of rain band. Results show that: (1) for the central maximum wind speed exceeding 51 m/sec, Causes (1) and (3) are the primary ones to generate rainfall; (2) for the typhoon moving toward the direction of 155° to 175°, Cause (2) is the primary one; (3) for the direction of 90° to 155°, Cause (4) is the primary one; (4) for the typhoon passing through mountain chain which above 3500 m, Cause (5) is the primary one; and (5) for the moving speed lower than 18 km/hr, Cause (6) is the primary one. Besides, the multiple geophysical component-based precipitation modeling can achieve 81% of average accuracy and 0.732 of average correlation coefficient (CC) within average 46 hours of duration, that improve their predictability.

  17. Generation Mechanism of Alternans in Luo-Rudy Model

    Science.gov (United States)

    Kitajima, Hiroyuki; Ioka, Eri; Yazawa, Toru

    Electrical alternans is the alternating amplitude from beat to beat in the action potential of the cardiac cell. It has been associated with ventricular arrhythmias in many clinical studies; however, its dynamical mechanisms remain unknown. The reason is that we do not have realistic network models of the heart system. Recently, Yazawa clarified the network structure of the heart and the central nerve system in the crustacean heart. In this study, we construct a simple model of the heart system based on Yazawa’s experimental data. Using this model, we clarify that two parameters (the conductance of sodium ions and free concentration of potassium ions in the extracellular compartment) play the key roles of generating alternans. In particular, we clarify that the inactivation gate of the time-independent potassium channel is the most important parameter. Moreover, interaction between the membrane potential and potassium ionic currents is significant for generating alternate rhythms. This result indicates that if the muscle cell has problems such as channelopathies, there is great risk of generating alternans.

  18. Novel mechanism of network protection against the new generation of cyber attacks

    Science.gov (United States)

    Milovanov, Alexander; Bukshpun, Leonid; Pradhan, Ranjit

    2012-06-01

    A new intelligent mechanism is presented to protect networks against the new generation of cyber attacks. This mechanism integrates TCP/UDP/IP protocol stack protection and attacker/intruder deception to eliminate existing TCP/UDP/IP protocol stack vulnerabilities. It allows to detect currently undetectable, highly distributed, low-frequency attacks such as distributed denial-of-service (DDoS) attacks, coordinated attacks, botnet, and stealth network reconnaissance. The mechanism also allows insulating attacker/intruder from the network and redirecting the attack to a simulated network acting as a decoy. As a result, network security personnel gain sufficient time to defend the network and collect the attack information. The presented approach can be incorporated into wireless or wired networks that require protection against known and the new generation of cyber attacks.

  19. A study on fixing force generation mechanism of ER gel

    International Nuclear Information System (INIS)

    Tanaka, H; Kakinuma, Y; Aoyama, T; Anzai, H

    2009-01-01

    Electro-rheological Gel (ERG) is a new functional elastomer which changes its surface frictional and adhesive property according to the intensity of applied electrical field. This unique property is called ERG effect. The upper sliding electrode placed on the surface of ERG is fixed by the adhesive effect of ERG under electrical field. Variable fixing forces due to adhesion are generated by this effect. However, relationship between physical factors and generated fixing force has not yet been clarified. In this study, physical mechanism of fixing phenomenon is elucidated experimentally from the view point of frictional force and adhesive force. From the results, empirical equation of generated fixing force is originally derived to establish the theory of ERG effect.

  20. A study on fixing force generation mechanism of ER gel

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Kakinuma, Y; Aoyama, T [School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Anzai, H [Fujikura kasei Co., Ltd., 2-6-15 Shibakouen, Minato-ku, Tokyo (Japan)], E-mail: h-tanaka@ina.sd.keio.ac.jp

    2009-02-01

    Electro-rheological Gel (ERG) is a new functional elastomer which changes its surface frictional and adhesive property according to the intensity of applied electrical field. This unique property is called ERG effect. The upper sliding electrode placed on the surface of ERG is fixed by the adhesive effect of ERG under electrical field. Variable fixing forces due to adhesion are generated by this effect. However, relationship between physical factors and generated fixing force has not yet been clarified. In this study, physical mechanism of fixing phenomenon is elucidated experimentally from the view point of frictional force and adhesive force. From the results, empirical equation of generated fixing force is originally derived to establish the theory of ERG effect.

  1. Generation of connectivity-preserving surface models of multiple sclerosis lesions.

    Science.gov (United States)

    Meruvia-Pastor, Oscar; Xiao, Mei; Soh, Jung; Sensen, Christoph W

    2011-01-01

    Progression of multiple sclerosis (MS) results in brain lesions caused by white matter inflammation. MS lesions have various shapes, sizes and locations, affecting cognitive abilities of patients to different extents. To facilitate the visualization of the brain lesion distribution, we have developed a software tool to build 3D surface models of MS lesions. This tool allows users to create 3D models of lesions quickly and to visualize the lesions and brain tissues using various visual attributes and configurations. The software package is based on breadth-first search based 3D connected component analysis and a 3D flood-fill based region growing algorithm to generate 3D models from binary or non-binary segmented medical image stacks.

  2. Optimal placement and sizing of multiple distributed generating units in distribution

    Directory of Open Access Journals (Sweden)

    D. Rama Prabha

    2016-06-01

    Full Text Available Distributed generation (DG is becoming more important due to the increase in the demands for electrical energy. DG plays a vital role in reducing real power losses, operating cost and enhancing the voltage stability which is the objective function in this problem. This paper proposes a multi-objective technique for optimally determining the location and sizing of multiple distributed generation (DG units in the distribution network with different load models. The loss sensitivity factor (LSF determines the optimal placement of DGs. Invasive weed optimization (IWO is a population based meta-heuristic algorithm based on the behavior of weeds. This algorithm is used to find optimal sizing of the DGs. The proposed method has been tested for different load models on IEEE-33 bus and 69 bus radial distribution systems. This method has been compared with other nature inspired optimization methods. The simulated results illustrate the good applicability and performance of the proposed method.

  3. Managing Multiple Generations in the Workplace.

    Science.gov (United States)

    Clark, Kevin R

    2017-03-01

    Today's workplace often includes workers from 4 distinct generations, and each generation brings a unique set of core values and characteristics to an organization. These generational differences can produce benefits, such as improved patient care, as well as challenges, such as conflict among employees. This article reviews current research on generational differences in educational settings and the workplace and discusses the implications of these findings for medical imaging and radiation therapy departments. ©2017 American Society of Radiologic Technologists.

  4. LIBVERSIONINGCOMPILER: An easy-to-use library for dynamic generation and invocation of multiple code versions

    Science.gov (United States)

    Cherubin, S.; Agosta, G.

    2018-01-01

    We present LIBVERSIONINGCOMPILER, a C++ library designed to support the dynamic generation of multiple versions of the same compute kernel in a HPC scenario. It can be used to provide continuous optimization, code specialization based on the input data or on workload changes, or otherwise to dynamically adjust the application, without the burden of a full dynamic compiler. The library supports multiple underlying compilers but specifically targets the LLVM framework. We also provide examples of use, showing the overhead of the library, and providing guidelines for its efficient use.

  5. Efficient production of hot plasmas through multiple-wire implosion in transmission line generators

    International Nuclear Information System (INIS)

    Bloomberg, H.W.

    1980-01-01

    Model equations for the implosion of multiple-wire arrays mounted across the electrodes of a transmission line generator are used to obtain an expression for the energy-coupling efficiency. For a useful class of imploding loads, the efficiency is shown to depend on a single dimensionless parameter. Furthermore, the efficiency curve has a maximum, and this permits an explicit optimization of the wire load parameters in terms of the machine parameters

  6. Ecton mechanism of ion flow generation in vacuum arc

    CERN Document Server

    Mesyats, G A

    2001-01-01

    The basic characteristics of cathode plasma generation in vacuum arc (ion erosion, ion average charge) were studied from the point of an ecton model of a cathode spot in vacuum arc. The estimates of ion parameters obtained for a single cell of a cathode spot show qualitative conformity with the experimental data. One introduces the following mechanism of cathode plasma generation in vacuum arc. In case of explosion-like destruction of a cathode segment under the effect of the Joule heating the cathode matter changes sequentially its state: condensed one, nonideal and ideal plasma ones. During this change one observes formation of plasma charge composition and ion acceleration under the effect of plasma pressure gradient

  7. Mechanism of Runaway Electron Generation at Gas Pressures from a Few Atmospheres to Several Tens of Atmospheres

    Science.gov (United States)

    Zubarev, N. M.; Ivanov, S. N.

    2018-04-01

    The mechanism of runaway electron generation at gas pressures from a few atmospheres to several tens of atmospheres is proposed. According to this mechanism, the electrons pass into the runaway mode in the enhanced field zone that arises between a cathode micropoint—a source of field-emission electrons—and the region of the positive ion space charge accumulated near the cathode in the tails of the developing electron avalanches. As a result, volume gas ionization by runaway electrons begins with a time delay required for the formation of the enhanced field zone. This process determines the delay time of breakdown. The influence of the gas pressure on the formation dynamics of the space charge region is analyzed. At gas pressures of a few atmospheres, the space charge arises due to the avalanche multiplication of the very first field-emission electron, whereas at pressures of several tens of atmospheres, the space charge forms as a result of superposition of many electron avalanches with a relatively small number of charge carriers in each.

  8. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators

    International Nuclear Information System (INIS)

    Schmitz, Andreas

    2013-01-01

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb 1-x Ca x Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric properties

  9. Safety significance of steam generator tube degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, G; Mignot, P [AIB-Vincotte Nuclear - AVN, Brussels (Belgium)

    1991-07-01

    Steam generator (SG) tube bundle is a part of the Reactor Coolant Pressure Boundary (RCPB): this means that its integrity must be maintained. However, operating experience shows various types of tube degradation to occur in the SG tubing, which may lead to SG tube leaks or SG tube ruptures and create a loss of primary system coolant through the SG, therefore providing a direct path to the environment outside the primary containment structure. In this paper, the major types of known SG tube degradations are described and analyzed in order to assess their safety significance with regard to SG tube integrity. In conclusion: The operational reliability and the safety of the PWR steam generator s requires a sufficient knowledge of the degradation mechanisms to determine the amount of degradation that a tube can withstand and the time that it may remain in operation. They also require the availability of inspection techniques to accurately detect and characterize the various degradations. The status of understanding of the major types of degradation summarized in this paper shows and justifies why efforts are being performed to improve the management of the steam generator tube defects.

  10. Conditions for a carrier multiplication in amorphous-selenium based photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Masuzawa, Tomoaki; Kuniyoshi, Shingo; Onishi, Masanori; Kato, Richika; Saito, Ichitaro; Okano, Ken [Department of Material Science, International Christian University, S102 Science Hall, ICU, 3-10-2 Osawa, Mitaka, Tokyo 181-8585 (Japan); Yamada, Takatoshi [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Tsukuba, Ibaraki 305-8568 (Japan); Koh, Angel T. T.; Chua, Daniel H. C. [Department of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574 (Singapore); Shimosawa, Tatsuo [Department of Clinical Laboratory, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo 113-8655 (Japan)

    2013-02-18

    Amorphous selenium is a promising candidate for high sensitivity photodetector due to its unique carrier multiplication phenomenon. More than 10 carriers can be generated per incident photon, which leads to high photo-conversion efficiency of 1000% that allows real-time imaging in dark ambient. However, application of this effect has been limited to specific devices due to the lack in material characterization. In this article, mechanism of carrier multiplication has been clarified using time-of-flight secondary ion mass spectroscopy and Raman spectroscopy. A prototype photodetector achieved photo conversion efficiency of 4000%, which explains the signal enhancement mechanism in a-Se based photodetector.

  11. Conditions for a carrier multiplication in amorphous-selenium based photodetector

    International Nuclear Information System (INIS)

    Masuzawa, Tomoaki; Kuniyoshi, Shingo; Onishi, Masanori; Kato, Richika; Saito, Ichitaro; Okano, Ken; Yamada, Takatoshi; Koh, Angel T. T.; Chua, Daniel H. C.; Shimosawa, Tatsuo

    2013-01-01

    Amorphous selenium is a promising candidate for high sensitivity photodetector due to its unique carrier multiplication phenomenon. More than 10 carriers can be generated per incident photon, which leads to high photo-conversion efficiency of 1000% that allows real-time imaging in dark ambient. However, application of this effect has been limited to specific devices due to the lack in material characterization. In this article, mechanism of carrier multiplication has been clarified using time-of-flight secondary ion mass spectroscopy and Raman spectroscopy. A prototype photodetector achieved photo conversion efficiency of 4000%, which explains the signal enhancement mechanism in a-Se based photodetector.

  12. Reforming water to generate hydrogen using mechanical alloy

    International Nuclear Information System (INIS)

    Pena F, D. L.

    2016-01-01

    The objective of this research was to generate a hydrogen production system by means of mechanical milling, in which 0.1 g of magnesium were weighed using a volume of 300 μL for each water solvent (H_2O) and methanol (CH_3OH) in a container to start mechanical milling for 2, 4 and 6 h. Once the mechanical milling was finished, the hydrogen that was produced every two hours was measured to determine the appropriate milling time in the production, also in each period of time samples of the powders produced during the milling of Mg were taken, in this process we used characterization techniques such as: X-ray diffraction at an angle of 2θi 5 and 2θf 90 degrees and scanning electron microscopy, taking micrographs of 100, 500, 1000 and 5000 magnifications. According to the mechanical milling results hydrogen was obtained when using water, as well as with methanol. In the techniques of X-ray diffraction characterization different results were obtained before and after the milling, since by the diffractogram s is possible to observe how the magnesium to be put in the mechanical milling along with the water and methanol was diminishing to be transformed into hydroxide and magnesium oxide, as well as in the micrographs taken with scanning electron microscopy the change in the magnesium morphology to hydroxide and magnesium oxide is observed. (Author)

  13. Multiple stellar generations in the Large Magellanic Cloud Star Cluster NGC 1846

    Science.gov (United States)

    Milone, Antonino

    2010-09-01

    The recent discovery of multiple stellar populations in massive Galactic globular clusters poses a serious challenge for models of star cluster formation and evolution. The finding of multiple main sequences in the massive clusters NGC 2808 and omega Centauri, and multiple sub-giant-branch in NGC 1851 and many other globulars have demonstrated that star clusters are not as simple as we have imagined for decades. Surprisingly the only way to explain the main sequence splitting appears to be Helium enrichment, up to an astonishingly high Y 0.40.An unique angle on this problem can be provided by intermediate-age clusters in the Magellanic Clouds with peculiar main-sequence turn-off morphologies. Recent discoveries, based on ACS data of unparalleled photometric accuracy, have demonstrated that the CMDs of a large fraction of these clusters { 70 %} are not consistent with the simple, single stellar population hypothesis. Explanations for what conditions could give rise to multiple populations in Galactic Globular Clusters remain controversial; this is even more the case for LMC clustersTo properly constraint the multipopulation phenomenon in Magellanic Cloud star clusters, we propose deep UV/IR imaging of NGC 1846, a star cluster where multiple populations have already been identified. The proposed observation will allow us to accurately measure the age difference between the stellar populations providing fundamental clues on the formation mechanism. Our simulations of WFC3 performance suggest that we will be able to detect even the main sequence splitting caused by small He differences {Delta Y 0.02}.

  14. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Laboratory, Richland, WA (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1999-12-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress-corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary-side IG attack or IGSCC is commonly attributed to the presence of strong, caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work conducted in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  15. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Lab., Richland, Washington (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1998-07-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  16. Internal oxidation as a mechanism for steam generator tube degradation

    International Nuclear Information System (INIS)

    Gendron, T.S.; Scott, P.M.; Bruemmer, S.M.; Thomas, L.E.

    1998-01-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  17. On the physical mechanism at the origin of multiple double layers appearance in plasma

    International Nuclear Information System (INIS)

    Dimitriu, D.G.; Gurlui, S.; Aflori, M.; Ivan, L.M.

    2005-01-01

    Double layers (DLs) in plasma are nonlinear potential structures consisting of two adjacent layers of positive and negative space charge, respectively. Between these layers a potential jump exists, creating an electric field. A common way to obtain a DL structure is to positively bias an electrode immersed in asymptotic stable plasma. In this way, a complex space charge structure (CSCS) in form of a positive 'nucleus' surrounded by a nearly spherical DL is obtained. Under certain experimental conditions (gas nature and pressure, plasma density, electron temperature) a more complex structure in form of two or more subsequent DLs was observed, which was called multiple double layers (MDL). It appears as several bright and concentric plasma shells attached to the electrode. The successive DLs are located at the abrupt changes of luminosity between two adjacent plasma shells. Probe measurements emphasized that the axial profile of the plasma potential has a stair steps shape, with potential jumps close to the ionization potential of the used gas. Experimental results clarify the essential role of excitation and ionization electron-neutral collisions for the generation and dynamics of MDL structures. However, if the electrode is large, the MDL structure appears non-concentrically, as a network of plasma spheres, near each other, almost equally distributed on the electrode surface. Each of the plasma spots is a CSCS as described above. Here, we will present experimental result on concentric and non-concentric MDL, which prove that the same physical mechanism is at the origin of their appearance in plasma. In this mechanism the electron-neutral impact excitations and ionizations play the key role. A simultaneously generation of both types of MDL was recorded. The dynamics of the MDL structures was analyzed by using the modern methods provided by the nonlinear dynamics. In this way, a scenario of transition to chaos by torus breakdown was emphasized, related with the

  18. Possible mechanism of solar noise storm generation in meter wavelength

    International Nuclear Information System (INIS)

    Genkin, L.G.; Erukhimov, L.M.; Levin, B.N.

    1989-01-01

    Fluctuation plasma mechanism of noise storm generation is proposed. The sporadic formation of density irregularities in plasma (Langmuir) turbulence region is shown to be the result of thermal stratification of plasma. The noise storm type 1 bursts in their typical parameters are like radio emission due to plasma turbulence conversion on this structures

  19. Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.

    Science.gov (United States)

    König, Gerhard; Mei, Ye; Pickard, Frank C; Simmonett, Andrew C; Miller, Benjamin T; Herbert, John M; Woodcock, H Lee; Brooks, Bernard R; Shao, Yihan

    2016-01-12

    A recently developed MESS-E-QM/MM method (multiple-environment single-system quantum mechanical molecular/mechanical calculations with a Roothaan-step extrapolation) is applied to the computation of hydration free energies for the blind SAMPL4 test set and for 12 small molecules. First, free energy simulations are performed with a classical molecular mechanics force field using fixed-geometry solute molecules and explicit TIP3P solvent, and then the non-Boltzmann-Bennett method is employed to compute the QM/MM correction (QM/MM-NBB) to the molecular mechanical hydration free energies. For the SAMPL4 set, MESS-E-QM/MM-NBB corrections to the hydration free energy can be obtained 2 or 3 orders of magnitude faster than fully converged QM/MM-NBB corrections, and, on average, the hydration free energies predicted with MESS-E-QM/MM-NBB fall within 0.10-0.20 kcal/mol of full-converged QM/MM-NBB results. Out of five density functionals (BLYP, B3LYP, PBE0, M06-2X, and ωB97X-D), the BLYP functional is found to be most compatible with the TIP3P solvent model and yields the most accurate hydration free energies against experimental values for solute molecules included in this study.

  20. Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model.

    Science.gov (United States)

    Bi, Size; Liang, Xiao; Huang, Ting-Lei

    2016-01-01

    Word embedding, a lexical vector representation generated via the neural linguistic model (NLM), is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization.

  1. The Value Generating Mechanisms of Open Government Data

    DEFF Research Database (Denmark)

    Jetzek, Thorhildur

    2013-01-01

    social progress, to an interconnected, networked world of shared resources and co-creation. One of the trends driving this change is open government data. This paper presents a framework of four value generating mechanisms from use of OGD. The framework makes it easier to compare and communicate......Recent trends towards openness and technical connectivity have offered the ability to drive massive social and economic change; however they demand a redefinition of relationships. We have observed a move from a polarized world where companies operate in economic markets while governments drive...

  2. Design mechanic generator under speed bumper to support electricity recourse for urban traffic light

    Science.gov (United States)

    Sabri, M.; Lauzuardy, Jason; Syam, Bustami

    2018-03-01

    The electrical energy needs for the traffic lights in some cities of developing countries cannot be achieved continuously due to limited capacity and interruption of electricity distribution, the main power plant. This issues can lead to congestion at the crossroads. To overcome the problem of street chaos due to power failure, we can cultivate to provide electrical energy from other sources such as using the bumper to generate kinetic energy, which can be converted into electrical energy. This study designed a generator mechanic that will be mounted on the bumper construction to generate electricity for the purposes of traffic lights at the crossroads. The Mechanical generator is composed of springs, levers, sprockets, chains, flywheel and customize power generator. Through the rotation of the flywheel, we can earned 9 Volt DC voltage and electrical current of 5.89 Ampere. This achievement can be used to charge the accumulator which can be used to power the traffic lights, and to charge the accumulator capacity of 6 Ah, the generator works in the charging time for 1.01 hours.

  3. Using local multiplicity to improve effect estimation from a hypothesis-generating pharmacogenetics study.

    Science.gov (United States)

    Zou, W; Ouyang, H

    2016-02-01

    We propose a multiple estimation adjustment (MEA) method to correct effect overestimation due to selection bias from a hypothesis-generating study (HGS) in pharmacogenetics. MEA uses a hierarchical Bayesian approach to model individual effect estimates from maximal likelihood estimation (MLE) in a region jointly and shrinks them toward the regional effect. Unlike many methods that model a fixed selection scheme, MEA capitalizes on local multiplicity independent of selection. We compared mean square errors (MSEs) in simulated HGSs from naive MLE, MEA and a conditional likelihood adjustment (CLA) method that model threshold selection bias. We observed that MEA effectively reduced MSE from MLE on null effects with or without selection, and had a clear advantage over CLA on extreme MLE estimates from null effects under lenient threshold selection in small samples, which are common among 'top' associations from a pharmacogenetics HGS.

  4. Encryption and display of multiple-image information using computer-generated holography with modified GS iterative algorithm

    Science.gov (United States)

    Xiao, Dan; Li, Xiaowei; Liu, Su-Juan; Wang, Qiong-Hua

    2018-03-01

    In this paper, a new scheme of multiple-image encryption and display based on computer-generated holography (CGH) and maximum length cellular automata (MLCA) is presented. With the scheme, the computer-generated hologram, which has the information of the three primitive images, is generated by modified Gerchberg-Saxton (GS) iterative algorithm using three different fractional orders in fractional Fourier domain firstly. Then the hologram is encrypted using MLCA mask. The ciphertext can be decrypted combined with the fractional orders and the rules of MLCA. Numerical simulations and experimental display results have been carried out to verify the validity and feasibility of the proposed scheme.

  5. Experimental evaluation of emergency operating procedures on multiple steam generator tube rupture in INER integral system test facility

    International Nuclear Information System (INIS)

    Liu, T.J.; Lin, Y.M.; Lee, C.H.; Chang, C.Y.; Hong, W.T.

    1997-01-01

    The multiple steam generator tube rupture (SGTR) scenario in Westinghouse type pressurized water reactor (PWR) has been investigated at the Institute of Nuclear Energy Research (INER) Integral System Test (IIST) facility. This reduced-height and reduced-pressure test facility was designed to simulate the main features of Maanshan nuclear power plant. The SGTR test scenario assumes the double-ended break of one-, two- and six- tubes without other failures. The major operator actions follow the related symptom-oriented Emergency Operating Procedure (EOP) on the reference plant. This study focuses on the investigation of thermal-hydraulics phenomena and the adequacy of associated EOP to limit primary-to-secondary leakage. Through this study, it is found that the adequacy of current EOP in minimizing the radioactivity release demands early substantial operator involvement, especially in the multi-tubes break events. Also, the detailed mechanism of the main thermal-hydraulic phenomena during the SGTR transient are explored. (author)

  6. Three-dimensional weight-accumulation algorithm for generating multiple excitation spots in fast optical stimulation

    Science.gov (United States)

    Takiguchi, Yu; Toyoda, Haruyoshi

    2017-11-01

    We report here an algorithm for calculating a hologram to be employed in a high-access speed microscope for observing sensory-driven synaptic activity across all inputs to single living neurons in an intact cerebral cortex. The system is based on holographic multi-beam generation using a two-dimensional phase-only spatial light modulator to excite multiple locations in three dimensions with a single hologram. The hologram was calculated with a three-dimensional weighted iterative Fourier transform method using the Ewald sphere restriction to increase the calculation speed. Our algorithm achieved good uniformity of three dimensionally generated excitation spots; the standard deviation of the spot intensities was reduced by a factor of two compared with a conventional algorithm.

  7. Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells.

    Science.gov (United States)

    Korshed, Peri; Li, Lin; Liu, Zhu; Mironov, Aleksandr; Wang, Tao

    2018-01-01

    In this study, we explored the antibacterial mechanisms for a novel type of Ag-TiO 2 compound nanoparticles (NPs) produced from an Ag-TiO 2 alloy using a picosecond laser and evaluated the toxicity of the Ag-TiO 2 NPs to a range of human cell types. Transmission electron microscopy was used to determine the morphology, shapes, and size distribution of the laser-generated Ag-TiO 2 NPs. UV-visible spectrometer was used to confirm the shift of light absorbance of the NPs toward visible light wavelength. Results showed that the laser-generated Ag-TiO 2 NPs had significant antibacterial activities against both Gram-negative and Gram-positive bacterial strains, including Escherichia coli, Pseudomonas aeruginosa , and the methicillin-resistant Staphylococcus aureus . Increased level of reactive oxygen species was produced by E. coli after exposure to the Ag-TiO 2 NPs, which was accompanied with lipid peroxidation, glutathione depletion, disintegration of cell membrane and protein leakage, leading to the cell death. Five types of human cells originated from lung (A549), liver (HePG2), kidney (HEK293), endothelium cells (human coronary artery endothelial cells [hCAECs]), and skin (human dermal fibroblast cells [HDFc]) were used to evaluate the cytotoxicity of the laser-generated Ag-TiO 2 NPs. A weak but statistically significant decrease in cell proliferation was observed for hCAECs, A549 and HDFc cells when co-cultured with 2.5 µg/mL or 20 µg/mL of the laser-generated Ag-TiO 2 NPs for 48 hours. However, this effect was no longer apparent when a higher concentration of NPs (20 µg/mL) was used after 72 hours of co-culture with human cells, suggesting a possible adaptive process in the cells had occurred. We conclude that picosecond laser-generated Ag-TiO 2 NPs have a broad spectrum of antibacterial effect, including against the drug-resistant strain, with multiple underlying molecular mechanisms and low human cell toxicity. The antimicrobial properties of the new type of

  8. Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mei, E-mail: happy_deercn@163.com [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Zhang, Minfang; Tahara, Yoshio; Chechetka, Svetlana; Miyako, Eijiro [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Iijima, Sumio [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya 468-8502 (Japan); Yudasaka, Masako, E-mail: m-yudasaka@aist.go.jp [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan)

    2014-10-01

    Understanding the molecular mechanisms responsible for the cytotoxic effects of carbon nanomaterials is important for their future biomedical applications. Carbon nanotubular materials induce the generation of reactive oxygen species (ROS), which causes cell death; however, the exact details of this process are still unclear. Here, we identify a mechanism of ROS generation that is involved in the apoptosis of RAW264.7 macrophages caused by excess uptake of carbon nanohorns (CNHs), a typical type of carbon nanotubule. CNH accumulated in the lysosomes, where they induced lysosomal membrane permeabilization (LMP) and the subsequent release of lysosomal proteases, such as cathepsins, which in turn caused mitochondrial dysfunction and triggered the generation of ROS in the mitochondria. The nicotinamide adenine dinucleotide phosphate oxidase was not directly involved in CNH-related ROS production, and the ROS generation cannot be regulated by mitochondrial electron transport chain. ROS fed back to amplify the mitochondrial dysfunction, leading to the subsequent activation of caspases and cell apoptosis. Carbon nanotubules commonly accumulate in the lysosomes after internalization in cells; however, lysosomal dysfunction has not attracted much attention in toxicity studies of these materials. These results suggest that LMP, a neglected mechanism, may be the primary reason for carbon nanotubule toxicity. - Highlights: • We clarify an apoptotic mechanism of RAW264.7 cells caused by carbon nanohorns. • In the meantime, the mechanism of CNH-induced ROS generation is identified. • LMP is the initial factor of CNH-induced ROS generation and cell death. • Cathepsins work as mediators that connect LMP and mitochondrial dysfunction.

  9. Modified random hinge transport mechanics and multiple scattering step-size selection in EGS5

    International Nuclear Information System (INIS)

    Wilderman, S.J.; Bielajew, A.F.

    2005-01-01

    The new transport mechanics in EGS5 allows for significantly longer electron transport step sizes and hence shorter computation times than required for identical problems in EGS4. But as with all Monte Carlo electron transport algorithms, certain classes of problems exhibit step-size dependencies even when operating within recommended ranges, sometimes making selection of step-sizes a daunting task for novice users. Further contributing to this problem, because of the decoupling of multiple scattering and continuous energy loss in the dual random hinge transport mechanics of EGS5, there are two independent step sizes in EGS5, one for multiple scattering and one for continuous energy loss, each of which influences speed and accuracy in a different manner. Further, whereas EGS4 used a single value of fractional energy loss (ESTEPE) to determine step sizes at all energies, to increase performance by decreasing the amount of effort expended simulating lower energy particles, EGS5 permits the fractional energy loss values which are used to determine both the multiple scattering and continuous energy loss step sizes to vary with energy. This results in requiring the user to specify four fractional energy loss values when optimizing computations for speed. Thus, in order to simplify step-size selection and to mitigate step-size dependencies, a method has been devised to automatically optimize step-size selection based on a single material dependent input related to the size of problem tally region. In this paper we discuss the new transport mechanics in EGS5 and describe the automatic step-size optimization algorithm. (author)

  10. Various bio-mechanical factors affecting heat generation during osteotomy preparation: A systematic review.

    Science.gov (United States)

    Chauhan, Chirag J; Shah, Darshana N; Sutaria, Foram B

    2018-01-01

    As implant site preparation and bone are critical precursors to primary healing, thermal and mechanical damage to the bone must be minimized during the preparation of the implant site. Moreover, excessively traumatic surgery can adversely affect the maturation of bone tissue at the bone/implant interface and consequently diminish the predictability of osseointegration. So, this study was carried out to evaluate the various biological and mechanical factors responsible for heat generation during osteotomy site preparation to reduce the same for successful osseointegration of dental implants. A broad search of the dental literature in PubMed added by manual search was performed for articles published between 1992 and December 2015. Various bio-mechanical factors related to dental implant osteotomy preparation such as dental implant drill designs/material/wear, drilling methods, type of irrigation, and bone quality were reviewed. Titles and abstracts were screened and articles which fulfilled the inclusion criteria were selected for a full-text reading. The initial database search yielded 123 titles, of which 59 titles were discarded after reading the titles and abstracts, 30 articles were again excluded based on inclusion and exclusion criteria, and finally 34 articles were selected for data extraction. Many biological and mechanical factors responsible for heat generation were found. Literatures of this review study have indicated that there are various bio-mechanical reasons, which affect the temperature rise during osteotomy and suggest that the amount of heat generation is a multifactorial in nature and it should be minimized for better primary healing of the implant site.

  11. Dynamical mechanism of symmetry breaking and particle mass generation in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Fomin, P.I.

    1985-01-01

    The dynamics of the spotaneous symmetry breaking and the particle mass generation in gauge theories with no fundamental scalar fields is considered. The emphasis is on the consideration of the symmetry breaking mechanism connected with the dynamics of the supercritical Coulomb-like forces caused by the gauge boson exchange between fermions. This mechanism is applied to different gauge theories, in particular, to the description of the spontaneous chira symmetry breaking in quantum chromodynamics. The mass relations for pseudoscalar meson nonet are obtained and it is shown that this mechanism resuls in the dynamical realisation of the hypothesis of the partial conservation of the axial-vector currents. The qualitative description of scalar mesons is given. The nature of the ultraviolet divergencies in quantum electrodynamics (QED) is investigated from the viewpoint of the dynamics of the fermion mass generation. The mechanism of the appearance of the additional (in comparison with perturbation theory) ultraviolet divergencies in QED with large bare coupling constant is indicated. The physical phenomenon underlying this mechanism is identified as the field theory analogue of the quantum mechanical ''fall into the centre'' (collapse) phenomenon. The similr phenomenon is shown to take place in some two-dimensional quantum field models. The dynamics of the bifermion condensates formation in tumblin gauge theories is briefly discussed

  12. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, Mohammad Akbar Hosain

    2014-12-04

    Various examples are provided for generalized internal multiple imaging (GIMI). In one example, among others, a method includes generating a higher order internal multiple image using a background Green\\'s function and rendering the higher order internal multiple image for presentation. In another example, a system includes a computing device and a generalized internal multiple imaging (GIMI) application executable in the computing device. The GIMI application includes logic that generates a higher order internal multiple image using a background Green\\'s function and logic that renders the higher order internal multiple image for display on a display device. In another example, a non-transitory computer readable medium has a program executable by processing circuitry that generates a higher order internal multiple image using a background Green\\'s function and renders the higher order internal multiple image for display on a display device.

  13. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, Mohammad Akbar Hosain; Alkhalifah, Tariq

    2014-01-01

    Various examples are provided for generalized internal multiple imaging (GIMI). In one example, among others, a method includes generating a higher order internal multiple image using a background Green's function and rendering the higher order internal multiple image for presentation. In another example, a system includes a computing device and a generalized internal multiple imaging (GIMI) application executable in the computing device. The GIMI application includes logic that generates a higher order internal multiple image using a background Green's function and logic that renders the higher order internal multiple image for display on a display device. In another example, a non-transitory computer readable medium has a program executable by processing circuitry that generates a higher order internal multiple image using a background Green's function and renders the higher order internal multiple image for display on a display device.

  14. Multiple infrared bands absorber based on multilayer gratings

    Science.gov (United States)

    Liu, Xiaoyi; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Guo, Chengli

    2018-03-01

    The present study offers an Ag/Si multilayer-grating microstructure based on an Si substrate. The microstructure exhibits designable narrowband absorption in multiple infrared wavebands, especially in mid- and long-wave infrared atmospheric windows. We investigate its resonance mode mechanism, and calculate the resonance wavelengths by the Fabry-Perot and metal-insulator-metal theories for comparison with the simulation results. Furthermore, we summarize the controlling rules of the absorption peak wavelength of the microstructure to provide a new method for generating a Si-based device with multiple working bands in infrared.

  15. Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells

    Directory of Open Access Journals (Sweden)

    Korshed P

    2017-12-01

    hours of co-culture with human cells, suggesting a possible adaptive process in the cells had occurred. We conclude that picosecond laser-generated Ag-TiO2 NPs have a broad spectrum of antibacterial effect, including against the drug-resistant strain, with multiple underlying molecular mechanisms and low human cell toxicity. The antimicrobial properties of the new type of picoseconds laser-generated Ag-TiO2 compound NPs could have potential biomedical applications. Keywords: silver-titanium nanoparticles, bactericidal, picoseconds laser, reactive oxygen species, cytotoxicity, compound nanoparticles, methicillin-resistant Staphylococcus aureus

  16. Mechanisms behind the generation of protonated ions for polyaromatic hydrocarbons by atmospheric pressure photoionization.

    Science.gov (United States)

    Ahmed, Arif; Choi, Cheol Ho; Choi, Myoung Choul; Kim, Sunghwan

    2012-01-17

    In this study, the mechanism behind the generation of protonated polyaromatic hydrocarbon (PAH) ions without heteroatoms by atmospheric pressure photoionization (APPI) is investigated. Comparing data obtained by APPI of anthracene dissolved either in toluene or perdeuterated toluene suggests that toluene acts as a source of protons and that breakage of C-H bonds in the toluene molecule is important for the overall protonation reaction. Our data describing an Arrhenius-type temperature-dependent relationship between the signal intensities of molecular and protonated ions suggest a mechanistic relation between the generated molecular and protonated ions. The APPI protonation mechanism that best explains the observed phenomena is composed of two reactions: electron transfer followed by hydrogen transfer. This two-step mechanism for APPI was originally suggested by Syage (Syage, J. A. J. Am. Soc. Mass Spectrom. 2004, 15 , 1521-1533). Further quantum mechanical study shows that an energetically favorable ion-molecular complex can be generated as a result of electron transfer from toluene to PAH, which subsequently facilitates hydrogen transfer. This suggests that both electron transfer and hydrogen transfer can occur as a "concerted" reaction through the ion-molecular complex precursor state, which is consistent with experimental results. To our best knowledge, this is the first time that the dynamic nature of the APPI process is clearly revealed by combined experimental and quantum mechanical studies.

  17. Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model

    Directory of Open Access Journals (Sweden)

    Size Bi

    2016-01-01

    Full Text Available Word embedding, a lexical vector representation generated via the neural linguistic model (NLM, is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization.

  18. Multiple Model Predictive Hybrid Feedforward Control of Fuel Cell Power Generation System

    Directory of Open Access Journals (Sweden)

    Long Wu

    2018-02-01

    Full Text Available Solid oxide fuel cell (SOFC is widely considered as an alternative solution among the family of the sustainable distributed generation. Its load flexibility enables it adjusting the power output to meet the requirements from power grid balance. Although promising, its control is challenging when faced with load changes, during which the output voltage is required to be maintained as constant and fuel utilization rate kept within a safe range. Moreover, it makes the control even more intractable because of the multivariable coupling and strong nonlinearity within the wide-range operating conditions. To this end, this paper developed a multiple model predictive control strategy for reliable SOFC operation. The resistance load is regarded as a measurable disturbance, which is an input to the model predictive control as feedforward compensation. The coupling is accommodated by the receding horizon optimization. The nonlinearity is mitigated by the multiple linear models, the weighted sum of which serves as the final control execution. The merits of the proposed control structure are demonstrated by the simulation results.

