WorldWideScience

Sample records for multiple conserved genes

  1. Identification of conserved gene clusters in multiple genomes based on synteny and homology

    Directory of Open Access Journals (Sweden)

    Nikolski Macha

    2011-10-01

    Full Text Available Abstract Background Uncovering the relationship between the conserved chromosomal segments and the functional relatedness of elements within these segments is an important question in computational genomics. We build upon the series of works on gene teams and homology teams. Results Our primary contribution is a local sliding-window SYNS (SYNtenic teamS algorithm that refines an existing family structure into orthologous sub-families by analyzing the neighborhoods around the members of a given family with a locally sliding window. The neighborhood analysis is done by computing conserved gene clusters. We evaluate our algorithm on the existing homologous families from the Genolevures database over five genomes of the Hemyascomycete phylum. Conclusions The result is an efficient algorithm that works on multiple genomes, considers paralogous copies of genes and is able to uncover orthologous clusters even in distant genomes. Resulting orthologous clusters are comparable to those obtained by manual curation.

  2. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates

    OpenAIRE

    Kikuta, Hiroshi; Laplante, Mary; Navrátilová, Pavla; Komisarczuk, Anna Zofia; Engström, Pär G.; Fredman, David; Akalin, Altuna; Caccamo, Mario; Sealy, Ian; Howe, Kerstin; Ghislain, Julien; Pezeron, Guillaume; Mourrain, Philippe; Ellingsen, Staale; Oates, Andrew C.

    2007-01-01

    We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated “bystander” genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns th...

  3. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes

    Science.gov (United States)

    Mahmood, Khalid; Mathiassen, Solvejg K.; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  4. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes.

    Science.gov (United States)

    Mahmood, Khalid; Mathiassen, Solvejg K; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management.

  5. Multiple herbicide resistance in Lolium multiflorum and identification of conserved regulatory elements of herbicide resistance genes

    Directory of Open Access Journals (Sweden)

    Khalid Mahmood

    2016-08-01

    Full Text Available Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of L. multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR genes were also observed after herbicides exposure in the gene expression databases, indicating them a reliable marker. In order to get an overview of herbicidal resistance status of Lolium multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O.sativa and A.thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward towards a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management.

  6. Conservation and gene banking

    Science.gov (United States)

    Plant conservation has several objectives the main ones include safeguarding our food supply, preserving crop wild relatives for breeding and selection of new cultivars, providing material for industrial and pharmaceutical uses and preserving the beauty and diversity of our flora for generations to ...

  7. Targeted gene flow for conservation.

    Science.gov (United States)

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens.

  8. Conservation planning with multiple organizations and objectives.

    Science.gov (United States)

    Bode, Michael; Probert, Will; Turner, Will R; Wilson, Kerrie A; Venter, Oscar

    2011-04-01

    There has been a dramatic increase in the number of conservation organizations worldwide. It is now common for multiple organizations to operate in the same landscape in pursuit of different conservation goals. New objectives, such as maintenance of ecosystem services, will attract additional funding and new organizations to conservation. Systematic conservation planning helps in the design of spatially explicit management actions that optimally conserve multiple landscape features (e.g., species, ecosystems, or ecosystem services). But the methods used in its application implicitly assume that a single actor implements the optimal plan. We investigated how organizational behavior and conservation outcomes are affected by the presence of autonomous implementing organizations with different objectives. We used simulation models and game theory to explore how alternative behaviors (e.g., organizations acting independently or explicitly cooperating) affected an organization's ability to protect their feature of interest, and investigated how the distribution of features in the landscape influenced organizations' attitudes toward cooperation. Features with highly correlated spatial distributions, although typically considered an opportunity for mutually beneficial conservation planning, can lead to organizational interactions that result in lower levels of protection. These detrimental outcomes can be avoided by organizations that cooperate when acquiring land. Nevertheless, for cooperative purchases to benefit both organizations' objectives, each must forgo the protection of land parcels that they would consider to be of high conservation value. Transaction costs incurred during cooperation and the sources of conservation funding could facilitate or hinder cooperative behavior.

  9. Conservation of alternative polyadenylation patterns in mammalian genes

    Directory of Open Access Journals (Sweden)

    Benech Philippe

    2006-07-01

    Full Text Available Abstract Background Alternative polyadenylation is a widespread mechanism contributing to transcript diversity in eukaryotes. Over half of mammalian genes are alternatively polyadenylated. Our understanding of poly(A site evolution is limited by the lack of a reliable identification of conserved, equivalent poly(A sites among species. We introduce here a working definition of conserved poly(A sites as sites that are both (i properly aligned in human and mouse orthologous 3' untranslated regions (UTRs and (ii supported by EST or cDNA data in both species. Results We identified about 4800 such conserved poly(A sites covering one third of the orthologous gene set studied. Characteristics of conserved poly(A sites such as processing efficiency and tissue-specificity were analyzed. Conserved sites show a higher processing efficiency but no difference in tissular distribution when compared to non-conserved sites. In general, alternative poly(A sites are species-specific and involve minor, non-conserved sites that are unlikely to play essential roles. However, there are about 500 genes with conserved tandem poly(A sites. A significant fraction of these conserved tandems display a conserved arrangement of major/minor sites in their 3' UTR, suggesting that these alternative 3' ends may be under selection. Conclusion This analysis allows us to identify potential functional alternative poly(A sites and provides clues on the selective mechanisms at play in the appearance of multiple poly(A sites and their maintenance in the 3' UTRs of genes.

  10. Thermodynamics of quantum systems with multiple conserved quantities

    Science.gov (United States)

    Guryanova, Yelena; Popescu, Sandu; Short, Anthony J.; Silva, Ralph; Skrzypczyk, Paul

    2016-07-01

    Recently, there has been much progress in understanding the thermodynamics of quantum systems, even for small individual systems. Most of this work has focused on the standard case where energy is the only conserved quantity. Here we consider a generalization of this work to deal with multiple conserved quantities. Each conserved quantity, which, importantly, need not commute with the rest, can be extracted and stored in its own battery. Unlike the standard case, in which the amount of extractable energy is constrained, here there is no limit on how much of any individual conserved quantity can be extracted. However, other conserved quantities must be supplied, and the second law constrains the combination of extractable quantities and the trade-offs between them. We present explicit protocols that allow us to perform arbitrarily good trade-offs and extract arbitrarily good combinations of conserved quantities from individual quantum systems.

  11. apex: phylogenetics with multiple genes.

    Science.gov (United States)

    Jombart, Thibaut; Archer, Frederick; Schliep, Klaus; Kamvar, Zhian; Harris, Rebecca; Paradis, Emmanuel; Goudet, Jérome; Lapp, Hilmar

    2017-01-01

    Genetic sequences of multiple genes are becoming increasingly common for a wide range of organisms including viruses, bacteria and eukaryotes. While such data may sometimes be treated as a single locus, in practice, a number of biological and statistical phenomena can lead to phylogenetic incongruence. In such cases, different loci should, at least as a preliminary step, be examined and analysed separately. The r software has become a popular platform for phylogenetics, with several packages implementing distance-based, parsimony and likelihood-based phylogenetic reconstruction, and an even greater number of packages implementing phylogenetic comparative methods. Unfortunately, basic data structures and tools for analysing multiple genes have so far been lacking, thereby limiting potential for investigating phylogenetic incongruence. In this study, we introduce the new r package apex to fill this gap. apex implements new object classes, which extend existing standards for storing DNA and amino acid sequences, and provides a number of convenient tools for handling, visualizing and analysing these data. In this study, we introduce the main features of the package and illustrate its functionalities through the analysis of a simple data set.

  12. Hunting down the chimera of multiple disciplinarity in conservation science.

    Science.gov (United States)

    Pooley, Simon P; Mendelsohn, J Andrew; Milner-Gulland, E J

    2014-02-01

    The consensus is that both ecological and social factors are essential dimensions of conservation research and practice. However, much of the literature on multiple disciplinary collaboration focuses on the difficulties of undertaking it. This review of the challenges of conducting multiple disciplinary collaboration offers a framework for thinking about the diversity and complexity of this endeavor. We focused on conceptual challenges, of which 5 main categories emerged: methodological challenges, value judgments, theories of knowledge, disciplinary prejudices, and interdisciplinary communication. The major problems identified in these areas have proved remarkably persistent in the literature surveyed (c.1960-2012). Reasons for these failures to learn from past experience include the pressure to produce positive outcomes and gloss over disagreements, the ephemeral nature of many such projects and resulting lack of institutional memory, and the apparent complexity and incoherence of the endeavor. We suggest that multiple disciplinary collaboration requires conceptual integration among carefully selected multiple disciplinary team members united in investigating a shared problem or question. We outline a 9-point sequence of steps for setting up a successful multiple disciplinary project. This encompasses points on recruitment, involving stakeholders, developing research questions, negotiating power dynamics and hidden values and conceptual differences, explaining and choosing appropriate methods, developing a shared language, facilitating on-going communications, and discussing data integration and project outcomes. Although numerous solutions to the challenges of multiple disciplinary research have been proposed, lessons learned are often lost when projects end or experienced individuals move on. We urge multiple disciplinary teams to capture the challenges recognized, and solutions proposed, by their researchers while projects are in process. A database of well

  13. Syntenator: Multiple gene order alignments with a gene-specific scoring function

    Directory of Open Access Journals (Sweden)

    Dieterich Christoph

    2008-11-01

    Full Text Available Abstract Background Identification of homologous regions or conserved syntenies across genomes is one crucial step in comparative genomics. This task is usually performed by genome alignment softwares like WABA or blastz. In case of conserved syntenies, such regions are defined as conserved gene orders. On the gene order level, homologous regions can even be found between distantly related genomes, which do not align on the nucleotide sequence level. Results We present a novel approach to identify regions of conserved synteny across multiple genomes. Syntenator represents genomes and alignments thereof as partial order graphs (POGs. These POGs are aligned by a dynamic programming approach employing a gene-specific scoring function. The scoring function reflects the level of protein sequence similarity for each possible gene pair. Our method consistently defines larger homologous regions in pairwise gene order alignments than nucleotide-level comparisons. Our method is superior to methods that work on predefined homology gene sets (as implemented in Blockfinder. Syntenator successfully reproduces 80% of the EnsEMBL man-mouse conserved syntenic blocks. The full potential of our method becomes visible by comparing remotely related genomes and multiple genomes. Gene order alignments potentially resolve up to 75% of the EnsEMBL 1:many orthology relations and 27% of the many:many orthology relations. Conclusion We propose Syntenator as a software solution to reliably infer conserved syntenies among distantly related genomes. The software is available from http://www2.tuebingen.mpg.de/abt4/plone.

  14. The constancy of gene conservation across divergent bacterial orders

    Directory of Open Access Journals (Sweden)

    Ackermann Martin

    2009-01-01

    Full Text Available Abstract Background Orthologous genes are frequently presumed to perform similar functions. However, outside of model organisms, this is rarely tested. One means of inferring changes in function is if there are changes in the level of gene conservation and selective constraint. Here we compare levels of gene conservation across three bacterial groups to test for changes in gene functionality. Findings The level of gene conservation for different orthologous genes is highly correlated across clades, even for highly divergent groups of bacteria. These correlations do not arise from broad differences in gene functionality (e.g. informational genes vs. metabolic genes, but instead seem to result from very specific differences in gene function. Furthermore, these functional differences appear to be maintained over very long periods of time. Conclusion These results suggest that even over broad time scales, most bacterial genes are under a nearly constant level of purifying selection, and that bacterial evolution is thus dominated by selective and functional stasis.

  15. A2 gene of Old World cutaneous Leishmania is a single highly conserved functional gene

    Directory of Open Access Journals (Sweden)

    Derouin Francis

    2005-03-01

    Full Text Available Abstract Background Leishmaniases are among the most proteiform parasitic infections in humans ranging from unapparent to cutaneous, mucocutaneous or visceral diseases. The various clinical issues depend on complex and still poorly understood mechanisms where both host and parasite factors are interacting. Among the candidate factors of parasite virulence are the A2 genes, a family of multiple genes that are developmentally expressed in species of the Leishmania donovani group responsible for visceral diseases (VL. By contrast, in L. major determining cutaneous infections (CL we showed that A2 genes are present in a truncated form only. Furthermore, the A2 genomic sequences of L. major were considered subsequently to represent non-expressed pseudogenes 1. Consequently, it was suggested that the structural and functional properties of A2 genes could play a role in the differential tropism of CL and VL leishmanias. On this basis, it was of importance to determine whether the observed structural/functional particularities of the L. major A2 genes were shared by other CL Leishmania, therefore representing a proper characteristic of CL A2 genes as opposed to those of VL isolates. Methods In the present study we amplified by PCR and sequenced the A2 genes from genomic DNA and from clonal libraries of the four Old World CL species comparatively to a clonal population of L. infantum VL parasites. Using RT-PCR we also amplified and sequenced A2 mRNA transcripts from L. major. Results A unique A2 sequence was identified in Old World cutaneous Leishmania by sequencing. The shared sequence was highly conserved among the various CL strains and species analysed, showing a single polymorphism C/G at position 58. The CL A2 gene was found to be functionally transcribed at both parasite stages. Conclusion The present study shows that cutaneous strains of leishmania share a conserved functional A2 gene. As opposed to the multiple A2 genes described in VL isolates

  16. Artificial Synthesis of Conserved Segment S Gene Fragment of Rift ...

    African Journals Online (AJOL)

    software, respectively. Based on the synthesis of a conserved part of the RVFV S segment gene ... International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African. Index Medicus ..... having been constructed, and blast analysis of .... primer design process, the conserved objective ...

  17. Imprinted genes show unique patterns of sequence conservation

    Directory of Open Access Journals (Sweden)

    Helms Volkhard

    2010-11-01

    Full Text Available Abstract Background Genomic imprinting is an evolutionary conserved mechanism of epigenetic gene regulation in placental mammals that results in silencing of one of the parental alleles. In order to decipher interactions between allele-specific DNA methylation of imprinted genes and evolutionary conservation, we performed a genome-wide comparative investigation of genomic sequences and highly conserved elements of imprinted genes in human and mouse. Results Evolutionarily conserved elements in imprinted regions differ from those associated with autosomal genes in various ways. Whereas for maternally expressed genes strong divergence of protein-encoding sequences is most prominent, paternally expressed genes exhibit substantial conservation of coding and noncoding sequences. Conserved elements in imprinted regions are marked by enrichment of CpG dinucleotides and low (TpG+CpA/(2·CpG ratios indicate reduced CpG deamination. Interestingly, paternally and maternally expressed genes can be distinguished by differences in G+C and CpG contents that might be associated with unusual epigenetic features. Especially noncoding conserved elements of paternally expressed genes are exceptionally G+C and CpG rich. In addition, we confirmed a frequent occurrence of intronic CpG islands and observed a decelerated degeneration of ancient LINE-1 repeats. We also found a moderate enrichment of YY1 and CTCF binding sites in imprinted regions and identified several short sequence motifs in highly conserved elements that might act as additional regulatory elements. Conclusions We discovered several novel conserved DNA features that might be related to allele-specific DNA methylation. Our results hint at reduced CpG deamination rates in imprinted regions, which affects mostly noncoding conserved elements of paternally expressed genes. Pronounced differences between maternally and paternally expressed genes imply specific modes of evolution as a result of differences in

  18. Zebrafish IGF genes: gene duplication, conservation and divergence, and novel roles in midline and notochord development.

    Directory of Open Access Journals (Sweden)

    Shuming Zou

    Full Text Available Insulin-like growth factors (IGFs are key regulators of development, growth, and longevity. In most vertebrate species including humans, there is one IGF-1 gene and one IGF-2 gene. Here we report the identification and functional characterization of 4 distinct IGF genes (termed as igf-1a, -1b, -2a, and -2b in zebrafish. These genes encode 4 structurally distinct and functional IGF peptides. IGF-1a and IGF-2a mRNAs were detected in multiple tissues in adult fish. IGF-1b mRNA was detected only in the gonad and IGF-2b mRNA only in the liver. Functional analysis showed that all 4 IGFs caused similar developmental defects but with different potencies. Many of these embryos had fully or partially duplicated notochords, suggesting that an excess of IGF signaling causes defects in the midline formation and an expansion of the notochord. IGF-2a, the most potent IGF, was analyzed in depth. IGF-2a expression caused defects in the midline formation and expansion of the notochord but it did not alter the anterior neural patterning. These results not only provide new insights into the functional conservation and divergence of the multiple igf genes but also reveal a novel role of IGF signaling in midline formation and notochord development in a vertebrate model.

  19. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.

    Science.gov (United States)

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led

  20. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.

    Directory of Open Access Journals (Sweden)

    Daniel Wuttke

    Full Text Available Dietary restriction (DR, limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/. To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2 had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of

  1. Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes

    Science.gov (United States)

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR–essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR–essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR–essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR–essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR–induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple

  2. An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction.

    Science.gov (United States)

    Piro, Rosario Michael; Ala, Ugo; Molineris, Ivan; Grassi, Elena; Bracco, Chiara; Perego, Gian Paolo; Provero, Paolo; Di Cunto, Ferdinando

    2011-11-01

    Gene coexpression relationships that are phylogenetically conserved between human and mouse have been shown to provide important clues about gene function that can be efficiently used to identify promising candidate genes for human hereditary disorders. In the past, such approaches have considered mostly generic gene expression profiles that cover multiple tissues and organs. The individual genes of multicellular organisms, however, can participate in different transcriptional programs, operating at scales as different as single-cell types, tissues, organs, body regions or the entire organism. Therefore, systematic analysis of tissue-specific coexpression could be, in principle, a very powerful strategy to dissect those functional relationships among genes that emerge only in particular tissues or organs. In this report, we show that, in fact, conserved coexpression as determined from tissue-specific and condition-specific data sets can predict many functional relationships that are not detected by analyzing heterogeneous microarray data sets. More importantly, we find that, when combined with disease networks, the simultaneous use of both generic (multi-tissue) and tissue-specific conserved coexpression allows a more efficient prediction of human disease genes than the use of generic conserved coexpression alone. Using this strategy, we were able to identify high-probability candidates for 238 orphan disease loci. We provide proof of concept that this combined use of generic and tissue-specific conserved coexpression can be very useful to prioritize the mutational candidates obtained from deep-sequencing projects, even in the case of genetic disorders as heterogeneous as XLMR.

  3. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  4. The drug target genes show higher evolutionary conservation than non-target genes.

    Science.gov (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  5. Contributions of public gardens to tree gene conservation

    Science.gov (United States)

    P.A. Allenstein

    2017-01-01

    American Public Gardens Association, founded in 1940, represents over 600 member gardens spanning North America and 24 countries. Its diverse membership includes botanic gardens, arboreta, and other public gardens which contribute to tree gene conservation. Some maintain ex situ collections nationally accredited through the Association’s Plant Collections Network, a 21...

  6. Using intron position conservation for homology-based gene prediction.

    Science.gov (United States)

    Keilwagen, Jens; Wenk, Michael; Erickson, Jessica L; Schattat, Martin H; Grau, Jan; Hartung, Frank

    2016-05-19

    Annotation of protein-coding genes is very important in bioinformatics and biology and has a decisive influence on many downstream analyses. Homology-based gene prediction programs allow for transferring knowledge about protein-coding genes from an annotated organism to an organism of interest.Here, we present a homology-based gene prediction program called GeMoMa. GeMoMa utilizes the conservation of intron positions within genes to predict related genes in other organisms. We assess the performance of GeMoMa and compare it with state-of-the-art competitors on plant and animal genomes using an extended best reciprocal hit approach. We find that GeMoMa often makes more precise predictions than its competitors yielding a substantially increased number of correct transcripts. Subsequently, we exemplarily validate GeMoMa predictions using Sanger sequencing. Finally, we use RNA-seq data to compare the predictions of homology-based gene prediction programs, and find again that GeMoMa performs well.Hence, we conclude that exploiting intron position conservation improves homology-based gene prediction, and we make GeMoMa freely available as command-line tool and Galaxy integration. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Evolution of the functionally conserved DCC gene in birds

    Science.gov (United States)

    Patthey, Cedric; Tong, Yong Guang; Tait, Christine Mary; Wilson, Sara Ivy

    2017-01-01

    Understanding the loss of conserved genes is critical for determining how phenotypic diversity is generated. Here we focus on the evolution of DCC, a gene that encodes a highly conserved neural guidance receptor. Disruption of DCC in animal models and humans results in major neurodevelopmental defects including commissural axon defects. Here we examine DCC evolution in birds, which is of particular interest as a major model system in neurodevelopmental research. We found the DCC containing locus was disrupted several times during evolution, resulting in both gene losses and faster evolution rate of salvaged genes. These data suggest that DCC had been lost independently twice during bird evolution, including in chicken and zebra finch, whereas it was preserved in many other closely related bird species, including ducks. Strikingly, we observed that commissural axon trajectory appeared similar regardless of whether DCC could be detected or not. We conclude that the DCC locus is susceptible to genomic instability leading to independent disruptions in different branches of birds and a significant influence on evolution rate. Overall, the phenomenon of loss or molecular evolution of a highly conserved gene without apparent phenotype change is of conceptual importance for understanding molecular evolution of key biological processes. PMID:28240293

  8. DG-CST (Disease Gene Conserved Sequence Tags), a database of human–mouse conserved elements associated to disease genes

    Science.gov (United States)

    Boccia, Angelo; Petrillo, Mauro; di Bernardo, Diego; Guffanti, Alessandro; Mignone, Flavio; Confalonieri, Stefano; Luzi, Lucilla; Pesole, Graziano; Paolella, Giovanni; Ballabio, Andrea; Banfi, Sandro

    2005-01-01

    The identification and study of evolutionarily conserved genomic sequences that surround disease-related genes is a valuable tool to gain insight into the functional role of these genes and to better elucidate the pathogenetic mechanisms of disease. We created the DG-CST (Disease Gene Conserved Sequence Tags) database for the identification and detailed annotation of human–mouse conserved genomic sequences that are localized within or in the vicinity of human disease-related genes. CSTs are defined as sequences that show at least 70% identity between human and mouse over a length of at least 100 bp. The database contains CST data relative to over 1088 genes responsible for monogenetic human genetic diseases or involved in the susceptibility to multifactorial/polygenic diseases. DG-CST is accessible via the internet at http://dgcst.ceinge.unina.it/ and may be searched using both simple and complex queries. A graphic browser allows direct visualization of the CSTs and related annotations within the context of the relative gene and its transcripts. PMID:15608249

  9. Conservation of ribosomal protein gene ordering in 16 complete genomes

    Institute of Scientific and Technical Information of China (English)

    王宁; 陈润生; 王永雄

    2000-01-01

    The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and ar-chaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacte-ria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variat

  10. Conservation of ribosomal protein gene ordering in 16 complete genomes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and archaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacteria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variations in some operons across different organisms within each domain, and these variations are informative on the evolutionary relations among the organisms. This method provides a new potential for studying the origin and evolution of old species.

  11. Gene essentiality, conservation index and co-evolution of genes in cyanobacteria.

    Science.gov (United States)

    Tiruveedula, Gopi Siva Sai; Wangikar, Pramod P

    2017-01-01

    Cyanobacteria, a group of photosynthetic prokaryotes, dominate the earth with ~ 1015 g wet biomass. Despite diversity in habitats and an ancient origin, cyanobacterial phylum has retained a significant core genome. Cyanobacteria are being explored for direct conversion of solar energy and carbon dioxide into biofuels. For this, efficient cyanobacterial strains will need to be designed via metabolic engineering. This will require identification of target knockouts to channelize the flow of carbon toward the product of interest while minimizing deletions of essential genes. We propose "Gene Conservation Index" (GCI) as a quick measure to predict gene essentiality in cyanobacteria. GCI is based on phylogenetic profile of a gene constructed with a reduced dataset of cyanobacterial genomes. GCI is the percentage of organism clusters in which the query gene is present in the reduced dataset. Of the 750 genes deemed to be essential in the experimental study on S. elongatus PCC 7942, we found 494 to be conserved across the phylum which largely comprise of the essential metabolic pathways. On the contrary, the conserved but non-essential genes broadly comprise of genes required under stress conditions. Exceptions to this rule include genes such as the glycogen synthesis and degradation enzymes, deoxyribose-phosphate aldolase (DERA), glucose-6-phosphate 1-dehydrogenase (zwf) and fructose-1,6-bisphosphatase class1, which are conserved but non-essential. While the essential genes are to be avoided during gene knockout studies as potentially lethal deletions, the non-essential but conserved set of genes could be interesting targets for metabolic engineering. Further, we identify clusters of co-evolving genes (CCG), which provide insights that may be useful in annotation. Principal component analysis (PCA) plots of the CCGs are demonstrated as data visualization tools that are complementary to the conventional heatmaps. Our dataset consists of phylogenetic profiles for 23

  12. Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution.

    Science.gov (United States)

    Mukherjee, Krishanu; Bürglin, Thomas R

    2007-08-01

    TALE homeodomain proteins are an ancient subgroup within the group of homeodomain transcription factors that play important roles in animal, plant, and fungal development. We have extracted the full complement of TALE superclass homeobox genes from the genome projects of seven protostomes, seven deuterostomes, and Nematostella. This was supplemented with TALE homeobox genes from additional species and phylogenetic analyses were carried out with 276 sequences. We found 20 homeobox genes and 4 pseudogenes in humans, 21 genes in mouse, 8 genes in Drosophila, and 5 genes plus one truncated gene in Caenorhabditis elegans. Apart from the previously identified TALE classes MEIS, PBC, IRO, and TGIF, a novel class is identified, termed MOHAWK (MKX). Further, we show that the MEIS class can be divided into two families, PREP and MEIS. Prep genes have previously only been described in vertebrates but are lacking in Drosophila. Here we identify orthologues in other insect taxa as well as in the cnidarian Nematostella. In C. elegans, a divergent Prep protein has lost the homeodomain. Full-length multiple sequence alignment of the protostome and deuterostome sequences allowed us to identify several novel conserved motifs within the MKX, TGIF, and MEIS classes. Phylogenetic analyses revealed fast-evolving PBC class genes; in particular, some X-linked PBC genes in nematodes are subject to rapid evolution. In addition, several instances of gene loss were identified. In conclusion, our comprehensive analysis provides a defining framework for the classification of animal TALE homeobox genes and the understanding of their evolution.

  13. Many nonuniversal archaeal ribosomal proteins are found in conserved gene clusters

    Directory of Open Access Journals (Sweden)

    Jiachen Wang

    2009-01-01

    Full Text Available The genomic associations of the archaeal ribosomal proteins, (r-proteins, were examined in detail. The archaeal versions of the universal r-protein genes are typically in clusters similar or identical and to those found in bacteria. Of the 35 nonuniversal archaeal r-protein genes examined, the gene encoding L18e was found to be associated with the conserved L13 cluster, whereas the genes for S4e, L32e and L19e were found in the archaeal version of the spc operon. Eleven nonuniversal protein genes were not associated with any common genomic context. Of the remaining 19 protein genes, 17 were convincingly assigned to one of 10 previously unrecognized gene clusters. Examination of the gene content of these clusters revealed multiple associations with genes involved in the initiation of protein synthesis, transcription or other cellular processes. The lack of such associations in the universal clusters suggests that initially the ribosome evolved largely independently of other processes. More recently it likely has evolved in concert with other cellular systems. It was also verified that a second copy of the gene encoding L7ae found in some bacteria is actually a homolog of the gene encoding L30e and should be annotated as such.

  14. [Susceptibility gene in multiple system atrophy (MSA)].

    Science.gov (United States)

    Tsuji, Shoji

    2014-01-01

    To elucidate molecular bases of multiple system atrophy (MSA), we first focused on recently identified MSA multiplex families. Though linkage analyses followed by whole genome resequencing, we have identified a causative gene, COQ2, for MSA. We then conducted comprehensive nucleotide sequence analysis of COQ2 of sporadic MSA cases and controls, and found that functionally deleterious COQ2 variants confer a strong risk for developing MSA. COQ2 encodes an enzyme in the biosynthetic pathway of coenzyme Q10. Decreased synthesis of coenzyme Q10 is considered to be involved in the pathogenesis of MSA through decreased electron transport in mitochondria and increased vulnerability to oxidative stress.

  15. Doublesex: a conserved downstream gene controlled by diverse upstream regulators

    Indian Academy of Sciences (India)

    J. N. Shukla; J. Nagaraju

    2010-09-01

    Sex determination, an integral precursor to sexual reproduction, is required to generate morphologically distinct sexes. The molecular components of sex-determination pathways regulating sexual differentiation have been identified and characterized in different organisms. The Drosophila doublesex (dsx) gene at the bottom of the sex-determination cascade is the best characterized candidate so far, and is conserved from worms (mab3 of Caenorhabditis elegans) to mammals (Dmrt-1). Studies of dsx homologues from insect species belonging to different orders position them at the bottom of their sex-determination cascade. The dsx homologues are regulated by a series of upstream regulators that show amazing diversity in different insect species. These results support the Wilkin’s hypothesis that evolution of the sex-determination cascade has taken place in reverse order, the bottom most gene being most conserved and the upstream genes having been recruited at different times during evolution. The pre-mRNA of dsx is sex-specifically spliced to encode male or female-specific transcription factors that play an important role in the regulation of sexually dimorphic characters in different insect species. The generalization that dsx is required for somatic sexual differentiation culminated with its functional analysis through transgenesis and knockdown experiments in diverse species of insects. This brief review will focus on the similarities and variations of dsx homologues that have been investigated in insects to date.

  16. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  17. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  18. Gene pool conservation and tree improvement in Serbia

    Directory of Open Access Journals (Sweden)

    Isajev Vasilije

    2009-01-01

    Full Text Available This paper presents the concepts applied in the gene pool conservation and tree improvement in Serbia. Gene pool conservation of tree species in Serbia includes a series of activities aiming at the sustainability and protection of genetic and species variability. This implies the investigation of genetic resources and their identification through the research of the genetic structure and the breeding system of individual species. Paper also includes the study of intra- and inter-population variability in experiments - provenance tests, progeny tests, half- and full-sib lines, etc. The increased use of the genetic potential in tree improvement in Serbia should be intensified by the following activities: improvement of production of normal forest seed, application of the concept of new selections directed primarily to the improvement of only one character, because in that case the result would be certain, establishment and management of seed orchards as specialized plantations for long-term production of genetically good-quality forest seeds, and the shortening of the improvement process by introducing new techniques and methods (molecular markers, somaclonal variation, genetic engineering, protoplast fusion, micropropagation, etc..

  19. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    Science.gov (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  20. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range

    Science.gov (United States)

    Tatineni, Satyanarayana; Robertson, Cecile J.; Garnsey, Stephen M.; Dawson, William O.

    2011-01-01

    Viruses have evolved as combinations of genes whose products interact with cellular components to produce progeny virus throughout the plants. Some viral genes, particularly those that are involved in replication and assembly, tend to be relatively conserved, whereas other genes that have evolved for interactions with the specific host for movement and to counter host–defense systems tend to be less conserved. Closteroviridae encode 1–5 nonconserved ORFs. Citrus tristeza virus (CTV), a Closterovirus, possesses nonconserved p33, p18, and p13 genes that are expendable for systemic infection of the two laboratory hosts, Citrus macrophylla and Mexican lime. In this study, we show that the extended host range of CTV requires these nonconserved genes. The p33 gene was required to systemically infect sour orange and lemon trees, whereas either the p33 or the p18 gene was sufficient for systemic infection of grapefruit trees and the p33 or the p13 gene was sufficient for systemic infection of calamondin plants. Thus, these three genes are required for systemic infection of the full host range of CTV, but different genes were specific for different hosts. Remarkably, either of two genes was sufficient for infection of some citrus hybrids. These findings suggest that CTV acquired multiple nonconserved genes (p33, p18, and p13) and, as a result, gained the ability to interact with multiple hosts, thus extending its host range during the course of evolution. These results greatly extend the complexity of known virus–plant interactions. PMID:21987809

  1. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

    Science.gov (United States)

    Huang, Ling; Schiefelbein, John

    2015-08-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.

  2. Interspecies variation reveals a conserved repressor of alpha-specific genes in Saccharomyces yeasts.

    Science.gov (United States)

    Zill, Oliver A; Rine, Jasper

    2008-06-15

    The mating-type determination circuit in Saccharomyces yeast serves as a classic paradigm for the genetic control of cell type in all eukaryotes. Using comparative genetics, we discovered a central and conserved, yet previously undetected, component of this genetic circuit: active repression of alpha-specific genes in a cells. Upon inactivation of the SUM1 gene in Saccharomyces bayanus, a close relative of Saccharomyces cerevisiae, a cells acquired mating characteristics of alpha cells and displayed autocrine activation of their mating response pathway. Sum1 protein bound to the promoters of alpha-specific genes, repressing their transcription. In contrast to the standard model, alpha1 was important but not required for alpha-specific gene activation and mating of alpha cells in the absence of Sum1. Neither Sum1 protein expression, nor its association with target promoters was mating-type-regulated. Thus, the alpha1/Mcm1 coactivators did not overcome repression by occluding Sum1 binding to DNA. Surprisingly, the mating-type regulatory function of Sum1 was conserved in S. cerevisiae. We suggest that a comprehensive understanding of some genetic pathways may be best attained through the expanded phenotypic space provided by study of those pathways in multiple related organisms.

  3. CBS: an open platform that integrates predictive methods and epigenetics information to characterize conserved regulatory features in multiple Drosophila genomes

    Directory of Open Access Journals (Sweden)

    Blanco Enrique

    2012-12-01

    Full Text Available Abstract Background Information about the composition of regulatory regions is of great value for designing experiments to functionally characterize gene expression. The multiplicity of available applications to predict transcription factor binding sites in a particular locus contrasts with the substantial computational expertise that is demanded to manipulate them, which may constitute a potential barrier for the experimental community. Results CBS (Conserved regulatory Binding Sites, http://compfly.bio.ub.es/CBS is a public platform of evolutionarily conserved binding sites and enhancers predicted in multiple Drosophila genomes that is furnished with published chromatin signatures associated to transcriptionally active regions and other experimental sources of information. The rapid access to this novel body of knowledge through a user-friendly web interface enables non-expert users to identify the binding sequences available for any particular gene, transcription factor, or genome region. Conclusions The CBS platform is a powerful resource that provides tools for data mining individual sequences and groups of co-expressed genes with epigenomics information to conduct regulatory screenings in Drosophila.

  4. PHYLOGENOMICS - GUIDED VALIDATION OF FUNCTION FOR CONSERVED UNKNOWN GENES

    Energy Technology Data Exchange (ETDEWEB)

    V, DE CRECY-LAGARD; D, HANSON A

    2012-01-03

    Identifying functions for all gene products in all sequenced organisms is a central challenge of the post-genomic era. However, at least 30-50% of the proteins encoded by any given genome are of unknown function, or wrongly or vaguely annotated. Many of these 'unknown' proteins are common to prokaryotes and plants. We accordingly set out to predict and experimentally test the functions of such proteins. Our approach to functional prediction is integrative, coupling the extensive post-genomic resources available for plants with comparative genomics based on hundreds of microbial genomes, and functional genomic datasets from model microorganisms. The early phase is computer-assisted; later phases incorporate intellectual input from expert plant and microbial biochemists. The approach thus bridges the gap between automated homology-based annotations and the classical gene discovery efforts of experimentalists, and is much more powerful than purely computational approaches to identifying gene-function associations. Among Arabidopsis genes, we focused on those (2,325 in total) that (i) are unique or belong to families with no more than three members, (ii) are conserved between plants and prokaryotes, and (iii) have unknown or poorly known functions. Computer-assisted selection of promising targets for deeper analysis was based on homology .. independent characteristics associated in the SEED database with the prokaryotic members of each family, specifically gene clustering and phyletic spread, as well as availability of functional genomics data, and publications that could link candidate families to general metabolic areas, or to specific functions. In-depth comparative genomic analysis was then performed for about 500 top candidate families, which connected ~55 of them to general areas of metabolism and led to specific functional predictions for a subset of ~25 more. Twenty predicted functions were experimentally tested in at least one prokaryotic organism

  5. Phylogenetic conservation and physical mapping of members of the H6 homeobox gene family.

    Science.gov (United States)

    Stadler, H S; Murray, J C; Leysens, N J; Goodfellow, P J; Solursh, M

    1995-06-01

    Homeobox genes represent a class of transcription factors that play key roles in the regulation of embryogenesis and development. Here we report the identification of a homeobox-containing gene family that is highly conserved at both the nucleotide and amino acid levels in a diverse number of species. These species encompass both vertebrate and invertebrate phylogenies, ranging from Homo sapiens to Drosophila melanogaster. In humans, at least two homeobox sequences from this family were identified representing a previously reported member of this family as well as a novel homeobox sequence that we physically mapped to the 10q25.2-q26.3 region of human Chromosome (Chr) 10. Multiple members of this family were also detected in three additional vertebrate species including Equus caballus (horse), Gallus gallus (Chicken), and Mus musculus (mouse), whereas only single members were detected in Tripneustes gratilla (sea urchin), Petromyzon marinus (lamprey), Salmo salar (salmon), Ovis aries (sheep), and D. melanogaster (fruit fly).

  6. [Emergency conservative surgery on a unique kidney with broken multiple angiomyolipoma].

    Science.gov (United States)

    Aguilera Tubet, C; Portillo Martín, J A; Gutiérrez Baños, J L; Ruiz Izquierdo, F; Ballestero Diego, R; Zubillaga Guerrero, S

    2007-02-01

    A case of retroperitoneal hemorrhage due to the rupture of a multiple angiomyolipoma in a female with a unique kidney is described. Hipovolemic shock was the first symptom, being possible to perform on her a successful conservative surgery. Etiology, diagnostic methods and treatment of the spontaneous retroperitoneal hemorrhage are discussed.

  7. Multiple Knowledges for Agricultural Production: Implications for the Development of Conservation Agriculture in Kenya and Uganda

    Science.gov (United States)

    Moore, Keith M.; Lamb, Jennifer N.; Sikuku, Dominic Ngosia; Ashilenje, Dennis S.; Laker-Ojok, Rita; Norton, Jay

    2014-01-01

    Purpose: This article investigates the extent of multiple knowledges among smallholders and connected non-farm agents around Mount Elgon in Kenya and Uganda in order to build the communicative competence needed to scale up conservation agriculture production systems (CAPS). Design/methodology/approach: Our methodological approach examines local…

  8. Proceedings of workshop on gene conservation of tree species—banking on the future

    Science.gov (United States)

    Richard A. Sniezko; Gary Man; Valerie Hipkins; Keith Woeste; David Gwaze; John T. Kliejunas; Brianna A. McTeague

    2017-01-01

    The ‘Gene Conservation of Tree Species—Banking on the Future Workshop’ provided a forum for presenting and discussing issues and accomplishments in genetic conservation of trees, and notably those of North America. The meeting gathered scientists, specialists, administrators and conservation practitioners from federal, university, non-governmental and public garden...

  9. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes.

  10. Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Bodenmiller, Bernd; Pasculescu, Adrian

    2009-01-01

    approximately 600 million years of evolution and hence are likely to be involved in fundamental cellular processes. This sequence-alignment analysis suggested that many phosphorylation sites evolve rapidly and therefore do not display strong evolutionary conservation in terms of sequence position in distantly...... related organisms. Thus, we devised a network-alignment approach to reconstruct conserved kinase-substrate networks, which identified 778 phosphorylation events in 698 human proteins. Both methods identified proteins tightly regulated by phosphorylation as well as signal integration hubs, and both types...... of phosphoproteins were enriched in proteins encoded by disease-associated genes. We analyzed the cellular functions and structural relationships for these conserved signaling events, noting the incomplete nature of current phosphoproteomes. Assessing phosphorylation conservation at both site and network levels...

  11. Conservation of gene cassettes among diverse viruses of the human gut.

    Directory of Open Access Journals (Sweden)

    Samuel Minot

    Full Text Available Viruses are a crucial component of the human microbiome, but large population sizes, high sequence diversity, and high frequencies of novel genes have hindered genomic analysis by high-throughput sequencing. Here we investigate approaches to metagenomic assembly to probe genome structure in a sample of 5.6 Gb of gut viral DNA sequence from six individuals. Tests showed that a new pipeline based on DeBruijn graph assembly yielded longer contigs that were able to recruit more reads than the equivalent non-optimized, single-pass approach. To characterize gene content, the database of viral RefSeq proteins was compared to the assembled viral contigs, generating a bipartite graph with functional cassettes linking together viral contigs, which revealed a high degree of connectivity between diverse genomes involving multiple genes of the same functional class. In a second step, open reading frames were grouped by their co-occurrence on contigs in a database-independent manner, revealing conserved cassettes of co-oriented ORFs. These methods reveal that free-living bacteriophages, while usually dissimilar at the nucleotide level, often have significant similarity at the level of encoded amino acid motifs, gene order, and gene orientation. These findings thus connect contemporary metagenomic analysis with classical studies of bacteriophage genomic cassettes. Software is available at https://sourceforge.net/projects/optitdba/.

  12. Correlation of microsynteny conservation and disease gene distribution in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Li Xiting

    2009-11-01

    Full Text Available Abstract Background With the completion of the whole genome sequence for many organisms, investigations into genomic structure have revealed that gene distribution is variable, and that genes with similar function or expression are located within clusters. This clustering suggests that there are evolutionary constraints that determine genome architecture. However, as most of the evidence for constraints on genome evolution comes from studies on yeast, it is unclear how much of this prior work can be extrapolated to mammalian genomes. Therefore, in this work we wished to examine the constraints on regions of the mammalian genome containing conserved gene clusters. Results We first identified regions of the mouse genome with microsynteny conservation by comparing gene arrangement in the mouse genome to the human, rat, and dog genomes. We then asked if any particular gene types were found preferentially in conserved regions. We found a significant correlation between conserved microsynteny and the density of mouse orthologs of human disease genes, suggesting that disease genes are clustered in genomic regions of increased microsynteny conservation. Conclusion The correlation between microsynteny conservation and disease gene locations indicates that regions of the mouse genome with microsynteny conservation may contain undiscovered human disease genes. This study not only demonstrates that gene function constrains mammalian genome organization, but also identifies regions of the mouse genome that can be experimentally examined to produce mouse models of human disease.

  13. Conserved gene regulation during acute inflammation between zebrafish and mammals

    Science.gov (United States)

    Forn-Cuní, G.; Varela, M.; Pereiro, P.; Novoa, B.; Figueras, A.

    2017-01-01

    Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential. PMID:28157230

  14. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy (Davis, CA); Bachkirova, Elena (Davis, CA); Rey, Michael (Davis, CA)

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  15. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  16. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  17. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  18. Conservation of genes and culture: historical and contemporary issues.

    Science.gov (United States)

    Hodges, J

    2006-02-01

    The paper examines the reasons for and consequences of lost domestic animal biodiversity. The origin of domestic poultry and livestock diversity is reviewed from the first center of domestication in the Middle East during the Neolithic Revolution. Accompanied by domestic animals and birds, mankind spread worldwide over the last 12,000 yr, thereby increasing domestic animal biodiversity via adaptation to many environmental challenges, resulting in about 6,000 breeds within only a small number of species used for food. During the last 50 yr of the 20th century, about 20% of these livestock and poultry breeds have become extinct, and the remainder is at risk. This erosion of unique biodiversity is due to changes in farm practices developed in the West that involve mono-breed, intensive farming systems that are unsustainable. The close symbiotic relationship of Homo sapiens and domestic animals and birds over millennia is changing, resulting in a lost understanding of sustainability among urban communities. The single-minded focus on profit is resulting in the loss of the historic European and Western culture based on Judeo-Christian values. Respect for biological boundaries, community, and quality of life are disappearing in Western society. Concurrently, farming is now only a business. The principal decision makers are no longer farmers but business executives, who are remote from the farm. The emphasis on cheap food is the principal driver that leads to increased competition and unsustainable practices. Farmers as well as their breeds are disappearing. The advent of gene technology and transgenic livestock is reviewed with the prospect of extensive manipulation of animal form and function and abuse of genotypes as animals are redesigned, suffer, and lose all dignity. By handling its animals in this manner, high Western civilization is losing its culture and values and becoming simply the top animal species by using its power selfishly. The case is presented that the

  19. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice.

    Science.gov (United States)

    Chen, Jun; Gao, He; Zheng, Xiao-Ming; Jin, Mingna; Weng, Jian-Feng; Ma, Jin; Ren, Yulong; Zhou, Kunneng; Wang, Qi; Wang, Jie; Wang, Jiu-Lin; Zhang, Xin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min

    2015-08-01

    Plant breeding relies on creation of novel allelic combinations for desired traits. Identification and utilization of beneficial alleles, rare alleles and evolutionarily conserved genes in the germplasm (referred to as 'hidden' genes) provide an effective approach to achieve this goal. Here we show that a chemically induced null mutation in an evolutionarily conserved gene, FUWA, alters multiple important agronomic traits in rice, including panicle architecture, grain shape and grain weight. FUWA encodes an NHL domain-containing protein, with preferential expression in the root meristem, shoot apical meristem and inflorescences, where it restricts excessive cell division. Sequence analysis revealed that FUWA has undergone a bottleneck effect, and become fixed in landraces and modern cultivars during domestication and breeding. We further confirm a highly conserved role of FUWA homologs in determining panicle architecture and grain development in rice, maize and sorghum through genetic transformation. Strikingly, knockdown of the FUWA transcription level by RNA interference results in an erect panicle and increased grain size in both indica and japonica genetic backgrounds. This study illustrates an approach to create new germplasm with improved agronomic traits for crop breeding by tapping into evolutionary conserved genes.

  20. Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws

    CERN Document Server

    Fu, Jing-Hua

    2016-01-01

    Higher moments of multiplicity fluctuations of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the canonical ensemble. The conservation of three charges, baryon number, electric charge, and strangeness, is enforced in the large volume limit. Moments up to the forth order of various particles are calculated at SPS, RHIC and LHC energies. The asymptotic fluctuations within a simplified model with only one conserved charge in the canonical ensemble are discussed where simple analytical expressions for moments of multiplicity distribution can be obtained. Moments products of net-proton, net-kaon, and net-charge distributions in Au + Au collisions at RHIC energies are calculated and compared to the experimental measurements. The pseudo-rapidity coverage dependence of net-charge fluctuation is discussed.

  1. An evolutionary conserved region (ECR in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex

    Directory of Open Access Journals (Sweden)

    Haddley Kate

    2011-05-01

    Full Text Available Abstract Background Detecting functional variants contributing to diversity of behaviour is crucial for dissecting genetics of complex behaviours. At a molecular level, characterisation of variation in exons has been studied as they are easily identified in the current genome annotation although the functional consequences are less well understood; however, it has been difficult to prioritise regions of non-coding DNA in which genetic variation could also have significant functional consequences. Comparison of multiple vertebrate genomes has allowed the identification of non-coding evolutionary conserved regions (ECRs, in which the degree of conservation can be comparable with exonic regions suggesting functional significance. Results We identified ECRs at the dopamine receptor D4 gene locus, an important gene for human behaviours. The most conserved non-coding ECR (D4ECR1 supported high reporter gene expression in primary cultures derived from neonate rat frontal cortex. Computer aided analysis of the sequence of the D4ECR1 indicated the potential transcription factors that could modulate its function. D4ECR1 contained multiple consensus sequences for binding the transcription factor Sp1, a factor previously implicated in DRD4 expression. Co-transfection experiments demonstrated that overexpression of Sp1 significantly decreased the activity of the D4ECR1 in vitro. Conclusion Bioinformatic analysis complemented by functional analysis of the DRD4 gene locus has identified a a strong enhancer that functions in neurons and b a transcription factor that may modulate the function of that enhancer.

  2. [Screening of Bacillus thuringiensis strains containing vip3A genes and analysis of gene conservation].

    Science.gov (United States)

    Chen, Jian-Wu; Tang, Li-Xia; Song, Shao-Yun; Yuan, Mei-Jin; Pang, Yi

    2003-09-01

    Vip3A, a novel insecticidal protein, is secreted by Bacillus thuringiensis (Bt) during vegetative growth. Vip3A protein possesses insecticidal activity against a wild spectrum of lepidopteran insect larvae. Since the first cloning of vip3A gene from Bt, many other vip3A genes have been isolated. To investigate vip3A genes contribution to Bt and reflect the revolution relationships, the strains containing vip3A genes were screened and gene similarity was analyzed. 114 wild-type Bacillus thuringiensis (Bt) strains isolated from different regions and 41 standard Bt strains from the Institute of Pasteur were screened for the vip3A genes using PCR amplification. 39 strains including B. thuringiensis subsp. kurstaki (Btk) HD-1 were found to contain the vip3A genes. Because acrystallerous strain Cry- B derived from Btk HD-1 was proved not to contain vip3A gene, it suppose that the vip3A gene may be located at the plasmids. Vip3A proteins expressed in these strains were detected with polyclonal antibody by Western blot and 4 strains among them were shown not to express the Vip3A proteins. The vip3A genes amplified from wild-type Bacillus thuringiensis strains S101 and 611 with different levels of activity against lepidopteran insect larvae were cloned into pGEM-T Easy vector. Alignment of these 2 putative Vip3A proteins with 6 others (Vip3A (a), Vip3A(b), Vip3A-S, Vip3A-S184, Vip83 and Vip3V) in the GenBank data base and 2 reported Vip3A proteins (Vip14 and Vip15) showed that vip3A genes are highly conservative. The plasmids pOTP-S101 and pOTP-611 were constructed by in- serting 2 vip3A genes (vip3A-S101 and vip3A-611) into the expression vector pQE30 respectively and were transformed into E. coli M15. E. coli M15 cells harboring the pOTP plasmids were induced with 1 mmol/L IPTG to express 89 kDa protein. Experiments showed that the level of soluble proteins of Vip3A-S101 in E. coli M15[pOTP-S101] and Vip3A-611 in E. coli M15 [pOTP-611] were about 48% and 35% respectively

  3. Genes with stable DNA methylation levels show higher evolutionary conservation than genes with fluctuant DNA methylation levels.

    Science.gov (United States)

    Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai

    2015-11-24

    Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.

  4. San Diego Multiple Species Conservation Program (MSCP) Rare Plant Monitoring Review and Revision

    Science.gov (United States)

    McEachern, Kathryn; Pavlik, Bruce M.; Rebman, Jon; Sutter, Rob

    2007-01-01

    Introduction The San Diego Multiple Species Conservation Program (MSCP) was developed for the conservation of plants and animals in the south part of San Diego County, under the California Natural Community Conservation Planning Act of 1991 (California Department of Fish and Game) and the Federal Endangered Species Act of 1973, as amended (16 U.S. Code 1531-1544.) The Program is on the leading edge of conservation, as it seeks to both guide development and conserve at-risk species with the oversight of both State and Federal agencies. Lands were identified for inclusion in the MSCP based on their value as habitat for at-risk plants or plant communities (Natural Community Conservation Planning, 2005). Since its inception in the mid-1990s the Program has protected over 100,000 acres, involving 15 jurisdictions and the U.S. Fish and Wildlife Service (USFWS) and California Department of Fish and Game (CDFG) in the conservation of 87 taxa. Surveys for covered species have been conducted, and management and monitoring have been implemented at some high priority sites. Each jurisdiction or agency manages and monitors their conservation areas independently, while collaborating regionally for long-term protection. The San Diego MSCP is on the forefront of conservation, in one of the most rapidly growing urban areas of the country. The planning effort that developed the MSCP was state-of-the-art, using expert knowledge, spatial habitat modeling, and principles of preserve design to identify and prioritize areas for protection. Land acquisition and protection are ahead of schedule for most jurisdictions. Surveys have verified the locations of many rare plant populations known from earlier collections, and they provide general information on population size and health useful for further conservation planning. Management plans have been written or are in development for most MSCP parcels under jurisdictional control. Several agencies are developing databases for implementation

  5. Cloning and expression study of the lobster (Homarus americanus) vitellogenin: Conservation in gene structure among decapods.

    Science.gov (United States)

    Tiu, Shirley Hiu Kwan; Hui, Ho-Lam; Tsukimura, Brian; Tobe, Stephen S; He, Jian-Guo; Chan, Siu-Ming

    2009-01-01

    This study reports the molecular characterization of the vitellogenin (Vg) of the lobster, Homarus americanus. Based on the annual collection of female lobsters, vitellogenesis commences in early March and continues through to September of each year. Using an antibody to vitellin of the lobster, H. americanus, several immunoreactive ovarian proteins were initially identified by Western blot analysis. The 80kDa protein contained the amino acid sequence APWGGNTPRC, identified subsequently by cDNA cloning to be identical to the lobster Vg. In common with the shrimp Metapenaeus ensis and crab Charybdis feriatus, the lobster HaVg1 gene comprises 14 introns and 15 exons. The deduced HaVg1 precursor is most similar to the Vg of the crayfish Cherax quadricarinatus (57%), followed by M. ensis (40-43% identity) and C. feriatus (38%). The results from genomic and RT-PCR cloning also confirmed the presence of multiple Vg genes in lobster. At early reproductive stages, the hepatopancreas HaVg1 transcript levels are low but increased to a maximum in animals with mature oocytes. The ovary, however, also expressed low levels of HaVg1. Using in vitro explant culture, treatment of hepatopancreas fragments with farnesoic acid or 20-hydroxyecdysone resulted in a significant stimulation in HaVg1 expression. From this study, it appears that Vg gene organization and expression pattern in decapods is highly conserved. Similar endocrine mechanisms may govern the process of vitellogenesis across the decapods.

  6. EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes

    Directory of Open Access Journals (Sweden)

    Runko Suzan J

    2005-10-01

    Full Text Available Abstract Background Ginkgo biloba L. is the only surviving member of one of the oldest living seed plant groups with medicinal, spiritual and horticultural importance worldwide. As an evolutionary relic, it displays many characters found in the early, extinct seed plants and extant cycads. To establish a molecular base to understand the evolution of seeds and pollen, we created a cDNA library and EST dataset from the reproductive structures of male (microsporangiate, female (megasporangiate, and vegetative organs (leaves of Ginkgo biloba. Results RNA from newly emerged male and female reproductive organs and immature leaves was used to create three distinct cDNA libraries from which 6,434 ESTs were generated. These 6,434 ESTs from Ginkgo biloba were clustered into 3,830 unigenes. A comparison of our Ginkgo unigene set against the fully annotated genomes of rice and Arabidopsis, and all available ESTs in Genbank revealed that 256 Ginkgo unigenes match only genes among the gymnosperms and non-seed plants – many with multiple matches to genes in non-angiosperm plants. Conversely, another group of unigenes in Gingko had highly significant homology to transcription factors in angiosperms involved in development, including MADS box genes as well as post-transcriptional regulators. Several of the conserved developmental genes found in Ginkgo had top BLAST homology to cycad genes. We also note here the presence of ESTs in G. biloba similar to genes that to date have only been found in gymnosperms and an additional 22 Ginkgo genes common only to genes from cycads. Conclusion Our analysis of an EST dataset from G. biloba revealed genes potentially unique to gymnosperms. Many of these genes showed homology to fully sequenced clones from our cycad EST dataset found in common only with gymnosperms. Other Ginkgo ESTs are similar to developmental regulators in higher plants. This work sets the stage for future studies on Ginkgo to better understand seed and

  7. Changes of multiple genes in human gastric carcinomas

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the mutual relation of the changesamong multiple genes in human gastric carcinomas (GC). Methods: By means of software package about social science (SPSS) and statistics analysis system (SAS), the mutual relation of the expression of oncogenes (p21, p185) and tumor suppressor genes (RB, p53, p16, nm23) in 78 GC is discussed. Results: There existed correlations among some genes, i.e., p21 and p185, RB and p16, p16 and p53 as well as p16 and nm23; It is relatively uncommon that the carcinogenesis of GC simultaneously related to more changes of multiple genes; The inactivation of p16 gene was independent factor to predict the metastasis of lymphaden, the mutation of p53 gene and the inactivation of p16 gene were independent factors to predict the invasive depth. Conclusion: There are not only the changes of multiple genes including oncogenes activation and tumor suppressor genes inactivation, but also they may play an important role in carcinogenesis of GC through mutual cooperation. The inactivation of p16 gene is one of the most useful index to predict the prognosis of patient with GC.