  19. Mechanical property changes during neonatal development and healing using a multiple regression model.

    Science.gov (United States)

    Ansorge, Heather L; Adams, Sheila; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2012-04-30

    During neonatal development, tendons undergo a well orchestrated process whereby extensive structural and compositional changes occur in synchrony to produce a normal tissue. Conversely, during the repair response to injury, structural and compositional changes occur, but a mechanically inferior tendon is produced. As a result, developmental processes have been postulated as a potential paradigm for elucidation of mechanistic insight required to develop treatment modalities to improve adult tissue healing. The objective of this study was to compare and contrast normal development with injury during early and late developmental healing. Using backwards multiple linear regressions, quantitative and objective information was obtained into the structure-function relationships in tendon. Specifically, proteoglycans were shown to be significant predictors of modulus during early developmental healing but not during late developmental healing or normal development. Multiple independent parameters predicted percent relaxation during normal development, however, only biglycan and fibril diameter parameters predicted percent relaxation during early developmental healing. Lastly, multiple differential predictors were observed between early development and early developmental healing; however, no differential predictors were observed between late development and late developmental healing. This study presents a model through which objective analysis of how compositional and structural parameters that affect the development of mechanical parameters can be quantitatively measured. In addition, information from this study can be used to develop new treatment and therapies through which improved adult tendon healing can be obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Multiple time-scale optimization scheduling for islanded microgrids including PV, wind turbine, diesel generator and batteries

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Nan, Jiakai; Guerrero, Josep M.

    2017-01-01

    A multiple time-scale optimization scheduling including day ahead and short time for an islanded microgrid is presented. In this paper, the microgrid under study includes photovoltaics (PV), wind turbine (WT), diesel generator (DG), batteries, and shiftable loads. The study considers the maximum...... efficiency operation area for the diesel engine and the cost of the battery charge/discharge cycle losses. The day-ahead generation scheduling takes into account the minimum operational cost and the maximum load satisfaction as the objective function. Short-term optimal dispatch is based on minimizing...

  1. Mechanisms of sharp wave initiation and ripple generation.

    Science.gov (United States)

    Schlingloff, Dániel; Káli, Szabolcs; Freund, Tamás F; Hájos, Norbert; Gulyás, Attila I

    2014-08-20

    Replay of neuronal activity during hippocampal sharp wave-ripples (SWRs) is essential in memory formation. To understand the mechanisms underlying the initiation of irregularly occurring SWRs and the generation of periodic ripples, we selectively manipulated different components of the CA3 network in mouse hippocampal slices. We recorded EPSCs and IPSCs to examine the buildup of neuronal activity preceding SWRs and analyzed the distribution of time intervals between subsequent SWR events. Our results suggest that SWRs are initiated through a combined refractory and stochastic mechanism. SWRs initiate when firing in a set of spontaneously active pyramidal cells triggers a gradual, exponential buildup of activity in the recurrent CA3 network. We showed that this tonic excitatory envelope drives reciprocally connected parvalbumin-positive basket cells, which start ripple-frequency spiking that is phase-locked through reciprocal inhibition. The synchronized GABA(A) receptor-mediated currents give rise to a major component of the ripple-frequency oscillation in the local field potential and organize the phase-locked spiking of pyramidal cells. Optogenetic stimulation of parvalbumin-positive cells evoked full SWRs and EPSC sequences in pyramidal cells. Even with excitation blocked, tonic driving of parvalbumin-positive cells evoked ripple oscillations. Conversely, optogenetic silencing of parvalbumin-positive cells interrupted the SWRs or inhibited their occurrence. Local drug applications and modeling experiments confirmed that the activity of parvalbumin-positive perisomatic inhibitory neurons is both necessary and sufficient for ripple-frequency current and rhythm generation. These interneurons are thus essential in organizing pyramidal cell activity not only during gamma oscillation, but, in a different configuration, during SWRs. Copyright © 2014 the authors 0270-6474/14/3411385-14$15.00/0.

  2. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs

    Directory of Open Access Journals (Sweden)

    Gong Shiaochin

    2009-03-01

    Full Text Available Abstract Background Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. Results We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1 subclone genes of interest into BAC linking vectors, (2 insert desired reporter genes into respective genes and (3 link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. Conclusion The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  3. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs.

    Science.gov (United States)

    Maye, Peter; Stover, Mary Louise; Liu, Yaling; Rowe, David W; Gong, Shiaochin; Lichtler, Alexander C

    2009-03-13

    Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP) reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1) subclone genes of interest into BAC linking vectors, (2) insert desired reporter genes into respective genes and (3) link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  4. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals

    Science.gov (United States)

    Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-12-01

    The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.

  5. Distinct signaling mechanisms in multiple developmental pathways by the SCRAMBLED receptor of Arabidopsis.

    Science.gov (United States)

    Kwak, Su-Hwan; Woo, Sooah; Lee, Myeong Min; Schiefelbein, John

    2014-10-01

    SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase in Arabidopsis (Arabidopsis thaliana), is required for positional signaling in the root epidermis and for tissue/organ development in the shoot. To further understand SCM action, we generated a series of kinase domain variants and analyzed their ability to complement scm mutant defects. We found that the SCM kinase domain, but not kinase activity, is required for its role in root epidermal patterning, supporting the view that SCM is an atypical receptor kinase. We also describe a previously uncharacterized role for SCM in fruit dehiscence, because mature siliques from scm mutants fail to open properly. Interestingly, the kinase domain of SCM appears to be dispensable for this developmental process. Furthermore, we found that most of the SCM kinase domain mutations dramatically inhibit inflorescence development. Because this process is not affected in scm null mutants, it is likely that SCM acts redundantly to regulate inflorescence size. The importance of distinct kinase residues for these three developmental processes provides an explanation for the maintenance of the conserved kinase domain in the SCM protein, and it may generally explain its conservation in other atypical kinases. Furthermore, these results indicate that individual leucine-rich repeat receptor-like kinases may participate in multiple pathways using distinct signaling mechanisms to mediate diverse cellular communication events. © 2014 American Society of Plant Biologists. All Rights Reserved.

  6. Multiple post-transcriptional regulatory mechanisms in ferritin gene expression

    International Nuclear Information System (INIS)

    Mattia, E.; Den Blaauwen, J.; Van Renswoude, J.; Ashwell, G.

    1989-01-01

    The authors have investigated the mechanisms involved in the regulation of ferritin biosynthesis in K562 human erythroleukemia cells during prolonged exposure to iron. They show that, upon addition of hemin (an efficient iron donor) to the cell culture, the rate of ferritin biosynthesis reaches a maximum after a few hours and then decreases. During a 24-hr incubation with the iron donor the concentrations of total ferritin heavy (H) and light (L) subunit mRNAs rise 2- to 5-fold and 2- to 3-fold, respectively, over the control values, while the amount of the protein increases 10- to 30-fold. The hemin-induced increment in ferritin subunit mRNA is not prevented by deferoxamine, suggesting that it is not directly mediated by chelatable iron. In vitro nuclear transcription analyses performed on nuclei isolated from control cells and cells grown in the presence of hemin indicate that the rates of synthesis of H- and L-subunit mRNAs remain constant. They conclude that iron-induced ferritin biosynthesis is governed by multiple post-transcriptional regulatory mechanisms. They propose that exposure of cells to iron leads to stabilization of ferritin mRNAs, in addition to activation and translation of stored H-and L-subunit mRNAs

  7. Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures

    Directory of Open Access Journals (Sweden)

    Jinlong Chen

    2017-09-01

    Full Text Available Much attention has been paid to the application of low temperature thermal resources, especially for power generation in recent years. Most of the current commercialized thermal (including geothermal power-generation technologies convert thermal energy to electric energy indirectly, that is, making mechanical work before producing electricity. Technology using a thermoelectric generator (TEG, however, can directly transform thermal energy into electricity through the Seebeck effect. TEG technology has many advantages such as compactness, quietness, and reliability because there are no moving parts. One of the biggest disadvantages of TEGs is the low efficiency from thermal to electric energy. For this reason, we redesigned and modified our previous 1 KW (at a temperature difference of around 120 °C TEG system. The output power of the system was improved significantly, about 34.6% greater; the instantaneous efficiency of the TEG system could reach about 6.5%. Laboratory experiments have been conducted to measure the output power at different conditions: different connection modes between TEG modules, different mechanical structures, and different temperature differences between hot and cold sides. The TEG apparatus has been tested and the data have been presented. This kind of TEG power system can be applied in many thermal and geothermal sites with low temperature resources, including oil fields where fossil and geothermal energies are coproduced.

  8. Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis

    Directory of Open Access Journals (Sweden)

    Eric Muraille

    2018-02-01

    Full Text Available Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG mechanisms share common functional properties. They (i contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii favor robustness and collectivism among populations and (iii operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and

  9. Ab initio Algorithmic Causal Deconvolution of Intertwined Programs and Networks by Generative Mechanism

    KAUST Repository

    Zenil, Hector

    2018-02-18

    To extract and learn representations leading to generative mechanisms from data, especially without making arbitrary decisions and biased assumptions, is a central challenge in most areas of scientific research particularly in connection to current major limitations of influential topics and methods of machine and deep learning as they have often lost sight of the model component. Complex data is usually produced by interacting sources with different mechanisms. Here we introduce a parameter-free model-based approach, based upon the seminal concept of Algorithmic Probability, that decomposes an observation and signal into its most likely algorithmic generative mechanisms. Our methods use a causal calculus to infer model representations. We demonstrate the method ability to distinguish interacting mechanisms and deconvolve them, regardless of whether the objects produce strings, space-time evolution diagrams, images or networks. We numerically test and evaluate our method and find that it can disentangle observations from discrete dynamic systems, random and complex networks. We think that these causal inference techniques can contribute as key pieces of information for estimations of probability distributions complementing other more statistical-oriented techniques that otherwise lack model inference capabilities.

  10. Multiple environment single system quantum mechanical/molecular mechanical (MESS-QM/MM) calculations. 1. Estimation of polarization energies.

    Science.gov (United States)

    Sodt, Alexander J; Mei, Ye; König, Gerhard; Tao, Peng; Steele, Ryan P; Brooks, Bernard R; Shao, Yihan

    2015-03-05

    In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consistent field (SCF) energy; whereas the other scheme, termed MESS-H, employs a Newton-Raphson correction using an approximate inverse electronic Hessian of the QM region (which is constructed only once). Both schemes are extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completely avoided at each configuration. They produce reasonably accurate QM/MM polarization energies: MESS-E can predict the polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and solvated β-alanine, using the M06-2X or ωB97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/mol for these two cases and for the oxyluciferin-luciferase complex, if the approximate inverse electronic Hessians are constructed with sufficient accuracy.

  11. Simulation of multi-photon emission isotopes using time-resolved SimSET multiple photon history generator

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing-HuaUniversity, Hsinchu, Taiwan (China); Jan, Meei-Ling [Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (China)

    2015-07-01

    Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generator based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)

  12. CURVES AND AESTHETIC SURFACES GENERATED BY THE R-R-RTR MECHANISM

    Directory of Open Access Journals (Sweden)

    Liliana LUCA

    2013-05-01

    Full Text Available Let’s consider a mechanism having two driving elements with revolving movements and a RTR dyad, with elements of null length and aesthetic tracks of a point are determined on a rod, for various linear movement laws of driving elements. The generated curves revolve around x and y axes and aesthetic surfaces result.

  13. A simple distributed mechanism for accounting system self-configuration in next-generation charging and billing

    NARCIS (Netherlands)

    Kuehne, Ralph; Huitema, George; Carle, Georg

    2011-01-01

    Modern communication systems are becoming increasingly dynamic and complex. In this article a novel mechanism for next generation charging and billing is presented that enables self-configurability for accounting systems consisting of heterogeneous components. The mechanism is required to be simple,

  14. Biology Question Generation from a Semantic Network

    Science.gov (United States)

    Zhang, Lishan

    Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions. To boost students' learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student's current competence so that a suitable question could be selected based on the student's previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group. To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators. A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from

  15. Ab initio Algorithmic Causal Deconvolution of Intertwined Programs and Networks by Generative Mechanism

    KAUST Repository

    Zenil, Hector; Kiani, Narsis A.; Tegner, Jesper

    2018-01-01

    To extract and learn representations leading to generative mechanisms from data, especially without making arbitrary decisions and biased assumptions, is a central challenge in most areas of scientific research particularly in connection to current

  16. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    International Nuclear Information System (INIS)

    Joshi, Ramesh; Singh, Manoj; Jadav, H M; Misra, Kishor; Kulkarni, S V

    2010-01-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twice, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in

  17. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    Science.gov (United States)

    Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in

  18. Generation of multiple analog pulses with different duty cycles within VME control system for ICRH Aditya system

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ramesh; Singh, Manoj; Jadav, H M; Misra, Kishor; Kulkarni, S V, E-mail: rjoshi@ipr.res.i [Institute for plasma research, Bhat, Gandhinagar- 382428 (India)

    2010-02-01

    Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twice, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in

  19. Multiple mechanisms generate a universal scaling with dissipation for the air-water gas transfer velocity

    Science.gov (United States)

    Katul, Gabriel; Liu, Heping

    2017-02-01

    A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water interfaces scales as kL˜(νɛ)1/4, where ν is the kinematic water viscosity and ɛ is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust.

  20. Mechanized inspection of steam generator components during manufacture

    International Nuclear Information System (INIS)

    Otte, H.-J.; Leupoldt, K.; Meister, W.

    2009-01-01

    Steam Generator (SG) parts are intensively inspected by UT in the course of the manufacturing process. These inspections - mostly performed manually using different codes - are time consuming and call for a sophisticated documentation, figuring part of the life time documentation package. In order to reduce time and costs mechanized inspection equipment is introduced, combining short inspection times, avoiding influence of the human factor and providing proper electronic storage of all inspection results prepared for comparison with data generated during in-service inspection. Since 2001 Cegelec delivered various UT systems for gas turbine disks and rotor ends called SIRO-MAN. Within only a few years the majority of important providers of such components successfully switched from manual inspection to mechanized inspection following the requirements of manufacturers like ALSTOM, GE and Siemens. The SIRO-MAN is now adapted to the needs of mechanized inspection of SG components. The inspection is performed on the products during rotation around the vertical axis. The multi - probe assemblies are manoeuvred on the products by a manipulator system backed by a NC control unit. Acoustic coupling of UT probes to the product surface is performed with oil or water in a closed circuit. UT and - if requested ET - data along with position information of the probe assembly provided by the control unit are acquired, processed and evaluated by an UT / ET electronic system delivered by either Olympus or ZETEC. As performed already on rotor ends a sequence of inspections using different parameter settings can be programmed with simple means (Teach In) so that such inspection sequence can be executed without operating personnel. Probe assemblies allow for individual operation of probes out of the probe assembly according to the individual needs. Conventional UT and phased array applications or combination of both techniques can be provided. The UT / ET electronic equipment offers

  1. Next-generation sequencing of multiple individuals per barcoded library by deconvolution of sequenced amplicons using endonuclease fragment analysis

    DEFF Research Database (Denmark)

    Andersen, Jeppe D; Pereira, Vania; Pietroni, Carlotta

    2014-01-01

    The simultaneous sequencing of samples from multiple individuals increases the efficiency of next-generation sequencing (NGS) while also reducing costs. Here we describe a novel and simple approach for sequencing DNA from multiple individuals per barcode. Our strategy relies on the endonuclease...... digestion of PCR amplicons prior to library preparation, creating a specific fragment pattern for each individual that can be resolved after sequencing. By using both barcodes and restriction fragment patterns, we demonstrate the ability to sequence the human melanocortin 1 receptor (MC1R) genes from 72...... individuals using only 24 barcoded libraries....

  2. Population dynamics and current-generation mechanisms in cassette-electrode microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuya [ERATO/JST, Tokyo (Japan). Hashimoto Light Energy Conversion Project; Tokyo Univ. (Japan). Research Center for Advanced Science and Technology; Tokyo Univ. of Pharmacy and Life Sciences (Japan). School of Life Sciences; Miyahara, Morio [ERATO/JST, Tokyo (Japan). Hashimoto Light Energy Conversion Project; Shimoyama, Takefumi [Tokyo Univ. (Japan). Research Center for Advanced Science and Technology; Hashimoto, Kazuhito [ERATO/JST, Tokyo (Japan). Hashimoto Light Energy Conversion Project; Tokyo Univ. (Japan). Dept. of Applied Chemistry

    2011-12-15

    Cassette-electrode microbial fuel cells (CE-MFCs) have been demonstrated useful to treat biomass wastes and recover electric energy from them. In order to reveal electricity-generation mechanisms in CE-MFCs, the present study operated a bench-scale reactor (1 l in capacity; approximately 1,000 cm{sup 2} in anode and cathode areas) for treating a high-strength model organic wastewater (comprised of starch, peptone, and fish extract). Approximately 1 month was needed for the bench reactor to attain a stable performance, after which volumetric maximum power densities persisted between 120 and 150 mW/l throughout the experiment (for over 2 months). Temporal increases in the external resistance were found to induce subsequent increases in power outputs. After electric output became stable, electrolyte and anode were sampled from the reactor for evaluating their current-generation abilities; it was estimated that most of current (over 80%) was generated by microbes in the electrolyte. Cyclic voltammetry of an electrolyte supernatant detected several electron shuttles with different standard redox potentials at high concentrations (equivalent to or more than 100 {mu}M 5-hydroxy-1,4-naphthoquinone). Denaturing gradient gel electrophoresis and quantitative real-time PCR of 16S ribosomal RNA gene fragments showed that bacteria related to the genus Dysgonomonas occurred abundantly in association with the increases in power outputs. These results suggest that mediated electron transfer was the main mechanism for electricity generation in CE-MFC, where high-concentration electron shuttles and Dysgonomonas bacteria played important roles. (orig.)

  3. Family history of education predicts eating disorders across multiple generations among 2 million Swedish males and females.

    Directory of Open Access Journals (Sweden)

    Anna Goodman

    Full Text Available To investigate which facets of parent and grandparent socio-economic position (SEP are associated with eating disorders (ED, and how this varies by ED subtype and over time.Total-population cohort study of 1,040,165 females and 1,098,188 males born 1973-1998 in Sweden, and followed for inpatient or outpatient ED diagnoses until 2010. Proportional hazards models estimated associations with parental education, income and social class, and with grandparental education and income.15,747 females and 1051 males in our sample received an ED diagnosis, with rates increasing in both sexes over time. ED incidence in females was independently predicted by greater educational level among the father, mother and maternal grandparents, but parent social class and parental income showed little or no independent effect. The associations with education were equally strong for anorexia nervosa, bulimia nervosa and ED not-otherwise-specified, and had increased over time. Among males, an apparently similar pattern was seen with respect to anorexia nervosa, but non-anorexia ED showed no association with parental education and an inverse association with parental income.Family history of education predicts ED in gender- and disorder-specific ways, and in females the effect is observed across multiple generations. Particularly given that these effects may have grown stronger in more recent cohorts, these findings highlight the need for further research to clarify the underlying mechanisms and identify promising targets for prevention. Speculatively, one such mechanism may involve greater internal and external demands for academic success in highly educated families.

  4. Family history of education predicts eating disorders across multiple generations among 2 million Swedish males and females.

    Science.gov (United States)

    Goodman, Anna; Heshmati, Amy; Koupil, Ilona

    2014-01-01

    To investigate which facets of parent and grandparent socio-economic position (SEP) are associated with eating disorders (ED), and how this varies by ED subtype and over time. Total-population cohort study of 1,040,165 females and 1,098,188 males born 1973-1998 in Sweden, and followed for inpatient or outpatient ED diagnoses until 2010. Proportional hazards models estimated associations with parental education, income and social class, and with grandparental education and income. 15,747 females and 1051 males in our sample received an ED diagnosis, with rates increasing in both sexes over time. ED incidence in females was independently predicted by greater educational level among the father, mother and maternal grandparents, but parent social class and parental income showed little or no independent effect. The associations with education were equally strong for anorexia nervosa, bulimia nervosa and ED not-otherwise-specified, and had increased over time. Among males, an apparently similar pattern was seen with respect to anorexia nervosa, but non-anorexia ED showed no association with parental education and an inverse association with parental income. Family history of education predicts ED in gender- and disorder-specific ways, and in females the effect is observed across multiple generations. Particularly given that these effects may have grown stronger in more recent cohorts, these findings highlight the need for further research to clarify the underlying mechanisms and identify promising targets for prevention. Speculatively, one such mechanism may involve greater internal and external demands for academic success in highly educated families.

  5. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  6. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    International Nuclear Information System (INIS)

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development

  7. Generation of six multiple sclerosis patient-derived induced pluripotent stem cell lines.

    Science.gov (United States)

    Miquel-Serra, L; Duarri, A; Muñoz, Y; Kuebler, B; Aran, B; Costa, C; Martí, M; Comabella, M; Malhotra, S; Montalban, X; Veiga, A; Raya, A

    2017-10-01

    Multiple sclerosis (MS) is considered a chronic autoimmune disease of the central nervous system that leads to gliosis, demyelination, axonal damage and neuronal death. The MS disease aetiology is unknown, though a polymorphism of the TNFRSF1A gene, rs1800693, is known to confer an increased risk for MS. Using retroviral delivery of reprogramming transgenes, we generated six MS patient-specific iPSC lines with two distinct genotypes, CC or TT, of the polymorphism rs1800693. iPSC lines had normal karyotype, expressed pluripotency genes and differentiated into the three germ layers. These lines offer a good tool to study MS pathomechanisms and for drug testing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang

    2013-12-16

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions. © 2014 IOP Publishing Ltd.

  9. Emission Rates of Multiple Air Pollutants Generated from Chinese Residential Cooking.

    Science.gov (United States)

    Chen, Chen; Zhao, Yuejing; Zhao, Bin

    2018-02-06

    Household air pollution generated from cooking is severe, especially for Chinese-style cooking. We measured the emission rates of multiple air pollutants including fine particles (PM 2.5 ), ultrafine particles (UFPs), and volatile organic compounds (VOCs, including formaldehyde, benzene, and toluene) that were generated from typical Chinese cooking in a residential kitchen. The experiment was designed through five-factor and five-level orthogonal testing. The five key factors were cooking method, ingredient weight, type of meat, type of oil, and meat/vegetable ratio. The measured emission rates (mean value ± standard deviation) of PM 2.5 , UFPs, formaldehyde, total volatile organic compounds (TVOCs), benzene, and toluene were 2.056 ± 3.034 mg/min, 9.102 ± 6.909 × 10 12 #/min, 1.273 ± 0.736 mg/min, 1.349 ± 1.376 mg/min, 0.074 ± 0.039 mg/min, and 0.004 ± 0.004 mg/min. Cooking method was the most influencing factor for the emission rates of PM 2.5 , UFPs, formaldehyde, TVOCs, and benzene but not for toluene. Meanwhile, the emission rate of PM 2.5 was also significantly influenced by ingredient weight, type of meat, and meat/vegetable ratio. Exhausting the range hood decreased the emission rates by approximately 58%, with a corresponding air change rate of 21.38/h for the kitchen room.

  10. Adaption of Ulva pertusa to multiple-contamination of heavy metals and nutrients: Biological mechanism of outbreak of Ulva sp. green tide.

    Science.gov (United States)

    Ge, Changzi; Yu, Xiru; Kan, Manman; Qu, Chunfeng

    2017-12-15

    The multiple-contamination of heavy metals and nutrients worsens increasingly and Ulva sp. green tide occurs almost simultaneously. To reveal the biological mechanism for outbreak of the green tide, Ulva pertusa was exposed to seven-day-multiple-contamination. The relation between pH variation (V pH ), Chl a content, ratio of (Chl a content)/(Chl b content) (R chla/chlb ), SOD activity of U. pertusa (A SOD ) and contamination concentration is [Formula: see text] (pcontamination concentrations of seawaters where Ulva sp. green tide occurred and the contamination concentrations set in the present work, U. pertusa can adapt to multiple-contaminations in these waters. Thus, the adaption to multiple-contamination may be one biological mechanism for the outbreak of Ulva sp. green tide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A hybrid Dantzig-Wolfe, Benders decomposition and column generation procedure for multiple diet production planning under uncertainties

    Science.gov (United States)

    Udomsungworagul, A.; Charnsethikul, P.

    2018-03-01

    This article introduces methodology to solve large scale two-phase linear programming with a case of multiple time period animal diet problems under both nutrients in raw materials and finished product demand uncertainties. Assumption of allowing to manufacture multiple product formulas in the same time period and assumption of allowing to hold raw materials and finished products inventory have been added. Dantzig-Wolfe decompositions, Benders decomposition and Column generations technique has been combined and applied to solve the problem. The proposed procedure was programmed using VBA and Solver tool in Microsoft Excel. A case study was used and tested in term of efficiency and effectiveness trade-offs.

  12. A Meinardus Theorem with Multiple Singularities

    Science.gov (United States)

    Granovsky, Boris L.; Stark, Dudley

    2012-09-01

    Meinardus proved a general theorem about the asymptotics of the number of weighted partitions, when the Dirichlet generating function for weights has a single pole on the positive real axis. Continuing (Granovsky et al., Adv. Appl. Math. 41:307-328, 2008), we derive asymptotics for the numbers of three basic types of decomposable combinatorial structures (or, equivalently, ideal gas models in statistical mechanics) of size n, when their Dirichlet generating functions have multiple simple poles on the positive real axis. Examples to which our theorem applies include ones related to vector partitions and quantum field theory. Our asymptotic formula for the number of weighted partitions disproves the belief accepted in the physics literature that the main term in the asymptotics is determined by the rightmost pole.

  13. Payment mechanisms for micro-generation

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, W.; Andrews, S.

    2002-07-01

    The Department of Trade and Industry commissioned a study into payment options for the increasing number of micro-generators (in domestic dwellings and where the generating capacity is not more than 5kW i.e. essentially micro-CHP and photovoltaics) supplying power for the national distribution network. It is shown that small generators will impact on all aspects of industry and connection will need to be simplified. The network will call for a more actively managed regime. Metering will need to be more sophisticated and agreement reached on how costs should be allocated when demand is low and surplus electricity is exported to the system. Three options were considered to be viable.

  14. Study of multiple production mechanisms of neutral and charged particles in proton-proton interactions at 69GeV/c

    International Nuclear Information System (INIS)

    Boratav, Murat.

    1976-01-01

    From a sample of 30000 pictures taken in the hydrogen bubble chamber Mirabelle, with a proton beam of 69GeV/c, at Serpukhov, the multiple particle production mechanisms are studied in proton-proton collisions. The neutral pions produced are specially studied, which means that the photons coming from the disintegration of π 0 's have to be detected and measured. From these pion spectra, their multiplicity distributions and the first order moments of these distributions (particularly the Mueller correlation coefficients) data and results are compared with the predictions of theoretical models such as: 'thermodynamic' models (Feynman gas, critical fluid model, etc.) and cluster models (with a fixed size or a size depending on incoming energy). The multiple production mechanisms seem to appear through small-sized, energy-dependent clusters (about two pions per cluster at this energy) [fr

  15. Multiple account benefit-cost evaluation of the Burrard Thermal Generating Plant

    International Nuclear Information System (INIS)

    2001-04-01

    The government of British Columbia commissioned a multiple account benefit-cost analysis of the Burrard Thermal Generating Plant to ensure that the power production is in the economic and environmental interest of the province. The power plant consists of 6 natural gas-fired generating units with a combined capacity of 950 MW. It has been updated in recent years to reduce local emissions and to increase plant availability and reliability. Burrard has contributed in a major way to BC Hydro's net revenues, but there have been concerns that BC Hydro's purchases of natural gas for the power plant have contributed to the sharp increases in natural gas prices in 2001. There have also been concerns about air emissions from Burrard, including greenhouse gases and nitrous oxides. Historically, the plant has been beneficial, but this report will determine if it is in the provincial interest to continue operation of Burrard or to turn to alternative scenarios. The alternatives include constraining Burrard's output, or shutting it down and replacing it with other resources and repowering the plant with more efficient combined cycle gas turbine technology. In the constrained scenario, Burrard output and net exports are reduced. In the repowering scenario, investment and output at Burrard is increased. The financial consequences of these impacts are measured by their effect on the net system costs of meeting BC Hydro's load. The report demonstrated that it would not be in the overall interest of the province to constrain the operation of Burrard or shut it down. It was recommended that BC Hydro should review in detail the repowering option for Burrard, and that the government should consider imposing an emission charge reflecting the estimated damage costs associated with local pollutants generated at Burrard. The revenues would be used to fund offset measures in the Lower Fraser Valley airshed. 29 refs., 29 tabs., 3 appendices

  16. Multiple ECG Fiducial Points-Based Random Binary Sequence Generation for Securing Wireless Body Area Networks.

    Science.gov (United States)

    Zheng, Guanglou; Fang, Gengfa; Shankaran, Rajan; Orgun, Mehmet A; Zhou, Jie; Qiao, Li; Saleem, Kashif

    2017-05-01

    Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, and are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.

  17. Brain mechanisms associated with internally directed attention and self-generated thought.

    Science.gov (United States)

    Benedek, Mathias; Jauk, Emanuel; Beaty, Roger E; Fink, Andreas; Koschutnig, Karl; Neubauer, Aljoscha C

    2016-03-10

    Internal cognition like imagination and prospection require sustained internally directed attention and involve self-generated thought. This fMRI study aimed to disentangle the brain mechanisms associated with attention-specific and task-specific processes during internally directed cognition. The direction of attention was manipulated by either keeping a relevant stimulus visible throughout the task, or by masking it, so that the task had to be performed "in the mind's eye". The level of self-directed thought was additionally varied between a convergent and a divergent thinking task. Internally directed attention was associated with increased activation in the right anterior inferior parietal lobe (aIPL), bilateral lingual gyrus and the cuneus, as well as with extended deactivations of superior parietal and occipital regions representing parts of the dorsal attention network. The right aIPL further showed increased connectivity with occipital regions suggesting an active top-down mechanism for shielding ongoing internal processes from potentially distracting sensory stimulation in terms of perceptual decoupling. Activation of the default network was not related to internally directed attention per se, but rather to a higher level of self-generated thought. The findings hence shed further light on the roles of inferior and superior parietal cortex for internally directed cognition.

  18. Entropy Generation Analysis of Desalination Technologies

    Directory of Open Access Journals (Sweden)

    John H. Lienhard V

    2011-09-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.

  19. Mechanisms of generation of local ΔpH in mitochondria and bacteria.

    Science.gov (United States)

    Medvedev, E S; Stuchebrukhov, A A

    2014-05-01

    The concepts of global and local coupling between proton generators, the enzymes of the respiratory chain, and the consumer, the ATP synthase, coexist in the theory of oxidative phosphorylation. Global coupling is trivial proton transport via the aqueous medium, whereas local coupling implies that the protons pumped are consumed before they escape to the bulk phase. In this work, the conditions for the occurrence of local coupling are explored. It is supposed that the membrane retains protons near its surface and that the proton current generated by the proton pumps rapidly decreases with increasing proton motive force (pmf). It is shown that the competition between the processes of proton translocation across the membrane and their dissipation from the surface to the bulk can result in transient generation of a local ΔpH in reply to a sharp change in pmf; the appearance of local ΔpH, in turn, leads to rapid recovery of the pmf, and hence, it provides for stabilization of the potential at the membrane. Two mechanisms of such kind are discussed: 1) pH changes in the surface area due to proton pumping develop faster than those due to proton escape to the bulk; 2) the former does not take place, but the protons leaving the surface do not equilibrate with the bulk immediately; rather, they give rise to a non-equilibrium concentration near the surface and, as a result, to a back proton flow to the surface. The first mechanism is more efficient, but it does not occur in mitochondria and neutrophilic bacteria, whereas the second can produce ΔpH on the order of unity. In the absence of proton retardation at the surface, local ΔpH does not arise, whereas the formation of global ΔpH is possible only at buffer concentration of less than 10 mM. The role of the mechanisms proposed in transitions between States 3 and 4 of the respiratory chain is discussed. The main conclusion is that surface protons, under conditions where they play a role, support stabilization of the

  20. Learning with multiple representations: an example of a revision lesson in mechanics

    Science.gov (United States)

    Wong, Darren; Poo, Sng Peng; Eng Hock, Ng; Loo Kang, Wee

    2011-03-01

    We describe an example of learning with multiple representations in an A-level revision lesson on mechanics. The context of the problem involved the motion of a ball thrown vertically upwards in air and studying how the associated physical quantities changed during its flight. Different groups of students were assigned to look at the ball's motion using various representations: motion diagrams, vector diagrams, free-body diagrams, verbal description, equations and graphs, drawn against time as well as against displacement. Overall, feedback from students about the lesson was positive. We further discuss the benefits of using computer simulation to support and extend student learning.

  1. MULTIPLE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2015-04-01

    Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets

  2. Quantitative evaluation of the mechanical strength of titanium/composite bonding using laser-generated shock waves

    Science.gov (United States)

    Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.

    2018-03-01

    Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.

  3. Multiplicative formulation of quantum mechanics

    International Nuclear Information System (INIS)

    Voros, A.; Leboeuf, P.

    1991-01-01

    A general semi-classical description for the eigenfunctions of the multidimensional Schroedinger operator cannot be based on the WKB method which is incompatible with classically ergodic behavior. An alternative, more general multiplicative parametrization of quantum wave functions is suggested, whereby the semi-classical behavior of eigenfunctions can be traced in the presence of classical ergodicity, in the form of diffusive patterns of phase-space zeros in the quantum wave functions. (author) 24 refs.; 4 figs

  4. Thin film beam splitter multiple short pulse generation for enhanced Ni-like Ag x-ray laser emission.

    Science.gov (United States)

    Cojocaru, Gabriel V; Ungureanu, Razvan G; Banici, Romeo A; Ursescu, Daniel; Delmas, Olivier; Pittman, Moana; Guilbaud, Olivier; Kazamias, Sophie; Cassou, Kevin; Demailly, Julien; Neveu, Olivier; Baynard, Elsa; Ros, David

    2014-04-15

    An alternative, novel multiple pulse generation scheme was implemented directly after the optical compressor output of an x-ray pump laser. The new method uses a polarization sensitive thin film beam splitter and a half-wavelength wave plate for tuning the energy ratio in the multiple short pulses. Based on this method, an extensive study was made of the running parameters for a grazing incidence pumped silver x-ray laser (XRL) pumped with a long pulse of 145 mJ in 6 ns at 532 nm and up to 1.45 J in few picoseconds at 810 nm. Fivefold enhancement in the emission of the silver XRL was demonstrated using the new pump method.

  5. Study on thermal and mechanical properties of U-tube materials for steam generator

    International Nuclear Information System (INIS)

    Rheu, Woo Suk; Kang, Young Hwan; Park, Jong Man; Joo, Ki Nam; Kim, Sung Soo; Maeng, Wan Young; Park, Se Jin

    1993-01-01

    Most of domestic nuclear plants have used I600 TT material for steam generator U-tube, and piled up the field experience. I600 HTMA and I690 TT, however, are recommended for an alternative of U-tube by ABB-CE since YK-3 and 4. Field experience of I600 HTMA and I690 TT have not compiled in the country, so it is concerned to select the future materials for U-tube. Thus, database on the thermal and mechanical properties of U-tube materials is very necessary for design documentations. In this study, the thermal, mechanical and metallugical properties were tested and evaluated to establish the database for steam generator U-tube. In addition, thermal conductivity of I600 and I690 was measured and compared statistically, providing a basic document for applying I690 to U-tube. The results will be used to improve the manufacturing process in order to increase the integrity of U-tube. (Author)

  6. Multiple mechanisms of PCB neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.O.; Stoner, C.T.; Lawrence, D.A. [Univ. of New York, Albany, NY (United States)] [and others

    1996-12-31

    Polychlorinated biphenyls (PCBs) have been implicated in cancer, but many of the symptoms in humans exposed to PCBs are related to the nervous system and behavior. We demonstrated three different direct mechanisms whereby PCBs are neurotoxic in rats. By using flow cytometry, we demonstrated that the orthosubstituted PCB congener 2,4,4{prime}, but neither TCDD nor the coplanar PCB congener 3,4,5,3{prime},4{prime}, causes rapid death of cerebellar granule cells. The ortho-substituted congener 2,4,4{prime} reduced long-term potentiation, an indicator of cognitive potential, in hippocampal brain slices, but a similar effect was observed for the coplanar congener 3,4,3{prime},4{prime}, indicating that this effect may be caused by both ortho- and coplanar congeners by mechanisms presumably not mediated via the Ah receptor. It was previously shown that some ortho-substituted PCB congeners cause a reduction in levels of the neurotransmitter dopamine, and we present in vitro and in vivo evidence that this is due to reduction of synthesis of dopamine via inhibition of the enzyme tyrosine hydroxylase. Thus, PCBs have a variety of mechanisms of primary neurotoxicity, and neurotoxicity is a characteristic of ortho-substituted, non-dioxin-like congeners as well as some coplanar congeners. The relative contribution of each of these mechanisms to the loss of cognitive function in humans exposed to PCBs remains to be determined. 42 refs., 3 figs., 1 tab.

  7. Cannabidiol inhibits angiogenesis by multiple mechanisms.

    Science.gov (United States)

    Solinas, M; Massi, P; Cantelmo, A R; Cattaneo, M G; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, L M; Noonan, D M; Albini, A; Parolaro, D

    2012-11-01

    Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability - through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis - and in vitro motility - both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  8. Yours, Mine, Theirs: Multiple Generations in Today's Workplace

    Science.gov (United States)

    Grotophorst, Julie

    2011-01-01

    For the first time in history, four distinct generations are sharing the same workspace. Veterans, Baby Boomers, Gen-Xers, and Generation Y (the Millennials) are all bringing very different life experiences, expectations, and value systems to the work table. How do leaders bridge the gap among these generations and provide common ground on which…

  9. Generation of Multiple Metadata Formats from a Geospatial Data Repository

    Science.gov (United States)

    Hudspeth, W. B.; Benedict, K. K.; Scott, S.

    2012-12-01

    The Earth Data Analysis Center (EDAC) at the University of New Mexico is partnering with the CYBERShARE and Environmental Health Group from the Center for Environmental Resource Management (CERM), located at the University of Texas, El Paso (UTEP), the Biodiversity Institute at the University of Kansas (KU), and the New Mexico Geo- Epidemiology Research Network (GERN) to provide a technical infrastructure that enables investigation of a variety of climate-driven human/environmental systems. Two significant goals of this NASA-funded project are: a) to increase the use of NASA Earth observational data at EDAC by various modeling communities through enabling better discovery, access, and use of relevant information, and b) to expose these communities to the benefits of provenance for improving understanding and usability of heterogeneous data sources and derived model products. To realize these goals, EDAC has leveraged the core capabilities of its Geographic Storage, Transformation, and Retrieval Engine (Gstore) platform, developed with support of the NSF EPSCoR Program. The Gstore geospatial services platform provides general purpose web services based upon the REST service model, and is capable of data discovery, access, and publication functions, metadata delivery functions, data transformation, and auto-generated OGC services for those data products that can support those services. Central to the NASA ACCESS project is the delivery of geospatial metadata in a variety of formats, including ISO 19115-2/19139, FGDC CSDGM, and the Proof Markup Language (PML). This presentation details the extraction and persistence of relevant metadata in the Gstore data store, and their transformation into multiple metadata formats that are increasingly utilized by the geospatial community to document not only core library catalog elements (e.g. title, abstract, publication data, geographic extent, projection information, and database elements), but also the processing steps used to

  10. Matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    Science.gov (United States)

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2013-11-05

    Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.

  11. Interlinked bistable mechanisms generate robust mitotic transitions.

    Science.gov (United States)

    Hutter, Lukas H; Rata, Scott; Hochegger, Helfrid; Novák, Béla

    2017-10-18

    The transitions between phases of the cell cycle have evolved to be robust and switch-like, which ensures temporal separation of DNA replication, sister chromatid separation, and cell division. Mathematical models describing the biochemical interaction networks of cell cycle regulators attribute these properties to underlying bistable switches, which inherently generate robust, switch-like, and irreversible transitions between states. We have recently presented new mathematical models for two control systems that regulate crucial transitions in the cell cycle: mitotic entry and exit, 1 and the mitotic checkpoint. 2 Each of the two control systems is characterized by two interlinked bistable switches. In the case of mitotic checkpoint control, these switches are mutually activating, whereas in the case of the mitotic entry/exit network, the switches are mutually inhibiting. In this Perspective we describe the qualitative features of these regulatory motifs and show that having two interlinked bistable mechanisms further enhances robustness and irreversibility. We speculate that these network motifs also underlie other cell cycle transitions and cellular transitions between distinct biochemical states.

  12. Higgs bosons and other mechanisms of mass generation

    International Nuclear Information System (INIS)

    Konopleva, N. P.

    1997-01-01

    There are two problems under discuss here: 1) are Higgs bosons really necessary for the gauge field mass generation or not, and 2) why are Higgs bosons invisible in the elementary particles experiments? It is shown that in the frame of the classical Lagrangian gauge fields theory the transition from the usual variational problem to isoperimetric one permits us to conserve the local gauge invariance on the solutions of the massive gauge field theory equations. Hence in the massive gauge field theory we can have on the field equation solutions not only the conservation laws corresponding with the first Noether's theorem but Noether's identities corresponding with the second Noether's theorem also. Therefore the alternative renormalization procedure can exist which does not demand of Higgs bosons appearance in the massive gauge field theory for its renormalizability. The interpretation of Higgs mechanism as the phase transition mechanism is discussed. From this point of view the inexplicable absence of the individual Higgs bosons could be the result of the fact that the massive gauge field is the complex system of the massless gauge fields interacting with the condensate of Higgs bosons and quantum vortices in it. In this case the gauge field obtains the mass when the phase transition happens and after that the individual Higgs bosons can not be eliminated from the complex system

  13. Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo

    Science.gov (United States)

    Fang, Bin; Everett, Logan J.; Jager, Jennifer; Briggs, Erika; Armour, Sean M.; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A.

    2014-01-01

    SUMMARY Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of eRNAs that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed novel mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed new light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ. PMID:25416951

  14. The Generating Mechanism of the Perlocutionary Effects of Train Manner Posters

    OpenAIRE

    水田, 洋子

    2013-01-01

    Manner posters, which are used for the purpose of improving people’s manners in public spaces, attempt to be effective without being impositional. How do they meet the challenge? Manner posters can be considered to perform speech acts with written words and visual devices. The current work investigates the generating mechanism of their perlocutionary effects such as persuasion. It provides a case study of Japanese train manner posters by Tokyo Metro in 2008-2010. The analysis is conducted wit...

  15. Plants-Derived Neuroprotective Agents: Cutting the Cycle of Cell Death through Multiple Mechanisms

    Directory of Open Access Journals (Sweden)

    Taiwo Olayemi Elufioye

    2017-01-01

    Full Text Available Neuroprotection is the preservation of the structure and function of neurons from insults arising from cellular injuries induced by a variety of agents or neurodegenerative diseases (NDs. The various NDs including Alzheimer’s, Parkinson’s, and Huntington’s diseases as well as amyotropic lateral sclerosis affect millions of people around the world with the main risk factor being advancing age. Each of these diseases affects specific neurons and/or regions in the brain and involves characteristic pathological and molecular features. Hence, several in vitro and in vivo study models specific to each disease have been employed to study NDs with the aim of understanding their underlying mechanisms and identifying new therapeutic strategies. Of the most prevalent drug development efforts employed in the past few decades, mechanisms implicated in the accumulation of protein-based deposits, oxidative stress, neuroinflammation, and certain neurotransmitter deficits such as acetylcholine and dopamine have been scrutinized in great detail. In this review, we presented classical examples of plant-derived neuroprotective agents by highlighting their structural class and specific mechanisms of action. Many of these natural products that have shown therapeutic efficacies appear to be working through the above-mentioned key multiple mechanisms of action.

  16. Cantilever piezoelectric energy harvester with multiple cavities

    International Nuclear Information System (INIS)

    S Srinivasulu Raju; M Umapathy; G Uma

    2015-01-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity. (paper)

  17. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    International Nuclear Information System (INIS)

    Herman, R.M.

    1982-01-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 10 9 , in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of h) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms

  19. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    Science.gov (United States)

    Herman, R. M.

    1982-03-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 109, in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of ℏ) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit-relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms.

  20. Distinct Signaling Mechanisms in Multiple Developmental Pathways by the SCRAMBLED Receptor of Arabidopsis1[OPEN

    Science.gov (United States)

    Kwak, Su-Hwan; Woo, Sooah; Lee, Myeong Min; Schiefelbein, John

    2014-01-01

    SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase in Arabidopsis (Arabidopsis thaliana), is required for positional signaling in the root epidermis and for tissue/organ development in the shoot. To further understand SCM action, we generated a series of kinase domain variants and analyzed their ability to complement scm mutant defects. We found that the SCM kinase domain, but not kinase activity, is required for its role in root epidermal patterning, supporting the view that SCM is an atypical receptor kinase. We also describe a previously uncharacterized role for SCM in fruit dehiscence, because mature siliques from scm mutants fail to open properly. Interestingly, the kinase domain of SCM appears to be dispensable for this developmental process. Furthermore, we found that most of the SCM kinase domain mutations dramatically inhibit inflorescence development. Because this process is not affected in scm null mutants, it is likely that SCM acts redundantly to regulate inflorescence size. The importance of distinct kinase residues for these three developmental processes provides an explanation for the maintenance of the conserved kinase domain in the SCM protein, and it may generally explain its conservation in other atypical kinases. Furthermore, these results indicate that individual leucine-rich repeat receptor-like kinases may participate in multiple pathways using distinct signaling mechanisms to mediate diverse cellular communication events. PMID:25136062

  1. A Novel Multiple Choice Question Generation Strategy: Alternative Uses for Controlled Vocabulary Thesauri in Biomedical-Sciences Education.

    Science.gov (United States)

    Lopetegui, Marcelo A; Lara, Barbara A; Yen, Po-Yin; Çatalyürek, Ümit V; Payne, Philip R O

    2015-01-01

    Multiple choice questions play an important role in training and evaluating biomedical science students. However, the resource intensive nature of question generation limits their open availability, reducing their contribution to evaluation purposes mainly. Although applied-knowledge questions require a complex formulation process, the creation of concrete-knowledge questions (i.e., definitions, associations) could be assisted by the use of informatics methods. We envisioned a novel and simple algorithm that exploits validated knowledge repositories and generates concrete-knowledge questions by leveraging concepts' relationships. In this manuscript we present the development and validation of a prototype which successfully produced meaningful concrete-knowledge questions, opening new applications for existing knowledge repositories, potentially benefiting students of all biomedical sciences disciplines.

  2. Allocation and management issues in multiple-transaction open access transmission networks

    Science.gov (United States)

    Tao, Shu

    This thesis focuses on some key issues related to allocation and management by the independent grid operator (IGO) of unbundled services in multiple-transaction open access transmission networks. The three unbundled services addressed in the thesis are transmission real power losses, reactive power support requirements from generation sources, and transmission congestion management. We develop the general framework that explicitly represents multiple transactions undertaken simultaneously in the transmission grid. This framework serves as the basis for formulating various problems treated in the thesis. We use this comprehensive framework to develop a physical-flow-based mechanism to allocate the total transmission losses to each transaction using the system. An important property of the allocation scheme is its capability to effectively deal with counter flows that result in the presence of specific transactions. Using the loss allocation results as the basis, we construct the equivalent loss compensation concept and apply it to develop flexible and effective procedures for compensating losses in multiple-transaction networks. We present a new physical-flow-based mechanism for allocating the reactive power support requirements provided by generators in multiple-transaction networks. The allocatable reactive support requirements are formulated as the sum of two specific components---the voltage magnitude variation component and the voltage angle variation component. The formulation utilizes the multiple-transaction framework and makes use of certain simplifying approximations. The formulation leads to a natural allocation as a function of the amount of each transaction. The physical interpretation of each allocation as a sensitivity of the reactive output of a generator is discussed. We propose a congestion management allocation scheme for multiple-transaction networks. The proposed scheme determines the allocation of congestion among the transactions on a physical

  3. High-efficiency γ-ray flash generation via multiple-laser scattering in ponderomotive potential well.

    Science.gov (United States)

    Gong, Z; Hu, R H; Shou, Y R; Qiao, B; Chen, C E; He, X T; Bulanov, S S; Esirkepov, T Zh; Bulanov, S V; Yan, X Q

    2017-01-01

    γ-ray flash generation in near-critical-density target irradiated by four symmetrical colliding laser pulses is numerically investigated. With peak intensities about 10^{23} W/cm^{2}, the laser pulses boost electron energy through direct laser acceleration, while pushing them inward with the ponderomotive force. After backscattering with counterpropagating laser, the accelerated electron is trapped in the electromagnetic standing waves or the ponderomotive potential well created by the coherent overlapping of the laser pulses, and emits γ-ray photons in a multiple-laser-scattering regime, where electrons act as a medium transferring energy from the laser to γ rays in the ponderomotive potential valley.

  4. Ensuring comparability of data generated by multiple analytical laboratories for environmental decision making at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Sutton, C.; Campbell, B.A.; Danahy, R.J.; Dugan, T.A.; Tomlinson, F.K.

    1994-01-01

    The Fernald Environmental Management Project is a US Department of Energy (DOE)-owned facility located 17 miles northwest of Cincinnati, Ohio. From 1952 until 1989, the Fernald site provided high-purity uranium metal products to support US defense programs. In 1989 the mission of Fernald changed from one of uranium production to one of environmental restoration. At Fernald, multiple functional programs require analytical data. Inorganic and organic data for these programs are currently generated by seven laboratories, while radiochemical data are being obtained from six laboratories. Quality Assurance (QA) and Quality Control (QC) programs have been established to help ensure comparability of data generated by multiple laboratories at different times. The quality assurance program for organic and inorganic measurements specifies which analytical methodologies and sample preparation procedures are to be used based on analyte class, sample matrix, and data quality requirements. In contrast, performance specifications have been established for radiochemical analyses. A blind performance evaluation program for all laboratories, both on-site and subcontracted commercial laboratories, provides continuous feedback on data quality. The necessity for subcontractor laboratories to participate in the performance evaluation program is a contractual requirement. Similarly, subcontract laboratories are contractually required to generate data which meet radiochemical performance specifications. The Fernald on-site laboratory must also fulfill these requirements

  5. Deep Learning Fluid Mechanics

    Science.gov (United States)

    Barati Farimani, Amir; Gomes, Joseph; Pande, Vijay

    2017-11-01

    We have developed a new data-driven model paradigm for the rapid inference and solution of the constitutive equations of fluid mechanic by deep learning models. Using generative adversarial networks (GAN), we train models for the direct generation of solutions to steady state heat conduction and incompressible fluid flow without knowledge of the underlying governing equations. Rather than using artificial neural networks to approximate the solution of the constitutive equations, GANs can directly generate the solutions to these equations conditional upon an arbitrary set of boundary conditions. Both models predict temperature, velocity and pressure fields with great test accuracy (>99.5%). The application of our framework for inferring and generating the solutions of partial differential equations can be applied to any physical phenomena and can be used to learn directly from experiments where the underlying physical model is complex or unknown. We also have shown that our framework can be used to couple multiple physics simultaneously, making it amenable to tackle multi-physics problems.

  6. Antiviral Defense Mechanisms in Honey Bees

    Science.gov (United States)

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  7. Mechanisms of polymer degradation using an oxygen plasma generator

    Science.gov (United States)

    Colony, Joe A.; Sanford, Edward L.

    1987-01-01

    An RF oxygen plasma generator was used to produce polymer degradation which appears to be similar to that which has been observed in low Earth orbit. Mechanisms of this type of degradation were studied by collecting the reaction products in a cryogenic trap and identifying the molecular species using infrared, mass spectral, and X-ray diffraction techniques. No structurally dependent species were found from Kapton, Teflon, or Saran polymers. However, very reactive free radical entities are produced during the polymer degradation, as well as carbon dioxide and water. Reactions of the free radicals with the glass reaction vessel, with copper metal in the cold trap, and with a triphenyl phosphate scavenger in the cold trap, demonstrated the reactivity of the primary products.

  8. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  9. Impact of Conflict Management Strategies on the Generation Mechanism of Miners' Unsafe Behavior Tendency

    Science.gov (United States)

    Li, Ji-Zu; Zhang, Ya-Ping; Liu, Xiao-Guang; Liu, Yao-Long; Wang, Tian-Ri

    2017-01-01

    In this paper, we examine the relationship between the generation mechanism of miners' unsafe behavior tendency and conflict management strategies, including cooperative conflict management strategy, competitive conflict management strategy and avoidant conflict management strategy. Miners from 3 collieries in Shanxi province completed a…

  10. Rapid Generation of Multiple Loci-Engineered Marker-free Poxvirus and Characterization of a Clinical-Grade Oncolytic Vaccinia Virus

    Directory of Open Access Journals (Sweden)

    Zong Sheng Guo

    2017-12-01

    Full Text Available Recombinant poxviruses, utilized as vaccine vectors and oncolytic viruses, often require manipulation at multiple genetic loci in the viral genome. It is essential for viral vectors to possess no adventitious mutations and no (antibiotic selection marker in the final product for human patients in order to comply with the guidance from the regulatory agencies. Rintoul et al. have previously developed a selectable and excisable marker (SEM system for the rapid generation of recombinant vaccinia virus. In the current study, we describe an improved methodology for rapid creation and selection of recombinant poxviruses with multiple genetic manipulations solely based on expression of a fluorescent protein and with no requirement for drug selection that can lead to cellular stress and the risk of adventitious mutations throughout the viral genome. Using this improved procedure combined with the SEM system, we have constructed multiple marker-free oncolytic poxviruses expressing different cytokines and other therapeutic genes. The high fidelity of inserted DNA sequences validates the utility of this improved procedure for generation of therapeutic viruses for human patients. We have created an oncolytic poxvirus expressing human chemokine CCL5, designated as vvDD-A34R-hCCL5, with manipulations at two genetic loci in a single virus. Finally, we have produced and purified this virus in clinical grade for its use in a phase I clinical trial and presented data on initial in vitro characterization of the virus.

  11. Thrombin generation correlates with disease duration in multiple sclerosis (MS): Novel insights into the MS-associated prothrombotic state.

    Science.gov (United States)

    Parsons, Martin Em; O'Connell, Karen; Allen, Seamus; Egan, Karl; Szklanna, Paulina B; McGuigan, Christopher; Ní Áinle, Fionnuala; Maguire, Patricia B

    2017-01-01

    Thrombin is well recognised for its role in the coagulation cascade but it also plays a role in inflammation, with enhanced thrombin generation observed in several inflammatory disorders. Although patients with multiple sclerosis (MS) have a higher incidence of thrombotic disease, thrombin generation has not been studied to date. The aim of this study was to characterise calibrated automated thrombography parameters in patients with relapsing-remitting MS (RRMS) and primary progressive MS (PPMS) in comparison to healthy controls (HCs). Calibrated automated thrombography was performed on platelet poor plasma from 15 patients with RRMS, 15 with PPMS and 19 HCs. We found that patients with RRMS generate thrombin at a significantly faster rate than the less inflammatory subtype, PPMS or HCs. In addition, the speed of thrombin generation was significantly correlated with time from clinical diagnosis in both subtypes. However, in RRMS the rate of thrombin generation was increased with increased time from clinical diagnosis, while in PPMS the rate of thrombin generation decreased with increased time from clinical diagnosis. These data likely reflect the differential active proinflammatory states in each MS subtype and provide novel mechanistic insights into the clinically relevant prothrombotic state observed in these patients.

  12. Multiple purpose electrical profit; Emprendimiento electrico de prestacion multiple

    Energy Technology Data Exchange (ETDEWEB)

    Assennato, H. [Electrica de Azul Ltda., Buenos Aires (Argentina)

    1986-12-31

    This paper shows the multiple purpose aspects of electrification projects in rural and isolated areas. The multiple aspects involved in the electrification process may include, over electric power supply: improvement of life quality, irrigation and rural mechanization. 4 figs., 6 tabs., 4 refs.

  13. Revealing Pathway Dynamics in Heart Diseases by Analyzing Multiple Differential Networks.

    Directory of Open Access Journals (Sweden)

    Xiaoke Ma

    2015-06-01

    Full Text Available Development of heart diseases is driven by dynamic changes in both the activity and connectivity of gene pathways. Understanding these dynamic events is critical for understanding pathogenic mechanisms and development of effective treatment. Currently, there is a lack of computational methods that enable analysis of multiple gene networks, each of which exhibits differential activity compared to the network of the baseline/healthy condition. We describe the iMDM algorithm to identify both unique and shared gene modules across multiple differential co-expression networks, termed M-DMs (multiple differential modules. We applied iMDM to a time-course RNA-Seq dataset generated using a murine heart failure model generated on two genotypes. We showed that iMDM achieves higher accuracy in inferring gene modules compared to using single or multiple co-expression networks. We found that condition-specific M-DMs exhibit differential activities, mediate different biological processes, and are enriched for genes with known cardiovascular phenotypes. By analyzing M-DMs that are present in multiple conditions, we revealed dynamic changes in pathway activity and connectivity across heart failure conditions. We further showed that module dynamics were correlated with the dynamics of disease phenotypes during the development of heart failure. Thus, pathway dynamics is a powerful measure for understanding pathogenesis. iMDM provides a principled way to dissect the dynamics of gene pathways and its relationship to the dynamics of disease phenotype. With the exponential growth of omics data, our method can aid in generating systems-level insights into disease progression.

  14. Mechanical design in embryos: mechanical signalling, robustness and developmental defects.

    Science.gov (United States)

    Davidson, Lance A

    2017-05-19

    Embryos are shaped by the precise application of force against the resistant structures of multicellular tissues. Forces may be generated, guided and resisted by cells, extracellular matrix, interstitial fluids, and how they are organized and bound within the tissue's architecture. In this review, we summarize our current thoughts on the multiple roles of mechanics in direct shaping, mechanical signalling and robustness of development. Genetic programmes of development interact with environmental cues to direct the composition of the early embryo and endow cells with active force production. Biophysical advances now provide experimental tools to measure mechanical resistance and collective forces during morphogenesis and are allowing integration of this field with studies of signalling and patterning during development. We focus this review on concepts that highlight this integration, and how the unique contributions of mechanical cues and gradients might be tested side by side with conventional signalling systems. We conclude with speculation on the integration of large-scale programmes of development, and how mechanical responses may ensure robust development and serve as constraints on programmes of tissue self-assembly.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'. © 2017 The Author(s).

  15. Steam Generator Analysis Tools and Modeling of Degradation Mechanisms

    International Nuclear Information System (INIS)

    Yetisir, M.; Pietralik, J.; Tapping, R.L.

    2004-01-01

    The degradation of steam generators (SGs) has a significant effect on nuclear heat transport system effectiveness and the lifetime and overall efficiency of a nuclear power plant. Hence, quantification of the effects of degradation mechanisms is an integral part of a SG degradation management strategy. Numerical analysis tools such as THIRST, a 3-dimensional (3D) thermal hydraulics code for recirculating SGs; SLUDGE, a 3D sludge prediction code; CHECWORKS a flow-accelerated corrosion prediction code for nuclear piping, PIPO-FE, a SG tube vibration code; and VIBIC and H3DMAP, 3D non-linear finite-element codes to predict SG tube fretting wear can be used to assess the impacts of various maintenance activities on SG thermal performance. These tools are also found to be invaluable at the design stage to influence the design by determining margins or by helping the designers minimize or avoid known degradation mechanisms. In this paper, the aforementioned numerical tools and their application to degradation mechanisms in CANDU recirculating SGs are described. In addition, the following degradation mechanisms are identified and their effect on SG thermal efficiency and lifetime are quantified: primary-side fouling, secondary-side fouling, fretting wear, and flow-accelerated corrosion (FAC). Primary-side tube inner diameter fouling has been a major contributor to SG thermal degradation. Using the results of thermalhydraulic analysis and field data, fouling margins are calculated. Individual effects of primary- and secondary-side fouling are separated through analyses, which allow station operators to decide what type of maintenance activity to perform and when to perform the maintenance activity. Prediction of the fretting-wear rate of tubes allows designers to decide on the number and locations of support plates and U-bend supports. The prediction of FAC rates for SG internals allows designers to select proper materials, and allows operators to adjust the SG maintenance

  16. Multiple Generations on Video Tape Recorders.

    Science.gov (United States)

    Wiens, Jacob H.

    Helical scan video tape recorders were tested for their dubbing characteristics in order to make selection data available to media personnel. The equipment, two recorders of each type tested, was submitted by the manufacturers. The test was designed to produce quality evaluations for three generations of a single tape, thereby encompassing all…

  17. Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond

    Directory of Open Access Journals (Sweden)

    Tobias Ruck

    2015-07-01

    Full Text Available Alemtuzumab is a humanized monoclonal antibody against CD52 (cluster of differentiation 52 and is approved for the therapy of relapsing-remitting multiple sclerosis. The application of alemtuzumab leads to a rapid, but long-lasting depletion predominantly of CD52-bearing B and T cells with reprogramming effects on immune cell composition resulting in the restoration of tolerogenic networks. Alemtuzumab has proven high efficacy in clinical phase II and III trials, where interferon β-1a was used as active comparator. However, alemtuzumab is associated with frequent and considerable risks. Most importantly secondary autoimmune disease affects 30%–40% of patients, predominantly impairing thyroid function. Extensive monitoring and early intervention allow for an appropriate risk management. However, new and reliable biomarkers for individual risk stratification and treatment response to improve patient selection and therapy guidance are a significant unmet need. Only a deeper understanding of the underlying mechanisms of action (MOA will reveal such markers, maximizing the best potential risk-benefit ratio for the individual patient. This review provides and analyses the current knowledge on the MOA of alemtuzumab. Most recent data on efficacy and safety of alemtuzumab are presented and future research opportunities are discussed.

  18. An agent-based simulation of power generation company behavior in electricity markets under different market-clearing mechanisms

    International Nuclear Information System (INIS)

    Aliabadi, Danial Esmaeili; Kaya, Murat; Şahin, Güvenç

    2017-01-01

    Deregulated electricity markets are expected to provide affordable electricity for consumers through promoting competition. Yet, the results do not always fulfill the expectations. The regulator's market-clearing mechanism is a strategic choice that may affect the level of competition in the market. We conceive of the market-clearing mechanism as composed of two components: pricing rules and rationing policies. We investigate the strategic behavior of power generation companies under different market-clearing mechanisms using an agent-based simulation model which integrates a game-theoretical understanding of the auction mechanism in the electricity market and generation companies' learning mechanism. Results of our simulation experiments are presented using various case studies representing different market settings. The market in simulations is observed to converge to a Nash equilibrium of the stage game or to a similar state under most parameter combinations. Compared to pay-as-bid pricing, bid prices are closer to marginal costs on average under uniform pricing while GenCos' total profit is also higher. The random rationing policy of the ISO turns out to be more successful in achieving lower bid prices and lower GenCo profits. In minimizing GenCos' total profit, a combination of pay-as-bid pricing rule and random rationing policy is observed to be the most promising. - Highlights: • An agent-based simulation of generation company behavior in electricity markets is developed. • Learning dynamics of companies is modeled with an extended Q-learning algorithm. • Different market clearing mechanisms of the regulator are compared. • Convergence to Nash equilibria is analyzed under different cases. • The level of competition in the market is studied.

  19. Modeling of Optimal Power Generation using Multiple Kites

    NARCIS (Netherlands)

    Williams, P.; Lansdorp, B.; Ockels, W.J.

    2008-01-01

    Kite systems have the potential to revolutionize energy generation. Large scale systems are envisioned that can fly autonomously in “power generation” cycles which drive a ground-based generator. In order for such systems to produce power efficiently, good models of the system are required. This

  20. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells

    NARCIS (Netherlands)

    Mays, R.W.; Siemers, K.A.; Fritz, B.A.; Lowe, A.W.; van Meer, G.; Nelson, W.J.

    1995-01-01

    We have studied mechanisms involved in generating a polarized distribution of Na/K-ATPase in the basal-lateral membrane of two clones of MDCK II cells. Both clones exhibit polarized distributions of marker proteins of the apical and basal-lateral membranes, including Na/K-ATPase, at steady state.

  1. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    OpenAIRE

    Urue?a, Claudia; Cifuentes, Claudia; Casta?eda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-01-01

    Abstract Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytosk...

  2. Neutron multiplication in lead in the experiments with neutron generators

    International Nuclear Information System (INIS)

    Markovskij, D.V.

    1989-01-01

    A calculational analysis of neutron multiplication in lead, including the estimates of multiplication limits for the standard ENDF/BIV data set and the effects of various changes in the data themselves is performed. 10 refs, 5 figs

  3. Low-Power, Rad-hard Reconfigurable, Bi-directional Flexfet™ Level Shifter ReBiLS for Multiple Generation Technology Integration for Space Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The many different generations of integrated circuit (IC) technologies required for new space exploration systems demand designs operate at multiple and often...

  4. Affirming independence: Exploring mechanisms underlying a values affirmation intervention for first-generation students.

    Science.gov (United States)

    Tibbetts, Yoi; Harackiewicz, Judith M; Canning, Elizabeth A; Boston, Jilana S; Priniski, Stacy J; Hyde, Janet S

    2016-05-01

    First-generation college students (students for whom neither parent has a 4-year college degree) earn lower grades and worry more about whether they belong in college, compared with continuing-generation students (who have at least 1 parent with a 4-year college degree). We conducted a longitudinal follow-up of participants from a study in which a values-affirmation intervention improved performance in a biology course for first-generation college students, and found that the treatment effect on grades persisted 3 years later. First-generation students in the treatment condition obtained a GPA that was, on average, .18 points higher than first-generation students in the control condition, 3 years after values affirmation was implemented (Study 1A). We explored mechanisms by testing whether the values-affirmation effects were predicated on first-generation students reflecting on interdependent values (thus affirming their values that are consistent with working-class culture) or independent values (thus affirming their values that are consistent with the culture of higher education). We found that when first-generation students wrote about their independence, they obtained higher grades (both in the semester in which values affirmation was implemented and in subsequent semesters) and felt less concerned about their background. In a separate laboratory experiment (Study 2) we manipulated the extent to which participants wrote about independence and found that encouraging first-generation students to write more about their independence improved their performance on a math test. These studies highlight the potential of having FG students focus on their own independence. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Carbon storage regulator A contributes to the virulence of Haemophilus ducreyi in humans by multiple mechanisms.

    Science.gov (United States)

    Gangaiah, Dharanesh; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Ellinger, Sheila; Zwickl, Beth; Katz, Barry P; Spinola, Stanley M

    2013-02-01

    The carbon storage regulator A (CsrA) controls a wide variety of bacterial processes, including metabolism, adherence, stress responses, and virulence. Haemophilus ducreyi, the causative agent of chancroid, harbors a homolog of csrA. Here, we generated an unmarked, in-frame deletion mutant of csrA to assess its contribution to H. ducreyi pathogenesis. In human inoculation experiments, the csrA mutant was partially attenuated for pustule formation compared to its parent. Deletion of csrA resulted in decreased adherence of H. ducreyi to human foreskin fibroblasts (HFF); Flp1 and Flp2, the determinants of H. ducreyi adherence to HFF cells, were downregulated in the csrA mutant. Compared to its parent, the csrA mutant had a significantly reduced ability to tolerate oxidative stress and heat shock. The enhanced sensitivity of the mutant to oxidative stress was more pronounced in bacteria grown to stationary phase compared to that in bacteria grown to mid-log phase. The csrA mutant also had a significant survival defect within human macrophages when the bacteria were grown to stationary phase but not to mid-log phase. Complementation in trans partially or fully restored the mutant phenotypes. These data suggest that CsrA contributes to virulence by multiple mechanisms and that these contributions may be more profound in bacterial cell populations that are not rapidly dividing in the human host.

  6. Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation

    International Nuclear Information System (INIS)

    Kersten, Joern; Smirnov, Alexei Yu.

    2007-01-01

    We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10 -8 . We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix

  7. Trajectory Generation and Stability Analysis for Reconfigurable Klann Mechanism Based Walking Robot

    Directory of Open Access Journals (Sweden)

    Jaichandar Kulandaidaasan Sheba

    2016-06-01

    Full Text Available Reconfigurable legged robots based on one degree of freedom are highly desired because they are effective on rough and irregular terrains and they provide mobility in such terrain with simple control schemes. It is necessary that reconfigurable legged robots should maintain stability during rest and motion, with a minimum number of legs while maintaining their full range of walking patterns resulting from different gait configuration. In this paper we present a method to generate input trajectory for reconfigurable quadruped robots based on Klann mechanism to properly synchronize movement. Six useful gait cycles based on this reconfigurable Klann mechanism for quadruped robots has been clearly shown here. The platform stability for these six useful gait cycles are validated through simulated results which clearly shows the capabilities of reconfigurable design.

  8. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    International Nuclear Information System (INIS)

    Kenne, Godpromesse; Goma, Raphael; Nkwawo, Homere; Lamnabhi-Lagarrigue, Francoise; Arzande, Amir; Vannier, Jean Claude

    2010-01-01

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  9. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse, E-mail: gokenne@yahoo.co [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Goma, Raphael, E-mail: raphael.goma@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere, E-mail: homere.nkwawo@iutv.univ-paris13.f [Departement GEII, Universite Paris XIII, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Lamnabhi-Lagarrigue, Francoise, E-mail: lamnabhi@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir, E-mail: Amir.arzande@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Vannier, Jean Claude, E-mail: Jean-claude.vannier@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-01-15

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  10. Deteriorating mechanisms of electric generators; Mecanismos de deterioro de generadores electricos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Tevillo, Arturo; Reyes Martinez, Oscar Alfonso; Robles Pimentel, Edgar Guillermo; Esparza Saucedo, Marcos; Lopez Azamar, Jose Ernesto; Medina Flores, Alfredo; Uribe Martinez, Manuel O [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1999-12-31

    It is of the greatest importance to know the deteriorating mechanisms that an electric generator undergoes, in order to take corrective measures to stop the process in order to avoid catastrophic damages that imply non scheduled interruptions for maintenance, or inclusively, to carry on the overhaul. In this paper are discussed the deteriorating mechanisms that have been found in the stator (winding and core) and the rotor of thermoelectric and hydroelectric power stations by the natural aging process and abnormal operation. [Espanol] Es de suma importancia conocer los mecanismos de deterioro que sufre un generador, para tomar medidas correctivas que detengan el proceso, con el fin de evitar danos catastroficos que impliquen salidas no programadas para dar mantenimiento, o incluso, para efectuar la rehabilitacion. En este articulo se discuten los mecanismos de deterioro que se han encontrado en el estator (devanado y nucleo) y el rotor de generadores termicos e hidroelectricos por el proceso natural de envejecimiento y por operacion anormal.

  11. Deteriorating mechanisms of electric generators; Mecanismos de deterioro de generadores electricos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Tevillo, Arturo; Reyes Martinez, Oscar Alfonso; Robles Pimentel, Edgar Guillermo; Esparza Saucedo, Marcos; Lopez Azamar, Jose Ernesto; Medina Flores, Alfredo; Uribe Martinez, Manuel O. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    It is of the greatest importance to know the deteriorating mechanisms that an electric generator undergoes, in order to take corrective measures to stop the process in order to avoid catastrophic damages that imply non scheduled interruptions for maintenance, or inclusively, to carry on the overhaul. In this paper are discussed the deteriorating mechanisms that have been found in the stator (winding and core) and the rotor of thermoelectric and hydroelectric power stations by the natural aging process and abnormal operation. [Espanol] Es de suma importancia conocer los mecanismos de deterioro que sufre un generador, para tomar medidas correctivas que detengan el proceso, con el fin de evitar danos catastroficos que impliquen salidas no programadas para dar mantenimiento, o incluso, para efectuar la rehabilitacion. En este articulo se discuten los mecanismos de deterioro que se han encontrado en el estator (devanado y nucleo) y el rotor de generadores termicos e hidroelectricos por el proceso natural de envejecimiento y por operacion anormal.

  12. The Multiplicative Group Generated by the Lehmer Numbers

    Czech Academy of Sciences Publication Activity Database

    Luca, F.; Porubský, Štefan

    2003-01-01

    Roč. 41, - (2003), s. 122-132 ISSN 0015-0517 Institutional research plan: AV0Z1030915 Keywords : Lehmer numbers * primitive prime divisor * multiplicative subgroup Subject RIV: BA - General Mathematics Impact factor: 0.180, year: 2003

  13. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics.

    Science.gov (United States)

    Kim, Wansun; Lee, Inhwa; Yoon Kim, Dong; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Seo Park, Weon; Kim, Taek-Soo

    2017-05-12

    To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.

  14. Multiple resistance to pirimiphos-methyl and bifenthrin in Tribolium castaneum involves the activity of lipases, esterases, and laccase2.

    Science.gov (United States)

    Julio, Alison Henrique Ferreira; Gigliolli, Adriana Aparecida Sinópolis; Cardoso, Kátia Aparecida Kern; Drosdoski, Sandro Daniel; Kulza, Rodrigo Amaral; Seixas, Flávio Augusto Vicente; Ruvolo-Takasusuki, Maria Claudia Colla; de Souza, Cristina Giatti Marques; Lapenta, Ana Silvia

    2017-05-01

    Several recent studies have elucidated the molecular mechanisms that confer insecticide resistance on insect pests. However, little is known about multiple resistance in red flour beetle (Tribolium castaneum) at molecular level. The multiple resistance is characterized as resistance to different classes of insecticides that have different target sites, and is mediated by several enzymatic systems. In this study, we investigated the biochemical and molecular mechanisms involved in multiple resistance of T. castaneum to bifenthrin (pyrethroid [Pyr]) and pirimiphos-methyl (organophosphate [Org]). We used artificial selection, biochemical and in silico approaches including structural computational biology. After five generations of artificial selection in the presence of bifenthrin (F5Pyr) or pirimiphos-methyl (F5Org), we found high levels of multiple resistance. The hierarchical enzymatic cluster revealed a pool of esterases (E), lipases (LIPs) and laccase2 (LAC2) potentially contributing to the resistance in different ways throughout development, after one or more generations in the presence of insecticides. The enzyme-insecticide interaction network indicated that E2, E3, LIP3, and LAC2 are enzymes potentially required for multiple resistance phenotype. Kinetic analysis of esterases from F5Pyr and F5Org showed that pirimiphos-methyl and specially bifenthrin promote enzyme inhibition, indicating that esterases mediate resistance by sequestering bifenthrin and pirimiphos-methyl. Our computational data were in accordance with kinetic results, indicating that bifenthrin has higher affinity at the active site of esterase than pirimiphos-methyl. We also report the capability of these insecticides to modify the development in T. castaneum. Our study provide insights into the biochemical mechanisms employed by T. castaneum to acquire multiple resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. GeMini: The Next Generation Mechanically-Cooled Germanium Spectrometer

    International Nuclear Information System (INIS)

    Burks, M.