  8. Identification and characterization of multiple conserved nuclear localization signals within adenovirus E1A

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Kris S.; Cohen, Michael J.; Fonseca, Greg J.; Todorovic, Biljana; King, Cason R. [Department of Microbiology and Immunology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada); Yousef, Ahmed F. [Department of Chemical and Environmental Engineering, Masdar Institute, Abu Dhabi (United Arab Emirates); Zhang, Zhiying [College of Animal Science and Technologies, Northwest A and F University, Yangling, Shaanxi 712100 (China); Mymryk, Joe S., E-mail: jmymryk@uwo.ca [Department of Microbiology and Immunology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada); Department of Oncology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada)

    2014-04-15

    The human adenovirus 5 (HAdV-5) E1A protein has a well defined canonical nuclear localization signal (NLS) located at its C-terminus. We used a genetic assay in the yeast Saccharomyces cerevisiae to demonstrate that the canonical NLS is present and functional in the E1A proteins of each of the six HAdV species. This assay also detects a previously described non-canonical NLS within conserved region 3 and a novel active NLS within the N-terminal/conserved region 1 portion of HAdV-5 E1A. These activities were also present in the E1A proteins of each of the other five HAdV species. These results demonstrate that, despite substantial differences in primary sequence, HAdV E1A proteins are remarkably consistent in that they contain one canonical and two non-canonical NLSs. By utilizing independent mechanisms, these multiple NLSs ensure nuclear localization of E1A in the infected cell. - Highlights: • HAdV E1A uses multiple mechanisms for nuclear import. • We identified an additional non-canonical NLS in the N-terminal/CR1 portion of E1A. • The new NLS does not contact importin-alpha directly. • All NLSs are functionally conserved in the E1A proteins of all 6 HAdV species.

  9. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  10. Camcore: Thirty-five years of Mesoamerican pine gene conservation

    Science.gov (United States)

    J.L. Lopez; W.S. Dvorak; G.R. Hodge

    2017-01-01

    Camcore is an international tree breeding and conservation program with headquarters at North Carolina State University. Camcore was founded in 1980 as a cooperative, non-profit organization to identify and save the dwindling natural populations of pines in the highland regions of Guatemala in Central America. Funded by the private sector, the program has played an...

  11. AlignMiner: a Web-based tool for detection of divergent regions in multiple sequence alignments of conserved sequences

    Directory of Open Access Journals (Sweden)

    Claros M Gonzalo

    2010-06-01

    Full Text Available Abstract Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used

  12. A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk

    Directory of Open Access Journals (Sweden)

    Lewei Duan

    2013-01-01

    Full Text Available A variety of methods have been proposed for studying the association of multiple genes thought to be involved in a common pathway for a particular disease. Here, we present an extension of a Bayesian hierarchical modeling strategy that allows for multiple SNPs within each gene, with external prior information at either the SNP or gene level. The model involves variable selection at the SNP level through latent indicator variables and Bayesian shrinkage at the gene level towards a prior mean vector and covariance matrix that depend on external information. The entire model is fitted using Markov chain Monte Carlo methods. Simulation studies show that the approach is capable of recovering many of the truly causal SNPs and genes, depending upon their frequency and size of their effects. The method is applied to data on 504 SNPs in 38 candidate genes involved in DNA damage response in the WECARE study of second breast cancers in relation to radiotherapy exposure.

  13. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2016-06-01

    Full Text Available The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for

  14. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C;

    1993-01-01

    this antigen is a good candidate for development as a vaccine to prevent or control P. carinii infection. We have cloned and sequenced seven related but unique genes encoding the major surface glycoprotein of rat P. carinii. Partial amino acid sequencing confirmed the identity of these genes. Based on Southern...... hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development...

  15. G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Directory of Open Access Journals (Sweden)

    Lemay Danielle G

    2012-09-01

    Full Text Available Abstract Background In previous studies, gene neighborhoods—spatial clusters of co-expressed genes in the genome—have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Scoring Tool (G-NEST which combines genomic location, gene expression, and evolutionary sequence conservation data to score putative gene neighborhoods across all possible window sizes simultaneously. Results Using G-NEST on atlases of mouse and human tissue expression data, we found that large neighborhoods of ten or more genes are extremely rare in mammalian genomes. When they do occur, neighborhoods are typically composed of families of related genes. Both the highest scoring and the largest neighborhoods in mammalian genomes are formed by tandem gene duplication. Mammalian gene neighborhoods contain highly and variably expressed genes. Co-localized noisy gene pairs exhibit lower evolutionary conservation of their adjacent genome locations, suggesting that their shared transcriptional background may be disadvantageous. Genes that are essential to mammalian survival and reproduction are less likely to occur in neighborhoods, although neighborhoods are enriched with genes that function in mitosis. We also found that gene orientation and protein-protein interactions are partially responsible for maintenance of gene neighborhoods. Conclusions Our experiments using G-NEST confirm that tandem gene duplication is the primary driver of non-random gene order in mammalian genomes. Non-essentiality, co-functionality, gene orientation, and protein-protein interactions are additional forces that maintain gene neighborhoods, especially those formed by tandem duplicates. We expect G-NEST to be useful for other applications such as the identification of core regulatory modules, common transcriptional backgrounds, and chromatin domains. The

  16. A conserved developmental patterning network produces quantitatively different output in multiple species of Drosophila.

    Science.gov (United States)

    Fowlkes, Charless C; Eckenrode, Kelly B; Bragdon, Meghan D; Meyer, Miriah; Wunderlich, Zeba; Simirenko, Lisa; Luengo Hendriks, Cris L; Keränen, Soile V E; Henriquez, Clara; Knowles, David W; Biggin, Mark D; Eisen, Michael B; DePace, Angela H

    2011-10-01

    Differences in the level, timing, or location of gene expression can contribute to alternative phenotypes at the molecular and organismal level. Understanding the origins of expression differences is complicated by the fact that organismal morphology and gene regulatory networks could potentially vary even between closely related species. To assess the scope of such changes, we used high-resolution imaging methods to measure mRNA expression in blastoderm embryos of Drosophila yakuba and Drosophila pseudoobscura and assembled these data into cellular resolution atlases, where expression levels for 13 genes in the segmentation network are averaged into species-specific, cellular resolution morphological frameworks. We demonstrate that the blastoderm embryos of these species differ in their morphology in terms of size, shape, and number of nuclei. We present an approach to compare cellular gene expression patterns between species, while accounting for varying embryo morphology, and apply it to our data and an equivalent dataset for Drosophila melanogaster. Our analysis reveals that all individual genes differ quantitatively in their spatio-temporal expression patterns between these species, primarily in terms of their relative position and dynamics. Despite many small quantitative differences, cellular gene expression profiles for the whole set of genes examined are largely similar. This suggests that cell types at this stage of development are conserved, though they can differ in their relative position by up to 3-4 cell widths and in their relative proportion between species by as much as 5-fold. Quantitative differences in the dynamics and relative level of a subset of genes between corresponding cell types may reflect altered regulatory functions between species. Our results emphasize that transcriptional networks can diverge over short evolutionary timescales and that even small changes can lead to distinct output in terms of the placement and number of

  17. A conserved developmental patterning network produces quantitatively different output in multiple species of Drosophila.

    Directory of Open Access Journals (Sweden)

    Charless C Fowlkes

    2011-10-01

    Full Text Available Differences in the level, timing, or location of gene expression can contribute to alternative phenotypes at the molecular and organismal level. Understanding the origins of expression differences is complicated by the fact that organismal morphology and gene regulatory networks could potentially vary even between closely related species. To assess the scope of such changes, we used high-resolution imaging methods to measure mRNA expression in blastoderm embryos of Drosophila yakuba and Drosophila pseudoobscura and assembled these data into cellular resolution atlases, where expression levels for 13 genes in the segmentation network are averaged into species-specific, cellular resolution morphological frameworks. We demonstrate that the blastoderm embryos of these species differ in their morphology in terms of size, shape, and number of nuclei. We present an approach to compare cellular gene expression patterns between species, while accounting for varying embryo morphology, and apply it to our data and an equivalent dataset for Drosophila melanogaster. Our analysis reveals that all individual genes differ quantitatively in their spatio-temporal expression patterns between these species, primarily in terms of their relative position and dynamics. Despite many small quantitative differences, cellular gene expression profiles for the whole set of genes examined are largely similar. This suggests that cell types at this stage of development are conserved, though they can differ in their relative position by up to 3-4 cell widths and in their relative proportion between species by as much as 5-fold. Quantitative differences in the dynamics and relative level of a subset of genes between corresponding cell types may reflect altered regulatory functions between species. Our results emphasize that transcriptional networks can diverge over short evolutionary timescales and that even small changes can lead to distinct output in terms of the placement and

  18. Cytogenetics, conserved synteny and evolution of chicken fucosyltransferase genes compared to human

    NARCIS (Netherlands)

    Coullin, P.; Crooijmans, R.P.M.A.; Fillon, V.; Mollicone, R.; Groenen, M.A.M.; Adrien-Dehais, C.; Bernheim, A.; Zoorob, R.; Oriol, R.; Candelier, J.J.

    2003-01-01

    Fucosyltransferases appeared early in evolution, since they are present from bacteria to primates and the genes are well conserved. The aim of this work was to study these genes in the bird group, which is particularly attractive for the comprehension of the evolution of the vertebrate genome. Twelv

  19. Cytogenetics, conserved synteny and evolution of chicken fucosyltransferase genes compared to human

    NARCIS (Netherlands)

    Coullin, P.; Crooijmans, R.P.M.A.; Fillon, V.; Mollicone, R.; Groenen, M.A.M.; Adrien-Dehais, C.; Bernheim, A.; Zoorob, R.; Oriol, R.; Candelier, J.J.

    2003-01-01

    Fucosyltransferases appeared early in evolution, since they are present from bacteria to primates and the genes are well conserved. The aim of this work was to study these genes in the bird group, which is particularly attractive for the comprehension of the evolution of the vertebrate genome. Twelv

  20. Cytogenetics, conserved synteny and evolution of chicken fucosyltransferase genes compared to human

    NARCIS (Netherlands)

    Coullin, P.; Crooijmans, R.P.M.A.; Fillon, V.; Mollicone, R.; Groenen, M.A.M.; Adrien-Dehais, C.; Bernheim, A.; Zoorob, R.; Oriol, R.; Candelier, J.J.

    2003-01-01

    Fucosyltransferases appeared early in evolution, since they are present from bacteria to primates and the genes are well conserved. The aim of this work was to study these genes in the bird group, which is particularly attractive for the comprehension of the evolution of the vertebrate genome.

  1. Evolutionary conservation ofDmrt gene family in amphibi-ans, reptiles and birds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sex determining gene Mab-3 of C. elegans and doublesex of Drosophila contain a common DNA binding motif called a DM domain, both of which regulate similar aspects of sexual development. Human doublesex-related gene DMRT1 has been identified, which also contains the conserved DM-related DNA-binding domain and plays an essential role in gonadal differentiation. We present the amplification of a broad spectrum of DM domain sequences from phylogenetic diverse vertebrates (Cynops orientalis, Chrysemys scripta elegans and Coturnix coturnix) using degenerate PCR. Our results further reveal the unexpected complexity and the evolutionary conservation of the DM domain gene family.

  2. Neuropeptide Y receptor gene y6: multiple deaths or resurrections?

    Science.gov (United States)

    Starbäck, P; Wraith, A; Eriksson, H; Larhammar, D

    2000-10-14

    The neuropeptide Y family of G-protein-coupled receptors consists of five cloned members in mammals. Four genes give rise to functional receptors in all mammals investigated. The y6 gene is a pseudogene in human and pig and is absent in rat, but generates a functional receptor in rabbit and mouse and probably in the collared peccary (Pecari tajacu), a distant relative of the pig family. We report here that the guinea pig y6 gene has a highly distorted nucleotide sequence with multiple frame-shift mutations. One evolutionary scenario may suggest that y6 was inactivated before the divergence of the mammalian orders and subsequently resurrected in some lineages. However, the pseudogene mutations seem to be distinct in human, pig, and guinea pig, arguing for separate inactivation events. In either case, the y6 gene has a quite unusual evolutionary history with multiple independent deaths or resurrections.

  3. Cytokines gene expression in newly diagnosed multiple sclerosis patients.

    OpenAIRE

    Seyed Javad Hasheminia; Sepideh Tolouei; Sayyed Hamid Zarkesh-Esfahani; Vahid Shaygannejad; Hedaiat Allah Shirzad; Reza Torabi; Morteza Hashem Zadeh Chaloshtory

    2015-01-01

    Multiple Sclerosis (MS) is characterized by multiple areas of inflammation, demyelination and neurodegeneration. Infiltrating Th1 CD4+ T cells secrete proinflammatory cytokines. They stimulate the release of some cytokines, expression of adhesion molecules and these cytokines may cause damage to the myelin sheath and axons. In this study, we analyzed plasma levels and gene expressions of five important cytokines in the new diagnosed MS Patients by ELISA and Real time PCR. PCR amplifications w...

  4. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Kohane Isaac

    2005-11-01

    Full Text Available Abstract Background Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories. Results By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes. Conclusion We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged

  5. Prioritizing conservation of ungulate calving resources in multiple-use landscapes.

    Directory of Open Access Journals (Sweden)

    Matthew R Dzialak

    modeling resource selection in a random-effects framework that provided individual-based inference, we conclude that: 1 amplified selection or avoidance behavior and individual variation, as responses to increasing human activity, complicate conservation planning in multiple-use landscapes, and 2 resource selection behavior in places where human activity is predictable or less dynamic may provide a more reliable basis from which to prioritize conservation action.

  6. Importance of Multiple Properties of Water Conservancy and Construction of Water Conservancy Long-Term Mechanism——Study of Water Development Dilemma and Thinking

    Institute of Scientific and Technical Information of China (English)

    Xin; LIU

    2013-01-01

    Since the construction of new socialist countryside," agriculture,rural areas and farmers" have been in the pivotal development period. As the all-around transition and progress of our society,water conservancy construction and other rural public facilities and services seriously lag behind,and it has restricted the formation of long-term mechanism for water conservancy development and brought hidden trouble to harmonious countryside. Based on the great changes of traditional rural areas in politics,economy,society,humanity and ecological,we firstly analyze the status quo of agriculture,rural areas and farmers,then discuss the multiple attributes of water conservancy to construct the longterm mechanism for water conservancy development.

  7. Conservation of the structure and organization of lupin mitochondrial nad3 and rps12 genes.

    Science.gov (United States)

    Rurek, M; Oczkowski, M; Augustyniak, H

    1998-01-01

    A high level of the nucleotide sequence conservation of mitochondrial nad3 and rps12 genes was found in four lupin species. The only differences concern three nucleotides in the Lupinus albus rps12 gene and three nucleotides insertion in the L. mutabilis spacer. Northern blot analysis as well as RT-PCR confirmed cotranscription of the L. luteus genes because the transcripts detected were long enough.

  8. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth

    Science.gov (United States)

    Chaillou, Thomas; Jackson, Janna R.; England, Jonathan H.; Kirby, Tyler J.; Richards-White, Jena; Esser, Karyn A.; Dupont-Versteegden, Esther E.

    2014-01-01

    The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. PMID:25554798

  9. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth.

    Science.gov (United States)

    Chaillou, Thomas; Jackson, Janna R; England, Jonathan H; Kirby, Tyler J; Richards-White, Jena; Esser, Karyn A; Dupont-Versteegden, Esther E; McCarthy, John J

    2015-01-01

    The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. Copyright © 2015 the American Physiological Society.

  10. Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome.

    Science.gov (United States)

    Heo, Paul; Yang, Tae-Jun; Chung, Soon-Chun; Cheon, Yuna; Kim, Jun-Seob; Park, Jun-Bum; Koo, Hyun Min; Cho, Kwang Myung; Seo, Jin-Ho; Park, Jae Chan; Kweon, Dae-Hyuk

    2013-09-10

    While Kluyveromyces marxianus is a promising yeast strain for biotechnological applications, genetic engineering of this strain is still challenging, especially when multiple genes are to be transformed. Sequential gene integration, which takes advantage of repetitive insertion/excision of the URA3 gene as a marker, has been the best option until now, because the URA3-deletion mutant is the only precondition for this method. However, we found that the introduced gene is co-excised during the URA3 excision step for next gene introduction, resulting in a very low cumulative probability (<1.57×10⁻⁶ % for 4 genes) of integrating all genes of interest. To overcome this extremely low probability, and to reduce labor and time, all 4 genes were simultaneously transformed. Surprisingly, the infamously high 'non-homologous end joining' activity of K. marxianus enabled simultaneous integration of all 4 genes in a single step, with a probability of 7.9%. Various K. marxianus strains could also be similarly transformed. Our finding not only reduces the labor and time required for such procedures, but also removes a number of preconditions, such as pre-made vectors, selection markers and knockout mutants, which are needed to introduce many genes into K. marxianus.

  11. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalo

    Full Text Available BACKGROUND: Colorectal cancer (CRC multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. METHODOLOGY/PRINCIPAL FINDINGS: We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2, RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008 and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047 as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006. Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17, SFRP1 (r = 0.83, 0.06, HPP1 (r = 0.64, p = 0.17, 3OST2 (r = 0.83, p = 0.06 and GATA4 (r = 0.6, p = 0.24. Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant

  12. Conserved deployment of genes during odontogenesis across osteichthyans.

    Science.gov (United States)

    Fraser, Gareth J.; Graham, Anthony; Smith, Moya M.

    2004-01-01

    Odontogenesis has only been closely scrutinized at the molecular level in the mouse, an animal with an extremely restricted dentition of only two types and one set. However, within osteichthyans many species display complex and extensive dentitions, which questions the extent to which information from the mouse is applicable to all osteichthyans. We present novel comparative molecular and morphological data in the rainbow trout (Oncorhynchus mykiss) that show that three genes, essential for murine odontogenesis, follow identical spatial-temporal expression. Thus, at all tooth bud sites, epithelial genes Pitx-2 and Shh initiate the odontogenic cascade, resulting in dental mesenchymal Bmp-4 expression, importantly, including the previously unknown formation of replacement teeth. Significantly, this spatial-temporal sequence is the same for marginal and lingual dentitions, but we find notable differences regarding the deployment of Pitx-2 in the developing pharyngeal dentition. This difference may be highly significant in relation to the theory that dentitions may have evolved from pharyngeal tooth sets in jawless fishes. We have provided the first data on operational genes in tooth development to show that the same signalling genes choreograph this evolutionary stable event in fishes since the osteichthyan divergence 420 Myr ago, with the identical spatial-temporal expression as in mammals. PMID:15556883

  13. Conserved deployment of genes during odontogenesis across osteichthyans.

    Science.gov (United States)

    Fraser, Gareth J; Graham, Anthony; Smith, Moya M

    2004-11-22

    Odontogenesis has only been closely scrutinized at the molecular level in the mouse, an animal with an extremely restricted dentition of only two types and one set. However, within osteichthyans many species display complex and extensive dentitions, which questions the extent to which information from the mouse is applicable to all osteichthyans. We present novel comparative molecular and morphological data in the rainbow trout (Oncorhynchus mykiss) that show that three genes, essential for murine odontogenesis, follow identical spatial-temporal expression. Thus, at all tooth bud sites, epithelial genes Pitx-2 and Shh initiate the odontogenic cascade, resulting in dental mesenchymal Bmp-4 expression, importantly, including the previously unknown formation of replacement teeth. Significantly, this spatial-temporal sequence is the same for marginal and lingual dentitions, but we find notable differences regarding the deployment of Pitx-2 in the developing pharyngeal dentition. This difference may be highly significant in relation to the theory that dentitions may have evolved from pharyngeal tooth sets in jawless fishes. We have provided the first data on operational genes in tooth development to show that the same signalling genes choreograph this evolutionary stable event in fishes since the osteichthyan divergence 420 Myr ago, with the identical spatial-temporal expression as in mammals.

  14. Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Yin, Zujun; Li, Chunhe; Han, Xiulan; Shen, Fafu

    2008-05-15

    MicroRNAs (miRNAs) are a class of non-coding RNAs that have important gene regulation roles in various organisms. To date, a total of 1279 plant miRNAs have been deposited in the miRNA miRBase database (Release 10.1). Many of them are conserved during the evolution of land plants suggesting that the well-conserved miRNAs may also retain homologous target interactions. Recently, little is known about the experimental or computational identification of conserved miRNAs and their target genes in tomato. Here, using a computational homology search approach, 21 conserved miRNAs were detected in the Expressed Sequence Tags (EST) and Genomic Survey Sequence (GSS) databases. Following this, 57 potential target genes were predicted by searching the mRNA database. Most of the target mRNAs appeared to be involved in plant growth and development. Our findings verified that the well-conserved tomato miRNAs have retained homologous target interactions amongst divergent plant species. Some miRNAs express diverse combinations in different cell types and have been shown to regulate cell-specific target genes coordinately. We believe that the targeting propensity for genes in different biological processes can be explained largely by their protein connectivity.

  15. Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation.

    Science.gov (United States)

    Liu, Yuan; Cui, Shaojie; Wu, Feng; Yan, Shuo; Lin, Xuelei; Du, Xiaoqiu; Chong, Kang; Schilling, Susanne; Theißen, Günter; Meng, Zheng

    2013-04-01

    There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKC(C) type and MIKC* type. In seed plants, the MIKC(C) type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago.

  16. Simultaneous clustering of multiple gene expression and physical interaction datasets.

    Directory of Open Access Journals (Sweden)

    Manikandan Narayanan

    2010-04-01

    Full Text Available Many genome-wide datasets are routinely generated to study different aspects of biological systems, but integrating them to obtain a coherent view of the underlying biology remains a challenge. We propose simultaneous clustering of multiple networks as a framework to integrate large-scale datasets on the interactions among and activities of cellular components. Specifically, we develop an algorithm JointCluster that finds sets of genes that cluster well in multiple networks of interest, such as coexpression networks summarizing correlations among the expression profiles of genes and physical networks describing protein-protein and protein-DNA interactions among genes or gene-products. Our algorithm provides an efficient solution to a well-defined problem of jointly clustering networks, using techniques that permit certain theoretical guarantees on the quality of the detected clustering relative to the optimal clustering. These guarantees coupled with an effective scaling heuristic and the flexibility to handle multiple heterogeneous networks make our method JointCluster an advance over earlier approaches. Simulation results showed JointCluster to be more robust than alternate methods in recovering clusters implanted in networks with high false positive rates. In systematic evaluation of JointCluster and some earlier approaches for combined analysis of the yeast physical network and two gene expression datasets under glucose and ethanol growth conditions, JointCluster discovers clusters that are more consistently enriched for various reference classes capturing different aspects of yeast biology or yield better coverage of the analysed genes. These robust clusters, which are supported across multiple genomic datasets and diverse reference classes, agree with known biology of yeast under these growth conditions, elucidate the genetic control of coordinated transcription, and enable functional predictions for a number of uncharacterized genes.

  17. Romanian Gene Bank: Perspectives and Aspects for Farm Animal Genetic Resources Conservation

    Directory of Open Access Journals (Sweden)

    Lelior Iacob

    2015-05-01

    Full Text Available Many European countries set up gene banks for farm animal genetic resources (FAnGR. This paper describes the current status of animal genetic resources cryobanking and the perspectives for in vitro conservation of endangered livestock breeds and populations. Conservation efforts in Romania are done by the National Agency for Animal Husbandry ``Prof. dr. G.K. Constantinescu``, which implements activities to aid the farm animal genetic resources conservation and to develop a gene bank. Following the examples provided by other European countries, some improvements in FAnGR management are needed, focusing on aspects and approaches such as genetic and genomic studies, assisted reproduction techniques (ART's and by strengthening collaboration with RD institutions and universities from Romania. The aim of the paper is to give a general overview on current the situation of ex situ conservation efforts of FAnGR in Romania.

  18. Restriction genes for retroviruses influence the risk of multiple sclerosis

    DEFF Research Database (Denmark)

    Nexø, Bjørn A; Hansen, Bettina; Nissen, Kari K

    2013-01-01

    We recently described that the autoimmune, central nervous system disease, multiple sclerosis (MS), is genetically associated with the human endogenous retroviral locus, HERV-Fc1, in Scandinavians. A number of dominant human genes encoding factors that restrict retrovirus replication have been...

  19. Conservation and implications of eukaryote transcriptional regulatory regions across multiple species

    Directory of Open Access Journals (Sweden)

    Deng Minghua

    2008-12-01

    Full Text Available Abstract Background Increasing evidence shows that whole genomes of eukaryotes are almost entirely transcribed into both protein coding genes and an enormous number of non-protein-coding RNAs (ncRNAs. Therefore, revealing the underlying regulatory mechanisms of transcripts becomes imperative. However, for a complete understanding of transcriptional regulatory mechanisms, we need to identify the regions in which they are found. We will call these transcriptional regulation regions, or TRRs, which can be considered functional regions containing a cluster of regulatory elements that cooperatively recruit transcriptional factors for binding and then regulating the expression of transcripts. Results We constructed a hierarchical stochastic language (HSL model for the identification of core TRRs in yeast based on regulatory cooperation among TRR elements. The HSL model trained based on yeast achieved comparable accuracy in predicting TRRs in other species, e.g., fruit fly, human, and rice, thus demonstrating the conservation of TRRs across species. The HSL model was also used to identify the TRRs of genes, such as p53 or OsALYL1, as well as microRNAs. In addition, the ENCODE regions were examined by HSL, and TRRs were found to pervasively locate in the genomes. Conclusion Our findings indicate that 1 the HSL model can be used to accurately predict core TRRs of transcripts across species and 2 identified core TRRs by HSL are proper candidates for the further scrutiny of specific regulatory elements and mechanisms. Meanwhile, the regulatory activity taking place in the abundant numbers of ncRNAs might account for the ubiquitous presence of TRRs across the genome. In addition, we also found that the TRRs of protein coding genes and ncRNAs are similar in structure, with the latter being more conserved than the former.

  20. Multiple OPR genes influence personality traits in substance dependent and healthy subjects in two American populations.

    Science.gov (United States)

    Luo, Xingguang; Zuo, Lingjun; Kranzler, Henry; Zhang, Huiping; Wang, Shuang; Gelernter, Joel

    2008-10-05

    Personality traits are among the most complex quantitative traits. Certain personality traits are associated with substance dependence (SD); genetic factors may influence both. Associations between opioid receptor (OPR) genes and SD have been reported. This study investigated the relationship between OPR genes and personality traits in a case-control sample. We assessed dimensions of the five-factor model of personality in 556 subjects: 250 with SD [181 European-Americans (EAs) and 69 African-Americans (AAs)] and 306 healthy subjects (266 EAs and 40 AAs). We genotyped 20 OPRM1 markers, 8 OPRD1 markers, and 7 OPRK1 markers, and 38 unlinked ancestry-informative markers in these subjects. The relationships between OPR genes and personality traits were examined using MANCOVA, controlling for gene-gene interaction effects and potential confounders. Associations were decomposed by Roy-Bargmann Stepdown ANCOVA. We found that personality traits were associated as main or interaction effects with the haplotypes, diplotypes, alleles and genotypes at the three OPR genes (0.002 CAC/TAC had interaction effects on Openness (P = 0.010) after conservative correction for multiple testing. The present study demonstrates that the genes encoding the mu-, delta-, and kappa-opioid receptors may contribute to variation in personality traits. Further, the three OPR genes have significant interaction effects on personality traits. This work provides additional evidence that personality traits and SD have a partially overlapping genetic basis.

  1. Identification and expression analysis of multiple FRO gene copies in Medicago truncatula.

    Science.gov (United States)

    Del C Orozco-Mosqueda, Ma; Santoyo, G; Farías-Rodríguez, R; Macías-Rodríguez, L; Valencia-Cantero, E

    2012-12-17

    Iron (Fe) is an essential element for plant growth. Commonly, this element is found in an oxidized form in soil, which is poorly available for plants. Therefore, plants have evolved ferric-chelate reductase enzymes (FRO) to reduce iron into a more soluble ferrous form. Fe scarcity in plants induce the FRO enzyme activity. Although the legume Medicago truncatula has been employed as a model for FRO activity studies, only one copy of the M. truncatula MtFRO1 gene has been characterized so far. In this study, we identified multiple gene copies of the MtFRO gene in the genome of M. truncatula by an in silico search, using BLAST analysis in the database of the M. truncatula Genome Sequencing Project and the National Center for Biotechnology Information, and also determined whether they are functional. We identified five genes apart from MtFRO1, which had been already characterized. All of the MtFRO genes exhibited high identity with homologous FRO genes from Lycopersicon esculentum, Citrus junos and Arabidopsis thaliana. The gene copies also presented characteristic conserved FAD and NADPH motifs, transmembrane regions and oxidoreductase signature motifs. We also detected expression in five of the putative MtFRO sequences by semiquantitative RT-PCR analysis, performed with mRNA from root and shoot tissues. Iron scarcity might be a condition for an elevated expression of the MtFRO genes observed in different M. truncatula tissues.

  2. Evolutionary conservation in genes underlying human psychiatric disorders

    OpenAIRE

    Lisa Michelle Ogawa; Eric Joseph Vallender

    2014-01-01

    Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of the protein-coding regions of genes associated...

  3. Evolutionary conservation in genes underlying human psychiatric disorders.

    Science.gov (United States)

    Ogawa, Lisa M; Vallender, Eric J

    2014-01-01

    Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of the protein-coding regions of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago) and 34 non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals, and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant) compared to their small-brained sister species. Evidence of differential selection in humans to the exclusion of non-human primates was absent, however elevated dN/dS was detected in catarrhines as a whole, as well as in cetaceans, possibly as part of a more general trend. Although this may suggest that protein changes associated with schizophrenia and autism are not a cost of the higher brain function found in humans, it may also point to insufficiencies in the study of these diseases including incomplete or inaccurate gene association lists and/or a greater role of regulatory changes or copy number variation. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  4. Evolutionary Conservation in Genes Underlying Human Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Lisa Michelle Ogawa

    2014-05-01

    Full Text Available Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago and thirty one non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant compared to their small-brained sister species. Evidence of differential selection in primates supports the hypothesis that schizophrenia and autism are a cost of higher brain function. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  5. Stable Binding of the Conserved Transcription Factor Grainy Head to its Target Genes Throughout Drosophila melanogaster Development.

    Science.gov (United States)

    Nevil, Markus; Bondra, Eliana R; Schulz, Katharine N; Kaplan, Tommy; Harrison, Melissa M

    2017-02-01

    It has been suggested that transcription factor binding is temporally dynamic, and that changes in binding determine transcriptional output. Nonetheless, this model is based on relatively few examples in which transcription factor binding has been assayed at multiple developmental stages. The essential transcription factor Grainy head (Grh) is conserved from fungi to humans, and controls epithelial development and barrier formation in numerous tissues. Drosophila melanogaster, which possess a single grainy head (grh) gene, provide an excellent system to study this conserved factor. To determine whether temporally distinct binding events allow Grh to control cell fate specification in different tissue types, we used a combination of ChIP-seq and RNA-seq to elucidate the gene regulatory network controlled by Grh during four stages of embryonic development (spanning stages 5-17) and in larval tissue. Contrary to expectations, we discovered that Grh remains bound to at least 1146 genomic loci over days of development. In contrast to this stable DNA occupancy, the subset of genes whose expression is regulated by Grh varies. Grh transitions from functioning primarily as a transcriptional repressor early in development to functioning predominantly as an activator later. Our data reveal that Grh binds to target genes well before the Grh-dependent transcriptional program commences, suggesting it sets the stage for subsequent recruitment of additional factors that execute stage-specific Grh functions. Copyright © 2017 by the Genetics Society of America.

  6. Patterns of evolutionary conservation of essential genes correlate with their compensability.

    Directory of Open Access Journals (Sweden)

    Tobias Bergmiller

    2012-06-01

    Full Text Available Essential genes code for fundamental cellular functions required for the viability of an organism. For this reason, essential genes are often highly conserved across organisms. However, this is not always the case: orthologues of genes that are essential in one organism are sometimes not essential in other organisms or are absent from their genomes. This suggests that, in the course of evolution, essential genes can be rendered nonessential. How can a gene become non-essential? Here we used genetic manipulation to deplete the products of 26 different essential genes in Escherichia coli. This depletion results in a lethal phenotype, which could often be rescued by the overexpression of a non-homologous, non-essential gene, most likely through replacement of the essential function. We also show that, in a smaller number of cases, the essential genes can be fully deleted from the genome, suggesting that complete functional replacement is possible. Finally, we show that essential genes whose function can be replaced in the laboratory are more likely to be non-essential or not present in other taxa. These results are consistent with the notion that patterns of evolutionary conservation of essential genes are influenced by their compensability-that is, by how easily they can be functionally replaced, for example through increased expression of other genes.

  7. Using evolutionary conserved modules in gene networks as a strategy to leverage high throughput gene expression queries.

    Directory of Open Access Journals (Sweden)

    Jeanne M Serb

    Full Text Available BACKGROUND: Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seed-network of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina. CONCLUSIONS/SIGNIFICANCE: We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will

  8. Successful conservative treatment: multiple atypical fractures in osteoporotic patients after bisphosphate medication: a unique case report.

    Science.gov (United States)

    Kim, Hyo-Sang; Jung, Han Young; Kim, Myeong-Ok; Joa, Kyung-Lim; Kim, Yeo Ju; Kwon, Su-Yeon; Kim, Chang-Hwan

    2015-02-01

    Bisphosphonates have been commonly used for the treatment of osteoporosis. However, there have been recent case reports of atypical fractures citing their long-term use, which inhibits the turnover of bone components. A 64-year-old woman visited the outpatient clinic with pain in her right thigh and ambulation difficulty. We found fractures at both pedicles of L4 vertebra. subtrochanteric region of right femur, and left femoral shaft upon a radiologic examination. She had taken intravenous ibandronic sodium for osteoporosis over 3 years. We changed the bishophonates to a parathyroid hormone because it was suspected that the multiple fractures were caused by the medication. Further, rehabilitation, including progressive weight bearing, was started. After 3 months of the conservative treatment, she was able to walk independently. In conclusion, it is necessary to evaluate the possibility of atypical fractures in osteoporotic patients when they complain of lower extremity pain and to consider alternative treatments instead of bisphosphonates.

  9. Impact of the in-medium conservation of energy on the π-/π+ multiplicity ratio

    Science.gov (United States)

    Cozma, M. D.

    2016-05-01

    An upgraded version of the isospin dependent T¨ubingen QMD transport model, which allows the conservation of the total energy, is presented. This is achieved by including in the energy-balance equations of the density, isospin asymmetry and momentum dependent inmedium baryon potential energies. It leads to an effective modification of particle production thresholds with respect to the vacuum ones. Compatible constraints for the symmetry energy stiffness from π-/π+ multiplicity ratio and elliptic flow experimental data of Au+Au collisions at 400 MeV/nucleon can be extracted in this case. However, an important dependence of the π-/π+ observable on the strength of the isovector part of the Δ(1232) isobar potential is also demonstrated. The present lack of information on this quantity prevents a precise extraction of the value for the symmetry energy stiffness employing the mentioned observable alone.

  10. Maximal Expression of the Evolutionarily Conserved Slit2 Gene Promoter Requires Sp1.

    Science.gov (United States)

    Saunders, Jacquelyn; Wisidagama, D Roonalika; Morford, Travis; Malone, Cindy S

    2016-08-01

    Slit2 is a neural axon guidance and chemorepellent protein that stimulates motility in a variety of cell types. The role of Slit2 in neural development and neoplastic growth and migration has been well established, while the genetic mechanisms underlying regulation of the Slit2 gene have not. We identified the core and proximal promoter of Slit2 by mapping multiple transcriptional start sites, analyzing transcriptional activity, and confirming sequence homology for the Slit2 proximal promoter among a number of species. Deletion series and transient transfection identified the Slit2 proximal promoter as within 399 base pairs upstream of the start of transcription. A crucial region for full expression of the Slit2 proximal promoter lies between 399 base pairs and 296 base pairs upstream of the start of transcription. Computer modeling identified three transcription factor-binding consensus sites within this region, of which only site-directed mutagenesis of one of the two identified Sp1 consensus sites inhibited transcriptional activity of the Slit2 proximal promoter (-399 to +253). Bioinformatics analysis of the Slit2 proximal promoter -399 base pair to -296 base pair region shows high sequence conservation over twenty-two species, and that this region follows an expected pattern of sequence divergence through evolution.

  11. Conservative Treatment of Bisphosphonate-Related Osteonecrosis of the Jaw in Multiple Myeloma Patients

    Directory of Open Access Journals (Sweden)

    Pelagia I. Melea

    2014-01-01

    Full Text Available The use of intravenous bisphosphonates (pamidronate or zoledronic acid is the cornerstone for the management of multiple myeloma-(MM- related bone disease. However, osteonecrosis of the jaw (ONJ is a rare, but sometimes difficult to manage, adverse effect of bisphosphonates therapy. A retrospective review of all MM patients who were treated with bisphosphonates in our department, from 2003 to 2013, and developed ONJ was performed. According to inclusion criteria, 38 patients were studied. All these patients were treated as conservatively as possible according to the American Association of Oral and Maxillofacial Surgeons criteria. Patients were managed with observation, oral antibacterial mouth rinse with chlorhexidine, oral antibiotics, pain control with analgesics, nonsurgical sequestrectomy with or without simultaneous administration of antibiotics, or major surgery with or without antibiotics. Healing of the lesions was achieved in 23 (60% patients who were treated with conservative measures; the median time to healing was 12 months (95% CI: 4–21. The number of bisphosphonates infusions influenced the time to healing: the median time to healing for patients who received 16 infusions was it 14 months P=0.017. We conclude that a primarily nonsurgical approach appears to be a successful management strategy for bisphosphonate-related ONJ.

  12. Conserved transcriptional responses to cyanobacterial stressors are mediated by alternate regulation of paralogous genes in Daphnia.

    Science.gov (United States)

    Asselman, Jana; Pfrender, Michael E; Lopez, Jacqueline A; De Coninck, Dieter I M; Janssen, Colin R; Shaw, Joseph R; De Schamphelaere, Karel A C

    2015-04-01

    Despite a significant increase in genomic data, our knowledge of gene functions and their transcriptional responses to environmental stimuli remains limited. Here, we use the model keystone species Daphnia pulex to study environmental responses of genes in the context of their gene family history to better understand the relationship between genome structure and gene function in response to environmental stimuli. Daphnia were exposed to five different treatments, each consisting of a diet supplemented with one of five cyanobacterial species, and a control treatment consisting of a diet of only green algae. Differential gene expression profiles of Daphnia exposed to each of these five cyanobacterial species showed that genes with known functions are more likely to be shared by different expression profiles, whereas genes specific to the lineage of Daphnia are more likely to be unique to a given expression profile. Furthermore, while only a small number of nonlineage-specific genes were conserved across treatment type, there was a high degree of overlap in expression profiles at the functional level. The conservation of functional responses across the different cyanobacterial treatments can be attributed to the treatment-specific expression of different paralogous genes within the same gene family. Comparison with available gene expression data in the literature suggests differences in nutritional composition in diets with cyanobacterial species compared to diets of green algae as a primary driver for cyanobacterial effects on Daphnia. We conclude that conserved functional responses in Daphnia across different cyanobacterial treatments are mediated through alternate regulation of paralogous gene families. © 2015 John Wiley & Sons Ltd.

  13. Informing species conservation at multiple scales using data collected for marine mammal stock assessments.

    Directory of Open Access Journals (Sweden)

    Alana Grech

    Full Text Available BACKGROUND: Conservation planning and the design of marine protected areas (MPAs requires spatially explicit information on the distribution of ecological features. Most species of marine mammals range over large areas and across multiple planning regions. The spatial distributions of marine mammals are difficult to predict using habitat modelling at ecological scales because of insufficient understanding of their habitat needs, however, relevant information may be available from surveys conducted to inform mandatory stock assessments. METHODOLOGY AND RESULTS: We use a 20-year time series of systematic aerial surveys of dugong (Dugong dugong abundance to create spatially-explicit models of dugong distribution and relative density at the scale of the coastal waters of northeast Australia (∼136,000 km(2. We interpolated the corrected data at the scale of 2 km * 2 km planning units using geostatistics. Planning units were classified as low, medium, high and very high dugong density on the basis of the relative density of dugongs estimated from the models and a frequency analysis. Torres Strait was identified as the most significant dugong habitat in northeast Australia and the most globally significant habitat known for any member of the Order Sirenia. The models are used by local, State and Federal agencies to inform management decisions related to the Indigenous harvest of dugongs, gill-net fisheries and Australia's National Representative System of Marine Protected Areas. CONCLUSION/SIGNIFICANCE: In this paper we demonstrate that spatially-explicit population models add value to data collected for stock assessments, provide a robust alternative to predictive habitat distribution models, and inform species conservation at multiple scales.

  14. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness.

    Science.gov (United States)

    Maruyama, Daisuke; Sugiyama, Tomoyuki; Endo, Toshiya; Nishikawa, Shuh-Ichi

    2014-04-01

    Immunoglobulin-binding protein (BiP) is a molecular chaperone of the heat shock protein 70 (Hsp70) family. BiP is localized in the endoplasmic reticulum (ER) and plays key roles in protein translocation, protein folding and quality control in the ER. The genomes of flowering plants contain multiple BiP genes. Arabidopsis thaliana has three BiP genes. BIP1 and BIP2 are ubiquitously expressed. BIP3 encodes a less well conserved BiP paralog, and it is expressed only under ER stress conditions in the majority of organs. Here, we report that all BiP genes are expressed and functional in pollen and pollen tubes. Although the bip1 bip2 double mutation does not affect pollen viability, the bip1 bip2 bip3 triple mutation is lethal in pollen. This result indicates that lethality of the bip1 bip2 double mutation is rescued by BiP3 expression. A decrease in the copy number of the ubiquitously expressed BiP genes correlates well with a decrease in pollen tube growth, which leads to reduced fitness of mutant pollen during fertilization. Because an increased protein secretion activity is expected to increase the protein folding demand in the ER, the multiple BiP genes probably cooperate with each other to ensure ER homeostasis in cells with active secretion such as rapidly growing pollen tubes.

  15. Conservation of position-specific gene expression in axolotl limb skin.

    Science.gov (United States)

    Satoh, Akira; Makanae, Aki

    2014-01-01

    Urodele amphibians can regenerate their limbs after amputation. After amputation, undifferentiated cells appear on the amputation plane and form regeneration blastema. A limb blastema recreates a complete replica of the original limb. It is well known that disturbance of the location of limb tissues prior to amputation perturbs limb patterning, suggesting that different intact limb tissues carry different location information despite their identical appearance. The cause of such differences in intact tissues remains unknown. In this study, we found that Lmx1b, Tbx2, and Tbx3 genes, which are expressed in developing limb in a region specific manner, remained detectable in a mature axolotl limb. Furthermore, those position-specific gene expression patterns were conserved in mature limbs. Treatment with retinoic acid (RA), which is known to have ventralizing activity, changed Lmx1b expression in intact dorsal skin and dorsal character to ventral, indicating that conserved Lmx1b expression was due to the dorsal character and not leaky gene expression. Furthermore, we found that such conserved gene expression was rewritable in regeneration blastemas. These results suggest that axolotl limb cells can recognize their locations and maintain limbness via conserved expression profiles of developmental genes.

  16. Evidence for intron length conservation in a set of mammalian genes associated with embryonic development

    LENUS (Irish Health Repository)

    2011-10-05

    Abstract Background We carried out an analysis of intron length conservation across a diverse group of nineteen mammalian species. Motivated by recent research suggesting a role for time delays associated with intron transcription in gene expression oscillations required for early embryonic patterning, we searched for examples of genes that showed the most extreme conservation of total intron content in mammals. Results Gene sets annotated as being involved in pattern specification in the early embryo or containing the homeobox DNA-binding domain, were significantly enriched among genes with highly conserved intron content. We used ancestral sequences reconstructed with probabilistic models that account for insertion and deletion mutations to distinguish insertion and deletion events on lineages leading to human and mouse from their last common ancestor. Using a randomization procedure, we show that genes containing the homeobox domain show less change in intron content than expected, given the number of insertion and deletion events within their introns. Conclusions Our results suggest selection for gene expression precision or the existence of additional development-associated genes for which transcriptional delay is functionally significant.

  17. Evidence for intron length conservation in a set of mammalian genes associated with embryonic development

    Directory of Open Access Journals (Sweden)

    Korir Paul K

    2011-10-01

    Full Text Available Abstract Background We carried out an analysis of intron length conservation across a diverse group of nineteen mammalian species. Motivated by recent research suggesting a role for time delays associated with intron transcription in gene expression oscillations required for early embryonic patterning, we searched for examples of genes that showed the most extreme conservation of total intron content in mammals. Results Gene sets annotated as being involved in pattern specification in the early embryo or containing the homeobox DNA-binding domain, were significantly enriched among genes with highly conserved intron content. We used ancestral sequences reconstructed with probabilistic models that account for insertion and deletion mutations to distinguish insertion and deletion events on lineages leading to human and mouse from their last common ancestor. Using a randomization procedure, we show that genes containing the homeobox domain show less change in intron content than expected, given the number of insertion and deletion events within their introns. Conclusions Our results suggest selection for gene expression precision or the existence of additional development-associated genes for which transcriptional delay is functionally significant.

  18. Polycomb target genes are silenced in multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Antonia Kalushkova

    Full Text Available Multiple myeloma (MM is a genetically heterogeneous disease, which to date remains fatal. Finding a common mechanism for initiation and progression of MM continues to be challenging. By means of integrative genomics, we identified an underexpressed gene signature in MM patient cells compared to normal counterpart plasma cells. This profile was enriched for previously defined H3K27-tri-methylated genes, targets of the Polycomb group (PcG proteins in human embryonic fibroblasts. Additionally, the silenced gene signature was more pronounced in ISS stage III MM compared to stage I and II. Using chromatin immunoprecipitation (ChIP assay on purified CD138+ cells from four MM patients and on two MM cell lines, we found enrichment of H3K27me3 at genes selected from the profile. As the data implied that the Polycomb-targeted gene profile would be highly relevant for pharmacological treatment of MM, we used two compounds to chemically revert the H3K27-tri-methylation mediated gene silencing. The S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin (DZNep and the histone deacetylase inhibitor LBH589 (Panobinostat, reactivated the expression of genes repressed by H3K27me3, depleted cells from the PRC2 component EZH2 and induced apoptosis in human MM cell lines. In the immunocompetent 5T33MM in vivo model for MM, treatment with LBH589 resulted in gene upregulation, reduced tumor load and increased overall survival. Taken together, our results reveal a common gene signature in MM, mediated by gene silencing via the Polycomb repressor complex. The importance of the underexpressed gene profile in MM tumor initiation and progression should be subjected to further studies.

  19. Multiple aspects of gene dysregulation in Huntington’s Disease.

    Directory of Open Access Journals (Sweden)

    Lara eMoumne

    2013-10-01

    Full Text Available Huntington’s Disease (HD is a genetic neurodegenerative disease caused by a CAG expansion in the gene encoding Huntingtin (Htt. It is characterized by chorea, cognitive and psychiatric disorders. The most affected brain region is the striatum, and the clinical symptoms are directly correlated to the rate of striatal degeneration. The wild-type Htt is a ubiquitous protein and its deletion is lethal. Mutated (expanded Htt produces excitotoxicity, mitochondrial dysfunctions, axonal transport deficit, altered proteasome activity, and gene dysregulation. Transcriptional dysregulation occurs at early neuropathological stages in HD patients. Multiple genes are dysregulated, with overlaps of altered transcripts between mouse models of HD and patient brains. Nuclear localization of Exp-Htt interferes with transcription factors, co-activators and proteins of the transcriptional machinery. Another key mechanism described so far, is an alteration of cytoplasmic retention of the transcriptional repressor REST, which is normally associated with wild-type Htt. As such, Exp-Htt causes alteration of transcription of multiple genes involved in neuronal survival, plasticity, signaling and mitochondrial biogenesis and respiration. Besides these transcriptional dysregulations, Exp-Htt affects the chromatin structure through altered post-translational modifications (PTM of histones and methylation of DNA. Multiple alterations of histone PTM are described, including acetylation, methylation, ubiquitylation, polyamination and phosphorylation. Exp-Htt also affects the expression and regulation of non-coding microRNAs. First multiple neural microRNAs are controlled by REST, and dysregulated in HD, with concomitant de-repression of downstream mRNA targets. Second, Exp-Htt protein or RNA may also play a major role in the processing of miRNAs and hence pathogenesis. These pleiotropic effects of Exp-Htt on gene expression may represent seminal deleterious effects on the

  20. The use of multiple hierarchically independent gene ontology terms in gene function prediction and genome annotation

    NARCIS (Netherlands)

    Kourmpetis, Y.I.A.; Burgt, van der A.; Bink, M.C.A.M.; Braak, ter C.J.F.; Ham, van R.C.H.J.

    2007-01-01

    The Gene Ontology (GO) is a widely used controlled vocabulary for the description of gene function. In this study we quantify the usage of multiple and hierarchically independent GO terms in the curated genome annotations of seven well-studied species. In most genomes, significant proportions (6 -

  1. Comparative analysis of Phytophthora genes encoding secreted proteins reveals conserved synteny and lineage-specific gene duplications and deletions

    NARCIS (Netherlands)

    Jiang, R.H.Y.; Tyler, B.M.; Govers, F.

    2006-01-01

    Comparative analysis of two Phytophthora genomes revealed overall colinearity in four genomic regions consisting of a 1.5-Mb sequence of Phytophthora sojae and a 0.9-Mb sequence of R ramorum. In these regions with conserved synteny, the gene order is largely similar; however, genome rearrangements a

  2. Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales

    Science.gov (United States)

    Wallace, Bryan P.; DiMatteo, Andrew D.; Hurley, Brendan J.; Finkbeiner, Elena M.; Bolten, Alan B.; Chaloupka, Milani Y.; Hutchinson, Brian J.; Abreu-Grobois, F. Alberto; Amorocho, Diego; Bjorndal, Karen A.; Bourjea, Jerome; Bowen, Brian W.; Dueñas, Raquel Briseño; Casale, Paolo; Choudhury, B. C.; Costa, Alice; Dutton, Peter H.; Fallabrino, Alejandro; Girard, Alexandre; Girondot, Marc; Godfrey, Matthew H.; Hamann, Mark; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Mortimer, Jeanne A.; Musick, John A.; Nel, Ronel; Pilcher, Nicolas J.; Seminoff, Jeffrey A.; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B.

    2010-01-01

    Background Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques — including site-based monitoring, genetic analyses, mark-recapture studies and telemetry — can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition

  3. Regional management units for marine turtles: a novel framework for prioritizing conservation and research across multiple scales.

    Directory of Open Access Journals (Sweden)

    Bryan P Wallace

    Full Text Available BACKGROUND: Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques--including site-based monitoring, genetic analyses, mark-recapture studies and telemetry--can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. METHODOLOGY/PRINCIPAL FINDINGS: To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs, for marine turtles globally. CONCLUSIONS/SIGNIFICANCE: The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities

  4. Nitrile Hydratase Genes Are Present in Multiple Eukaryotic Supergroups

    Science.gov (United States)

    Marron, Alan O.; Akam, Michael; Walker, Giselle

    2012-01-01

    Background Nitrile hydratases are enzymes involved in the conversion of nitrile-containing compounds into ammonia and organic acids. Although they are widespread in prokaryotes, nitrile hydratases have only been reported in two eukaryotes: the choanoflagellate Monosiga brevicollis and the stramenopile Aureococcus anophagefferens. The nitrile hydratase gene in M. brevicollis was believed to have arisen by lateral gene transfer from a prokaryote, and is a fusion of beta and alpha nitrile hydratase subunits. Only the alpha subunit has been reported in A. anophagefferens. Methodology/Principal Findings Here we report the detection of nitrile hydratase genes in five eukaryotic supergroups: opisthokonts, amoebozoa, archaeplastids, CCTH and SAR. Beta-alpha subunit fusion genes are found in the choanoflagellates, ichthyosporeans, apusozoans, haptophytes, rhizarians and stramenopiles, and potentially also in the amoebozoans. An individual alpha subunit is found in a dinoflagellate and an individual beta subunit is found in a haptophyte. Phylogenetic analyses recover a clade of eukaryotic-type nitrile hydratases in the Opisthokonta, Amoebozoa, SAR and CCTH; this is supported by analyses of introns and gene architecture. Two nitrile hydratase sequences from an animal and a plant resolve in the prokaryotic nitrile hydratase clade. Conclusions/Significance The evidence presented here demonstrates that nitrile hydratase genes are present in multiple eukaryotic supergroups, suggesting that a subunit fusion gene was present in the last common ancestor of all eukaryotes. The absence of nitrile hydratase from several sequenced species indicates that subunits were lost in multiple eukaryotic taxa. The presence of nitrile hydratases in many other eukaryotic groups is unresolved due to insufficient data and taxon sampling. The retention and expression of the gene in distantly related eukaryotic species suggests that it plays an important metabolic role. The novel family of eukaryotic

  5. Comparative transcriptomics of convergent evolution: different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects.

    Science.gov (United States)

    Berens, Ali J; Hunt, James H; Toth, Amy L

    2015-03-01

    An area of great interest in evolutionary genomics is whether convergently evolved traits are the result of convergent molecular mechanisms. The presence of queen and worker castes in insect societies is a spectacular example of convergent evolution and phenotypic plasticity. Multiple insect lineages have evolved environmentally induced alternative castes. Given multiple origins of eusociality in Hymenoptera (bees, ants, and wasps), it has been proposed that insect castes evolved from common genetic "toolkits" consisting of deeply conserved genes. Here, we combine data from previously published studies on fire ants and honey bees with new data for Polistes metricus paper wasps to assess the toolkit idea by presenting the first comparative transcriptome-wide analysis of caste determination among three major hymenopteran social lineages. Overall, we found few shared caste differentially expressed transcripts across the three social lineages. However, there is substantially more overlap at the levels of pathways and biological functions. Thus, there are shared elements but not on the level of specific genes. Instead, the toolkit appears to be relatively "loose," that is, different lineages show convergent molecular evolution involving similar metabolic pathways and molecular functions but not the exact same genes. Additionally, our paper wasp data do not support a complementary hypothesis that "novel" taxonomically restricted genes are related to caste differences. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  7. Functional conservation of a glucose-repressible amylase gene promoter from Drosophila virilis in Drosophila melanogaster.