    2008-01-01

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (GErmanium MINIature spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice and surprise inspections where positive nuclide identification of radioactive materials is required. GeMini weighs 2.75 kg (6 lbs) total including the detector, cryostat, cryocooler, batteries, electronics and readout. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Two working prototypes have been built and tested in the lab. The target energy resolution is 3 keV fwhm or better for 1332 keV gamma-rays. The detectors currently achieve around 4.5 keV resolution, which is slightly higher than our goal due to microphonic noise. Our present work focuses on improving the resolution through mechanical and electronic means of reducing the microphonic noise. This paper will focus on the performance of the instrument and its applicability for inspectors in the field

  16. Color blending based on viewpoint and surface normal for generating images from any viewpoint using multiple cameras

    OpenAIRE

    Mukaigawa, Yasuhiro; Genda, Daisuke; Yamane, Ryo; Shakunaga, Takeshi

    2003-01-01

    A color blending method for generating a high quality image of human motion is presented. The 3D (three-dimensional) human shape is reconstructed by volume intersection and expressed as a set of voxels. As each voxel is observed as different colors from different cameras, voxel color needs to be assigned appropriately from several colors. We present a color blending method, which calculates voxel color from a linear combination of the colors observed by multiple cameras. The weightings in the...

  17. Persistent visual impairment in multiple sclerosis: prevalence, mechanisms and resulting disability.

    Science.gov (United States)

    Jasse, Laurence; Vukusic, Sandra; Durand-Dubief, Françoise; Vartin, Cristina; Piras, Carolina; Bernard, Martine; Pélisson, Denis; Confavreux, Christian; Vighetto, Alain; Tilikete, Caroline

    2013-10-01

    The objective of this article is to evaluate in multiple sclerosis (MS) patients the prevalence of persistent complaints of visual disturbances and the mechanisms and resulting functional disability of persistent visual complaints (PVCs). Firstly, the prevalence of PVCs was calculated in 303 MS patients. MS-related data of patients with or without PVCs were compared. Secondly, 70 patients with PVCs performed an extensive neuro-ophthalmologic assessment and a vision-related quality of life questionnaire, the National Eye Institute Visual Functionary Questionnaire (NEI-VFQ-25). PVCs were reported in 105 MS patients (34.6%). Patients with PVCs had more frequently primary progressive MS (30.5% vs 13.6%) and more neuro-ophthalmologic relapses (1.97 vs 1.36) than patients without PVCs. In the mechanisms/disability study, an afferent visual and an ocular-motor pathways dysfunction were respectively diagnosed in 41 and 59 patients, mostly related to bilateral optic neuropathy and bilateral internuclear ophthalmoplegia. The NEI-VFQ 25 score was poor and significantly correlated with the number of impaired neuro-ophthalmologic tests. Our study emphasizes the high prevalence of PVC in MS patients. Regarding the nature of neuro-ophthalmologic deficit, our results suggest that persistent optic neuropathy, as part of the progressive evolution of the disease, is not rare. We also demonstrate that isolated ocular motor dysfunctions induce visual disability in daily life.

  18. Microfluidic droplet generator with controlled break-up mechanism

    KAUST Repository

    Gonzalez, David Conchouso

    2017-04-13

    Droplet generation devices and systems that parallelize droplet generation devices are provided. The droplet generation devices can include a symmetric block-and-break system and a tapered droplet generation zone. The symmetric block-and-break system can include a pair of break channels and a pair of bypass channels symmetrically arranged with respect to the dispersed-phase input channel and the output channel. The droplet generation devices can generate monodisperse droplets with a predefined volume over a range of flow rates, pressures, and fluid properties. The droplet generation devices are therefore capable of parallelization to achieve large-capacity droplet generation, e.g. greater than 1 L/hr, with small overall coefficients of variation.

  19. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    Science.gov (United States)

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-03-29

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage.

  20. Mechanically based generative laws of morphogenesis

    International Nuclear Information System (INIS)

    Beloussov, Lev V

    2008-01-01

    A deep (although at the first glance naïve) question which may be addressed to embryonic development is why during this process quite definite and accurately reproduced successions of precise and complicated shapes are taking place, or why, in several cases, the result of development is highly precise in spite of an extensive variability of intermediate stages. This problem can be attacked in two different ways. One of them, up to now just slightly employed, is to formulate robust macroscopic generative laws from which the observed successions of shapes could be derived. Another one, which dominates in modern embryology, regards the development as a succession of highly precise 'micropatterns', each of them arising due to the action of specific factors, having, as a rule, nothing in common with each other. We argue that the latter view contradicts a great bulk of firmly established data and gives no satisfactory answers to the main problems of development. Therefore we intend to follow the first way. By doing this, we regard developing embryos as self-organized systems transpierced by feedbacks among which we pay special attention to those linked with mechanical stresses (MS). We formulate a hypothesis of so-called MS hyper-restoration as a common basis for the developmentally important feedback loops. We present a number of examples confirming this hypothesis and use it for reconstructing prolonged chains of developmental events. Finally, we discuss the application of the same set of assumptions to the first steps of egg development and to the internal differentiation of embryonic cells

  1. Molecular and cellular mechanisms of cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waisberg, Michael; Joseph, Pius; Hale, Beverley; Beyersmann, Detmar

    2003-01-01

    Cadmium is a heavy metal, which is widely used in industry, affecting human health through occupational and environmental exposure. In mammals, it exerts multiple toxic effects and has been classified as a human carcinogen by the International Agency for Research on Cancer. Cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Cd 2+ does not catalyze Fenton-type reactions because it does not accept or donate electrons under physiological conditions, and it is only weakly genotoxic. Hence, indirect mechanisms are implicated in the carcinogenicity of cadmium. In this review multiple mechanisms are discussed, such as modulation of gene expression and signal transduction, interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species (ROS), inhibition of DNA repair and DNA methylation, role in apoptosis and disruption of E-cadherin-mediated cell-cell adhesion. Cadmium affects both gene transcription and translation. The major mechanisms of gene induction by cadmium known so far are modulation of cellular signal transduction pathways by enhancement of protein phosphorylation and activation of transcription and translation factors. Cadmium interferes with antioxidant defense mechanisms and stimulates the production of reactive oxygen species, which may act as signaling molecules in the induction of gene expression and apoptosis. The inhibition of DNA repair processes by cadmium represents a mechanism by which cadmium enhances the genotoxicity of other agents and may contribute to the tumor initiation by this metal. The disruption of E-cadherin-mediated cell-cell adhesion by cadmium probably further stimulates the development of tumors. It becomes clear that there exist multiple mechanisms which contribute to the carcinogenicity of cadmium, although the relative weights of these contributions are difficult to estimate

  2. A perspective on multiple waves of influenza pandemics.

    Science.gov (United States)

    Mummert, Anna; Weiss, Howard; Long, Li-Ping; Amigó, José M; Wan, Xiu-Feng

    2013-01-01

    A striking characteristic of the past four influenza pandemic outbreaks in the United States has been the multiple waves of infections. However, the mechanisms responsible for the multiple waves of influenza or other acute infectious diseases are uncertain. Understanding these mechanisms could provide knowledge for health authorities to develop and implement prevention and control strategies. We exhibit five distinct mechanisms, each of which can generate two waves of infections for an acute infectious disease. The first two mechanisms capture changes in virus transmissibility and behavioral changes. The third mechanism involves population heterogeneity (e.g., demography, geography), where each wave spreads through one sub-population. The fourth mechanism is virus mutation which causes delayed susceptibility of individuals. The fifth mechanism is waning immunity. Each mechanism is incorporated into separate mathematical models, and outbreaks are then simulated. We use the models to examine the effects of the initial number of infected individuals (e.g., border control at the beginning of the outbreak) and the timing of and amount of available vaccinations. Four models, individually or in any combination, reproduce the two waves of the 2009 H1N1 pandemic in the United States, both qualitatively and quantitatively. One model reproduces the two waves only qualitatively. All models indicate that significantly reducing or delaying the initial numbers of infected individuals would have little impact on the attack rate. Instead, this reduction or delay results in a single wave as opposed to two waves. Furthermore, four of these models also indicate that a vaccination program started earlier than October 2009 (when the H1N1 vaccine was initially distributed) could have eliminated the second wave of infection, while more vaccine available starting in October would not have eliminated the second wave.

  3. A perspective on multiple waves of influenza pandemics.

    Directory of Open Access Journals (Sweden)

    Anna Mummert

    Full Text Available A striking characteristic of the past four influenza pandemic outbreaks in the United States has been the multiple waves of infections. However, the mechanisms responsible for the multiple waves of influenza or other acute infectious diseases are uncertain. Understanding these mechanisms could provide knowledge for health authorities to develop and implement prevention and control strategies.We exhibit five distinct mechanisms, each of which can generate two waves of infections for an acute infectious disease. The first two mechanisms capture changes in virus transmissibility and behavioral changes. The third mechanism involves population heterogeneity (e.g., demography, geography, where each wave spreads through one sub-population. The fourth mechanism is virus mutation which causes delayed susceptibility of individuals. The fifth mechanism is waning immunity. Each mechanism is incorporated into separate mathematical models, and outbreaks are then simulated. We use the models to examine the effects of the initial number of infected individuals (e.g., border control at the beginning of the outbreak and the timing of and amount of available vaccinations.Four models, individually or in any combination, reproduce the two waves of the 2009 H1N1 pandemic in the United States, both qualitatively and quantitatively. One model reproduces the two waves only qualitatively. All models indicate that significantly reducing or delaying the initial numbers of infected individuals would have little impact on the attack rate. Instead, this reduction or delay results in a single wave as opposed to two waves. Furthermore, four of these models also indicate that a vaccination program started earlier than October 2009 (when the H1N1 vaccine was initially distributed could have eliminated the second wave of infection, while more vaccine available starting in October would not have eliminated the second wave.

  4. Ultrasound-driven Megahertz Faraday Waves for Generation of Monodisperse Micro Droplets and Applications

    Science.gov (United States)

    Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun

    Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (generator has imminent application to pulmonary (inhalation) drug delivery and other potential applications. Here an update of advances on analysis and design of the MHz MFHUNs and the underlying physical mechanism for generation of mono-disperse micro droplets, and the nebulizer platform for application to detoxification of cyanide poisoning are presented.

  5. Efficient charge-carrier extraction from Ag₂S quantum dots prepared by the SILAR method for utilization of multiple exciton generation.

    Science.gov (United States)

    Zhang, Xiaoliang; Liu, Jianhua; Johansson, Erik M J

    2015-01-28

    The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the results suggest that the threshold energy (hνth) for MEG is 2.41Eg. The results reveal that Ag2S QD is a promising material for efficient extraction of charges from MEG and that QDs prepared by SILAR have an advantageous electrical contact facilitating charge separation and extraction.

  6. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets.

    Science.gov (United States)

    Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris

    2015-07-17

    Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.

  7. Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles

    Directory of Open Access Journals (Sweden)

    Ari Berkowitz

    2010-06-01

    Full Text Available The hindbrain and spinal cord can produce multiple forms of locomotion, escape, and withdrawal behaviors and (in limbed vertebrates site-specific scratching. Until recently, the prevailing view was that the same classes of CNS neurons generate multiple kinds of movements, either through reconfiguration of a single, shared network or through an increase in the number of neurons recruited within each class. The mechanisms involved in selecting and generating different motor patterns have recently been explored in detail in some non-mammalian, vertebrate model systems. Work on the hatchling Xenopus tadpole, the larval zebrafish, and the adult turtle has now revealed that distinct kinds of motor patterns are actually selected and generated by combinations of multifunctional and specialized spinal interneurons. Multifunctional interneurons may form a core, multipurpose circuit that generates elements of coordinated motor output utilized in multiple behaviors, such as left-right alternation. But, in addition, specialized spinal interneurons including separate glutamatergic and glycinergic classes are selectively activated during specific patterns: escape-withdrawal, swimming and struggling in tadpoles and zebrafish, and limb withdrawal and scratching in turtles. These specialized neurons can contribute by changing the way central pattern generator (CPG activity is initiated and by altering CPG composition and operation. The combined use of multifunctional and specialized neurons is now established as a principle of organization across a range of vertebrates. Future research may reveal common patterns of multifunctionality and specialization among interneurons controlling diverse movements and whether similar mechanisms exist in higher-order brain circuits that select among a wider array of complex movements.

  8. Teaching and Evaluation Materials Utilizing Multiple Representations in Mechanics

    Science.gov (United States)

    Savinainen, A.; Nieminen, P.; Makynen, A.; Viiri, J.

    2013-01-01

    In this paper, we present materials and teaching ideas utilizing multiple representations in the contexts of kinematics and the force concept. These ideas and materials are substantiated by evidence and can be readily used in teaching with no special training. In addition, we briefly discuss two multiple-choice tests based on physics education…

  9. Formation of multiple networks

    DEFF Research Database (Denmark)

    Magnani, Matteo; Rossi, Luca

    2013-01-01

    we introduce the first network formation model for multiple networks. Network formation models are among the most popular tools in traditional network studies, because of both their practical and theoretical impact. However, existing models are not sufficient to describe the generation of multiple...

  10. Thermal mechanical analysis of applications with internal heat generation

    Science.gov (United States)

    Govindarajan, Srisharan Garg

    control blade, spatial variations in temperature within the control blade occur from the non-uniform heat generation within the BORAL as a result of the non-uniform thermal neutron flux along the longitudinal direction when the control blade is partially withdrawn. There is also variation in the heating profile through the thickness and about the circumferential width of the control blade. Mathematical curve-fits are generated for the non-uniform volumetric heat generation profile caused by the thermal neutron absorption and the functions are applied as heating conditions within a finite element model of the control blade built using the commercial finite element code Abaqus FEA. The finite element model is solved as a fully coupled thermal mechanical problem as in the case of the annular target. The resulting deflection is compared with the channel gap to determine if there is a significant risk of the control blade binding during reactor operation. Hence, this dissertation will consist of two sections. The first section will seek to present the thermal and structural safety analyses of the annular targets for the production of molybdenum-99. Since there hasn't been any detailed, documented, study on these annular targets in the past, the work complied in this dissertation will help to understand the thermal-mechanical behavior and failure margins of the target during in-vessel irradiation. As the work presented in this dissertation provides a general performance analysis envelope for the annular target, the tools developed in the process can also be used as useful references for future analyses that are specific to any reactor. The numerical analysis approach adopted and the analytical models developed, can also be applied to other applications, outside the Mo-99 project domain, where internal heat generation exists such as in electronic components and nuclear reactor control blades. The second section will focus on estimating the thermally induced deflection and hence

  11. Interacting effects of genetic variation for seed dormancy and flowering time on phenology, life history, and fitness of experimental Arabidopsis thaliana populations over multiple generations in the field.

    Science.gov (United States)

    Taylor, Mark A; Cooper, Martha D; Sellamuthu, Reena; Braun, Peter; Migneault, Andrew; Browning, Alyssa; Perry, Emily; Schmitt, Johanna

    2017-10-01

    Major alleles for seed dormancy and flowering time are well studied, and can interact to influence seasonal timing and fitness within generations. However, little is known about how this interaction controls phenology, life history, and population fitness across multiple generations in natural seasonal environments. To examine how seed dormancy and flowering time shape annual plant life cycles over multiple generations, we established naturally dispersing populations of recombinant inbred lines of Arabidopsis thaliana segregating early and late alleles for seed dormancy and flowering time in a field experiment. We recorded seasonal phenology and fitness of each genotype over 2 yr and several generations. Strong seed dormancy suppressed mid-summer germination in both early- and late-flowering genetic backgrounds. Strong dormancy and late-flowering genotypes were both necessary to confer a winter annual life history; other genotypes were rapid-cycling. Strong dormancy increased within-season fecundity in an early-flowering background, but decreased it in a late-flowering background. However, there were no detectable differences among genotypes in population growth rates. Seasonal phenology, life history, and cohort fitness over multiple generations depend strongly upon interacting genetic variation for dormancy and flowering. However, similar population growth rates across generations suggest that different life cycle genotypes can coexist in natural populations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration.

    Science.gov (United States)

    Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-12-01

    The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.

  13. Potential of different mechanical and thermal treatments to control off-flavour generation in broccoli puree.

    Science.gov (United States)

    Koutidou, Maria; Grauwet, Tara; Van Loey, Ann; Acharya, Parag

    2017-02-15

    The aim of this study was scientifically investigate the impact of the sequence of different thermo-mechanical treatments on the volatile profile of differently processed broccoli puree, and to investigate if any relationship persists between detected off-flavour changes and microstructural changes as a function of selected process conditions. Comparison of the headspace GC-MS fingerprinting of the differently processed broccoli purees revealed that an adequate combination of processing steps allows to reduce the level of off-flavour volatiles. Moreover, applying mechanical processing before or after the thermal processing at 90°C determines the pattern of broccoli tissue disruption, resulting into different microstructures and various enzymatic reactions inducing volatile generation. These results may aid the identification of optimal process conditions generating a reduced level of off-flavour in processed broccoli. In this way, broccoli can be incorporated as a food ingredient into mixed food products with limited implications on sensorial consumer acceptance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism.

    Science.gov (United States)

    Noda, Naonobu; Yoshioka, Satoshi; Kishimoto, Sanae; Nakayama, Masayoshi; Douzono, Mitsuru; Tanaka, Yoshikazu; Aida, Ryutaro

    2017-07-01

    Various colored cultivars of ornamental flowers have been bred by hybridization and mutation breeding; however, the generation of blue flowers for major cut flower plants, such as roses, chrysanthemums, and carnations, has not been achieved by conventional breeding or genetic engineering. Most blue-hued flowers contain delphinidin-based anthocyanins; therefore, delphinidin-producing carnation, rose, and chrysanthemum flowers have been generated by overexpression of the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the key enzyme for delphinidin biosynthesis. Even so, the flowers are purple/violet rather than blue. To generate true blue flowers, blue pigments, such as polyacylated anthocyanins and metal complexes, must be introduced by metabolic engineering; however, introducing and controlling multiple transgenes in plants are complicated processes. We succeeded in generating blue chrysanthemum flowers by introduction of butterfly pea UDP (uridine diphosphate)-glucose:anthocyanin 3',5'- O -glucosyltransferase gene, in addition to the expression of the Canterbury bells F3'5'H . Newly synthesized 3',5'-diglucosylated delphinidin-based anthocyanins exhibited a violet color under the weakly acidic pH conditions of flower petal juice and showed a blue color only through intermolecular association, termed "copigmentation," with flavone glucosides in planta. Thus, we achieved the development of blue color by a two-step modification of the anthocyanin structure. This simple method is a promising approach to generate blue flowers in various ornamental plants by metabolic engineering.

  15. Multiple sclerosis, relapses, and the mechanism of action of adrenocorticotropic hormone (ACTH

    Directory of Open Access Journals (Sweden)

    Amy ePerrin Ross

    2013-03-01

    Full Text Available Relapses in multiple sclerosis (MS are disruptive and frequently disabling for patients, and their treatment is often a challenge to clinicians. Despite progress in the understanding of the pathophysiology of MS and development of new treatments for long-term management of MS, options for treating relapses have not changed substantially over the past few decades. Corticosteroids, a component of the HPA axis that modulate immune responses and reduce inflammation, are currently the mainstay of relapse treatment. Adrenocorticotropic hormone (ACTH gel is another treatment option. Although it has long been assumed that the efficacy of ACTH in treating relapses depends on the peptide’s ability to increase endogenous corticosteroid production, evidence from research on the melanocortin system suggests that steroidogenesis may only partly account for ACTH influences. Indeed, the melanocortin peptides (ACTH and α-, β-, γ-melanocyte-stimulating hormones [MSH] and their receptors (MCRs exert multiple actions, including modulation of inflammatory and immune mediator production. Melanocortin receptors are widely distributed within the central nervous system and in peripheral tissues including immune cells (eg, macrophages. This suggests that the mechanism of action of ACTH includes not only steroid-mediated indirect effects, but also direct anti-inflammatory and immune-modulating actions via the melanocortin system. An increased understanding of the role of the melanocortin system, particularly ACTH, in the immune and inflammatory processes underlying relapses may help to improve relapse management.

  16. An investigation of the ignition probability and data analysis for the detection of relevant parameters of mechanically generated steel sparks in explosive gas/air-mixtures; Untersuchungen zur Zuendwahrscheinlichkeit und Datenanalyse zur Erfassung der Einflussgroessen mechanisch erzeugter Stahl-Schlagfunktion in explosionsfaehigen Brenngas/Luft-Gemischen

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, Thomas; Finke, Robert; Graetz, Rainer

    2010-07-01

    Mechanically generated sparks are a potential source of ignition in highly combustible areas. A multiplicity of mechanical and reaction-kinetic influences causes a complex interaction of parameters. It is only little known about their effect on the ignition probability. The ignition probability of mechanically generated sparks with a material combination of unalloyed steel/unalloyed steel and with an kinetic impact energy between 3 and 277 Nm could be determined statistically tolerable. In addition, the explosiveness of not oxidized particles at increased temperatures in excess stoichiometric mixtures was proven. A unique correlation between impact energy and ignition probability as well as a correlation of impact energy and number of separated particles could be determined. Also, a principle component analysis considering the interaction of individual particles could not find a specific combination of measurable characteristics of the particles, which correlate with a distinct increase of the ignition probability.

  17. Effect of multiple forming tools on geometrical and mechanical properties in incremental sheet forming

    Science.gov (United States)

    Wernicke, S.; Dang, T.; Gies, S.; Tekkaya, A. E.

    2018-05-01

    The tendency to a higher variety of products requires economical manufacturing processes suitable for the production of prototypes and small batches. In the case of complex hollow-shaped parts, single point incremental forming (SPIF) represents a highly flexible process. The flexibility of this process comes along with a very long process time. To decrease the process time, a new incremental forming approach with multiple forming tools is investigated. The influence of two incremental forming tools on the resulting mechanical and geometrical component properties compared to SPIF is presented. Sheets made of EN AW-1050A were formed to frustums of a pyramid using different tool-path strategies. Furthermore, several variations of the tool-path strategy are analyzed. A time saving between 40% and 60% was observed depending on the tool-path and the radii of the forming tools while the mechanical properties remained unchanged. This knowledge can increase the cost efficiency of incremental forming processes.

  18. Bioactive conformational generation of small molecules: A comparative analysis between force-field and multiple empirical criteria based methods

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-11-01

    Full Text Available Abstract Background Conformational sampling for small molecules plays an essential role in drug discovery research pipeline. Based on multi-objective evolution algorithm (MOEA, we have developed a conformational generation method called Cyndi in the previous study. In this work, in addition to Tripos force field in the previous version, Cyndi was updated by incorporation of MMFF94 force field to assess the conformational energy more rationally. With two force fields against a larger dataset of 742 bioactive conformations of small ligands extracted from PDB, a comparative analysis was performed between pure force field based method (FFBM and multiple empirical criteria based method (MECBM hybrided with different force fields. Results Our analysis reveals that incorporating multiple empirical rules can significantly improve the accuracy of conformational generation. MECBM, which takes both empirical and force field criteria as the objective functions, can reproduce about 54% (within 1Å RMSD of the bioactive conformations in the 742-molecule testset, much higher than that of pure force field method (FFBM, about 37%. On the other hand, MECBM achieved a more complete and efficient sampling of the conformational space because the average size of unique conformations ensemble per molecule is about 6 times larger than that of FFBM, while the time scale for conformational generation is nearly the same as FFBM. Furthermore, as a complementary comparison study between the methods with and without empirical biases, we also tested the performance of the three conformational generation methods in MacroModel in combination with different force fields. Compared with the methods in MacroModel, MECBM is more competitive in retrieving the bioactive conformations in light of accuracy but has much lower computational cost. Conclusions By incorporating different energy terms with several empirical criteria, the MECBM method can produce more reasonable conformational

  19. Increased multiaxial lumbar motion responses during multiple-impulse mechanical force manually assisted spinal manipulation

    Directory of Open Access Journals (Sweden)

    Gunzburg Robert

    2006-04-01

    Full Text Available Abstract Background Spinal manipulation has been found to create demonstrable segmental and intersegmental spinal motions thought to be biomechanically related to its mechanisms. In the case of impulsive-type instrument device comparisons, significant differences in the force-time characteristics and concomitant motion responses of spinal manipulative instruments have been reported, but studies investigating the response to multiple thrusts (multiple impulse trains have not been conducted. The purpose of this study was to determine multi-axial segmental and intersegmental motion responses of ovine lumbar vertebrae to single impulse and multiple impulse spinal manipulative thrusts (SMTs. Methods Fifteen adolescent Merino sheep were examined. Tri-axial accelerometers were attached to intraosseous pins rigidly fixed to the L1 and L2 lumbar spinous processes under fluoroscopic guidance while the animals were anesthetized. A hand-held electromechanical chiropractic adjusting instrument (Impulse was used to apply single and repeated force impulses (13 total over a 2.5 second time interval at three different force settings (low, medium, and high along the posteroanterior axis of the T12 spinous process. Axial (AX, posteroanterior (PA, and medial-lateral (ML acceleration responses in adjacent segments (L1, L2 were recorded at a rate of 5000 samples per second. Peak-peak segmental accelerations (L1, L2 and intersegmental acceleration transfer (L1–L2 for each axis and each force setting were computed from the acceleration-time recordings. The initial acceleration response for a single thrust and the maximum acceleration response observed during the 12 multiple impulse trains were compared using a paired observations t-test (POTT, alpha = .05. Results Segmental and intersegmental acceleration responses mirrored the peak force magnitude produced by the Impulse Adjusting Instrument. Accelerations were greatest for AX and PA measurement axes. Compared to

  20. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting

    International Nuclear Information System (INIS)

    Yan, Wentao; Ge, Wenjun; Qian, Ya; Lin, Stephen; Zhou, Bin; Liu, Wing Kam; Lin, Feng; Wagner, Gregory J.

    2017-01-01

    Metallic powder bed-based additive manufacturing technologies have many promising attributes. The single track acts as one fundamental building unit, which largely influences the final product quality such as the surface roughness and dimensional accuracy. A high-fidelity powder-scale model is developed to predict the detailed formation processes of single/multiple-track defects, including the balling effect, single track nonuniformity and inter-track voids. These processes are difficult to observe in experiments; previous studies have proposed different or even conflicting explanations. Our study clarifies the underlying formation mechanisms, reveals the influence of key factors, and guides the improvement of fabrication quality of single tracks. Additionally, the manufacturing processes of multiple tracks along S/Z-shaped scan paths with various hatching distance are simulated to further understand the defects in complex structures. The simulations demonstrate that the hatching distance should be no larger than the width of the remelted region within the substrate rather than the width of the melted region within the powder layer. Thus, single track simulations can provide valuable insight for complex structures.

  1. Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms

    International Nuclear Information System (INIS)

    Warnecke, Carsten; Wartmann, Sina; Höhne, Niklas; Blok, Kornelis

    2014-01-01

    The current project-based carbon market mechanisms such as the Clean Development Mechanism (CDM) and the Joint Implementation (JI) do not have a direct impact on global greenhouse gas emission levels, because they only replace or offset emissions. Nor do they contribute to host country's national greenhouse gas emission reduction targets. Contributions to net emission reductions in host countries is likely to become mandatory in new mechanisms under development such as in the framework for various approaches, a new market-based mechanism and even in a reformed JI. This research analysed the question if approaches for carbon market-based mechanisms exist that allow the generation of net emission reductions in host countries while keeping project initiation attractive. We present a criteria-based assessment method and apply it for four generic options in existing mechanisms and derive implications for future mechanism frameworks. We identified the application of “discounts” on the amount of avoided emissions for the issuance of carbon credits and “standardisation below business as usual” as most promising options over “limiting the crediting period” and “over-conservativeness”. We propose to apply these options differentiated over project types based on internal rate of return to ensure cost-efficiency and attractiveness. - Highlights: • Options for net emission reductions of market-based mechanisms are assessed. • Research combines past and current views for project and sector-based mechanisms. • Implementation ensures initiation of mitigation activities is not discouraged. • Important insights for methodological design of new market-based mechanisms. • Profitability-based approach for project-based mechanisms suggested

  2. Generating Sub-nanometer Displacement Using Reduction Mechanism Consisting of Torsional Leaf Spring Hinges

    Directory of Open Access Journals (Sweden)

    Fukuda Makoto

    2014-02-01

    Full Text Available Recent demand on the measurement resolution of precise positioning comes up to tens of picometers. Some distinguished researches have been performed to measure the displacement in picometer order, however, few of them can verify the measurement performance as available tools in industry. This is not only because the picometer displacement is not yet required for industrial use, but also due to the lack of standard tools to verify such precise displacement. We proposed a displacement reduction mechanism for generating precise displacement using torsional leaf spring hinges (TLSHs that consist of four leaf springs arranged radially. It has been demonstrated that a prototype of the reduction mechanism was able to provide one-nanometer displacement with 1/1000 reduction rate by a piezoelectric actuator. In order to clarify the potential of the reduction mechanism, a displacement reduction table that can be mounted on AFM stage was newly developed using TLSHs. This paper describes the design of the reduction mechanism and the sub-nanometer displacement performance of the table obtained from its dynamic and static characteristics measured by displacement sensors and from the AFM images

  3. An ultrafast spectroscopic and quantum mechanical investigation of multiple emissions in push-pull pyridinium derivatives bearing different electron donors.

    Science.gov (United States)

    Carlotti, B; Benassi, E; Cesaretti, A; Fortuna, C G; Spalletti, A; Barone, V; Elisei, F

    2015-08-28

    A joint experimental and theoretical approach, involving state-of-the-art femtosecond fluorescence up-conversion measurements and quantum mechanical computations including vibronic effects, was employed to get a deep insight into the excited state dynamics of two cationic dipolar chromophores (Donor-π-Acceptor(+)) where the electron deficient portion is a N-methyl pyridinium and the electron donor a trimethoxyphenyl or a pyrene, respectively. The ultrafast spectroscopic investigation, and the time resolved area normalised emission spectra in particular, revealed a peculiar multiple emissive behaviour and allowed the distinct emitting states to be remarkably distinguished from solvation dynamics, occurring in water in a similar timescale. The two and three emissions experimentally detected for the trimethoxyphenyl and pyrene derivatives, respectively, were associated with specific local emissive minima in the potential energy surface of S1 on the ground of quantum-mechanical calculations. A low polar and planar Locally Excited (LE) state together with a highly polar and Twisted Intramolecular Charge Transfer (TICT) state is identified to be responsible for the dual emission of the trimethoxyphenyl compound. Interestingly, the more complex photobehaviour of the pyrenyl derivative was explained considering the contribution to the fluorescence coming not only from the LE and TICT states but also from a nearly Planar Intramolecular Charge Transfer (PICT) state, with both the TICT and the PICT generated from LE by progressive torsion around the quasi-single bond between the methylpyridinium and the ethene bridge. These findings point to an interconversion between rotamers for the pyrene compound taking place in its excited state against the Non-equilibrated Excited Rotamers (NEER) principle.

  4. Graded Multiple Choice Questions: Rewarding Understanding and Preventing Plagiarism

    Science.gov (United States)

    Denyer, G. S.; Hancock, D.

    2002-08-01

    This paper describes an easily implemented method that allows the generation and analysis of graded multiple-choice examinations. The technique, which uses standard functions in user-end software (Microsoft Excel 5+), can also produce several different versions of an examination that can be employed to prevent the reward of plagarism. The manuscript also discusses the advantages of having a graded marking system for the elimination of ambiguities, use in multi-step calculation questions, and questions that require extrapolation or reasoning. The advantages of the scrambling strategy, which maintains the same question order, is discussed with reference to student equity. The system provides a non-confrontational mechanism for dealing with cheating in large-class multiple-choice examinations, as well as providing a reward for problem solving over surface learning.

  5. The grand unified link between the Peccei-Quinn mechanism and the generation puzzle

    International Nuclear Information System (INIS)

    Davidson, A.; Wali, K.C.

    1982-03-01

    The essential ingredients of the Peccei-Quinn mechanism are shown to be dictated by a proper choice of a grand unification scheme. The presence of U(1)sub(PQ) gives rise to the possibility that the same physics which resolves the strong CP-violation problem may decode the generation puzzle with no extra cost. Multigenerational signatures of the invisible axion scenario, such as the canonical fermion mass matrix, are discussed. The uniqueness and the special values of the quantized PQ-assignments, namely 1,-3,5-7,... for successive generations, acquire an automatic explanation once the idea of ''horizontal compositeness'' is invoked. A characteristic feature then is that the muon appears to have a less complicated structure than the electron. Furthermore, U(1)sub(PQ) chooses SO(10) to be its only tenable gauge symmetry partner, and at the same time crucially restricts the associated Higgs system. All this finally results in a consistent fermion mass hierarchy with log m, to the crudest estimation, varying linearly with respect to the generation index. (author)

  6. Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents.

    Directory of Open Access Journals (Sweden)

    David M Fox

    2017-06-01

    Full Text Available Neuronal membrane potential resonance (MPR is associated with subthreshold and network oscillations. A number of voltage-gated ionic currents can contribute to the generation or amplification of MPR, but how the interaction of these currents with linear currents contributes to MPR is not well understood. We explored this in the pacemaker PD neurons of the crab pyloric network. The PD neuron MPR is sensitive to blockers of H- (IH and calcium-currents (ICa. We used the impedance profile of the biological PD neuron, measured in voltage clamp, to constrain parameter values of a conductance-based model using a genetic algorithm and obtained many optimal parameter combinations. Unlike most cases of MPR, in these optimal models, the values of resonant- (fres and phasonant- (fϕ = 0 frequencies were almost identical. Taking advantage of this fact, we linked the peak phase of ionic currents to their amplitude, in order to provide a mechanistic explanation the dependence of MPR on the ICa gating variable time constants. Additionally, we found that distinct pairwise correlations between ICa parameters contributed to the maintenance of fres and resonance power (QZ. Measurements of the PD neuron MPR at more hyperpolarized voltages resulted in a reduction of fres but no change in QZ. Constraining the optimal models using these data unmasked a positive correlation between the maximal conductances of IH and ICa. Thus, although IH is not necessary for MPR in this neuron type, it contributes indirectly by constraining the parameters of ICa.

  7. Does mechanism of drug action matter to inform rational polytherapy in epilepsy?

    Science.gov (United States)

    Giussani, Giorgia; Beghi, Ettore

    2013-05-01

    When monotherapy for epilepsy fails, add-on therapy is an alternative option. There are several possible antiepileptic drug combinations based on their different and multiple mechanisms of action and pharmacokinetic interactions. However, only when benefits of drug combinations outweigh the harms, polytherapy can be defined as "rational". In the past 20 years, second generation AEDs have been marketed, some of which have better defined mechanisms of action and better pharmacokinetic profile. The mechanisms of action of AEDs involve, among others, blockade of voltage-gated sodium channels, blockade of voltage-gated calcium channel, activation of the ionotropic GABAA receptor and increase of GABA levels at the synaptic cleft, blockade of glutamate receptors, binding to synaptic vesicle protein 2A, and opening of KCNQ (Kv7) potassium channels. Aim of this review was to examine published reports on AEDs combinations in animal models and humans focusing on mechanisms of action and pharmacokinetic interactions. Studies in animals have shown that AED combinations are more effective when using drugs with different mechanisms of action. The most effective combination was found using a drug with a single mechanism of action and another with multiple mechanisms of action. In humans some combinations between a blocker of voltage-gated sodium channels and a drug with multiple mechanisms of action may be synergistic. Future studies are necessary to better define rational combinations and complementary mechanisms of action, considering also pharmacokinetic interactions and measures of toxicity and not only drug efficacy.

  8. Mechanism of power generation - the MHD way

    International Nuclear Information System (INIS)

    Rangachari, S.; Ramash, V.R.; Subramanian, C.K.

    1975-01-01

    The basic physical principles of magnetohydrodynamics and the application of this principle for power generation (direct energy conversion) are explained. A magnetohydrodynamic generator (MHDG) is described both in the Faraday and Hall modes. The advantages of the Faraday mode and the Hall mode for different geometries of the generator are mentioned. The conductor used is a fluid - an ionised gas (plasma) or a liquid metal at high temperature. The difficulties in maintaining high temperature and high velocity for the gas and very low temperature at the same time side by side for superconducting magnets to produce a strong magnetic field, are pointed out. The most commonly used gas is purified air. The advantages of MHD generators and the present power crisis have compelled further research in this field in spite of the high costs involved. (A.K.)

  9. The investigation of the stochastization mechanisms of the beam generators using the method of functional map

    International Nuclear Information System (INIS)

    Bliokh, Yu.P.; Fajnberg, Ya.B.; Lyubarskij, M.G.; Podobinskij, V.O.

    1994-01-01

    Certain distributed dynamical systems describing the well-known beam generators of UHF oscillations are organized very simple: the nonlinear functional, which determines the current state of the system with respect to its behaviour in the past, is represented as a composition of the linear functional and the nonlinear finite-dimensional map. This property made it possible to find the mechanisms of auto modulation and stochastization of the signals from beam generators and to define corresponding range of parameters values. 12 refs., 6 figs

  10. Automatic mashup generation of multiple-camera videos

    NARCIS (Netherlands)

    Shrestha, P.