    Science.gov (United States)

    Magoulas, C; Loverre-Chyurlia, A; Abukashawa, S; Bally-Cuif, L; Hickey, D A

    1993-03-01

    Previous studies have demonstrated that the expression of the alpha-amylase gene is repressed by dietary glucose in Drosophila melanogaster. Here, we show that the alpha-amylase gene of a distantly related species, D. virilis, is also subject to glucose repression. Moreover, the cloned amylase gene of D. virilis is shown to be glucose repressible when it is transiently expressed in D. melanogaster larvae. This cross-species, functional conservation is mediated by a 330-bp promoter region of the D. virilis amylase gene. These results indicate that the promoter elements required for glucose repression are conserved between distantly related Drosophila species. A sequence comparison between the amylase genes of D. virilis and D. melanogaster shows that the promoter sequences diverge to a much greater degree than the coding sequences. The amylase promoters of the two species do, however, share small clusters of sequence similarity, suggesting that these conserved cis-acting elements are sufficient to control the glucose-regulated expression of the amylase gene in the genus Drosophila.

  8. Detecting the limits of regulatory element conservation anddivergence estimation using pairwise and multiple alignments

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, Daniel A.; Moses, Alan M.; Iyer, Venky N.; Eisen,Michael B.

    2006-08-14

    Background: Molecular evolutionary studies of noncodingsequences rely on multiple alignments. Yet how multiple alignmentaccuracy varies across sequence types, tree topologies, divergences andtools, and further how this variation impacts specific inferences,remains unclear. Results: Here we develop a molecular evolutionsimulation platform, CisEvolver, with models of background noncoding andtranscription factor binding site evolution, and use simulated alignmentsto systematically examine multiple alignment accuracy and its impact ontwo key molecular evolutionary inferences: transcription factor bindingsite conservation and divergence estimation. We find that the accuracy ofmultiple alignments is determined almost exclusively by the pairwisedivergence distance of the two most diverged species and that additionalspecies have a negligible influence on alignment accuracy. Conservedtranscription factor binding sites align better than surroundingnoncoding DNA yet are often found to be misaligned at relatively shortdivergence distances, such that studies of binding site gain and losscould easily be confounded by alignment error. Divergence estimates frommultiple alignments tend to be overestimated at short divergencedistances but reach a tool specific divergence at which they cease toincrease, leading to underestimation at long divergences. Our moststriking finding was that overall alignment accuracy, binding sitealignment accuracy and divergence estimation accuracy vary greatly acrossbranches in a tree and are most accurate for terminal branches connectingsister taxa and least accurate for internal branches connectingsub-alignments. Conclusions: Our results suggest that variation inalignment accuracy can lead to errors in molecular evolutionaryinferences that could be construed as biological variation. Thesefindings have implications for which species to choose for analyses, whatkind of errors would be expected for a given set of species and howmultiple alignment tools and

  9. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H

    2011-01-01

    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...

  10. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype.

    Directory of Open Access Journals (Sweden)

    Geert A Martens

    Full Text Available BACKGROUND AND METHODOLOGY: The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators. PRINCIPAL FINDINGS: A panel of 332 conserved beta cell biomarker genes was found to discriminate both isolated and laser capture microdissected beta cells from all other examined cell types. Of all conserved beta cell-markers, 15% were strongly beta cell-selective and functionally associated to hormone processing, 15% were shared with neuronal cells and associated to regulated synaptic vesicle transport and 30% with immune plus gut mucosal tissues reflecting active protein synthesis. Fasting specifically down-regulated the latter cluster, but preserved the neuronal and strongly beta cell-selective traits, indicating preserved differentiated state. Analysis of consensus binding site enrichment indicated major roles of CREB/ATF and various nutrient- or redox-regulated transcription factors in maintenance of differentiated beta cell phenotype. CONCLUSIONS: Conserved beta cell marker genes contain major gene clusters defined by their beta cell selectivity or by their additional abundance in either neural cells or in immune plus gut mucosal cells. This panel can be used as a template to identify changes in the differentiated state of beta cells.

  11. Ranking multiple docking solutions based on the conservation of inter-residue contacts

    KAUST Repository

    Oliva, Romina M.

    2013-06-17

    Molecular docking is the method of choice for investigating the molecular basis of recognition in a large number of functional protein complexes. However, correctly scoring the obtained docking solutions (decoys) to rank native-like (NL) conformations in the top positions is still an open problem. Herein we present CONSRANK, a simple and effective tool to rank multiple docking solutions, which relies on the conservation of inter-residue contacts in the analyzed decoys ensemble. First it calculates a conservation rate for each inter-residue contact, then it ranks decoys according to their ability to match the more frequently observed contacts. We applied CONSRANK to 102 targets from three different benchmarks, RosettaDock, DOCKGROUND, and Critical Assessment of PRedicted Interactions (CAPRI). The method performs consistently well, both in terms of NL solutions ranked in the top positions and of values of the area under the receiver operating characteristic curve. Its ideal application is to solutions coming from different docking programs and procedures, as in the case of CAPRI targets. For all the analyzed CAPRI targets where a comparison is feasible, CONSRANK outperforms the CAPRI scorers. The fraction of NL solutions in the top ten positions in the RosettaDock, DOCKGROUND, and CAPRI benchmarks is enriched on average by a factor of 3.0, 1.9, and 9.9, respectively. Interestingly, CONSRANK is also able to specifically single out the high/medium quality (HMQ) solutions from the docking decoys ensemble: it ranks 46.2 and 70.8% of the total HMQ solutions available for the RosettaDock and CAPRI targets, respectively, within the top 20 positions. © 2013 Wiley Periodicals, Inc.

  12. Genes and Environment in Multiple Sclerosis project: A platform to investigate multiple sclerosis risk.

    Science.gov (United States)

    Xia, Zongqi; White, Charles C; Owen, Emily K; Von Korff, Alina; Clarkson, Sarah R; McCabe, Cristin A; Cimpean, Maria; Winn, Phoebe A; Hoesing, Ashley; Steele, Sonya U; Cortese, Irene C M; Chitnis, Tanuja; Weiner, Howard L; Reich, Daniel S; Chibnik, Lori B; De Jager, Philip L

    2016-02-01

    The Genes and Environment in Multiple Sclerosis project establishes a platform to investigate the events leading to multiple sclerosis (MS) in at-risk individuals. It has recruited 2,632 first-degree relatives from across the USA. Using an integrated genetic and environmental risk score, we identified subjects with twice the MS risk when compared to the average family member, and we report an initial incidence rate in these subjects that is 30 times greater than that of sporadic MS. We discuss the feasibility of large-scale studies of asymptomatic at-risk subjects that leverage modern tools of subject recruitment to execute collaborative projects.

  13. Atlantic cod (Gadus morhua hemoglobin genes: multiplicity and polymorphism

    Directory of Open Access Journals (Sweden)

    Gamperl A Kurt

    2009-09-01

    Atlantic cod than previously documented. Our finding that nine Hb genes are expressed simultaneously in adult fish suggests that Atlantic cod, similarly to fish such as rainbow trout, carp, and goldfish, might be able to respond to environmental challenges such as chronic hypoxia or long-term changes in temperature by altering the level of expression of these genes. In this context, the role of the non-conservative substitution Lys62Ala found in the β1 Hb gene, which appears to explain the occurrence of the HbI-1 and HbI-2 alleles described by gel electrophoresis, and which was found to be present in other fish such as eel, emerald rockcod, rainbow trout and moray, requires further investigation.

  14. Social networks and environmental management at multiple levels: soil conservation in Sumatra

    Directory of Open Access Journals (Sweden)

    Petr Matous

    2015-09-01

    . Qualitative interviews showed that farmers who opt for organic fertilizers do so partially because of pressure from global traders, mediated through external links and amplified by dense and reciprocal relations within their groups. The results highlight the need for environmental management policies to be based on research at multiple scales and demonstrate that, counter-intuitively, increasing global economic interconnectivity may, in some cases, stimulate the adoption of conservation practices via local social networks.

  15. Metazoan Remaining Genes for Essential Amino Acid Biosynthesis: Sequence Conservation and Evolutionary Analyses

    Directory of Open Access Journals (Sweden)

    Igor R. Costa

    2014-12-01

    Full Text Available Essential amino acids (EAA consist of a group of nine amino acids that animals are unable to synthesize via de novo pathways. Recently, it has been found that most metazoans lack the same set of enzymes responsible for the de novo EAA biosynthesis. Here we investigate the sequence conservation and evolution of all the metazoan remaining genes for EAA pathways. Initially, the set of all 49 enzymes responsible for the EAA de novo biosynthesis in yeast was retrieved. These enzymes were used as BLAST queries to search for similar sequences in a database containing 10 complete metazoan genomes. Eight enzymes typically attributed to EAA pathways were found to be ubiquitous in metazoan genomes, suggesting a conserved functional role. In this study, we address the question of how these genes evolved after losing their pathway partners. To do this, we compared metazoan genes with their fungal and plant orthologs. Using phylogenetic analysis with maximum likelihood, we found that acetolactate synthase (ALS and betaine-homocysteine S-methyltransferase (BHMT diverged from the expected Tree of Life (ToL relationships. High sequence conservation in the paraphyletic group Plant-Fungi was identified for these two genes using a newly developed Python algorithm. Selective pressure analysis of ALS and BHMT protein sequences showed higher non-synonymous mutation ratios in comparisons between metazoans/fungi and metazoans/plants, supporting the hypothesis that these two genes have undergone non-ToL evolution in animals.

  16. Copy number variations exploration of multiple genes in Graves' disease.

    Science.gov (United States)

    Song, Rong-Hua; Shao, Xiao-Qing; Li, Ling; Wang, Wen; Zhang, Jin-An

    2017-01-01

    Few previous published papers reported copy number variations of genes could affect the predisposition of Graves' disease (GD). Herein, the aim of this study was to explore the association between copy number variations (CNV) profile and GD. The preliminary copy number microarray used to screen copy number variant genes was performed in 6 GD patients. Five CNV candidate genes (CFH, CFHR1, KIAA0125, UGT2B15, and UGT2B17) were then validated in an independent set of samples (50 GD patients and 50 matched healthy ones) by the Accucopy assay method. The CNV of the other 2 genes TRY6 and CCL3L1 was investigated in 144 GD patients and 144 healthy volunteers by the definitive genotyping technique using the Taqman quantitative polymerase-chain-reaction (Taqman qPCR). TRY6 gene-associated single nucleotide polymorphism (SNP), rs13230029, was genotyped by the PCR-ligase detection reaction (LDR) in 675 GD patients and 898 healthy controls. There were no correlation of the gene copy number (GCN) of CFH, CFHR1, KIAA0125, UGT2B15, and UGT2B17 with GD. In comparison with that of controls, the GCN distribution of TRY6 and CCL3L1 in GD patients did not show significantly differ (P > 0.05). Furthermore, TRY6-related polymorphism (rs13230029) showed no difference between GD patients and controls. No correlation was found between CNV or SNP genotype and clinical phenotypes. Generally, there were no link of the copy numbers of several genes, including CFH, CFHR1, KIAA0125, UGT2B15, UGT2B17, TRY6, and CCL3L1 to GD. Our results clearly indicated that the copy number variations of multiple genes, namely CFH, CFHR1, KIAA0125, UGT2B15, UGT2B17, TRY6, and CCL3L1, were not associated with the development of GD.

  17. A conserved gene structure and expression regulation of miR-433 and miR-127 in mammals.

    Directory of Open Access Journals (Sweden)

    Guisheng Song

    Full Text Available MicroRNAs play essential roles in many cellular processes. However, limited information is available regarding the gene structure and transcriptional regulation of miRNAs. We explored the gene cluster encoding miR-433/127 in mammalian species using bioinformatics and in vitro "gene" expression approaches. Multiple sequence alignments (MSA showed that the precursors of miR-433 and of miR-127 exhibited 95% and 100% similarity, respectively, in human, chimpanzee, horse, dog, monkey, rat, cow, and mouse. MSA of the promoter sequences of miR-433 and of miR-127 revealed lower sequence similarity among these mammalian species. However, the distance between miR-433 and miR-127 was strikingly similar, which was between 986 and 1007 bp and the position of transcription factor (TF binding motifs, including estrogen related receptor response element (ERRE, was well conserved. Transient transfection assays showed that promoters of miR-433 and of miR-127 from human, rat, and dog were activated by estrogen related receptor gamma (ERRgamma and inhibited by small heterodimer partner (SHP. ChIP assays confirmed the physical association of ERRgamma with the endogenous promoters of miR-433 and miR-127. In vitro over-expression of the human, rat, or dog miR-433/127 loci in cells, using an expression vector containing miR-433/127 and their promoter regions, markedly induced a differential expression of both primary and mature miR-433 and miR-127, indicating that miR-433 and miR-127 were possessed from their independent promoters. Our studies for the first time demonstrate a conserved gene structure and transcriptional regulation of miR-433 and miR-127 in mammals. The data suggest that the miR-433/127 loci may have evolved from a common gene of origin.

  18. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032.

    Directory of Open Access Journals (Sweden)

    Jason Gioia

    Full Text Available BACKGROUND: Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, gamma-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. PRINCIPAL FINDINGS: The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. SIGNIFICANCE: This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.

  19. Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning.

    Directory of Open Access Journals (Sweden)

    Iryna Kozmikova

    Full Text Available Formation of a dorsoventral axis is a key event in the early development of most animal embryos. It is well established that bone morphogenetic proteins (Bmps and Wnts are key mediators of dorsoventral patterning in vertebrates. In the cephalochordate amphioxus, genes encoding Bmps and transcription factors downstream of Bmp signaling such as Vent are expressed in patterns reminiscent of those of their vertebrate orthologues. However, the key question is whether the conservation of expression patterns of network constituents implies conservation of functional network interactions, and if so, how an increased functional complexity can evolve. Using heterologous systems, namely by reporter gene assays in mammalian cell lines and by transgenesis in medaka fish, we have compared the gene regulatory network implicated in dorsoventral patterning of the basal chordate amphioxus and vertebrates. We found that Bmp but not canonical Wnt signaling regulates promoters of genes encoding homeodomain proteins AmphiVent1 and AmphiVent2. Furthermore, AmphiVent1 and AmphiVent2 promoters appear to be correctly regulated in the context of a vertebrate embryo. Finally, we show that AmphiVent1 is able to directly repress promoters of AmphiGoosecoid and AmphiChordin genes. Repression of genes encoding dorsal-specific signaling molecule Chordin and transcription factor Goosecoid by Xenopus and zebrafish Vent genes represents a key regulatory interaction during vertebrate axis formation. Our data indicate high evolutionary conservation of a core Bmp-triggered gene regulatory network for dorsoventral patterning in chordates and suggest that co-option of the canonical Wnt signaling pathway for dorsoventral patterning in vertebrates represents one of the innovations through which an increased morphological complexity of vertebrate embryo is achieved.

  20. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H

    2011-01-01

    of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture......The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...

  1. Using occupancy estimation to assess the effectiveness of a regional multiple-species conservation plan: bats in the Pacific Northwest

    Science.gov (United States)

    Theodore Weller

    2008-01-01

    Regional conservation plans are increasingly used to plan for and protect biodiversity at large spatial scales however the means of quantitatively evaluating their effectiveness are rarely specified. Multiple-species approaches, particular those which employ site-occupancy estimation, have been proposed as robust and efficient alternatives for assessing the status of...

  2. Conservation of Pax gene expression in ectodermal placodes of the lamprey

    Science.gov (United States)

    McCauley, David W.; Bronner-Fraser, Marianne

    2002-01-01

    Ectodermal placodes contribute to the cranial ganglia and sense organs of the head and, together with neural crest cells, represent defining features of the vertebrate embryo. The identity of different placodes appears to be specified in part by the expression of different Pax genes, with Pax-3/7 class genes being expressed in the trigeminal placode of mice, chick, frogs and fish, and Pax-2/5/8 class genes expressed in the otic placode. Here, we present the cloning and expression pattern of lamprey Pax-7 and Pax-2, which mark the trigeminal and otic placodes, respectively, as well as other structures characteristic of vertebrate Pax genes. These results suggest conservation of Pax genes and placodal structures in basal and derived vertebrates.

  3. The gene vitellogenin has multiple coordinating effects on social organization.

    Directory of Open Access Journals (Sweden)

    C Mindy Nelson

    2007-03-01

    Full Text Available Temporal division of labor and foraging specialization are key characteristics of honeybee social organization. Worker honeybees (Apis mellifera initiate foraging for food around their third week of life and often specialize in collecting pollen or nectar before they die. Variation in these fundamental social traits correlates with variation in worker reproductive physiology. However, the genetic and hormonal mechanisms that mediate the control of social organization are not understood and remain a central question in social insect biology. Here we demonstrate that a yolk precursor gene, vitellogenin, affects a complex suite of social traits. Vitellogenin is a major reproductive protein in insects in general and a proposed endocrine factor in honeybees. We show by use of RNA interference (RNAi that vitellogenin gene activity paces onset of foraging behavior, primes bees for specialized foraging tasks, and influences worker longevity. These findings support the view that the worker specializations that characterize hymenopteran sociality evolved through co-option of reproductive regulatory pathways. Further, they demonstrate for the first time how coordinated control of multiple social life-history traits can originate via the pleiotropic effects of a single gene that affects multiple physiological processes.

  4. Molecular analysis of immunoglobulin genes in multiple myeloma.

    Science.gov (United States)

    Kosmas, C; Stamatopoulos, K; Stavroyianni, N; Belessi, C; Viniou, N; Yataganas, X

    1999-04-01

    The study of immunoglobulin genes in multiple myeloma over the last five years has provided important information regarding biology, ontogenetic location, disease evolution, pathogenic consequences and tumor-specific therapeutic intervention with idiotypic vaccination. Detailed analysis of V(H) genes has revealed clonal relationship between switch variants expressed by the bone marrow plasma cell and myeloma progenitors in the marrow and peripheral blood. V(H) gene usage is biased against V4-34 (encoding antibodies with cold agglutinin specificity; anti-l/i) explaining the absence of autoimmune phenomena in myeloma compared to other B-cell lymphoproliferative disorders. V(H) genes accumulate somatic hypermutations following a distribution compatible with antigen selection, but with no intraclonal heterogeneity. V(L) genes indicate a bias in usage of VkappaI family members and somatic hypermutation, in line with antigen selection, of the expressed Vkappa genes is higher than any other B-cell lymphoid disorder. A complementary imprint of antigen selection as evidenced by somatic hypermutation of either the V(H) or V(L) clonogenic genes has been observed. The absence of ongoing somatic mutations in either V(H) or V(L) genes gives rise to the notion that the cell of origin in myeloma is a post-germinal center memory B-cell. Clinical application of sensitive PCR methods in order to detect clonal immunoglobulin gene rearrangements has made relevant the monitoring and follow-up of minimal residual disease in stem cell autografts and after myeloablative therapy. The fact that surface immunoglobulin V(H) and V(L) sequences constitute unique tumor-specific antigenic determinants has stimulated investigators to devise strategies aiming to generate active specific immunity against the idiotype of malignant B-cells in myeloma by constructing vaccines based on expressed single-chain Fv fragments, DNA plasmids carrying V(H)+V(L) clonogenic genes for naked DNA vaccination, or

  5. Human cytomegalovirus UL145 gene is highly conserved among clinical strains

    Indian Academy of Sciences (India)

    Zhengrong Sun; Ying Lu; Qiang Ruan; Yaohua Ji; Rong He; Ying Qi; Yanping Ma; Yujing Huang

    2007-09-01

    Human cytomegalovirus (HCMV), a ubiquitous human pathogen, is the leading cause of birth defects in newborns. A region (referred to as UL/b′) present in the Toledo strain of HCMV and low-passage clinical isolates) contains 22 additional genes, which are absent in the highly passaged laboratory strain AD169. One of these genes, UL145 open reading frame (ORF), is located between the highly variable genes UL144 and UL146. To assess the structure of the UL145 gene, the UL145 ORF was amplified by PCR and sequenced from 16 low-passage clinical isolates and 15 non-passage strains from suspected congenitally infected infants. Nine UL145 sequences previously published in the GenBank were used for sequence comparison. The identities of the gene and the similarities of its putative protein among all strains were 95.9–100% and 96.6–100%, respectively. The post-translational modification motifs of the UL145 putative protein in clinical strains were conserved, comprising the protein kinase C phosphorylation motif (PKC) and casein kinase II phosphorylation site (CK-II). We conclude that the structure of the UL145 gene and its putative protein are relatively conserved among clinical strains, irrespective of whether the strains come from patients with different manifestations, from different areas of the world, or were passaged or not in human embryonic lung fibroblast (HELF) cells.

  6. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    Directory of Open Access Journals (Sweden)

    Lynch Michael

    2010-05-01

    Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  7. Isolation of BAC Clones Containing Conserved Genes from Libraries of Three Distantly Related Moths: A Useful Resource for Comparative Genomics of Lepidoptera

    Directory of Open Access Journals (Sweden)

    Yuji Yasukochi

    2011-01-01

    Full Text Available Lepidoptera, butterflies and moths, is the second largest animal order and includes numerous agricultural pests. To facilitate comparative genomics in Lepidoptera, we isolated BAC clones containing conserved and putative single-copy genes from libraries of three pests, Heliothis virescens, Ostrinia nubilalis, and Plutella xylostella, harboring the haploid chromosome number, =31, which are not closely related with each other or with the silkworm, Bombyx mori, (=28, the sequenced model lepidopteran. A total of 108–184 clones representing 101–182 conserved genes were isolated for each species. For 79 genes, clones were isolated from more than two species, which will be useful as common markers for analysis using fluorescence in situ hybridization (FISH, as well as for comparison of genome sequence among multiple species. The PCR-based clone isolation method presented here is applicable to species which lack a sequenced genome but have a significant collection of cDNA or EST sequences.

  8. Handling multiple testing while interpreting microarrays with the Gene Ontology Database

    Directory of Open Access Journals (Sweden)

    Zhao Hongyu

    2004-09-01

    Full Text Available Abstract Background The development of software tools that analyze microarray data in the context of genetic knowledgebases is being pursued by multiple research groups using different methods. A common problem for many of these tools is how to correct for multiple statistical testing since simple corrections are overly conservative and more sophisticated corrections are currently impractical. A careful study of the nature of the distribution one would expect by chance, such as by a simulation study, may be able to guide the development of an appropriate correction that is not overly time consuming computationally. Results We present the results from a preliminary study of the distribution one would expect for analyzing sets of genes extracted from Drosophila, S. cerevisiae, Wormbase, and Gramene databases using the Gene Ontology Database. Conclusions We found that the estimated distribution is not regular and is not predictable outside of a particular set of genes. Permutation-based simulations may be necessary to determine the confidence in results of such analyses.

  9. Functional analysis of sirtuin genes in multiple Plasmodium falciparum strains.

    Directory of Open Access Journals (Sweden)

    Catherine J Merrick

    Full Text Available Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying 'sirtuin' enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3 in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity.

  10. Functional analysis of sirtuin genes in multiple Plasmodium falciparum strains.

    Science.gov (United States)

    Merrick, Catherine J; Jiang, Rays H Y; Skillman, Kristen M; Samarakoon, Upeka; Moore, Rachel M; Dzikowski, Ron; Ferdig, Michael T; Duraisingh, Manoj T

    2015-01-01

    Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying 'sirtuin' enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3) in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity.

  11. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants

    Directory of Open Access Journals (Sweden)

    H. C. Rawal

    2013-01-01

    Full Text Available Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL and peroxidase A (POX A enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula, fruits (Vitis vinifera, cereals (Sorghum bicolor, Zea mays, and Oryza sativa, trees (Populus trichocarpa, and model dicot (Arabidopsis thaliana and monocot (Brachypodium distachyon species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  12. Phylogenetic conservation of immunoglobulin heavy chains: direct comparison of hamster and mouse Cmu genes.

    Science.gov (United States)

    McGuire, K L; Duncan, W R; Tucker, P W

    1985-08-12

    We have analyzed the JH-Cmu locus of the Syrian hamster by DNA cloning and sequencing. The single Cmu gene is highly homologous to that of the mouse. The hamster equivalents of the JH and switch (S) recombination regions are arranged as in the mouse, but surprisingly are not highly conserved. Also unlike its close murine relative, the Smu regions among inbred hamster strains are not polymorphic. The complete nucleotide sequence of hamster and mouse Cmu genes have been compared to partial Cmu sequences of other species. Conservation within a portion of the 3' untranslated region may signify functional requirements for 3' end processing. Mutational frequencies within exons and introns of hamster and mouse do not support the theory that the rate of DNA transitions to transversions decreases with evolutionary distance.

  13. Evolutionary conservation of zinc finger transcription factor binding sites in promoters of genes co-expressed with WT1 in prostate cancer

    Directory of Open Access Journals (Sweden)

    Brett Adina

    2008-07-01

    Full Text Available Abstract Background Gene expression analyses have led to a better understanding of growth control of prostate cancer cells. We and others have identified the presence of several zinc finger transcription factors in the neoplastic prostate, suggesting a potential role for these genes in the regulation of the prostate cancer transcriptome. One of the transcription factors (TFs identified in the prostate cancer epithelial cells was the Wilms tumor gene (WT1. To rapidly identify coordinately expressed prostate cancer growth control genes that may be regulated by WT1, we used an in silico approach. Results Evolutionary conserved transcription factor binding sites (TFBS recognized by WT1, EGR1, SP1, SP2, AP2 and GATA1 were identified in the promoters of 24 differentially expressed prostate cancer genes from eight mammalian species. To test the relationship between sequence conservation and function, chromatin of LNCaP prostate cancer and kidney 293 cells were tested for TF binding using chromatin immunoprecipitation (ChIP. Multiple putative TFBS in gene promoters of placental mammals were found to be shared with those in human gene promoters and some were conserved between genomes that diverged about 170 million years ago (i.e., primates and marsupials, therefore implicating these sites as candidate binding sites. Among those genes coordinately expressed with WT1 was the kallikrein-related peptidase 3 (KLK3 gene commonly known as the prostate specific antigen (PSA gene. This analysis located several potential WT1 TFBS in the PSA gene promoter and led to the rapid identification of a novel putative binding site confirmed in vivo by ChIP. Conversely for two prostate growth control genes, androgen receptor (AR and vascular endothelial growth factor (VEGF, known to be transcriptionally regulated by WT1, regulatory sequence conservation was observed and TF binding in vivo was confirmed by ChIP. Conclusion Overall, this targeted approach rapidly identified

  14. Multiple and variable NHEJ-like genes are involved in resistance to DNA damage in Streptomyces ambofaciens

    Directory of Open Access Journals (Sweden)

    Grégory Hoff

    2016-11-01

    Full Text Available Non homologous end-joining (NHEJ is a double strand break (DSB repair pathway which does not require any homologous template and can ligate two DNA ends together. The basic bacterial NHEJ machinery involves two partners: the Ku protein, a DNA end binding protein for DSB recognition and the multifunctional LigD protein composed a ligase, a nuclease and a polymerase domain, for end processing and ligation of the broken ends. In silico analyses performed in the 38 sequenced genomes of Streptomyces species revealed the existence of a large panel of NHEJ-like genes. Indeed, ku genes or ligD domain homologues are scattered throughout the genome in multiple copies and can be distinguished in two categories: the core NHEJ gene set constituted of conserved loci and the variable NHEJ gene set constituted of NHEJ-like genes present in only a part of the species. In Streptomyces ambofaciens ATCC 23877, not only the deletion of core genes but also that of variable genes led to an increased sensitivity to DNA damage induced by electron beam irradiation. Multiple mutants of ku, ligase or polymerase encoding genes showed an aggravated phenotype compared to single mutants. Biochemical assays revealed the ability of Ku-like proteins to protect and to stimulate ligation of DNA ends. RT-qPCR and GFP fusion experiments suggested that ku-like genes show a growth phase dependent expression profile consistent with their involvement in DNA repair during spores formation and/or germination.

  15. Conserved gene arrangement in the origin region of the Streptomyces coelicolor chromosome.

    OpenAIRE

    1992-01-01

    A 23-kb fragment of the Streptomyces coelicolor chromosome spanning the dnaA region has been isolated as a cosmid clone. Nucleotide sequence analysis of a 5-kb portion shows that the genes for the RNase P protein (rnpA), ribosomal protein L34 (rpmH), the replication initiator protein (dnaA), and the beta subunit of DNA polymerase III (dnaN) are present in the highly conserved gene arrangement found in all eubacterial genomes studied so far. The dnaA-dnaN intergenic region is approximately 1 k...

  16. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    Motivation: Detecting genes in viral genomes is a complex task. Due to the biological necessity of them being constrained in length, RNA viruses in particular tend to code in overlapping reading frames. Since one amino acid is encoded by a triplet of nucleic acids, up to three genes may be coded...... allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  17. Conservation of the Nrf2-Mediated Gene Regulation of Proteasome Subunits and Glucose Metabolism in Zebrafish

    Directory of Open Access Journals (Sweden)

    Vu Thanh Nguyen

    2016-01-01

    Full Text Available The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Besides the exogenous stress response, Nrf2 has been found to regulate numerous cellular functions, including protein turnover and glucose metabolism; however, the evolutionary origins of these functions remain unknown. In the present study, we searched for novel target genes associated with the zebrafish Nrf2 to answer this question. A microarray analysis of zebrafish embryos that overexpressed Nrf2 revealed that 115 candidate genes were targets of Nrf2, including genes encoding proteasome subunits and enzymes involved in glucose metabolism. A real-time quantitative PCR suggested that the expression of 3 proteasome subunits (psma3, psma5, and psmb7 and 2 enzymes involved in glucose metabolism (pgd and fbp1a were regulated by zebrafish Nrf2. We thus next examined the upregulation of these genes by an Nrf2 activator, diethyl maleate, using Nrf2 mutant zebrafish larvae. The results of real-time quantitative PCR and whole-mount in situ hybridization showed that all of these 5 genes were upregulated by diethyl maleate treatment in an Nrf2-dependent manner, especially in the liver. These findings implied that the Nrf2-mediated regulation of the proteasome subunits and glucose metabolism is evolutionarily conserved among vertebrates.

  18. In vivo validation of a computationally predicted conserved Ath5 target gene set.

    Directory of Open Access Journals (Sweden)

    Filippo Del Bene

    2007-09-01

    Full Text Available So far, the computational identification of transcription factor binding sites is hampered by the complexity of vertebrate genomes. Here we present an in silico procedure to predict target sites of a transcription factor in complex genomes using its binding site. In a first step sequence, comparison of closely related genomes identifies the binding sites in conserved cis-regulatory regions (phylogenetic footprinting. Subsequently, more remote genomes are introduced into the comparison to identify highly conserved and therefore putatively functional binding sites (phylogenetic filtering. When applied to the binding site of atonal homolog 5 (Ath5 or ATOH7, this procedure efficiently filters evolutionarily conserved binding sites out of more than 300,000 instances in a vertebrate genome. We validate a selection of the linked target genes by showing coexpression with and transcriptional regulation by Ath5. Finally, chromatin immunoprecipitation demonstrates the occupancy of the target gene promoters by Ath5. Thus, our procedure, applied to whole genomes, is a fast and predictive tool to in silico filter the target genes of a given transcription factor with defined binding site.

  19. Some novel intron positions in conserved Drosophila genes are caused by intron sliding or tandem duplication

    Directory of Open Access Journals (Sweden)

    Stadler Peter F

    2010-05-01

    Full Text Available Abstract Background Positions of spliceosomal introns are often conserved between remotely related genes. Introns that reside in non-conserved positions are either novel or remnants of frequent losses of introns in some evolutionary lineages. A recent gain of such introns is difficult to prove. However, introns verified as novel are needed to evaluate contemporary processes of intron gain. Results We identified 25 unambiguous cases of novel intron positions in 31 Drosophila genes that exhibit near intron pairs (NIPs. Here, a NIP consists of an ancient and a novel intron position that are separated by less than 32 nt. Within a single gene, such closely-spaced introns are very unlikely to have coexisted. In most cases, therefore, the ancient intron position must have disappeared in favour of the novel one. A survey for NIPs among 12 Drosophila genomes identifies intron sliding (migration as one of the more frequent causes of novel intron positions. Other novel introns seem to have been gained by regional tandem duplications of coding sequences containing a proto-splice site. Conclusions Recent intron gains sometimes appear to have arisen by duplication of exonic sequences and subsequent intronization of one of the copies. Intron migration and exon duplication together may account for a significant amount of novel intron positions in conserved coding sequences.

  20. CORECLUST: identification of the conserved CRM grammar together with prediction of gene regulation.

    Science.gov (United States)

    Nikulova, Anna A; Favorov, Alexander V; Sutormin, Roman A; Makeev, Vsevolod J; Mironov, Andrey A

    2012-07-01

    Identification of transcriptional regulatory regions and tracing their internal organization are important for understanding the eukaryotic cell machinery. Cis-regulatory modules (CRMs) of higher eukaryotes are believed to possess a regulatory 'grammar', or preferred arrangement of binding sites, that is crucial for proper regulation and thus tends to be evolutionarily conserved. Here, we present a method CORECLUST (COnservative REgulatory CLUster STructure) that predicts CRMs based on a set of positional weight matrices. Given regulatory regions of orthologous and/or co-regulated genes, CORECLUST constructs a CRM model by revealing the conserved rules that describe the relative location of binding sites. The constructed model may be consequently used for the genome-wide prediction of similar CRMs, and thus detection of co-regulated genes, and for the investigation of the regulatory grammar of the system. Compared with related methods, CORECLUST shows better performance at identification of CRMs conferring muscle-specific gene expression in vertebrates and early-developmental CRMs in Drosophila.

  1. Predictive screening for regulators of conserved functional gene modules (gene batteries in mammals

    Directory of Open Access Journals (Sweden)

    Sigvardsson Mikael

    2005-05-01

    Full Text Available Abstract Background The expression of gene batteries, genomic units of functionally linked genes which are activated by similar sets of cis- and trans-acting regulators, has been proposed as a major determinant of cell specialization in metazoans. We developed a predictive procedure to screen the mouse and human genomes and transcriptomes for cases of gene-battery-like regulation. Results In a screen that covered ~40 per cent of all annotated protein-coding genes, we identified 21 co-expressed gene clusters with statistically supported sharing of cis-regulatory sequence elements. 66 predicted cases of over-represented transcription factor binding motifs were validated against the literature and fell into three categories: (i previously described cases of gene battery-like regulation, (ii previously unreported cases of gene battery-like regulation with some support in a limited number of genes, and (iii predicted cases that currently lack experimental support. The novel predictions include for example Sox 17 and RFX transcription factor binding sites that were detected in ~10% of all testis specific genes, and HNF-1 and 4 binding sites that were detected in ~30% of all kidney specific genes respectively. The results are publicly available at http://www.wlab.gu.se/lindahl/genebatteries. Conclusion 21 co-expressed gene clusters were enriched for a total of 66 shared cis-regulatory sequence elements. A majority of these predictions represent novel cases of potential co-regulation of functionally coupled proteins. Critical technical parameters were evaluated, and the results and the methods provide a valuable resource for future experimental design.

  2. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  3. Gene prediction using the Self-Organizing Map: automatic generation of multiple gene models

    Directory of Open Access Journals (Sweden)

    Smith Terry J

    2004-03-01

    Full Text Available Abstract Background Many current gene prediction methods use only one model to represent protein-coding regions in a genome, and so are less likely to predict the location of genes that have an atypical sequence composition. It is likely that future improvements in gene finding will involve the development of methods that can adequately deal with intra-genomic compositional variation. Results This work explores a new approach to gene-prediction, based on the Self-Organizing Map, which has the ability to automatically identify multiple gene models within a genome. The current implementation, named RescueNet, uses relative synonymous codon usage as the indicator of protein-coding potential. Conclusions While its raw accuracy rate can be less than other methods, RescueNet consistently identifies some genes that other methods do not, and should therefore be of interest to gene-prediction software developers and genome annotation teams alike. RescueNet is recommended for use in conjunction with, or as a complement to, other gene prediction methods.

  4. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices.

    Directory of Open Access Journals (Sweden)

    Jenna Morgan Lang

    Full Text Available Over 3000 microbial (bacterial and archaeal genomes have been made publically available to date, providing an unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated alignments of all genes into a single alignment from which a Maximum Likelihood (ML tree was inferred using RAxML. Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA, as implemented in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a "primary concordance" tree. A comparison of the concatenated ML tree and the primary concordance (BUCKy tree reveals that the two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree, suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a concatenated alignment of conserved, single-copy genes.

  5. hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions

    Directory of Open Access Journals (Sweden)

    Macario Alberto JL

    2008-01-01

    Full Text Available Abstract Background Hsp70 chaperones are required for key cellular processes and response to environmental changes and survival but they have not been fully characterized yet. The human hsp70-gene family has an unknown number of members (eleven counted over ten years ago; some have been described but the information is incomplete and inconsistent. A coherent body of knowledge encompassing all family components that would facilitate their study individually and as a group is lacking. Nowadays, the study of chaperone genes benefits from the availability of genome sequences and a new protocol, chaperonomics, which we applied to elucidate the human hsp70 family. Results We identified 47 hsp70 sequences, 17 genes and 30 pseudogenes. The genes distributed into seven evolutionarily distinct groups with distinguishable subgroups according to phylogenetic and other data, such as exon-intron and protein features. The N-terminal ATP-binding domain (ABD was conserved at least partially in the majority of the proteins but the C-terminal substrate-binding domain (SBD was not. Nine proteins were typical Hsp70s (65–80 kDa with ABD and SBD, two were lighter lacking partly or totally the SBD, and six were heavier (>80 kDa with divergent C-terminal domains. We also analyzed exon-intron features, transcriptional variants and protein structure and isoforms, and modality and patterns of expression in various tissues and developmental stages. Evolutionary analyses, including human hsp70 genes and pseudogenes, and other eukaryotic hsp70 genes, showed that six human genes encoding cytosolic Hsp70s and 27 pseudogenes originated from retro-transposition of HSPA8, a gene highly expressed in most tissues and developmental stages. Conclusion The human hsp70-gene family is characterized by a remarkable evolutionary diversity that mainly resulted from multiple duplications and retrotranspositions of a highly expressed gene, HSPA8. Human Hsp70 proteins are clustered into

  6. The multiple roles of hypothetical gene BPSS1356 in Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Hokchai Yam

    Full Text Available Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the β' subunit (RpoC of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ΔBPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ΔBPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes.

  7. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    Full Text Available The Fanconi anemia (FA gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS. In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs, and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  8. Accurate discrimination of conserved coding and non-coding regions through multiple indicators of evolutionary dynamics

    Directory of Open Access Journals (Sweden)

    Pesole Graziano

    2009-09-01

    Full Text Available Abstract Background The conservation of sequences between related genomes has long been recognised as an indication of functional significance and recognition of sequence homology is one of the principal approaches used in the annotation of newly sequenced genomes. In the context of recent findings that the number non-coding transcripts in higher organisms is likely to be much higher than previously imagined, discrimination between conserved coding and non-coding sequences is a topic of considerable interest. Additionally, it should be considered desirable to discriminate between coding and non-coding conserved sequences without recourse to the use of sequence similarity searches of protein databases as such approaches exclude the identification of novel conserved proteins without characterized homologs and may be influenced by the presence in databases of sequences which are erroneously annotated as coding. Results Here we present a machine learning-based approach for the discrimination of conserved coding sequences. Our method calculates various statistics related to the evolutionary dynamics of two aligned sequences. These features are considered by a Support Vector Machine which designates the alignment coding or non-coding with an associated probability score. Conclusion We show that our approach is both sensitive and accurate with respect to comparable methods and illustrate several situations in which it may be applied, including the identification of conserved coding regions in genome sequences and the discrimination of coding from non-coding cDNA sequences.

  9. Reference genes for quantitative gene expression studies in multiple avian species.

    Directory of Open Access Journals (Sweden)

    Philipp Olias

    Full Text Available Quantitative real-time PCR (qPCR rapidly and reliably quantifies gene expression levels across different experimental conditions. Selection of suitable reference genes is essential for meaningful normalization and thus correct interpretation of data. In recent years, an increasing number of avian species other than the chicken has been investigated molecularly, highlighting the need for an experimentally validated pan-avian primer set for reference genes. Here we report testing a set for 14 candidate reference genes (18S, ABL, GAPDH, GUSB, HMBS, HPRT, PGK1, RPL13, RPL19, RPS7, SDHA, TFRC, VIM, YWHAZ on different tissues of the mallard (Anas platyrhynchos, domestic chicken (Gallus gallus domesticus, common crane (Grus grus, white-tailed eagle (Haliaeetus albicilla, domestic turkey (Meleagris gallopavo f. domestica, cockatiel (Nymphicus hollandicus, Humboldt penguin (Sphenicus humboldti, ostrich (Struthio camelus and zebra finch (Taeniopygia guttata, spanning a broad range of the phylogenetic tree of birds. Primer pairs for six to 11 genes were successfully established for each of the nine species. As a proof of principle, we analyzed expression levels of 10 candidate reference genes as well as FOXP2 and the immediate early genes, EGR1 and CFOS, known to be rapidly induced by singing in the avian basal ganglia. We extracted RNA from microbiopsies of the striatal song nucleus Area X of adult male zebra finches after they had sang or remained silent. Using three different statistical algorithms, we identified five genes (18S, PGK1, RPS7, TFRC, YWHAZ that were stably expressed within each group and also between the singing and silent conditions, establishing them as suitable reference genes. In conclusion, the newly developed pan-avian primer set allows accurate normalization and quantification of gene expression levels in multiple avian species.

  10. Reference genes for quantitative gene expression studies in multiple avian species.

    Science.gov (United States)

    Olias, Philipp; Adam, Iris; Meyer, Anne; Scharff, Constance; Gruber, Achim D

    2014-01-01

    Quantitative real-time PCR (qPCR) rapidly and reliably quantifies gene expression levels across different experimental conditions. Selection of suitable reference genes is essential for meaningful normalization and thus correct interpretation of data. In recent years, an increasing number of avian species other than the chicken has been investigated molecularly, highlighting the need for an experimentally validated pan-avian primer set for reference genes. Here we report testing a set for 14 candidate reference genes (18S, ABL, GAPDH, GUSB, HMBS, HPRT, PGK1, RPL13, RPL19, RPS7, SDHA, TFRC, VIM, YWHAZ) on different tissues of the mallard (Anas platyrhynchos), domestic chicken (Gallus gallus domesticus), common crane (Grus grus), white-tailed eagle (Haliaeetus albicilla), domestic turkey (Meleagris gallopavo f. domestica), cockatiel (Nymphicus hollandicus), Humboldt penguin (Sphenicus humboldti), ostrich (Struthio camelus) and zebra finch (Taeniopygia guttata), spanning a broad range of the phylogenetic tree of birds. Primer pairs for six to 11 genes were successfully established for each of the nine species. As a proof of principle, we analyzed expression levels of 10 candidate reference genes as well as FOXP2 and the immediate early genes, EGR1 and CFOS, known to be rapidly induced by singing in the avian basal ganglia. We extracted RNA from microbiopsies of the striatal song nucleus Area X of adult male zebra finches after they had sang or remained silent. Using three different statistical algorithms, we identified five genes (18S, PGK1, RPS7, TFRC, YWHAZ) that were stably expressed within each group and also between the singing and silent conditions, establishing them as suitable reference genes. In conclusion, the newly developed pan-avian primer set allows accurate normalization and quantification of gene expression levels in multiple avian species.

  11. Physical function and pain after surgical or conservative management of multiple rib fractures - a follow-up study.

    Science.gov (United States)

    Fagevik Olsén, Monika; Slobo, Margareta; Klarin, Lena; Caragounis, Eva-Corina; Pazooki, David; Granhed, Hans

    2016-10-28

    There is scarce knowledge of physical function and pain due to multiple rib fractures following trauma. The purpose of this follow-up was to assess respiratory and physical function, pain, range of movement and kinesiophobia in patients with multiple rib fractures who had undergone stabilizing surgery and compare with conservatively managed patients. A consecutive series of 31 patients with multiple rib fractures who had undergone stabilizing surgery were assessed >1 year after the trauma concerning respiratory and physical function, pain, range of movement in the shoulders and thorax, shoulder function and kinesiophobia. For comparison, 30 patients who were treated conservatively were evaluated with the same outcome measures. The results concerning pain, lung function, shoulder function and level of physical activity were similar in the two groups. The patients who had undergone surgery had a significantly larger range of motion in the thorax (p pain, better thoracic range of motion and physical function which would indicate that surgery is preferable. If operation technique could improve in the future with a less invasive approach, it would presumably decrease post-operative pain and the benefit of surgery would be greater than the morbidity of surgery. Patients undergoing surgery have a similar long-term recovery to those who are treated conservatively except for a better range of motion in the thorax and fewer limitations in physical function. Surgery seems to be beneficial for some patients, the question remains which patients. FoU i Sverige (R&D in Sweden), No 106121.

  12. Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942

    Science.gov (United States)

    2011-01-01

    Background Simpler biological systems should be easier to understand and to engineer towards pre-defined goals. One way to achieve biological simplicity is through genome minimization. Here we looked for genomic islands in the fresh water cyanobacteria Synechococcus elongatus PCC 7942 (genome size 2.7 Mb) that could be used as targets for deletion. We also looked for conserved genes that might be essential for cell survival. Results By using a combination of methods we identified 170 xenologs, 136 ORFans and 1401 core genes in the genome of S. elongatus PCC 7942. These represent 6.5%, 5.2% and 53.6% of the annotated genes respectively. We considered that genes in genomic islands could be found if they showed a combination of: a) unusual G+C content; b) unusual phylogenetic similarity; and/or c) a small number of the highly iterated palindrome 1 (HIP1) motif plus an unusual codon usage. The origin of the largest genomic island by horizontal gene transfer (HGT) could be corroborated by lack of coverage among metagenomic sequences from a fresh water microbialite. Evidence is also presented that xenologous genes tend to cluster in operons. Interestingly, most genes coding for proteins with a diguanylate cyclase domain are predicted to be xenologs, suggesting a role for horizontal gene transfer in the evolution of Synechococcus sensory systems. Conclusions Our estimates of genomic islands in PCC 7942 are larger than those predicted by other published methods like SIGI-HMM. Our results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a model photoautotrophic bacterial cell. PMID:21226929

  13. Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942

    Directory of Open Access Journals (Sweden)

    Peretó Juli

    2011-01-01

    Full Text Available Abstract Background Simpler biological systems should be easier to understand and to engineer towards pre-defined goals. One way to achieve biological simplicity is through genome minimization. Here we looked for genomic islands in the fresh water cyanobacteria Synechococcus elongatus PCC 7942 (genome size 2.7 Mb that could be used as targets for deletion. We also looked for conserved genes that might be essential for cell survival. Results By using a combination of methods we identified 170 xenologs, 136 ORFans and 1401 core genes in the genome of S. elongatus PCC 7942. These represent 6.5%, 5.2% and 53.6% of the annotated genes respectively. We considered that genes in genomic islands could be found if they showed a combination of: a unusual G+C content; b unusual phylogenetic similarity; and/or c a small number of the highly iterated palindrome 1 (HIP1 motif plus an unusual codon usage. The origin of the largest genomic island by horizontal gene transfer (HGT could be corroborated by lack of coverage among metagenomic sequences from a fresh water microbialite. Evidence is also presented that xenologous genes tend to cluster in operons. Interestingly, most genes coding for proteins with a diguanylate cyclase domain are predicted to be xenologs, suggesting a role for horizontal gene transfer in the evolution of Synechococcus sensory systems. Conclusions Our estimates of genomic islands in PCC 7942 are larger than those predicted by other published methods like SIGI-HMM. Our results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a model photoautotrophic bacterial cell.

  14. Sigma: multiple alignment of weakly-conserved non-coding DNA sequence

    Directory of Open Access Journals (Sweden)

    Siddharthan Rahul

    2006-03-01

    Full Text Available Abstract Background Existing tools for multiple-sequence alignment focus on aligning protein sequence or protein-coding DNA sequence, and are often based on extensions to Needleman-Wunsch-like pairwise alignment methods. We introduce a new tool, Sigma, with a new algorithm and scoring scheme designed specifically for non-coding DNA sequence. This problem acquires importance with the increasing number of published sequences of closely-related species. In particular, studies of gene regulation seek to take advantage of comparative genomics, and recent algorithms for finding regulatory sites in phylogenetically-related intergenic sequence require alignment as a preprocessing step. Much can also be learned about evolution from intergenic DNA, which tends to evolve faster than coding DNA. Sigma uses a strategy of seeking the best possible gapless local alignments (a strategy earlier used by DiAlign, at each step making the best possible alignment consistent with existing alignments, and scores the significance of the alignment based on the lengths of the aligned fragments and a background model which may be supplied or estimated from an auxiliary file of intergenic DNA. Results Comparative tests of sigma with five earlier algorithms on synthetic data generated to mimic real data show excellent performance, with Sigma balancing high "sensitivity" (more bases aligned with effective filtering of "incorrect" alignments. With real data, while "correctness" can't be directly quantified for the alignment, running the PhyloGibbs motif finder on pre-aligned sequence suggests that Sigma's alignments are superior. Conclusion By taking into account the peculiarities of non-coding DNA, Sigma fills a gap in the toolbox of bioinformatics.

  15. TOPAZ1, a novel germ cell-specific expressed gene conserved during evolution across vertebrates.

    Directory of Open Access Journals (Sweden)

    Adrienne Baillet

    Full Text Available BACKGROUND: We had previously reported that the Suppression Subtractive Hybridization (SSH approach was relevant for the isolation of new mammalian genes involved in oogenesis and early follicle development. Some of these transcripts might be potential new oocyte and granulosa cell markers. We have now characterized one of them, named TOPAZ1 for the Testis and Ovary-specific PAZ domain gene. PRINCIPAL FINDINGS: Sheep and mouse TOPAZ1 mRNA have 4,803 bp and 4,962 bp open reading frames (20 exons, respectively, and encode putative TOPAZ1 proteins containing 1,600 and 1653 amino acids. They possess PAZ and CCCH domains. In sheep, TOPAZ1 mRNA is preferentially expressed in females during fetal life with a peak during prophase I of meiosis, and in males during adulthood. In the mouse, Topaz1 is a germ cell-specific gene. TOPAZ1 protein is highly conserved in vertebrates and specifically expressed in mouse and sheep gonads. It is localized in the cytoplasm of germ cells from the sheep fetal ovary and mouse adult testis. CONCLUSIONS: We have identified a novel PAZ-domain protein that is abundantly expressed in the gonads during germ cell meiosis. The expression pattern of TOPAZ1, and its high degree of conservation, suggests that it may play an important role in germ cell development. Further characterization of TOPAZ1 may elucidate the mechanisms involved in gametogenesis, and particularly in the RNA silencing process in the germ line.

  16. Functional conservation of the meiotic genes SDS and RCK in male meiosis in the monocot rice

    Institute of Scientific and Technical Information of China (English)

    Ling Chang; Hong Ma; Hong-Wei Xue

    2009-01-01

    The Arabidopsis SDS (SOLO DANCERS) and RCK (ROCK-N-ROLLERS) genes are important for male meiosis, but it is still unknown whether they represent conserved functions in plants. We have performed phylogenetic analy-ses of SDS and RCK and their respective homologs, and identified their putative orthologs in poplar and rice. Quan-titative real-time RT-PCR analysis indicated that rice SDS and RCK are expressed preferentially in young flowers, and transgenic RNAi rice lines with reduced expression of these genes exhibited normal vegetative development, but showed significantly reduced fertility with partially sterile flowers and defective pollens. SDS deficiency also caused a decrease in pollen amounts. Further cytological examination of male meiocytes revealed that the SDS deficiency led to defects in homolog interaction and bivalent formation in meiotic prophase I, and RCK deficiency resulted in defec-tive meiotic crossover formation. These results indicate that rice SDS and RCK genes have similar functions to their Arabidopsis orthologs. Because rice and Arabidopsis, respectively, are members of monocots and eudicots, two largest groups of flowering plants, our results suggest that the functions of SDS and RCK are likely conserved in flowering plants.

  17. Risk score modeling of multiple gene to gene interactions using aggregated-multifactor dimensionality reduction

    Directory of Open Access Journals (Sweden)

    Dai Hongying

    2013-01-01

    Full Text Available Abstract Background Multifactor Dimensionality Reduction (MDR has been widely applied to detect gene-gene (GxG interactions associated with complex diseases. Existing MDR methods summarize disease risk by a dichotomous predisposing model (high-risk/low-risk from one optimal GxG interaction, which does not take the accumulated effects from multiple GxG interactions into account. Results We propose an Aggregated-Multifactor Dimensionality Reduction (A-MDR method that exhaustively searches for and detects significant GxG interactions to generate an epistasis enriched gene network. An aggregated epistasis enriched risk score, which takes into account multiple GxG interactions simultaneously, replaces the dichotomous predisposing risk variable and provides higher resolution in the quantification of disease susceptibility. We evaluate this new A-MDR approach in a broad range of simulations. Also, we present the results of an application of the A-MDR method to a data set derived from Juvenile Idiopathic Arthritis patients treated with methotrexate (MTX that revealed several GxG interactions in the folate pathway that were associated with treatment response. The epistasis enriched risk score that pooled information from 82 significant GxG interactions distinguished MTX responders from non-responders with 82% accuracy. Conclusions The proposed A-MDR is innovative in the MDR framework to investigate aggregated effects among GxG interactions. New measures (pOR, pRR and pChi are proposed to detect multiple GxG interactions.

  18. Multiple, non-allelic, intein-coding sequences in eukaryotic RNA polymerase genes

    Directory of Open Access Journals (Sweden)

    Butler Margaret I

    2006-10-01

    Full Text Available Abstract Background Inteins are self-splicing protein elements. They are translated as inserts within host proteins that excise themselves and ligate the flanking portions of the host protein (exteins with a peptide bond. They are encoded as in-frame insertions within the genes for the host proteins. Inteins are found in all three domains of life and in viruses, but have a very sporadic distribution. Only a small number of intein coding sequences have been identified in eukaryotic nuclear genes, and all of these are from ascomycete or basidiomycete fungi. Results We identified seven intein coding sequences within nuclear genes coding for the second largest subunits of RNA polymerase. These sequences were found in diverse eukaryotes: one is in the second largest subunit of RNA polymerase I (RPA2 from the ascomycete fungus Phaeosphaeria nodorum, one is in the RNA polymerase III (RPC2 of the slime mould Dictyostelium discoideum and four intein coding sequences are in RNA polymerase II genes (RPB2, one each from the green alga Chlamydomonas reinhardtii, the zygomycete fungus Spiromyces aspiralis and the chytrid fungi Batrachochytrium dendrobatidis and Coelomomyces stegomyiae. The remaining intein coding sequence is in a viral relic embedded within the genome of the oomycete Phytophthora ramorum. The Chlamydomonas and Dictyostelium inteins are the first nuclear-encoded inteins found outside of the fungi. These new inteins represent a unique dataset: they are found in homologous proteins that form a paralogous group. Although these paralogues diverged early in eukaryotic evolution, their sequences can be aligned over most of their length. The inteins are inserted at multiple distinct sites, each of which corresponds to a highly conserved region of RNA polymerase. This dataset supports earlier work suggesting that inteins preferentially occur in highly conserved regions of their host proteins. Conclusion The identification of these new inteins

  19. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    Science.gov (United States)

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rategenes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis.