    2009-01-01

    The amount of user generated video content is growing enormously with the increase in availability and affordability of technologies for video capturing (e.g. camcorders, mobile-phones), storing (e.g. magnetic and optical devices, online storage services), and sharing (e.g. broadband internet,

  11. Bubble dynamics under acoustic excitation with multiple frequencies

    International Nuclear Information System (INIS)

    Zhang, Y N; Zhang, Y N; Li, S C

    2015-01-01

    Because of its magnificent mechanical and chemical effects, acoustic cavitation plays an important role in a broad range of biomedical, chemical and mechanical engineering problems. Particularly, irradiation of the multiple frequency acoustic wave could enhance the effects of cavitation. The advantages of employment of multi-frequency ultrasonic field include decreasing the cavitation thresholds, promoting cavitation nuclei generation, increasing the mass transfer and improving energy efficiency. Therefore, multi-frequency ultrasonic systems are employed in a variety of applications, e.g., to enhance the intensity of sonoluminenscence, to increase efficiency of sonochemical reaction, to improve the accuracy of ultrasound imaging and the efficiency of tissue ablation. Compared to single-frequency systems, a lot of new features of bubble dynamics exist in multi-frequency systems, such as special properties of oscillating bubbles, unique resonances in the bubble response curves, and unusual chaotic behaviours. In present paper, the underlying mechanisms of the cavitation effects under multi-frequency acoustical excitation are also briefly introduced

  12. A Novel Algorithm for the Generation of Distinct Kinematic Chain

    Science.gov (United States)

    Medapati, Sreenivasa Reddy; Kuchibhotla, Mallikarjuna Rao; Annambhotla, Balaji Srinivasa Rao

    2016-07-01

    Generation of distinct kinematic chains is an important topic in the design of mechanisms for various industrial applications i.e., robotic manipulator, tractor, crane etc. Many researchers have intently focused on this area and explained various processes of generating distinct kinematic chains which are laborious and complex. It is desirable to enumerate the kinematic chains systematically to know the inherent characteristics of a chain related to its structure so that all the distinct chains can be analyzed in depth, prior to the selection of a chain for a purpose. This paper proposes a novel and simple method with set of rules defined to eliminate isomorphic kinematic chains generating distinct kinematic chains. Also, this method simplifies the process of generating distinct kinematic chains even at higher levels i.e., 10-link, 11-link with single and multiple degree of freedom.

  13. Effect of vortex generators on the closing transient flow of bileaflet mechanical heart valves

    Science.gov (United States)

    Murphy, David; Dasi, Lakshmi; Yoganathan, Ajit; Glezer, Ari

    2006-11-01

    The time-periodic closing of bileaflet mechanical heart valves is accompanied by a strong flow transient that is associated with the formation of a counter-rotating vortex pair near the b-datum line of leaflet edges. The strong transitory shear that is generated by these vortices may be damaging to blood elements and may result in platelet activation. In the present work, these flow transients are mitigated using miniature vortex generator arrays that are embedded on the surface of the leaflets. Two vortex generator designs were investigated: one design comprised staggered rectangular fins and the other one staggered hemispheres. The closing transients in the absence and presence of the passive vortex generators are characterized using phase locked PIV measurements. The study utilizes a 25 mm St. Jude Medical valve placed in the aortic position of the Georgia Tech left heart simulator. Measurements of the velocity field in the center plane of the leaflets demonstrate that the dynamics of the transient vortices that precede the formation of the leakage jets can be significantly altered and controlled by relatively simple passive modifications of existing valve designs. Human blood experiments validated the effectiveness of miniature vortex generators in reducing thrombus formation by over 42 percent.

  14. a Pseudo-Random Number Generator Employing Multiple RÉNYI Maps

    Science.gov (United States)

    Lui, Oi-Yan; Yuen, Ching-Hung; Wong, Kwok-Wo

    2013-11-01

    The increasing risk along with the drastic development of multimedia data transmission has raised a big concern on data security. A good pseudo-random number generator is an essential tool in cryptography. In this paper, we propose a novel pseudo-random number generator based on the controlled combination of the outputs of several digitized chaotic Rényi maps. The generated pseudo-random sequences have passed both the NIST 800-22 Revision 1a and the DIEHARD tests. Moreover, simulation results show that the proposed pseudo-random number generator requires less operation time than existing generators and is highly sensitive to the seed.

  15. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat.

    Science.gov (United States)

    Smith, S J; Cases, S; Jensen, D R; Chen, H C; Sande, E; Tow, B; Sanan, D A; Raber, J; Eckel, R H; Farese, R V

    2000-05-01

    Triglycerides (or triacylglycerols) represent the major form of stored energy in eukaryotes. Triglyceride synthesis has been assumed to occur primarily through acyl CoA:diacylglycerol transferase (Dgat), a microsomal enzyme that catalyses the final and only committed step in the glycerol phosphate pathway. Therefore, Dgat has been considered necessary for adipose tissue formation and essential for survival. Here we show that Dgat-deficient (Dgat-/-) mice are viable and can still synthesize triglycerides. Moreover, these mice are lean and resistant to diet-induced obesity. The obesity resistance involves increased energy expenditure and increased activity. Dgat deficiency also alters triglyceride metabolism in other tissues, including the mammary gland, where lactation is defective in Dgat-/- females. Our findings indicate that multiple mechanisms exist for triglyceride synthesis and suggest that the selective inhibition of Dgat-mediated triglyceride synthesis may be useful for treating obesity.

  16. Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Cadavid, Diego; Steiner, Deborah

    2016-01-01

    progressive MS (SPMS), for which approved disease-modifying therapies are limited. In this review, we summarize the pathophysiological mechanisms involved in the development of SPMS and the rationale and clinical potential for natalizumab, which is currently approved for the treatment of relapsing forms of MS......Multiple sclerosis (MS) is a common and chronic central nervous system (CNS) demyelinating disease and a leading cause of permanent disability. Patients most often present with a relapsing-remitting disease course, typically progressing over time to a phase of relentless advancement in secondary......, to exert beneficial effects in reducing disease progression unrelated to relapses in SPMS. In both forms of MS, active brain-tissue injury is associated with inflammation; but in SPMS, the inflammatory response occurs at least partly behind the blood-brain barrier and is followed by a cascade of events...

  17. Robust transport by multiple motors with nonlinear force–velocity relations and stochastic load sharing

    International Nuclear Information System (INIS)

    Kunwar, Ambarish; Mogilner, Alexander

    2010-01-01

    Transport by processive molecular motors plays an important role in many cell biological phenomena. In many cases, motors work together to transport cargos in the cell, so it is important to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we study effects of nonlinear force–velocity relations and stochastic load sharing on multiple motor transport. We find that when two or three motors transport the cargo, then the nonlinear and stochastic effects compensate so that the mechanical properties of the transport are robust. Similarly, the transport is insensitive to compliance of the cargo-motor links. Furthermore, the rate of movement against moderate loads is not improved by increasing the small number of motors. When the motor number is greater than 4, correlations between the motors become negligible, and the earlier analytical mean-field theory of the multiple motor transport holds. We predict that the effective diffusion of the cargo driven by the multiple motors under load increases by an order of magnitude compared to that for the single motor. Finally, our simulations predict that the stochastic effects are responsible for a significant dispersion of velocities generated by the 'tug-of-war' of the multiple opposing motors

  18. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    Science.gov (United States)

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design.

    Science.gov (United States)

    Ng, Joanna L; Collins, Ciara E; Knothe Tate, Melissa L

    2017-07-01

    Nonwoven and textile membranes have been applied both externally and internally to prescribe boundary conditions for medical conditions as diverse as oedema and tissue defects. Incorporation of mechanical gradients in next generation medical membrane design offers great potential to enhance function in a dynamic, physiological context. Yet the gradient properties and resulting mechanical performance of current membranes are not well described. To bridge this knowledge gap, we tested and compared the mechanical properties of bounding membranes used in both external (compression sleeves for oedema, exercise bands) and internal (surgical membranes) physiological contexts. We showed that anisotropic compression garment textiles, isotropic exercise bands and surgical membranes exhibit similar ranges of resistance to tension under physiologic strains. However, their mechanical gradients and resulting stress-strain relationships show differences in work capacity and energy expenditure. Exercise bands' moduli of elasticity and respective thicknesses allow for controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. In contrast, the gradients intrinsic to compression sleeve design exhibit gaps in the middle range (1-5N) of physiological strains and also inconsistencies along the length of the sleeve, resulting in less than optimal performance of these devices. These current shortcomings in compression textile and garment design may be addressed in the future through implementation of novel approaches. For example, patterns, fibre compositions, and fibre anisotropy can be incorporated into biomaterial design to achieve seamless mechanical gradients in structure and resulting dynamic function, which would be particularly useful in physiological contexts. These concepts can be applied further to biomaterial design to deliver pressure gradients during movement of oedematous limbs (compression garments) and

  20. Control mechanisms in the third-generation planning. Case study: Control to realize sustainable cities

    Science.gov (United States)

    Wicaksono, A. D.

    2017-06-01

    Since the last few years, Indonesia has experienced important events that bring significant changes to the social, political and economic life. The changes directly or indirectly impact the field of planning. With the challenging condition which grows fast and is more complex ahead, and the greater demands on the role of planning, it is required that planning should have higher quality. This paper seeks to answer some questions as follows: (i) How are changes in paradigm and also the development of planning model for the current transition era?, (ii) What is the best way to improve the quality of planning control on the last generation planning model to realize sustainable city?. Analysis steps that will be used to achieve the paper objectives are: (i) Review of planning and sustainable cities theory, (ii) Pattern recognition, (iii) Identifying control mechanisms and sustainable urban forms, (iv) conceptualization. Based on discussion about sustainable cities and control mechanism, some conclusions can be generated as follows: (i) The third generation planning model is based on the theory of expanded system, emphasizing on the constraint of capacity and the ability of planners within the context of larger environment, (ii) There are various theoretical studies that recommend prescriptive model or solution for sustainable urban form and structure. The concepts of Sustainable Cities can be grouped in Neotraditional Development, Urban Containment, Compact City and The Eco-City. The four models above have criteria, namely (i) high density; (ii) a high level of diversity; (iii) mixed land use; (iv) compactness; (5) sustainable transport; (6) passive solar design; (7) Greening Ecological Design. The three main activities in control mechanisms are: Monitoring and Recommendation; a comparative review of the facts (conditions that exist or are developing) with the purpose (expected conditions, set out in urban planning) and recommendations; Evaluation, a review on the

  1. Study on the mechanism of seepage flow in the grouting for multiple fractured model

    International Nuclear Information System (INIS)

    Nishigaki, Makoto; Mikake, Shin-ichiro

    2002-01-01

    The purpose of study is to improve the grouting method for fractured rock masses. In this paper, the results on the fundamental phenomenon for grasping the properties of grouting injection and seepage flow are discussed. The case of grouting stage is studied about the multiple hydraulic fractured apertures in the injected borehole. So the theory on the mechanism is constructed, and experiment is executed in order to verify the availability of the theory. From the results, it is shown that Bernoulli's law is able to prove the behavior of the grouting. And the theoretical evaluation is executed on the experiential procedure of the grouting. (author)

  2. Power generation, operation and control

    CERN Document Server

    Wood, Allen J; Sheblé, Gerald B

    2013-01-01

    Since publication of the second edition, there have been extensive changes in the algorithms, methods, and assumptions in energy management systems that analyze and control power generation. This edition is updated to acquaint electrical engineering students and professionals with current power generation systems. Algorithms and methods for solving integrated economic, network, and generating system analysis are provided. Also included are the state-of-the-art topics undergoing evolutionary change, including market simulation, multiple market analysis, multiple interchange contract analysis, c

  3. Characterization of sliders for efficient force generation of electrostatically controlled linear actuator

    International Nuclear Information System (INIS)

    Nguyen, T A; Konishi, S

    2014-01-01

    In this paper, the characterization of sliders for efficient force generation of an electrostatically controlled linear actuator (ECLIA) is investigated. The ECLIA consists of a piezoactuator (PZT), driving and holding electrodes, multiple sliders and a guide structure. The stepping motion of the sliders is driven by the PZT actuator via an electrostatic clutch mechanism. Thus, multiple sliders can achieve parallel, independent, precise motion, and a large stroke. Previous studies have indicated that the Si bulk slider and Si electrode created an air gap owing to the deformation of the Si electrode. Thus, the Si slider generated a low pushing force. In this study, we propose a fishbone structure mounted on a flexible slider to enhance the pushing force of the slider. The flexible slider, that can deform and fit into the Si electrode to reduce the air gap, results in highly efficient electrostatic-force generation. The fishbone structure improves the longitudinal stiffness of the flexible slider for high pushing-force generation. The results show that the pushing force created by the fishbone slider was three times greater than that of the conventional Si slider. The fishbone and flexible sliders exhibited a high performance for the ECLIA. (paper)

  4. A Review on the Study of the Generation of (Nanoparticles Aerosols during the Mechanical Solicitation of Materials

    Directory of Open Access Journals (Sweden)

    Neeraj Shandilya

    2014-01-01

    Full Text Available This paper focuses on presenting the forefront of the interdisciplinary studies conceived towards the generation of the wear particles aerosol when materials are subjected to mechanical stresses. Various wear mechanisms and instrumentation involved during stress application and aerosolization of wear particles, as well as particles characterization, measurement, and modeling techniques are presented through the investigation of a series of contextual works which are emphasized on the identification of these aspects. The review is motivated from the fact that understanding mechanisms involved in wear-induced particle generation, both at nano- and at microscale, is important for many applications that involve surfaces sliding over each other due to various potential health aspects. An attempt has been made to explain how the information based on this broad spectrum of subjects discovered in this contribution can be used and improved in order to produce a more resilient, rational, and versatile knowledge base which has been found lacking in the present literature during its survey. The area of study is highly multidisciplinary since it involves aerosol, particle, and material sciences.

  5. Integrated assessment by multiple gene expression analysis of quercetin bioactivity on anticancer-related mechanisms in colon cancer cells in vitro

    NARCIS (Netherlands)

    Erk, van M.J.; Roepman, P.; Lende, van der T.R.; Stierum, R.H.; Aarts, J.M.M.J.G.; Bladeren, van P.J.; Ommen, van B.

    2005-01-01

    Background Many different mechanisms are involved in nutrient¿related prevention of colon cancer. In this study, a comprehensive assessment of the spectrum of possible biological actions of the bioactive compound quercetin is made using multiple gene expression analysis. Quercetin is a flavonoid

  6. Evaluating the Psychometric Characteristics of Generated Multiple-Choice Test Items

    Science.gov (United States)

    Gierl, Mark J.; Lai, Hollis; Pugh, Debra; Touchie, Claire; Boulais, André-Philippe; De Champlain, André

    2016-01-01

    Item development is a time- and resource-intensive process. Automatic item generation integrates cognitive modeling with computer technology to systematically generate test items. To date, however, items generated using cognitive modeling procedures have received limited use in operational testing situations. As a result, the psychometric…

  7. Molecular mechanism for generation of antibody memory.

    Science.gov (United States)

    Shivarov, Velizar; Shinkura, Reiko; Doi, Tomomitsu; Begum, Nasim A; Nagaoka, Hitoshi; Okazaki, Il-Mi; Ito, Satomi; Nonaka, Taichiro; Kinoshita, Kazuo; Honjo, Tasuku

    2009-03-12

    Activation-induced cytidine deaminase (AID) is the essential enzyme inducing the DNA cleavage required for both somatic hypermutation and class switch recombination (CSR) of the immunoglobulin gene. We originally proposed the RNA-editing model for the mechanism of DNA cleavage by AID. We obtained evidence that fulfils three requirements for CSR by this model, namely (i) AID shuttling between nucleus and cytoplasm, (ii) de novo protein synthesis for CSR, and (iii) AID-RNA complex formation. The alternative hypothesis, designated as the DNA-deamination model, assumes that the in vitro DNA deamination activity of AID is representative of its physiological function in vivo. Furthermore, the resulting dU was removed by uracil DNA glycosylase (UNG) to generate a basic site, followed by phosphodiester bond cleavage by AP endonuclease. We critically examined each of these provisional steps. We identified a cluster of mutants (H48A, L49A, R50A and N51A) that had particularly higher CSR activities than expected from their DNA deamination activities. The most striking was the N51A mutant that had no ability to deaminate DNA in vitro but retained approximately 50 per cent of the wild-type level of CSR activity. We also provide further evidence that UNG plays a non-canonical role in CSR, namely in the repair step of the DNA breaks. Taking these results together, we favour the RNA-editing model for the function of AID in CSR.

  8. Coupling Poisson rectangular pulse and multiplicative microcanonical random cascade models to generate sub-daily precipitation timeseries

    Science.gov (United States)

    Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph

    2018-07-01

    To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also

  9. Efficient Multiple Exciton Generation Observed in Colloidal PbSe Quantum Dots with Temporally and Spectrally Resolved Intraband Excitation

    KAUST Repository

    Ji, Minbiao

    2009-03-11

    We have spectrally resolved the intraband transient absorption of photogenerated excitons to quantify the exciton population dynamics in colloidal PbSe quantum dots (QDs). These measurements demonstrate that the spectral distribution, as well as the amplitude, of the transient spectrum depends on the number of excitons excited in a QD. To accurately quantify the average number of excitons per QD, the transient spectrum must be spectrally integrated. With spectral integration, we observe efficient multiple exciton generation In colloidal PbSe QDs. © 2009 American Chemical Society.

  10. Efficient Multiple Exciton Generation Observed in Colloidal PbSe Quantum Dots with Temporally and Spectrally Resolved Intraband Excitation

    KAUST Repository

    Ji, Minbiao; Park, Sungnam; Connor, Stephen T.; Mokari, Taleb; Cui, Yi; Gaffney, Kelly J.

    2009-01-01

    We have spectrally resolved the intraband transient absorption of photogenerated excitons to quantify the exciton population dynamics in colloidal PbSe quantum dots (QDs). These measurements demonstrate that the spectral distribution, as well as the amplitude, of the transient spectrum depends on the number of excitons excited in a QD. To accurately quantify the average number of excitons per QD, the transient spectrum must be spectrally integrated. With spectral integration, we observe efficient multiple exciton generation In colloidal PbSe QDs. © 2009 American Chemical Society.

  11. Concurrent generation of multivariate mixed data with variables of dissimilar types.

    Science.gov (United States)

    Amatya, Anup; Demirtas, Hakan

    2016-01-01

    Data sets originating from wide range of research studies are composed of multiple variables that are correlated and of dissimilar types, primarily of count, binary/ordinal and continuous attributes. The present paper builds on the previous works on multivariate data generation and develops a framework for generating multivariate mixed data with a pre-specified correlation matrix. The generated data consist of components that are marginally count, binary, ordinal and continuous, where the count and continuous variables follow the generalized Poisson and normal distributions, respectively. The use of the generalized Poisson distribution provides a flexible mechanism which allows under- and over-dispersed count variables generally encountered in practice. A step-by-step algorithm is provided and its performance is evaluated using simulated and real-data scenarios.

  12. Investigations of physicochemical properties of dusts generated in mechanical reclamation process of spent moulding sands with alkaline resins

    Directory of Open Access Journals (Sweden)

    R. Dańko

    2014-03-01

    Full Text Available Mechanical reclamation processes of spent moulding sands generate large amounts of post-reclamation dusts mainly containing rubbed spent binding agents and quartz dusts. The amount of post-reclamation dusts, depending in the reclamation system efficiency and the reclaim dedusting system, can reach 5%-10% in relation to the total reclaimed spent moulding sand. The proper utilization of such material is a big problem facing foundries these days. This study presents the results of investigations of physicochemical properties of post- reclamation dusts. All tested dusts originated from various Polish cast steel plants applying the mechanical reclamation process of moulding sands with alkaline resins, obtained from different producers. Different dusts, delivered from foundries, were tested to determine their chemical composition, granular characterization, physicochemical and energetic properties. Presented results confirmed assumptions that it is possible to utilize dusts generated during mechanical reclamation of used sands with organic resins as a source of energy.

  13. New Generator Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-17

    New generator technology project is driven by the need to be able to remotely deploy generator technology where it is needed, when it is needed. Both the military and aid programs that provide assistance after disasters could use the ability to deploy energy generation that fits the needs of the situation. Currently, pre-specified generators are deployed, sometime more than half way around the world to provide electricity. Through our Phase-I to Phase III DARPA grant, we will provide a mechanism where a 3d print station and raw materials could be shipped to a deployment site and remotely deployed personnel. These remote personnel can collaborate with engineers at a home location where 3d print plans can be optimized for the remote purpose. The plans can then be sent electronically to the remote location for printing, much like NASA sent the plans for a socket wrench to the International Space Station for printing in . If multiple generators need to be deployed at different remote locations, within miles of each other the printer rig can be moved to print the generators where they are needed. 3d printing is growing in the field of manufacturing. 3d printing has matured to the point where many types of materials are now available for many types of manufacturing. Both magnetic and electrically conductive material materials have recently been developed which can now lead to 3d printing of engines and generators. Our project will provide a successful printer rig that can be remotely deployed, to print a generator design in the field as well as provide a process for deploying the printed generator as well. This Systems Engineering Management Plan(SEMP) will provide the planning required for a Phase I DARPA grant that may also include goals for Phase II and Phase II grants. The SEMP provides a proposed project schedule, references, system engineering processes, specialty engineering system deployment and product support sections. Each section will state how our company

  14. Suction generation in white-spotted bamboo sharks Chiloscyllium plagiosum.

    Science.gov (United States)

    Wilga, Cheryl D; Sanford, Christopher P

    2008-10-01

    After the divergence of chondrichthyans and teleostomes, the structure of the feeding apparatus also diverged leading to alterations in the suction mechanism. In this study we investigated the mechanism for suction generation during feeding in white-spotted bamboo sharks, Chiloscyllium plagiosum and compared it with that in teleosts. The internal movement of cranial elements and pressure in the buccal, hyoid and pharyngeal cavities that are directly responsible for suction generation was quantified using sonomicrometry and pressure transducers. Backward stepwise multiple linear regressions were used to explore the relationship between expansion and pressure, accounting for 60-96% of the variation in pressure among capture events. The progression of anterior to posterior expansion in the buccal, hyoid and pharyngeal cavities is accompanied by the sequential onset of subambient pressure in these cavities as prey is drawn into the mouth. Gape opening triggers the onset of subambient pressure in the oropharyngeal cavities. Peak gape area coincides with peak subambient buccal pressure. Increased velocity of hyoid area expansion is primarily responsible for generating peak subambient pressure in the buccal and hyoid regions. Pharyngeal expansion appears to function as a sink to receive water influx from the mouth, much like that of compensatory suction in bidirectional aquatic feeders. Interestingly, C. plagiosum generates large suction pressures while paradoxically compressing the buccal cavity laterally, delaying the time to peak pressure. This represents a fundamental difference from the mechanism used to generate suction in teleost fishes. Interestingly, pressure in the three cavities peaks in the posterior to anterior direction. The complex shape changes that the buccal cavity undergoes indicate that, as in teleosts, unsteady flow predominates during suction feeding. Several kinematic variables function together, with great variation over long gape cycles to

  15. Timescales and Mechanisms of Sigh-Like Bursting and Spiking in Models of Rhythmic Respiratory Neurons.

    Science.gov (United States)

    Wang, Yangyang; Rubin, Jonathan E

    2017-12-01

    Neural networks generate a variety of rhythmic activity patterns, often involving different timescales. One example arises in the respiratory network in the pre-Bötzinger complex of the mammalian brainstem, which can generate the eupneic rhythm associated with normal respiration as well as recurrent low-frequency, large-amplitude bursts associated with sighing. Two competing hypotheses have been proposed to explain sigh generation: the recruitment of a neuronal population distinct from the eupneic rhythm-generating subpopulation or the reconfiguration of activity within a single population. Here, we consider two recent computational models, one of which represents each of the hypotheses. We use methods of dynamical systems theory, such as fast-slow decomposition, averaging, and bifurcation analysis, to understand the multiple-timescale mechanisms underlying sigh generation in each model. In the course of our analysis, we discover that a third timescale is required to generate sighs in both models. Furthermore, we identify the similarities of the underlying mechanisms in the two models and the aspects in which they differ.

  16. Late metal carbene complexes generated by multiple C-H activations: examining the continuum of M=C bond reactivity.

    Science.gov (United States)

    Whited, Matthew T; Grubbs, Robert H

    2009-10-20

    Unactivated C(sp(3))-H bonds are ubiquitous in organic chemicals and hydrocarbon feedstocks. However, these resources remain largely untapped, and the development of efficient homogeneous methods for hydrocarbon functionalization by C-H activation is an attractive and unresolved challenge for synthetic chemists. Transition-metal catalysis offers an attractive possible means for achieving selective, catalytic C-H functionalization given the thermodynamically favorable nature of many desirable partial oxidation schemes and the propensity of transition-metal complexes to cleave C-H bonds. Selective C-H activation, typically by a single cleavage event to produce M-C(sp(3)) products, is possible through myriad reported transition-metal species. In contrast, several recent reports have shown that late transition metals may react with certain substrates to perform multiple C-H activations, generating M=C(sp(2)) complexes for further elaboration. In light of the rich reactivity of metal-bound carbenes, such a route could open a new manifold of reactivity for catalytic C-H functionalization, and we have targeted this strategy in our studies. In this Account, we highlight several early examples of late transition-metal complexes that have been shown to generate metal-bound carbenes by multiple C-H activations and briefly examine factors leading to the selective generation of metal carbenes through this route. Using these reports as a backdrop, we focus on the double C-H activation of ethers and amines at iridium complexes supported by Ozerov's amidophosphine PNP ligand (PNP = [N(2-P(i)Pr(2)-4-Me-C(6)H(3))(2)](-)), allowing isolation of unusual square-planar iridium(I) carbenes. These species exhibit reactivity that is distinct from the archetypal Fischer and Schrock designations. We present experimental and theoretical studies showing that, like the classical square-planar iridium(I) organometallics, these complexes are best described as nucleophilic at iridium. We discuss

  17. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2013-01-01

    Full Text Available The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  18. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  19. Humanizing Outgroups Through Multiple Categorization

    Science.gov (United States)

    Prati, Francesca; Crisp, Richard J.; Meleady, Rose; Rubini, Monica

    2016-01-01

    In three studies, we examined the impact of multiple categorization on intergroup dehumanization. Study 1 showed that perceiving members of a rival university along multiple versus simple categorical dimensions enhanced the tendency to attribute human traits to this group. Study 2 showed that multiple versus simple categorization of immigrants increased the attribution of uniquely human emotions to them. This effect was explained by the sequential mediation of increased individuation of the outgroup and reduced outgroup threat. Study 3 replicated this sequential mediation model and introduced a novel way of measuring humanization in which participants generated attributes corresponding to the outgroup in a free response format. Participants generated more uniquely human traits in the multiple versus simple categorization conditions. We discuss the theoretical implications of these findings and consider their role in informing and improving efforts to ameliorate contemporary forms of intergroup discrimination. PMID:26984016

  20. Gauge fixings, evolution generators and world-line conditions in relativistic classical mechanics with constraints

    International Nuclear Information System (INIS)

    Lusanna, L.

    1981-01-01

    After a review of the main models for classical relativistic N-particle systems based upon Dirac's theory of constraints, a detailed study of their Hamiltonian formulation is made. The choice of the arbitrary functions and of the gauge-fixing constraints and the associated realizations of the reduced phase-space and of the observables by means of Dirac brackets are examined in detail. The restrictions on the gauge fixings to obtain compatibility between the evolution in the reduced phase space, generated by the total energy of the system, and the one in the constraint hypersurface, generated by the Dirac Hamiltonian, are found. It is also demonstrated that these restrictions are nothing else than the world-line conditions, i.e. gauge transformations are needed to ensure the objective existence of the world-lines and manifest covariance is broken. This is due to the property of the Dirac brackets of preserving the gauge fixings in every frame of reference. Predictive mechanics and the Currie-Hill world-line conditions are not in contradiction with the previous results: avoiding the Dirac-bracket mechanism, they save the manifest covariance but at the price of using accelerations which are complicated functions of the original potentials depending upon the whole history of the system. (author)

  1. The role of adaptive trans-generational plasticity in biological invasions of plants

    OpenAIRE

    Dyer, Andrew R; Brown, Cynthia S; Espeland, Erin K; McKay, John K; Meimberg, Harald; Rice, Kevin J

    2010-01-01

    High-impact biological invasions often involve establishment and spread in disturbed, high-resource patches followed by establishment and spread in biotically or abiotically stressful areas. Evolutionary change may be required for the second phase of invasion (establishment and spread in stressful areas) to occur. When species have low genetic diversity and short selection history, within-generation phenotypic plasticity is often cited as the mechanism through which spread across multiple hab...

  2. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-05-15

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  3. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    International Nuclear Information System (INIS)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B.; Junghans, Marion; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  4. Mechanisms for multiple activity modes of VTA dopamine neurons

    Directory of Open Access Journals (Sweden)

    Andrew eOster

    2015-07-01

    Full Text Available Midbrain ventral segmental area (VTA dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and diffusely release dopamine (DA to their targets. DA neurons display a range of activity modes that vary in frequency and degree of burst firing. Importantly, DA neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Here, we introduce a single compartmental, conductance-based computational model for DA cell activity that captures the behavior of DA neuronal dynamics and examine the multiple factors that underlie DA firing modes: the strength of the SK conductance, the amount of drive, and GABA inhibition. Our results suggest that neurons with low SK conductance fire in a fast firing mode, are correlated with burst firing, and require higher levels of applied current before undergoing depolarization block. We go on to consider the role of GABAergic inhibition on an ensemble of dynamical classes of DA neurons and find that strong GABA inhibition suppresses burst firing. Our studies suggest differences in the distribution of the SK conductance and GABA inhibition levels may indicate subclasses of DA neurons within the VTA. We further identify, that by considering alternate potassium dynamics, the dynamics display burst patterns that terminate via depolarization block, akin to those observed in vivo in VTA DA neurons and in substantia nigra pars compacta DA cell preparations under apamin application. In addition, we consider the generation of transient burst firing events that are NMDA-initiated or elicited by a sudden decrease of GABA inhibition, that is, disinhibition.

  5. Performance of automatic generation control mechanisms with large-scale wind power

    Energy Technology Data Exchange (ETDEWEB)

    Ummels, B.C.; Gibescu, M.; Paap, G.C. [Delft Univ. of Technology (Netherlands); Kling, W.L. [Transmission Operations Department of TenneT bv (Netherlands)

    2007-11-15

    The unpredictability and variability of wind power increasingly challenges real-time balancing of supply and demand in electric power systems. In liberalised markets, balancing is a responsibility jointly held by the TSO (real-time power balancing) and PRPs (energy programs). In this paper, a procedure is developed for the simulation of power system balancing and the assessment of AGC performance in the presence of large-scale wind power, using the Dutch control zone as a case study. The simulation results show that the performance of existing AGC-mechanisms is adequate for keeping ACE within acceptable bounds. At higher wind power penetrations, however, the capabilities of the generation mix are increasingly challenged and additional reserves are required at the same level. (au)

  6. [New drugs in the treatment of multiple myeloma].

    Science.gov (United States)

    Oriol, Albert; Motlló, Cristina

    2014-09-15

    Progress in the treatment of multiple myeloma in the last decade has been able to delay, but ultimately not to prevent, the development of resistances and most patients still die of the disease or its related complications. New drugs have been developed including new alkylating agents, proteasome inhibitors and immunomodulators but also monoclonal antibodies and drugs with new mechanisms of action. Hopefully, this new generation of targeted agents will improve the results of the initial therapy, avoid relapses and development of resistances and provide better and less toxic options for the relapsed and refractory patient. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  7. Human Supervision of Multiple Autonomous Vehicles

    Science.gov (United States)

    2013-03-22

    AFRL-RH-WP-TR-2013-0143 HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES Heath A. Ruff Ball...REPORT TYPE Interim 3. DATES COVERED (From – To) 09-16-08 – 03-22-13 4. TITLE AND SUBTITLE HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES 5a...Supervision of Multiple Autonomous Vehicles To support the vision of a system that enables a single operator to control multiple next-generation

  8. Multiple Authorities Attribute-Based Verification Mechanism for Blockchain Mircogrid Transactions

    Directory of Open Access Journals (Sweden)

    Sarmadullah Khan

    2018-05-01

    Full Text Available Recently, advancements in energy distribution models have fulfilled the needs of microgrids in finding a suitable energy distribution model between producer and consumer without the need of central controlling authority. Most of the energy distribution model deals with energy transactions and losses without considering the security aspects such as information tampering. The transaction data could be accessible online to keep track of the energy distribution between the consumer and producer (e.g., online payment records and supplier profiles. However this data is prone to modification and misuse if a consumer moves from one producer to other. Blockchain is considered to be one solution to allow users to exchange energy related data and keep track of it without exposing it to modification. In this paper, electrical transactions embedded in blockchain are validated using the signatures of multiple producers based on their assigned attributes. These signatures are verified and endorsed by the consumers satisfying those attributes without revealing any information. The public and private keys for these consumers are generated by the producers and endorsement procedure using these keys ensures that these consumers are authorized. This approach does not need any central authority. To resist against collision attacks, producers are given a secret pseudorandom function seed. The comparative analysis shows the efficiency of proposed approach over the existing ones.

  9. Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal).

    Science.gov (United States)

    Seixas, Gonçalo; Grigoraki, Linda; Weetman, David; Vicente, José Luís; Silva, Ana Clara; Pinto, João; Vontas, John; Sousa, Carla Alexandra

    2017-07-01

    Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control.

  10. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    Science.gov (United States)

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  11. Role of HHM coupling mechanisms on the evolution of rock masses around nuclear waste disposals in the context of gas generation

    International Nuclear Information System (INIS)

    Hoxha, D.; Do, D.-P.; Wendling, J.; Poutrel, A.

    2010-01-01

    Document available in extended abstract form only. This paper aims at modelling of long term evolution of hydro-mechanical state of rock masses around sealing nuclear waste disposals. In the principles of nuclear waste disposals the geological barrier must play a long term confining role in respect with nuclide transport. In terms of hydro-mechanical properties this calls for managing the damage around the underground workings of the waste disposals. In particular the seal buffers and barrier rock will support the generation of hydrogen of different origins, mainly from the corrosion of steals used in various elements of a nuclear waste disposal. This generation would generate gas pressures sufficiently high to partially dry seal or barrier rock leading to a redistribution of stress around underground openings, to a reactivation of the rock damage and finally could put in question the concept of geological barrier itself. The object of this paper is to shed light in the mechanisms of HHM coupling in rocks around a repository by comparative numerical analyses. Basically, we chose two configurations to proceed with analyses: one in plan strain conditions and the other an axial symmetric configuration. The goal of the first configuration is the assessment of gas pressure evolution in the openings of a repository. The principal input of the problem is the kinetics of gas generation (H 2 generation) given by a step-wise function of time describing the gas generation of one single nuclear waste coli. Then known the repository architecture one could easily calculate the mass of gas generated on one access gallery. Since extreme scenario is studied, we suppose that the gas generated by the set of alveoli is fully located in the access gallery and only a radial gas flux is possible.The hydro mechanical properties of rocks up to the surface were taken into account. For the callovo-Oxfordian clay that constitutes barrier rock in immediate neighbouring of the gallery a model

  12. Mechanical and physical properties of 2 1/4 Cr--1 Mo steel in support of CRBRP steam generator design

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Williams, R.K.; Klueh, R.L.; Hebble, T.L.

    1975-01-01

    Mechanical and physical property tests on annealed 2 1 / 4 Cr-1 Mo steel were conducted in an effort to define behavior in support of the design of the Clinch River Breeder Reactor Plant (CRBRP) steam generator design. Interim empirical expressions and/or data are reported from the results of tensile, creep, fatigue, creep-fatigue, subcritical crack growth, thermal conductivity, thermal diffusivity, and thermal expansion tests and analysis. These expressions cover behavior, where appropriate, over a range of temperatures from 25 to as high as 700 0 C. Comparisons between thermal conductivity and diffusivity values and those found in the American Society of Mechanical Engineers (ASME) Code indicated that the new values were significantly higher than those found presently in the Code. The importance and complexity of obtaining valid mechanical and physical properties for the Clinch River Breeder Reactor Plant (CRBRP) steam generator are discussed. (U.S.)

  13. Molecular diagnostics of a single drug-resistant multiple myeloma case using targeted next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Ikeda H

    2015-10-01

    Full Text Available Hiroshi Ikeda,1 Kazuya Ishiguro,1 Tetsuyuki Igarashi,1 Yuka Aoki,1 Toshiaki Hayashi,1 Tadao Ishida,1 Yasushi Sasaki,1,2 Takashi Tokino,2 Yasuhisa Shinomura1 1Department of Gastroenterology, Rheumatology and Clinical Immunology, 2Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan Abstract: A 69-year-old man was diagnosed with IgG λ-type multiple myeloma (MM, Stage II in October 2010. He was treated with one cycle of high-dose dexamethasone. After three cycles of bortezomib, the patient exhibited slow elevations in the free light-chain levels and developed a significant new increase of serum M protein. Bone marrow cytogenetic analysis revealed a complex karyotype characteristic of malignant plasma cells. To better understand the molecular pathogenesis of this patient, we sequenced for mutations in the entire coding regions of 409 cancer-related genes using a semiconductor-based sequencing platform. Sequencing analysis revealed eight nonsynonymous somatic mutations in addition to several copy number variants, including CCND1 and RB1. These alterations may play roles in the pathobiology of this disease. This targeted next-generation sequencing can allow for the prediction of drug resistance and facilitate improvements in the treatment of MM patients. Keywords: multiple myeloma, drug resistance, genome-wide sequencing, semiconductor sequencer, target therapy

  14. Fourier optics along a hybrid optical fiber for Bessel-like beam generation and its applications in multiple-particle trapping.