  20. Reanalyze unassigned reads in Sanger based metagenomic data using conserved gene adjacency

    Directory of Open Access Journals (Sweden)

    Hsu Ming-Tsung

    2010-11-01

    Full Text Available Abstract Background Investigation of metagenomes provides greater insight into uncultured microbial communities. The improvement in sequencing technology, which yields a large amount of sequence data, has led to major breakthroughs in the field. However, at present, taxonomic binning tools for metagenomes discard 30-40% of Sanger sequencing data due to the stringency of BLAST cut-offs. In an attempt to provide a comprehensive overview of metagenomic data, we re-analyzed the discarded metagenomes by using less stringent cut-offs. Additionally, we introduced a new criterion, namely, the evolutionary conservation of adjacency between neighboring genes. To evaluate the feasibility of our approach, we re-analyzed discarded contigs and singletons from several environments with different levels of complexity. We also compared the consistency between our taxonomic binning and those reported in the original studies. Results Among the discarded data, we found that 23.7 ± 3.9% of singletons and 14.1 ± 1.0% of contigs were assigned to taxa. The recovery rates for singletons were higher than those for contigs. The Pearson correlation coefficient revealed a high degree of similarity (0.94 ± 0.03 at the phylum rank and 0.80 ± 0.11 at the family rank between the proposed taxonomic binning approach and those reported in original studies. In addition, an evaluation using simulated data demonstrated the reliability of the proposed approach. Conclusions Our findings suggest that taking account of conserved neighboring gene adjacency improves taxonomic assignment when analyzing metagenomes using Sanger sequencing. In other words, utilizing the conserved gene order as a criterion will reduce the amount of data discarded when analyzing metagenomes.

  1. Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress.

    Science.gov (United States)

    Zhang, Cheng; Jia, Haifeng; Wu, Weimin; Wang, Xicheng; Fang, Jinggui; Wang, Chen

    2015-12-10

    In grape cultivation, low temperature generally increases the expression of genes involved in synthesis of anthocyanin. In this study, multi-type structural analysis of the proteins encoded by five anthocyanin biosynthesis genes VvF3H, VvPAL, VvCHS3, VvCHS2 and VvLDOX, in addition to nine of their homologous genes revealed that proteins in grapevine shared a high similarity with that in kiwi, red orange and some other species in which the biosynthesis of anthocyanin significantly influenced by low temperature as proved by previous studies. Low temperature regulatory elements were also found in the promoter region of the grapevine genes VvCHS2, VvPAL and VvF3H. These findings indicate that the functions of anthocyanin biosynthesis genes in grapevine are conservative and might be sensitive to low temperature. In order to identify the specific expression patterns of the five anthocyanin biosynthesis genes and the changes of polyphenols, anthocyanins and flavonoids under low temperature stress. The transcription analysis of the five genes and the content of polyphenols, anthocyanins and flavonoids in grape skins were examined, by using Vitis vinifera L. cv. 'Yongyou 1' and 'Juxing' berries as experimental material and treated at 4°C and 25°C for 24h, 48 h, 72 h and 96 h. The results showed that low temperature greatly enhanced the expression of the five anthocyanin biosynthesis genes. Low temperature greatly slowed down the decomposition of polyphenol, anthocyanin, and flavonoid in grape skins. Our study also found that cv. 'Juxing' responded more sensitively to low temperature than cv. 'Yongyou 1'. All the findings would provide a basis for further study on the mechanism of anthocyanin biosynthesis under environmental stress.

  2. Comparative genomics of Mycoplasma: analysis of conserved essential genes and diversity of the pan-genome.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Mycoplasma, the smallest self-replicating organism with a minimal metabolism and little genomic redundancy, is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life. This study employs comparative evolutionary analysis of twenty Mycoplasma genomes to gain an improved understanding of essential genes. By analyzing the core genome of mycoplasmas, we finally revealed the conserved essential genes set for mycoplasma survival. Further analysis showed that the core genome set has many characteristics in common with experimentally identified essential genes. Several key genes, which are related to DNA replication and repair and can be disrupted in transposon mutagenesis studies, may be critical for bacteria survival especially over long period natural selection. Phylogenomic reconstructions based on 3,355 homologous groups allowed robust estimation of phylogenetic relatedness among mycoplasma strains. To obtain deeper insight into the relative roles of molecular evolution in pathogen adaptation to their hosts, we also analyzed the positive selection pressures on particular sites and lineages. There appears to be an approximate correlation between the divergence of species and the level of positive selection detected in corresponding lineages.

  3. Chromosome banding and gene localizations support extensive conservation of chromosome structure between cattle and sheep.

    Science.gov (United States)

    Hediger, R; Ansari, H A; Stranzinger, G F

    1991-01-01

    By using three gene probes, one derived from the porcine major histocompatibility complex (MHC) and two from bovine cytokeratin genes, type I (KRTA) and type II (KRTB), the hypothesis of conservation of genome structure in two members of the family Bovidae was examined. Gene mapping data revealed the MHC to be in chromosome region 23q15----q23 in cattle (BOLA) and 20q15----q23 in sheep (OLA). KRTA was localized to chromosome region 19q25----q29 in cattle and 11q25----q29 in sheep and KRTB to 5q14----q22 in cattle and 3q14----q22 in sheep. The banding patterns of the chromosome arms to which the loci were assigned were identical in both species. Moreover, the resemblances of GTG- or QFQ-banding patterns between the cattle and sheep karyotypes illustrated further chromosome homologies. These studies, based on gene mapping comparisons and comparative cytogenetics, document that within bovid chromosomes, homology of banding patterns corresponds to a homologous genetic structure. Hence, we propose that gene assignments on identified chromosomal segments in one species of the Bovidae can be extrapolated, in general, to other bovid species based on the banding homologies presented here.

  4. Multiple Genome Comparison within a Bacterial Species Reveals a Unit of Evolution Spanning Two Adjacent Genes in a Tandem Paralog Cluster

    Science.gov (United States)

    Tsuru, Takeshi

    2008-01-01

    It has been assumed that an open reading frame (ORF) represents a unit of gene evolution as well as a unit of gene expression and function. In the present work, we report a case in which a unit comprising the 3′ region of an ORF linked to a downstream intergenic region that is in turn linked to the 5′ region of a downstream ORF has been conserved, and has served as the unit of gene evolution. The genes are tandem paralogous genes from the bacterium Staphylococcus aureus, for which more than ten entire genomes have been sequenced. We compared these multiple genome sequences at a locus for the lpl (lipoprotein-like) cluster (encoding lipoprotein homologs presumably related to their host interaction) in the genomic island termed νSaα. A highly conserved nucleotide sequence found within every lpl ORF is likely to provide a site for homologous recombination. Comparison of phylogenies of the 5′-variable region and the 3′-variable region within the same ORF revealed significant incongruence. In contrast, pairs of the 3′-variable region of an ORF and the 5′-variable region of the next downstream ORF gave more congruent phylogenies, with distinct groups of conserved pairs. The intergenic region seemed to have coevolved with the flanking variable regions. Multiple recombination events at the central conserved region appear to have caused various types of rearrangements among strains, shuffling the two variable regions in one ORF, but maintaining a conserved unit comprising the 3′-variable region, the intergenic region, and the 5′-variable region spanning adjacent ORFs. This result has strong impact on our understanding of gene evolution because most gene lineages underwent tandem duplication and then diversified. This work also illustrates the use of multiple genome sequences for high-resolution evolutionary analysis within the same species. PMID:18765438

  5. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results......: We apply our method to 15 pairwise alignments of six different HIV2 genomes. Given sufficient evolutionary distance between the two sequences, we achieve sensitivity of about 84% and specificity of about 97%. We additionally annotate three pairwise alignments of the more distantly related HIV1...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  6. Gene expression in chicken reveals correlation with structural genomic features and conserved patterns of transcription in the terrestrial vertebrates.

    Directory of Open Access Journals (Sweden)

    Haisheng Nie

    Full Text Available BACKGROUND: The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. CONCLUSIONS: The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems

  7. Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms.

    Science.gov (United States)

    Xu, Lin; Chen, Hong; Hu, Xiaohua; Zhang, Rongmei; Zhang, Ze; Luo, Z W

    2006-06-01

    The average length of genes in a eukaryote is larger than in a prokaryote, implying that evolution of complexity is related to change of gene lengths. Here, we show that although the average lengths of genes in prokaryotes and eukaryotes are much different, the average lengths of genes are highly conserved within either of the two kingdoms. This suggests that natural selection has clearly set a strong limitation on gene elongation within the kingdom. Furthermore, the average gene size adds another distinct characteristic for the discrimination between the two kingdoms of organisms.

  8. Conservation-based prediction of the transcription regulatory region of the SCN1A gene

    Institute of Scientific and Technical Information of China (English)

    Yue-Sheng Long; Yi-Wu Shi; Wei-Ping Liao

    2009-01-01

    A challenge in identifying the transcription regulatory region is that the locations of eukaryotic transcriptional elements are often diverse among different genes.SCN1A,a disease-related sodium channel gene,has a complex 5'-untranslated region and diverse mRNA transcripts,which might be driven by different promoters.By cross-species sequence comparison and bioinformatics analysis,human 5'-untranslated exons were found to be conserved within the region of 200 kb upstream of the 5' flanking regions of SCN1A in higher mammals,but not in lower mammals and non-mammals.The core promoter elements (INR,DPE,and TATA) were found in the regions flanking different 5'-untranslated exons,suggesting that these sequences (from-45 to+35) might be targeted as core promoters.The nucleotide identity rate of these core promoter sequences are different,and the conservation level of the upstream region of each core promoter varies distinctly,implicating different regulatory mechanisms of the four promoters which exist in the nervous system.

  9. JDet: interactive calculation and visualization of function-related conservation patterns in multiple sequence alignments and structures.

    Science.gov (United States)

    Muth, Thilo; García-Martín, Juan A; Rausell, Antonio; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2012-02-15

    We have implemented in a single package all the features required for extracting, visualizing and manipulating fully conserved positions as well as those with a family-dependent conservation pattern in multiple sequence alignments. The program allows, among other things, to run different methods for extracting these positions, combine the results and visualize them in protein 3D structures and sequence spaces. JDet is a multiplatform application written in Java. It is freely available, including the source code, at http://csbg.cnb.csic.es/JDet. The package includes two of our recently developed programs for detecting functional positions in protein alignments (Xdet and S3Det), and support for other methods can be added as plug-ins. A help file and a guided tutorial for JDet are also available.

  10. Differential conservation and divergence of fertility genes boule and dazl in the rainbow trout.

    Directory of Open Access Journals (Sweden)

    Mingyou Li

    Full Text Available BACKGROUND: The genes boule and dazl are members of the DAZ (Deleted in Azoospermia family encoding RNA binding proteins essential for germ cell development. Although dazl exhibits bisexual expression in mitotic and meiotic germ cells in diverse animals, boule shows unisexual meiotic expression in invertebrates and mammals but a bisexual mitotic and meiotic expression in medaka. How boule and dazl have evolved different expression patterns in diverse organisms has remained unknown. METHODOLOGY AND PRINCIPAL FINDINGS: Here we chose the fish rainbow trout (Oncorhynchus mykiss as a second lower vertebrate model to investigate the expression of boule and dazl. By molecular cloning and sequence comparison, we identified cDNAs encoding the trout Boule and Dazl proteins, which have a conserved RNA-recognition motif and a maximal similarity to their homologs. By RT-PCR analysis, adult RNA expression of trout boule and dazl is restricted to the gonads of both sexes. By chromogenic and two-color fluorescence in situ hybridization, we revealed bisexual and germline-specific expression of boule and dazl. We found that dazl displays conserved expression throughout gametogenesis and concentrates in the Balbinani's body of early oocytes and the chromatoid body of sperm. Surprisingly, boule exhibits mitotic and meiotic expression in the male but meiosis-specific expression in the female. CONCLUSIONS: Our data underscores differential conservation and divergence of DAZ family genes during vertebrate evolution. We propose a model in which the diversity of boule expression in sex and stage specificity might have resulted from selective loss or gain of its expression in one sex and mitotic germ cells.

  11. Polymerase Chain Reaction (PCR)-based methods for detection and identification of mycotoxigenic Penicillium species using conserved genes

    Science.gov (United States)

    Polymerase chain reaction amplification of conserved genes and sequence analysis provides a very powerful tool for the identification of toxigenic as well as non-toxigenic Penicillium species. Sequences are obtained by amplification of the gene fragment, sequencing via capillary electrophoresis of d...

  12. Epigenetic regulation of genes during development: A conserved theme from flies to mammals

    Institute of Scientific and Technical Information of China (English)

    Dasari Vasanthi; Rakesh K Mishra

    2008-01-01

    Eukaryotic genome is organized in form of chromatin within the nucleus. This organization is important for compaction of DNA as well as for the proper expression of the genes. During early embryonic development, genomic packaging receives variety of signals to eventually set up cell type specific expression patterns of genes. This process of regulated chromatinization leads to "cell type specific epigenomes". The expression states attained during differentiation process need to be maintained subsequently throughout the life of the organism. Epigenetie modifications are responsible for chromatin dependent regulatory mechanism and play a key role in maintenance of the expression state-a process referred to as cellular memory. Another key feature in the packaging of the genome is formation of chro- matin domains that are thought to be structural as well as functional units of the higher order chromatin organization. Boundary elements that function to define such domains set the limits of regulatory elements and that of epigenetie modifications. This connection of epige- netic modification, chromatin structure and genome organization has emerged from several studies. Hox genes are among the best studied in this context and have led to the significant understanding of the epigenetic regulation during development. Here we discuss the evolu- tionarily conserved features of epigenetic mechanisms emerged from studies on homeotic gene clusters.

  13. Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years.

    Science.gov (United States)

    Delgado, Claudia Leticia Rodríguez; Waters, Paul D; Gilbert, Clément; Robinson, Terence J; Graves, Jennifer A Marshall

    2009-01-01

    All therian mammals (eutherians and marsupials) have an XX female/XY male sex chromosome system or some variant of it. The X and Y evolved from a homologous pair of autosomes over the 166 million years since therian mammals diverged from monotremes. Comparing the sex chromosomes of eutherians and marsupials defined an ancient X conserved region that is shared between species of these mammalian clades. However, the eutherian X (and the Y) was augmented by a recent addition (XAR) that is autosomal in marsupials. XAR is part of the X in primates, rodents, and artiodactyls (which belong to the eutherian clade Boreoeutheria), but it is uncertain whether XAR is part of the X chromosome in more distantly related eutherian mammals. Here we report on the gene content and order on the X of the elephant (Loxodonta africana)-a representative of Afrotheria, a basal endemic clade of African mammals-and compare these findings to those of other documented eutherian species. A total of 17 genes were mapped to the elephant X chromosome. Our results support the hypothesis that the eutherian X and Y chromosomes were augmented by the addition of autosomal material prior to eutherian radiation. Not only does the elephant X bear the same suite of genes as other eutherian X chromosomes, but gene order appears to have been maintained across 105 million years of evolution, perhaps reflecting strong constraints posed by the eutherian X inactivation system.

  14. Buffering by gene duplicates: an analysis of molecular correlates and evolutionary conservation

    Directory of Open Access Journals (Sweden)

    Vogel Christine

    2008-12-01

    Full Text Available Abstract Background One mechanism to account for robustness against gene knockouts or knockdowns is through buffering by gene duplicates, but the extent and general correlates of this process in organisms is still a matter of debate. To reveal general trends of this process, we provide a comprehensive comparison of gene essentiality, duplication and buffering by duplicates across seven bacteria (Mycoplasma genitalium, Bacillus subtilis, Helicobacter pylori, Haemophilus influenzae, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Escherichia coli, and four eukaryotes (Saccharomyces cerevisiae (yeast, Caenorhabditis elegans (worm, Drosophila melanogaster (fly, Mus musculus (mouse. Results In nine of the eleven organisms, duplicates significantly increase chances of survival upon gene deletion (P-value ≤ 0.05, but only by up to 13%. Given that duplicates make up to 80% of eukaryotic genomes, the small contribution is surprising and points to dominant roles of other buffering processes, such as alternative metabolic pathways. The buffering capacity of duplicates appears to be independent of the degree of gene essentiality and tends to be higher for genes with high expression levels. For example, buffering capacity increases to 23% amongst highly expressed genes in E. coli. Sequence similarity and the number of duplicates per gene are weak predictors of the duplicate's buffering capacity. In a case study we show that buffering gene duplicates in yeast and worm are somewhat more similar in their functions than non-buffering duplicates and have increased transcriptional and translational activity. Conclusion In sum, the extent of gene essentiality and buffering by duplicates is not conserved across organisms and does not correlate with the organisms' apparent complexity. This heterogeneity goes beyond what would be expected from differences in experimental approaches alone. Buffering by duplicates contributes to robustness in several organisms

  15. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Moreau Hervé

    2008-10-01

    Full Text Available Abstract Background The Wuschel related homeobox (WOX family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most

  16. Murine cytomegalovirus protein pM92 is a conserved regulator of viral late gene expression.

    Science.gov (United States)

    Chapa, Travis J; Perng, Yi-Cheih; French, Anthony R; Yu, Dong

    2014-01-01

    In this study, we report that murine cytomegalovirus (MCMV) protein pM92 regulates viral late gene expression during virus infection. Previously, we have shown that MCMV protein pM79 and its human cytomegalovirus (HCMV) homologue pUL79 are required for late viral gene transcription. Identification of additional factors involved is critical to dissecting the mechanism of this regulation. We show here that pM92 accumulated abundantly at late times of infection in a DNA synthesis-dependent manner and localized to nuclear viral replication compartments. To investigate the role of pM92, we constructed a recombinant virus SMin92, in which pM92 expression was disrupted by an insertional/frameshift mutation. During infection, SMin92 accumulated representative viral immediate-early gene products, early gene products, and viral DNA sufficiently but had severe reduction in the accumulation of late gene products and was thus unable to produce infectious progeny. Coimmunoprecipitation and mass spectrometry analysis revealed an interaction between pM92 and pM79, as well as between their HCMV homologues pUL92 and pUL79. Importantly, we showed that the growth defect of pUL92-deficient HCMV could be rescued in trans by pM92. This study indicates that pM92 is an additional viral regulator of late gene expression, that these regulators (represented by pM92 and pM79) may need to complex with each other for their activity, and that pM92 and pUL92 share a conserved function in CMV infection. pM92 represents a potential new target for therapeutic intervention in CMV disease, and a gateway into studying a largely uncharted viral process that is critical to the viral life cycle.

  17. Redeployment of a conserved gene regulatory network during Aedes aegypti development.

    Science.gov (United States)

    Suryamohan, Kushal; Hanson, Casey; Andrews, Emily; Sinha, Saurabh; Scheel, Molly Duman; Halfon, Marc S

    2016-08-15

    Changes in gene regulatory networks (GRNs) underlie the evolution of morphological novelty and developmental system drift. The fruitfly Drosophila melanogaster and the dengue and Zika vector mosquito Aedes aegypti have substantially similar nervous system morphology. Nevertheless, they show significant divergence in a set of genes co-expressed in the midline of the Drosophila central nervous system, including the master regulator single minded and downstream genes including short gastrulation, Star, and NetrinA. In contrast to Drosophila, we find that midline expression of these genes is either absent or severely diminished in A. aegypti. Instead, they are co-expressed in the lateral nervous system. This suggests that in A. aegypti this "midline GRN" has been redeployed to a new location while lost from its previous site of activity. In order to characterize the relevant GRNs, we employed the SCRMshaw method we previously developed to identify transcriptional cis-regulatory modules in both species. Analysis of these regulatory sequences in transgenic Drosophila suggests that the altered gene expression observed in A. aegypti is the result of trans-dependent redeployment of the GRN, potentially stemming from cis-mediated changes in the expression of sim and other as-yet unidentified regulators. Our results illustrate a novel "repeal, replace, and redeploy" mode of evolution in which a conserved GRN acquires a different function at a new site while its original function is co-opted by a different GRN. This represents a striking example of developmental system drift in which the dramatic shift in gene expression does not result in gross morphological changes, but in more subtle differences in development and function of the late embryonic nervous system. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Definition, conservation and epigenetics of housekeeping and tissue-enriched genes

    Directory of Open Access Journals (Sweden)

    Johnson Jason M

    2009-06-01

    Full Text Available Abstract Background Housekeeping genes (HKG are constitutively expressed in all tissues while tissue-enriched genes (TEG are expressed at a much higher level in a single tissue type than in others. HKGs serve as valuable experimental controls in gene and protein expression experiments, while TEGs tend to represent distinct physiological processes and are frequently candidates for biomarkers or drug targets. The genomic features of these two groups of genes expressed in opposing patterns may shed light on the mechanisms by which cells maintain basic and tissue-specific functions. Results Here, we generate gene expression profiles of 42 normal human tissues on custom high-density microarrays to systematically identify 1,522 HKGs and 975 TEGs and compile a small subset of 20 housekeeping genes which are highly expressed in all tissues with lower variance than many commonly used HKGs. Cross-species comparison shows that both the functions and expression patterns of HKGs are conserved. TEGs are enriched with respect to both segmental duplication and copy number variation, while no such enrichment is observed for HKGs, suggesting the high expression of HKGs are not due to high copy numbers. Analysis of genomic and epigenetic features of HKGs and TEGs reveals that the high expression of HKGs across different tissues is associated with decreased nucleosome occupancy at the transcription start site as indicated by enhanced DNase hypersensitivity. Additionally, we systematically and quantitatively demonstrated that the CpG islands' enrichment in HKGs transcription start sites (TSS and their depletion in TEGs TSS. Histone methylation patterns differ significantly between HKGs and TEGs, suggesting that methylation contributes to the differential expression patterns as well. Conclusion We have compiled a set of high quality HKGs that should provide higher and more consistent expression when used as references in laboratory experiments than currently used

  19. Multiple pathways for steel regulation suggested by genomic and sequence analysis of the murine Steel gene

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, M.A.; Copeland, N.G.; Jenkins, N.A. [NCI-Frederick Cancer Research and Development Center, Frederick, MD (United States)

    1996-03-01

    The Steel (Sl) locus encodes mast cell growth factor (Mgf) that is required for the development of germ cells, hematopoietic cells and melanocytes. Although the expression patterns of the Mgf gene are well characterized, little is known of the factors which regulate its expression. Here, we describe the cloning and sequence of the full-length transcription unit and the 5{prime} flanking region of the murine Mgf gene. The full-length Mgf mRNA consists of a short 5{prime} untranslated region (UTR), a 0.8-kb ORF and a long 3{prime} UTR. A single transcription initiation site is used in a number of mouse tissues and is located just downstream of binding sites for several known transcription factors. In the 5{prime} UTR, two ATGs were found upstream of the initiator methionine and are conserved among different species, suggesting that Mgf may be translationally regulated. At least two Mgf mRNAs are produced by alternative use of polyadenylation sites, but numerous other potential polyadenylation sites were found in the 3{prime} UTR. In addition, the 3{prime} UTR contains numerous sequence motifs that may regulate Mgf mRNA stability. These studies suggest multiple ways in which expression of Mgf may be regulated. 39 refs., 4 figs.

  20. Optimization and immune recognition of multiple novel conserved HLA-A2, human immunodeficiency virus type 1-specific CTL epitopes

    DEFF Research Database (Denmark)

    Corbet, Sylvie; Nielsen, Henrik Vedel; Vinner, Lasse

    2003-01-01

    and more conserved. Such epitope peptides were anchor-optimized to improve immunogenicity and further increase the number of potential vaccine epitopes. About 67 % of anchor-optimized vaccine epitopes induced immune responses against the corresponding non-immunogenic naturally occurring epitopes....... This study demonstrates the potency of ANNs for identifying putative virus CTL epitopes, and the new HIV-1 CTL epitopes identified should have significant implications for HIV-1 vaccine development. As a novel vaccine approach, it is proposed to increase the coverage of HIV variants by including multiple...

  1. An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression.

    Science.gov (United States)

    Ucar, Olga; Tykocinski, Lars-Oliver; Dooley, James; Liston, Adrian; Kyewski, Bruno

    2013-07-01

    The establishment and maintenance of central tolerance depends to a large extent on the ability of medullary thymic epithelial cells to express a variety of tissue-restricted antigens, the so-called promiscuous gene expression (pGE). Autoimmune regulator (Aire) is to date the best characterised transcriptional regulator known to at least partially coordinate pGE. There is accruing evidence that the expression of Aire-dependent and -independent genes is modulated by higher order chromatin configuration, epigenetic modifications and post-transcriptional control. Given the involvement of microRNAs (miRNAs) as potent post-transcriptional modulators of gene expression, we investigated their role in the regulation of pGE in purified mouse and human thymic epithelial cells (TECs). Microarray profiling of TEC subpopulations revealed evolutionarily conserved cell type and differentiation-specific miRNA signatures with a subset of miRNAs being significantly upregulated during terminal medullary thymic epithelial cell differentiation. The differential regulation of this subset of miRNAs was correlated with Aire expression and some of these miRNAs were misexpressed in the Aire knockout thymus. In turn, the specific absence of miRNAs in TECs resulted in a progressive reduction of Aire expression and pGE, affecting both Aire-dependent and -independent genes. In contrast, the absence of miR-29a only affected the Aire-dependent gene pool. These findings reveal a mutual interdependence of miRNA and Aire. © 2013 The Authors. European Journal of Immunology published byWiley-VCH Verlag GmbH & Co. KGaA Weinheim.

  2. Simultaneous mapping of multiple gene loci with pooled segregants.

    Directory of Open Access Journals (Sweden)

    Jürgen Claesen

    Full Text Available The analysis of polygenic, phenotypic characteristics such as quantitative traits or inheritable diseases remains an important challenge. It requires reliable scoring of many genetic markers covering the entire genome. The advent of high-throughput sequencing technologies provides a new way to evaluate large numbers of single nucleotide polymorphisms (SNPs as genetic markers. Combining the technologies with pooling of segregants, as performed in bulked segregant analysis (BSA, should, in principle, allow the simultaneous mapping of multiple genetic loci present throughout the genome. The gene mapping process, applied here, consists of three steps: First, a controlled crossing of parents with and without a trait. Second, selection based on phenotypic screening of the offspring, followed by the mapping of short offspring sequences against the parental reference. The final step aims at detecting genetic markers such as SNPs, insertions and deletions with next generation sequencing (NGS. Markers in close proximity of genomic loci that are associated to the trait have a higher probability to be inherited together. Hence, these markers are very useful for discovering the loci and the genetic mechanism underlying the characteristic of interest. Within this context, NGS produces binomial counts along the genome, i.e., the number of sequenced reads that matches with the SNP of the parental reference strain, which is a proxy for the number of individuals in the offspring that share the SNP with the parent. Genomic loci associated with the trait can thus be discovered by analyzing trends in the counts along the genome. We exploit the link between smoothing splines and generalized mixed models for estimating the underlying structure present in the SNP scatterplots.

  3. A conserved nuclear element with a role in mammalian gene regulation.

    Science.gov (United States)

    Donnelly, S R; Hawkins, T E; Moss, S E

    1999-09-01

    Mammalian genomes contain numerous fragments of DNA that are derived from inactivated transposable elements. The accumulation and persistence of these elements is generally attributed to transposase activity rather than through possession or acquisition of a function of value to the host genome. Here we describe such a repetitive element, named ALF (forannexin VILINE-2fragment), comprising 130 bp of DNA derived from a LINE-2 sequence, which functions as a potent T-cell-specific silencer. The expansion of the DNA database arising as a result of the human genome sequencing project enabled us to identify ALF in, or close to, several well characterized genes including those for annexin VI, interleukin-4 and protein kinase C-beta. A systematic analysis of the entire LINE-2 sequence revealed that ALF, and not other regions of the LINE-2 sequence, was especially highly represented in the human genome. Acquisition of a function by this repetitive element may explain its abundance. These data show that a conserved fragment of an interspersed nuclear element has the potential to modulate gene expression, a discovery that has broad implications for the way in which we view so-called 'junk' DNA and our understanding of eukaryotic gene regulation.

  4. Asymmetric cell division of T cells upon antigen presentation uses multiple conserved mechanisms.

    Science.gov (United States)

    Oliaro, Jane; Van Ham, Vanessa; Sacirbegovic, Faruk; Pasam, Anupama; Bomzon, Ze'ev; Pham, Kim; Ludford-Menting, Mandy J; Waterhouse, Nigel J; Bots, Michael; Hawkins, Edwin D; Watt, Sally V; Cluse, Leonie A; Clarke, Chris J P; Izon, David J; Chang, John T; Thompson, Natalie; Gu, Min; Johnstone, Ricky W; Smyth, Mark J; Humbert, Patrick O; Reiner, Steven L; Russell, Sarah M

    2010-07-01

    Asymmetric cell division is a potential means by which cell fate choices during an immune response are orchestrated. Defining the molecular mechanisms that underlie asymmetric division of T cells is paramount for determining the role of this process in the generation of effector and memory T cell subsets. In other cell types, asymmetric cell division is regulated by conserved polarity protein complexes that control the localization of cell fate determinants and spindle orientation during division. We have developed a tractable, in vitro model of naive CD8(+) T cells undergoing initial division while attached to dendritic cells during Ag presentation to investigate whether similar mechanisms might regulate asymmetric division of T cells. Using this system, we show that direct interactions with APCs provide the cue for polarization of T cells. Interestingly, the immunological synapse disseminates before division even though the T cells retain contact with the APC. The cue from the APC is translated into polarization of cell fate determinants via the polarity network of the Par3 and Scribble complexes, and orientation of the mitotic spindle during division is orchestrated by the partner of inscuteable/G protein complex. These findings suggest that T cells have selectively adapted a number of evolutionarily conserved mechanisms to generate diversity through asymmetric cell division.

  5. Mouse transgenesis identifies conserved functional enhancers and cis-regulatory motif in the vertebrate LIM homeobox gene Lhx2 locus.

    Directory of Open Access Journals (Sweden)

    Alison P Lee

    Full Text Available The vertebrate Lhx2 is a member of the LIM homeobox family of transcription factors. It is essential for the normal development of the forebrain, eye, olfactory system and liver as well for the differentiation of lymphoid cells. However, despite the highly restricted spatio-temporal expression pattern of Lhx2, nothing is known about its transcriptional regulation. In mammals and chicken, Crb2, Dennd1a and Lhx2 constitute a conserved linkage block, while the intervening Dennd1a is lost in the fugu Lhx2 locus. To identify functional enhancers of Lhx2, we predicted conserved noncoding elements (CNEs in the human, mouse and fugu Crb2-Lhx2 loci and assayed their function in transgenic mouse at E11.5. Four of the eight CNE constructs tested functioned as tissue-specific enhancers in specific regions of the central nervous system and the dorsal root ganglia (DRG, recapitulating partial and overlapping expression patterns of Lhx2 and Crb2 genes. There was considerable overlap in the expression domains of the CNEs, which suggests that the CNEs are either redundant enhancers or regulating different genes in the locus. Using a large set of CNEs (810 CNEs associated with transcription factor-encoding genes that express predominantly in the central nervous system, we predicted four over-represented 8-mer motifs that are likely to be associated with expression in the central nervous system. Mutation of one of them in a CNE that drove reporter expression in the neural tube and DRG abolished expression in both domains indicating that this motif is essential for expression in these domains. The failure of the four functional enhancers to recapitulate the complete expression pattern of Lhx2 at E11.5 indicates that there must be other Lhx2 enhancers that are either located outside the region investigated or divergent in mammals and fishes. Other approaches such as sequence comparison between multiple mammals are required to identify and characterize such enhancers.

  6. Heirloom biodynamic seeds network rescue, conservation and multiplication of local seeds in Brazil

    OpenAIRE

    Jovchelevich, Pedro

    2014-01-01

    Structuring a network organic and biodynamic seed involving farmers in the central- southern Brazil. Training, participatory breeding, edition of publications, fairs of exchange seeds, a processing unit and assessment of seed quality, commercial seed multiplication with emphasis on vegetables. This network has garanteed the autonomy of farmers in seed production and enriched agrobiodiversity through exchanges of seed.

  7. [A case of MRSA infection in multiple artificial joints successfully treated with conservative medical treatment].

    Science.gov (United States)

    Nemoto, Takaaki; Yamasaki, Yukitaka; Torikai, Keito; Ishii, Osamu; Fujitani, Shigeki; Matsuda, Takahide

    2012-07-01

    We report herein on a case with multiple MRSA prosthetic arthritis and osteomyelitis successfully treated medically. Our patient was a 64-year-old Japanese woman with a previous medical history of malignant rheumatoid arthritis and multiple surgical interventions with an atlantoaxial fixation in 2003, artificial joint replacement of both knee joints in 2006, and of the right hip joint in September, 2007. She was initially hospitalized due to MRSA arthritis in the right hip in October, 2007. Thereafter, multiple joint infections occurred sequentially in the right knee joint in January 2008 and the left hip joint in June 2008. More recently, the patient was re-admitted in January 2009 due to cervical osteomyelitis with MRSA infection. The patient had been treated with a combination of vancomycin and rifampin for 17 weeks and followed by sulfamethoxazole/trimetoprim in the out-patient setting up to the present. Although the complete resolution of multiple deep MRSA infections with prosthetic arthritis and osteomyelitis is not expected without removing the infectious sources, our patient was successfully treated with chronic antibiotic suppressive therapy. Therefore, we report on our case with a literature review.

  8. Mutation of domain III and domain VI in L gene conserved domain of Nipah virus

    Science.gov (United States)

    Jalani, Siti Aishah; Ibrahim, Nazlina

    2016-11-01

    Nipah virus (NiV) is the etiologic agent responsible for the respiratory illness and causes fatal encephalitis in human. NiV L protein subunit is thought to be responsible for the majority of enzymatic activities involved in viral transcription and replication. The L protein which is the viral RNA dependent RNA polymerase has high sequence homology among negative sense RNA viruses. In negative stranded RNA viruses, based on sequence alignment six conserved domain (domain I-IV) have been determined. Each domain is separated on variable regions that suggest the structure to consist concatenated functional domain. To directly address the roles of domains III and VI, site-directed mutations were constructed by the substitution of bases at sequences 2497, 2500, 5528 and 5532. Each mutated L gene can be used in future studies to test the ability for expression on in vitro translation.

  9. Mapping the transcription repressive domain in the highly conserved human gene hnulp1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    HNULP1,a new member of the basic helixloop-helix transcription factors,contains a DUF654 domain in its C-terminus and is highly conserved from Drosophilae,yeast,zebrafish to mouse.The function of this motif,however,is currently unknown.In this research,we fused five deletion fragments of the DUF654 domain to the GAL4 DNA-binding domain and then co-transfected with plasmids L8G5-Luc and VP-16.The analysis of the GAL4 luciferase reporter gene indicated that fragments from 228 to 407 amino acids in the DUF654 domain had a strong transcription repression activity.Therefore,this study lays a solid foundation for research on the mechanism of hnulp1 transcriptional regulation and the function of the DUF654 domain.

  10. Structural levansucrase gene (lsdA) constitutes a functional locus conserved in the species Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Hernández, L; Sotolongo, M; Rosabal, Y; Menéndez, C; Ramírez, R; Caballero-Mellado, J; Arrieta, J

    2000-01-01

    Levansucrase (EC 2.4.1.10) was identified as a constitutive exoenzyme in 14 Gluconacetobacter diazotrophicus strains recovered from different host plants in diverse geographical regions. The enzyme, consisting of a single 60-kDa polypeptide, hydrolysed sucrose to synthesise oligofructans and levan. Sugar-cane-associated strains of the most abundant genotype (electrophoretic type 1) showed maximal values of levansucrase production. These values were three-fold higher than those of the isolates recovered from coffee plants. Restriction fragment length polymorphism analysis revealed a high degree of conservation of the levansucrase locus (IsdA) among the 14 strains under study, which represented 11 different G. diazotrophicus genotypes. Targeted disruption of the lsdA gene in four representative strains abolished their ability to grow on sucrose, indicating that the endophytic species G. diazotrophicus utilises plant sucrose via levansucrase.

  11. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block

    Directory of Open Access Journals (Sweden)

    Ma Wujun

    2010-05-01

    Full Text Available Abstract Background The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features. Results BAC shotgun sequencing of the hexaploid wheat (Triticum aestivum cv. Chinese Spring genome has been used to assemble a group of 15 wheat BACs from the chromosome 3B physical map FPC contig ctg1034 into a 783,553 bp genomic sequence. This ctg1034 sequence was annotated for biological features such as genes and transposable elements. A three-gene island was identified among >80% repetitive DNA sequence. Using bioinformatics analysis there were no observable similarity in their gene functions. The ctg1034 gene island also displayed complete conservation of gene order and orientation with syntenic gene islands found in publicly available genome sequences of Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, even though the intergenic space and introns were divergent. Conclusion We propose that ctg1034 is located within the heterochromatic C-band region of deletion bin 3BL7 based on the identification of heterochromatic tandem repeats and presence of significant matches to chromodomain-containing gypsy LTR retrotransposable elements. We also speculate that this location, among other highly repetitive sequences, may account for the relative stability in gene order and

  12. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton.

    Science.gov (United States)

    Lu, Qiuheng; Schafer, Dorothy A; Adler, Paul N

    2015-07-15

    The evolutionarily conserved frizzled/starry night (fz/stan) pathway regulates planar cell polarity (PCP) in vertebrates and invertebrates. This pathway has been extensively studied in the Drosophila wing, where it is manifested by an array of distally pointing cuticular hairs. Using in vivo imaging we found that, early in hair growth, cells have multiple actin bundles and hairs that subsequently fuse into a single growing hair. The downstream PCP gene multiple wing hairs (mwh) plays a key role in this process and acts to antagonize the actin cytoskeleton. In mwh mutants hair initiation is not limited to a small region at the distal edge of pupal wing cells as in wild type, resulting in multiple hairs with aberrant polarity. Extra actin bundles/hairs are formed and do not completely fuse, in contrast to wild type. As development proceeded additional hairs continued to form, further increasing hair number. We identified a fragment of Mwh with in vivo rescue activity and that bound and bundled F-actin filaments and inhibited actin polymerization in in vitro actin assays. The loss of these activities can explain the mwh mutant phenotype. Our data suggest a model whereby, prior to hair initiation, proximally localized Mwh inhibits actin polymerization resulting in polarized activation of the cytoskeleton and hair formation on the distal side of wing cells. During hair growth Mwh is found in growing hairs, where we suggest it functions to promote the fusion of actin bundles and inhibit the formation of additional actin bundles that could lead to extra hairs.

  13. Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid Arabidopsis kamchatica.

    Science.gov (United States)

    Paape, Timothy; Hatakeyama, Masaomi; Shimizu-Inatsugi, Rie; Cereghetti, Teo; Onda, Yoshihiko; Kenta, Tanaka; Sese, Jun; Shimizu, Kentaro K

    2016-11-01

    Allopolyploidization combines parental genomes and often confers broader species distribution. However, little is known about parentally transmitted gene expression underlying quantitative traits following allopolyploidization because of the complexity of polyploid genomes. The allopolyploid species Arabidopsis kamchatica is a natural hybrid of the zinc hyperaccumulator Arabidopsis halleri and of the nonaccumulator Arabidopsis lyrata We found that A. kamchatica retained the ability to hyperaccumulate zinc from A. halleri and grows in soils with both low and high metal content. Hyperaccumulation of zinc by A. kamchatica was reduced to about half of A. halleri, but is 10-fold greater than A. lyrata Homeologs derived from A. halleri had significantly higher levels of expression of genes such as HEAVY METAL ATPASE4 (HMA4), METAL TRANSPORTER PROTEIN1 and other metal ion transporters than those derived from A. lyrata, which suggests cis-regulatory differences. A. kamchatica has on average about half the expression of these genes compared with A. halleri due to fixed heterozygosity inherent in allopolyploids. Zinc treatment significantly changed the ratios of expression of 1% of homeologous pairs, including genes putatively involved in metal homeostasis. Resequencing data showed a significant reduction in genetic diversity over a large genomic region (290 kb) surrounding the HMA4 locus derived from the A. halleri parent compared with the syntenic A. lyrata-derived region, which suggests different evolutionary histories. We also estimated that three A. halleri-derived HMA4 copies are present in A. kamchatica Our findings support a transcriptomic model in which environment-related transcriptional patterns of both parents are conserved but attenuated in the allopolyploids. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Multiple-resource modeling as a tool for conservation: Its applicability in Mexico

    Science.gov (United States)

    Bojórquez-Tapia, Luis Antonio; Ffolliott, Peter F.; Guertin, D. Phillip

    1990-05-01

    The current Mexican environmental law provides the legal basis for comprehensive land-use planning. Under the law, development of natural ecosystems must combine goals, policies, and practices towards the sustainable use of natural resources and the protection of biological diversity. Thus, ecosystem manipulation must be able to counter fragmentation of natural ecosystems and isolation of natural reserves, while providing for human needs. Assessment of the potential of natural ecosystems and management impacts are required. Multiple-resource simulation is an assessment and land-use planning tool that permits managers and decision makers to comply with the law, providing a flexible, user-oriented system that can meet the needs of managers, conservationists, and researchers. A multiple-resource model and an example of how it can be applied to meet planning needs is presented for discussion.

  15. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times

    Science.gov (United States)

    Zeng, Liping; Zhang, Qiang; Sun, Renran; Kong, Hongzhi; Zhang, Ning; Ma, Hong

    2014-01-01

    Angiosperms are the most successful plants and support human livelihood and ecosystems. Angiosperm phylogeny is the foundation of studies of gene function and phenotypic evolution, divergence time estimation and biogeography. The relationship of the five divergent groups of the Mesangiospermae (~99.95% of extant angiosperms) remains uncertain, with multiple hypotheses reported in the literature. Here transcriptome data sets are obtained from 26 species lacking sequenced genomes, representing each of the five groups: eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae. Phylogenetic analyses using 59 carefully selected low-copy nuclear genes resulted in highly supported relationships: sisterhood of eudicots and a clade containing Chloranthaceae and Ceratophyllaceae, with magnoliids being the next sister group, followed by monocots. Our topology allows a re-examination of the evolutionary patterns of 110 morphological characters. The molecular clock estimates of Mesangiospermae diversification during the late to middle Jurassic correspond well to the origins of some insects, which may have been a factor facilitating early angiosperm radiation. PMID:25249442

  16. Analysis of tomato plasma membrane H(+)-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species.

    Science.gov (United States)

    Liu, Junli; Liu, Jianjian; Chen, Aiqun; Ji, Minjie; Chen, Jiadong; Yang, Xiaofeng; Gu, Mian; Qu, Hongye; Xu, Guohua

    2016-10-01

    In plants, the plasma membrane H(+)-ATPase (HA) is considered to play a crucial role in regulating plant growth and respoding to environment stresses. Multiple paralogous genes encoding different isozymes of HA have been identified and characterized in several model plants, while limited information of the HA gene family is available to date for tomato. Here, we describe the molecular and expression features of eight HA-encoding genes (SlHA1-8) from tomato. All these genes are interrupted by multiple introns with conserved positions. SlHA1, 2, and 4 were widely expressed in all tissues, while SlHA5, 6, and 7 were almost only expressed in flowers. SlHA8, the transcripts of which were barely detectable under normal or nutrient-/salt-stress growth conditions, was strongly activated in arbuscular mycorrhizal (AM) fungal-colonized roots. Extreme lack of SlHA8 expression in M161, a mutant defective to AM fungal colonization, provided genetic evidence towards the dependence of its expression on AM symbiosis. A 1521-bp SlHA8 promoter could direct the GUS reporter expression specifically in colonized cells of transgenic tobacco, soybean, and rice mycorrhizal roots. Promoter deletion assay revealed a 223-bp promoter fragment of SlHA8 containing a variant of AM-specific cis-element MYCS (vMYCS) sufficient to confer the AM-induced activity. Targeted deletion of this motif in the corresponding promoter region causes complete abolishment of GUS staining in mycorrhizal roots. Together, these results lend cogent evidence towards the evolutionary conservation of a potential regulatory mechanism mediating the activation of AM-responsive HA genes in diverse mycorrhizal plant species.

  17. Multiple-land use practices in transfrontier conservation areas: the case of Greater Mapungubwe straddling parts of Botswana, South Africa and Zimbabwe

    Directory of Open Access Journals (Sweden)

    Sinthumule Ndidzulafhi Innocent

    2016-12-01

    Full Text Available Transfrontier Conservation Areas (TFCAs have recently emerged as the 21st century approach to managing protected areas in southern Africa. Unlike national parks and other protected areas that place emphasis only on the protection of plant and animal species within their borders, transfrontier conservation areas promote conservation beyond the borders of protected areas. Consequently, this mega-conservation initiative encourage multiple land-use practices with the purpose of improving rural livelihoods whilst promoting biodiversity conservation. Thus, land parcels under different forms of tenure are brought together into a common nature conservation project. This study argues that the integration of various land-use practices within one area benefits conservation goals at the expense of local communities and irrigation farmers. To substantiate this argument, the study draws on fieldwork material collected in the Greater Mapungubwe Transfrontier Conservation Area spanning parts of Botswana, South Africa and Zimbabwe. The study concludes that multiple-land use practices in transfrontier conservation areas is only promoted by wildlife managers to gain access to extra land.

  18. Duplication of the IGFBP-2 gene in teleost fish: protein structure and functionality conservation and gene expression divergence.

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    Full Text Available BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2 is a secreted protein that binds and regulates IGF actions in controlling growth, development, reproduction, and aging. Elevated expression of IGFBP-2 is often associated with progression of many types of cancers. METHODOLOGY/PRINCIPAL FINDINGS: We report the identification and characterization of two IGFBP-2 genes in zebrafish and four other teleost fish. Comparative genomics and structural analyses suggest that they are co-orthologs of the human IGFBP-2 gene. Biochemical assays show that both zebrafish igfbp-2a and -2b encode secreted proteins that bind IGFs. These two genes exhibit distinct spatiotemporal expression patterns. During embryogenesis, IGFBP-2a mRNA is initially detected in the lens, then in the brain boundary vasculature, and subsequently becomes highly expressed in the liver. In the adult stage, liver has the highest levels of IGFBP-2a mRNA, followed by the brain. Low levels of IGFBP-2a mRNA were detected in muscle and in the gonad in male adults only. IGFBP-2b mRNA is detected initially in all tissues at low levels, but later becomes abundant in the liver. In adult males, IGFBP-2b mRNA is only detected in the liver. In adult females, it is also found in the gut, kidney, ovary, and muscle. To gain insights into how the IGFBP-2 genes may have evolved through partitioning of ancestral functions, functional and mechanistic studies were carried out. Expression of zebrafish IGFBP-2a and -2b caused significant decreases in the growth and developmental rates and their effects are comparable to that of human IGFBP-2. IGFBP-2 mutants with altered IGF binding-, RGD-, and heparin-binding sites were generated and their actions examined. While mutating the RGD and heparin binding sites had little effect, altering the IGF binding site abolished its biological activity. CONCLUSIONS/SIGNIFICANCE: These results suggest that IGFBP-2 is a conserved regulatory protein and it inhibits

  19. Genome-wide analysis of trans-splicing in the nematode Pristionchus pacificus unravels conserved gene functions for germline and dauer development in divergent operons.

    Science.gov (United States)

    Sinha, Amit; Langnick, Claudia; Sommer, Ralf J; Dieterich, Christoph

    2014-09-01

    Discovery of trans-splicing in multiple metazoan lineages led to the identification of operon-like gene organization in diverse organisms, including trypanosomes, tunicates, and nematodes, but the functional significance of such operons is not completely understood. To see whether the content or organization of operons serves similar roles across species, we experimentally defined operons in the nematode model Pristionchus pacificus. We performed affinity capture experiments on mRNA pools to specifically enrich for transcripts that are trans-spliced to either the SL1- or SL2-spliced leader, using spliced leader-specific probes. We obtained distinct trans-splicing patterns from the analysis of three mRNA pools (total mRNA, SL1 and SL2 fraction) by RNA-seq. This information was combined with a genome-wide analysis of gene orientation and spacing. We could confirm 2219 operons by RNA-seq data out of 6709 candidate operons, which were predicted by sequence information alone. Our gene order comparison of the Caenorhabditis elegans and P. pacificus genomes shows major changes in operon organization in the two species. Notably, only 128 out of 1288 operons in C. elegans are conserved in P. pacificus. However, analysis of gene-expression profiles identified conserved functions such as an enrichment of germline-expressed genes and higher expression levels of operonic genes during recovery from dauer arrest in both species. These results provide support for the model that a necessity for increased transcriptional efficiency in the context of certain developmental processes could be a selective constraint for operon evolution in metazoans. Our method is generally applicable to other metazoans to see if similar functional constraints regulate gene organization into operons.

  20. Sequence Similarity of Clostridium difficile Strains by Analysis of Conserved Genes and Genome Content Is Reflected by Their Ribotype Affiliation

    Science.gov (United States)

    Kurka, Hedwig; Ehrenreich, Armin; Ludwig, Wolfgang; Monot, Marc; Rupnik, Maja; Barbut, Frederic; Indra, Alexander; Dupuy, Bruno; Liebl, Wolfgang

    2014-01-01

    PCR-ribotyping is a broadly used method for the classification of isolates of Clostridium difficile, an emerging intestinal pathogen, causing infections with increased disease severity and incidence in several European and North American countries. We have now carried out clustering analysis with selected genes of numerous C. difficile strains as well as gene content comparisons of their genomes in order to broaden our view of the relatedness of strains assigned to different ribotypes. We analyzed the genomic content of 48 C. difficile strains representing 21 different ribotypes. The calculation of distance matrix-based dendrograms using the neighbor joining method for 14 conserved genes (standard phylogenetic marker genes) from the genomes of the C. difficile strains demonstrated that the genes from strains with the same ribotype generally clustered together. Further, certain ribotypes always clustered together and formed ribotype groups, i.e. ribotypes 078, 033 and 126, as well as ribotypes 002 and 017, indicating their relatedness. Comparisons of the gene contents of the genomes of ribotypes that clustered according to the conserved gene analysis revealed that the number of common genes of the ribotypes belonging to each of these three ribotype groups were very similar for the 078/033/126 group (at most 69 specific genes between the different strains with the same ribotype) but less similar for the 002/017 group (86 genes difference). It appears that the ribotype is indicative not only of a specific pattern of the amplified 16S–23S rRNA intergenic spacer but also reflects specific differences in the nucleotide sequences of the conserved genes studied here. It can be anticipated that the sequence deviations of more genes of C. difficile strains are correlated with their PCR-ribotype. In conclusion, the results of this study corroborate and extend the concept of clonal C. difficile lineages, which correlate with ribotypes affiliation. PMID:24482682

  1. A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    2016-06-01

    Full Text Available WD40 repeat (WDR proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD. FPWD is within a cell wall metabolism gene cluster in the Ascomycetes (Pezizomycotina comprising chsD, a Chs activator and a GH17 glucanase. The FPWD, AN1556.2 locus was deleted in Aspergillus nidulans strain SAA.111 by gene replacement and only heterokaryon transformants were obtained. The re-annotation of Aspergilli genomes shows that AN1556.2 consists of two tightly linked separate genes, i.e., the WDR gene and a putative beta-flanking gene of unknown function. The WDR and the beta-flanking genes are conserved genomic neighbors localized within a recently identified metabolic cell wall gene cluster in genomes of Aspergilli. The heterokaryons displayed increased susceptibility to drugs affecting the cell wall, and their phenotypes, observed by optical, confocal, scanning electron and atomic force microscopy, suggest cell wall alterations. Quantitative real-time PCR shows altered expression of some cell wall-related genes. The possible implications on cell wall biosynthesis are discussed.

  2. Globin gene server: a prototype E-mail database server featuring extensive multiple alignments and data compilation for electronic genetic analysis.

    Science.gov (United States)

    Hardison, R; Chao, K M; Schwartz, S; Stojanovic, N; Ganetsky, M; Miller, W

    1994-05-15

    The sequence of virtually the entire cluster of beta-like globin genes has been determined from several mammals, and many regulatory regions have been analyzed by mutagenesis, functional assays, and nuclear protein binding studies. This very large amount of sequence and functional data needs to be compiled in a readily accessible and usable manner to optimize data analysis, hypothesis testing, and model building. We report a Globin Gene Server that will provide this service in a constantly updated manner when fully implemented. The Server has two principal functions. The first (currently available) provides an annotated multiple alignment of the DNA sequences throughout the gene cluster from representatives of all species analyzed. The second compiles data on functional and protein binding assays throughout the gene cluster. A prototype of this compilation using the aligned 5' flanking region of beta-globin genes from five species shows examples of (1) well-conserved regions that have demonstrated functions, including cases in which the functional data are in apparent conflict, (2) proposed functional regions that are not well conserved, and (3) conserved regions with no currently assigned function. Such an electronic genetic analysis leads to many readily testable hypotheses that were not immediately apparent without the multiple alignment and compilation. The Server is accessible via E-mail on computer networks, and printed results can be obtained by request to the authors. This prototype will be a helpful guide for developing similar tools for many genomic loci.

  3. Conservation, spillover and gene flow within a network of Northern European marine protected areas.

    Directory of Open Access Journals (Sweden)

    Mats Brockstedt Olsen Huserbråten

    Full Text Available To ensure that marine protected areas (MPAs benefit conservation and fisheries, the effectiveness of MPA designs has to be evaluated in field studies. Using an interdisciplinary approach, we empirically assessed the design of a network of northern MPAs where fishing for European lobster (Homarusgammarus is prohibited. First, we demonstrate a high level of residency and survival (50% for almost a year (363 days within MPAs, despite small MPA sizes (0.5-1 km(2. Second, we demonstrate limited export (4.7% of lobsters tagged within MPAs (N = 1810 to neighbouring fished areas, over a median distance of 1.6 km out to maximum 21 km away from MPA centres. In comparison, median movement distance of lobsters recaptured within MPAs was 164 m, and recapture rate was high (40%. Third, we demonstrate a high level of gene flow within the study region, with an estimated F ST of less than 0.0001 over a ≈ 400 km coastline. Thus, the restricted movement of older life stages, combined with a high level of gene flow suggests that connectivity is primarily driven by larval drift. Larval export from the MPAs can most likely affect areas far beyond their borders. Our findings are of high importance for the design of MPA networks for sedentary species with pelagic early life stages.

  4. Conserved gene arrangement in the origin region of the Streptomyces coelicolor chromosome.

    Science.gov (United States)

    Calcutt, M J; Schmidt, F J

    1992-01-01

    A 23-kb fragment of the Streptomyces coelicolor chromosome spanning the dnaA region has been isolated as a cosmid clone. Nucleotide sequence analysis of a 5-kb portion shows that the genes for the RNase P protein (rnpA), ribosomal protein L34 (rpmH), the replication initiator protein (dnaA), and the beta subunit of DNA polymerase III (dnaN) are present in the highly conserved gene arrangement found in all eubacterial genomes studied so far. The dnaA-dnaN intergenic region is approximately 1 kb and contains a cluster of at least 12 DnaA boxes with a consensus sequence of TTGTCCACA matching the consensus DnaA box in the phylogenetically related Micrococcus luteus. Two DnaA boxes precede the dnaA sequence. We propose that the chromosomal origin (oriC) of S. coelicolor lies between dnaA and dnaN. In related work, J. Zakrzewska-Czerwinska and H. Schrempf (J. Bacteriol. 174:2688-2693, 1992) have identified the homologous sequence from the closely-related Streptomyces lividans as capable of self-replication. PMID:1577691

  5. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif.

    Science.gov (United States)

    Tesina, Petr; Čermáková, Kateřina; Hořejší, Magdalena; Procházková, Kateřina; Fábry, Milan; Sharma, Subhalakshmi; Christ, Frauke; Demeulemeester, Jonas; Debyser, Zeger; De Rijck, Jan; Veverka, Václav; Řezáčová, Pavlína

    2015-08-06

    Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors.

  6. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import.

    Directory of Open Access Journals (Sweden)

    Chong He

    2014-12-01

    Full Text Available The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS, but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.