    Science.gov (United States)

    Kim, Jongki; Jeong, Yoonseob; Lee, Sejin; Ha, Woosung; Shin, Jeon-Soo; Oh, Kyunghwan

    2012-02-15

    Highly efficient Bessel-like beam generation was achieved based on a new all-fiber method that implements Fourier transformation of a micro annular aperture along a concatenated composite optical fiber. The beam showed unique characteristics of tilted washboard optical potential in the transverse plane and sustained a nondiffracting length over 400 μm along the axial direction. Optical trapping of multiple dielectric particles and living Jurkat cells were successfully demonstrated along the axial direction of the beam in the water.

  15. Analytical and experimental studies of mechanical consequences of a steam generator tube rupture

    International Nuclear Information System (INIS)

    Duc, B.; Sudreau, F.; Rassineux, B.

    1995-01-01

    Concerning to steam generator tubes support mechanical loadings due to the impact f the ruptured one, Electricite de France, with the support of Commissariat a l'Energie. Atomique, has undertaken a large study in order to evaluate the consequences of such loadings. This paper first presents the results of the tests performed on AQUITAINE 2 facility (CEA Cadarache research center) for nominal, faulted and boiler effect conditions. Those results are then compared with numerical dynamic elastoplastic analyses performed with CASTEM 2000 code (CEA system). (author). 1 ref., 14 figs

  16. A service brokering and recommendation mechanism for better selecting cloud services.

    Science.gov (United States)

    Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan

    2014-01-01

    Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI).

  17. A Service Brokering and Recommendation Mechanism for Better Selecting Cloud Services

    Science.gov (United States)

    Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan

    2014-01-01

    Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI

  18. Cortical mechanisms for trans-saccadic memory and integration of multiple object features

    Science.gov (United States)

    Prime, Steven L.; Vesia, Michael; Crawford, J. Douglas

    2011-01-01

    Constructing an internal representation of the world from successive visual fixations, i.e. separated by saccadic eye movements, is known as trans-saccadic perception. Research on trans-saccadic perception (TSP) has been traditionally aimed at resolving the problems of memory capacity and visual integration across saccades. In this paper, we review this literature on TSP with a focus on research showing that egocentric measures of the saccadic eye movement can be used to integrate simple object features across saccades, and that the memory capacity for items retained across saccades, like visual working memory, is restricted to about three to four items. We also review recent transcranial magnetic stimulation experiments which suggest that the right parietal eye field and frontal eye fields play a key functional role in spatial updating of objects in TSP. We conclude by speculating on possible cortical mechanisms for governing egocentric spatial updating of multiple objects in TSP. PMID:21242142

  19. Broadband generation by multiple four-wave mixing process due to ASE Q-switching in high-power double-clad ytterbium-doped fiber amplifier

    Science.gov (United States)

    Chowdhury, Sourav D.; Shekhar, Nishant; Saha, Maitreyee; Sen, Ranjan; Pal, Mrinmay

    2014-11-01

    Broadband output from 1060nm to 1700nm and cascaded four-wave mixing generated red light pulsing is observed in a fiber amplifier set up consisting of a 5.5m double clad, double D shaped Ytterbium doped fiber, a single clad passive fiber for excess pump absorption and a splitter, both with and without a CW seed. Self-pulsing occurs from ASE due to passive Q-switching by saturable absorption effect of the active fiber and also depends on splice loss. The pulses generate broadband output by multiple four-wave mixing process with maximum broadening efficiency near 1300nm which is the zero dispersion wavelength for silica fiber. Pulses traveling both in forward and backward direction have enough peak power and energy to damage splice points and fiber components. When seeded the self-pulsing and broadband generation is often suppressed but again generate at increased pump powers.

  20. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenting; Ju, Yiguang [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871 (China); Gou, Xiaolong [School of Power Engineering, Chongqing University, Chongqing 400044 (China)

    2010-07-15

    A direct path flux analysis (PFA) method for kinetic mechanism reduction is proposed and validated by using high temperature ignition, perfect stirred reactors, and steady and unsteady flame propagations of n-heptane and n-decane/air mixtures. The formation and consumption fluxes of each species at multiple reaction path generations are analyzed and used to identify the important reaction pathways and the associated species. The formation and consumption path fluxes used in this method retain flux conservation information and are used to define the path indexes for the first and the second generation reaction paths related to a targeted species. Based on the indexes of each reaction path for the first and second generations, different sized reduced chemical mechanisms which contain different number of species are generated. The reduced mechanisms of n-heptane and n-decane obtained by using the present method are compared to those generated by the direct relation graph (DRG) method. The reaction path analysis for n-decane is conducted to demonstrate the validity of the present method. The comparisons of the ignition delay times, flame propagation speeds, flame structures, and unsteady spherical flame propagation processes showed that with either the same or significantly less number of species, the reduced mechanisms generated by the present PFA are more accurate than that of DRG in a broad range of initial pressures and temperatures. The method is also integrated with the dynamic multi-timescale method and a further increase of computation efficiency is achieved. (author)

  1. The effect of tube rupture location on the consequences of multiple steam generator tube rupture event

    International Nuclear Information System (INIS)

    Jeong, Ji Hwan; Kweon, Young Chul

    2002-01-01

    A multiple steam generator tube rupture (MSGTR) event has never occurred in the commercial operation of nuclear reactors while single steam generator tube rupture (SGTR) events are reported to occur every 2 years. As there has been no occurrence of a MSGTR event, the understanding of transients and consequences of this event is very limited. In this study, a postulated MSGTR event in an advanced power reactor 1400 (APR 1400) is analyzed using the thermal-hydraulic system code, MARS1.4. The APR 1400 is a two-loop, 3893 MWt, PWR proposed to be built in 2010. The present study aims to understand the effects of rupture location in heat transfer tubes following a MSGTR event. The effects of five tube rupture locations are compared with each other. The comparison shows that the response of APR1400 allows the shortest time for operator action following a tube rupture in the vicinity of the hot-leg side tube sheet and allows the longest time following a tube rupture at the tube top. The MSSV lift time for rupture at the tube-top is evaluated as 24.5% larger than that for rupture at the hot-leg side tube sheet

  2. Incorporating Environmental Justice into Second Generation Indices of Multiple Deprivation: Lessons from the UK and Progress Internationally

    Directory of Open Access Journals (Sweden)

    Jon Fairburn

    2016-07-01

    Full Text Available Second generation area-based indices of multiple deprivation have been extensively used in the UK over the last 15 years. They resulted from significant developments in political, technical, and conceptual spheres for deprivation data. We review the parallel development of environmental justice research and how and when environmental data was incorporated into these indices. We explain the transfer of these methods from the UK to Germany and assess the progress internationally in developing such indices. Finally, we illustrate how billions of pounds in the UK was allocated by using these tools to tackle neighbourhood deprivation and environmental justice to address the determinants of health.

  3. Uniform random number generators

    Science.gov (United States)

    Farr, W. R.

    1971-01-01

    Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.

  4. Model-based Kinematics Generation for Modular Mechatronic Toolkits

    DEFF Research Database (Denmark)

    Bordignon, Mirko; Schultz, Ulrik Pagh; Støy, Kasper

    2011-01-01

    Modular robots are mechatronic devices that enable the construction of highly versatile and flexible robotic systems whose mechanical structure can be dynamically modified. The key feature that enables this dynamic modification is the capability of the individual modules to connect to each other...... in multiple ways and thus generate a number of different mechanical systems, in contrast with the monolithic, fixed structure of conventional robots. The mechatronic flexibility, however, complicates the development of models and programming abstractions for modular robots, since manually describing...... the Modular Mechatronics Modelling Language (M3L). M3L is a domain-specific language, which can model the kinematic structure of individual robot modules and declaratively describe their possible interconnections, rather than requiring the user to enumerate them in their entirety. From this description, the M...

  5. Fingolimod hydrochloride for the treatment of relapsing remitting multiple sclerosis.

    Science.gov (United States)

    Thomas, Katja; Proschmann, Undine; Ziemssen, Tjalf

    2017-10-01

    Fingolimod was the first oral and the first in class disease modifying treatment in multiple sclerosis that acts as sphingosine-1-phospathe receptor agonist. Since approval in 2010 there is a growing experience with fingolimod use in clinical practice, but also next-generation sphingosin-1-receptor agonists in ongoing clinical trials. Growing evidence demonstrates additional effects beyond impact on lymphocyte circulation, highlighting further promising targets in multiple sclerosis therapy. Areas covered: Here we present a systematic review using PubMed database searching and expert opinion on fingolimod use in clinical practice. Long-term data of initial clinical trials and post-marketing evaluations including long-term efficacy, safety, tolerability and management especially within growing disease modifying treatment options and pre-treatment constellation in multiple sclerosis patients are critically discussed. Furthermore novel findings in mechanism of actions and prospective on additional use in progressive forms in multiple sclerosis are presented. Expert opinion: There is an extensive long-term experience on fingolimod use in clinical practice demonstrating the favorable benefit-risk of this drug. Using a defined risk management approach experienced MS clinicians should apply fingolimod after critical choice of patients and review of clinical aspects. Further studies are essential to discuss additional benefit in progressive forms in multiple sclerosis.

  6. Ultrafast collinear scattering and carrier multiplication in graphene.

    Science.gov (United States)

    Brida, D; Tomadin, A; Manzoni, C; Kim, Y J; Lombardo, A; Milana, S; Nair, R R; Novoselov, K S; Ferrari, A C; Cerullo, G; Polini, M

    2013-01-01

    Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.

  7. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    OpenAIRE

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational app...

  8. Multiplication modules over non-commutative rings

    International Nuclear Information System (INIS)

    Tuganbaev, A A

    2003-01-01

    It is proved that each submodule of a multiplication module over a regular ring is a multiplicative module. If A is a ring with commutative multiplication of right ideals, then each projective right ideal is a multiplicative module, and a finitely generated A-module M is a multiplicative module if and only if all its localizations with respect to maximal right ideals of A are cyclic modules over the corresponding localizations of A. In addition, several known results on multiplication modules over commutative rings are extended to modules over not necessarily commutative rings

  9. Dynamic Characteristics Analysis and Stabilization of PV-Based Multiple Microgrid Clusters

    DEFF Research Database (Denmark)

    Zhao, Zhuoli; Yang, Ping; Wang, Yuewu

    2018-01-01

    -based multiple microgrid clusters. A detailed small-signal model for PV-based microgrid clusters considering local adaptive dynamic droop control mechanism of the voltage-source PV system is developed. The complete dynamic model is then used to access and compare the dynamic characteristics of the single...... microgrid and interconnected microgrids. In order to enhance system stability of the PV microgrid clusters, a tie-line flow and stabilization strategy is proposed to suppress the introduced interarea and local oscillations. Robustly selecting of the key control parameters is transformed to a multiobjective......As the penetration of PV generation increases, there is a growing operational demand on PV systems to participate in microgrid frequency regulation. It is expected that future distribution systems will consist of multiple microgrid clusters. However, interconnecting PV microgrids may lead to system...

  10. Electromechanical x-ray generator

    Science.gov (United States)

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  11. 46 CFR 111.10-5 - Multiple energy sources.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...

  12. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  13. Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Alex Pavlides

    2015-12-01

    Full Text Available In Parkinson's disease, an increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with difficulty in movement initiation. An important role in the generation of these oscillations is thought to be played by the motor cortex and by a network composed of the subthalamic nucleus (STN and the external segment of globus pallidus (GPe. Several alternative models have been proposed to describe the mechanisms for generation of the Parkinsonian beta oscillations. However, a recent experimental study of Tachibana and colleagues yielded results which are challenging for all published computational models of beta generation. That study investigated how the presence of beta oscillations in a primate model of Parkinson's disease is affected by blocking different connections of the STN-GPe circuit. Due to a large number of experimental conditions, the study provides strong constraints that any mechanistic model of beta generation should satisfy. In this paper we present two models consistent with the data of Tachibana et al. The first model assumes that Parkinsonian beta oscillation are generated in the cortex and the STN-GPe circuits resonates at this frequency. The second model additionally assumes that the feedback from STN-GPe circuit to cortex is important for maintaining the oscillations in the network. Predictions are made about experimental evidence that is required to differentiate between the two models, both of which are able to reproduce firing rates, oscillation frequency and effects of lesions carried out by Tachibana and colleagues. Furthermore, an analysis of the models reveals how the amplitude and frequency of the generated oscillations depend on parameters.

  14. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    Energy Technology Data Exchange (ETDEWEB)

    Ambroziński, Łukasz [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); AGH University of Science and Technology, Krakow 30059 (Poland); Pelivanov, Ivan, E-mail: ivanp3@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Song, Shaozhen; Yoon, Soon Joon; Gao, Liang; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Li, David [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Chemical Engineering, University of Washington Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K. [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)

    2016-07-25

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  15. Next-generation phylogenomics

    Directory of Open Access Journals (Sweden)

    Chan Cheong Xin

    2013-01-01

    Full Text Available Abstract Thanks to advances in next-generation technologies, genome sequences are now being generated at breadth (e.g. across environments and depth (thousands of closely related strains, individuals or samples unimaginable only a few years ago. Phylogenomics – the study of evolutionary relationships based on comparative analysis of genome-scale data – has so far been developed as industrial-scale molecular phylogenetics, proceeding in the two classical steps: multiple alignment of homologous sequences, followed by inference of a tree (or multiple trees. However, the algorithms typically employed for these steps scale poorly with number of sequences, such that for an increasing number of problems, high-quality phylogenomic analysis is (or soon will be computationally infeasible. Moreover, next-generation data are often incomplete and error-prone, and analysis may be further complicated by genome rearrangement, gene fusion and deletion, lateral genetic transfer, and transcript variation. Here we argue that next-generation data require next-generation phylogenomics, including so-called alignment-free approaches. Reviewers Reviewed by Mr Alexander Panchin (nominated by Dr Mikhail Gelfand, Dr Eugene Koonin and Prof Peter Gogarten. For the full reviews, please go to the Reviewers’ comments section.

  16. Generation of Compliant Mechanisms using Hybrid Genetic Algorithm

    Science.gov (United States)

    Sharma, D.; Deb, K.

    2014-10-01

    Compliant mechanism is a single piece elastic structure which can deform to perform the assigned task. In this work, compliant mechanisms are evolved using a constraint based bi-objective optimization formulation which requires one user defined parameter ( η). This user defined parameter limits a gap between a desired path and an actual path traced by the compliant mechanism. The non-linear and discrete optimization problems are solved using the hybrid Genetic Algorithm (GA) wherein domain specific initialization, two-dimensional crossover operator and repairing techniques are adopted. A bit-wise local search method is used with elitist non-dominated sorting genetic algorithm to further refine the compliant mechanisms. Parallel computations are performed on the master-slave architecture to reduce the computation time. A parametric study is carried out for η value which suggests a range to evolve topologically different compliant mechanisms. The applied and boundary conditions to the compliant mechanisms are considered the variables that are evolved by the hybrid GA. The post-analysis of results unveils that the complaint mechanisms are always supported at unique location that can evolve the non-dominated solutions.

  17. Collectively loading programs in a multiple program multiple data environment

    Science.gov (United States)

    Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.; Gooding, Thomas M.; Miller, Samuel J.

    2016-11-08

    Techniques are disclosed for loading programs efficiently in a parallel computing system. In one embodiment, nodes of the parallel computing system receive a load description file which indicates, for each program of a multiple program multiple data (MPMD) job, nodes which are to load the program. The nodes determine, using collective operations, a total number of programs to load and a number of programs to load in parallel. The nodes further generate a class route for each program to be loaded in parallel, where the class route generated for a particular program includes only those nodes on which the program needs to be loaded. For each class route, a node is selected using a collective operation to be a load leader which accesses a file system to load the program associated with a class route and broadcasts the program via the class route to other nodes which require the program.

  18. GeMini: The Next-Generation Mechanically-Cooled Germanium Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Burks, M

    2008-11-12

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (MINIature GErmanium spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice inspections, border patrol, port monitoring and emergency response, where positive nuclide identification of radioactive materials is required but power and liquid cryogen are not easily available. GeMini weighs 2.75 kg for the basic instrument and 4.5 kg for the full instrument including user interface and ruggedized hermetic packaging. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Three working prototypes have been built and tested in the lab. The measured energy resolution is 3 keV fwhm at 662 keV gamma-rays. This paper will focus on the design and performance of the instrument.

  19. The generation and management of references with the Online Mechanism for References - MORE

    Directory of Open Access Journals (Sweden)

    Proxério Manoel Felisberto

    2015-04-01

    Full Text Available The scientific production and the development of academic papers have their own formalities. In this paper, is sought seek from these formalities for the ones that refers to the way of granting merits to the authors of the works used in the theoretical basis, through quotations and references. The goal is to help users of libraries to generate and manage references using a web tool developed for this purpose. There are many applications, in desktop and web platforms, that could be used to do this task. However, some of them require the payment of an expensive license to be fully functional. Others offers free versions, but they are very limited and often do not generate references specified by ABNT. There are others that do not store the generate references for later use. In order to fill this gap, the Online Mechanism for References (MORE was developed and made available to the general public in the web. Even so, the fast technological advances combined with a high number of users demanded an update to the application, done recently. It is important to state that all the work was developed exclusively with proven and free to use technologies. Initially, sought up identified the main tools available to generate and manage references and which free technologies could be used to build interactive web applications. This paper briefly describes the reengineering process that MORE was submitted, its new structure, new requirements met and its expanded portfolio of features. Finally, the results achieved after the reengineering are compared to indicators of its previous version.

  20. The many-body content of quantum gauge theories and its connection to mass generation mechanisms

    International Nuclear Information System (INIS)

    Natoli, C.R.; Palumbo, F.

    1985-01-01

    The aim of the paper is to get more knowledge about many-body systems and their properties, about many-body content of quantum gauge theories and its connection with mass generation mechanisms. The way to achieve this is to perform the galilean limit of the relativistic theory by sending the speed of light c to infinity. This limiting process exposes the low energy behaviour of the relativistic theory

  1. Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets

    DEFF Research Database (Denmark)

    Hunt, Paul; Sarkar, Subir

    2014-01-01

    Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large-scale struc......Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large...... content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that `Tikhonov regularisation' can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant...... advantage being that both its uncertainty and resolution are then quantified. Using Monte Carlo simulations we investigate several regularisation parameter selection methods and find that generalised cross-validation and Mallow's Cp method give optimal results. We apply our inversion procedure to data from...

  2. Multiple-Access Quantum-Classical Networks

    Science.gov (United States)

    Razavi, Mohsen

    2011-10-01

    A multi-user network that supports both classical and quantum communication is proposed. By relying on optical code-division multiple access techniques, this system offers simultaneous key exchange between multiple pairs of network users. A lower bound on the secure key generation rate will be derived for decoy-state quantum key distribution protocols.

  3. Fragmentation of organic ions bearing fixed multiple charges observed in MALDI MS.

    Science.gov (United States)

    Lou, Xianwen; Li, Bao; de Waal, Bas F M; Schill, Jurgen; Baker, Matthew B; Bovee, Ralf A A; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W

    2018-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo-molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI-induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges. Copyright © 2017 John Wiley & Sons, Ltd.

  4. ASSESSMENT OF POTENTIAL TSUNAMI GENERATION IN CHINA'S BOHAI SEA FROM DIRECT GEOTECTONIC AND COLLATERAL SOURCE MECHANISMS

    Directory of Open Access Journals (Sweden)

    G. Pararas Carayannis

    2009-01-01

    Full Text Available The Bohai Sea borders northeastern China's most populous and highest economic valuecoastal areas where several megacities are located. Critical infrastructure facilities exist or areunder construction, including a nuclear power plant and super port facilities. Large reserves of oilhave been discovered and a number of offshore oil platforms have been built. The extent ofdevelopment along coastal areas requires a better assessment of potential tsunami risks. Althoughtsunamis do not pose as much of a threat as earthquakes in this region, locally destructive tsunamishave been generated in the past and future events could have significant impacts on coastalpopulations and China's economy, particularly because most of the development has taken place inlow-lying regions, including river deltas. The present study examines the geotectonics of the Bohaibasin region, the impact of past historical events, and the potential for local tsunami generationfrom a variety of direct and collateral source mechanisms triggered by intra plate earthquakes.More specifically, the present study examines: amajor active faults bounding the Bohai Basin; bthe resulting crustal deformation patterns of tectonic structures that have resulted in catastrophicearthquakes in recent years; c the basin-wide extension - with local inversion - extending into theBohai Sea that generated tsunamigenic earthquakes in 1888 and 1969; and d deformational futureseismic events with the potential to generate local tsunamis directly or by collateral mechanisms offolding, en-echelon bookshelf failures, or from destabilization/dissociation of structuralaccumulations of gas hydrate deposits within the basin's thick sedimentary stratigraphic layers.

  5. A multiplicative process for generating a beta-like survival function with application to the UK 2016 EU referendum results

    Science.gov (United States)

    Fenner, Trevor; Kaufmann, Eric; Levene, Mark; Loizou, George

    Human dynamics and sociophysics suggest statistical models that may explain and provide us with better insight into social phenomena. Contextual and selection effects tend to produce extreme values in the tails of rank-ordered distributions of both census data and district-level election outcomes. Models that account for this nonlinearity generally outperform linear models. Fitting nonlinear functions based on rank-ordering census and election data therefore improves the fit of aggregate voting models. This may help improve ecological inference, as well as election forecasting in majoritarian systems. We propose a generative multiplicative decrease model that gives rise to a rank-order distribution and facilitates the analysis of the recent UK EU referendum results. We supply empirical evidence that the beta-like survival function, which can be generated directly from our model, is a close fit to the referendum results, and also may have predictive value when covariate data are available.

  6. Possible Mechanism for the Generation of a Fundamental Unit of Charge (long version)

    Energy Technology Data Exchange (ETDEWEB)

    Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-16

    Various methods for calculating particle-emission rates from hot systems are reviewed. Semi-classically derived photon-emission rates often contain the term exp(-ε/T) which needs to be replaced with the corresponding Planckian factor of [exp(-ε/T)-1]-1 to obtain the correct rate. This replacement is associated with the existence of stimulated emission. Simple arguments are used to demonstrate that black holes can also undergo stimulated emission, as previously determined by others. We extend these concepts to fundamental particles, and assume they can be stimulated to emit virtual photons with a cross section of πλ2, in the case of an isolated particle when the incident virtual-photon energy is < 2πmc2. Stimulated-virtual photons can be exchanged with other particles generating a force. With the inclusion of near-field effects, the model choices presented give a calculated fundamental unit of charge of 1.6022x10-19 C. If these choices are corroborated by detailed calculations then an understanding of the numerical value of the fine structure constant may emerge. The present study suggests charge might be an emergent property generated by a simple interaction mechanism between point-like particles and the electromagnetic vacuum, similar to the process that generates the Lamb shift.

  7. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    Science.gov (United States)

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  8. Mechanism Design for Task Procurement with Flexible Quality of Service

    Science.gov (United States)

    Gerding, Enrico H.; Larson, Kate; Rogers, Alex; Jennings, Nicholas R.

    In this paper, we consider the problem where an agent wishes to complete a single computational task, but lacks the required resources. Instead, it must contract self-interested service providers, who are able to flexibly manipulate the quality of service they deliver, in order to maximise their own utility. We extend an existing model to allow for multiple such service providers to be contracted for the same task, and derive optimal task procurement mechanisms in the setting where the agent has full knowledge of the cost functions of these service providers (considering both simultaneous and sequential procurement). We then extend these results to the incomplete information setting where the agent must elicit cost information from the service providers, and we characterise a family of incentive-compatible and individually-rational mechanisms. We show empirically that sequential procurement always generates greater utility for the agent compared to simultaneous procurement, and that over a range of settings, contracting multiple providers is preferable to contracting just one.

  9. Invited Article: Multiple-octave spanning high-energy mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

    Directory of Open Access Journals (Sweden)

    Binbin Zhou

    2016-08-01

    Full Text Available Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS2 pumped in the 3-4 μm range with 85 fs 50 μJ pulse energy, with the broadest supercontinuum covering 1.6-7.0 μm. We measured up 30 μJ energy in the supercontinuum, and the energy promises to scale favorably with an increased pump energy. Other mid-IR crystals can readily be used as well to cover other pump wavelengths and target other supercontinuum wavelength ranges.

  10. Electro-mechanical sine/cosine generator

    Science.gov (United States)

    Flagge, B. (Inventor)

    1972-01-01

    An electromechanical device for generating both sine and cosine functions is described. A motor rotates a cylinder about an axis parallel to and a slight distance from the central axis of the cylinder. Two noncontacting displacement sensing devices are placed ninety degrees apart, equal distances from the axis of rotation of the cylinder and short distances above the surface of cylinder. Each of these sensing devices produces an electrical signal proportional to the distance that it is away from the cylinder. Consequently, as the cylinder is rotated the outputs from the two sensing devices are the sine and cosine functions.

  11. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    Science.gov (United States)

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.

  12. Frontal dynamic aphasia in progressive supranuclear palsy: Distinguishing between generation and fluent sequencing of novel thoughts.

    Science.gov (United States)

    Robinson, Gail A; Spooner, Donna; Harrison, William J

    2015-10-01

    Frontal dynamic aphasia is characterised by a profound reduction in spontaneous speech despite well-preserved naming, repetition and comprehension. Since Luria (1966, 1970) designated this term, two main forms of dynamic aphasia have been identified: one, a language-specific selection deficit at the level of word/sentence generation, associated with left inferior frontal lesions; and two, a domain-general impairment in generating multiple responses or connected speech, associated with more extensive bilateral frontal and/or frontostriatal damage. Both forms of dynamic aphasia have been interpreted as arising due to disturbances in early prelinguistic conceptual preparation mechanisms that are critical for language production. We investigate language-specific and domain-general accounts of dynamic aphasia and address two issues: one, whether deficits in multiple conceptual preparation mechanisms can co-occur; and two, the contribution of broader cognitive processes such as energization, the ability to initiate and sustain response generation over time, to language generation failure. Thus, we report patient WAL who presented with frontal dynamic aphasia in the context of progressive supranuclear palsy (PSP). WAL was given a series of experimental tests that showed that his dynamic aphasia was not underpinned by a language-specific deficit in selection or in microplanning. By contrast, WAL presented with a domain-general deficit in fluent sequencing of novel thoughts. The latter replicated the pattern documented in a previous PSP patient (Robinson, et al., 2006); however, unique to WAL, generating novel thoughts was impaired but there was no evidence of a sequencing deficit because perseveration was absent. Thus, WAL is the first unequivocal case to show a distinction between novel thought generation and subsequent fluent sequencing. Moreover, WAL's generation deficit encompassed verbal and non-verbal responses, showing a similar (but more profoundly reduced) pattern

  13. Mechanical vibration to electrical energy converter

    Science.gov (United States)

    Kellogg, Rick Allen [Tijeras, NM; Brotz, Jay Kristoffer [Albuquerque, NM

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  14. Thermal analysis experiment for elucidating sodium-water chemical reaction mechanism in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki

    2012-01-01

    For the purpose of elucidating the mechanism of the sodium-water surface reaction in a steam generator of sodium-cooled fast reactors, kinetic study of the sodium (Na)-sodium hydroxide (NaOH) reaction has been carried out by using Differential Thermal Analysis (DTA) technique. The parameters, including melting points of Na and NaOH, phase transition temperature of NaOH, Na-NaOH reaction temperature, and decomposition temperature of sodium hydride (NaH) have been identified from DTA curves. Based on the measured reaction temperature, rate constant of sodium monoxide (Na 2 O) generation was obtained. Thermal analysis results indicated that Na 2 O generation at the secondary overall reaction should be considered during the sodium-water reaction. (author)

  15. Next-Generation Pathology.

    Science.gov (United States)

    Caie, Peter D; Harrison, David J

    2016-01-01

    The field of pathology is rapidly transforming from a semiquantitative and empirical science toward a big data discipline. Large data sets from across multiple omics fields may now be extracted from a patient's tissue sample. Tissue is, however, complex, heterogeneous, and prone to artifact. A reductionist view of tissue and disease progression, which does not take this complexity into account, may lead to single biomarkers failing in clinical trials. The integration of standardized multi-omics big data and the retention of valuable information on spatial heterogeneity are imperative to model complex disease mechanisms. Mathematical modeling through systems pathology approaches is the ideal medium to distill the significant information from these large, multi-parametric, and hierarchical data sets. Systems pathology may also predict the dynamical response of disease progression or response to therapy regimens from a static tissue sample. Next-generation pathology will incorporate big data with systems medicine in order to personalize clinical practice for both prognostic and predictive patient care.

  16. Efficient simulation of voxelized phantom in GATE with embedded SimSET multiple photon history generator

    Science.gov (United States)

    Lin, Hsin-Hon; Chuang, Keh-Shih; Lin, Yi-Hsing; Ni, Yu-Ching; Wu, Jay; Jan, Meei-Ling

    2014-10-01

    GEANT4 Application for Tomographic Emission (GATE) is a powerful Monte Carlo simulator that combines the advantages of the general-purpose GEANT4 simulation code and the specific software tool implementations dedicated to emission tomography. However, the detailed physical modelling of GEANT4 is highly computationally demanding, especially when tracking particles through voxelized phantoms. To circumvent the relatively slow simulation of voxelized phantoms in GATE, another efficient Monte Carlo code can be used to simulate photon interactions and transport inside a voxelized phantom. The simulation system for emission tomography (SimSET), a dedicated Monte Carlo code for PET/SPECT systems, is well-known for its efficiency in simulation of voxel-based objects. An efficient Monte Carlo workflow integrating GATE and SimSET for simulating pinhole SPECT has been proposed to improve voxelized phantom simulation. Although the workflow achieves a desirable increase in speed, it sacrifices the ability to simulate decaying radioactive sources such as non-pure positron emitters or multiple emission isotopes with complex decay schemes and lacks the modelling of time-dependent processes due to the inherent limitations of the SimSET photon history generator (PHG). Moreover, a large volume of disk storage is needed to store the huge temporal photon history file produced by SimSET that must be transported to GATE. In this work, we developed a multiple photon emission history generator (MPHG) based on SimSET/PHG to support a majority of the medically important positron emitters. We incorporated the new generator codes inside GATE to improve the simulation efficiency of voxelized phantoms in GATE, while eliminating the need for the temporal photon history file. The validation of this new code based on a MicroPET R4 system was conducted for 124I and 18F with mouse-like and rat-like phantoms. Comparison of GATE/MPHG with GATE/GEANT4 indicated there is a slight difference in energy

  17. Using Second Harmonic Generation Microscopy to Study the Three-Dimensional Structure of Collagen and its Degradation Mechanism

    Science.gov (United States)

    Mega, Yair

    Collagen is one of the most abundant proteins found in the human body. Its crystalline structure possesses no centrosymmetry, allowing it to emit second-harmonic waves. Second harmonic generation (SHG) microscopy utilizes the latter quality to produce high-resolution images of collagen rich tissues and therefore become a key research tool in the biomedical field. We developed a new model, intended to be used together with second harmonic generation (SHG) microscopy, to thoroughly investigate collagen-based tissues. We use our SHG model to reveal information in real time from enzymatic biochemical processes. We also present a novel method used to measure quantitatively the direction of the fibers within the tissue, from SHG images. Using this method, we were able to reconstruct an angular map of the orientation of collagen fibers from multiple sections across the entire area of a human cornea. The structure we obtained demonstrates the criss-crossing structure of the human cornea, previously suggested in the literature. In addition, we also report work on a unique step-wise three-photon fluorescence excitation discovered in melanin. This unique fluorescence mechanism was exploited to discriminate melanin on a small-size, low-cost and low laser power setup which was used as a prototype for a handheld device. The latter study is a part of a larger on-going effort in our group to explore new diagnosis methods to be used for early skin cancer screening. Finally, this work demonstrates a spectroscopy-based method to correct for blood vessel thickness effect. The method analyzes spectral shift from a molecular imaging agent and correlate the shifts to the length of the optical path in blood. The correction method described in this work is intended to be implemented on a guided catheter near infrared fluorescence (NIRF) intra-vascular imaging system. In this imaging system, this study's results will used to correct for the radial distance between the imaging tip of the

  18. Apoptosis generates mechanical forces that close the lens vesicle in the chick embryo

    Science.gov (United States)

    Oltean, Alina; Taber, Larry A.

    2018-03-01

    During the initial stages of eye development, optic vesicles grow laterally outward from both sides of the forebrain and come into contact with the surrounding surface ectoderm (SE). Within the region of contact, these layers then thicken locally to create placodes and invaginate to form the optic cup (primitive retina) and lens vesicle (LV), respectively. This paper examines the biophysical mechanisms involved in LV formation, which consists of three phases: (1) lens placode formation; (2) invagination to create the lens pit (LP); and (3) closure to form a complete ellipsoidally shaped LV. Previous studies have suggested that extracellular matrix deposited between the SE and optic vesicle causes the lens placode to form by locally constraining expansion of the SE as it grows, while actomyosin contraction causes this structure to invaginate. Here, using computational modeling and experiments on chick embryos, we confirm that these mechanisms for Phases 1 and 2 are physically plausible. Our results also suggest, however, that they are not sufficient to close the LP during Phase 3. We postulate that apoptosis provides an additional mechanism by removing cells near the LP opening, thereby decreasing its circumference and generating tension that closes the LP. This hypothesis is supported by staining that shows a ring of cell death located around the LP opening during closure. Inhibiting apoptosis in cultured embryos using caspase inhibitors significantly reduced LP closure, and results from a finite-element model indicate that closure driven by cell death is plausible. Taken together, our results suggest an important mechanical role for apoptosis in lens development.

  19. The generation of random directed networks with prescribed 1-node and 2-node degree correlations

    International Nuclear Information System (INIS)

    Zamora-Lopez, Gorka; Kurths, Juergen; Zhou Changsong; Zlatic, Vinko

    2008-01-01

    The generation of random networks is a very common problem in complex network research. In this paper, we have studied the correlation nature of several real networks and found that, typically, a large number of links are deterministic, i.e. they cannot be randomized. This finding permits fast generation of ensembles of maximally random networks with prescribed 1-node and 2-node degree correlations. When the introduction of self-loops or multiple-links are not desired, random network generation methods typically reach blocked states. Here, a mechanism is proposed, the 'force-and-drop' method, to overcome such states. Our algorithm can be easily simplified for undirected graphs and reduced to account for any subclass of 2-node degree correlations

  20. Application of probabilistic fracture mechanics to optimize the maintenance of PWR steam generator tubes

    International Nuclear Information System (INIS)

    Pitner, P.; Riffard, T.

    1993-09-01

    This paper describes the COMPROMIS code developed by Electricite de France (EDF) to optimize the tube bundle maintenance of steam generators (SG). The model, based on probabilistic fracture mechanics, makes it possible to quantify the influence of in-service inspections and maintenance work on the risk of an SG tube rupture, taking all significant parameters into account as random variables (initial defect size distribution, reliability of nondestructive detection and sizing, crack initiation and propagation, critical sizes, leak before risk of break, etc). (authors). 14 figs., 4 tabs., 12 refs

  1. Heterogeneity of reward mechanisms.

    Science.gov (United States)

    Lajtha, A; Sershen, H

    2010-06-01

    The finding that many drugs that have abuse potential and other natural stimuli such as food or sexual activity cause similar chemical changes in the brain, an increase in extracellular dopamine (DA) in the shell of the nucleus accumbens (NAccS), indicated some time ago that the reward mechanism is at least very similar for all stimuli and that the mechanism is relatively simple. The presently available information shows that the mechanisms involved are more complex and have multiple elements. Multiple brain regions, multiple receptors, multiple distinct neurons, multiple transmitters, multiple transporters, circuits, peptides, proteins, metabolism of transmitters, and phosphorylation, all participate in reward mechanisms. The system is variable, is changed during development, is sex-dependent, and is influenced by genetic differences. Not all of the elements participate in the reward of all stimuli. Different set of mechanisms are involved in the reward of different drugs of abuse, yet different mechanisms in the reward of natural stimuli such as food or sexual activity; thus there are different systems that distinguish different stimuli. Separate functions of the reward system such as anticipation, evaluation, consummation and identification; all contain function-specific elements. The level of the stimulus also influences the participation of the elements of the reward system, there are possible reactions to even below threshold stimuli, and excessive stimuli can change reward to aversion involving parts of the system. Learning and memory of past reward is an important integral element of reward and addictive behavior. Many of the reward elements are altered by repeated or chronic stimuli, and chronic exposure to one drug is likely to alter the response to another stimulus. To evaluate and identify the reward stimulus thus requires heterogeneity of the reward components in the brain.

  2. A Network Pharmacology Approach to Uncover the Multiple Mechanisms of Hedyotis diffusa Willd. on Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Xinkui Liu

    2018-01-01

    Full Text Available Background. As one of the most frequently diagnosed cancer diseases globally, colorectal cancer (CRC remains an important cause of cancer-related death. Although the traditional Chinese herb Hedyotis diffusa Willd. (HDW has been proven to be effective for treating CRC in clinical practice, its definite mechanisms have not been completely deciphered. Objective. The aim of our research is to systematically explore the multiple mechanisms of HDW on CRC. Methods. This study adopted the network pharmacology approach, which was mainly composed of active component gathering, target prediction, CRC gene collection, network analysis, and gene enrichment analysis. Results. The network analysis showed that 10 targets might be the therapeutic targets of HDW on CRC, namely, HRAS, PIK3CA, KRAS, TP53, APC, BRAF, GSK3B, CDK2, AKT1, and RAF1. The gene enrichment analysis implied that HDW probably benefits patients with CRC by modulating pathways related to cancers, infectious diseases, endocrine system, immune system, nervous system, signal transduction, cellular community, and cell motility. Conclusions. This study partially verified and predicted the pharmacological and molecular mechanism of HDW against CRC from a holistic perspective, which will also lay a foundation for the further experimental research and clinical rational application of HDW.