  7. Identification of evolutionarily conserved, functional noncoding elements in the promoter region of the sodium channel gene SCN8A.

    Science.gov (United States)

    Drews, Valerie L; Shi, Kehui; de Haan, Georgius; Meisler, Miriam H

    2007-10-01

    SCN8A is a major neuronal sodium channel gene expressed throughout the central and peripheral nervous systems. Mutations of SCN8A result in movement disorders and impaired cognition. To investigate the basis for the tissue-specific expression of SCN8A, we located conserved, potentially regulatory sequences in the human, mouse, chicken, and fish genes by 5' RACE of brain RNA and genomic sequence comparison. A highly conserved 5' noncoding exon, exon 1c, is present in vertebrates from fish to mammals and appears to define the ancestral promoter region. The distance from exon 1c to the first coding exon increased tenfold during vertebrate evolution, largely by insertion of repetitive elements. The mammalian gene acquired three novel, mutually exclusive noncoding exons that are not represented in the lower vertebrates. Within the shared exon 1c, we identified four short sequence elements of 10-20 bp with an unusually high level of evolutionary conservation. The conserved elements are most similar to consensus sites for the transcription factors Pou6f1/Brn5, YY1, and REST/NRSF. Introduction of mutations into the predicted Pou6f1 and REST sites reduced promoter activity in transfected neuronal cells. A 470-bp promoter fragment containing all of the conserved elements directed brain-specific expression of the LacZ reporter in transgenic mice. Transgene expression was highest in hippocampal neurons and cerebellar Purkinje cells, consistent with the expression of the endogenous gene. The compact cluster of conserved regulatory elements in SCN8A provides a useful target for molecular analysis of neuronal gene expression.

  8. Multiple ecosystem services landscape index: a tool for multifunctional landscapes conservation.

    Science.gov (United States)

    Rodríguez-Loinaz, Gloria; Alday, Josu G; Onaindia, Miren

    2015-01-01

    The contribution of ecosystems to human well-being has been widely recognised. Taking into account existing trade-offs between ecosystem services (ES) at the farm scale and the dependence of multiple ES on processes that take place at the landscape scale, long-term preservation of multifunctional landscapes must be a priority. Studies carried out from such perspective, and those that develop appropriate indicators, could provide useful tools for integrating ES in landscape planning. In this study we propose a new integrative environmental indicator based on the ES provided by the landscape and named "multiple ecosystem services landscape index" (MESLI). Because synergies and trade-offs between ES are produced at regional or local levels, being different from those perceived at larger scales, MESLI was developed at municipality level. Furthermore, in order to identify main drivers of change in ES provision at the landscape scale an analysis of the relationship between the environmental and the socioeconomic characteristics of the municipalities was carried out. The study was located in the Basque Country and the results demonstrated that the MESLI index is a good tool to measure landscape multifunctionality at local scales. It is effective evaluating landscapes, distinguishing between municipalities based on ES provision, and identifying the drivers of change and their effects. This information about ES provisioning at the local level is usually lacking; therefore, MESLI would be very useful for policy-makers and land managers because it provides relevant information to local scale decision-making.

  9. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    Science.gov (United States)

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  10. Phylogenetic conservation of the 3' cryptic recombination signal sequence (3'cRSS) in the VH genes of jawed vertebrates.

    Science.gov (United States)

    Sun, Yi; Liu, Zhancai; Li, Zhaoyong; Lian, Zhengxing; Zhao, Yaofeng

    2012-01-01

    The VH replacement process is a RAG-mediated secondary recombination in which the variable region of a rearranged VHDJH is replaced by a different germline VH gene. In almost all human and mouse VH genes, two sequence features appear to be crucial for VH replacement. First, an embedded heptamer, which is located near the 3' end of the rearranged VH gene, serves as a cryptic recombination signal sequence (3'cRSS) for the VH replacement process. Second, a short stretch of nucleotides located downstream of the 3'cRSS serve as a footprint of the original VH region, frequently encoding charged amino acids. In this review, we show that both of these two features are conserved in the VH genes of all jawed vertebrates, which suggests that the VH replacement process may be a conserved mechanism.

  11. Conservation of the Exon-Intron Structure of Long Intergenic Non-Coding RNA Genes in Eutherian Mammals

    Directory of Open Access Journals (Sweden)

    Diana Chernikova

    2016-07-01

    Full Text Available The abundance of mammalian long intergenic non-coding RNA (lincRNA genes is high, yet their functions remain largely unknown. One possible way to study this important question is to use large-scale comparisons of various characteristics of lincRNA with those of protein-coding genes for which a large body of functional information is available. A prominent feature of mammalian protein-coding genes is the high evolutionary conservation of the exon-intron structure. Comparative analysis of putative intron positions in lincRNA genes from various mammalian genomes suggests that some lincRNA introns have been conserved for over 100 million years, thus the primary and/or secondary structure of these molecules is likely to be functionally important.

  12. Nuclear factor-κB regulates the expression of multiple genes encoding liver transport proteins.

    Science.gov (United States)

    Balasubramaniyan, Natarajan; Ananthanarayanan, Meenakshisundaram; Suchy, Frederick J

    2016-04-15

    In this study we identified the mechanisms underlying the inhibitory effects of NF-κB on the expression of genes encoding multiple liver transport proteins. Well-conserved NF-κB binding sites were found in the promoters of farnesoid X receptor (FXR)-target genes. An electromobility shift assay (EMSA) demonstrated the specific interaction between the NF-κB p65 protein and a (32)P-labeled BSEP NF-κB response element (NF-κBE). Chromatin immunoprecipitation (ChIP) analysis confirmed binding of NF-κB p65 to the BSEP locus but not the FXRE in vitro. NF-κB p65 overexpression in Huh-7 cells markedly repressed FXR/RXR transactivation of the BSEP, ABCG5/G8, MRP2, and FXR promoters, which was totally reversed by expression of the IκBα super-repressor. NF-κB interacted directly with FXR on coimmunoprecipitation, suggesting another level for the inhibitory effects of NF-κB on FXR-target genes. In vivo ChIP analysis with liver nuclei obtained from mice after 3 days of common bile duct ligation (BDL) or 6 h post-lipopolysaccharide (LPS) injection showed a markedly increased recruitment of NF-κB p65 to the Bsep promoter compared with controls. There was also increased recruitment of the corepressor silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and histone deacetylase (HDAC)3 and HDAC2 to the NF-κB sites. We also found that NF-κB p65 was recruited to NF-κB binding sites in the promoters of organic solute transporter, OSTα and OSTβ, and unexpectedly activated rather than repressed gene expression. In mouse liver after BDL NF-κB recruitment to Ostα and Ostβ promoters was associated with increased binding of the potent coactivator cAMP response element binding protein (CREB)-binding protein (CBP)/p300 to the NF-κBE and depletion of CBP/p300 at the FXR element. Overall, these studies demonstrate a novel role for NF-κB in adaptation to obstructive and LPS-induced cholestasis acting through recruitment to specific NF-κB binding sites in

  13. Simple and Efficient Targeting of Multiple Genes Through CRISPR-Cas9 in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Mauricio Lopez-Obando

    2016-11-01

    Full Text Available Powerful genome editing technologies are needed for efficient gene function analysis. The CRISPR-Cas9 system has been adapted as an efficient gene-knock-out technology in a variety of species. However, in a number of situations, knocking out or modifying a single gene is not sufficient; this is particularly true for genes belonging to a common family, or for genes showing redundant functions. Like many plants, the model organism Physcomitrella patens has experienced multiple events of polyploidization during evolution that has resulted in a number of families of duplicated genes. Here, we report a robust CRISPR-Cas9 system, based on the codelivery of a CAS9 expressing cassette, multiple sgRNA vectors, and a cassette for transient transformation selection, for gene knock-out in multiple gene families. We demonstrate that CRISPR-Cas9-mediated targeting of five different genes allows the selection of a quintuple mutant, and all possible subcombinations of mutants, in one experiment, with no mutations detected in potential off-target sequences. Furthermore, we confirmed the observation that the presence of repeats in the vicinity of the cutting region favors deletion due to the alternative end joining pathway, for which induced frameshift mutations can be potentially predicted. Because the number of multiple gene families in Physcomitrella is substantial, this tool opens new perspectives to study the role of expanded gene families in the colonization of land by plants.

  14. Conserved repertoire of orthologous vomeronasal type 1 receptor genes in ruminant species

    Directory of Open Access Journals (Sweden)

    Okamura Hiroaki

    2009-09-01

    Full Text Available Abstract Background In mammals, pheromones play an important role in social and innate reproductive behavior within species. In rodents, vomeronasal receptor type 1 (V1R, which is specifically expressed in the vomeronasal organ, is thought to detect pheromones. The V1R gene repertoire differs dramatically between mammalian species, and the presence of species-specific V1R subfamilies in mouse and rat suggests that V1R plays a profound role in species-specific recognition of pheromones. In ruminants, however, the molecular mechanism(s for pheromone perception is not well understood. Interestingly, goat male pheromone, which can induce out-of-season ovulation in anestrous females, causes the same pheromone response in sheep, and vice versa, suggesting that there may be mechanisms for detecting "inter-species" pheromones among ruminant species. Results We isolated 23 goat and 21 sheep intact V1R genes based on sequence similarity with 32 cow V1R genes in the cow genome database. We found that all of the goat and sheep V1R genes have orthologs in their cross-species counterparts among these three ruminant species and that the sequence identity of V1R orthologous pairs among these ruminants is much higher than that of mouse-rat V1R orthologous pairs. Furthermore, all goat V1Rs examined thus far are expressed not only in the vomeronasal organ but also in the main olfactory epithelium. Conclusion Our results suggest that, compared with rodents, the repertoire of orthologous V1R genes is remarkably conserved among the ruminants cow, sheep and goat. We predict that these orthologous V1Rs can detect the same or closely related chemical compound(s within each orthologous set/pair. Furthermore, all identified goat V1Rs are expressed in the vomeronasal organ and the main olfactory epithelium, suggesting that V1R-mediated ligand information can be detected and processed by both the main and accessory olfactory systems. The fact that ruminant and rodent V1Rs

  15. Conservation of an Intact vif Gene of Human Immunodeficiency Virus Type 1 during Maternal-Fetal Transmission

    OpenAIRE

    Yedavalli, Venkat R. K.; Chappey, Colombe; Matala, Erik; Ahmad, Nafees

    1998-01-01

    The human immunodeficiency virus type 1 (HIV-1) vif gene is conserved among most lentiviruses, suggesting that vif is important for natural infection. To determine whether an intact vif gene is positively selected during mother-to-infant transmission, we analyzed vif sequences from five infected mother-infant pairs following perinatal transmission. The coding potential of the vif open reading frame directly derived from uncultured peripheral blood mononuclear cell DNA was maintained in most o...

  16. Pollen-mediated gene flow in a highly fragmented landscape: consequences for defining a conservation strategy of the relict Laperrine's olive.

    Science.gov (United States)

    Besnard, Guillaume; Baali-Cherif, Djamel; Bettinelli-Riccardi, Sandra; Parietti, Davis; Bouguedoura, Nadia

    2009-07-01

    In the present central Saharan conditions, the Laperrine's olive regeneration has never been observed and its populations are locally threatened. The production of plants originating from seeds was proposed as a multiplication strategy. In order to determine the impact of sexual reproduction, seeds issued from ten mothers (sampled from four locations in the Hoggar, Algeria) were genotyped using microsatellites. Compared to the initial population, a significant lost of allelic richness was revealed, indicating that our seed sampling was not representative of the local gene diversity. Paternity analyses allowed measurement of the effective pollen-mediated gene flow within patches. Preferential mating between some genotypes was revealed. A trend for a higher multipaternity on seeds collected on trees from relatively large patches was also observed. Lastly, seedlings issued from trees of small patches displayed low growth performance. The implications of our observations in the development of an efficient conservation strategy by seeds are discussed.

  17. Characterisation of multiple regulatory domains spanning the major transcriptional start site of the FUS gene, a candidate gene for motor neurone disease.

    Science.gov (United States)

    Khursheed, Kejhal; Wilm, Thomas P; Cashman, Christine; Quinn, John P; Bubb, Vivien J; Moss, Diana J

    2015-01-21

    Fused-In-Sarcoma (FUS) is a candidate gene for neurological disorders including motor neurone disease and Parkinson׳s disease in addition to various types of cancer. Recently it has been reported that over expression of FUS causes motor neurone disease in mouse models hence mutations leading to changes in gene expression may contribute to the development of neurodegenerative disease. Genome evolutionary conservation was used to predict important cis-acting DNA regulators of the FUS gene promoter that direct transcription. The putative regulators identified were analysed in reporter gene assays in cells and in chick embryos. Our analysis indicated in addition to regulatory domains 5' of the transcriptional start site an important regulatory domain resides in intron 1 of the gene itself. This intronic domain functioned both in cell lines and in vivo in the neural tube of the chick embryo including developing motor neurones. Our data suggest the interaction of multiple domains including intronic domains are involved in expression of FUS. A better understanding of the regulation of expression of FUS may give insight into how its stimulus inducible expression may be associated with neurological disorders.

  18. Predicting Gene Structures from Multiple RT-PCR Tests

    Science.gov (United States)

    Kováč, Jakub; Vinař, Tomáš; Brejová, Broňa

    It has been demonstrated that the use of additional information such as ESTs and protein homology can significantly improve accuracy of gene prediction. However, many sources of external information are still being omitted from consideration. Here, we investigate the use of product lengths from RT-PCR experiments in gene finding. We present hardness results and practical algorithms for several variants of the problem and apply our methods to a real RT-PCR data set in the Drosophila genome. We conclude that the use of RT-PCR data can improve the sensitivity of gene prediction and locate novel splicing variants.

  19. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation.

    Science.gov (United States)

    Wang, Jianbo; Hamblet, Natasha S; Mark, Sharayne; Dickinson, Mary E; Brinkman, Brendan C; Segil, Neil; Fraser, Scott E; Chen, Ping; Wallingford, John B; Wynshaw-Boris, Anthony

    2006-05-01

    The planar cell polarity (PCP) pathway is conserved throughout evolution, but it mediates distinct developmental processes. In Drosophila, members of the PCP pathway localize in a polarized fashion to specify the cellular polarity within the plane of the epithelium, perpendicular to the apicobasal axis of the cell. In Xenopus and zebrafish, several homologs of the components of the fly PCP pathway control convergent extension. We have shown previously that mammalian PCP homologs regulate both cell polarity and polarized extension in the cochlea in the mouse. Here we show, using mice with null mutations in two mammalian Dishevelled homologs, Dvl1 and Dvl2, that during neurulation a homologous mammalian PCP pathway regulates concomitant lengthening and narrowing of the neural plate, a morphogenetic process defined as convergent extension. Dvl2 genetically interacts with Loop-tail, a point mutation in the mammalian PCP gene Vangl2, during neurulation. By generating Dvl2 BAC (bacterial artificial chromosome) transgenes and introducing different domain deletions and a point mutation identical to the dsh1 allele in fly, we further demonstrated a high degree of conservation between Dvl function in mammalian convergent extension and the PCP pathway in fly. In the neuroepithelium of neurulating embryos, Dvl2 shows DEP domain-dependent membrane localization, a pre-requisite for its involvement in convergent extension. Intriguing, the Loop-tail mutation that disrupts both convergent extension in the neuroepithelium and PCP in the cochlea does not disrupt Dvl2 membrane distribution in the neuroepithelium, in contrast to its drastic effect on Dvl2 localization in the cochlea. These results are discussed in light of recent models on PCP and convergent extension.

  20. Protection against Multiple Subtypes of Influenza Viruses by Virus-Like Particle Vaccines Based on a Hemagglutinin Conserved Epitope

    Directory of Open Access Journals (Sweden)

    Shaoheng Chen

    2015-01-01

    Full Text Available We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA trimmer, the long alpha helix (LAH, as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR of hepatitis B virus core protein (HBc, and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP. Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB* adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8 (H1N1. In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB* adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  1. The human homolog of a candidate mouse t complex responder gene: conserved motifs and evolution with punctuated equilibria.

    Science.gov (United States)

    Islam, S D; Pilder, S H; Decker, C L; Cebra-Thomas, J A; Silver, L M

    1993-12-01

    The mouse Tcp-10 gene has been established as a molecular candidate for the t complex responder locus which plays a central role in the transmission ratio distortion phenotype expressed by males heterozygous for a t haplotype. Here we describe a comparison of the mouse and human TCP10 coding sequences. The results show that whole exons have been added or eliminated from the transcripts expressed in each species, suggesting an evolutionary process of punctuated equilibria for this gene. Two of the polypeptide regions that are most conserved between the two species contain specific peptide motifs. The conserved C-terminal region contains a unique nonapeptide repeat of unknown function and the conserved N-terminal region contains a pair of leucine zippers within a region that shows additional similarity to the coiled-coil regions of various cytosolic polypeptides. These results are discussed in terms of the possible function of the TCP10 protein.

  2. Conservation of major surface protein 1 genes of Anaplasma marginale during cyclic transmission between ticks and cattle.

    Science.gov (United States)

    Bowie, Michael V; de la Fuente, Jose; Kocan, Katherine M; Blouin, Edmour F; Barbet, Anthony F

    2002-01-09

    Bovine anaplasmosis is a rickettsial disease of world-wide economic importance caused by Anaplasma marginale. Several major surface proteins with conserved gene sequences have been examined as potential candidates for vaccines and/or diagnostic assays. Major surface protein 1 (MSP1) is composed of polypeptides MSP1a and MSP1b. MSP1a is expressed from the single copy gene msp1 alpha and MSP1b is expressed by members of the msp1 beta multigene family. In order to determine if the msp1 genes are conserved, primers specific for msp1 alpha, msp1 beta(1), and msp1 beta(2) genes were synthesized and used to amplify msp1 sequences of A. marginale from tick cell cultures, from cattle during acute and chronic infections and from salivary glands of Dermacentor variabilis. Protein sequences of MSP1a, MSP1b(1) and MSP1b(2) were conserved during the life cycle of the parasite. No amino acid changes were observed in MSP1a. However, small variations were observed in the MSP1b(1) and MSP1b(2) protein sequences, which could be attributed to recombination, selection for sub-populations of A. marginale in the vertebrate host and/or PCR errors. Several isolate-specific sequences were also observed. Based on the information obtained in this study, the MSP1 protein appears to be fairly well conserved and a potential vaccine candidate.

  3. THE GRK4 SUBFAMILY OF G PROTEIN-COUPLED RECEPTOR KINASES: ALTERNATIVE SPLICING, GENE ORGANIZATION, AND SEQUENCE CONSERVATION

    Science.gov (United States)

    The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.Department of Medicine, Howard Hughes Medical Institute, Duke Univer...

  4. Transcriptional silencing of multiple genes in trophozoites of Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Rivka Bracha

    2006-05-01

    Full Text Available In a previous work we described the transcriptional silencing of the amoebapore A (AP-A gene (Ehap-a of Entamoeba histolytica strain HM-1:IMSS. The silencing occurred following transfection with a plasmid containing a 5' upstream region (473 bp of Ehap-a that included a truncated segment (140 bp of a short interspersed nuclear element (SINE1. Silencing remained in effect even after removal of the plasmid (clone G3. Neither short interfering RNA nor methylated DNA were detected, but the chromatin domain of Ehap-a in the gene-silenced trophozoites was modified. Two other similar genes (Ehap-b and one encoding a Saposin-like protein, SAPLIP 1 also became silenced. In the present work we demonstrate the silencing of a second gene of choice, one that encodes the light subunit of the Gal/GalNAc inhibitable lectin (Ehlgl1 and the other, the cysteine proteinase 5 (EhCP-5. This silencing occurred in G3 trophozoites transfected with a plasmid in which the 473 bp 5' upstream Ehap-a fragment was directly ligated to the second gene. Transcriptional silencing occurred in both the transgene and the chromosomal gene. SINE1 sequences were essential, as was a direct connection between the Ehap-a upstream region and the beginning of the open reading frame of the second gene. Gene silencing did not occur in strain HM-1:IMSS with any of these plasmid constructs. The trophozoites with two silenced genes were virulence-attenuated as were those of clone G3. In addition, trophozoites not expressing Lgl1 and AP-A proteins had a significantly reduced ability to cap the Gal/GalNAc-lectin to the uroid region when incubated with antibodies against the heavy (170 kDa subunit of the lectin. Lysates of trophozoites lacking cysteine proteinase 5 and AP-A proteins had 30% less cysteine proteinase activity than those of HM-1:IMSS strain or the G3 clone. Silencing of other genes in G3 amoebae could provide a model to study their various functions. In addition, double gene

  5. Transcriptional silencing of multiple genes in trophozoites of Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available In a previous work we described the transcriptional silencing of the amoebapore A (AP-A gene (Ehap-a of Entamoeba histolytica strain HM-1:IMSS. The silencing occurred following transfection with a plasmid containing a 5' upstream region (473 bp of Ehap-a that included a truncated segment (140 bp of a short interspersed nuclear element (SINE1. Silencing remained in effect even after removal of the plasmid (clone G3. Neither short interfering RNA nor methylated DNA were detected, but the chromatin domain of Ehap-a in the gene-silenced trophozoites was modified. Two other similar genes (Ehap-b and one encoding a Saposin-like protein, SAPLIP 1 also became silenced. In the present work we demonstrate the silencing of a second gene of choice, one that encodes the light subunit of the Gal/GalNAc inhibitable lectin (Ehlgl1 and the other, the cysteine proteinase 5 (EhCP-5. This silencing occurred in G3 trophozoites transfected with a plasmid in which the 473 bp 5' upstream Ehap-a fragment was directly ligated to the second gene. Transcriptional silencing occurred in both the transgene and the chromosomal gene. SINE1 sequences were essential, as was a direct connection between the Ehap-a upstream region and the beginning of the open reading frame of the second gene. Gene silencing did not occur in strain HM-1:IMSS with any of these plasmid constructs. The trophozoites with two silenced genes were virulence-attenuated as were those of clone G3. In addition, trophozoites not expressing Lgl1 and AP-A proteins had a significantly reduced ability to cap the Gal/GalNAc-lectin to the uroid region when incubated with antibodies against the heavy (170 kDa subunit of the lectin. Lysates of trophozoites lacking cysteine proteinase 5 and AP-A proteins had 30% less cysteine proteinase activity than those of HM-1:IMSS strain or the G3 clone. Silencing of other genes in G3 amoebae could provide a model to study their various functions. In addition, double gene

  6. Conservation of gene order and content in the circular chromosomes of 'Candidatus Liberibacter asiaticus' and other Rhizobiales.

    Directory of Open Access Journals (Sweden)

    L David Kuykendall

    Full Text Available 'Ca. Liberibacter asiaticus,' an insect-vectored, obligate intracellular bacterium associated with citrus-greening disease, also called "HLB," is a member of the Rhizobiales along with nitrogen-fixing microsymbionts Sinorhizobium meliloti and Bradyrhizobium japonicum, plant pathogen Agrobacterium tumefaciens and facultative intracellular mammalian pathogen Bartonella henselae. Comparative analyses of their circular chromosomes identified 514 orthologous genes shared among all five species. Shared among all five species are 50 identical blocks of microsyntenous orthologous genes (MOGs, containing a total of 283 genes. While retaining highly conserved genomic blocks of microsynteny, divergent evolution, horizontal gene transfer and niche specialization have disrupted macrosynteny among the five circular chromosomes compared. Highly conserved microsyntenous gene clusters help define the Rhizobiales, an order previously defined by 16S RNA gene similarity and herein represented by the three families: Bartonellaceae, Bradyrhizobiaceae and Rhizobiaceae. Genes without orthologs in the other four species help define individual species. The circular chromosomes of each of the five Rhizobiales species examined had genes lacking orthologs in the other four species. For example, 63 proteins are encoded by genes of 'Ca. Liberibacter asiaticus' not shared with other members of the Rhizobiales. Of these 63 proteins, 17 have predicted functions related to DNA replication or RNA transcription, and some of these may have roles related to low genomic GC content. An additional 17 proteins have predicted functions relevant to cellular processes, particularly modifications of the cell surface. Seventeen unshared proteins have specific metabolic functions including a pathway to synthesize cholesterol encoded by a seven-gene operon. The remaining 12 proteins encoded by 'Ca. Liberibacter asiaticus' genes not shared with other Rhizobiales are of bacteriophage origin. 'Ca

  7. Molecular phylogeny of OVOL genes illustrates a conserved C2H2 zinc finger domain coupled by hypervariable unstructured regions.

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar

    Full Text Available OVO-like proteins (OVOL are members of the zinc finger protein family and serve as transcription factors to regulate gene expression in various differentiation processes. Recent studies have shown that OVOL genes are involved in epithelial development and differentiation in a wide variety of organisms; yet there is a lack of comprehensive studies that describe OVOL proteins from an evolutionary perspective. Using comparative genomic analysis, we traced three different OVOL genes (OVOL1-3 in vertebrates. One gene, OVOL3, was duplicated during a whole-genome-duplication event in fish, but only the copy (OVOL3b was retained. From early-branching metazoa to humans, we found that a core domain, comprising a tetrad of C2H2 zinc fingers, is conserved. By domain comparison of the OVOL proteins, we found that they evolved in different metazoan lineages by attaching intrinsically-disordered (ID segments of N/C-terminal extensions of 100 to 1000 amino acids to this conserved core. These ID regions originated independently across different animal lineages giving rise to different types of OVOL genes over the course of metazoan evolution. We illustrated the molecular evolution of metazoan OVOL genes over a period of 700 million years (MY. This study both extends our current understanding of the structure/function relationship of metazoan OVOL genes, and assembles a good platform for further characterization of OVOL genes from diverged organisms.

  8. Male-enhanced expression and genetic conservation of a gene isolated with an anti-H-Y antibody.

    Science.gov (United States)

    Lau, Y F; Chan, K M; Kan, Y W; Goldberg, E

    1987-01-01

    The hypothesis of the serological H-Y antigen as the inducer molecule for mammalian male sex differentiation has been considered an important working model in developmental biology. However, because of the difficulties involved in its detection, supporting evidence in molecular terms is lacking for this hypothesis. The isolation of the gene for the serological H-Y antigen is essential to the acertainment of its proposed functions. Using recombinant DNA technology and specific anti-H-Y sera we have isolated a candidate gene, the MEA gene, for the serological H-Y antigen. Molecular characterization of the MEA gene shows male-enhanced expression and genetic conservation patterns similar to those attributed to the serological H-Y antigen. The isolation of this candidate gene for the serological H-Y antigen. The isolation of this candidate gene for the serological H-Y antigen would allow further investigations to identify the functions for this molecule in molecular terms.

  9. Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes.

    Directory of Open Access Journals (Sweden)

    Yamini Kashimshetty

    Full Text Available Tropical lowland rain forest (TLRF biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG, which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively than spatial logging pattern (0.2% and 4.7% respectively, with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene

  10. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation.

    Directory of Open Access Journals (Sweden)

    Ayaz Ahmad

    Full Text Available Post-translational methylation of arginine residues profoundly affects the structure and functions of protein and, hence, implicated in a myriad of essential cellular processes such as signal transduction, mRNA splicing and transcriptional regulation. Protein arginine methyltransferases (PRMTs, the enzymes catalyzing arginine methylation have been extensively studied in animals, yeast and, to some extent, in model plant Arabidopsis thaliana. Eight genes coding for the PRMTs were identified in Oryza sativa, previously. Here, we report that these genes show distinct expression patterns in various parts of the plant. In vivo targeting experiment demonstrated that GFP-tagged OsPRMT1, OsPRMT5 and OsPRMT10 were localized to both the cytoplasm and nucleus, whereas OsPRMT6a and OsPRMT6b were predominantly localized to the nucleus. OsPRMT1, OsPRMT4, OsPRMT5, OsPRMT6a, OsPRMT6b and OsPRMT10 exhibited in vitro arginine methyltransferase activity against myelin basic protein, glycine-arginine-rich domain of fibrillarin and calf thymus core histones. Furthermore, they depicted specificities for the arginine residues in histones H3 and H4 and were classified into type I and Type II PRMTs, based on the formation of type of dimethylarginine in the substrate proteins. The two homologs of OsPRMT6 showed direct interaction in vitro and further titrating different amounts of these proteins in the methyltransferase assay revealed that OsPRMT6a inhibits the methyltransferase activity of OsPRMT6b, probably, by the formation of heterodimer. The identification and characterization of PRMTs in rice suggests the conservation of arginine methylation in monocots and hold promise for gaining further insight into regulation of plant development.

  11. Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes.

    Science.gov (United States)

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal

  12. Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow.

    Science.gov (United States)

    van Strien, Maarten J; Keller, Daniela; Holderegger, Rolf; Ghazoul, Jaboury; Kienast, Felix; Bolliger, Janine

    2014-03-01

    For conservation managers, it is important to know whether landscape changes lead to increasing or decreasing gene flow. Although the discipline of landscape genetics assesses the influence of landscape elements on gene flow, no studies have yet used landscape-genetic models to predict gene flow resulting from landscape change. A species that has already been severely affected by landscape change is the large marsh grasshopper (Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in Switzerland. From transects drawn between all population pairs within maximum dispersal distance (landscape planning.

  13. Regulation of Insulin Gene Transcription by Multiple Histone Acetyltransferases

    OpenAIRE

    2012-01-01

    Glucose-stimulated insulin gene transcription is mainly regulated by a 340-bp promoter region upstream of the transcription start site by beta-cell-enriched transcription factors Pdx-1, MafA, and NeuroD1. Previous studies have shown that histone H4 hyperacetylation is important for acute up-regulation of insulin gene transcription. Until now, only the histone acetyltransferase (HAT) protein p300 has been shown to be involved in this histone H4 acetylation event. In this report we investigated...

  14. Multiple Catalase Genes Are Differentially Regulated in Aspergillus nidulans

    OpenAIRE

    Kawasaki, Laura; Aguirre, Jesús

    2001-01-01

    Detoxification of hydrogen peroxide is a fundamental aspect of the cellular antioxidant responses in which catalases play a major role. Two differentially regulated catalase genes, catA and catB, have been studied in Aspergillus nidulans. Here we have characterized a third catalase gene, designated catC, which predicts a 475-amino-acid polypeptide containing a peroxisome-targeting signal. With a molecular mass of 54 kDa, CatC shows high similarity to other small-subunit monofunctional catalas...

  15. Some Production Characteristics of Kivircik, Gokceada and Sakiz Breeds of Sheep Conserved as Gene Resources

    Directory of Open Access Journals (Sweden)

    T. Sezenler

    2007-05-01

    Full Text Available This study was carried out to investigate the fertility, milk production and body weight of ewes and the survival rates and growth characteristics for Kıvırcık, Gokceada and Sakız breeds of sheep kept as gene resources in western part of Turkiye. Kıvırcık, Gokceada and Sakız breeds of sheep are included in the project for conservation of indigenious breeds as genetic resources.Lambing rate, litter size, milk yield and live weight for Kıvırcık, Gökçeada and Sakız ewes were 79.8 %, 67.6 % and 74.5 %; 1.26, 1.24 and 1.83; 41.8, 51.1 and 58.0 kg; 62.60, 51.39, and 48.52 kg. respectively. The lambs produced by Kıvırcık, Gokceada and Sakız ewes had 97 %, 94.7 % and 92.2 % survival rates to weaning; 4.09, 3.52 and 3.93 kg. birth weights; 38.17, 29.25 and 30.82 kg. weaning weights; 43.14, 35.57 and 34.64 kg. sixth month weights; 49.13, 39.70 and 37.39 kg. yearling weights respectively.

  16. Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment.

    Science.gov (United States)

    Sun, Yanmei; Shen, Yue-Xiao; Liang, Peng; Zhou, Jizhong; Yang, Yunfeng; Huang, Xia

    2016-12-01

    Wastewater treatment plants are thought to be potential reservoirs of antibiotic resistance genes. In this study, GeoChip was used for analyzing multiple antibiotic resistance genes, including four multidrug efflux system gene groups and three β-lactamase genes in ten large-scale membrane bioreactors (MBRs) for municipal wastewater treatment. Results revealed that the diversity of antibiotic genes varied a lot among MBRs, but about 40% common antibiotic resistance genes were existent. The average signal intensity of each antibiotic resistance group was similar among MBRs, nevertheless the total abundance of each group varied remarkably and the dominant resistance gene groups were different in individual MBR. The antibiotic resistance genes majorly derived from Proteobacteria and Actinobacteria. Further study indicated that TN, TP and COD of influent, temperature and conductivity of mixed liquor were significant (Pantibiotic resistance genes distribution in MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Multiple CMS-restorer gene polymorphism in gynodioecious Plantago coronopus

    NARCIS (Netherlands)

    Damme, van J.M.M.; Hundscheid, M.P.J.; Ivanovic, S.; Koelewijn, H.P.

    2004-01-01

    The mode of inheritance of the male sterility trait is crucial for understanding the evolutionary dynamics of the sexual system gynodioecy, which is the co-occurrence of female and hermaphrodite plants in natural populations. Both cytoplasmic (CMS) and nuclear (restorer) genes are known to be involv

  18. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves

    2010-02-01

    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  19. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice.

    Science.gov (United States)

    Miyata, Haruhiko; Castaneda, Julio M; Fujihara, Yoshitaka; Yu, Zhifeng; Archambeault, Denise R; Isotani, Ayako; Kiyozumi, Daiji; Kriseman, Maya L; Mashiko, Daisuke; Matsumura, Takafumi; Matzuk, Ryan M; Mori, Masashi; Noda, Taichi; Oji, Asami; Okabe, Masaru; Prunskaite-Hyyrylainen, Renata; Ramirez-Solis, Ramiro; Satouh, Yuhkoh; Zhang, Qian; Ikawa, Masahito; Matzuk, Martin M

    2016-07-12

    Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201-12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract-enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the "gold standard" to determine whether a gene's function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others.

  20. Primary structure and promoter analysis of leghemoglobin genes of the stem-nodulated tropical legume Sesbania rostrata: conserved coding sequences, cis-elements and trans-acting factors

    DEFF Research Database (Denmark)

    Metz, B A; Welters, P; Hoffmann, H J;

    1988-01-01

    The primary structure of a leghemoglobin (lb) gene from the stem-nodulated, tropical legume Sesbania rostrata and two lb gene promoter regions was analysed. The S. rostrata lb gene structure and Lb amino acid composition were found to be highly conserved with previously described lb genes and Lb...

  1. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1 that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons.

  2. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    Science.gov (United States)

    2016-01-01

    Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons. PMID:27698666

  3. IGEMS: The Consortium on Interplay of Genes and Environment Across Multiple Studies

    DEFF Research Database (Denmark)

    Pedersen, Nancy L; Christensen, Kaare; Dahl, Anna K

    2013-01-01

    The Interplay of Genes and Environment across Multiple Studies (IGEMS) group is a consortium of eight longitudinal twin studies established to explore the nature of social context effects and gene-environment interplay in late-life functioning. The resulting analysis of the combined data from ove...

  4. Prognostic Relevance of Promoter Hypermethylation of Multiple Genes in Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Gayatri Sharma

    2009-01-01

    Full Text Available Background: Methylation-mediated suppression of detoxification, DNA repair and tumor suppressor genes has been implicated in cancer development. This study was designed to investigate the impact of concurrent methylation of multiple genes in breast tumors on disease prognosis.

  5. Bacterial intra-species gene loss occurs in a largely clocklike manner mostly within a pool of less conserved and constrained genes.

    Science.gov (United States)

    Bolotin, Evgeni; Hershberg, Ruth

    2016-10-13

    Gene loss is a major contributor to the evolution of bacterial gene content. Gene loss may occur as a result of shifts in environment leading to changes in the intensity and/or directionality of selection applied for the maintenance of specific genes. Gene loss may also occur in a more neutral manner, when gene functions are lost that were not subject to strong selection to be maintained, irrespective of changes to environment. Here, we used a pangenome-based approach to investigate patterns of gene loss across 15 bacterial species. We demonstrate that gene loss tends to occur mostly within a pool of genes that are less constrained within species, even in those strains from which they are not lost, and less conserved across bacterial species. Our results indicate that shifts in selection, resulting from shifts in environment are not required to explain the majority of gene loss events occurring within a diverse collection of bacterial species. Caution should therefore be taken when attributing differences in gene content to differences in environment.

  6. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    Science.gov (United States)

    Chipman, Ariel D.; Ferrier, David E. K.; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S. T.; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C.; Alonso, Claudio R.; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C. J.; Blankenburg, Kerstin P.; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K.; Du Pasquier, Louis; Duncan, Elizabeth J.; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D.; Extavour, Cassandra G.; Francisco, Liezl; Gabaldón, Toni; Gillis, William J.; Goodwin-Horn, Elizabeth A.; Green, Jack E.; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J. P.; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H. L.; Hunn, Julia P.; Hunnekuhl, Vera S.; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N.; Jiggins, Francis M.; Jones, Tamsin E.; Kaiser, Tobias S.; Kalra, Divya; Kenny, Nathan J.; Korchina, Viktoriya; Kovar, Christie L.; Kraus, F. Bernhard; Lapraz, François; Lee, Sandra L.; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N.; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J.; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H.; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C.; Robertson, Helen E.; Robertson, Hugh M.; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E.; Schurko, Andrew M.; Siggens, Kenneth W.; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J.; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M.; Willis, Judith H.; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M.; Worley, Kim C.; Gibbs, Richard A.; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  7. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Directory of Open Access Journals (Sweden)

    Ariel D Chipman

    2014-11-01

    Full Text Available Myriapods (e.g., centipedes and millipedes display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations

  8. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice

    Science.gov (United States)

    Miyata, Haruhiko; Castaneda, Julio M.; Fujihara, Yoshitaka; Yu, Zhifeng; Archambeault, Denise R.; Isotani, Ayako; Kiyozumi, Daiji; Kriseman, Maya L.; Mashiko, Daisuke; Matsumura, Takafumi; Matzuk, Ryan M.; Mori, Masashi; Noda, Taichi; Oji, Asami; Okabe, Masaru; Prunskaite-Hyyrylainen, Renata; Ramirez-Solis, Ramiro; Satouh, Yuhkoh; Zhang, Qian; Ikawa, Masahito; Matzuk, Martin M.

    2016-01-01

    Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201–12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract–enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the “gold standard” to determine whether a gene’s function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others. PMID:27357688

  9. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Science.gov (United States)

    Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen

    2014-11-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  10. Multiple lineage specific expansions within the guanylyl cyclase gene family

    Directory of Open Access Journals (Sweden)

    O'Halloran Damien M

    2006-03-01

    Full Text Available Abstract Background Guanylyl cyclases (GCs are responsible for the production of the secondary messenger cyclic guanosine monophosphate, which plays important roles in a variety of physiological responses such as vision, olfaction, muscle contraction, homeostatic regulation, cardiovascular and nervous function. There are two types of GCs in animals, soluble (sGCs which are found ubiquitously in cell cytoplasm, and receptor (rGC forms which span cell membranes. The complete genomes of several vertebrate and invertebrate species are now available. These data provide a platform to investigate the evolution of GCs across a diverse range of animal phyla. Results In this analysis we located GC genes from a broad spectrum of vertebrate and invertebrate animals and reconstructed molecular phylogenies for both sGC and rGC proteins. The most notable features of the resulting phylogenies are the number of lineage specific rGC and sGC expansions that have occurred during metazoan evolution. Among these expansions is a large nematode specific rGC clade comprising 21 genes in C. elegans alone; a vertebrate specific expansion in the natriuretic receptors GC-A and GC-B; a vertebrate specific expansion in the guanylyl GC-C receptors, an echinoderm specific expansion in the sperm rGC genes and a nematode specific sGC clade. Our phylogenetic reconstruction also shows the existence of a basal group of nitric oxide (NO insensitive insect and nematode sGCs which are regulated by O2. This suggests that the primordial eukaryotes probably utilized sGC as an O2 sensor, with the ligand specificity of sGC later switching to NO which provides a very effective local cell-to-cell signalling system. Phylogenetic analysis of the sGC and bacterial heme nitric oxide/oxygen binding protein domain supports the hypothesis that this domain originated from a cyanobacterial source. Conclusion The most salient feature of our phylogenies is the number of lineage specific expansions

  11. Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide.

    Science.gov (United States)

    Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K

    2016-06-01

    The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.

  12. Cytokine Gene Polymorphisms support diagnostic monitoring of Romanian Multiple Myeloma patients

    OpenAIRE

    2011-01-01

    Introduction: cytokines and their receptor genes are very polymorphic. SNPs in the promotor region of the gene may influence the rate of cytokine secretion and may affect the biological activity of the encoded cytokine. A number of cytokines and cytokine receptors have been directly linked to the development of human cancers. The aim of our study was to determine the cytokine gene polymorphism in Romanian multiple myeloma patients. Material and methods: cytokine genotyping was performed in 80...

  13. The Structure, Expression, and Function Prediction of DAZAP2, A Down-Regulated Gene in Multiple Myeloma

    Institute of Scientific and Technical Information of China (English)

    Yiwu Shi; Saiqun Luo; Jianbin Peng; Chenghan Huang; Daren Tan; Weixin Hu

    2004-01-01

    In our previous studies, DAZAP2 gene expression was down-regulated in untreated patients of multiple myeloma (MM). For better studying the structure and function of DAZAP2, a full-length Cdna was isolated from mononuclear cells of a normal human bone marrow, sequenced and deposited to Genbank (AY430097). This sequence has an identical ORF (open reading frame) as the NM_014764 from human testis and the D31767 from human cell line KG-1. Phylogenetic analysis and structure prediction reveal that DAZAP2 homologues are highly conserved throughout evolution and share a polyproline region and several potential SH2/SH3 binding sites. DAZAP2 occurs as a single-copy gene with a four-exon organization. We further noticed that the functional DAZAP2 gene is located on Chromosome 12 and its pseudogene gene is on Chromosome 2 with electronic location of human chromosome in Genbank, though no genetic abnormalities of MM have been reported on Chromosome 12. The ORF of human DAZAP2 encodes a 17-kDa protein, which is highly similar to mouse Prtb. The DAZAP2 protein is mainly localized in cytoplasm with a discrete pattern of punctuated distribution. DAZAP2 may associate with carcinogenesis of MM and participate in yet-to-be identified signaling pathways to regulate proliferation and differentiation of plasma cells.

  14. A pipeline to determine RT-QPCR control genes for evolutionary studies: application to primate gene expression across multiple tissues.

    Directory of Open Access Journals (Sweden)

    Olivier Fedrigo

    Full Text Available Because many species-specific phenotypic differences are assumed to be caused by differential regulation of gene expression, many recent investigations have focused on measuring transcript abundance. Despite the availability of high-throughput platforms, quantitative real-time polymerase chain reaction (RT-QPCR is often the method of choice because of its low cost and wider dynamic range. However, the accuracy of this technique heavily relies on the use of multiple valid control genes for normalization. We created a pipeline for choosing genes potentially useful as RT-QPCR control genes for measuring expression between human and chimpanzee samples across multiple tissues, using published microarrays and a measure of tissue-specificity. We identified 13 genes from the pipeline and from commonly used control genes: ACTB, USP49, ARGHGEF2, GSK3A, TBP, SDHA, EIF2B2, GPDH, YWHAZ, HPTR1, RPL13A, HMBS, and EEF2. We then tested these candidate genes and validated their expression stability across species. We established the rank order of the most preferable set of genes for single and combined tissues. Our results suggest that for at least three tissues (cerebral cortex, liver, and skeletal muscle, EIF2B2, EEF2, HMBS, and SDHA are useful genes for normalizing human and chimpanzee expression using RT-QPCR. Interestingly, other commonly used control genes, including TBP, GAPDH, and, especially ACTB do not perform as well. This pipeline could be easily adapted to other species for which expression data exist, providing taxonomically appropriate control genes for comparisons of gene expression among species.

  15. Multi-gene gateway clone design for expression of multiple heterologous genes in living cells: modular construction of multiple cDNA expression elements using recombinant cloning.

    Science.gov (United States)

    Sone, Takefumi; Yahata, Kazuhide; Sasaki, Yukari; Hotta, Junko; Kishine, Hiroe; Chesnut, Jonathan D; Imamoto, Fumio

    2008-09-10

    Much attention has been focused on manipulating multiple genes in living cells for analyzing protein function. In order to perform high-throughput generation of multi-gene expression clones, gateway cloning technology (which represents a high-throughput DNA transfer from vector to vector) can be anticipated. In the conventional strategy for gateway cloning, the construction of two or more expression elements into tandem elements on a single plasmid requires the recombination of multiple entry clones with a destination vector in a single reaction mixture. Use of increasing numbers of entry clones in a single reaction is inefficient due to the difficulty in successfully recognizing multiple pairs of matched att signals simultaneously. To address this problem, a "Modular Destination" vector has been devised and constructed, whereby cDNA inserts are sequentially introduced, resulting in a tandem structure with multiple inserts. Whereas the standard destination vector contains only Cm(R) and ccdB genes flanked by two attR signals, this destination vector contains, in addition, one or two cDNA expression elements. Here, we show the rapid construction of expression vectors containing three or four tandemly arrayed cDNA expression elements and their expression in mammalian cells.

  16. Evolution of paralogous genes: Reconstruction of genome rearrangements through comparison of multiple genomes within Staphylococcus aureus.

    Science.gov (United States)

    Tsuru, Takeshi; Kawai, Mikihiko; Mizutani-Ui, Yoko; Uchiyama, Ikuo; Kobayashi, Ichizo

    2006-06-01

    Analysis of evolution of paralogous genes in a genome is central to our understanding of genome evolution. Comparison of closely related bacterial genomes, which has provided clues as to how genome sequences evolve under natural conditions, would help in such an analysis. With species Staphylococcus aureus, whole-genome sequences have been decoded for seven strains. We compared their DNA sequences to detect large genome polymorphisms and to deduce mechanisms of genome rearrangements that have formed each of them. We first compared strains N315 and Mu50, which make one of the most closely related strain pairs, at the single-nucleotide resolution to catalogue all the middle-sized (more than 10 bp) to large genome polymorphisms such as indels and substitutions. These polymorphisms include two paralogous gene sets, one in a tandem paralogue gene cluster for toxins in a genomic island and the other in a ribosomal RNA operon. We also focused on two other tandem paralogue gene clusters and type I restriction-modification (RM) genes on the genomic islands. Then we reconstructed rearrangement events responsible for these polymorphisms, in the paralogous genes and the others, with reference to the other five genomes. For the tandem paralogue gene clusters, we were able to infer sequences for homologous recombination generating the change in the repeat number. These sequences were conserved among the repeated paralogous units likely because of their functional importance. The sequence specificity (S) subunit of type I RM systems showed recombination, likely at the homology of a conserved region, between the two variable regions for sequence specificity. We also noticed novel alleles in the ribosomal RNA operons and suggested a role for illegitimate recombination in their formation. These results revealed importance of recombination involving long conserved sequence in the evolution of paralogous genes in the genome.

  17. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs

    Directory of Open Access Journals (Sweden)

    Gong Shiaochin

    2009-03-01

    Full Text Available Abstract Background Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. Results We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1 subclone genes of interest into BAC linking vectors, (2 insert desired reporter genes into respective genes and (3 link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. Conclusion The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  18. Optical coherence tomography and T cell gene expression analysis in patients with benign multiple sclerosis

    Directory of Open Access Journals (Sweden)

    John Soltys

    2017-01-01

    Full Text Available Benign multiple sclerosis is a retrospective diagnosis based primarily on a lack of motor symptom progression. Recent findings that suggest patients with benign multiple sclerosis experience non-motor symptoms highlight the need for a more prospective means to diagnose benign multiple sclerosis early in order to help direct patient care. In this study, we present optical coherence tomography and T cell neurotrophin gene analysis findings in a small number of patients with benign multiple sclerosis. Our results demonstrated that retinal nerve fiber layer was mildly thinned, and T cells had a distinct gene expression profile that included upregulation of interleukin 10 and leukemia inhibitory factor, downregulation of interleukin 6 and neurotensin high affinity receptor 1 (a novel neurotrophin receptor. These findings add evidence for further investigation into optical coherence tomography and mRNA profiling in larger cohorts as a potential means to diagnose benign multiple sclerosis in a more prospective manner.

  19. The interaction between smoking and HLA genes in multiple sclerosis

    DEFF Research Database (Denmark)

    Hedström, Anna Karin; Katsoulis, Michail; Hössjer, Ola

    2017-01-01

    Interactions between environment and genetics may contribute to multiple sclerosis (MS) development. We investigated whether the previously observed interaction between smoking and HLA genotype in the Swedish population could be replicated, refined and extended to include other populations. We used...... populations from the Nordic studies (6265 cases, 8401 controls). In both the pooled analyses and in the combined Nordic material, interactions were observed between HLA-DRB*15 and absence of HLA-A*02 and between smoking and each of the genetic risk factors. Two way interactions were observed between each...... with never smokers without these genetic risk factors (OR 12.7, 95% CI 10.8-14.9). The risk of MS associated with HLA genotypes is strongly influenced by smoking status and vice versa. Since the function of HLA molecules is to present peptide antigens to T cells, the demonstrated interactions strongly...

  20. The highly conserved human cytomegalovirus UL136 ORF generates multiple Golgi-localizing protein isoforms through differential translation initiation.

    Science.gov (United States)

    Liao, Huanan; Lee, Jung-Hyun; Kondo, Rikita; Katata, Marei; Imadome, Ken-Ichi; Miyado, Kenji; Inoue, Naoki; Fujiwara, Shigeyoshi; Nakamura, Hiroyuki

    2014-01-22

    The UL133-UL138 locus in the unique long b' (ULb') region of the human cytomegalovirus (HCMV) genome is considered to play certain roles in viral replication, dissemination and latency in a host cell type-dependent manner. Here we characterized the proteins encoded by UL136, one of the open reading frames (ORFs) in the locus. Comparative sequence analysis of UL136 among clinical isolates and laboratory strains indicates that its predicted amino-acid sequence is highly conserved. A polyclonal antibody against UL136 proteins (pUL136s) was raised against its carboxy-terminal region and this antibody specifically recognized at least five UL136-encoded protein isoforms of 29-17 kDa both in HCMV-infected cells and in cells transfected with a construct expressing pUL136. Immunofluorescence analysis with this antibody revealed localization of pUL136 in the Golgi apparatus. Analysis of several pUL136 mutants indicated that the putative transmembrane domain of pUL136 is required for its Golgi localization. Mutational analysis of multiple AUG codons in UL136 demonstrated that translation initiation from these AUG codons contributes in the generation of pUL136 isoforms.

  1. Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Muscariello Lidia

    2006-05-01

    Full Text Available Abstract Background Genomes of gram-positive bacteria encode many putative cell-surface proteins, of which the majority has no known function. From the rapidly increasing number of available genome sequences it has become apparent that many cell-surface proteins are conserved, and frequently encoded in gene clusters or operons, suggesting common functions, and interactions of multiple components. Results A novel gene cluster encoding exclusively cell-surface proteins was identified, which is conserved in a subgroup of gram-positive bacteria. Each gene cluster generally has one copy of four new gene families called cscA, cscB, cscC and cscD. Clusters encoding these cell-surface proteins were found only in complete genomes of Lactobacillus plantarum, Lactobacillus sakei, Enterococcus faecalis, Listeria innocua, Listeria monocytogenes, Lactococcus lactis ssp lactis and Bacillus cereus and in incomplete genomes of L. lactis ssp cremoris, Lactobacillus casei, Enterococcus faecium, Pediococcus pentosaceus, Lactobacillius brevis, Oenococcus oeni, Leuconostoc mesenteroides, and Bacillus thuringiensis. These genes are neither present in the genomes of streptococci, staphylococci and clostridia, nor in the Lactobacillus acidophilus group, suggesting a niche-specific distribution, possibly relating to association with plants. All encoded proteins have a signal peptide for secretion by the Sec-dependent pathway, while some have cell-surface anchors, novel WxL domains, and putative domains for sugar binding and degradation. Transcriptome analysis in L. plantarum shows that the cscA-D genes are co-expressed, supporting their operon organization. Many gene clusters are significantly up-regulated in a glucose-grown, ccpA-mutant derivative of L. plantarum, suggesting catabolite control. This is supported by the presence of predicted CRE-sites upstream or inside the up-regulated cscA-D gene clusters. Conclusion We propose that the CscA, CscB, CscC and Csc

  2. Conservation and Sex-Specific Splicing of the transformer Gene in the Calliphorids Cochliomyia hominivorax, Cochliomyia macellaria and Lucilia sericata

    Science.gov (United States)

    Li, Fang; Vensko, Steven P.; Belikoff, Esther J.; Scott, Maxwell J.

    2013-01-01

    Transformer (TRA) promotes female development in several dipteran species including the Australian sheep blowfly Lucilia cuprina, the Mediterranean fruit fly, housefly and Drosophila melanogaster. tra transcripts are sex-specifically spliced such that only the female form encodes full length functional protein. The presence of six predicted TRA/TRA2 binding sites in the sex-specific female intron of the L. cuprina gene suggested that tra splicing is auto-regulated as in medfly and housefly. With the aim of identifying conserved motifs that may play a role in tra sex-specific splicing, here we have isolated and characterized the tra gene from three additional blowfly species, L. sericata, Cochliomyia hominivorax and C. macellaria. The blowfly adult male and female transcripts differ in the choice of splice donor site in the first intron, with males using a site downstream of the site used in females. The tra genes all contain a single TRA/TRA2 site in the male exon and a cluster of four to five sites in the male intron. However, overall the sex-specific intron sequences are poorly conserved in closely related blowflies. The most conserved regions are around the exon/intron junctions, the 3′ end of the intron and near the cluster of TRA/TRA2 sites. We propose a model for sex specific regulation of tra splicing that incorporates the conserved features identified in this study. In L. sericata embryos, the male tra transcript was first detected at around the time of cellular blastoderm formation. RNAi experiments showed that tra is required for female development in L. sericata and C. macellaria. The isolation of the tra gene from the New World screwworm fly C. hominivorax, a major livestock pest, will facilitate the development of a “male-only” strain for genetic control programs. PMID:23409170

  3. A conservative region of the mercuric reductase gene (mera) as a molecular marker of bacterial mercury resistance

    Science.gov (United States)

    Sotero-Martins, Adriana; de Jesus, Michele Silva; Lacerda, Michele; Moreira, Josino Costa; Filgueiras, Ana Luzia Lauria; Barrocas, Paulo Rubens Guimarães

    2008-01-01

    The most common bacterial mercury resistance mechanism is based on the reduction of Hg(II) to Hg0, which is dependent of the mercuric reductase enzyme (MerA) activity. The use of a 431 bp fragment of a conservative region of the mercuric reductase (merA) gene was applied as a molecular marker of this mechanism, allowing the identification of mercury resistant bacterial strains. PMID:24031221

  4. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter.

    Science.gov (United States)

    Wang, Meng; Banerjee, Kasturi; Baker, Harriet; Cave, John W

    2015-02-01

    Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis and its gene proximal promoter ( electromobility shift assays showed that brain-region specific complexes assemble on these motifs. These studies also identified a non-canonical CRE binding (CREB) protein recognition element in the proximal promoter. Together, these studies provide a detailed analysis of evolutionary conservation within the TH promoter and identify potential cis-regulatory motifs that underlie a core set of regulatory mechanisms in mammals.

  5. Identifying Candidate Genes for Type 2 Diabetes Mellitus and Obesity through Gene Expression Profiling in Multiple Tissues or Cells

    Science.gov (United States)

    Meng, Yuhuan; Zhou, Jinghui; Zhuo, Min; Ling, Fei; Zhang, Yu; Du, Hongli; Wang, Xiaoning

    2013-01-01

    Type 2 Diabetes Mellitus (T2DM) and obesity have become increasingly prevalent in recent years. Recent studies have focused on identifying causal variations or candidate genes for obesity and T2DM via analysis of expression quantitative trait loci (eQTL) within a single tissue. T2DM and obesity are affected by comprehensive sets of genes in multiple tissues. In the current study, gene expression levels in multiple human tissues from GEO datasets were analyzed, and 21 candidate genes displaying high percentages of differential expression were filtered out. Specifically, DENND1B, LYN, MRPL30, POC1B, PRKCB, RP4-655J12.3, HIBADH, and TMBIM4 were identified from the T2DM-control study, and BCAT1, BMP2K, CSRNP2, MYNN, NCKAP5L, SAP30BP, SLC35B4, SP1, BAP1, GRB14, HSP90AB1, ITGA5, and TOMM5 were identified from the obesity-control study. The majority of these genes are known to be involved in T2DM and obesity. Therefore, analysis of gene expression in various tissues using GEO datasets may be an effective and feasible method to determine novel or causal genes associated with T2DM and obesity. PMID:24455749

  6. Identifying Candidate Genes for Type 2 Diabetes Mellitus and Obesity through Gene Expression Profiling in Multiple Tissues or Cells

    Directory of Open Access Journals (Sweden)

    Junhui Chen

    2013-01-01

    Full Text Available Type 2 Diabetes Mellitus (T2DM and obesity have become increasingly prevalent in recent years. Recent studies have focused on identifying causal variations or candidate genes for obesity and T2DM via analysis of expression quantitative trait loci (eQTL within a single tissue. T2DM and obesity are affected by comprehensive sets of genes in multiple tissues. In the current study, gene expression levels in multiple human tissues from GEO datasets were analyzed, and 21 candidate genes displaying high percentages of differential expression were filtered out. Specifically, DENND1B, LYN, MRPL30, POC1B, PRKCB, RP4-655J12.3, HIBADH, and TMBIM4 were identified from the T2DM-control study, and BCAT1, BMP2K, CSRNP2, MYNN, NCKAP5L, SAP30BP, SLC35B4, SP1, BAP1, GRB14, HSP90AB1, ITGA5, and TOMM5 were identified from the obesity-control study. The majority of these genes are known to be involved in T2DM and obesity. Therefore, analysis of gene expression in various tissues using GEO datasets may be an effective and feasible method to determine novel or causal genes associated with T2DM and obesity.

  7. Identifying candidate genes for Type 2 Diabetes Mellitus and obesity through gene expression profiling in multiple tissues or cells.

    Science.gov (United States)

    Chen, Junhui; Meng, Yuhuan; Zhou, Jinghui; Zhuo, Min; Ling, Fei; Zhang, Yu; Du, Hongli; Wang, Xiaoning

    2013-01-01

    Type 2 Diabetes Mellitus (T2DM) and obesity have become increasingly prevalent in recent years. Recent studies have focused on identifying causal variations or candidate genes for obesity and T2DM via analysis of expression quantitative trait loci (eQTL) within a single tissue. T2DM and obesity are affected by comprehensive sets of genes in multiple tissues. In the current study, gene expression levels in multiple human tissues from GEO datasets were analyzed, and 21 candidate genes displaying high percentages of differential expression were filtered out. Specifically, DENND1B, LYN, MRPL30, POC1B, PRKCB, RP4-655J12.3, HIBADH, and TMBIM4 were identified from the T2DM-control study, and BCAT1, BMP2K, CSRNP2, MYNN, NCKAP5L, SAP30BP, SLC35B4, SP1, BAP1, GRB14, HSP90AB1, ITGA5, and TOMM5 were identified from the obesity-control study. The majority of these genes are known to be involved in T2DM and obesity. Therefore, analysis of gene expression in various tissues using GEO datasets may be an effective and feasible method to determine novel or causal genes associated with T2DM and obesity.

  8. Joint Analysis Method for Major Genes Controlling Multiple Correlated Quantitative Traits

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quantitative traits, which include major gene detection and its effect and variation estimation. The effect and variation of major gene are estimated by the maximum likelihood method implemented via expectation-maximization (EM) algorithm. Major gene is tested with the likelihood ratio (LR) test statistic. Extensive simulation studies showed that joint analysis not only increases the statistical power of major gene detection but also improves the precision and accuracy of major gene effect estimates. An example of the plant height and the number of tiller of F2 population in rice cross Duonieai × Zhonghua 11 was used in the illustration. The results indicated that the genetic difference of these two traits in this cross refers to only one pleiotropic major gene. The additive effect and dominance effect of the major gene are estimated as -21.3 and 40.6 cm on plant height, and 22.7 and -25.3 on number of tiller, respectively. The major gene shows overdominance for plant height and close to complete dominance for number of tillers.

  9. Evolutionary conservation of the chromosomal configuration and regulation of amylase genes among eight species of the Drosophila melanogaster species subgroup.

    Science.gov (United States)

    Payant, V; Abukashawa, S; Sasseville, M; Benkel, B F; Hickey, D A; David, J

    1988-09-01

    Nuclear DNA was extracted from each of the eight species comprising the Drosophila melanogaster species subgroup. Southern hybridization of this DNA by using a molecular probe specific for the alpha-amylase coding region showed that the duplicated structure of the amylase locus, first found in D. melanogaster, is conserved among all species of the melanogaster subgroup. Evidence is also presented for the concerted evolution of the duplicated genes within each species. In addition, it is shown that the glucose repression of amylase gene expression, which has been extensively studied in D. melanogaster, is not confined to this species but occurs in all eight members of the species subgroup. Thus, both the duplicated gene structure and the glucose repression of Drosophila amylase gene activity are stable over extended periods of evolutionary time.

  10. Bayesian models and meta analysis for multiple tissue gene expression data following corticosteroid administration

    Directory of Open Access Journals (Sweden)

    Kelemen Arpad

    2008-08-01

    Full Text Available Abstract Background This paper addresses key biological problems and statistical issues in the analysis of large gene expression data sets that describe systemic temporal response cascades to therapeutic doses in multiple tissues such as liver, skeletal muscle, and kidney from the same animals. Affymetrix time course gene expression data U34A are obtained from three different tissues including kidney, liver and muscle. Our goal is not only to find the concordance of gene in different tissues, identify the common differentially expressed genes over time and also examine the reproducibility of the findings by integrating the results through meta analysis from multiple tissues in order to gain a significant increase in the power of detecting differentially expressed genes over time and to find the differential differences of three tissues responding to the drug. Results and conclusion Bayesian categorical model for estimating the proportion of the 'call' are used for pre-screening genes. Hierarchical Bayesian Mixture Model is further developed for the identifications of differentially expressed genes across time and dynamic clusters. Deviance information criterion is applied to determine the number of components for model comparisons and selections. Bayesian mixture model produces the gene-specific posterior probability of differential/non-differential expression and the 95% credible interval, which is the basis for our further Bayesian meta-inference. Meta-analysis is performed in order to identify commonly expressed genes from multiple tissues that may serve as ideal targets for novel treatment strategies and to integrate the results across separate studies. We have found the common expressed genes in the three tissues. However, the up/down/no regulations of these common genes are different at different time points. Moreover, the most differentially expressed genes were found in the liver, then in kidney, and then in muscle.

  11. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits.

    Science.gov (United States)

    Ravel, Catherine; Fiquet, Samuel; Boudet, Julie; Dardevet, Mireille; Vincent, Jonathan; Merlino, Marielle; Michard, Robin; Martre, Pierre

    2014-01-01

    The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.

  12. Evolution of the 4-coumarate:coenzyme A ligase (4CL) gene family:Conserved evolutionary pattern and two new gene classes in gymnosperms

    Institute of Scientific and Technical Information of China (English)

    Hui GAO; Dong-Mei GUO; Wen-Juan LIU; Jin-Hua RAN; Xiao-Quan WANG

    2012-01-01

    The 4-coumarate:coenzyme A ligase (4CL) is the branch point enzyme that channels the general phenylpropanoid metabolism into specific lignin and flavonoid biosynthesis branches.Genetic engineering experiments on the 4CL gene have been carried out in many species,but the precise functions of different gene members are still unresolved.To investigate the evolutionary relationships and functional differentiation of the 4CL gene family,we made a comprehensive evolutionary analysis of this gene family from 27 species representing the major lineages of land plants.The phylogenetic analysis indicates that both vascular and seed plant 4CL genes form monophyletic groups,and that three and two 4CL classes can be recognized in gymnosperms and angiosperms,respectively.The evolutionary rate and frequency of duplication of the 4CL gene family are much more conserved than that of the CAD/SAD (cinnamyl/sinapyl alcohol dehydrogenase) gene family,which catalyzes the last step in monolignol biosynthesis.This may be due to different selective pressures on these genes whose products catalyze different steps in the biosynthesis pathway.In addition,we found two new major classes of 4CL genes in gymnosperms.

  13. Multiple Gene Variants in Hypertrophic Cardiomyopathy in the Era of Next-Generation Sequencing.

    Science.gov (United States)

    Burns, Charlotte; Bagnall, Richard D; Lam, Lien; Semsarian, Christopher; Ingles, Jodie

    2017-08-01

    Multiple likely pathogenic/pathogenic (LP/P; ≥2) variants in patients with hypertrophic cardiomyopathy were described 10 years ago with a prevalence of 5%. We sought to re-examine the significance of multiple rare variants in patients with hypertrophic cardiomyopathy in the setting of comprehensive and targeted panels. Of 758 hypertrophic cardiomyopathy probands, we included 382 with ≥45 cardiomyopathy genes screened. There were 224 (59%) with ≥1 rare variant (allele frequency ≤0.02%). Variants were analyzed using varying sized gene panels to represent comprehensive or targeted testing. Based on a 45-gene panel, 127 (33%) had a LP/P variant, 139 (36%) had variants of uncertain significance, and 66 (17%) had multiple rare variants. A targeted 8-gene panel yielded 125 (32%) LP/P variants, 52 (14%) variants of uncertain significance, and 14 (4%) had multiple rare variants. No proband had 2 LP/P variants. Including affected family members (total n=412), cluster-adjusted analyses identified a phenotype effect, with younger age (odds ratio, 0.95; 95% confidence interval, 0.92-0.98; P=0.004) and family history of sudden cardiac death (odds ratio, 3.5; 95% confidence interval, 1.3-9.9; P=0.02) significantly more likely in multiple versus single variant patients when considering an 8-gene panel but not larger panels. Those with multiple variants had worse event-free survival from all-cause death, cardiac transplantation, and cardiac arrest (log-rank P=0.008). No proband had multiple LP/P variants in contrast to previous reports. However, multiple rare variants regardless of classification were seen in 4% and contributed to earlier disease onset and cardiac events. Our findings support a cumulative variant hypothesis in hypertrophic cardiomyopathy. © 2017 American Heart Association, Inc.

  14. Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns

    Directory of Open Access Journals (Sweden)

    Turner Seán

    2007-09-01

    Full Text Available Abstract Background Group I introns are one of the four major classes of introns as defined by their distinct splicing mechanisms. Because they catalyze their own removal from precursor transcripts, group I introns are referred to as autocatalytic introns. Group I introns are common in fungal and protist nuclear ribosomal RNA genes and in organellar genomes. In contrast, they are rare in all other organisms and genomes, including bacteria. Results Here we report five group I introns, each containing a LAGLIDADG homing endonuclease gene (HEG, in large subunit (LSU rRNA genes of cyanobacteria. Three of the introns are located in the LSU gene of Synechococcus sp. C9, and the other two are in the LSU gene of Synechococcus lividus strain C1. Phylogenetic analyses show that these introns and their HEGs are closely related to introns and HEGs located at homologous insertion sites in organellar and bacterial rDNA genes. We also present a compilation of group I introns with homing endonuclease genes in bacteria. Conclusion We have discovered multiple HEG-containing group I introns in a single bacterial gene. To our knowledge, these are the first cases of multiple group I introns in the same bacterial gene (multiple group I introns have been reported in at least one phage gene and one prophage gene. The HEGs each contain one copy of the LAGLIDADG motif and presumably function as homodimers. Phylogenetic analysis, in conjunction with their patchy taxonomic distribution, suggests that these intron-HEG elements have been transferred horizontally among organelles and bacteria. However, the mode of transfer and the nature of the biological connections among the intron-containing organisms are unknown.

  15. Inheritance and expression of multiple disease and insect re- sistance genes in transgenic rice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    2-3 anti-fungal disease genes are coinserted with hygromycin phosphotransferase in the same vector. Two insecticidal genes and PPT acetyl transferase genes are placed in another one. The vectors are co-delivered to rice embryonic cellus tissue at a molar ratio of 1︰1 using the particle gun method. 55 independent regenerated lines have been obtained through screening for hygromycin resistance. Of these, 70% transgenic plants harbor 6-7 foreign genes. The genes on the same vectors are always co-delivered to rice plant. Northern blot analysis has indicated that the multiple foreign genes give stable expression. In the 6 transgenic plan-ts carrying 6-7 foreign genes, multiple foreign genes tend to integrate in 1 or 2 genetic loci. Progeny segregation is consis-tent with Mendel's 3︰1 segregation law. 8 homozygous R1 transgenic plants harboring 2-3 anti-fungal and 2 insectici-dal genes are selected from large number of transgenic progeny screening for hygromycin and Basta resistance.

  16. Gene Expression Profile of Multiple Myeloma Cell Line Treated by Arsenic Trioxide

    Institute of Scientific and Technical Information of China (English)

    WANG Mengchang; LIU Shaanxi; LIU Pengbo

    2007-01-01

    cDNA microarray was used to compare the gone expression profiles of multiple myeloma cell line RPMI8226 24 h before and after treatment with arsenic trioxide. Two eDNA probes were prepared by mRNA reverse transcription of both arsenic trioxide-treated and untreated RPMI8226 cells. The probes were labeled with Cy3 and Cy5 fluorescence dyes separately, hybridized with cDNA microarray representing 4096 different human genes, and scanned for fluorescence intensity. The differences in gene expression were calculated on the basis of the ratios of signal intensity of treated and untreated samples. The up- and down-regulated genes were screened through the analysis of gene expression ratios. The results showed that 273 genes were differentially altered at mRNA level, 121 genes were up-regulated and 152 were down-regulated. It is concluded that the treatment with arsenic trioxide can induce a variety of gene changes in RPMI8226 cell line. Many genes may be involved in the pathogenesis of multiple myeloma. ALK-1 and TXNIP genes may play an impor- tant role in the apoptosis and partial differentiation of RPMI8226 cells.

  17. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes.

    Directory of Open Access Journals (Sweden)

    Mahmoud ElHefnawi

    Full Text Available RNA interference (RNAi is a post-transcriptional gene silencing mechanism that mediates the sequence-specific degradation of targeted RNA and thus provides a tremendous opportunity for development of oligonucleotide-based drugs. Here, we report on the design and validation of small interfering RNAs (siRNAs targeting highly conserved regions of the hepatitis C virus (HCV genome. To aim for therapeutic applications by optimizing the RNAi efficacy and reducing potential side effects, we considered different factors such as target RNA variations, thermodynamics and accessibility of the siRNA and target RNA, and off-target effects. This aim was achieved using an in silico design and selection protocol complemented by an automated MysiRNA-Designer pipeline. The protocol included the design and filtration of siRNAs targeting highly conserved and accessible regions within the HCV internal ribosome entry site, and adjacent core sequences of the viral genome with high-ranking efficacy scores. Off-target analysis excluded siRNAs with potential binding to human mRNAs. Under this strict selection process, two siRNAs (HCV353 and HCV258 were selected based on their predicted high specificity and potency. These siRNAs were tested for antiviral efficacy in HCV genotype 1 and 2 replicon cell lines. Both in silico-designed siRNAs efficiently inhibited HCV RNA replication, even at low concentrations and for short exposure times (24h; they also exceeded the antiviral potencies of reference siRNAs targeting HCV. Furthermore, HCV353 and HCV258 siRNAs also inhibited replication of patient-derived HCV genotype 4 isolates in infected Huh-7 cells. Prolonged treatment of HCV replicon cells with HCV353 did not result in the appearance of escape mutant viruses. Taken together, these results reveal the accuracy and strength of our integrated siRNA design and selection protocols. These protocols could be used to design highly potent and specific RNAi-based therapeutic

  18. Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum.

    Science.gov (United States)

    Jousson, Olivier; Léchenne, Barbara; Bontems, Olympia; Capoccia, Sabrina; Mignon, Bernard; Barblan, Jachen; Quadroni, Manfredo; Monod, Michel

    2004-02-01

    Dermatophytes are human and animal pathogenic fungi which cause cutaneous infections and grow exclusively in the stratum corneum, nails and hair. In a culture medium containing soy proteins as sole nitrogen source a substantial proteolytic activity was secreted by Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. This proteolytic activity was 55-75 % inhibited by o-phenanthroline, attesting that metalloproteases were secreted by all three species. Using a consensus probe constructed on previously characterized genes encoding metalloproteases (MEP) of the M36 fungalysin family in Aspergillus fumigatus, Aspergillus oryzae and M. canis, a five-member MEP family was isolated from genomic libraries of T. rubrum, T. mentagrophytes and M. canis. A phylogenetic analysis of genomic and protein sequences revealed a robust tree consisting of five main clades, each of them including a MEP sequence type from each dermatophyte species. Each MEP type was remarkably conserved across species (72-97 % amino acid sequence identity). The tree topology clearly indicated that the multiplication of MEP genes in dermatophytes occurred prior to species divergence. In culture medium containing soy proteins as a sole nitrogen source secreted Meps accounted for 19-36 % of total secreted protein extracts; characterization of protein bands by proteolysis and mass spectrometry revealed that the three dermatophyte species secreted two Meps (Mep3 and Mep4) encoded by orthologous genes.

  19. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    Science.gov (United States)

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.

  20. Vascular endothelial growth factor (VEGF) gene polymorphisms may influence the efficacy of thalidomide in multiple myeloma

    DEFF Research Database (Denmark)

    Andersen, Niels Frost; Vogel, Ulla Birgitte; Klausen, Tobias W;

    2012-01-01

    Vascular endothelial growth factor (VEGF) is a potent proangiogenic factor. Several single nucleotide polymorphisms (SNPs) in the VEGF gene with influence on VEGF expression have been described. In multiple myeloma, VEGF stimulates angiogenesis which is correlated with disease progression...... and prognosis. In this study, we evaluated the association between genetic variations in the VEGF gene in patients with multiple myeloma and time to treatment failure (TTF) after high-dose melphalan and stem cell support (HDT), overall survival (OS) and efficacy of the anti-angiogenic drug thalidomide....... Retrospectively, the SNPs -2,578C>A (rs699947), -460C>T (rs833061), +405G>C (rs2010963) and +936C>T (rs3025039) in the VEGF gene were examined in 348 patients with newly diagnosed multiple myeloma initially treated with HDT, where 176 patients were treated with thalidomide at relapse. None of the examined geno...

  1. Reference genes for quantitative gene expression studies in multiple avian species

    DEFF Research Database (Denmark)

    Olias, Philipp; Adam, Iris; Meyer, Anne S.

    2014-01-01

    reference genes as well as FOXP2 and the immediate early genes, EGR1 and CFOS, known to be rapidly induced by singing in the avian basal ganglia. We extracted RNA from microbiopsies of the striatal song nucleus Area X of adult male zebra finches after they had sang or remained silent. Using three different......Quantitative real-time PCR (qPCR) rapidly and reliably quantifies gene expression levels across different experimental conditions. Selection of suitable reference genes is essential for meaningful normalization and thus correct interpretation of data. In recent years, an increasing number of avian...... species other than the chicken has been investigated molecularly, highlighting the need for an experimentally validated pan-avian primer set for reference genes. Here we report testing a set for 14 candidate reference genes (18S, ABL, GAPDH, GUSB, HMBS, HPRT, PGK1, RPL13, RPL19, RPS7, SDHA, TFRC, VIM...

  2. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  3. Conservation of the Notch antagonist Hairless in arthropods: functional analysis of the crustacean Daphnia pulex Hairless gene.

    Science.gov (United States)

    Zehender, Ariella; Bayer, Melanie; Bauer, Milena; Zeis, Bettina; Preiss, Anette; Maier, Dieter

    2017-08-31

    The Notch signaling pathway is highly conserved in all animal metazoa: upon Notch receptor activation, transcription of Notch target genes is turned on by an activator complex that centers on the transcription factor CSL. In the absence of signal, CSL assembles transcriptional repression complexes that display remarkable evolutionary diversity. The major antagonist of Notch signaling in insects named Hairless was originally identified in Drosophila melanogaster. It binds to the Drosophila CSL homologue Suppressor of Hairless [Su(H)] and recruits the two general co-repressors, Groucho and C-terminal binding protein. Whereas the majority of Notch signaling components is conserved between insects and vertebrates, Hairless is found only in insects. Here, we present the analysis of the Hairless gene from Daphnia pulex and, hence, for the first time from a crustacean. Daphnia and Drosophila Hairless protein sequences are highly diverged. Known functional domains, however, the Su(H), Groucho and the C-terminal binding protein interactions domains, are well conserved. Moreover, direct binding of the Daphnia Hairless protein and the respective Drosophila interaction partners was detected, demonstrating the conservation at the molecular level. In addition, interaction between Daphnia Hairless and Drosophila Su(H) was demonstrated in vivo, as co-overexpression of the respective genes during Drosophila development resulted in the expected downregulation of Notch activity in the fly. Structural models show that the Hairless-Su(H) repressor complexes from Daphnia and Drosophila are almost indistinguishable from one another. Amino acid residues in direct contact within the Hairless-Su(H) complex are at absolutely identical positions in the two homologues.

  4. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew.

    Science.gov (United States)

    Hurni, Severine; Brunner, Susanne; Buchmann, Gabriele; Herren, Gerhard; Jordan, Tina; Krukowski, Patricia; Wicker, Thomas; Yahiaoui, Nabila; Mago, Rohit; Keller, Beat

    2013-12-01

    The improvement of wheat through breeding has relied strongly on the use of genetic material from related wild and domesticated grass species. The 1RS chromosome arm from rye was introgressed into wheat and crossed into many wheat lines, as it improves yield and fungal disease resistance. Pm8 is a powdery mildew resistance gene on 1RS which, after widespread agricultural cultivation, is now widely overcome by adapted mildew races. Here we show by homology-based cloning and subsequent physical and genetic mapping that Pm8 is the rye orthologue of the Pm3 allelic series of mildew resistance genes in wheat. The cloned gene was functionally validated as Pm8 by transient, single-cell expression analysis and stable transformation. Sequence analysis revealed a complex mosaic of ancient haplotypes among Pm3- and Pm8-like genes from different members of the Triticeae. These results show that the two genes have evolved independently after the divergence of the species 7.5 million years ago and kept their function in mildew resistance. During this long time span the co-evolving pathogens have not overcome these genes, which is in strong contrast to the breakdown of Pm8 resistance since its introduction into commercial wheat 70 years ago. Sequence comparison revealed that evolutionary pressure acted on the same subdomains and sequence features of the two orthologous genes. This suggests that they recognize directly or indirectly the same pathogen effectors that have been conserved in the powdery mildews of wheat and rye.

  5. angaGEDUCI: Anopheles gambiae gene expression database with integrated comparative algorithms for identifying conserved DNA motifs in promoter sequences

    Directory of Open Access Journals (Sweden)

    Ribeiro Jose Marcos C

    2006-05-01

    Full Text Available Abstract Background The completed sequence of the Anopheles gambiae genome has enabled genome-wide analyses of gene expression and regulation in this principal vector of human malaria. These investigations have created a demand for efficient methods of cataloguing and analyzing the large quantities of data that have been produced. The organization of genome-wide data into one unified database makes possible the efficient identification of spatial and temporal patterns of gene expression, and by pairing these findings with comparative algorithms, may offer a tool to gain insight into the molecular mechanisms that regulate these expression patterns. Description We provide a publicly-accessible database and integrated data-mining tool, angaGEDUCI, that unifies 1 stage- and tissue-specific microarray analyses of gene expression in An. gambiae at different developmental stages and temporal separations following a bloodmeal, 2 functional gene annotation, 3 genomic sequence data, and 4 promoter sequence comparison algorithms. The database can be used to study genes expressed in particular stages, tissues, and patterns of interest, and to identify conserved promoter sequence motifs that may play a role in the regulation of such expression. The database is accessible from the address http://www.angaged.bio.uci.edu. Conclusion By combining gene expression, function, and sequence data with integrated sequence comparison algorithms, angaGEDUCI streamlines spatial and temporal pattern-finding and produces a straightforward means of developing predictions and designing experiments to assess how gene expression may be controlled at the molecular level.

  6. Characterization of SoxB2 and SoxC genes in Amphioxus (Branchiostoma belcheri): Implications for their evolutionary conservation

    Institute of Scientific and Technical Information of China (English)

    LIN YuShuang; CHEN DongYan; FAN QiuSheng; ZHANG HongWei

    2009-01-01

    Most Sox genes directly affect cell fate determination and differentiation. In this study, we isolated two Sox genes: SoxB2 and SoxC from amphioxus (Branchiostoma belcheri), the closest living invertebrate relative of the vertebrates. Alignments of SoxB2 and SoxC protein sequences and their vertebrate homologs show high conservation of their HMG domains. Phylogenic analysis shows that amphioxus SoxB2 and SoxC fall out of the vertebrate branches, suggesting that vertebrate homologs might arise from gene duplications during evolution. The two genes possess similar spatial and temporal expression patterns during embryogenesis and in adults. They are both maternally inherited. During neurulation, they are expressed in the neural ectoderm and archenterons. In adults, they are expressed not only in the nerve cord, but also in the gut, midgut diverticulum, gill and oocytes. These results suggest that amphioxus SoxB2 and SoxC might co-function and have conserved functions in the nervous sys-tem and gonads as their vertebrate homologs.

  7. Gene expression analysis of interferon-beta treatment in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F.; Datta, P.; Larsen, J.;

    2008-01-01

    by treatment with IFN-beta. We use DNA microarrays to study gene expression in 10 multiple sclerosis (MS) patients who began de novo treatment with IFN-beta. After the first injection of IFN-beta, the expression of 74 out of 3428 genes changed at least two-fold and statistically significantly (after Bonferroni...... correction). In contrast, we observed no persisting effects of IFN-beta on gene expression. Among the most strongly induced genes was MXA, which has been used in previous biomarker studies in MS. In addition, the study identified the induction of LGALS9 and TCIR1G, involved in negative regulation of T helper......Treatment with interferon-beta (IFN-beta) induces the expression of hundreds of genes in blood mononuclear cells, and the expression of several genes has been proposed as a marker of the effect of treatment with IFN-beta. However, to date no molecules have been identified that are stably induced...

  8. A precisely regulated gene expression cassette potently modulates metastasis and survival in multiple solid cancers.

    Directory of Open Access Journals (Sweden)

    Kun Yu

    Full Text Available Successful tumor development and progression involves the complex interplay of both pro- and anti-oncogenic signaling pathways. Genetic components balancing these opposing activities are likely to require tight regulation, because even subtle alterations in their expression may disrupt this balance with major consequences for various cancer-associated phenotypes. Here, we describe a cassette of cancer-specific genes exhibiting precise transcriptional control in solid tumors. Mining a database of tumor gene expression profiles from six different tissues, we identified 48 genes exhibiting highly restricted levels of gene expression variation in tumors (n = 270 compared to nonmalignant tissues (n = 71. Comprising genes linked to multiple cancer-related pathways, the restricted expression of this "Poised Gene Cassette" (PGC was robustly validated across 11 independent cohorts of approximately 1,300 samples from multiple cancer types. In three separate experimental models, subtle alterations in PGC expression were consistently associated with significant differences in metastatic and invasive potential. We functionally confirmed this association in siRNA knockdown experiments of five PGC genes (p53CSV, MAP3K11, MTCH2, CPSF6, and SKIP, which either directly enhanced the invasive capacities or inhibited the proliferation of AGS cancer cells. In primary tumors, similar subtle alterations in PGC expression were also repeatedly associated with clinical outcome in multiple cohorts. Taken collectively, these findings support the existence of a common set of precisely controlled genes in solid tumors. Since inducing small activity changes in these genes may prove sufficient to potently influence various tumor phenotypes such as metastasis, targeting such precisely regulated genes may represent a promising avenue for novel anti-cancer therapies.

  9. Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ockinger, J; Stridh, P; Beyeen, A D

    2010-01-01

    Multiple sclerosis (MS) is a complex disorder of the central nervous system, causing inflammation, demyelination and axonal damage. A limited number of genetic risk factors for MS have been identified, but the etiology of the disease remains largely unknown. For the identification of genes regula...... further identified association to rheumatoid arthritis in CCL2, CCL8 and CCL13, indicating common regulatory mechanisms for complex diseases.......Multiple sclerosis (MS) is a complex disorder of the central nervous system, causing inflammation, demyelination and axonal damage. A limited number of genetic risk factors for MS have been identified, but the etiology of the disease remains largely unknown. For the identification of genes...

  10. An adaptively weighted statistic for detecting differential gene expression when combining multiple transcriptomic studies

    OpenAIRE

    Li, Jia; Tseng, George C

    2011-01-01

    Global expression analyses using microarray technologies are becoming more common in genomic research, therefore, new statistical challenges associated with combining information from multiple studies must be addressed. In this paper we will describe our proposal for an adaptively weighted (AW) statistic to combine multiple genomic studies for detecting differentially expressed genes. We will also present our results from comparisons of our proposed AW statistic to Fisher...

  11. Integrating multiple genome annotation databases improves the interpretation of microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Kennedy Breandan

    2010-01-01

    Full Text Available Abstract Background The Affymetrix GeneChip is a widely used gene expression profiling platform. Since the chips were originally designed, the genome databases and gene definitions have been considerably updated. Thus, more accurate interpretation of microarray data requires parallel updating of the specificity of GeneChip probes. We propose a new probe remapping protocol, using the zebrafish GeneChips as an example, by removing nonspecific probes, and grouping the probes into transcript level probe sets using an integrated zebrafish genome annotation. This genome annotation is based on combining transcript information from multiple databases. This new remapping protocol, especially the new genome annotation, is shown here to be an important factor in improving the interpretation of gene expression microarray data. Results Transcript data from the RefSeq, GenBank and Ensembl databases were downloaded from the UCSC genome browser, and integrated to generate a combined zebrafish genome annotation. Affymetrix probes were filtered and remapped according to the new annotation. The influence of transcript collection and gene definition methods was tested using two microarray data sets. Compared to remapping using a single database, this new remapping protocol results in up to 20% more probes being retained in the remapping, leading to approximately 1,000 more genes being detected. The differentially expressed gene lists are consequently increased by up to 30%. We are also able to detect up to three times more alternative splicing events. A small number of the bioinformatics predictions were confirmed using real-time PCR validation. Conclusions By combining gene definitions from multiple databases, it is possible to greatly increase the numbers of genes and splice variants that can be detected in microarray gene expression experiments.

  12. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes.

    Science.gov (United States)

    Paraboschi, Elvezia Maria; Cardamone, Giulia; Rimoldi, Valeria; Gemmati, Donato; Spreafico, Marta; Duga, Stefano; Soldà, Giulia; Asselta, Rosanna

    2015-09-30

    Abnormalities in RNA metabolism and alternative splicing (AS) are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS) and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls), followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p=0.0015) by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.

  13. The SH2D2A gene and susceptibility to multiple sclerosis

    DEFF Research Database (Denmark)

    Lorentzen, A.R.; Smestad, C.; Lie, B.A.

    2008-01-01

    We previously reported an association between the SH2D2A gene encoding TSAd and multiple sclerosis (MS). Here a total of 2128 Nordic MS patients and 2004 controls were genotyped for the SH2D2A promoter GA repeat polymorphism and rs926103 encoding a serine to asparagine substitution at amino acid...... that the SH2D2A gene may contribute to susceptibility to MS Udgivelsesdato: 2008/7/15...

  14. Characterization of human gene encoding SLA/LP autoantigen and its conserved homologs in mouse,fish,fly,and worm

    Institute of Scientific and Technical Information of China (English)

    Chun-Xia Wang; Andreas Teufel; Uta Cheruti; Joachim Gr(o)tzinger; Peter R Galle; Ansgar W Lohse; Johannes Herkel

    2006-01-01

    AIM: To approach the elusive function of the SLA/LP molecule, we have characterized genomic organization and conservation of the major antigenic and functional properties of the SLA/LP molecule in various species.METHODS: By means of computational biology, we have characterized the complete SLA/LP gene, mRNA and deduced protein sequences in man, mouse,zebrafish, fly, and worm.RESULTS: The human SLA/LP gene sequence of approximately 39 kb, which maps to chromosome 4p15.2, is organized in 11 exons, of which 10 or 11 are translated, depending on the splice variant. Homologous molecules were identified in several biological model organisms. The various homologous protein sequences showed a high degree of similarity or homology, notably at those residues that are of functional importance. The only domain of the human protein sequence that lacks significant homology with homologous sequences is the major antigenic epitope recognized by autoantibodies from autoimmune hepatitis (AIH) patients.CONCLUSION: The SLA/LP molecule and its functionally relevant residues have been highly conserved throughout the evoluti n, suggesting an indispensable function of the molecule. The finding that the only non-conserved domain is the dominant antigenic epitope of the human SLA/LP sequence, suggests that SLA/LP autoimmunity is autoantigen-driven rather than being driven by molecular mimicry.

  15. The gp63 Gene Cluster Is Highly Polymorphic in Natural Leishmania (Viannia) braziliensis Populations, but Functional Sites Are Conserved

    Science.gov (United States)

    Medina, Lilian S.; Souza, Bruno Araújo; Queiroz, Adriano; Guimarães, Luiz Henrique; Lima Machado, Paulo Roberto; M Carvalho, Edgar; Wilson, Mary Edythe; Schriefer, Albert

    2016-01-01

    GP63 or leishmanolysin is the major surface protease of Leishmania spp. involved in parasite virulence and host cell interaction. As such, GP63 is a potential target of eventual vaccines against these protozoa. In the current study we evaluate the polymorphism of gp63 in Leishmania (Viannia) braziliensis isolated from two sets of American tegumentary leishmaniasis (ATL) cases from Corte de Pedra, Brazil, including 35 cases diagnosed between 1994 and 2001 and 6 cases diagnosed between 2008 and 2011. Parasites were obtained from lesions by needle aspiration and cultivation. Genomic DNA was extracted, and 405 bp fragments, including sequences encoding the putative macrophage interacting sites, were amplified from gp63 genes of all isolates. DNA amplicons were cloned into plasmid vectors and ten clones per L. (V.) braziliensis isolate were sequenced. Alignment of cloned sequences showed extensive polymorphism among gp63 genes within, and between parasite isolates. Overall, 45 different polymorphic alleles were detected in all samples, which could be segregated into two clusters. Cluster one included 25, and cluster two included 20 such genotypes. The predicted peptides showed overall conservation below 50%. In marked contrast, the conservation at segments with putative functional domains approached 90% (Fisher’s exact test p<0.0001). These findings show that gp63 is very polymorphic even among parasites from a same endemic focus, but the functional domains interacting with the mammalian host environment are conserved. PMID:27648939

  16. MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2011-06-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a fundamental role in the regulation of gene expression by translational repression or target mRNA degradation. Regulatory elements in miRNA promoters are less well studied, but may reveal a link between their expression and a specific cell type. Results To explore this link in myeloid cells, miRNA expression profiles were generated from monocytes and dendritic cells (DCs. Differences in miRNA expression among monocytes, DCs and their stimulated progeny were observed. Furthermore, putative promoter regions of miRNAs that are significantly up-regulated in DCs were screened for Transcription Factor Binding Sites (TFBSs based on TFBS motif matching score, the degree to which those TFBSs are over-represented in the promoters of the up-regulated miRNAs, and the extent of conservation of the TFBSs in mammals. Conclusions Analysis of evolutionarily conserved TFBSs in DC promoters revealed preferential clustering of sites within 500 bp upstream of the precursor miRNAs and that many mRNAs of cognate TFs of the conserved TFBSs were indeed expressed in the DCs. Taken together, our data provide evidence that selected miRNAs expressed in DCs have evolutionarily conserved TFBSs relevant to DC biology in their promoters.

  17. QUANTITATIVE RT-PCR ANALYSES OF FIVE EVOLUTIONARY CONSERVED GENES IN ALLIGATOR BRAINS DURING DEVELOPMENT

    Science.gov (United States)

    Wilson, Sarah M.; Zhu, Tianli; Khanna, Rajesh; Pritz, Michael B.

    2011-01-01

    Gene expression was investigated in the major brain subdivisions (telencephalon, diencephalon, midbrain and hindbrain) in a representative reptile, Alligator mississipiensis, during the later stages of embryonic development. The following genes were examined: voltage-gated sodium channel isoforms: NaV1.1 and NaV1.2; synaptic vesicle 2a (SV2a); synaptophysin; and calbindin 2. With the exception of synaptophysin, which was only expressed in the telencephalon, all genes were expressed in all brain regions sampled at the time periods examined. For NaV1.1, gene expression varied according to brain area sampled. When compared with NaV1.1, the pattern of NaV1.2 gene expression differed appreciably. The gene expression of SV2a was the most robust of any of the genes examined. Of the other genes examined, although differences were noted, no statistically significant changes were found either between brain part or time interval. Although limited, the present analysis is the first quantitative mRNA gene expression study in any reptile during development. Together with future experiments of a similar nature, the present gene expression results should determine which genes are expressed in major brain areas at which times during development in Alligator. When compared with other amniotes, these results will prove useful for determining how gene expression during development influences adult brain structure. PMID:22379598

  18. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    Directory of Open Access Journals (Sweden)

    Yingmei Peng

    Full Text Available Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC while the other as bacteria-type pepcase (BTPC because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.

  19. Potato diversity at height: multiple dimensions of farmer-driven in-situ conservation in the Andes

    NARCIS (Netherlands)

    Haan, de S.

    2009-01-01

    In-situ conservation Two types of in-situ conservation of crop genetic resources can be distinguished: farmer-driven and externally driven. The first is subject of this thesis and refers to the persistence of potato genetic resources in areas where everyday practices of farmers maintain diversity

  20. Potato diversity at height: multiple dimensions of farmer-driven in-situ conservation in the Andes

    NARCIS (Netherlands)

    Haan, de S.

    2009-01-01

    In-situ conservation Two types of in-situ conservation of crop genetic resources can be distinguished: farmer-driven and externally driven. The first is subject of this thesis and refers to the persistence of potato genetic resources in areas where everyday practices of farmers maintain diversity

  1. Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression

    Directory of Open Access Journals (Sweden)

    Raherison Elie

    2012-08-01

    Full Text Available Abstract Background Conifers have very large genomes (13 to 30 Gigabases that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues. Results An oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs. Conclusion Together, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees.

  2. Conserved-peptide upstream open reading frames (CPuORFs are associated with regulatory genes in angiosperms

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2012-08-01

    Full Text Available Upstream open reading frames (uORFs are common in eukaryotic transcripts, but those that encode conserved peptides (CPuORFs occur in less than 1% of transcripts. The peptides encoded by three plant CPuORF families are known to control translation of the downstream ORF in response to a small signal molecule (sucrose, polyamines and phosphocholine. In flowering plants, transcription factors are statistically over-represented among genes that possess CPuORFs, and in general it appeared that many CPuORF genes also had other regulatory functions, though the significance of this suggestion was uncertain (Hayden and Jorgensen, 2007. Five years later the literature provides much more information on the functions of many CPuORF genes. Here we reassess the functions of 27 known CPuORF gene families and find that 22 of these families play a variety of different regulatory roles, from transcriptional control to protein turnover, and from small signal molecules to signal transduction kinases. Clearly then, there is indeed a strong association of CPuORFs with regulatory genes. In addition, 16 of these families play key roles in a variety of different biological processes. Most strikingly, the core sucrose response network includes three different CPuORFs, creating the potential for sophisticated balancing of the network in response to three different molecular inputs. We propose that the function of most CPuORFs is to modulate translation of a downstream major ORF (mORF in response to a signal molecule recognized by the conserved peptide and that because the mORFs of CPuORF genes generally encode regulatory proteins, many of them centrally important in the biology of plants, CPuORFs play key roles in balancing such regulatory networks.

  3. PL1 fusion gene: a novel visual selectable marker gene that confers tolerance to multiple abiotic stresses in transgenic tomato.

    Science.gov (United States)

    Jin, Feng; Li, Shu; Dang, Lijie; Chai, Wenting; Li, Pengli; Wang, Ning Ning

    2012-10-01

    Visual selectable markers, including the purple color caused by the accumulation of anthocyanins, have been proposed for use as antibiotic-free alternatives. However, the excessive accumulation of anthocyanins seriously inhibits the growth and development of transgenic plants. In our study, the AtDWF4 promoter from Arabidopsis and the tomato LeANT1 gene, encoding a MYB transcription factor, were used to construct the PL1 fusion gene to test whether it could be used as a visual selectable marker gene for tomato transformation. All the PL1 transgenic shoots exhibited intense purple color on shoot induction medium. In the transgenic tomato plants, PL1 was highly expressed in the cotyledons, but expressed only slightly in the true leaves and other organs. The expression of PL1 had no significantly adverse effects on the growth or development of the transgenic tomato plants, and conferred tolerance to multiple abiotic stresses in them. With the “cut off green shoots” method, multiple independent 35S::GFP transgenic tomato lines were successfully obtained using PL1 as the selectable marker gene. These results suggest that PL1 has potential application of visual selectable marker gene for tomato transformation.

  4. A conserved cluster of three PRD-class homeobox genes (homeobrain, rx and orthopedia in the Cnidaria and Protostomia

    Directory of Open Access Journals (Sweden)

    Mazza Maureen E

    2010-07-01

    temporal expression. Conclusion We report the first evidence for a PRD-class homeobox cluster that appears to have been conserved since the time of the cnidarian-bilaterian ancestor, and possibly even earlier, given the presence of a partial cluster in the placozoan Trichoplax. Very similar clusters comprising these three genes exist in Nematostella and diverse protostomes. Interestingly, in chordates, one member of the ancestral cluster (homeobrain has apparently been lost, and there is no linkage between rx and orthopedia in any of the vertebrates. In Nematostella, the spatial expression of these three genes along the body column is not colinear with their physical order in the cluster but the temporal expression is, therefore, using the terminology that has been applied to the Hox cluster genes, the HRO cluster would appear to exhibit temporal but not spatial colinearity. It remains to be seen whether the mechanisms responsible for the evolutionary conservation of the HRO cluster are the same mechanisms responsible for cohesion of the Hox cluster and other ANTP-class homeobox clusters that have been widely conserved throughout animal evolution.

  5. A conserved gene family encodes transmembrane proteins with fibronectin, immunoglobulin and leucine-rich repeat domains (FIGLER

    Directory of Open Access Journals (Sweden)

    Haga Christopher L

    2007-09-01

    Full Text Available Abstract Background In mouse the cytokine interleukin-7 (IL-7 is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine. Results Our database search identified a family of nine gene candidates, which we have provisionally named fibronectin immunoglobulin leucine-rich repeat (FIGLER. The FIGLER 1–9 genes are predicted to encode type I transmembrane glycoproteins with 6–12 leucine-rich repeats (LRR, a C2 type Ig domain, a fibronectin type III domain, a hydrophobic transmembrane domain, and a cytoplasmic domain containing one to four tyrosine residues. Members of this multichromosomal gene family possess 20–47% overall amino acid identity and are differentially expressed in cell lines and primary hematopoietic lineage cells. Genes for FIGLER homologs were identified in macaque, orangutan, chimpanzee, mouse, rat, dog, chicken, toad, and puffer fish databases. The non-human FIGLER homologs share 38–99% overall amino acid identity with their human counterpart. Conclusion The extracellular domain structure and absence of recognizable cytoplasmic signaling motifs in members of the highly conserved FIGLER gene family suggest a trophic or cell adhesion function for these molecules.

  6. Conservation and sex-specific splicing of the doublesex gene in the economically important pest species Lucilia cuprina

    Indian Academy of Sciences (India)

    Carolina Concha; Fang Li; Maxwell J. Scott

    2010-09-01

    Genetic control of sex determination in insects has been best characterized in Drosophila melanogaster, where the master gene Sxl codes for RNA that is sex specifically spliced to produce a functional protein only in females. SXL regulates the sex-specific splicing of transformer (tra) RNA which, in turn, regulates the splicing of dsx RNA to produce functional male and female proteins. In the Australian sheep blowfly (Lucilia cuprina), the tra gene (Lctra) is required for female development and Lctra transcripts are sex-specifically spliced such that only female Lctra mRNA codes for functional protein. In males, a factor encoded by the Y-linked male determining gene is thought to prevent the female-mode of splicing of Lctra RNA. To further our understanding of the sex determination regulatory hierarchy in L. cuprina, we have isolated the dsx gene (Lcdsx) from this species. We found that the Lcdsx transcripts are sex-specifically spliced in a similar manner as their counterparts in D. melanogaster, housefly and tephritids. The LcDSX proteins are well conserved and the male form of DSX contains a motif encoded by a male-specific exon that is within the female-specific intron. This intron/exon arrangement had previously been found only in the housefly dsx gene, suggesting this may be a unique feature of dsx genes of Calyptratae species.

  7. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Directory of Open Access Journals (Sweden)

    Anna Tóth

    Full Text Available Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  8. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Science.gov (United States)

    Tóth, Anna; Fodor, Katalin; Praznovszky, Tünde; Tubak, Vilmos; Udvardy, Andor; Hadlaczky, Gyula; Katona, Robert L

    2014-01-01

    Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  9. Estrogen receptor gene polymorph ism in a Chinese population with multiple sclerosis

    Institute of Scientific and Technical Information of China (English)

    Qingli Sun; Ruping Xie; Yu Fu; Xiaogang Li; Dongsheng Fan

    2011-01-01

    This study sought to elucidate the role of the Pvull and Xbal polymorphisms of the estrogen receptor gene in 74 Chinese patients with multiple sclerosis,and 95 ethnicity-matched controls.using polymerase chain reaction-restriction fragment-length polymorphism analysis.The results revealed that the P allele of Pvull was significantly more prevalent in multiple sclerosis patients compared with controls(P=0.019).While distribution frequencies were significantly increased in female multiple sclerosis patients compared with female controls(P=0.044),no significant difference was observed between male patients and controls(P>0.05).Frequencies of Ppxx genotypes were significantly higher in multiple sclerosis patients compared with controls(24.3%VS.12.8%,P=0.025).Genotypes and alleles of the estrogen receptor were not associated with age.number of attacks or expanded disability status scale scores of patients with multiple sclerosis.These findings jndicate that the PVUll but not the Xbal polymorphism in the estrogen receptor gene iS associated with susceptibility to multiple sclerosis in the Chinese population.in addition.women with P allele appear to be particularly susceptible to multiple sclerosis.

  10. Conservation of a vitellogenin gene cluster in oviparous vertebrates and identification of its traces in the platypus genome.

    Science.gov (United States)

    Babin, Patrick J

    2008-04-30

    Vitellogenin (Vtg) derivatives are the main egg-yolk proteins in most oviparous animal species, and are, therefore, key players in reproduction and embryo development. Conserved synteny and phylogeny were used to identify a Vtg gene cluster (VGC) that had been evolutionarily conserved in most oviparous vertebrates, encompassing the three linked Vtgs on chicken (Gallus gallus) chromosome 8. Tandem arranged homologs to chicken VtgII and VtgIII were retrieved in similar locations in Xenopus (Xenopus tropicalis) and homologous transcribed inverted genes were found in medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), pufferfish (Takifugu rubripes), and Tetrahodon (Tetraodon nigroviridis), while zebrafish (Danio rerio) Vtg3 may represent a residual trace of VGC in this genome. Vtgs were not conserved in the paralogous chromosomal segment attributed to a whole-genome duplication event in the ancestor of teleosts, while tandem duplicated forms have survived the recent African clawed frog (Xenopus laevis) tetraploidization. Orthologs to chicken VtgI were found in similar locations in teleost fish, as well as in the platypus (Ornithorhynchus anatinus). Additional Vtg fragments found suggested that VGC had been conserved in this egg-laying mammal. A low ratio of nonsynonymous-to-synonymous substitution values and the paucity of pseudogene features suggest functional platypus Vtg products. Genomic identification of Vtgs, Apob, and Mtp in this genome, together with maximum likelihood and Bayesian inference phylogenetic analyses, support the existence of these three large lipid transfer protein superfamily members at the base of the mammalian lineage. In conclusion, the establishment of a VGC in the vertebrate lineage predates the divergence of ray-finned fish and tetrapods and the shift in reproductive and developmental strategy observed between prototherians and therians may be associated with its loss, as shown by its absence from the genomic resources currently

  11. A cfr-Like Gene from Clostridium difficile Confers Multiple Antibiotic Resistance by the Same Mechanism as the cfr Gene

    DEFF Research Database (Denmark)

    Hansen, Lykke H; Vester, Birte

    2015-01-01

    The Cfr RNA methyltransferase causes multiple resistances to peptidyl transferase inhibitors by methylation of A2503 23S rRNA. Many cfr-like gene sequences in the databases code for unknown functions. This study confirms that a Cfr-like protein from a Peptoclostridium difficile (formerly Clostrid......The Cfr RNA methyltransferase causes multiple resistances to peptidyl transferase inhibitors by methylation of A2503 23S rRNA. Many cfr-like gene sequences in the databases code for unknown functions. This study confirms that a Cfr-like protein from a Peptoclostridium difficile (formerly...... Clostridium difficile) strain does function as a Cfr protein. The enzyme is expressed in Escherichia coli and shows elevated MICs for five classes of antibiotics. A primer extension stop indicates a modification at A2503 in 23S rRNA....

  12. A rare variant of the TYK2 gene is confirmed to be associated with multiple sclerosis

    DEFF Research Database (Denmark)

    Mero, Inger-Lise; Lorentzen, Aslaug R; Ban, Maria;

    2010-01-01

    A rare functional variant within the TYK2 gene (rs34536443) has been reported as protective in multiple sclerosis (MS) in recent studies. However, because of the low frequency of the minor allele (minor allele frequency=0.04), genome-wide significant association has been hard to establish. We...

  13. Statistical applications in nutrigenomics : analyzing multiple genes and proteins in relation to complex diseases in humans

    NARCIS (Netherlands)

    Heidema, A.G.

    2008-01-01

    Background The recent advances in technology provide the possibility to obtain large genomic datasets that contain information on large numbers of variables, while the sample sizes are moderate to small. This has lead to statistical challenges in the analysis of multiple genes and proteins in relat

  14. Polymorphisms in the heparanase gene in multiple myeloma association with bone morbidity and survival

    DEFF Research Database (Denmark)

    Andersen, Niels F; Vogel, Ulla; Klausen, Tobias W;

    2015-01-01

    described, and some are associated with haematological malignancies. METHODS: In this study, we evaluated four SNPs rs11099592, rs4364254, rs4693608 and rs6535455 in the HSPE gene in 348 newly diagnosed multiple myeloma patients with focus on bone morbidity (lytic bone disease and vertebral fractures...

  15. Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ockinger, J; Stridh, P; Beyeen, A D

    2010-01-01

    Multiple sclerosis (MS) is a complex disorder of the central nervous system, causing inflammation, demyelination and axonal damage. A limited number of genetic risk factors for MS have been identified, but the etiology of the disease remains largely unknown. For the identification of genes regula...

  16. A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns

    OpenAIRE

    Mohammad Manir Hossain Mollah; Rahman Jamal; Norfilza Mohd Mokhtar; Roslan Harun; Md. Nurul Haque Mollah

    2015-01-01

    Background Identifying genes that are differentially expressed (DE) between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA), are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt ...

  17. Bayesian coclustering of Anopheles gene expression time series: Study of immune defense response to multiple experimental challenges

    OpenAIRE

    Heard, Nicholas A.; Holmes, Christopher C.; Stephens, David A.; Hand, David J.; Dimopoulos, George

    2005-01-01

    We present a method for Bayesian model-based hierarchical coclustering of gene expression data and use it to study the temporal transcription responses of an Anopheles gambiae cell line upon challenge with multiple microbial elicitors. The method fits statistical regression models to the gene expression time series for each experiment and performs coclustering on the genes by optimizing a joint probability model, characterizing gene coregulation between multiple experiments. We compute the mo...

  18. A Cluster of Vitellogenin Genes in the Mediterranean Fruit Fly Ceratitis Capitata: Sequence and Structural Conservation in Dipteran Yolk Proteins and Their Genes

    Science.gov (United States)

    Rina, M.; Savakis, C.

    1991-01-01

    Four genes encoding the major egg yolk polypeptides of the Mediterranean fruit fly Ceratitis capitata, vitellogenins 1 and 2 (VG1 and VG2), were cloned, characterized and partially sequenced. The genes are located on the same region of chromosome 5 and are organized in pairs, each encoding the two polypeptides on opposite DNA strands. Restriction and nucleotide sequence analysis indicate that the gene pairs have arisen from an ancestral pair by a relatively recent duplication event. The transcribed part is very similar to that of the Drosophila melanogaster yolk protein genes Yp1, Yp2 and Yp3. The Vg1 genes have two introns at the same positions as those in D. melanogaster Yp3; the Vg2 genes have only one of the introns, as do D. melanogaster Yp1 and Yp2. Comparison of the five polypeptide sequences shows extensive homology, with 27% of the residues being invariable. The sequence similarity of the processed proteins extends in two regions separated by a nonconserved region of varying size. Secondary structure predictions suggest a highly conserved secondary structure pattern in the two regions, which probably correspond to structural and functional domains. The carboxy-end domain of the C. capitata proteins shows the same sequence similarities with triacylglycerol lipases that have been reported previously for the D. melanogaster yolk proteins. Analysis of codon usage shows significant differences between D. melanogaster and C. capitata vitellogenins with the latter exhibiting a less biased representation of synonymous codons. PMID:1903120

  19. The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness

    Science.gov (United States)

    Henry, Clémence; Bledsoe, Samuel W.; Siekman, Allison; Kollman, Alec; Waters, Brian M.; Feil, Regina; Stitt, Mark; Lagrimini, L. Mark

    2014-01-01

    Energy resources in plants are managed in continuously changing environments, such as changes occurring during the day/night cycle. Shading is an environmental disruption that decreases photosynthesis, compromises energy status, and impacts on crop productivity. The trehalose pathway plays a central but not well-defined role in maintaining energy balance. Here, we characterized the maize trehalose pathway genes and deciphered the impacts of the diurnal cycle and disruption of the day/night cycle on trehalose pathway gene expression and sugar metabolism. The maize genome encodes 14 trehalose-6-phosphate synthase (TPS) genes, 11 trehalose-6-phosphate phosphatase (TPP) genes, and one trehalase gene. Transcript abundance of most of these genes was impacted by the day/night cycle and extended dark stress, as were sucrose, hexose sugars, starch, and trehalose-6-phosphate (T6P) levels. After extended darkness, T6P levels inversely followed class II TPS and sucrose non-fermenting-related protein kinase 1 (SnRK1) target gene expression. Most significantly, T6P no longer tracked sucrose levels after extended darkness. These results showed: (i) conservation of the trehalose pathway in maize; (ii) that sucrose, hexose, starch, T6P, and TPS/TPP transcripts respond to the diurnal cycle; and(iii) that extended darkness disrupts the correlation between T6P and sucrose/hexose pools and affects SnRK1 target gene expression. A model for the role of the trehalose pathway in sensing of sucrose and energy status in maize seedlings is proposed. PMID:25271261

  20. Computational identification of conserved transcription factor binding sites upstream of genes induced in rat brain by transient focal ischemic stroke.