  3. Enforcement of Privacy Policies over Multiple Online Social Networks for Collaborative Activities

    Science.gov (United States)

    Wu, Zhengping; Wang, Lifeng

    Our goal is to tend to develop an enforcement architecture of privacy policies over multiple online social networks. It is used to solve the problem of privacy protection when several social networks build permanent or temporary collaboration. Theoretically, this idea is practical, especially due to more and more social network tend to support open source framework “OpenSocial”. But as we known different social network websites may have the same privacy policy settings based on different enforcement mechanisms, this would cause problems. In this case, we have to manually write code for both sides to make the privacy policy settings enforceable. We can imagine that, this is a huge workload based on the huge number of current social networks. So we focus on proposing a middleware which is used to automatically generate privacy protection component for permanent integration or temporary interaction of social networks. This middleware provide functions, such as collecting of privacy policy of each participant in the new collaboration, generating a standard policy model for each participant and mapping all those standard policy to different enforcement mechanisms of those participants.

  4. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum.

    Science.gov (United States)

    Hibi, Masahiko; Matsuda, Koji; Takeuchi, Miki; Shimizu, Takashi; Murakami, Yasunori

    2017-05-01

    The cerebellum is derived from the dorsal part of the anterior-most hindbrain. The vertebrate cerebellum contains glutamatergic granule cells (GCs) and gamma-aminobutyric acid (GABA)ergic Purkinje cells (PCs). These cerebellar neurons are generated from neuronal progenitors or neural stem cells by mechanisms that are conserved among vertebrates. However, vertebrate cerebella are widely diverse with respect to their gross morphology and neural circuits. The cerebellum of cyclostomes, the basal vertebrates, has a negligible structure. Cartilaginous fishes have a cerebellum containing GCs, PCs, and deep cerebellar nuclei (DCNs), which include projection neurons. Ray-finned fish lack DCNs but have projection neurons termed eurydendroid cells (ECs) in the vicinity of the PCs. Among ray-finned fishes, the cerebellum of teleost zebrafish has a simple lobular structure, whereas that of weakly electric mormyrid fish is large and foliated. Amniotes, which include mammals, independently evolved a large, foliated cerebellum, which contains massive numbers of GCs and has functional connections with the dorsal telencephalon (neocortex). Recent studies of cyclostomes and cartilaginous fish suggest that the genetic program for cerebellum development was already encoded in the genome of ancestral vertebrates. In this review, we discuss how alterations of the genetic and cellular programs generated diversity of the cerebellum during evolution. © 2017 Japanese Society of Developmental Biologists.

  5. The combination of energy-dependent internal adaptation mechanisms and external factors enables Listeria monocytogenes to express a strong starvation survival response during multiple-nutrient starvation.

    Science.gov (United States)

    Lungu, Bwalya; Saldivar, Joshua C; Story, Robert; Ricke, Steven C; Johnson, Michael G

    2010-05-01

    The goal of this study was to characterize the starvation survival response (SSR) of a wild-type Listeria monocytogenes 10403S and an isogenic DeltasigB mutant strain during multiple-nutrient starvation conditions over 28 days. This study examined the effects of inhibitors of protein synthesis, the proton motive force, substrate level phosphorylation, and oxidative phosphorylation on the SSR of L. monocytogenes 10403S and a DeltasigB mutant during multiple-nutrient starvation. The effects of starvation buffer changes on viability were also examined. During multiple-nutrient starvation, both strains expressed a strong SSR, suggesting that L. monocytogenes possesses SigB-independent mechanism(s) for survival during multiple-nutrient starvation. Neither strain was able to express an SSR following starvation buffer changes, indicating that the nutrients/factors present in the starvation buffer could be a source of energy for cell maintenance and survival. Neither the wild-type nor the DeltasigB mutant strain was able to elicit an SSR when exposed to the protein synthesis inhibitor chloramphenicol within the first 4 h of starvation. However, both strains expressed an SSR when exposed to chloramphenicol after 6 h or more of starvation, suggesting that the majority of proteins required to elicit an effective SSR in L. monocytogenes are likely produced somewhere between 4 and 6 h of starvation. The varying SSRs of both strains to the different metabolic inhibitors under aerobic or anaerobic conditions suggested that (1) energy derived from the proton motive force is important for an effective SSR, (2) L. monocytogenes utilizes an anaerobic electron transport during multiple-nutrient starvation conditions, and (3) the glycolytic pathway is an important energy source during multiple-nutrient starvation when oxygen is available, and less important under anaerobic conditions. Collectively, the data suggest that the combination of energy-dependent internal adaptation mechanisms

  6. Noncoding Subgenomic Flavivirus RNA: Multiple Functions in West Nile Virus Pathogenesis and Modulation of Host Responses

    Directory of Open Access Journals (Sweden)

    Justin A. Roby

    2014-01-01

    Full Text Available Flaviviruses are a large group of positive strand RNA viruses transmitted by arthropods that include many human pathogens such as West Nile virus (WNV, Japanese encephalitis virus (JEV, yellow fever virus, dengue virus, and tick-borne encephalitis virus. All members in this genus tested so far are shown to produce a unique subgenomic flavivirus RNA (sfRNA derived from the 3' untranslated region (UTR. sfRNA is a product of incomplete degradation of genomic RNA by the cell 5'–3' exoribonuclease XRN1 which stalls at highly ordered secondary RNA structures at the beginning of the 3'UTR. Generation of sfRNA results in inhibition of XRN1 activity leading to an increase in stability of many cellular mRNAs. Mutant WNV deficient in sfRNA generation was highly attenuated displaying a marked decrease in cytopathicity in cells and pathogenicity in mice. sfRNA has also been shown to inhibit the antiviral activity of IFN-α/β by yet unknown mechanism and of the RNAi pathway by likely serving as a decoy substrate for Dicer. Thus, sfRNA is involved in modulating multiple cellular pathways to facilitate viral pathogenicity; however the overlying mechanism linking all these multiple functions of sfRNA remains to be elucidated.

  7. Corpuls cpr resuscitation device generates superior emulated flows and pressures than LUCAS II in a mechanical thorax model.

    Science.gov (United States)

    Eichhorn, S; Mendoza Garcia, A; Polski, M; Spindler, J; Stroh, A; Heller, M; Lange, R; Krane, M

    2017-06-01

    The provision of sufficient chest compression is among the most important factors influencing patient survival during cardiopulmonary resuscitation (CPR). One approach to optimize the quality of chest compressions is to use mechanical-resuscitation devices. The aim of this study was to compare a new device for chest compression (corpuls cpr) with an established device (LUCAS II). We used a mechanical thorax model consisting of a chest with variable stiffness and an integrated heart chamber which generated blood flow dependent on the compression depth and waveform. The method of blood-flow generation could be changed between direct cardiac-compression mode and thoracic-pump mode. Different chest-stiffness settings and compression modes were tested to generate various blood-flow profiles. Additionally, an endurance test at high stiffness was performed to measure overall performance and compression consistency. Both resuscitation machines were able to compress the model thorax with a frequency of 100/min and a depth of 5 cm, independent of the chosen chest stiffness. Both devices passed the endurance test without difficulty. The corpuls cpr device was able to generate about 10-40% more blood flow than the LUCAS II device, depending on the model settings. In most scenarios, the corpuls cpr device also generated a higher blood pressure than the LUCAS II. The peak compression forces during CPR were about 30% higher using the corpuls cpr device than with the LUCAS II. In this study, the corpuls cpr device had improved blood flow and pressure outcomes than the LUCAS II device. Further examination in an animal model is required to prove the findings of this preliminary study.

  8. Failure mode, effect and criticality analysis (FMECA) on mechanical subsystems of diesel generator at NPP

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Singh, Brijendra; Sung, Tae Yong; Park, Jin Hee; Lee, Yoon Hwan

    1996-06-01

    Largely, the RCM approach can be divided in three phases; (1) Functional failure analysis (FFA) on the selected system or subsystem, (2) Failure mode, effect and criticality analysis (FMECA) to identify the impact of failure to plant safety or economics, (3) Logical tree analysis (LTA) to select appropriate preventive maintenance and surveillance tasks. This report presents FMECA results for six mechanical subsystems of the diesel generators of nuclear power plants. The six mechanical subsystems are Starting air, Lub oil, Governor, Jacket water cooling, Fuel, and Engine subsystems. Generic and plant-specific failure and maintenance records are reviewed to identify critical components/failure modes. FMECA was performed for these critical component/failure modes. After reviewing current preventive maintenance activities of Wolsung unit 1, draft RCM recommendations are developed. 6 tabs., 16 refs. (Author)

  9. Failure mode, effect and criticality analysis (FMECA) on mechanical subsystems of diesel generator at NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Singh, Brijendra; Sung, Tae Yong; Park, Jin Hee; Lee, Yoon Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    Largely, the RCM approach can be divided in three phases; (1) Functional failure analysis (FFA) on the selected system or subsystem, (2) Failure mode, effect and criticality analysis (FMECA) to identify the impact of failure to plant safety or economics, (3) Logical tree analysis (LTA) to select appropriate preventive maintenance and surveillance tasks. This report presents FMECA results for six mechanical subsystems of the diesel generators of nuclear power plants. The six mechanical subsystems are Starting air, Lub oil, Governor, Jacket water cooling, Fuel, and Engine subsystems. Generic and plant-specific failure and maintenance records are reviewed to identify critical components/failure modes. FMECA was performed for these critical component/failure modes. After reviewing current preventive maintenance activities of Wolsung unit 1, draft RCM recommendations are developed. 6 tabs., 16 refs. (Author).

  10. Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations

    DEFF Research Database (Denmark)

    Marzband, Mousa; Azarinejadian, Fatemeh; Savaghebi, Mehdi

    2018-01-01

    This paper presents a smart Transactive energy (TE) framework in which home microgrids (H-MGs) can collaborate with each other in a multiple H-MG system by forming coalitions for gaining competitiveness in the market. Profit allocation due to coalition between H-MGs is an important issue...... for ensuring the optimal use of installed resources in the whole multiple H-MG system. In addition, considering demand fluctuations, energy production based on renewable resources in the multiple H-MG can be accomplished by demand-side management strategies that try to establish mechanisms to allow...... for a flatter demand curve. In this regard, demand shifting potential can be tapped through shifting certain amounts of energy demand from some time periods to others with lower expected demand, typically to match price values and to ensure that existing generation will be economically sufficient. It is also...

  11. Genetic and demographic responses of mosquitofish (Gambusia holbrooki) populations exposed to mercury for multiple generations

    Energy Technology Data Exchange (ETDEWEB)

    Tatara, C.P.; Mulvey, M.; Newman, M.C.

    1999-12-01

    Genetic and demographic responses of mosquitofish were examined after multiple generations of exposure to mercury. Previous studies of acute lethal exposures of mosquitofish to either mercury or arsenic demonstrated a consistent correlation between time to death and genotype at the glucosephosphate isomerase-2 (Gpi-2) locus. A mesocosm study involving mosquitofish populations exposed to mercury for 111 d showed significant female sexual selection and fecundity selection at the Gpi-2 locus. Here the mesocosm study was extended to populations exposed to mercury for several (approx. four) generations. After 2 years, control and mercury-exposed populations met Hardy-Weinberg expectations and showed no evidence of genetic bottlenecks. The mean number of heterozygous loci did not differ significantly between the mercury-exposed and control populations. Significant differences in allele frequencies at the Gpi-2 locus were observed between the mercury-exposed and control populations. Relative to the initial and control allele frequencies, the GPI-2{sup 100} allele frequency was lower, the Gpi-2{sup 66} allele frequency increased, but the Gpi-2{sup 38} allele frequency did not change in mercury-exposed populations. No significant differences were found in standard length, weight, sex ratio, or age class ratio between the control and mercury-exposed populations. Allele frequency changes at the Gpi-2 locus suggest population-level response to chronic mercury exposure. Changes in allele frequency may be useful as indicators of population response to contaminants, provided that the population in question is well understood.

  12. Spontaneous emission spectra and simulating multiple spontaneous generation coherence in a five-level atomic medium

    International Nuclear Information System (INIS)

    Li Jiahua; Liu Jibing; Qi Chunchao; Chen Aixi

    2006-01-01

    We investigate the features of the spontaneous emission spectra in a coherently driven cold five-level atomic system by means of a radio frequency (rf) or microwave field driving a hyperfine transition within the ground state. It is shown that a few interesting phenomena such as spectral-line narrowing, spectral-line enhancement, spectral-line suppression, and spontaneous emission quenching can be realized by modulating the frequency and intensity of the rf-driving field in our system. In the dressed-state picture of the coupling and rf-driving fields, we find that this coherently driven atomic system has three close-lying levels so that multiple spontaneously generated coherence (SGC) arises. Our considered atomic model can be found in real atoms, such as rubidium or sodium, so a corresponding experiment can be done to observe the expected phenomena related to SGC reported by Fountoulakis et al. [Phys. Rev. A 73, 033811 (2006)], since no rigorous conditions are required

  13. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    Directory of Open Access Journals (Sweden)

    Kaur Punit

    2008-11-01

    Full Text Available Abstract Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Results Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. Conclusion The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  14. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells.

    Science.gov (United States)

    Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-11-18

    There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  15. Enhancing power generation of floating wave power generators by utilization of nonlinear roll-pitch coupling

    Science.gov (United States)

    Yerrapragada, Karthik; Ansari, M. H.; Karami, M. Amin

    2017-09-01

    We propose utilization of the nonlinear coupling between the roll and pitch motions of wave energy harvesting vessels to increase their power generation by orders of magnitude. Unlike linear vessels that exhibit unidirectional motion, our vessel undergoes both pitch and roll motions in response to frontal waves. This significantly magnifies the motion of the vessel and thus improves the power production by several orders of magnitude. The ocean waves result in roll and pitch motions of the vessel, which in turn causes rotation of an onboard pendulum. The pendulum is connected to an electric generator to produce power. The coupled electro-mechanical system is modeled using energy methods. This paper investigates the power generation of the vessel when the ratio between pitch and roll natural frequencies is about 2 to 1. In that case, a nonlinear energy transfer occurs between the roll and pitch motions, causing the vessel to perform coupled pitch and roll motion even though it is only excited in the pitch direction. It is shown that co-existence of pitch and roll motions significantly enhances the pendulum rotation and power generation. A method for tuning the natural frequencies of the vessel is proposed to make the energy generator robust to variations of the frequency of the incident waves. It is shown that the proposed method enhances the power output of the floating wave power generators by multiple orders of magnitude. A small-scale prototype is developed for the proof of concept. The nonlinear energy transfer and the full rotation of the pendulum in the prototype are observed in the experimental tests.

  16. Safe Dynamic Multiple Inheritance

    DEFF Research Database (Denmark)

    Ernst, Erik

    2002-01-01

    Multiple inheritance and similar mechanisms are usually only supported at compile time in statically typed languages. Nevertheless, dynamic multiple inheritance would be very useful in the development of complex systems, because it allows the creation of many related classes without an explosion...... in the size and level of redundancy in the source code. In fact, dynamic multiple inheritance is already available. The language gbeta is statically typed and has supported run-time combination of classes and methods since 1997, by means of the combination operator '&'. However, with certain combinations...

  17. A Next-Generation Sequencing Strategy for Evaluating the Most Common Genetic Abnormalities in Multiple Myeloma.

    Science.gov (United States)

    Jiménez, Cristina; Jara-Acevedo, María; Corchete, Luis A; Castillo, David; Ordóñez, Gonzalo R; Sarasquete, María E; Puig, Noemí; Martínez-López, Joaquín; Prieto-Conde, María I; García-Álvarez, María; Chillón, María C; Balanzategui, Ana; Alcoceba, Miguel; Oriol, Albert; Rosiñol, Laura; Palomera, Luis; Teruel, Ana I; Lahuerta, Juan J; Bladé, Joan; Mateos, María V; Orfão, Alberto; San Miguel, Jesús F; González, Marcos; Gutiérrez, Norma C; García-Sanz, Ramón

    2017-01-01

    Identification and characterization of genetic alterations are essential for diagnosis of multiple myeloma and may guide therapeutic decisions. Currently, genomic analysis of myeloma to cover the diverse range of alterations with prognostic impact requires fluorescence in situ hybridization (FISH), single nucleotide polymorphism arrays, and sequencing techniques, which are costly and labor intensive and require large numbers of plasma cells. To overcome these limitations, we designed a targeted-capture next-generation sequencing approach for one-step identification of IGH translocations, V(D)J clonal rearrangements, the IgH isotype, and somatic mutations to rapidly identify risk groups and specific targetable molecular lesions. Forty-eight newly diagnosed myeloma patients were tested with the panel, which included IGH and six genes that are recurrently mutated in myeloma: NRAS, KRAS, HRAS, TP53, MYC, and BRAF. We identified 14 of 17 IGH translocations previously detected by FISH and three confirmed translocations not detected by FISH, with the additional advantage of breakpoint identification, which can be used as a target for evaluating minimal residual disease. IgH subclass and V(D)J rearrangements were identified in 77% and 65% of patients, respectively. Mutation analysis revealed the presence of missense protein-coding alterations in at least one of the evaluating genes in 16 of 48 patients (33%). This method may represent a time- and cost-effective diagnostic method for the molecular characterization of multiple myeloma. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  18. The ArF laser for the next-generation multiple-patterning immersion lithography supporting green operations

    Science.gov (United States)

    Ishida, Keisuke; Ohta, Takeshi; Miyamoto, Hirotaka; Kumazaki, Takahito; Tsushima, Hiroaki; Kurosu, Akihiko; Matsunaga, Takashi; Mizoguchi, Hakaru

    2016-03-01

    Multiple patterning ArF immersion lithography has been expected as the promising technology to satisfy tighter leading edge device requirements. One of the most important features of the next generation lasers will be the ability to support green operations while further improving cost of ownership and performance. Especially, the dependence on rare gases, such as Neon and Helium, is becoming a critical issue for high volume manufacturing process. The new ArF excimer laser, GT64A has been developed to cope with the reduction of operational costs, the prevention against rare resource shortage and the improvement of device yield in multiple-patterning lithography. GT64A has advantages in efficiency and stability based on the field-proven injection-lock twin-chamber platform (GigaTwin platform). By the combination of GigaTwin platform and the advanced gas control algorithm, the consumption of rare gases such as Neon is reduced to a half. And newly designed Line Narrowing Module can realize completely Helium free operation. For the device yield improvement, spectral bandwidth stability is important to increase image contrast and contribute to the further reduction of CD variation. The new spectral bandwidth control algorithm and high response actuator has been developed to compensate the offset due to thermal change during the interval such as the period of wafer exchange operation. And REDeeM Cloud™, new monitoring system for managing light source performance and operations, is on-board and provides detailed light source information such as wavelength, energy, E95, etc.

  19. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  20. Complex matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    Science.gov (United States)

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2014-02-11

    Mechanisms for performing a complex matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the complex matrix multiplication operation to a first target vector register. The first vector operand comprises a real and imaginary part of a first complex vector value. A complex load and splat operation is performed to load a second complex vector value of a second vector operand and replicate the second complex vector value within a second target vector register. The second complex vector value has a real and imaginary part. A cross multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the complex matrix multiplication operation. The partial product is accumulated with other partial products and a resulting accumulated partial product is stored in a result vector register.

  1. Generation of Composite Dose and Biological Effective Dose (BED) Over Multiple Treatment Modalities and Multistage Planning Using Deformable Image Registration

    International Nuclear Information System (INIS)

    Zhang, Geoffrey; Huang, T-C; Feygelman, Vladimir; Stevens, Craig; Forster, Kenneth

    2010-01-01

    Currently there are no commercially available tools to generate composite plans across different treatment modalities and/or different planning image sets. Without a composite plan, it may be difficult to perform a meaningful dosimetric evaluation of the overall treatment course. In this paper, we introduce a method to generate composite biological effective dose (BED) plans over multiple radiotherapy treatment modalities and/or multistage plans, using deformable image registration. Two cases were used to demonstrate the method. Case I was prostate cancer treated with intensity-modulated radiation therapy (IMRT) and a permanent seed implant. Case II involved lung cancer treated with two treatment plans generated on two separate computed tomography image sets. Thin-plate spline or optical flow methods were used as appropriate to generate deformation matrices. The deformation matrices were then applied to the dose matrices and the resulting physical doses were converted to BED and added to yield the composite plan. Cell proliferation and sublethal repair were considered in the BED calculations. The difference in BED between normal tissues and tumor volumes was accounted for by using different BED models, α/β values, and cell potential doubling times. The method to generate composite BED plans presented in this paper provides information not available with the traditional simple dose summation or physical dose summation. With the understanding of limitations and uncertainties of the algorithms involved, it may be valuable for the overall treatment plan evaluation.

  2. Knowledge Management and Competitive Advantage: study in the metal-mechanic sector

    Directory of Open Access Journals (Sweden)

    Andressa Centenaro

    2016-04-01

    Full Text Available The study aims to analyze the factors related to organizational culture that assist in knowledge management processes, helping to generate competitive advantage in the companies of metal-mechanic sector. Therefore, a quantitative survey data collection strategy was performed by applying a structured questionnaire in a sample of 63 employees from 13 companies in the metal-mechanic sector. The results were analyzed using multiple regression and indicate that the studied segment, learning and trust are positive and significant predictors of knowledge management. Thus, it can be inferred that the companies that stimulate its employees to learn and invest in maintaining confidence among members of the organization may achieve better performance in knowledge management. Finally, the results also expose that the knowledge management directly influences the performance and organizational effectiveness, demonstrating that the use and sharing of tacit and explicit knowledge are generating competitive advantage to competitors.

  3. Generation mechanism of RANKL(+) effector memory B cells: relevance to the pathogenesis of rheumatoid arthritis.

    Science.gov (United States)

    Ota, Yuri; Niiro, Hiroaki; Ota, Shun-Ichiro; Ueki, Naoko; Tsuzuki, Hirofumi; Nakayama, Tsuyoshi; Mishima, Koji; Higashioka, Kazuhiko; Jabbarzadeh-Tabrizi, Siamak; Mitoma, Hiroki; Akahoshi, Mitsuteru; Arinobu, Yojiro; Kukita, Akiko; Yamada, Hisakata; Tsukamoto, Hiroshi; Akashi, Koichi

    2016-03-16

    The efficacy of B cell-depleting therapies for rheumatoid arthritis underscores antibody-independent functions of effector B cells such as cognate T-B interactions and production of pro-inflammatory cytokines. Receptor activator of nuclear factor κB ligand (RANKL) is a key cytokine involved in bone destruction and is highly expressed in synovial fluid B cells in patients with rheumatoid arthritis. In this study we sought to clarify the generation mechanism of RANKL(+) effector B cells and their impacts on osteoclast differentiation. Peripheral blood and synovial fluid B cells from healthy controls and patients with rheumatoid arthritis were isolated using cell sorter. mRNA expression of RANKL, osteoprotegerin, tumor necrosis factor (TNF)-α, and Blimp-1 was analyzed by quantitative real-time polymerase chain reaction. Levels of RANKL, CD80, CD86, and CXCR3 were analyzed using flow cytometry. Functional analysis of osteoclastogenesis was carried out in the co-culture system using macrophage RAW264 reporter cells. RANKL expression was accentuated in CD80(+)CD86(+) B cells, a highly activated B-cell subset more abundantly observed in patients with rheumatoid arthritis. Upon activation via B-cell receptor and CD40, switched-memory B cells predominantly expressed RANKL, which was further augmented by interferon-γ (IFN-γ) but suppressed by interleukin-21. Strikingly, IFN-γ also enhanced TNF-α expression, while it strongly suppressed osteoprotegerin expression in B cells. IFN-γ increased the generation of CXCR3(+)RANKL(+) effector B cells, mimicking the synovial B cell phenotype in patients with rheumatoid arthritis. Finally, RANKL(+) effector B cells in concert with TNF-α facilitated osteoclast differentiation in vitro. Our current findings have shed light on the generation mechanism of pathogenic RANKL(+) effector B cells that would be an ideal therapeutic target for rheumatoid arthritis in the future.

  4. Optimization principles and the figure of merit for triboelectric generators.

    Science.gov (United States)

    Peng, Jun; Kang, Stephen Dongmin; Snyder, G Jeffrey

    2017-12-01

    Energy harvesting with triboelectric nanogenerators is a burgeoning field, with a growing portfolio of creative application schemes attracting much interest. Although power generation capabilities and its optimization are one of the most important subjects, a satisfactory elemental model that illustrates the basic principles and sets the optimization guideline remains elusive. We use a simple model to clarify how the energy generation mechanism is electrostatic induction but with a time-varying character that makes the optimal matching for power generation more restrictive. By combining multiple parameters into dimensionless variables, we pinpoint the optimum condition with only two independent parameters, leading to predictions of the maximum limit of power density, which allows us to derive the triboelectric material and device figure of merit. We reveal the importance of optimizing device capacitance, not only load resistance, and minimizing the impact of parasitic capacitance. Optimized capacitances can lead to an overall increase in power density of more than 10 times.

  5. Current multiplier to improved generator-to-load coupling for pulse-power generators

    International Nuclear Information System (INIS)

    Chuvatin, A.S.; Rudakov, L.I.; Weber, B.V.; Bayol, F.; Cadiergues, R.

    2005-01-01

    The circuit presented improves the coupling of existing and future pulsed power generators to physical loads. The efficiency of the proposed current multiplication scheme could theoretically exceed the values for a typical direct load-to-generator circuit. The scheme could be beneficial for use in actual applications and two examples of such applications are given [ru

  6. Cleaner generation, free-riders, and environmental integrity: clean development mechanism and the power sector

    Energy Technology Data Exchange (ETDEWEB)

    Bernow, Stephen; Kartha, Sivan; Lazarus, Michael; Page, Tom [Tellus Institute and Stockholm Environmental Institute-Boston Center, Boston, MA (United States)

    2001-06-01

    This article provides a first-cut estimate of the potential impacts of the clean development mechanism (CDM) on electricity generation and carbon emissions in the power sector of non-Annex 1 countries. We construct four illustrative CDM regimes that represent a range of approaches under consideration within the climate community. We examine the impact of these CDM regimes on investments in new generation, under illustrative carbon trading prices of US$ 10 and 100/tC. In the cases that are most conductive to CDM activity, roughly 94% of new generation investments remains identical to the without-CDM situation, with only 6% shifting from higher to lower carbon intensity technologies. We estimate that the CDM would bolster renewable energy generation by as little as 15% at US$ 10/tC, or as much as 300% at US$ 100/tC. A striking finding comes from our examination of the potential magnitude of the 'free-rider' problem, i.e. crediting of activities that will occur even in the absence of the CDM. The CDM is intended to be globally carbon-neutral --- a project reduces emissions in the host country but generates credits that increase emissions in the investor country. However, to the extent that unwarranted credits are awarded to non-additional projects, the CDM would increase global carbon emissions above the without-CDM emissions level. Under two of the CDM regimes considered, cumulative free-riders credits total 250-600MtC through the end of the first budget period in 2012. This represents 10-23% of the likely OECD emissions reduction requirement during the first budget period. Since such a magnitude of free-rider credits from non-additional CDM projects could threaten the environmental integrity of the Kyoto protocol, it is imperative that policy makers devise CDM rules that encourage legitimate projects, while effectively screening out non-additional activities. (Author)

  7. Financial power laws: Empirical evidence, models, and mechanisms

    International Nuclear Information System (INIS)

    Lux, Thomas; Alfarano, Simone

    2016-01-01

    Financial markets (share markets, foreign exchange markets and others) are all characterized by a number of universal power laws. The most prominent example is the ubiquitous finding of a robust, approximately cubic power law characterizing the distribution of large returns. A similarly robust feature is long-range dependence in volatility (i.e., hyperbolic decline of its autocorrelation function). The recent literature adds temporal scaling of trading volume and multi-scaling of higher moments of returns. Increasing awareness of these properties has recently spurred attempts at theoretical explanations of the emergence of these key characteristics form the market process. In principle, different types of dynamic processes could be responsible for these power-laws. Examples to be found in the economics literature include multiplicative stochastic processes as well as dynamic processes with multiple equilibria. Though both types of dynamics are characterized by intermittent behavior which occasionally generates large bursts of activity, they can be based on fundamentally different perceptions of the trading process. The present paper reviews both the analytical background of the power laws emerging from the above data generating mechanisms as well as pertinent models proposed in the economics literature.

  8. A Facile Method and Novel Mechanism Using Microneedle-Structured PDMS for Triboelectric Generator Applications.

    Science.gov (United States)

    Trinh, Van-Long; Chung, Chen-Kuei

    2017-08-01

    The triboelectric generator (TEG) is a cost-effective, multi-fabricated, friendly mechanical-energy-harvesting device. The traditional TEG, generally formed by two triboelectric materials in multilayers or a simple pattern, generated triboelectricity as it worked in the cycling contact-separation operation. This paper demonstrates a novel, high-aspect-ratio, microneedle (MN)-structured polydimethylsiloxane (PDMS)-based triboelectric generator (MN-TEG) by means of a low-cost, simple fabrication using CO 2 laser ablation on the polymethyl methacrylate substrate and a molding process. The MN-TEG, consisting of an aluminum foil and a microneedle-structured PDMS (MN-PDMS) film, generates an output performance with an open-circuit voltage up to 102.8 V, and a short-circuit current of 43.1 µA, corresponding to the current density of 1.5 µA cm -2 . With introducing MN-PDMS into the MN-TEG, a great increase of randomly closed bending-friction-deformation (BFD) behavior of MNs leads to highly enhanced triboelectric performance of the MN-TEG. The BFD keeps increasingly on in-contact between MN with Al that results in enhancement of electrical capacitance of PDMS. The effect of aspect ratio and density of MN morphology on the output performance of MN-PDMS TEG is studied further. The MN-TEG can rapidly charge electric energy on a 0.1 µF capacitor up to 2.1 V in about 0.56 s. The MN-TEG source under tapping can light up 53 light-emitting diodes with different colors, connected in series. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An investigation of the uniform random number generator

    Science.gov (United States)

    Temple, E. C.

    1982-01-01

    Most random number generators that are in use today are of the congruential form X(i+1) + AX(i) + C mod M where A, C, and M are nonnegative integers. If C=O, the generator is called the multiplicative type and those for which C/O are called mixed congruential generators. It is easy to see that congruential generators will repeat a sequence of numbers after a maximum of M values have been generated. The number of numbers that a procedure generates before restarting the sequence is called the length or the period of the generator. Generally, it is desirable to make the period as long as possible. A detailed discussion of congruential generators is given. Also, several promising procedures that differ from the multiplicative and mixed procedure are discussed.

  10. Air pollution and health implications of regional electricity transfer at generational centre and design of compensation mechanism

    Science.gov (United States)

    Relhan, Nemika

    damage into economic loss, the YOLL has been multiplied with Value of Life Year Lost (VOLY). VOLY has been derived from two approaches namely, the Gross Domestic Product (GDP) per capita i.e. using human capital approach and Value of Statistical Life (VOSL) i.e. using Willingness to Pay (WTP) approach derived from Indian revealed preference study. The morbidity damage has been estimated using cost of illness values available in the literature. A range of result has been presented depending on the CRF's used to estimates YOLL and morbidity and the values used to convert these health damages into monetary estimates. The study further suggests a broad framework of compensatory mechanism that includes 1) amount of compensation to be paid 2) mechanism to collect the compensation fund and 3) mechanism to compensate the affected communities. Both, curative and mitigative measures to protect the communities from the pollution generated in the power exporting region have been suggested.

  11. Comparisons of auction mechanisms in a multiple unit setting: A consideration for restructuring electric power markets

    Science.gov (United States)

    Bernard, John Charles

    The objective of this study was to compare the performance of five single sided auctions that could be used in restructured electric power markets across different market sizes in a multiple unit setting. Auction selection would profoundly influence an industry over $200 billion in size in the United States, and the consequences of implementing an inappropriate mechanism would be great. Experimental methods were selected to analyze the auctions. Two rounds of experiments were conducted, the first testing the sealed offer last accepted offer (LAO) and first rejected offer (FRO), and the clock English (ENG) and sealed offer English (SOE) in markets of sizes two and six. The FRO, SOE, and ENG used the same pricing rule. Second round testing was on the LAO, FRO, and the nonuniform price multiple unit Vickrey (MUV) in markets of sizes two, four, and six. Experiments lasted 23 and 75 periods for rounds 1 and 2 respectively. Analysis of variance and contrast analysis were used to examine the data. The four performance measures used were price, efficiency, profits per unit, and supply revelation. Five basic principles were also assessed: no sales at losses, all low cost capacity should be offered and sold, no high cost capacity should sell, and the market should clear. It was expected group size and auction type would affect performance. For all performance measures, group size was a significant variable, with smaller groups showing poorer performance. Auction type was significant only for the efficiency performance measure, where clock auctions outperformed the others. Clock auctions also proved superior for the first four principles. The FRO performed poorly in almost all situations, and should not be a preferred mechanism in any market. The ENG was highly efficient, but expensive for the buyer. The SOE appeared superior to the FRO and ENG. The clock improves efficiency over the FRO while less information kept prices under the ENG. The MUV was superior in revealing costs

  12. A cfr-positive clinical staphylococcal isolate from India with multiple mechanisms of linezolid-resistance

    Directory of Open Access Journals (Sweden)

    Vineeth Rajan

    2014-01-01

    Full Text Available Background & objectives: Linezolid, a member of the oxazolidinone class of antibiotics, has been an effective therapeutic option to treat severe infections caused by multidrug resistant Gram positive bacteria. Emergence of linezolid resistant clinical strains is a serious issue in the healthcare settings worldwide. We report here the molecular characterization of a linezolid resistant clinical isolate of Staphylococcus haemolyticus from India. Methods: The species of the clinical isolate was identified by 16S rRNA gene sequencing. The minimum inhibitory concentrations (MICs of linezolid, clindamycin, chloramphenicol and oxacillin were determined by E-test method. To elucidate the mechanism of linezolid-resistance, presence of cfr gene (chloramphenicol florfenicol resistance and mutations in 23S rRNA and ribosomal proteins (L3, L4 and L22 were investigated. Staphylococcal Cassette Chromosome mec (SCCmec typing was performed by multiplex PCR. Results: The study documented a rare clinical S. haemolyticus strain with three independent mechanisms of linezolid-resistance. The strain carried cfr gene, the only known transmissible mechanism of linezolid-resistance. The strain also possessed resistance-conferring mutations such as G 2576 T in domain V of 23S rRNA gene and Met 156 Thr in L3 ribosomal protein. The other ribosomal proteins (L4 and L22 did not exhibit mutations accountable for linezolid-resistance. Restriction digestion by NheI revealed that all the alleles of 23S rRNA gene were mutated. The isolate showed elevated MIC values (>256 ΅g ml -[1] of linezolid, clindamycin, chloramphenicol and oxacillin. Methicillin resistance was conferred by type I SCCmec element. The strain also harboured lsa(B gene which encodes an ABC transporter that can efflux clindamycin. Interpretation & conclusions: The present study reports the first clinical strain from India with transmissible and multiple mechanisms of linezolid-resistance. Judicious use of

  13. Study on tsunami damage mechanism in Fukushima Prefecture focusing on the generation of bores

    International Nuclear Information System (INIS)

    Okuma, Shohei; Sato, Shinji; Yamanaka, Yusuke; Sanuki, Hiroshi

    2015-01-01

    Destruction mechanisms of coastal structures due to the 2011 Tohoku Tsunami were investigated on the basis of field surveys in Fukushima Prefecture. Severe destruction appeared to be developed by the action of breaking bores. Laboratory experiments demonstrated that the angle of the tsunami front was an essential parameter for the generation of breaking bores. Larger wave force was observed as the angle of the tsunami front became steeper. Numerical simulation revealed that such a steep tsunami was developed in the central part of Fukushima Prefecture, where the reflection of the preceding tsunami by coastal cliff enhanced the steepness of the largest tsunami. (author)

  14. Mechanical design of translocating motor proteins.

    Science.gov (United States)

    Hwang, Wonmuk; Lang, Matthew J

    2009-01-01

    Translocating motors generate force and move along a biofilament track to achieve diverse functions including gene transcription, translation, intracellular cargo transport, protein degradation, and muscle contraction. Advances in single molecule manipulation experiments, structural biology, and computational analysis are making it possible to consider common mechanical design principles of these diverse families of motors. Here, we propose a mechanical parts list that include track, energy conversion machinery, and moving parts. Energy is supplied not just by burning of a fuel molecule, but there are other sources or sinks of free energy, by binding and release of a fuel or products, or similarly between the motor and the track. Dynamic conformational changes of the motor domain can be regarded as controlling the flow of free energy to and from the surrounding heat reservoir. Multiple motor domains are organized in distinct ways to achieve motility under imposed physical constraints. Transcending amino acid sequence and structure, physically and functionally similar mechanical parts may have evolved as nature's design strategy for these molecular engines.

  15. Two-surface Monte Carlo with basin hopping: quantum mechanical trajectory and multiple stationary points of water cluster.

    Science.gov (United States)

    Bandyopadhyay, Pradipta

    2008-04-07

    The efficiency of the two-surface monte carlo (TSMC) method depends on the closeness of the actual potential and the biasing potential used to propagate the system of interest. In this work, it is shown that by combining the basin hopping method with TSMC, the efficiency of the method can be increased by several folds. TSMC with basin hopping is used to generate quantum mechanical trajectory and large number of stationary points of water clusters.

  16. Targeting multiple pathogenic mechanisms with polyphenols for the treatment of Alzheimer’s disease: Experimental approach and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Jun eWang

    2014-03-01

    Full Text Available Alzheimer’s disease (AD is the most prevalent neurodegenerative disease of aging and currently has no cure. Its onset and progression are influenced by multiple factors. There is growing consensus that successful treatment will rely on simultaneously targeting multiple pathological features of AD. Polyphenol compounds have many proven health benefits. In this study, we tested the hypothesis that combining three polyphenolic preparations (grape seed extract, resveratrol and Concord grape juice extract, with different polyphenolic compositions and partially redundant bioactivities, may simultaneously and synergistically mitigate amyloid-β (Aβ mediated neuropathology and cognitive impairments in a mouse model of AD. We found that administration of the polyphenols in combination did not alter the profile of bioactive polyphenol metabolites in the brain. We also found that combination treatment resulted in better protection against cognitive impairments compared to individual treatments, in J20 AD mice. Electrophysiological examination showed that acute treatment with select brain penetrating polyphenol metabolites, derived from these polyphenols, improved oligomeric Aβ (oAβ-induced long term potentiation (LTP deficits in hippocampal slices. Moreover, we found greatly reduced total amyloid content in the brain following combination treatment. Our studies provided experimental evidence that application of polyphenols targeting multiple disease-mechanisms may yield a greater likelihood of therapeutic efficacy.

  17. Evaluation of the user interface simplicity in the modern generation of mechanical ventilators.

    Science.gov (United States)

    Uzawa, Yoshihiro; Yamada, Yoshitsugu; Suzukawa, Masayuki

    2008-03-01

    We designed this study to evaluate the simplicity of the user interface in modern-generation mechanical ventilators. We hypothesized that different designs in the user interface could result in different rates of operational failures. A laboratory in a tertiary teaching hospital. Crossover design. Twenty-one medical resident physicians who did not possess operating experience with any of the selected ventilators. Four modern mechanical ventilators were selected: Dräger Evita XL, Maquet Servo-i, Newport e500, and Puritan Bennett 840. Each subject was requested to perform 8 tasks on each ventilator. Two objective variables (the number of successfully completed tasks without operational failures and the operational time) and the overall subjective rating of the ease of use, measured with a 100-mm visual analog scale were recorded. The total percentage of operational failures made for all subjects, for all tasks, was 23%. There were significant differences in the rates of operational failures and operational time among the 4 ventilators. Subjects made more operational failures in setting up the ventilators and in making ventilator-setting changes than in reacting to alarms. The subjective feeling of the ease of use was also significantly different among the ventilators. The design of the user interface is relevant to the occurrence of operational failures. Our data indicate that ventilator designers could optimize the user-interface design to reduce the operational failures; therefore, basic user interface should be standardized among the clinically used mechanical ventilators.

  18. The generation of random directed networks with prescribed 1-node and 2-node degree correlations

    Energy Technology Data Exchange (ETDEWEB)

    Zamora-Lopez, Gorka; Kurths, Juergen [Institute of Physics, University of Potsdam, PO Box 601553, 14415 Potsdam (Germany); Zhou Changsong [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Zlatic, Vinko [Rudjer Boskovic Institute, PO Box 180, HR-10002 Zagreb (Croatia)

    2008-06-06

    The generation of random networks is a very common problem in complex network research. In this paper, we have studied the correlation nature of several real networks and found that, typically, a large number of links are deterministic, i.e. they cannot be randomized. This finding permits fast generation of ensembles of maximally random networks with prescribed 1-node and 2-node degree correlations. When the introduction of self-loops or multiple-links are not desired, random network generation methods typically reach blocked states. Here, a mechanism is proposed, the 'force-and-drop' method, to overcome such states. Our algorithm can be easily simplified for undirected graphs and reduced to account for any subclass of 2-node degree correlations.

  19. Gas Supply, Pricing Mechanism and the Economics of Power Generation in China

    Directory of Open Access Journals (Sweden)

    Yuanxin Liu

    2018-04-01

    Full Text Available During the “13th Five-Year Plan” period, green energy is the top priority for China. China has realized that natural gas, as a low-carbon energy source, fits with the nation’s energy demand and will play a critical role in the energy transition, but the actual industry development is slower than expected. By analyzing the major gas corporations around the world, the paper finds that the key factors of the sector are supply and price of the energy resource. A comprehensive analysis on domestic and foreign imported gas reveals a trend of oversupply in China in the future. Given the critical import dependence, China has introduced a series of gas price reforms since 2013, which have led to negative impacts on important gas consumption sectors including power generation. With the levelized cost of electricity (LCOE model, we find that under the prevailing gas supply structure and price level, the economy of utility gas power generation will remain unprofitable, while combined cooling heating and power (CCHP is only commercially feasible in coastal developed regions. If continuing, such a trend will not only bring forth disastrous consequences to gas power industry, but also damage the upstream gas industry, more importantly, impede the energy transition. We conclude the paper with policy implications on pricing mechanism reform, developing domestic unconventional gas and the R&D of gas turbine.

  20. A rare condition of anorectal dysfunction in a patient with multiple sclerosis: Coexistence of faecal incontinence and mechanical constipation: Report of case.

    Science.gov (United States)

    Dandin, Özgür; Akpak, Yaşam Kemal; Karakaş, Dursun Özgür; Hazer, Batuhan; Ergin, Tuncer; Dandinoğlu, Taner; Teomete, Uygar

    2014-01-01

    Multiple sclerosis is a chronic demyelinating neurological disease and causing a variety of neurological symptoms, including discomfort of anorectal function. Constipation and faecal incontinence present as anorectal dysfunction in MS and anal manometry, colonic transit time, electromyography, and defecography can be used for assessment. We presented a thirty-three years old woman with rare condition of anorectal dysfunction in multiple sclerosis. Anal manometry, defecography were done, and synchronously anal incontinence and mechanical constipation due to rectocele and anismus were detected in this patient. Although anal incontinence and constipation are seen often in patients with multiple sclerosis, in the literature, coexistence of animus, rectocele and anal incontinence are quite rare. Defecography and anal manometry are useful diagnostic methods for demonstration of anorectal dysfuntions in patients with MS. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. A Simple Approach in Estimating the Effectiveness of Adapting Mirror Concentrator and Tracking Mechanism for PV Arrays in the Tropics

    Directory of Open Access Journals (Sweden)

    M. E. Ya’acob

    2014-01-01

    Full Text Available Mirror concentrating element and tracking mechanism has been seriously investigated and widely adapted in solar PV technology. In this study, a practical in-field method is conducted in Serdang, Selangor, Malaysia, for the two technologies in comparison to the common fixed flat PV arrays. The data sampling process is measured under stochastic weather characteristics with the main target of calculating the effectiveness of PV power output. The data are monitored, recorded, and analysed in real time via GPRS online monitoring system for 10 consecutive months. The analysis is based on a simple comparison of the actual daily power generation from each PV generator with statistical analysis of multiple linear regression (MLR and analysis of variance test (ANOVA. From the analysis, it is shown that tracking mechanism generates approximately 88 Watts (9.4% compared to the mirror concentrator which generates 144 Watts (23.4% of the cumulative dc power for different array configurations at standard testing condition (STC references. The significant increase in power generation shows feasibilities of implying both mechanisms for PV generators and thus contributes to additional reference in PV array design.

  2. Power generation systems and methods

    Science.gov (United States)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  3. ALGORITHM TO CHOOSE ENERGY GENERATION MULTIPLE ROLE STATION

    Directory of Open Access Journals (Sweden)

    Alexandru STĂNESCU

    2014-05-01

    Full Text Available This paper proposes an algorithm that is based on a complex analysis method that is used for choosing the configuration of a power station. The station generates electric energy and hydrogen, and serves a "green" highway. The elements that need to be considered are: energy efficiency, location, availability of primary energy sources in the area, investment cost, workforce, environmental impact, compatibility with existing systems, meantime between failure.

  4. Mechanisms Design

    DEFF Research Database (Denmark)

    Restrepo-Giraldo, John Dairo

    2006-01-01

    Most products and machines involve some kind of controlled movement. From window casements to DVD players, from harbor cranes to the shears to prune your garden, all these machines require mechanisms to move. This course intends to provide the analytical and conceptual tools to design such mechan......Most products and machines involve some kind of controlled movement. From window casements to DVD players, from harbor cranes to the shears to prune your garden, all these machines require mechanisms to move. This course intends to provide the analytical and conceptual tools to design...... using criteria such as size, performance parameters, operation environment, etc. Content: Understanding Mechanisms Design (2 weeks) Definitions, mechanisms representations, kinematic diagrams, the four bar linkage, mobility, applications of mechanisms, types of mechanisms, special mechanisms, the design......: equations for various mechanisms. At the end of this module you will be able to analyze existing mechanisms and to describe their movement. Designing mechanisms (7 weeks) Type synthesis and dimensional synthesis, function generation, path generation, three precision points in multi-loop mechanisms...

  5. Prediction of mechanical fatigue caused by multiple random excitations

    NARCIS (Netherlands)

    Bonte, M.H.A.; de Boer, Andries; Liebregts, R.

    2004-01-01

    A simulation method is presented for the fatigue analysis of automotive and other products that are subjected to multiple random excitations. The method is denoted as frequency domain stress-life fatigue analysis and was implemented in the automotive industry at DAF Trucks N.V. in Eindhoven, The

  6. Risk assessment and adaptive runoff utilization in water resource system considering the complex relationship among water supply, electricity generation and environment

    Science.gov (United States)

    Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.

    2017-12-01

    Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.

  7. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4

    Science.gov (United States)

    Semeraro, Fabrizio; Ammollo, Concetta T.; Morrissey, James H.; Dale, George L.; Friese, Paul; Esmon, Naomi L.

    2011-01-01

    The release of histones from dying cells is associated with microvascular thrombosis and, because histones activate platelets, this could represent a possible pathogenic mechanism. In the present study, we assessed the influence of histones on the procoagulant potential of human platelets in platelet-rich plasma (PRP) and in purified systems. Histones dose-dependently enhanced thrombin generation in PRP in the absence of any trigger, as evaluated by calibrated automated thrombinography regardless of whether the contact phase was inhibited. Activation of coagulation required the presence of fully activatable platelets and was not ascribable to platelet tissue factor, whereas targeting polyphosphate with phosphatase reduced thrombin generation even when factor XII (FXII) was blocked or absent. In the presence of histones, purified polyphosphate was able to induce thrombin generation in plasma independently of FXII. In purified systems, histones induced platelet aggregation; P-selectin, phosphatidylserine, and FV/Va expression; and prothrombinase activity. Blocking platelet TLR2 and TLR4 with mAbs reduced the percentage of activated platelets and lowered the amount of thrombin generated in PRP. These data show that histone-activated platelets possess a procoagulant phenotype that drives plasma thrombin generation and suggest that TLR2 and TLR4 mediate the activation process. PMID:21673343

  8. Mechanical properties of nanostructured nickel based superalloy Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Mukhtarov, Sh; Ermachenko, A, E-mail: shamil@anrb.r [Institute for Metals Superplasticity Problems RAS, 39, Khalturina, Ufa, 450001 (Russian Federation)

    2010-07-01

    This paper will describe the investigations of a nanostructured (NS) state of nickel based INCONEL alloy 718. This structure was generated in bulk semiproducts by severe plastic deformation (SPD) via multiple isothermal forging (MIF) of a coarse-grained alloy. The initial structure consisted of {gamma}-phase grains with disperse precipitations of {gamma}{sup -}phase in the forms of discs, 50-75 nm in diameter and 20 nm in thickness. The MIF generated structures possess a large quantity of non-coherent plates and rounded precipitations of {delta}-phase, primarily along grain boundaries. In the duplex ({gamma}+{delta}) structure the grains have high dislocation density and a large number of nonequilibrium boundaries. Investigations to determine mechanical properties of the alloy in a nanostructured state were carried out. Nanocrystalline Inconel 718 (80 nm) possesses a very high room-temperature strength after SPD. Microcrystalline (MC) and NS states of the alloy were subjected to strengthening thermal treatment, and the obtained results were compared in order to determine their mechanical properties at room and elevated temperatures.

  9. TIGER: Turbomachinery interactive grid generation

    Science.gov (United States)

    Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark

    1992-01-01

    A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.

  10. From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation

    Directory of Open Access Journals (Sweden)

    G. Cheron

    2012-01-01

    Full Text Available Success in locomotor rehabilitation programs can be improved with the use of brain-computer interfaces (BCIs. Although a wealth of research has demonstrated that locomotion is largely controlled by spinal mechanisms, the brain is of utmost importance in monitoring locomotor patterns and therefore contains information regarding central pattern generation functioning. In addition, there is also a tight coordination between the upper and lower limbs, which can also be useful in controlling locomotion. The current paper critically investigates different approaches that are applicable to this field: the use of electroencephalogram (EEG, upper limb electromyogram (EMG, or a hybrid of the two neurophysiological signals to control assistive exoskeletons used in locomotion based on programmable central pattern generators (PCPGs or dynamic recurrent neural networks (DRNNs. Plantar surface tactile stimulation devices combined with virtual reality may provide the sensation of walking while in a supine position for use of training brain signals generated during locomotion. These methods may exploit mechanisms of brain plasticity and assist in the neurorehabilitation of gait in a variety of clinical conditions, including stroke, spinal trauma, multiple sclerosis, and cerebral palsy.

  11. Erector spinae plane block may aid weaning from mechanical ventilation in patients with multiple rib fractures: Case report of two cases

    Directory of Open Access Journals (Sweden)

    Amar Nandhakumar

    2018-01-01

    Full Text Available Uncontrolled pain in patients with rib fracture leads to atelectasis and impaired cough which can progress to pneumonia and respiratory failure necessitating mechanical ventilation. Of the various pain modalities, regional anaesthesia (epidural and paravertebral is better than systemic and oral analgesics. The erector spinae plane block (ESPB is a new modality in the armamentarium for the management of pain in multiple rib fractures, which is simple to perform and without major complications. We report a case series where ESPB helped in weaning the patients from mechanical ventilation. Further randomised controlled studies are warranted in comparing their efficacy in relation to other regional anaesthetic techniques.

  12. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  13. Defense Mechanisms: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    This bibliography includes studies of defense mechanisms, in general, and studies of multiple mechanisms. Defense mechanisms, briefly and simply defined, are the unconscious ego defendants against unpleasure, threat, or anxiety. Sigmund Freud deserves the clinical credit for studying many mechanisms and introducing them in professional literature.…

  14. Decomposing Multi‐Level Ethnic Segregation in Auckland, New Zealand, 2001–2013 : Segregation Intensity for Multiple Groups at Multiple Scales

    NARCIS (Netherlands)

    Manley, D.J.; Johnston, Ron; Jones, Kelvyn

    2018-01-01

    There has been a growing appreciation that the processes generating urban residential segregation operate at multiple scales, stimulating innovations into the measurement of their outcomes. This paper applies a multi‐level modelling approach to that issue to the situation in Auckland, where multiple

  15. Learning from peer feedback on student-generated multiple choice questions: Views of introductory physics students

    Science.gov (United States)

    Kay, Alison E.; Hardy, Judy; Galloway, Ross K.

    2018-06-01

    PeerWise is an online application where students are encouraged to generate a bank of multiple choice questions for their classmates to answer. After answering a question, students can provide feedback to the question author about the quality of the question and the question author can respond to this. Student use of, and attitudes to, this online community within PeerWise was investigated in two large first year undergraduate physics courses, across three academic years, to explore how students interact with the system and the extent to which they believe PeerWise to be useful to their learning. Most students recognized that there is value in engaging with PeerWise, and many students engaged deeply with the system, thinking critically about the quality of their submissions and reflecting on feedback provided to them. Students also valued the breadth of topics and level of difficulty offered by the questions, recognized the revision benefits afforded by the resource, and were often willing to contribute to the community by providing additional explanations and engaging in discussion.

  16. Characteristics of semiconductor bridge (SCB) plasma generated in a micro-electro-mechanical system (MEMS)

    International Nuclear Information System (INIS)

    Kim, Jong-Uk; Park, Chong-Ook; Park, Myung-Il; Kim, Sun-Hwan; Lee, Jung-Bok

    2002-01-01

    Plasma ignition method has been applied in various fields particularly to the rocket propulsion, pyrotechnics, explosives, and to the automotive air-bag system. Ignition method for those applications should be safe and also operate reliably in hostile environments such as; electromagnetic noise, drift voltage, electrostatic background and so on. In the present Letter, a semiconductor bridge (SCB) plasma ignition device was fabricated and its plasma characteristics including the propagation speed of the plasma, plasma size, and plasma temperature were investigated with the aid of the visualization of micro scale plasma (i.e., ≤350 μm), which generated from a micro-electro-mechanical poly-silicon semiconductor bridge (SCB)

  17. Repair of steam generator heating tubes by roll-expanded plugs: approach to cover multiple national regulations

    Energy Technology Data Exchange (ETDEWEB)

    Beck, J.; Ziegler, B.; Schoenheit, N. [AREVA NP Gmbh, Erlangen (Germany); Kostroun, F. [AREVA NP Canada Ltd., Pickering, ON (Canada)

    2012-07-01

    During operation, steam generators in nuclear power plants are subject to degradation mechanisms which have an impact on the component life-time. Most affected are the heating tubes which constitute the barrier of the contaminated primary cycle to the secondary side. Various corrosive attacks may cause wall thinning which requires tube repair. A common repair method is to plug the tubes by roll expanded plugs. This is a fast method, easily applicable and requires less equipment or personnel qualification as needed for weld plugs. After insertion, the plugs act as a pressure boundary from primary to secondary side. Although the function of the roll plug is simple, the different national regulations define the requirements which need to be fulfilled by a roll plug differently. In order to reduce the tooling as well as the plug types to a minimum, an approach according to one common design for different regulations and steam generator types is profitable. It was found, that the regulations according to the ASME Boiler and Pressure Vessel code in combination with the German Safety Standards of the German Nuclear Safety Standards Commission covers the regulations of the majority of utilities. To develop a roll plug which suits the different regulatory demands, efforts were made to consider all technical and regulatory boundary conditions implied on roll expanded plugs. This covering approach had an impact on the plug design, which was required to be Helium tight after installation and suitable for a 40 year component lifetime also in accident and emergency conditions. To prove the suitability of the plug design a comprehensive testing programme of the mechanical and chemical properties of the designed roll-expanded plug was launched. A summary of the plug design and testing as well as the main test results are described. (author)

  18. Repair of steam generator heating tubes by roll-expanded plugs: approach to cover multiple national regulations

    International Nuclear Information System (INIS)

    Beck, J.; Ziegler, B.; Schoenheit, N.; Kostroun, F.

    2012-01-01

    During operation, steam generators in nuclear power plants are subject to degradation mechanisms which have an impact on the component life-time. Most affected are the heating tubes which constitute the barrier of the contaminated primary cycle to the secondary side. Various corrosive attacks may cause wall thinning which requires tube repair. A common repair method is to plug the tubes by roll expanded plugs. This is a fast method, easily applicable and requires less equipment or personnel qualification as needed for weld plugs. After insertion, the plugs act as a pressure boundary from primary to secondary side. Although the function of the roll plug is simple, the different national regulations define the requirements which need to be fulfilled by a roll plug differently. In order to reduce the tooling as well as the plug types to a minimum, an approach according to one common design for different regulations and steam generator types is profitable. It was found, that the regulations according to the ASME Boiler and Pressure Vessel code in combination with the German Safety Standards of the German Nuclear Safety Standards Commission covers the regulations of the majority of utilities. To develop a roll plug which suits the different regulatory demands, efforts were made to consider all technical and regulatory boundary conditions implied on roll expanded plugs. This covering approach had an impact on the plug design, which was required to be Helium tight after installation and suitable for a 40 year component lifetime also in accident and emergency conditions. To prove the suitability of the plug design a comprehensive testing programme of the mechanical and chemical properties of the designed roll-expanded plug was launched. A summary of the plug design and testing as well as the main test results are described. (author)

  19. Pulse triggering mechanism of air proportional counters

    International Nuclear Information System (INIS)

    Aoyama, T.; Mori, T.; Watanabe, T.

    1983-01-01

    This paper describes the pulse triggering mechanism of a cylindrical proportional counter filled with air at atmospheric pressure for the incidence of β-rays. Experimental results indicate that primary electrons created distantly from the anode wire by a β-ray are transformed into negative ions, which then detach electrons close to the anode wire and generate electron avalanches thus triggering pulses, while electrons created near the anode wire by a β-ray directly trigger a pulse. Since a negative ion pulse is triggered by a single electron detached from a negative ion, multiple pulses are generated by a large number of ions produced by the incidence of a single β-ray. It is therefore necessary not to count pulses triggered by negative ions but to count those by primary electrons alone when use is made of air proportional counters for the detection of β-rays. (orig.)

  20. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric

  1. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  2. Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires.

    Science.gov (United States)

    Park, Ji-Hyeon; Mandal, Arjun; Kang, San; Chatterjee, Uddipta; Kim, Jin Soo; Park, Byung-Guon; Kim, Moon-Deock; Jeong, Kwang-Un; Lee, Cheul-Ro

    2016-08-24

    This article demonstrates for the first time to the best of our knowledge, the merits of InGaN/GaN multiple quantum wells (MQWs) grown on hollow n-GaN nanowires (NWs) as a plausible alternative for stable photoelectrochemical water splitting and efficient hydrogen generation. These hollow nanowires are achieved by a growth method rather not by conventional etching process. Therefore this approach becomes simplistic yet most effective. We believe relatively low Ga flux during the selective area growth (SAG) aids the hollow nanowire to grow. To compare the optoelectronic properties, simultaneously solid nanowires are also studied. In this present communication, we exhibit that lower thermal conductivity of hollow n-GaN NWs affects the material quality of InGaN/GaN MQWs by limiting In diffusion. As a result of this improvement in material quality and structural properties, photocurrent and photosensitivity are enhanced compared to the structures grown on solid n-GaN NWs. An incident photon-to-current efficiency (IPCE) of around ~33.3% is recorded at 365 nm wavelength for hollow NWs. We believe that multiple reflections of incident light inside the hollow n-GaN NWs assists in producing a larger amount of electron hole pairs in the active region. As a result the rate of hydrogen generation is also increased.

  3. Research of the elastic waves generated by a pulse laser. Excitation mechanism of elastic waves and application to nondestructive testing; Pulse laser de reikishita danseiha ni kansuru kenkyu. Danseiha reiki no mechanism to hihakai kensa eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H.; Takemoto, M. [Aoyama Gakuin University, Tokyo (Japan). College of Science and Engineering

    1994-07-20

    A bulk wave is generated when a pulse laser is irradiated to the material, and the characteristics of a Young`s modulus and Poisson`s ratio can be nondestructively estimated from the bulk wave. The generation mechanism of laser ultrasonic waves must be first clarified for such application. In this paper, fundamental research was conducted to study the generation mechanism of the elastic waves excited by a Q-switched Nd-YAG laser, and the generation method and characteristics of Rayleigh waves. The following result was obtained. A bulk wave is generated by the disk-like adiabatic expansion near the surface if the laser power is small when a spot-shape pulse laser was irradiated. A bulk wave is generated by the thin disk-like adiabatic expansion beneath the surface due to the thermal diffusion in the depth direction of a base material when the laser power becomes large. Moreover, a bulk wave is generated by the impact force due to abrasion and plasma when the power becomes still larger. The information on the bulk wave characteristics and Rayleigh wave was also obtained. 25 refs., 15 figs., 1 tab.

  4. Generation and monitoring of discrete stable random processes using multiple immigration population models

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J O; Hopcraft, K I; Jakeman, E [Applied Mathematics Division, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)

    2003-11-21

    Some properties of classical population processes that comprise births, deaths and multiple immigrations are investigated. The rates at which the immigrants arrive can be tailored to produce a population whose steady state fluctuations are described by a pre-selected distribution. Attention is focused on the class of distributions with a discrete stable law, which have power-law tails and whose moments and autocorrelation function do not exist. The separate problem of monitoring and characterizing the fluctuations is studied, analysing the statistics of individuals that leave the population. The fluctuations in the size of the population are transferred to the times between emigrants that form an intermittent time series of events. The emigrants are counted with a detector of finite dynamic range and response time. This is modelled through clipping the time series or saturating it at an arbitrary but finite level, whereupon its moments and correlation properties become finite. Distributions for the time to the first counted event and for the time between events exhibit power-law regimes that are characteristic of the fluctuations in population size. The processes provide analytical models with which properties of complex discrete random phenomena can be explored, and in addition provide generic means by which random time series encompassing a wide range of intermittent and other discrete random behaviour may be generated.

  5. Generation and monitoring of discrete stable random processes using multiple immigration population models

    International Nuclear Information System (INIS)

    Matthews, J O; Hopcraft, K I; Jakeman, E

    2003-01-01

    Some properties of classical population processes that comprise births, deaths and multiple immigrations are investigated. The rates at which the immigrants arrive can be tailored to produce a population whose steady state fluctuations are described by a pre-selected distribution. Attention is focused on the class of distributions with a discrete stable law, which have power-law tails and whose moments and autocorrelation function do not exist. The separate problem of monitoring and characterizing the fluctuations is studied, analysing the statistics of individuals that leave the population. The fluctuations in the size of the population are transferred to the times between emigrants that form an intermittent time series of events. The emigrants are counted with a detector of finite dynamic range and response time. This is modelled through clipping the time series or saturating it at an arbitrary but finite level, whereupon its moments and correlation properties become finite. Distributions for the time to the first counted event and for the time between events exhibit power-law regimes that are characteristic of the fluctuations in population size. The processes provide analytical models with which properties of complex discrete random phenomena can be explored, and in addition provide generic means by which random time series encompassing a wide range of intermittent and other discrete random behaviour may be generated

  6. A theoretical approach to low multiplicity diffractive dissociation

    International Nuclear Information System (INIS)

    Bishari, M.

    1977-01-01

    The dynamics of low mass inelastic diffractive production in the framework of the ''1/N dual unitarization'' scheme are investigated. The smallness of inelastic diffractive dissociation is explicitly demonstrated by incorporating a Deck type mechanism with the crucial planar bootstrap equation. Although both inelastic and elastic pomeron couplings are of the same order in 1/N, the origin for their smallness is not identical. The work further confirms the validity of the iterative procedure, where the elastic amplitude is first generated from only non-diffractive intermediate states (except possibly for central collisions). Using a previous study of the ''Cylinder'' strength, a semi-quantitative results for the integrated cross-section for low multiplicity diffractive production is also presented, and is compared with the elastic cross-section at very high energies. (author)

  7. Linear magnetic motor/generator. [to generate electric energy using magnetic flux for spacecraft power supply

    Science.gov (United States)

    Studer, P. A. (Inventor)

    1982-01-01

    A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.

  8. Maternal Executive Functioning as a Mechanism in the Intergenerational Transmission of Parenting: Preliminary Evidence

    OpenAIRE

    Bridgett, David J.; Kanya, Meghan J.; Rutherford, Helena J. V.; Mayes, Linda C.

    2016-01-01

    Multiple lines of inquiry, including experimental animal models, have recently converged to suggest that executive functioning (EF) may be one mechanism by which parenting behavior is transmitted across generations. In the current investigation, we empirically test this notion by examining relations between maternal EF and parenting behaviors during mother-infant interactions, and by examining the role of maternal EF in the intergenerational transmission of parenting behavior. Mother-infant d...

  9. Multiple bilateral lower limb fractures in a 2-year-old child: previously unreported injury with a unique mechanism

    Directory of Open Access Journals (Sweden)

    Anuj Jain

    2014-10-01

    Full Text Available 【Abstract】Fall from height is a common cause of unintentional injuries in children and accounts for 6% of all trauma-related childhood deaths, usually from head injury. We report a case of a 2-year-old child with multiple fractures of the bilateral lower limbs due to this reason. A child fell from a height of around 15 feet after toppling from a alcony. He developed multiple fractures involving the right femoral shaft, right distal femoral epiphysis (Salter Harris type 2, right distal metaphysis of the tibia and fi bula, and undisplaced Salter Harris type 2 epiphyseal injury of the left distal tibia. There were no head, abdominal or spinal injuries. The patient was taken into emergency operation theatre after initial management which consisted of intravenous fl uids, blood transfusion, and splintage of both lower limbs. Fracture of the femoral shaft was treated by closed reduction and fixation using two titanium elastic nails. Distal femoral physeal injury required open eduction and fixation with K wires. Distal tibia fractures were closely reduced and managed nonoperatively in both the lower limbs. All the fractures united in four weeks. At the last follow-up, the child had no disability and was able to perform daily ctivities comfortably. We also proposed the unique mechanism of injury in this report. Key words: Multiple bilateral lower limb fractures; Fall; Child

  10. Bound states in the continuum generated by supersymmetric quantum mechanics and phase rigidity of the corresponding wavefunctions

    International Nuclear Information System (INIS)

    Demić, Aleksandar; Milanović, Vitomir; Radovanović, Jelena

    2015-01-01

    Supersymmetric quantum mechanics (SUSYQM) is a method that can be used for generating complex potentials with entirely real spectrum with bound states in the continuum (BIC). These complex potentials are isospectral with the initial one, but SUSYQM method adds discrete BIC's at selected energies. Corresponding wavefunctions created by SUSYQM are biorthogonal and complex, hence we can discuss their phase rigidity and illustrate the application of SUSYQM on the examples of three specific potential profiles (free electron, negative Dirac potential and quantum well with infinite walls). - Highlights: • We present SUSYQM method for generating complex potentials with entirely real spectrum. • Phase rigidity and normalizability of wavefunctions in complex potential is discussed. • Numerical application is performed on three specific potential profiles.

  11. Study of particle size distribution and formation mechanism of radioactive aerosols generated in high-energy neutron fields

    CERN Document Server

    Endo, A; Noguchi, H; Tanaka, S; Iida, T; Furuichi, S; Kanda, Y; Oki, Y

    2003-01-01

    The size distributions of sup 3 sup 8 Cl, sup 3 sup 9 Cl, sup 8 sup 2 Br and sup 8 sup 4 Br aerosols generated by irradiations of argon and krypton gases containing di-octyl phthalate (DOP) aerosols with 45 MeV and 65 MeV quasi-monoenergetic neutrons were measured in order to study the formation mechanism of radioactive particles in high energy radiation fields. The effects of the size distribution of the radioactive aerosols on the size of the added DOP aerosols, the energy of the neutrons and the kinds of nuclides were studied. The observed size distributions of the radioactive particles were explained by attachment of the radioactive atoms generated by the neutron-induced reactions to the DOP aerosols. (author)

  12. OMG: Open Molecule Generator.

    Science.gov (United States)

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-09-17

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  13. OMG: Open Molecule Generator

    Directory of Open Access Journals (Sweden)

    Peironcely Julio E

    2012-09-01

    Full Text Available Abstract Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG, which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  14. Multi-Generational Kinship, Multiple Mating, and Flexible Modes of Parental Care in a Breeding Population of the Veery (Catharus fuscescens, a Trans-Hemispheric Migratory Songbird.

    Directory of Open Access Journals (Sweden)

    Matthew R Halley

    Full Text Available We discovered variable modes of parental care in a breeding population of color-banded Veeries (Catharus fuscescens, a Nearctic-Neotropical migratory songbird, long thought to be socially monogamous, and performed a multi-locus DNA microsatellite analysis to estimate parentage and kinship in a sample of 37 adults and 21 offspring. We detected multiple mating in both sexes, and four modes of parental care that varied in frequency within and between years including multiple male feeders at some nests, and males attending multiple nests in the same season, each with a different female. Unlike other polygynandrous systems, genetic evidence indicates that multi-generational patterns of kinship occur among adult Veeries at our study site, and this was corroborated by the capture of an adult male in 2013 that had been banded as a nestling in 2011 at a nest attended by multiple male feeders. All genotyped adults (n = 37 were related to at least one other bird in the sample at the cousin level or greater (r ≥ 0.125, and 81% were related to at least one other bird at the half-sibling level or greater (r ≥ 0.25, range 0.25-0.60. Although our sample size is small, it appears that the kin structure is maintained by natal philopatry in both sexes, and that Veeries avoid mating with close genetic kin. At nests where all adult feeders were genotyped (n = 9, the male(s were unrelated to the female (mean r = -0.11 ± 0.15, whereas genetic data suggest close kinship (r = 0.254 between two male co-feeders at the nests of two females in 2011, and among three of four females that were mated to the same polygynous male in 2012. To our knowledge, this is the first evidence of polygynandry occurring among multiple generations of close genetic kin on the breeding ground of a Nearctic-Neotropical migratory songbird.

  15. Multiscale Mechanics of Articular Cartilage: Potentials and Challenges of Coupling Musculoskeletal, Joint, and Microscale Computational Models

    Science.gov (United States)

    Halloran, J. P.; Sibole, S.; van Donkelaar, C. C.; van Turnhout, M. C.; Oomens, C. W. J.; Weiss, J. A.; Guilak, F.; Erdemir, A.

    2012-01-01

    Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes. PMID:22648577

  16. A Theoretical and Experimental Investigation of Mechanical Damage to Rodent Sperm Generated by Microscale Ice Formation.

    Science.gov (United States)

    Han, X; Critser, J K

      BACKGROUND: Rodent sperm cryopreservation is of critical importance for the maintenance of lines or strains of genetically engineered mice and rats. However, rodent sperm are extremely mechanically sensitive due to their unusual morphology, and are severely damaged using current methods of cryopreservation. Those methods result in poor post thaw motility (PTM) for mouse. To investigate the mechanism of mechanical damage introduced to rodent sperm during freezing, a micro-mechanical model was established to analyze the sperm radial and axial thermal stresses generated by microscale extracellular ice formation. PTM of mouse sperm cryopreserved in capillaries of different radii (100, 200, 344, 526, 775µm) was measured using a standard computer-assisted sperm analysis system. The model predicts that when one of the inner dimensions of the containers (the inner diameter of plastic straws or straw capillaries) is on the same order of magnitude of sperm length, axial stress is significantly increased. The experimental results showed that the value of PTM was decreased from 38 ± 8 % in the larger (775µm) capillaries to 0 ± 0 % in the smaller (100 µm) ones. Theoretical analysis based on the established model were experimentally validated and can be used to guide the design of novel devices to improve the efficiency of rodent sperm cryopreservation.

  17. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    Science.gov (United States)

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  18. Imaging of first-order surface-related multiples by reverse-time migration

    Science.gov (United States)

    Liu, Xuejian; Liu, Yike; Hu, Hao; Li, Peng; Khan, Majid

    2017-02-01

    Surface-related multiples have been utilized in the reverse-time migration (RTM) procedures, and additional illumination for subsurface can be provided. Meanwhile, many cross-talks are generated from undesired interactions between forward- and backward-propagated seismic waves. In this paper, subsequent to analysing and categorizing these cross-talks, we propose RTM of first-order multiples to avoid most undesired interactions in RTM of all-order multiples, where only primaries are forward-propagated and crosscorrelated with the backward-propagated first-order multiples. With primaries and multiples separated during regular seismic data processing as the input data, first-order multiples can be obtained by a two-step scheme: (1) the dual-prediction of higher-order multiples; and (2) the adaptive subtraction of predicted higher-order multiples from all-order multiples within local offset-time windows. In numerical experiments, two synthetic and a marine field data sets are used, where different cross-talks generated by RTM of all-order multiples can be identified and the proposed RTM of first-order multiples can provide a very interpretable image with a few cross-talks.

  19. Measurement and Analysis of Multiple Output Transient Propagation in BJT Analog Circuits

    Science.gov (United States)

    Roche, Nicolas J.-H.; Khachatrian, A.; Warner, J. H.; Buchner, S. P.; McMorrow, D.; Clymer, D. A.

    2016-08-01

    The propagation of Analog Single Event Transients (ASETs) to multiple outputs of Bipolar Junction Transistor (BJTs) Integrated Circuits (ICs) is reported for the first time. The results demonstrate that ASETs can appear at several outputs of a BJT amplifier or comparator as a result of a single ion or single laser pulse strike at a single physical location on the chip of a large-scale integrated BJT analog circuit. This is independent of interconnect cross-talk or charge-sharing effects. Laser experiments, together with SPICE simulations and analysis of the ASET's propagation in the s-domain are used to explain how multiple-output transients (MOTs) are generated and propagate in the device. This study demonstrates that both the charge collection associated with an ASET and the ASET's shape, commonly used to characterize the propagation of SETs in devices and systems, are unable to explain quantitatively how MOTs propagate through an integrated analog circuit. The analysis methodology adopted here involves combining the Fourier transform of the propagating signal and the current-source transfer function in the s-domain. This approach reveals the mechanisms involved in the transient signal propagation from its point of generation to one or more outputs without the signal following a continuous interconnect path.

  20. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers

    International Nuclear Information System (INIS)

    Tang, D.Y.; Zhao, L.M.; Zhao, B.; Liu, A.Q.

    2005-01-01

    We report results of numerical simulations on multiple-soliton generation and soliton energy quantization in a soliton fiber ring laser passively mode locked by using the nonlinear polarization rotation technique. We found numerically that the formation of multiple solitons in the laser is caused by a peak-power-limiting effect of the laser cavity. It is also the same effect that suppresses the soliton pulse collapse, an intrinsic feature of solitons propagating in gain media, and makes the solitons stable in the laser. Furthermore, we show that the soliton energy quantization observed in the lasers is a natural consequence of the gain competition between the multiple solitons. Enlightened by the numerical result we speculate that multisoliton formation and soliton energy quantization observed in other types of soliton fiber lasers could have a similar mechanism