    Science.gov (United States)

    Pulliam, John V K; Xu, Zhenfeng; Ford, Gregory D; Liu, Cuimei; Li, Yonggang; Stovall, Kyndra C; Cannon, Virginetta S; Tewolde, Teclemichael; Moreno, Carlos S; Ford, Byron D

    2013-02-07

    Microarray analysis has been used to understand how gene regulation plays a critical role in neuronal injury, survival and repair following ischemic stroke. To identify the transcriptional regulatory elements responsible for ischemia-induced gene expression, we examined gene expression profiles of rat brains following focal ischemia and performed computational analysis of consensus transcription factor binding sites (TFBS) in the genes of the dataset. In this study, rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO) stroke and gene transcription in brain tissues following ischemia/reperfusion was examined using Affymetrix GeneChip technology. The CONserved transcription FACtor binding site (CONFAC) software package was used to identify over-represented TFBS in the upstream promoter regions of ischemia-induced genes compared to control datasets. CONFAC identified 12 TFBS that were statistically over-represented from our dataset of ischemia-induced genes, including three members of the Ets-1 family of transcription factors (TFs). Microarray results showed that mRNA for Ets-1 was increased following tMCAO but not pMCAO. Immunohistochemical analysis of Ets-1 protein in rat brains following MCAO showed that Ets-1 was highly expressed in neurons in the brain of sham control animals. Ets-1 protein expression was virtually abolished in injured neurons of the ischemic brain but was unchanged in peri-infarct brain areas. These data indicate that TFs, including Ets-1, may influence neuronal injury following ischemia. These findings could provide important insights into the mechanisms that lead to brain injury and could provide avenues for the development of novel therapies. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Differential responses to Wnt and PCP disruption predict expression and developmental function of conserved and novel genes in a cnidarian.

    Directory of Open Access Journals (Sweden)

    Pascal Lapébie

    2014-09-01

    Full Text Available We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins. Comparisons between embryos injected with morpholinos targeting Wnt3 and its receptor Fz1 defined four transcript classes showing remarkable correlation with spatiotemporal expression profiles. Class 1 and 3 transcripts tended to show sustained expression at "oral" and "aboral" poles respectively of the developing planula larva, class 2 transcripts in cells ingressing into the endodermal region during gastrulation, while class 4 gene expression was repressed at the early gastrula stage. The preferential effect of Fz1-MO on expression of class 2 and 4 transcripts can be attributed to Planar Cell Polarity (PCP disruption, since it was closely matched by morpholino knockdown of the specific PCP protein Strabismus. We conclude that endoderm and post gastrula-specific gene expression is particularly sensitive to PCP disruption while Wnt-/β-catenin signaling dominates gene regulation along the oral-aboral axis. Phenotype analysis using morpholinos targeting a subset of transcripts indicated developmental roles consistent with expression profiles for both conserved and cnidarian-restricted genes. Overall our unbiased screen allowed systematic identification of regionally expressed genes and provided functional support for a shared eumetazoan developmental regulatory gene set with both predicted and

  2. Genome-wide analysis of the sox family in the calcareous sponge Sycon ciliatum: multiple genes with unique expression patterns

    Directory of Open Access Journals (Sweden)

    Fortunato Sofia

    2012-07-01

    Full Text Available Abstract Background Sox genes are HMG-domain containing transcription factors with important roles in developmental processes in animals; many of them appear to have conserved functions among eumetazoans. Demosponges have fewer Sox genes than eumetazoans, but their roles remain unclear. The aim of this study is to gain insight into the early evolutionary history of the Sox gene family by identification and expression analysis of Sox genes in the calcareous sponge Sycon ciliatum. Methods Calcaronean Sox related sequences were retrieved by searching recently generated genomic and transcriptome sequence resources and analyzed using variety of phylogenetic methods and identification of conserved motifs. Expression was studied by whole mount in situ hybridization. Results We have identified seven Sox genes and four Sox-related genes in the complete genome of Sycon ciliatum. Phylogenetic and conserved motif analyses showed that five of Sycon Sox genes represent groups B, C, E, and F present in cnidarians and bilaterians. Two additional genes are classified as Sox genes but cannot be assigned to specific subfamilies, and four genes are more similar to Sox genes than to other HMG-containing genes. Thus, the repertoire of Sox genes is larger in this representative of calcareous sponges than in the demosponge Amphimedon queenslandica. It remains unclear whether this is due to the expansion of the gene family in Sycon or a secondary reduction in the Amphimedon genome. In situ hybridization of Sycon Sox genes revealed a variety of expression patterns during embryogenesis and in specific cell types of adult sponges. Conclusions In this study, we describe a large family of Sox genes in Sycon ciliatum with dynamic expression patterns, indicating that Sox genes are regulators in development and cell type determination in sponges, as observed in higher animals. The revealed differences between demosponge and calcisponge Sox genes repertoire highlight the need to

  3. The conservation and application of three hypothetical protein coding gene for direct detection of Mycobacterium tuberculosis in sputum specimens.

    Directory of Open Access Journals (Sweden)

    Lianhua Qin

    Full Text Available BACKGROUND: Accurate and early diagnosis of tuberculosis (TB is of major importance in the control of TB. One of the most important technical advances in diagnosis of tuberculosis is the development of nucleic acid amplification (NAA tests. However, the choice of the target sequence remains controversial in NAA tests. Recently, interesting alternatives have been found in hypothetical protein coding sequences from mycobacterial genome. METHODOLOGY/PRINCIPAL FINDINGS: To obtain rational biomarker for TB diagnosis, the conservation of three hypothetical genes was firstly evaluated in 714 mycobacterial strains. The results showed that SCAR1 (Sequenced Characterized Amplified Region based on Rv0264c coding gene showed the highest conservation (99.8% and SCAR2 based on Rv1508c gene showed the secondary high conservation (99.7% in M. tuberculosis (MTB strains. SCAR3 based on Rv2135c gene (3.2% and IS6110 (8% showed relatively high deletion rate in MTB strains. Secondly, three SCAR markers were evaluated in 307 clinical sputum from patients in whom TB was suspected or patients with diseases other than TB. The amplification of IS6110 and 16SrRNA sequences together with both clinical and bacteriological identification was as a protocol to evaluate the efficacy of SCAR markers. The sensitivities and specificities, positive predictive value (PPV and negative predictive value (NPV of all NAA tests were higher than those of bacteriological detection. In four NAA tests, IS6110 and SCAR3 showed the highest PPV (100% and low NPV (70% and 68.8%, respectively, and SCAR1 and SCAR2 showed the relatively high PPV and NPV (97% and 82.6%, 95.6% and 88.8%, respectively. CONCLUSIONS/SIGNIFICANCE: Our result indicated that SCAR1 and SCAR2 with a high degree of sequence conservation represent efficient and promising alternatives as NAA test targets in identification of MTB. Moreover, the targets developed from this study may provide more alternative targets for the

  4. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Harashima, S; Hinnebusch, A G

    1986-11-01

    GCN4 encodes a positive regulator of multiple unlinked genes encoding amino acid biosynthetic enzymes in Saccharomyces cerevisiae. Expression of GCN4 is coupled to amino acid availability by a control mechanism involving GCD1 as a negative effector and GCN1, GCN2, and GCN3 as positive effectors of GCN4 expression. We used reversion of a gcn2 gcn3 double mutation to isolate new alleles of GCD1 and mutations in four additional GCD genes which we designate GCD10, GCD11, GCD12, and GCD13. All of the mutations lead to constitutive derepression of HIS4 transcription in the absence of the GCN2+ and GCN3+ alleles. By contrast, the gcd mutations require the wild-type GCN4 allele for their derepressing effect, suggesting that each acts by influencing the level of GCN4 activity in the cell. Consistent with this interpretation, mutations in each GCD gene lead to constitutive derepression of a GCN4::lacZ gene fusion. Thus, at least five gene products are required to maintain the normal repressed level of GCN4 expression in nonstarvation conditions. Interestingly, the gcd mutations are pleiotropic and also affect growth rate in nonstarvation conditions. In addition, certain alleles lead to a loss of M double-stranded RNA required for the killer phenotype. This pleiotropy suggests that the GCD gene products contribute to an essential cellular function, in addition to, or in conjunction with, their role in GCN4 regulation.

  5. Conservation of the response regulator gene gacA in Pseudomonas species

    NARCIS (Netherlands)

    Souza, J.T.; Mazzola, M.; Raaijmakers, J.M.

    2003-01-01

    The response regulator gene gacA influences the production of several secondary metabolites in both pathogenic and beneficial Pseudomonas spp. In this study, we developed primers and a probe for the gacA gene of Pseudomonas species and sequenced a 425 bp fragment of gacA from ten Pseudomonas strains

  6. Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait

    Directory of Open Access Journals (Sweden)

    Shirai Leila T

    2012-02-01

    Full Text Available Abstract Background The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects. Results We investigated the evolutionary history of the recruitment and co-recruitment of four conserved transcription regulators to the larval wing disc region where circular pattern elements develop. The co-localization of Antennapedia, Notch, Distal-less, and Spalt with presumptive (eyespot organizers was examined in 13 butterfly species, providing the largest comparative dataset available for the system. We found variation between families, between subfamilies, and between tribes. Phylogenetic reconstructions by parsimony and maximum likelihood methods revealed an unambiguous evolutionary history only for Antennapedia, with a resolved single origin of eyespot-associated expression, and many homoplastic events for Notch, Distal-less, and Spalt. The flexibility in the (co-recruitment of the targeted genes includes cases where different gene combinations are associated with morphologically similar eyespots, as well as cases where identical protein combinations are associated with very different phenotypes. Conclusions The evolutionary history of gene

  7. Optimal Control of Gene Regulatory Networks with Effectiveness of Multiple Drugs: A Boolean Network Approach

    Science.gov (United States)

    Kobayashi, Koichi; Hiraishi, Kunihiko

    2013-01-01

    Developing control theory of gene regulatory networks is one of the significant topics in the field of systems biology, and it is expected to apply the obtained results to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of gene regulatory networks, and gene expression is expressed by a binary value (0 or 1). In the control problem, we assume that the concentration level of a part of genes is arbitrarily determined as the control input. However, there are cases that no gene satisfying this assumption exists, and it is important to consider structural control via external stimuli. Furthermore, these controls are realized by multiple drugs, and it is also important to consider multiple effects such as duration of effect and side effects. In this paper, we propose a BN model with two types of the control inputs and an optimal control method with duration of drug effectiveness. First, a BN model and duration of drug effectiveness are discussed. Next, the optimal control problem is formulated and is reduced to an integer linear programming problem. Finally, numerical simulations are shown. PMID:24058904

  8. Evolutionary conservation of candidate osmoregulation genes in plant phloem sap-feeding insects.

    Science.gov (United States)

    Jing, X; White, T A; Luan, J; Jiao, C; Fei, Z; Douglas, A E

    2016-06-01

    The high osmotic pressure generated by sugars in plant phloem sap is reduced in phloem-feeding aphids by sugar transformations and facilitated water flux in the gut. The genes mediating these osmoregulatory functions have been identified and validated empirically in the pea aphid Acyrthosiphon pisum: sucrase 1 (SUC1), a sucrase in glycoside hydrolase family 13 (GH13), and aquaporin 1 (AQP1), a member of the Drosophila integral protein (DRIP) family of aquaporins. Here, we describe molecular analysis of GH13 and AQP genes in phloem-feeding representatives of the four phloem-feeding groups: aphids (Myzus persicae), coccids (Planococcus citri), psyllids (Diaphorina citri, Bactericera cockerelli) and whiteflies (Bemisia tabaci MEAM1 and MED). A single candidate GH13-SUC gene and DRIP-AQP gene were identified in the genome/transcriptome of most insects tested by the criteria of sequence motif and gene expression in the gut. Exceptionally, the psyllid Ba. cockerelli transcriptome included a gut-expressed Pyrocoelia rufa integral protein (PRIP)-AQP, but has no DRIP-AQP transcripts, suggesting that PRIP-AQP is recruited for osmoregulatory function in this insect. This study indicates that phylogenetically related SUC and AQP genes may generally mediate osmoregulatory functions in these diverse phloem-feeding insects, and provides candidate genes for empirical validation and development as targets for osmotic disruption of pest species. © 2016 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society.

  9. Conserved synteny at the protein family level reveals genes underlying Shewanella species cold tolerance and predicts their novel phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Karpinets, Tatiana V.; Obraztsova, Anna; Wang, Yanbing; Schmoyer, Denise D.; Kora, Guruprasad; Park, Byung H.; Serres, Margrethe H.; Romine, Margaret F.; Land, Miriam L.; Kothe, Terence B.; Fredrickson, Jim K.; Nealson, Kenneth H.; Uberbacher, Edward

    2010-03-01

    Bacteria of the genus Shewanella can thrive in different environments and demonstrate significant variability in their metabolic and ecophysiological capabilities including cold and salt tolerance. Genomic characteristics underlying this variability across species are largely unknown. In this study we address the problem by a comparison of the physiological, metabolic and genomic characteristics of 19 sequenced Shewanella species. We have employed two novel approaches based on association of a phenotypic trait with the number of the trait-specific protein families (Pfam domains) and on the conservation of synteny (order in the genome) of the trait-related genes. Our first approach is top-down and involves experimental evaluation and quantification of the species’ cold tolerance followed by identification of the correlated Pfam domains and genes with a conserved synteny. The second, a bottom-up approach, predicts novel phenotypes of the species by calculating profiles of each Pfam domain among their genomes and following pair-wise correlation of the profiles and their network clustering. Using the first approach we find a link between cold and salt tolerance of the species and the presence in the genome of a Na+/H+ antiporter gene cluster. Other cold tolerance related genes includes peptidases, chemotaxis sensory transducer proteins, a cysteine exporter, and helicases. Using the bottom-up approach we found several novel phenotypes in the newly sequenced Shewanella species, including degradation of aromatic compounds by an aerobic hybrid pathway in S. woodyi, degradation of ethanolamine by S. benthica, and propanediol degradation by S. putrefaciens CN32 and S. sp. W3-18-1.

  10. Identification of the key genes connected with plasma cells of multiple myeloma using expression profiles

    Directory of Open Access Journals (Sweden)

    Zhang K

    2015-07-01

    Full Text Available Kefeng Zhang,1 Zhongyang Xu,1 Zhaoyun Sun2 1Spinal Surgery, Jining No 1 People’s Hospital, Jining, 2Department of Orthopedics, The People’s Hospital of Laiwu City, Laiwu, Shandong Province, People’s Republic of China Objective: To uncover the potential regulatory mechanisms of the relevant genes that contribute to the prognosis and prevention of multiple myeloma (MM. Methods: Microarray data (GSE13591 were downloaded, including five plasma cell samples from normal donors and 133 plasma cell samples from MM patients. Differentially expressed genes (DEGs were identified by Student’s t-test. Functional enrichment analysis was performed for DEGs using the Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. Transcription factors and tumor-associated genes were also explored by mapping genes in the TRANSFAC, the tumor suppressor gene (TSGene, and tumor-associated gene (TAG databases. A protein–protein interaction (PPI network and PPI subnetworks were constructed by Cytoscape software using the Search Tool for the Retrieval of Interacting Genes (STRING database. Results: A total of 63 DEGs (42 downregulated, 21 upregulated were identified. Functional enrichment analysis showed that HLA-DRB1 and VCAM1 might be involved in the positive regulation of immune system processes, and HLA-DRB1 might be related to the intestinal immune network for IgA production pathway. The genes CEBPD, JUND, and ATF3 were identified as transcription factors. The top ten nodal genes in the PPI network were revealed including HLA-DRB1, VCAM1, and TFRC. In addition, genes in the PPI subnetwork, such as HLA-DRB1 and VCAM1, were enriched in the cell adhesion molecules pathway, whereas CD4 and TFRC were both enriched in the hematopoietic cell pathway. Conclusion: Several crucial genes correlated to MM were identified, including CD4, HLA-DRB1, TFRC, and VCAM1, which might exert their roles in MM progression via immune-mediated pathways. There

  11. An adeno-associated virus vector-mediated multiple gene transfer for dopamine synthetic enzymes

    Institute of Scientific and Technical Information of China (English)

    樊东升; 沈扬

    2000-01-01

    Objective: To explore a multiple gene transfer approach with separate adeno-associated virus vectors. Methods: The genes of dopamine synthetic enzymes, tyrosine hydroxylasc (TH), GTP cyclohydrolase I (GCH, an enzyme critical for tetrahydrobioptcrin synthesis), and aromatic L-amino acid decarboxylase (AADC), were cotransduced into 293 cells with separate AAV vectors. Expressions of TH, GCH, and AADC were detected by Western blot analysis. L-dopa and dopamine levels in the ceils were assayed by HPLC. Results: TH, GCH, and AADC proteins were effectively cocxpressed in the transduced cells with three separate AAV vectors, AAV-TH, AAV-GCH, and AAV-AADC. Furthermore, the coexpression of these three proteins resulted in an effectively spontaneous dopainc production in the cotransduced cells. Conclusion: The triple transduction of TH, GCH, and AADC genes with separate AAV vectors is effective, which might be important to gene therapy for Parkinson's disease.

  12. Single and Multiple Gene Manipulations in Mouse Models of Human Cancer

    Science.gov (United States)

    Lehman, Heather L; Stairs, Douglas B

    2015-01-01

    Mouse models of human cancer play a critical role in understanding the molecular and cellular mechanisms of tumorigenesis. Advances continue to be made in modeling human disease in a mouse, though the relevance of a mouse model often relies on how closely it is able to mimic the histologic, molecular, and physiologic characteristics of the respective human cancer. A classic use of a genetically engineered mouse in studying cancer is through the overexpression or deletion of a gene. However, the manipulation of a single gene often falls short of mimicking all the characteristics of the carcinoma in humans; thus a multiple gene approach is needed. Here we review genetic mouse models of cancers and their abilities to recapitulate human carcinoma with single versus combinatorial approaches with genes commonly involved in cancer. PMID:26380553

  13. blue cheese Mutations Define a Novel, Conserved Gene Involved in Progressive Neural Degeneration

    National Research Council Canada - National Science Library

    Finley, Kim D; Edeen, Philip T; Cumming, Robert C; Mardahl-Dumesnil, Michelle D; Taylor, Barbara J; Rodriguez, Maria H; Hwang, Calvin E; Benedetti, Michael; McKeown, Michael

    2003-01-01

    .... The Drosophila blue cheese (bchs) gene defines such a novel degenerative pathway. bchs mutants have a reduced adult life span with the age-dependent formation of protein aggregates throughout the neuropil of the CNS...

  14. Pleiotropic effect of disrupting a conserved sequence involved in a long-range compensatory interaction in the Drosophila Adh gene.

    Science.gov (United States)

    Baines, John F; Parsch, John; Stephan, Wolfgang

    2004-01-01

    Recent advances in experimental analyses of the evolution of RNA secondary structures suggest a more complex scenario than that typically considered by Kimura's classical model of compensatory evolution. In this study, we examine one such case in more detail. Previous experimental analysis of long-range compensatory interactions between the two ends of Drosophila Adh mRNA failed to fit the classical model of compensatory evolution. To further investigate and verify long-range pairing in Drosophila Adh with respect to models of compensatory evolution and its potential functional role, we introduced site-directed mutations in the Drosophila melanogaster Adh gene. We explore two alternative hypotheses for why previous analysis of long-range compensatory interactions failed to fit the classical model. Specifically, we investigate whether the disruption of a conserved short-range pairing within Adh exon 2 has an effect on Adh expression or if there is a dual functional role of a conserved sequence in the 3'-UTR in both long-range pairing and the negative regulation of Adh expression. We find that a classical result was not observed due to the pleiotropic effect of changing a nucleotide involved in both long-range base pairing and the negative regulation of gene expression. PMID:15020421

  15. NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.

    Science.gov (United States)

    Ruyssinck, Joeri; Huynh-Thu, Vân Anh; Geurts, Pierre; Dhaene, Tom; Demeester, Piet; Saeys, Yvan

    2014-01-01

    One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms) and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made publicly available.

  16. NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.

    Directory of Open Access Journals (Sweden)

    Joeri Ruyssinck

    Full Text Available One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made

  17. Giant viruses, giant chimeras: The multiple evolutionary histories of Mimivirus genes

    Directory of Open Access Journals (Sweden)

    Brochier-Armanet Céline

    2008-01-01

    Full Text Available Abstract Background Although capable to evolve, viruses are generally considered non-living entities because they are acellular and devoid of metabolism. However, the recent publication of the genome sequence of the Mimivirus, a giant virus that parasitises amoebas, strengthened the idea that viruses should be included in the tree of life. In fact, the first phylogenetic analyses of a few Mimivirus genes that are also present in cellular lineages suggested that it could define an independent branch in the tree of life in addition to the three domains, Bacteria, Archaea and Eucarya. Results We tested this hypothesis by carrying out detailed phylogenetic analyses for all the conserved Mimivirus genes that have homologues in cellular organisms. We found no evidence supporting Mimivirus as a new branch in the tree of life. On the contrary, our phylogenetic trees strongly suggest that Mimivirus acquired most of these genes by horizontal gene transfer (HGT either from its amoebal hosts or from bacteria that parasitise the same hosts. The detection of HGT events involving different eukaryotic donors suggests that the spectrum of hosts of Mimivirus may be larger than currently known. Conclusion The large number of genes acquired by Mimivirus from eukaryotic and bacterial sources suggests that HGT has been an important process in the evolution of its genome and the adaptation to parasitism.

  18. Regulation of carotenoid and bacteriochlorophyll biosynthesis genes and identification of an evolutionarily conserved gene required for bacteriochlorophyll accumulation.

    Science.gov (United States)

    Armstrong, G A; Cook, D N; Ma, D; Alberti, M; Burke, D H; Hearst, J E

    1993-05-01

    The temporal expression of ten clustered genes required for carotenoid (crt) and bacteriochlorophyll (bch) biosynthesis was examined during the transition from aerobic respiration to anaerobiosis requisite for the development of the photosynthetic membrane in the bacterium Rhodobacter capsulatus. Accumulation of crtA, crtC, crtD, crtE, crtF, crtK, bchC and bchD mRNAs increased transiently and coordinately, up to 12-fold following removal of oxygen from the growth medium, paralleling increases in mRNAs encoding pigment-binding polypeptides of the photosynthetic apparatus. The crtB and crtI genes, in contrast, were expressed similarly in the presence or absence of oxygen. The regulation patterns of promoters for the crtA and crtI genes and the bchCXYZ operon were characterized using lacZ transcriptional fusion and qualitatively reflected the corresponding mRNA accumulation patterns. We also report that the bchI gene product, encoded by a DNA sequence previously considered to be a portion of crtA, shares 49% sequence identity with the nuclear-encoded Arabidopsis thaliana Cs chloroplast protein required for normal pigmentation in plants.

  19. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.

    Science.gov (United States)

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2016-01-15

    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species.

  20. Computational identification and characterization of conserved miRNAs and their target genes in beet (Beta vulgaris).

    Science.gov (United States)

    Li, J L; Cui, J; Cheng, D Y

    2015-08-07

    Highly conserved endogenous non-coding microRNAs (miRNAs) play important roles in plants and animals by silencing genes via destruction or blocking of translation of homologous mRNA. Sugar beet, Beta vulgaris, is one of the most important sugar crops in China, with properties that include wide adaptability and strong tolerance to salinity and impoverished soils. Seedlings of B. vulgaris can grow in soils containing up to 0.6% salt; it is important to understand the molecular mechanisms of salt tolerance to enrich genetic resources for breeding salt-tolerant sugar beets. Here, we report 13 mature miRNAs from 12 families, predicted using an in silico approach from 29,857 expressed sequence tags and 279,223 genome survey sequences. The psRNATarget server predicted 25 target genes for the 13 miRNAs. Most of the target genes appeared to encode transcription factors or were involved in metabolism, signal transduction, stress response, growth, and development. These results improve our understanding of the molecular mechanisms of miRNA in beet and may aid in the development of novel and precise techniques for understanding post-transcriptional gene-silencing mechanisms in response to stress tolerance.

  1. Global Analysis of Gene Expression Profiles in Brassica napus Developing Seeds Reveals a Conserved Lipid Metabolism Regulation with Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Ya Niu; Guo-Zhang Wu; Rui Ye; Wen-Hui Lin; Qiu-Ming Shi; Liang-Jiao Xue; Xiao-Dong Xu; Yao Li; Yu-Guang; Hong-Wei Xue

    2009-01-01

    In order to study Brassica napus fatty acid (FA) metabolism and relevant regulatory networks, a systematic identification of fatty acid (FA) biosynthesis-related genes was conducted. Following gene identification, gene expression profiles during B. napus seed development and FA metabolism were performed by cDNA chip hybridization (>8000 EST clones from seed). The results showed that FA biosynthesis and regulation, and carbon flux, were conserved between B. napus and Arabidopsis. However, a more critical role of starch metabolism was detected for B. napus seed FA metabolism and storage-component accumulation when compared with Arabidopsis. In addition, a crucial stage for the transition of seed-to-sink tissue was 17-21 d after flowering (DAF), whereas FA biosynthesis-related genes were highly expressed pri-marily at 21 DAF. Hormone (auxin and jasmonate) signaling is found to be important for FA metabolism. This study helps to reveal the global regulatory network of FA metabolism in developing B. napus seeds.

  2. Phase I metabolic genes and risk of lung cancer: multiple polymorphisms and mRNA expression.

    Directory of Open Access Journals (Sweden)

    Melissa Rotunno

    Full Text Available Polymorphisms in genes coding for enzymes that activate tobacco lung carcinogens may generate inter-individual differences in lung cancer risk. Previous studies had limited sample sizes, poor exposure characterization, and a few single nucleotide polymorphisms (SNPs tested in candidate genes. We analyzed 25 SNPs (some previously untested in 2101 primary lung cancer cases and 2120 population controls from the Environment And Genetics in Lung cancer Etiology (EAGLE study from six phase I metabolic genes, including cytochrome P450s, microsomal epoxide hydrolase, and myeloperoxidase. We evaluated the main genotype effects and genotype-smoking interactions in lung cancer risk overall and in the major histology subtypes. We tested the combined effect of multiple SNPs on lung cancer risk and on gene expression. Findings were prioritized based on significance thresholds and consistency across different analyses, and accounted for multiple testing and prior knowledge. Two haplotypes in EPHX1 were significantly associated with lung cancer risk in the overall population. In addition, CYP1B1 and CYP2A6 polymorphisms were inversely associated with adenocarcinoma and squamous cell carcinoma risk, respectively. Moreover, the association between CYP1A1 rs2606345 genotype and lung cancer was significantly modified by intensity of cigarette smoking, suggesting an underlying dose-response mechanism. Finally, increasing number of variants at CYP1A1/A2 genes revealed significant protection in never smokers and risk in ever smokers. Results were supported by differential gene expression in non-tumor lung tissue samples with down-regulation of CYP1A1 in never smokers and up-regulation in smokers from CYP1A1/A2 SNPs. The significant haplotype associations emphasize that the effect of multiple SNPs may be important despite null single SNP-associations, and warrants consideration in genome-wide association studies (GWAS. Our findings emphasize the necessity of post

  3. A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Superparamagnetic nanoparticles are promising candidates for gene delivery into mammalian somatic cells and may be useful for reproductive cloning using the somatic cell nuclear transfer technique. However, limited investigations of their potential applications in animal genetics and breeding, particularly multiple-gene delivery by magnetofection, have been performed. Here, we developed a stable, targetable and convenient system for delivering multiple genes into the nuclei of porcine somatic cells using magnetic Fe3O4 nanoparticles as gene carriers. After surface modification by polyethylenimine, the spherical magnetic Fe3O4 nanoparticles showed strong binding affinity for DNA plasmids expressing the genes encoding a green (DNAGFP or red (DNADsRed fluorescent protein. At weight ratios of DNAGFP or DNADsRed to magnetic nanoparticles lower than or equal to 10∶1 or 5∶1, respectively, the DNA molecules were completely bound by the magnetic nanoparticles. Atomic force microscopy analyses confirmed binding of the spherical magnetic nanoparticles to stretched DNA strands up to several hundred nanometers in length. As a result, stable and efficient co-expression of GFP and DsRed in porcine kidney PK-15 cells was achieved by magnetofection. The results presented here demonstrate the potential application of magnetic nanoparticles as an attractive delivery system for animal genetics and breeding studies.

  4. Primary multiple extragastrointestinal stromal tumors of the omentum with different mutations of c-kit gene

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The author reports a very rare case of sporadic primary multiple extragastrointestinal stromal tumors (EGISTs) of the omentum associated with different mutations of the exon 11 of the c-kit gene in a 75-year-old man with gastric cancer. During an operation for the cancer, two solid tumors (10 mm and 8 ram) were found in the omentum. Both tumors consisted of cellular spindle cells. Mitotic figures were two and three per 50 high power fields. The tumor cells were positive for KIT, CD34 and vimentin, but negative for desmin, S100 protein, α-smooth muscle actin and p53 protein. Ki67 labeling was 2% and 3%. The larger EGIST showed a deletion of codons 552-558 of exon 11 of the c-kit gene, while the smaller EGIST had a point mutation at codon 559 (GTT→GAT) in exon 11 of the c-kit gene. Exons 9, 13, and 17 of the c-kit gene, and exons 12 and 18 of the platelet derived growth factor receptor α genes showed no mutations. The case shows that sporadic multiple EGISTs can occur in the omentum.

  5. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    Science.gov (United States)

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively.

  6. Mutation analysis and prenatal diagnosis of EXT1 gene mutations in Chinese patients with multiple osteochondromas

    Institute of Scientific and Technical Information of China (English)

    ZHU Hai-yan; HU Ya-li; YANG Ying; WU Xing; ZHU Rui-fang; ZHU Xiang-yu; DUAN Hong-lei; ZHANG Ying; ZHOU Jin-yong

    2011-01-01

    Background Multiple osteochondromas (MO), an inherited autosomal dominant disorder, is characterized by the presence of multiple exostoses on the long bones. MO is caused by mutations in the EXT1 or EXT2 genes which encode glycosyltransferases implicated in heparin sulfate biosynthesis.Methods In this study, efforts were made to identify the underlying disease-causing mutations in patients from two MO families in China.Results Two novel EXT1 gene mutations were identified and no mutation was found in EXT2 gene. The mutation c.497T>A in exon 1 of the EXT1 gene was cosegregated with the disease phenotype in family 1 and formed a stop codon at amino acid site 166. The fetus of the proband was diagnosed negative. In family 2, the mutation c. 1430-1431delCC in exon 6 of the EXT1 gene would cause frameshift and introduce a premature stop codon after the reading frame being open for 42 amino acids. The fetus of this family inherited this mutation from the father.Conclusions Mutation analysis of two MO families in this study demonstrates its further application in MO genetic counseling and prenatal diagnosis.

  7. Sequence conservation of the 12D3 gene in Mexican isolates of Babesia bovis.

    Science.gov (United States)

    Perez, J; Javier Perez, J; Vargas, P; Antonio Alvarez, J; Rojas, C; Figueroa, J V

    2010-04-01

    The 12D3 antigen present in Babesia bovis has been evaluated as a recombinant vaccine candidate and the 12d3 coding sequence has been reported for an Australian and an USA (Texas) isolate of B. bovis. However, no approach has been conducted to perform analysis of 12d3 sequence conservation on a larger number of B. bovis isolates. This could provide important information to determine whether a recombinant vaccine containing this antigen could be widely used. This study reports the cloning and sequencing analysis of the 12d3 coding region in 20 different B. bovis isolates collected from various geographical regions in the tropics and subtropics of Mexico. Comparative analysis of the consensus nucleotide sequences obtained for each isolate revealed a high degree of conservation (94-99% sequence identity) among the 12d3 alleles present in the Mexican isolates when compared with the 12d3 ORF sequences from the Texan (T2Bo) B. bovis isolate. Similarly, BLASTX sequence homology search showed a high percent identity (93-99%) of the deduced amino acid 12D3 sequence as compared with the T2Bo isolate sequence. The high level of sequence conservation in 12d3 among the 20 B. bovis isolates collected from geographically distant locations in Mexico suggests that there exists a minimal bovine-host immunological pressure which could be translated into antigenic diversity or variation, and most probably this is reflected in the non-inmunodominant characteristic of the 12D3 antigen as it has been previously described in the literature. 12D3 antigen can be considered as a viable candidate for inclusion in a recombinant vaccine for cattle babesiosis caused by B. bovis in Mexico.

  8. The identification of informative genes from multiple datasets with increasing complexity

    Directory of Open Access Journals (Sweden)

    't Hoen Peter AC

    2010-01-01

    Full Text Available Abstract Background In microarray data analysis, factors such as data quality, biological variation, and the increasingly multi-layered nature of more complex biological systems complicates the modelling of regulatory networks that can represent and capture the interactions among genes. We believe that the use of multiple datasets derived from related biological systems leads to more robust models. Therefore, we developed a novel framework for modelling regulatory networks that involves training and evaluation on independent datasets. Our approach includes the following steps: (1 ordering the datasets based on their level of noise and informativeness; (2 selection of a Bayesian classifier with an appropriate level of complexity by evaluation of predictive performance on independent data sets; (3 comparing the different gene selections and the influence of increasing the model complexity; (4 functional analysis of the informative genes. Results In this paper, we identify the most appropriate model complexity using cross-validation and independent test set validation for predicting gene expression in three published datasets related to myogenesis and muscle differentiation. Furthermore, we demonstrate that models trained on simpler datasets can be used to identify interactions among genes and select the most informative. We also show that these models can explain the myogenesis-related genes (genes of interest significantly better than others (P et al. in identifying informative genes from multiple datasets with increasing complexity whilst additionally modelling the interaction between genes. Conclusions We show that Bayesian networks derived from simpler controlled systems have better performance than those trained on datasets from more complex biological systems. Further, we present that highly predictive and consistent genes, from the pool of differentially expressed genes, across independent datasets are more likely to be fundamentally

  9. Isolation and characterization of multiple F-box genes linked to the S9- and S10-RNase in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Okada, Kazuma; Moriya, Shigeki; Haji, Takashi; Abe, Kazuyuki

    2013-06-01

    Using 11 consensus primer pairs designed from S-linked F-box genes of apple and Japanese pear, 10 new F-box genes (MdFBX21 to 30) were isolated from the apple cultivar 'Spartan' (S(9)S(10)). MdFBX21 to 23 and MdFBX24 to 30 were completely linked to the S(9) -RNase and S(10-)RNase, respectively, and showed pollen-specific expression and S-haplotype-specific polymorphisms. Therefore, these 10 F-box genes are good candidates for the pollen determinant of self-incompatibility in apple. Phylogenetic analysis and comparison of deduced amino acid sequences of MdFBX21 to 30 with those of 25 S-linked F-box genes previously isolated from apple showed that a deduced amino acid identity of greater than 88.0 % can be used as the tentative criterion to classify F-box genes into one type. Using this criterion, 31 of 35 F-box genes of apple were classified into 11 types (SFBB1-11). All types included F-box genes derived from S(3-) and S(9-)haplotypes, and seven types included F-box genes derived from S(3-), S(9-), and S(10-)haplotypes. Moreover, comparison of nucleotide sequences of S-RNases and multiple F-box genes among S(3-), S(9-), and S(10-)haplotypes suggested that F-box genes within each type showed high nucleotide identity regardless of the identity of the S-RNase. The large number of F-box genes as candidates for the pollen determinant and the high degree of conservation within each type are consistent with the collaborative non-self-recognition model reported for Petunia. These findings support that the collaborative non-self-recognition system also exists in apple.

  10. SCGPred: A Score-based Method for Gene Structure Prediction by Combining Multiple Sources of Evidence

    Institute of Scientific and Technical Information of China (English)

    Xiao Li; Qingan Ren; Yang Weng; Haoyang Cai; Yunmin Zhu; Yizheng Zhang

    2008-01-01

    Predicting protein-coding genes still remains a significant challenge. Although a variety of computational programs that use commonly machine learning methods have emerged, the accuracy of predictions remains a low level when implementing in large genomic sequences. Moreover, computational gene finding in newly sequenced genomes is especially a difficult task due to the absence of a training set of abundant validated genes. Here we present a new gene-finding program, SCGPred,to improve the accuracy of prediction by combining multiple sources of evidence.SCGPred can perform both supervised method in previously well-studied genomes and unsupervised one in novel genomes. By testing with datasets composed of large DNA sequences from human and a novel genome of Ustilago maydi, SCGPred gains a significant improvement in comparison to the popular ab initio gene predictors. We also demonstrate that SCGPred can significantly improve prediction in novel genomes by combining several foreign gene finders with similarity alignments, which is superior to other unsupervised methods. Therefore, SCGPred can serve as an alternative gene-finding tool for newly sequenced eukaryotic genomes. The program is freely available at http://bio.scu.edu.cn/SCGPred/.

  11. Evaluation of low density array technology for quantitative parallel measurement of multiple genes in human tissue

    Directory of Open Access Journals (Sweden)

    Harmer Daniel W

    2006-02-01

    Full Text Available Abstract Background Low density arrays (LDAs have recently been introduced as a novel approach to gene expression profiling. Based on real time quantitative RT-PCR (QRT-PCR, these arrays enable a more focused and sensitive approach to the study of gene expression than gene chips, while offering higher throughput than more established approaches to QRT-PCR. We have now evaluated LDAs as a means of determining the expression of multiple genes simultaneously in human tissues and cells. Results Comparisons between LDAs reveal low variability, with correlation coefficients close to 1. By performing 2-fold and 10-fold serial dilutions of cDNA samples in the LDAs we determined a clear linear relationship between the gene expression data points over 5 orders of magnitude. We also showed that it is possible to use LDAs to accurately and quantitatively detect 2-fold changes in target copy number as well as measuring genes that are expressed with low and high copy numbers in the range of 1 × 102 – 1 × 106 copies. Furthermore, the data generated by the LDA from a cell based pharmacological study were comparable to data generated by conventional QRT-PCR. Conclusion LDAs represent a valuable new approach for sensitive and quantitative gene expression profiling.

  12. The impact of energy conservation in transport models on the $\\pi^-/\\pi^+$ multiplicity ratio in heavy-ion collisions and the symmetry energy

    CERN Document Server

    Cozma, M D

    2014-01-01

    The charged pion multiplicity ratio in intermediate energy central heavy-ion collisions has been proposed as a suitable observable to constrain the high density dependence of the isovector part of the equation of state, with contradicting results. Using an upgraded version of the T\\"ubingen QMD transport model, which allows the conservation of energy at a local or global level by accounting for the potential energy of hadrons in two-body collisions and leading thus to particle production threshold shifts, we demonstrate that compatible constraints for the symmetry energy stiffness can be extracted from pion multiplicity and elliptic flow observables. Nevertheless, pion multiplicities are proven to be highly sensitive to the yet unknown isovector part of the in-medium $\\Delta$(1232) potential which hinders presently the extraction of meaningful information on the high density dependence of the symmetry energy. A solution to this problem together with the inclusion of contributions presently neglected, such as ...

  13. Alleles of the homologous recombination gene, RAD59, identify multiple responses to disrupted DNA replication in Saccharomyces cerevisiae.

    Science.gov (United States)

    Liddell, Lauren C; Manthey, Glenn M; Owens, Shannon N; Fu, Becky X H; Bailis, Adam M

    2013-10-14

    In Saccharomyces cerevisiae, Rad59 is required for multiple homologous recombination mechanisms and viability in DNA replication-defective rad27 mutant cells. Recently, four rad59 missense alleles were found to have distinct effects on homologous recombination that are consistent with separation-of-function mutations. The rad59-K166A allele alters an amino acid in a conserved α-helical domain, and, like the rad59 null allele diminishes association of Rad52 with double-strand breaks. The rad59-K174A and rad59-F180A alleles alter amino acids in the same domain and have genetically similar effects on homologous recombination. The rad59-Y92A allele alters a conserved amino acid in a separate domain, has genetically distinct effects on homologous recombination, and does not diminish association of Rad52 with double-strand breaks. In this study, rad59 mutant strains were crossed with a rad27 null mutant to examine the effects of the rad59 alleles on the link between viability, growth and the stimulation of homologous recombination in replication-defective cells. Like the rad59 null allele, rad59-K166A was synthetically lethal in combination with rad27. The rad59-K174A and rad59-F180A alleles were not synthetically lethal in combination with rad27, had effects on growth that coincided with decreased ectopic gene conversion, but did not affect mutation, unequal sister-chromatid recombination, or loss of heterozygosity. The rad59-Y92A allele was not synthetically lethal when combined with rad27, stimulated ectopic gene conversion and heteroallelic recombination independently from rad27, and was mutually epistatic with srs2. Unlike rad27, the stimulatory effect of rad59-Y92A on homologous recombination was not accompanied by effects on growth rate, cell cycle distribution, mutation, unequal sister-chromatid recombination, or loss of heterozygosity. The synthetic lethality conferred by rad59 null and rad59-K166A alleles correlates with their inhibitory effect on association

  14. Multiple genes elucidate the evolution of venomous snail-hunting Conus species.

    Science.gov (United States)

    Nam, Hannah H; Corneli, Patrice Showers; Watkins, Maren; Olivera, Baldomero; Bandyopadhyay, Pradip

    2009-12-01

    The species-rich Cone snails (Conus sp.) are predatory, marine gastropods known for small venom peptides that are valuable for pharmacological research applications. Phylogenetic analyses with mitochondrial rRNA sequences have facilitated peptide discovery. However, these relatively conserved genes leave unresolved the closer relationships among many species. We sequenced 26 internal transcribed spacer 2 (ITS2) sequences from genomic ribosomal DNA to elucidate the evolutionary relationships among molluscivorous species and to piscivorous and vermivorous species. We show that ITS2 sequences are well conserved within species but are sufficiently variable among species to resolve recent divergences. Using Bayesian, maximum likelihood and log-determinant methods, we use the ITS sequences to resolve portions of the tree that could not be resolved using the more conventional mt rRNA sequences. When the ITS2 sequences are added to existing COI and to the more conserved rRNA sequences and then properly modeled, support throughout the tree is increased. This enables us to show finer relationships among the molluscivorous species that reveal three well-supported clades (Conus, Cylinder, and Darioconus) and renders the ITS2 sequences an essential component in advancing the discovery and pharmacological characterization of novel peptides from the venoms of these molluscs.

  15. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    Science.gov (United States)

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  16. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    Directory of Open Access Journals (Sweden)

    Param Priya Singh

    2015-07-01

    Full Text Available Whole genome duplications (WGD have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  17. A survey of well conserved families of C2H2 zinc-finger genes in Daphnia

    Science.gov (United States)

    2010-01-01

    Background A recent comparative genomic analysis tentatively identified roughly 40 orthologous groups of C2H2 Zinc-finger proteins that are well conserved in "bilaterians" (i.e. worms, flies, and humans). Here we extend that analysis to include a second arthropod genome from the crustacean, Daphnia pulex. Results Most of the 40 orthologous groups of C2H2 zinc-finger proteins are represented by just one or two proteins within each of the previously surveyed species. Likewise, Daphnia were found to possess a similar number of orthologs for all of these small orthology groups. In contrast, the number of Sp/KLF homologs tends to be greater and to vary between species. Like the corresponding mammalian Sp/KLF proteins, most of the Drosophila and Daphnia homologs can be placed into one of three sub-groups: Class I-III. Daphnia were found to have three Class I proteins that roughly correspond to their Drosophila counterparts, dSP1, btd, CG5669, and three Class II proteins that roughly correspond to Luna, CG12029, CG9895. However, Daphnia have four additional KLF-Class II proteins that are most similar to the vertebrate KLF1/2/4 proteins, a subset not found in Drosophila. Two of these four proteins are encoded by genes linked in tandem. Daphnia also have three KLF-Class III members, one more than Drosophila. One of these is a likely Bteb2 homolog, while the other two correspond to Cabot and KLF13, a vertebrate homolog of Cabot. Conclusion Consistent with their likely roles as fundamental determinants of bilaterian form and function, most of the 40 groups of C2H2 zinc-finger proteins are conserved in kind and number in Daphnia. However, the KLF family includes several additional genes that are most similar to genes present in vertebrates but missing in Drosophila. PMID:20433734

  18. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression

    Directory of Open Access Journals (Sweden)

    Amsterdam Adam

    2006-06-01

    identification of approximately 25% of the essential genes required for craniofacial development. The identification of zebrafish models for two human disease syndromes indicates that homologs to the other genes are likely to also be relevant for human craniofacial development. The initial characterization of wdr68 suggests an important role in craniofacial development for the highly conserved Wdr68-Dyrk1 protein complexes.

  19. Identification of genes for complex diseases using integrated analysis of multiple types of genomic data.

    Directory of Open Access Journals (Sweden)

    Hongbao Cao

    Full Text Available Various types of genomic data (e.g., SNPs and mRNA transcripts have been employed to identify risk genes for complex diseases. However, the analysis of these data has largely been performed in isolation. Combining these multiple data for integrative analysis can take advantage of complementary information and thus can have higher power to identify genes (and/or their functions that would otherwise be impossible with individual data analysis. Due to the different nature, structure, and format of diverse sets of genomic data, multiple genomic data integration is challenging. Here we address the problem by developing a sparse representation based clustering (SRC method for integrative data analysis. As an example, we applied the SRC method to the integrative analysis of 376821 SNPs in 200 subjects (100 cases and 100 controls and expression data for 22283 genes in 80 subjects (40 cases and 40 controls to identify significant genes for osteoporosis (OP. Comparing our results with previous studies, we identified some genes known related to OP risk (e.g., 'THSD4', 'CRHR1', 'HSD11B1', 'THSD7A', 'BMPR1B' 'ADCY10', 'PRL', 'CA8','ESRRA', 'CALM1', 'CALM1', 'SPARC', and 'LRP1'. Moreover, we uncovered novel osteoporosis susceptible genes ('DICER1', 'PTMA', etc. that were not found previously but play functionally important roles in osteoporosis etiology from existing studies. In addition, the SRC method identified genes can lead to higher accuracy for the diagnosis/classification of osteoporosis subjects when compared with the traditional T-test and Fisher-exact test, which further validates the proposed SRC approach for integrative analysis.

  20. Identification of genes for complex diseases using integrated analysis of multiple types of genomic data.

    Science.gov (United States)

    Cao, Hongbao; Lei, Shufeng; Deng, Hong-Wen; Wang, Yu-Ping

    2012-01-01

    Various types of genomic data (e.g., SNPs and mRNA transcripts) have been employed to identify risk genes for complex diseases. However, the analysis of these data has largely been performed in isolation. Combining these multiple data for integrative analysis can take advantage of complementary information and thus can have higher power to identify genes (and/or their functions) that would otherwise be impossible with individual data analysis. Due to the different nature, structure, and format of diverse sets of genomic data, multiple genomic data integration is challenging. Here we address the problem by developing a sparse representation based clustering (SRC) method for integrative data analysis. As an example, we applied the SRC method to the integrative analysis of 376821 SNPs in 200 subjects (100 cases and 100 controls) and expression data for 22283 genes in 80 subjects (40 cases and 40 controls) to identify significant genes for osteoporosis (OP). Comparing our results with previous studies, we identified some genes known related to OP risk (e.g., 'THSD4', 'CRHR1', 'HSD11B1', 'THSD7A', 'BMPR1B' 'ADCY10', 'PRL', 'CA8','ESRRA', 'CALM1', 'CALM1', 'SPARC', and 'LRP1'). Moreover, we uncovered novel osteoporosis susceptible genes ('DICER1', 'PTMA', etc.) that were not found previously but play functionally important roles in osteoporosis etiology from existing studies. In addition, the SRC method identified genes can lead to higher accuracy for the diagnosis/classification of osteoporosis subjects when compared with the traditional T-test and Fisher-exact test, which further validates the proposed SRC approach for integrative analysis.

  1. Expression Profiling of Abiotic Stress-Inducible Genes in response to Multiple Stresses in Rice (Oryza sativa L. Varieties with Contrasting Level of Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Supratim Basu

    2014-01-01

    Full Text Available The present study considered transcriptional profiles and protein expression analyses from shoot and/or root tissues under three abiotic stress conditions, namely, salinity, dehydration, and cold, as well as following exogenous abscisic acid treatment, at different time points of stress exposure in three indica rice varieties, IR-29 (salt sensitive, Pokkali, and Nonabokra (both salt tolerant. The candidate genes chosen for expression studies were HKT-1, SOS-3, NHX-1, SAPK5, SAPK7, NAC-1, Rab16A, OSBZ8, DREBP2, CRT/DREBP, WRKY24, and WRKY71, along with the candidate proteins OSBZ8, SAMDC, and GST. Gene expression profile revealed considerable differences between the salt-sensitive and salt-tolerant rice varieties, as the expression in the latter was higher even at the constitutive level, whereas it was inducible only by corresponding stress signals in IR-29. Whether in roots or shoots, the transcriptional responses to different stressors peaked following 24 h of stress/ABA exposure, and the transcript levels enhanced gradually with the period of exposure. The generality of stress responses at the transcriptional level was therefore time dependent. Heat map data also showed differential transcript abundance in the three varieties, correlating the observation with transcript profiling. In silico analysis of the upstream regions of all the genes represented the existence of conserved sequence motifs in single or multiple copies that are indispensable to abiotic stress response. Overall, the transcriptome and proteome analysis undertaken in the present study indicated that genes/proteins conferring tolerance, belonging to different functional classes, were overrepresented, thus providing novel insight into the functional basis of multiple stress tolerance in indica rice varieties. The present work will pave the way in future to select gene(s for overexpression, so as to generate broad spectrum resistance to multiple stresses simultaneously.

  2. Multiple Gene-Environment Interactions on the Angiogenesis Gene-Pathway Impact Rectal Cancer Risk and Survival

    Directory of Open Access Journals (Sweden)

    Noha Sharafeldin

    2017-09-01

    Full Text Available Characterization of gene-environment interactions (GEIs in cancer is limited. We aimed at identifying GEIs in rectal cancer focusing on a relevant biologic process involving the angiogenesis pathway and relevant environmental exposures: cigarette smoking, alcohol consumption, and animal protein intake. We analyzed data from 747 rectal cancer cases and 956 controls from the Diet, Activity and Lifestyle as a Risk Factor for Rectal Cancer study. We applied a 3-step analysis approach: first, we searched for interactions among single nucleotide polymorphisms on the pathway genes; second, we searched for interactions among the genes, both steps using Logic regression; third, we examined the GEIs significant at the 5% level using logistic regression for cancer risk and Cox proportional hazards models for survival. Permutation-based test was used for multiple testing adjustment. We identified 8 significant GEIs associated with risk among 6 genes adjusting for multiple testing: TNF (OR = 1.85, 95% CI: 1.10, 3.11, TLR4 (OR = 2.34, 95% CI: 1.38, 3.98, and EGR2 (OR = 2.23, 95% CI: 1.04, 4.78 with smoking; IGF1R (OR = 1.69, 95% CI: 1.04, 2.72, TLR4 (OR = 2.10, 95% CI: 1.22, 3.60 and EGR2 (OR = 2.12, 95% CI: 1.01, 4.46 with alcohol; and PDGFB (OR = 1.75, 95% CI: 1.04, 2.92 and MMP1 (OR = 2.44, 95% CI: 1.24, 4.81 with protein. Five GEIs were associated with survival at the 5% significance level but not after multiple testing adjustment: CXCR1 (HR = 2.06, 95% CI: 1.13, 3.75 with smoking; and KDR (HR = 4.36, 95% CI: 1.62, 11.73, TLR2 (HR = 9.06, 95% CI: 1.14, 72.11, EGR2 (HR = 2.45, 95% CI: 1.42, 4.22, and EGFR (HR = 6.33, 95% CI: 1.95, 20.54 with protein. GEIs between angiogenesis genes and smoking, alcohol, and animal protein impact rectal cancer risk. Our results support the importance of considering the biologic hypothesis to characterize GEIs associated with cancer outcomes.

  3. Functional conservation of the fruitless male sex-determination gene across 250 Myr of insect evolution

    NARCIS (Netherlands)

    Gailey, Donald A; Billeter, Jean-Christophe; Liu, Jim H; Bauzon, Frederick; Allendorfer, Jane B; Goodwin, Stephen F

    2006-01-01

    Male sexual behavior in the fruit fly Drosophila melanogaster is regulated by fruitless (fru), a sex-determination gene specifying the synthesis of BTB-Zn finger proteins that likely function as male-specific transcriptional regulators. Expression of fru in the nervous system specifies male sexual b

  4. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6.

    NARCIS (Netherlands)

    M.H.M. Koken (Marcel); P. Reynolds (Paul); I. Jaspers-Dekker (Iris); L. Prakash; S. Prakash; D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1991-01-01

    textabstractThe RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme (E2) that is required for DNA repair, damage-induced mutagenesis, and sporulation. We have cloned the two human RAD6 homologs, designated HHR6A and HHR6B. The two 152-amino acid human proteins share 95% sequ

  5. Sexually dimorphic gene expressions in eels: useful markers for early sex assessment in a conservation context

    Science.gov (United States)

    Geffroy, Benjamin; Guilbaud, Florian; Amilhat, Elsa; Beaulaton, Laurent; Vignon, Matthias; Huchet, Emmanuel; Rives, Jacques; Bobe, Julien; Fostier, Alexis; Guiguen, Yann; Bardonnet, Agnès

    2016-09-01

    Environmental sex determination (ESD) has been detected in a range of vertebrate reptile and fish species. Eels are characterized by an ESD that occurs relatively late, since sex cannot be histologically determined before individuals reach 28 cm. Because several eel species are at risk of extinction, assessing sex at the earliest stage is a crucial management issue. Based on preliminary results of RNA sequencing, we targeted genes susceptible to be differentially expressed between ovaries and testis at different stages of development. Using qPCR, we detected testis-specific expressions of dmrt1, amh, gsdf and pre-miR202 and ovary-specific expressions were obtained for zar1, zp3 and foxn5. We showed that gene expressions in the gonad of intersexual eels were quite similar to those of males, supporting the idea that intersexual eels represent a transitional stage towards testicular differentiation. To assess whether these genes would be effective early molecular markers, we sampled juvenile eels in two locations with highly skewed sex ratios. The combined expression of six of these genes allowed the discrimination of groups according to their potential future sex and thus this appears to be a useful tool to estimate sex ratios of undifferentiated juvenile eels.

  6. Functional conservation of the fruitless male sex-determination gene across 250 Myr of insect evolution

    NARCIS (Netherlands)

    Gailey, Donald A; Billeter, Jean-Christophe; Liu, Jim H; Bauzon, Frederick; Allendorfer, Jane B; Goodwin, Stephen F

    2006-01-01

    Male sexual behavior in the fruit fly Drosophila melanogaster is regulated by fruitless (fru), a sex-determination gene specifying the synthesis of BTB-Zn finger proteins that likely function as male-specific transcriptional regulators. Expression of fru in the nervous system specifies male sexual b

  7. Functional conservation of the fruitless male sex-determination gene across 250 Myr of insect evolution

    NARCIS (Netherlands)

    Gailey, Donald A; Billeter, Jean-Christophe; Liu, Jim H; Bauzon, Frederick; Allendorfer, Jane B; Goodwin, Stephen F

    Male sexual behavior in the fruit fly Drosophila melanogaster is regulated by fruitless (fru), a sex-determination gene specifying the synthesis of BTB-Zn finger proteins that likely function as male-specific transcriptional regulators. Expression of fru in the nervous system specifies male sexual

  8. IN SILICO EXPRESSION ANALYSIS OF HUMAN NOVEL GENE UBAP1 IN MULTIPLE CANCERS

    Institute of Scientific and Technical Information of China (English)

    钱骏; 唐珂; 曹利; 李伟芳; 王蓉; 李桂源

    2002-01-01

    Objective: To identify the differential expression profile of human novel gene UBAP1, a putative nasopharyngeal neoplasms (NPC) relate gene, in multiple cancers. Methods: We first present an EST approach for electronic Northern in silico to analyse expression patterns of UBAP1 in tumor and normal tissues. Full length cDNA of UBAP1 gene was taken as a "probe" sequence, and a blastn search was performed against human EST Database. The Blastn report can be used to determine the fold differences between the pedigree ESTs in different libraries. Especially, the ESTs corresponding to UBAP1 present in fifteen tumor-derived libraries were compared against their normal counterpart to produce an electronic differential expression profile. Second, the distinct down-regulation of UBAP1 in meningioma, glioma, and colorectal tumor was confirmed by differentially RT-PCR analysis. Results: Database surveys indicated that UBAP1 gene was not only ubiquitously expressed in many normal tissues with various levels but also differentially expressed in different tumor tissues, especially down-regulated in multiple neoplastic tissues such as brain, breast, skin, colon, testis and uterus tumor tissues. Furthermore, differential RT-PCR analysis demonstrated that expression of UBAP1 was down-regulated or absent in 7 of 12 (58%) meningioma samples, 6 of 9 (66%) glioma and 7 of 11 (63%) colorectal tumor tissues respectively. Conclusion: we described a data mining procedure in silico that proved to be useful for the identification of differential expression patterns of UBAP1. These findings could be valuable for the investigation of the mechanism the differential expression of UBAP1 gene and its significance in the progression of multiple cancers.

  9. Inferring Gene Networks for Strains of Dehalococcoides Highlights Conserved Relationships between Genes Encoding Core Catabolic and Cell-Wall Structural Proteins.

    Science.gov (United States)

    Mansfeldt, Cresten B; Heavner, Gretchen W; Rowe, Annette R; Hayete, Boris; Church, Bruce W; Richardson, Ruth E

    2016-01-01

    The interpretation of high-throughput gene expression data for non-model microorganisms remains obscured because of the high fraction of hypothetical genes and the limited number of methods for the robust inference of gene networks. Therefore, to elucidate gene-gene and gene-condition linkages in the bioremediation-important genus Dehalococcoides, we applied a Bayesian inference strategy called Reverse Engineering/Forward Simulation (REFS™) on transcriptomic data collected from two organohalide-respiring communities containing different Dehalococcoides mccartyi strains: the Cornell University mixed community D2 and the commercially available KB-1® bioaugmentation culture. In total, 49 and 24 microarray datasets were included in the REFS™ analysis to generate an ensemble of 1,000 networks for the Dehalococcoides population in the Cornell D2 and KB-1® culture, respectively. Considering only linkages that appeared in the consensus network for each culture (exceeding the determined frequency cutoff of ≥ 60%), the resulting Cornell D2 and KB-1® consensus networks maintained 1,105 nodes (genes or conditions) with 974 edges and 1,714 nodes with 1,455 edges, respectively. These consensus networks captured multiple strong and biologically informative relationships. One of the main highlighted relationships shared between these two cultures was a direct edge between the transcript encoding for the major reductive dehalogenase (tceA (D2) or vcrA (KB-1®)) and the transcript for the putative S-layer cell wall protein (DET1407 (D2) or KB1_1396 (KB-1®)). Additionally, transcripts for two key oxidoreductases (a [Ni Fe] hydrogenase, Hup, and a protein with similarity to a formate dehydrogenase, "Fdh") were strongly linked, generalizing a strong relationship noted previously for Dehalococcoides mccartyi strain 195 to multiple strains of Dehalococcoides. Notably, the pangenome array utilized when monitoring the KB-1® culture was capable of resolving signals from multiple

  10. Inferring Gene Networks for Strains of Dehalococcoides Highlights Conserved Relationships between Genes Encoding Core Catabolic and Cell-Wall Structural Proteins

    Science.gov (United States)

    Mansfeldt, Cresten B.; Heavner, Gretchen W.; Rowe, Annette R.; Hayete, Boris; Church, Bruce W.; Richardson, Ruth E.

    2016-01-01

    The interpretation of high-throughput gene expression data for non-model microorganisms remains obscured because of the high fraction of hypothetical genes and the limited number of methods for the robust inference of gene networks. Therefore, to elucidate gene-gene and gene-condition linkages in the bioremediation-important genus Dehalococcoides, we applied a Bayesian inference strategy called Reverse Engineering/Forward Simulation (REFS™) on transcriptomic data collected from two organohalide-respiring communities containing different Dehalococcoides mccartyi strains: the Cornell University mixed community D2 and the commercially available KB-1® bioaugmentation culture. In total, 49 and 24 microarray datasets were included in the REFS™ analysis to generate an ensemble of 1,000 networks for the Dehalococcoides population in the Cornell D2 and KB-1® culture, respectively. Considering only linkages that appeared in the consensus network for each culture (exceeding the determined frequency cutoff of ≥ 60%), the resulting Cornell D2 and KB-1® consensus networks maintained 1,105 nodes (genes or conditions) with 974 edges and 1,714 nodes with 1,455 edges, respectively. These consensus networks captured multiple strong and biologically informative relationships. One of the main highlighted relationships shared between these two cultures was a direct edge between the transcript encoding for the major reductive dehalogenase (tceA (D2) or vcrA (KB-1®)) and the transcript for the putative S-layer cell wall protein (DET1407 (D2) or KB1_1396 (KB-1®)). Additionally, transcripts for two key oxidoreductases (a [Ni Fe] hydrogenase, Hup, and a protein with similarity to a formate dehydrogenase, “Fdh”) were strongly linked, generalizing a strong relationship noted previously for Dehalococcoides mccartyi strain 195 to multiple strains of Dehalococcoides. Notably, the pangenome array utilized when monitoring the KB-1® culture was capable of resolving signals from

  11. Comparisons of Copy Number, Genomic Structure, and Conserved Motifs for α-Amylase Genes from Barley, Rice, and Wheat

    Directory of Open Access Journals (Sweden)

    Qisen Zhang

    2017-10-01

    Full Text Available Barley is an important crop for the production of malt and beer. However, crops such as rice and wheat are rarely used for malting. α-amylase is the key enzyme that degrades starch during malting. In this study, we compared the genomic properties, gene copies, and conserved promoter motifs of α-amylase genes in barley, rice, and wheat. In all three crops, α-amylase consists of four subfamilies designated amy1, amy2, amy3, and amy4. In wheat and barley, members of amy1 and amy2 genes are localized on chromosomes 6 and 7, respectively. In rice, members of amy1 genes are found on chromosomes 1 and 2, and amy2 genes on chromosome 6. The barley genome has six amy1 members and three amy2 members. The wheat B genome contains four amy1 members and three amy2 members, while the rice genome has three amy1 members and one amy2 member. The B genome has mostly amy1 and amy2 members among the three wheat genomes. Amy1 promoters from all three crop genomes contain a GA-responsive complex consisting of a GA-responsive element (CAATAAA, pyrimidine box (CCTTTT and TATCCAT/C box. This study has shown that amy1 and amy2 from both wheat and barley have similar genomic properties, including exon/intron structures and GA-responsive elements on promoters, but these differ in rice. Like barley, wheat should have sufficient amy activity to degrade starch completely during malting. Other factors, such as high protein with haze issues and the lack of husk causing Lauting difficulty, may limit the use of wheat for brewing.

  12. SATB1 tethers multiple gene loci to reprogram expression profiledriving breast cancer metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hye-Jung; Kohwi, Yoshinori; Kohwi-Shigematsu, Terumi

    2006-07-13

    Global changes in gene expression occur during tumor progression, as indicated by expression profiling of metastatic tumors. How this occurs is poorly understood. SATB1 functions as a genome organizer by folding chromatin via tethering multiple genomic loci and recruiting chromatin remodeling enzymes to regulate chromatin structure and expression of a large number of genes. Here we show that SATB1 is expressed at high levels in aggressive breast cancer cells, and is undetectable in non-malignant breast epithelial cells. Importantly, RNAi-mediated removal of SATB1 from highly-aggressive MDA-MB-231 cells altered the expression levels of over 1200 genes, restored breast-like acinar polarity in three-dimensional cultures, and prevented the metastastic phenotype in vivo. Conversely, overexpression of SATB1 in the less-aggressive breast cancer cell line Hs578T altered the gene expression profile and increased metastasis dramatically in vivo. Thus, SATB1 is a global regulator of gene expression in breast cancer cells, directly regulating crucial metastasis-associated genes, including ERRB2 (HER2/NEU), TGF-{beta}1, matrix metalloproteinase 3, and metastasin. The identification of SATB1 as a protein that re-programs chromatin organization and transcription profiles to promote breast cancer metastasis suggests a new model for metastasis and may provide means of therapeutic intervention.

  13. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation

    Science.gov (United States)

    Liu, Hongxia; Kolter, Roberto; Losick, Richard; Guo, Jian-hua

    2014-01-01

    Summary Bacillus subtilis and other Bacilli have long been used as biological control agents against plant bacterial diseases but the mechanisms by which the bacteria confer protection are not well understood. Our goal in this study was to isolate strains of B. subtilis that exhibit high levels of biocontrol efficacy from natural environments and to investigate the mechanisms by which these strains confer plant protection. We screened a total of sixty isolates collected from various locations across China and obtained six strains that exhibited above 50% biocontrol efficacy on tomato plants against the plant pathogen Ralstonia solanacearum under greenhouse conditions. These wild strains were able to form robust biofilms both in defined medium and on tomato plant roots and exhibited strong antagonistic activities against various plant pathogens in plate assays. We show that plant protection by those strains depended on widely conserved genes required for biofilm formation, including regulatory genes and genes for matrix production. We provide evidence suggesting that matrix production is critical for bacterial colonization on plant root surfaces. Finally, we have established a model system for studies of B. subtilis-tomato plant interactions in protection against a plant pathogen. PMID:22934631

  14. A non-inheritable maternal Cas9-based multiple-gene editing system in mice.

    Science.gov (United States)

    Sakurai, Takayuki; Kamiyoshi, Akiko; Kawate, Hisaka; Mori, Chie; Watanabe, Satoshi; Tanaka, Megumu; Uetake, Ryuichi; Sato, Masahiro; Shindo, Takayuki

    2016-01-28

    The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9 overexpression (Cas9 mice). The maCas9 protein in zygotes derived from mating or in vitro fertilization of Tg/+ oocytes and +/+ sperm could successfully edit the target genome. The efficiency of such maCas9-based genome editing was comparable to that of zygote microinjection-based genome editing widely used at present. Furthermore, we demonstrated a novel approach to create "Cas9 transgene-free" gene-modified mice using non-Tg (+/+) zygotes carrying maCas9. The maCas9 protein in mouse zygotes edited nine target loci simultaneously after injection with nine different gRNAs alone. Cas9 mouse-derived zygotes have the potential to facilitate the creation of genetically modified animals carrying the Cas9 transgene, enabling repeatable genome engineering and the production of Cas9 transgene-free mice.

  15. Rice Mitochondrial Genes Are Transcribed by Multiple Promoters That Are Highly Diverged

    Institute of Scientific and Technical Information of China (English)

    Qun-Yu Zhang; Yao-Guang Liu

    2006-01-01

    Plant mitochondrial genes are often transcribed into complex sets of mRNA. To characterize the transcription initiation and promoter structure, the transcript termini of four mitochondrial genes, atp1, atp6, cob,rps7, in rice (Oryza sativa L.), were determined by using a modified circularized RNA reverse transcriptionpolymerase chain reaction method. The results revealed that three genes (atp1, atp6, rps7) were transcribed from multiple initiation sites, indicating the presence of multiple promoters. Two transcription termination sites were detected in three genes (atp6, cob, rps7), respectively. Analysis on the promoter architecture showed that the YRTA (Y=T or C, R=A or G) motifs that are widely present in the mitochondrial promoters of other monocot and dicot plant species were detected only in two of the 12 analyzed promoters.Our data suggest that the promoter sequences in the rice mitochondrial genome are highly diverged in comparison to those in other plants, and the YRTA motif is not an essential element for the promoter activity.

  16. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients.

    Science.gov (United States)

    Broyl, Annemiek; Hose, Dirk; Lokhorst, Henk; de Knegt, Yvonne; Peeters, Justine; Jauch, Anna; Bertsch, Uta; Buijs, Arjan; Stevens-Kroef, Marian; Beverloo, H Berna; Vellenga, Edo; Zweegman, Sonja; Kersten, Marie-Josée; van der Holt, Bronno; el Jarari, Laila; Mulligan, George; Goldschmidt, Hartmut; van Duin, Mark; Sonneveld, Pieter

    2010-10-07

    To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138(+) plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6 corresponded to clusters described in the University of Arkansas for Medical Science (UAMS) classification, CD-1 (n = 13, 4.1%), CD-2 (n = 34, 1.6%), MF (n = 32, 1.0%), MS (n = 33, 1.3%), proliferation-associated genes (n = 15, 4.7%), and hyperdiploid (n = 77, 24.1%). Moreover, the UAMS low percentage of bone disease cluster was identified as a subcluster of the MF cluster (n = 15, 4.7%). One subgroup (n = 39, 12.2%) showed a myeloid signature. Three novel subgroups were defined, including a subgroup of 37 patients (11.6%) characterized by high expression of genes involved in the nuclear factor kappa light-chain-enhancer of activated B cells pathway, which include TNFAIP3 and CD40. Another subgroup of 22 patients (6.9%) was characterized by distinct overexpression of cancer testis antigens without overexpression of proliferation genes. The third novel cluster of 9 patients (2.8%) showed up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 as well as SOCS3. To conclude, in addition to 7 clusters described in the UAMS classification, we identified 3 novel subsets of multiple myeloma that may represent unique diagnostic entities.

  17. Comparison of multiple genes of spring viremia of carp viruses isolated in the United States.

    Science.gov (United States)

    Warg, Janet V; Dikkeboom, Audrey L; Goodwin, Andrew E; Snekvik, Kevin; Whitney, John

    2007-08-01

    Five spring viremia of carp viruses (SVCV), Rhabdovirus carpio, were isolated in the United States (US) between 2002 and 2004. Single tube reverse transcription-polymerase chain reaction (RT-PCR) was used to generate overlapping cDNA fragments from the US isolates of SVCV. Multiple pairs of specific primers were designed to amplify a portion of the phosphoprotein gene, the matrix gene, and the glycoprotein gene of SVCV genogroup Id (corresponding to nucleotides 2174-4942 of GenBank accession NC_002803). Sequences were proofread and aligned to generate a consensus sequence for each isolate. Phylogenetic analysis of the 2705 nucleotide consensus sequence revealed that all five US isolates belong to SVCV genogroup Ia, Asian origin isolates, and a PCR primer binding site unique to SVCV genogroup Ia was identified.

  18. Identification of Suitable Reference Genes for Peripheral Blood Mononuclear Cell Subset Studies in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Oturai, D B; Søndergaard, H B; Börnsen, L;

    2016-01-01

    Quantitative real-time PCR (qPCR) involves the need of a proper standard for normalizing the gene expression data. Different studies have shown the validity of reference genes to vary greatly depending on tissue, cell subsets and experimental context. This study aimed at the identification...... of suitable reference genes for qPCR studies using different peripheral blood cell subsets (whole blood (WB) cells, peripheral blood mononuclear cells (PBMCs) and PBMC subsets (CD4(+) T cells, CD8(+) T cells, NK cells, monocytes, B cells and dendritic cells) from healthy controls (HC), patients with relapsing...... stable combination for analyses of cell subsets between HC and RRMS patients, while the combination of UBC and YWHAZ was superior for analysis of cell subsets between HC, RRMS and RRMS-IFN-β groups. GAPDH was generally unsuitable for blood cell subset studies in multiple sclerosis. In conclusion, we...

  19. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    Science.gov (United States)

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  20. Complex regulation and multiple developmental functions of misfire, the Drosophila melanogaster ferlin gene

    Directory of Open Access Journals (Sweden)

    Wakimoto Barbara T

    2007-03-01

    Full Text Available Abstract Background Ferlins are membrane proteins with multiple C2 domains and proposed functions in Ca2+ mediated membrane-membrane interactions in animals. Caenorhabditis elegans has two ferlin genes, one of which is required for sperm function. Mammals have several ferlin genes and mutations in the human dysferlin (DYSF and otoferlin (OTOF genes result in muscular dystrophy and hearing loss, respectively. Drosophila melanogaster has a single ferlin gene called misfire (mfr. A previous study showed that a mfr mutation caused male sterility because of defects in fertilization. Here we analyze the expression and structure of the mfr gene and the consequences of multiple mutations to better understand the developmental function of ferlins. Results We show that mfr is expressed in the testis and ovaries of adult flies, has tissue-specific promoters, and expresses alternatively spliced transcripts that are predicted to encode distinct protein isoforms. Studies of 11 male sterile mutations indicate that a predicted Mfr testis isoform with five C2 domains and a transmembrane (TM domain is required for sperm plasma membrane breakdown (PMBD and completion of sperm activation during fertilization. We demonstrate that Mfr is not required for localization of Sneaky, another membrane protein necessary for PMBD. The mfr mutations vary in their effects in females, with a subset disrupting egg patterning and causing a maternal effect delay in early embryonic development. Locations of these mutations indicate that a short Mfr protein isoform carries out ferlin activities during oogenesis. Conclusion The mfr gene exhibits complex transcriptional and post-transcriptional regulation and functions in three developmental processes: sperm activation, egg patterning, and early embryogenesis. These functions are in part due to the production of protein isoforms that vary in the number of C2 domains. These findings help establish D. melanogaster as model system for

  1. Conserved syntenic clusters of protein coding genes are missing in birds

    OpenAIRE

    Lovell, Peter V.; Wirthlin, Morgan; Wilhelm, Larry; Minx, Patrick; Lazar, Nathan H.; Carbone, Lucia; Warren, Wesley C.; Mello, Claudio V.

    2014-01-01

    Background Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. Results Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in th...

  2. Functional conservation and diversification of APETALA1/FRUITFULL genes in Brachypodium distachyon.

    Science.gov (United States)

    Li, Qi; Wang, Ye; Wang, Fuxiang; Guo, Yuyu; Duan, Xueqing; Sun, Jinhao; An, Hailong

    2016-08-01

    The duplicated grass APETALA1/FRUITFULL (AP1/FUL) genes have distinct but overlapping patterns of expression, suggesting their discrete roles in transition to flowering, specification of spikelet meristem identity and specification of floral organ identity. In this study, we analyzed the expression patterns and functions of four AP1/FUL paralogs (BdVRN1, BdFUL2, BdFUL3 and BdFUL4) in Brachypodium distachyon, a model plant for the temperate cereals and related grasses. Among the four genes tested, only BdVRN1 could remember the prolonged cold treatment. The recently duplicated BdVRN1 and BdFUL2 genes were expressed in a highly consistent manner and ectopic expressions of them caused similar phenotypes such as extremely early flowering and severe morphological alterations of floral organs, indicating their redundant roles in floral transition, inflorescence development and floral organ identity. In comparison, ectopic expressions of BdFUL3 and BdFUL4 only caused a moderate early flowering phenotype, suggesting their divergent function. In yeast two-hybrid assay, both BdVRN1 and BdFUL2 physically interact with SEP proteins but only BdFUL2 is able to form a homodimer. BdVRN1 also interacts weakly with BdFUL2. Our results indicate that, since the separation of AP1/FUL genes in grasses, the process of sub- or neo-functionalization has occurred and paralogs function redundantly and/or separately in flowering competence and inflorescence development.

  3. Pathways targeted by antidiabetes drugs are enriched for multiple genes associated with type 2 diabetes risk.

    Science.gov (United States)

    Segrè, Ayellet V; Wei, Nancy; Altshuler, David; Florez, Jose C

    2015-04-01

    Genome-wide association studies (GWAS) have uncovered >65 common variants associated with type 2 diabetes (T2D); however, their relevance for drug development is not yet clear. Of note, the first two T2D-associated loci (PPARG and KCNJ11/ABCC8) encode known targets of antidiabetes medications. We therefore tested whether other genes/pathways targeted by antidiabetes drugs are associated with T2D. We compiled a list of 102 genes in pathways targeted by marketed antidiabetic medications and applied Gene Set Enrichment Analysis (MAGENTA [Meta-Analysis Gene-set Enrichment of variaNT Associations]) to this gene set, using available GWAS meta-analyses for T2D and seven quantitative glycemic traits. We detected a strong enrichment of drug target genes associated with T2D (P = 2 × 10(-5); 14 potential new associations), primarily driven by insulin and thiazolidinedione (TZD) targets, which was replicated in an independent meta-analysis (Metabochip). The glycemic traits yielded no enrichment. The T2D enrichment signal was largely due to multiple genes of modest effects (P = 4 × 10(-4), after removing known loci), highlighting new associations for follow-up (ACSL1, NFKB1, SLC2A2, incretin targets). Furthermore, we found that TZD targets were enriched for LDL cholesterol associations, illustrating the utility of this approach in identifying potential side effects. These results highlight the potential biomedical relevance of genes revealed by GWAS and may provide new avenues for tailored therapy and T2D treatment design. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. TALEN Gene Knockouts Reveal No Requirement for the Conserved Human Shelterin Protein Rap1 in Telomere Protection and Length Regulation

    Directory of Open Access Journals (Sweden)

    Shaheen Kabir

    2014-11-01

    Full Text Available The conserved protein Rap1 functions at telomeres in fungi, protozoa, and vertebrates. Like yeast Rap1, human Rap1 has been implicated in telomere length regulation and repression of nonhomologous end-joining (NHEJ at telomeres. However, mouse telomeres lacking Rap1 do not succumb to NHEJ. To determine the functions of human Rap1, we generated several transcription activator-like effector nuclease (TALEN-mediated human cell lines lacking Rap1. Loss of Rap1 did not affect the other components of shelterin, the modification of telomeric histones, the subnuclear position of telomeres, or the 3′ telomeric overhang. Telomeres lacking Rap1 did not show a DNA damage response, NHEJ, or consistent changes in their length, indicating that Rap1 does not have an important function in protection or length regulation of human telomeres. As human Rap1, like its mouse and unicellular orthologs, affects gene expression, we propose that the conservation of Rap1 reflects its role in transcriptional regulation rather than a function at telomeres.

  5. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima

    DEFF Research Database (Denmark)

    Chipman, Ariel D.; Ferrier, David E.K.; Brena, Carlo;

    2014-01-01

    many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air......Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We...... present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates...

  6. Gene tree parsimony of multilocus snake venom protein families reveals species tree conflict as a result of multiple parallel gene loss.

    Science.gov (United States)

    Casewell, Nicholas R; Wagstaff, Simon C; Harrison, Robert A; Wüster, Wolfgang

    2011-03-01

    The proliferation of gene data from multiple loci of large multigene families has been greatly facilitated by considerable recent advances in sequence generation. The evolution of such gene families, which often undergo complex histories and different rates of change, combined with increases in sequence data, pose complex problems for traditional phylogenetic analyses, and in particular, those that aim to successfully recover species relationships from gene trees. Here, we implement gene tree parsimony analyses on multicopy gene family data sets of snake venom proteins for two separate groups of taxa, incorporating Bayesian posterior distributions as a rigorous strategy to account for the uncertainty present in gene trees. Gene tree parsimony largely failed to infer species trees congruent with each other or with species phylogenies derived from mitochondrial and single-copy nuclear sequences. Analysis of four toxin gene families from a large expressed sequence tag data set from the viper genus Echis failed to produce a consistent topology, and reanalysis of a previously published gene tree parsimony data set, from the family Elapidae, suggested that species tree topologies were predominantly unsupported. We suggest that gene tree parsimony failure in the family Elapidae is likely the result of unequal and/or incomplete sampling of paralogous genes and demonstrate that multiple parallel gene losses are likely responsible for the significant species tree conflict observed in the genus Echis. These results highlight the potential for gene tree parsimony analyses to be undermined by rapidly evolving multilocus gene families under strong natural selection.

  7. Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene.

    Directory of Open Access Journals (Sweden)

    Andrea M Santangelo

    2007-10-01

    Full Text Available The proopiomelanocortin gene (POMC is expressed in the pituitary gland and the ventral hypothalamus of all jawed vertebrates, producing several bioactive peptides that function as peripheral hormones or central neuropeptides, respectively. We have recently determined that mouse and human POMC expression in the hypothalamus is conferred by the action of two 5' distal and unrelated enhancers, nPE1 and nPE2. To investigate the evolutionary origin of the neuronal enhancer nPE2, we searched available vertebrate genome databases and determined that nPE2 is a highly conserved element in placentals, marsupials, and monotremes, whereas it is absent in nonmammalian vertebrates. Following an in silico paleogenomic strategy based on genome-wide searches for paralog sequences, we discovered that opossum and wallaby nPE2 sequences are highly similar to members of the superfamily of CORE-short interspersed nucleotide element (SINE retroposons, in particular to MAR1 retroposons that are widely present in marsupial genomes. Thus, the neuronal enhancer nPE2 originated from the exaptation of a CORE-SINE retroposon in the lineage leading to mammals and remained under purifying selection in all mammalian orders for the last 170 million years. Expression studies performed in transgenic mice showed that two nonadjacent nPE2 subregions are essential to drive reporter gene expression into POMC hypothalamic neurons, providing the first functional example of an exapted enhancer derived from an ancient CORE-SINE retroposon. In addition, we found that this CORE-SINE family of retroposons is likely to still be active in American and Australian marsupial genomes and that several highly conserved exonic, intronic and intergenic sequences in the human genome originated from the exaptation of CORE-SINE retroposons. Together, our results provide clear evidence of the functional novelties that transposed elements contributed to their host genomes throughout evolution.

  8. Evolutionary variations in the expression of dorso-ventral patterning genes and the conservation of pioneer neurons in Tribolium castaneum.

    Science.gov (United States)

    Biffar, Lucia; Stollewerk, Angelika

    2015-04-01

    Insects are ideally suited for gaining insight into the evolutionary developmental mechanisms that have led to adaptive changes of the nervous system since the specific structure of the nervous system can be directly linked to the neural stem cell (neuroblast) lineages, which in turn can be traced back to the last common ancestor of insects. The recent comparative analysis of the Drosophila melanogaster and Tribolium castaneum neuroblast maps revealed substantial differences in the expression profiles of neuroblasts. Here we show that despite the overall conservation of the dorso-ventral expression domains of muscle segment homeobox, intermediate neuroblasts defective and ventral nervous system defective, the expression of these genes relative to the neuroblasts in the respective domains has changed considerably during insect evolution. Furthermore, functional studies show evolutionary changes in the requirement of ventral nervous system defective in the formation of neuroblast 1-1 and the correct differentiation of its presumptive progeny, the pioneer neurons aCC and pCC. The inclusion of the expression data of the dorso-ventral genes into the recently established T. castaneum neuroblast map further increases the differences in the neuroblast expression profiles between D. melanogaster and T. castaneum. Despite these molecular variations, the Even-skipped positive pioneer neurons show an invariant arrangement, except for an additional Even-skipped positive cluster that we discovered in T. castaneum. Given the importance of these pioneer neurons in establishing the intersegmental nerves and the longitudinal tracts, which are part of the conserved axonal scaffold of arthropods, we discuss internal buffering mechanisms that might ensure that neuroblast lineages invariantly generate pioneer neurons over a wide range of molecular variations.

  9. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores.

    Science.gov (United States)

    Chikkagoudar, Satish; Wang, Kai; Li, Mingyao

    2011-05-26

    Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.

  10. Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing.

    Science.gov (United States)

    Chen, Yurong; Zhou, Xue-Rong; Zhang, Zhi-Jun; Dribnenki, Paul; Singh, Surinder; Green, Allan

    2015-04-01

    Simultaneous gene silencing of both FAD2 genes in high linoleic acid flax leads to high level of oleic acid, which is stable across multiple generations. High oleic oil is one of the preferred traits in oil crop engineering due to its stability and multiple applications as an industrial feedstock. Flax possesses two isoforms of FAD2 enzymes that desaturate monounsaturated oleic acid to polyunsaturated linoleic acid. These two enzymes are encoded by two FAD2 genes. By simultaneous gene silencing both FAD2 genes in high linoleic acid flax, Linola, high level of oleic acid up to 80% was achieved in 69 silencing lines. The high oleic trait was stable across multiple generations with oleic acid reaching up to 77% in homozygote T3 progeny. The RNAi-mediated gene-silencing approach generated high oleic linseed oil, as well as a high oleic platform that can be exploited for further fatty acid engineering.

  11. The "eyes absent" (eya) gene in the eye-bearing hydrozoan jellyfish Cladonema radiatum: conservation of the retinal determination network.

    Science.gov (United States)

    Graziussi, Daria Federica; Suga, Hiroshi; Schmid, Volker; Gehring, Walter Jakob

    2012-06-01

    Eyes absent (Eya) is a member of the Retinal Determination Gene Network (RDGN), a set of genes responsible for eye specification in Drosophila. Eya is a dual function protein, working as a transcription factor in the nucleus and as a tyrosine phosphatase in the cytoplasm. It had been shown that Pax and Six family genes, main components of the RDGN, are present in the hydrozoan Cladonema radiatum and that they are expressed in the eye. However, nothing had been known about the Eya family in hydrozoan jellyfish. Here we report the presence of an Eya homologue (CrEya) in Cladonema. Real-time PCR analysis and in situ hybridization showed that CrEya is expressed in the eye. Furthermore, the comprehensive survey of eukaryote genomes revealed that the acquisition of the N-terminal transactivation domain, including the EYA Domain 2 and its adjacent sequence shared by all eumetazoans, happened early in evolution, before the separation of Cnidaria and Bilateria. Our results uncover the evolution of the two domains and show a conservation of the expression pattern of the Eya gene between Cnidaria and Bilateria, which, together with previous data, supports the hypothesis of the monophyletic origin of metazoans eyes. We additionally show that CrEya is also expressed in the oocytes, where two other members of the RDGN, CrPaxB, and Six4/5-Cr, are known to be expressed. These data suggest that several members of the RDGN have begun to be localized also into the different context of egg development early in the course of metazoan evolution.

  12. Conserving marine biodiversity: insights from life-history trait candidate genes in Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Therkildsen, Nina Overgaard; Meldrup, Dorte;

    2014-01-01

    , phenotypic studies have suggested adaptation through divergence of life-history traits among natural populations, but the distribution of adaptive genetic variation in these species is still relatively poorly known. In this study, we extract information about the geographical distribution of genetic...... variation for 33 single nucleotide polymorphisms (SNPs) associated with life-history trait candidate genes, and compare this to variation in 70 putatively neutral SNPs in Atlantic cod (Gadus morhua). We analyse samples covering the major population complexes in the eastern Atlantic and find strong evidence...

  13. Phylogenetic Relationships of Pseudorasbora, Pseudopungtungia, and Pungtungia (Teleostei; Cypriniformes; Gobioninae Inferred from Multiple Nuclear Gene Sequences

    Directory of Open Access Journals (Sweden)

    Keun-Yong Kim

    2013-01-01

    Full Text Available Gobionine species belonging to the genera Pseudorasbora, Pseudopungtungia, and Pungtungia (Teleostei; Cypriniformes; Cyprinidae have been heavily studied because of problems on taxonomy, threats of extinction, invasion, and human health. Nucleotide sequences of three nuclear genes, that is, recombination activating protein gene 1 (rag1, recombination activating gene 2 (rag2, and early growth response 1 gene (egr1, from Pseudorasbora, Pseudopungtungia, and Pungtungia species residing in China, Japan, and Korea, were analyzed to elucidate their intergeneric and interspecific phylogenetic relationships. In the phylogenetic tree inferred from their multiple gene sequences, Pseudorasbora, Pseudopungtungia and Pungtungia species ramified into three phylogenetically distinct clades; the “tenuicorpa” clade composed of Pseudopungtungia tenuicorpa, the “parva” clade composed of all Pseudorasbora species/subspecies, and the “herzi” clade composed of Pseudopungtungia nigra, and Pungtungia herzi. The genus Pseudorasbora was recovered as monophyletic, while the genus Pseudopungtungia was recovered as polyphyletic. Our phylogenetic result implies the unstable taxonomic status of the genus Pseudopungtungia.

  14. Four genes predict high risk of progression from smoldering to symptomatic multiple myeloma (SWOG S0120).

    Science.gov (United States)

    Khan, Rashid; Dhodapkar, Madhav; Rosenthal, Adam; Heuck, Christoph; Papanikolaou, Xenofon; Qu, Pingping; van Rhee, Frits; Zangari, Maurizio; Jethava, Yogesh; Epstein, Joshua; Yaccoby, Shmuel; Hoering, Antje; Crowley, John; Petty, Nathan; Bailey, Clyde; Morgan, Gareth; Barlogie, Bart

    2015-09-01

    Multiple myeloma is preceded by an asymptomatic phase, comprising monoclonal gammopathy of uncertain significance and smoldering myeloma. Compared to the former, smoldering myeloma has a higher and non-uniform rate of progression to clinical myeloma, reflecting a subset of patients with higher risk. We evaluated the gene expression profile of smoldering myeloma plasma cells among 105 patients enrolled in a prospective observational trial at our institution, with a view to identifying a high-risk signature. Baseline clinical, bone marrow, cytogenetic and radiologic data were evaluated for their potential to predict time to therapy for symptomatic myeloma. A gene signature derived from four genes, at an optimal binary cut-point of 9.28, identified 14 patients (13%) with a 2-year therapy risk of 85.7%. Conversely, a low four-gene score (probe sets showed concordance with indices of chromosome instability. These data demonstrate high discriminatory power of a gene-based assay and suggest a role for dysregulation of mitotic checkpoints in the context of genomic instability as a hallmark of high-risk smoldering myeloma.

  15. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease.

    Science.gov (United States)

    Berchtold, Nicole C; Coleman, Paul D; Cribbs, David H; Rogers, Joseph; Gillen, Daniel L; Cotman, Carl W

    2013-06-01

    Synapses are essential for transmitting, processing, and storing information, all of which decline in aging and Alzheimer's disease (AD). Because synapse loss only partially accounts for the cognitive declines seen in aging and AD, we hypothesized that existing synapses might undergo molecular changes that reduce their functional capacity. Microarrays were used to evaluate expression profiles of 340 synaptic genes in aging (20-99 years) and AD across 4 brain regions from 81 cases. The analysis revealed an unexpectedly large number of significant expression changes in synapse-related genes in aging, with many undergoing progressive downregulation across aging and AD. Functional classification of the genes showing altered expression revealed that multiple aspects of synaptic function are affected, notably synaptic vesicle trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory systems. The widespread declines in synaptic gene expression in normal aging suggests that function of existing synapses might be impaired, and that a common set of synaptic genes are vulnerable to change in aging and AD.

  16. Multiple nodulation genes are up-regulated during establishment of reniform nematode feeding sites in soybean.

    Science.gov (United States)

    Redding, Nathan Wayne; Agudelo, Paula; Wells, Christina E

    2017-09-15

    The semi-endoparastic reniform nematode (Rotylenchulus reniformis) infects over 300 plant species. Females penetrate host roots and induce formation of complex, multinucleate feeding sites called syncytia. While anatomical changes associated with reniform nematode infection are well documented, little is known about their molecular basis. We grew soybean (Glycine max) in a split-root growth system, inoculated half of each root system with R. reniformis, and quantified gene expression in infected and control root tissue at four dates after inoculation. Over 6,000 genes were differentially expressed between inoculated and control roots on at least one date (FDR = 0.01, |log2FC| ≥ 1), and 507 gene sets were significantly enriched or depleted in inoculated roots (FDR = 0.05). Numerous genes up-regulated during syncytium formation had previously been associated with rhizobia nodulation. These included the nodule-initiating transcription factors CYCLOPS, NSP1, NSP2, and NIN, as well as multiple nodulins associated with the plant-derived peribacteroid membrane. Nodulation-related NIP aquaporins and SWEET sugar transporters were induced, as were plant CLAVATA3/ESR-related (CLE) signaling proteins and cell cycle regulators such as CCS52A and E2F. Nodulins and nodule-associated genes may have ancestral functions in normal root development and mycorrhization that have been co-opted by both parasitic nematodes and rhizobial bacteria to promote feeding site and nodule formation.

  17. Multiple secretoglobin 1A1 genes are differentially expressed in horses

    Directory of Open Access Journals (Sweden)

    Côté Olivier

    2012-12-01

    Full Text Available Abstract Background Secretoglobin 1A1 (SCGB 1A1, also called Clara cell secretory protein, is the most abundantly secreted protein of the airway. The SCGB1A1 gene has been characterized in mammals as a single copy in the genome. However, analysis of the equine genome suggested that horses might have multiple SCGB1A1 gene copies. Non-ciliated lung epithelial cells produce SCGB 1A1 during inhalation of noxious substances to counter airway inflammation. Airway fluid and lung tissue of horses with recurrent airway obstruction (RAO, a chronic inflammatory lung disease affecting mature horses similar to environmentally induced asthma of humans, have reduced total SCGB 1A1 concentration. Herein, we investigated whether horses have distinct expressed SCGB1A1 genes; whether the transcripts are differentially expressed in tissues and in inflammatory lung disease; and whether there is cell specific protein expression in tissues. Results We identified three SCGB1A1 gene copies on equine chromosome 12, contained within a 512-kilobase region. Bioinformatic analysis showed that SCGB1A1 genes differ from each other by 8 to 10 nucleotides, and that they code for different proteins. Transcripts were detected for SCGB1A1 and SCGB1A1A, but not for SCGB1A1P. The SCGB1A1P gene had most inter-individual variability and contained a non-sense mutation in many animals, suggesting that SCGB1A1P has evolved into a pseudogene. Analysis of SCGB1A1 and SCGB1A1A sequences by endpoint-limiting dilution PCR identified a consistent difference affecting 3 bp within exon 2, which served as a gene-specific “signature”. Assessment of gene- and organ-specific expression by semiquantitative RT-PCR of 33 tissues showed strong expression of SCGB1A1 and SCGB1A1A in lung, uterus, Fallopian tube and mammary gland, which correlated with detection of SCGB 1A1 protein by immunohistochemistry. Significantly altered expression of the ratio of SCGB1A1A to SCGB1A1 was detected in RAO

  18. Gene Coexpression and Evolutionary Conservation Analysis of the Human Preimplantation Embryos

    Directory of Open Access Journals (Sweden)

    Tiancheng Liu

    2015-01-01

    Full Text Available Evolutionary developmental biology (EVO-DEVO tries to decode evolutionary constraints on the stages of embryonic development. Two models—the “funnel-like” model and the “hourglass” model—have been proposed by investigators to illustrate the fluctuation of selective pressure on these stages. However, selective indices of stages corresponding to mammalian preimplantation embryonic development (PED were undetected in previous studies. Based on single cell RNA sequencing of stages during human PED, we used coexpression method to identify gene modules activated in each of these stages. Through measuring the evolutionary indices of gene modules belonging to each stage, we observed change pattern of selective constraints on PED for the first time. The selective pressure decreases from the zygote stage to the 4-cell stage and increases at the 8-cell stage and then decreases again from 8-cell stage to the late blastocyst stages. Previous EVO-DEVO studies concerning the whole embryo development neglected the fluctuation of selective pressure in these earlier stages, and the fluctuation was potentially correlated with events of earlier stages, such as zygote genome activation (ZGA. Such oscillation in an earlier stage would further affect models of the evolutionary constraints on whole embryo development. Therefore, these earlier stages should be measured intensively in future EVO-DEVO studies.

  19. The conserved mitochondrial gene distribution in relatives of Turritopsis nutricula, an immortal jellyfish.

    Science.gov (United States)

    Devarapalli, Pratap; Kumavath, Ranjith N; Barh, Debmalya; Azevedo, Vasco

    2014-01-01

    Turritopsis nutricula (T. nutricula) is the one of the known reported organisms that can revert its life cycle to the polyp stage even after becoming sexually mature, defining itself as the only immortal organism in the animal kingdom. Therefore, the animal is having prime importance in basic biological, aging, and biomedical researches. However, till date, the genome of this organism has not been sequenced and even there is no molecular phylogenetic study to reveal its close relatives. Here, using phylogenetic analysis based on available 16s rRNA gene and protein sequences of Cytochrome oxidase subunit-I (COI or COX1) of T. nutricula, we have predicted the closest relatives of the organism. While we found Nemopsis bachei could be closest organism based on COX1 gene sequence; T. dohrnii may be designated as the closest taxon to T. nutricula based on rRNA. Moreover, we have figured out four species that showed similar root distance based on COX1 protein sequence.

  20. Overexpression of multiple detoxification genes in deltamethrin resistant Laodelphax striatellus (Hemiptera: Delphacidae in China.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available BACKGROUND: The small brown planthopper (SBPH, Laodelphax striatellus (Fallén, is one of the major rice pests in Asia and has developed resistance to multiple classes of insecticides. Understanding resistance mechanisms is essential to the management of this pest. Biochemical and molecular assays were performed in this study to systematically characterize deltamethrin resistance mechanisms with laboratory-selected resistant and susceptible strains of SBPH. METHODOLOGY/PRINCIPAL FINDINGS: Deltamethrin resistant strains of SBPH (JH-del were derived from a field population by continuously selections (up to 30 generations in the laboratory, while a susceptible strain (JHS was obtained from the same population by removing insecticide pressure for 30 generations. The role of detoxification enzymes in the resistance was investigated using synergism and enzyme activity assays with strains of different resistant levels. Furthermore, 71 cytochrome P450, 93 esterases and 12 glutathione-S-transferases cDNAs were cloned based on transcriptome data of a field collected population. Semi-quantitative RT-PCR screening analysis of 176 identified detoxification genes demonstrated that multiple P450 and esterase genes were overexpressed (>2-fold in JH-del strains (G4 and G30 when compared to that in JHS, and the results of quantitative PCR coincided with the semi-quantitative RT-PCR results. Target mutation at IIS3-IIS6 regions encoded by the voltage-gated sodium channel gene was ruled out for conferring the observed resistance. CONCLUSION/SIGNIFICANCE: As the first attempt to discover genes potentially involved in SBPH pyrethroid resistance, this study putatively identified several candidate genes of detoxification enzymes that were significantly overexpressed in the resistant strain, which matched the synergism and enzyme activity testing. The biochemical and molecular evidences suggest that the high level pyrethroid resistance in L. striatellus could be due to

  1. Late multiple organ surge in interferon-regulated target genes characterizes staphylococcal enterotoxin B lethality.

    Directory of Open Access Journals (Sweden)

    Gabriela A Ferreyra

    Full Text Available BACKGROUND: Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB challenge was investigated in six tissues. RESULTS: The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC, spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. CONCLUSION: Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes.

  2. Limited pattern of TCR delta chain gene rearrangement on the RNA level in multiple sclerosis.

    Science.gov (United States)

    Nowak, J; Januszkiewicz, D; Pernak, M; Hertmanowska, H; Nowicka-Kujawska, K; Rembowska, J; Lewandowski, K; Nowak, T; Wender, M

    2001-01-01

    Susceptibility to multiple sclerosis (MS) is most likely affected by a number of genes, including HLA and T-cell receptor (TCR) genes. T cells expressing gamma/delta receptors seem to contribute to autoagression in MS, as evidenced by their localization in the MS plaques in the brain. The aim of this study was to analyse the TCRdelta chain gene rearrangement at the RNA (cDNA) level and compare to the DNA pattern rearrangement. TCRdelta gene rearrangement was analysed in MS patients and healthy individuals with the use of primers specific for Vdelta1-6 and Jdelta1 genes (at the DNA level) and specific for Vdelta1-6 and Cdelta1 genes (at the cDNA level). The size of PCR products was analysed on agarose gel and by ALF-Express (Pharmacia). Additionally, the lymphocyte surface immunophenotype was studied with specific monoclonal antibodies. At the DNA level a restricted pattern of Vdelta3-Jdelta1 and Vdelta5-Jdelta1 was found only in MS patients. Contrary to DNA, mono-, oligoclonal RNA (cDNA) rearrangements were limited to Vdelta1-Cdelta1, Vdelta2-Cdelta1 and Vdelta3-Cdelta1 only in MS patients as well. Surface immunophenotype analysis revealed in MS a much higher frequency of activated gamma/delta T lymphocytes, i.e. expressing HLA-DR and CD25. An elevated level of CD56 positive cells in MS was recorded. Mono-oligoclonal pattern of TCRdelta gene rearrangement at the RNA level, along with increase in activated gamma/delta T cells, strongly argue for a significant role of gamma/delta T lymphocytes in the pathogenesis of MS.

  3. Molecular genotyping of human Ureaplasma species based on multiple-banded antigen (MBA) gene sequences.

    Science.gov (United States)

    Kong, F; Ma, Z; James, G; Gordon, S; Gilbert, G L

    2000-09-01

    Ureaplasma urealyticum has been divided into 14 serovars. Recently, subdivision of U. urealyticum into two species has been proposed: U. parvum (previously U. urealyticum parvo biovar), comprising four serovars (1, 3, 6, 14) and U. urealyticum (previously U. urealyticum T-960 biovar), 10 serovars (2, 4, 5, 7-13). The multiple-banded antigen (MBA) genes of these species contain both species and serovar/subtype specific sequences. Based on whole sequences of the 5'-ends of MBA genes of U. parvum serovars and partial sequences of the 5'-ends of MBA genes of U. urealyticum serovars, we previously divided each of these species into three MBA genotypes. To further elucidate the relationships between serovars, we sequenced the whole 5'-ends of MBA genes of all 10 U. urealyticum serovars and partial repetitive regions of these genes from all serovars of U. parvum and U. urealyticum. For the first time, all four serovars of U. parvum were clearly differentiated from each other. In addition, the 10 serovars of U. urealyticum were divided into five MBA genotypes, as follows: MBA genotype A comprises serovars 2, 5, 8; MBA genotype B, serovar 10 only; MBA genotype C, serovars 4, 12, 13; MBA genotype D, serovar 9 only; and MBA genotype E comprises serovars 7 and 11. There were no sequence differences between members within each MBA genotype. Further work is required to identify other genes or other regions of the MBA genes that may be used to differentiate U. urealyticum serovars within MBA genotypes A, C and E. A better understanding of the molecular basis of serotype differentiation will help to improve subtyping methods for use in studies of the pathogenesis and epidemiology of these organisms.

  4. The relationship between gene isoform multiplicity, number of exons and protein divergence.

    Directory of Open Access Journals (Sweden)

    Jordi Morata

    Full Text Available At present we know that phenotypic differences between organisms arise from a variety of sources, like protein sequence divergence, regulatory sequence divergence, alternative splicing, etc. However, we do not have yet a complete view of how these sources are related. Here we address this problem, studying the relationship between protein divergence and the ability of genes to express multiple isoforms. We used three genome-wide datasets of human-mouse orthologs to study the relationship between isoform multiplicity co-occurrence between orthologs (the fact that two orthologs have more than one isoform and protein divergence. In all cases our results showed that there was a monotonic dependence between these two properties. We could explain this relationship in terms of a more fundamental one, between exon number of the largest isoform and protein divergence. We found that this last relationship was present, although with variations, in other species (chimpanzee, cow, rat, chicken, zebrafish and fruit fly. In summary, we have identified a relationship between protein divergence and isoform multiplicity co-occurrence and explained its origin in terms of a simple gene-level property. Finally, we discuss the biological implications of these findings for our understanding of inter-species phenotypic differences.

  5. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets.

    Science.gov (United States)

    Khan, Aziz; Mathelier, Anthony

    2017-05-31

    A common task for scientists relies on comparing lists of genes or genomic regions derived from high-throughput sequencing experiments. While several tools exist to intersect and visualize sets of genes, similar tools dedicated to the visualization of genomic region sets are currently limited. To address this gap, we have developed the Intervene tool, which provides an easy and automated interface for the effective intersection and visualization of genomic region or list sets, thus facilitating their analysis and interpretation. Intervene contains three modules: venn to generate Venn diagrams of up to six sets, upset to generate UpSet plots of multiple sets, and pairwise to compute and visualize intersections of multiple sets as clustered heat maps. Intervene, and its interactive web ShinyApp companion, generate publication-quality figures for the interpretation of genomic region and list sets. Intervene and its web application companion provide an easy command line and an interactive web interface to compute intersections of multiple genomic and list sets. They have the capacity to plot intersections using easy-to-interpret visual approaches. Intervene is developed and designed to meet the needs of both computer scientists and biologists. The source code is freely available at https://bitbucket.org/CBGR/intervene , with the web application available at https://asntech.shinyapps.io/intervene .

  6. Conserved Subgroups and Developmental Regulation in the Monocot rop Gene Family1[w

    Science.gov (United States)

    Christensen, Todd M.; Vejlupkova, Zuzana; Sharma, Yogesh K.; Arthur, Kirstin M.; Spatafora, Joseph W.; Albright, Carol A.; Meeley, Robert B.; Duvick, Jon P.; Quatrano, Ralph S.; Fowler, John E.

    2003-01-01

    Rop small GTPases are plant-specific signaling proteins with roles in pollen and vegetative cell growth, abscisic acid signal transduction, stress responses, and pathogen resistance. We have characterized the rop family in the monocots maize (Zea mays) and rice (Oryza sativa). The maize genome contains at least nine expressed rops, and the fully sequenced rice genome has seven. Based on phylogenetic analyses of all available Rops, the family can be subdivided into four groups that predate the divergence of monocots and dicots; at least three have been maintained in both lineages. However, the Rop family has evolved differently in the two lineages, with each exhibiting apparent expansion in different groups. These analyses, together with genetic mapping and identification of conserved non-coding sequences, predict orthology for specific rice and maize rops. We also identified consensus protein sequence elements specific to each Rop group. A survey of ROP-mRNA expression in maize, based on multiplex reverse transcriptase-polymerase chain reaction and a massively parallel signature sequencing database, showed significant spatial and temporal overlap of the nine transcripts, with high levels of all nine in tissues in which cells are actively dividing and expanding. However, only a subset of rops was highly expressed in mature leaves and pollen. Intriguingly, the grouping of maize rops based on hierarchical clustering of expression profiles was remarkably similar to that obtained by phylogenetic analysis. We hypothesize that the Rop groups represent classes with distinct functions, which are specified by the unique protein sequence elements in each group and by their distinct expression patterns. PMID:14605221

  7. Unique expression patterns of multiple key genes associated with the evolution of mammalian flight.

    Science.gov (United States)

    Wang, Zhe; Dai, Mengyao; Wang, Yao; Cooper, Kimberly L; Zhu, Tengteng; Dong, Dong; Zhang, Junpeng; Zhang, Shuyi

    2014-05-22

    Bats are the only mammals capable of true flight. Critical adaptations for flight include a pair of dramatically elongated hands with broad wing membranes. To study the molecular mechanisms of bat wing evolution, we perform genomewide mRNA sequencing and in situ hybridization for embryonic bat limbs. We identify seven key genes that display unique expression patterns in embryonic bat wings and feet, compared with mouse fore- and hindlimbs. The expression of all 5'HoxD genes (Hoxd9-13) and Tbx3, six known crucial transcription factors for limb and digit development, is extremely high and prolonged in the elongating wing area. The expression of Fam5c, a tumour suppressor, in bat limbs is bat-specific and significantly high in all short digit regions (the thumb and foot digits). These results suggest multiple genetic changes occurred independently during the evolution of bat wings to elongate the hand digits, promote membrane growth and keep other digits short. Our findings also indicate that the evolution of limb morphology depends on the complex integration of multiple gene regulatory networks and biological processes that control digit formation and identity, chondrogenesis, and interdigital regression or retention.

  8. In-channel printing-device opening assay for micropatterning multiple cells and gene analysis.

    Science.gov (United States)

    Zhou, Hao; Zhao, Liang; Zhang, Xueji

    2015-02-17

    Herein we report an easy but versatile method for patterning different cells on a single substrate by using a microfluidic approach that allows not only spatial and temporal control of multiple microenvironments but also retrieval of specific treated cells to profile their expressed genetic information at around 10-cell resolution. By taking advantages of increased surface area of gold nanoparticles on a poly(dimethylsiloxane) (PDMS) coated substrate, cell adhesive-promotive protein, human fibronectin (hFN) can be significantly accumulated on designed regions where cells can recognize the protein and spread out. Moreover, the whole device can be easily opened by hand without any loss of patterned cells which could be retrieved by mouth-pipet. Consequently, we demonstrate the possibility of analyzing the difference of gene expression patterns between wild type MCF-7 cell and MCF/Adr (drug-resistant cell line) from less than 400 cells in total for a single comprehensive assay, including parallel experiments, controls, and multiple dose treatments. Certain genes, especially the P-glycoprotein coding gene (ABCB1), show high expression level in resistant cells compared with the wild type, suggesting a possible pathway that may contribute to the antidrug mechanism.

  9. Improved detection of differentially expressed genes in microarray experiments through multiple scanning and image integration

    Science.gov (United States)

    Romualdi, Chiara; Trevisan, Silvia; Celegato, Barbara; Costa, Germano; Lanfranchi, Gerolamo

    2003-01-01

    The variability of results in microarray technology is in part due to the fact that independent scans of a single hybridised microarray give spot images that are not quite the same. To solve this problem and turn it to our advantage, we introduced the approach of multiple scanning and of image integration of microarrays. To this end, we have developed specific software that creates a virtual image that statistically summarises a series of consecutive scans of a microarray. We provide evidence that the use of multiple imaging (i) enhances the detection of differentially expressed genes; (ii) increases the image homogeneity; and (iii) reveals false-positive results such as differentially expressed genes that are detected by a single scan but not confirmed by successive scanning replicates. The increase in the final number of differentially expressed genes detected in a microarray experiment with this approach is remarkable; 50% more for microarrays hybridised with targets labelled by reverse transcriptase, and 200% more for microarrays developed with the tyramide signal amplification (TSA) technique. The results have been confirmed by semi-quantitative RT–PCR tests. PMID:14627839

  10. Multivariate dimensionality reduction approaches to identify gene-gene and gene-environment interactions underlying multiple complex traits.

    Directory of Open Access Journals (Sweden)

    Hai-Ming Xu

    Full Text Available The elusive but ubiquitous multifactor interactions represent a stumbling block that urgently needs to be removed in searching for determinants involved in human complex diseases. The dimensionality reduction approaches are a promising tool for this task. Many complex diseases exhibit composite syndromes required to be measured in a cluster of clinical traits with varying correlations and/or are inherently longitudinal in nature (changing over time and measured dynamically at multiple time points. A multivariate approach for detecting interactions is thus greatly needed on the purposes of handling a multifaceted phenotype and longitudinal data, as well as improving statistical power for multiple significance testing via a two-stage testing procedure that involves a multivariate analysis for grouped phenotypes followed by univariate analysis for the phenotypes in the significant group(s. In this article, we propose a multivariate extension of generalized multifactor dimensionality reduction (GMDR based on multivariate generalized linear, multivariate quasi-likelihood and generalized estimating equations models. Simulations and real data analysis for the cohort from the Study of Addiction: Genetics and Environment are performed to investigate the properties and performance of the proposed method, as compared with the univariate method. The results suggest that the proposed multivariate GMDR substantially boosts statistical power.

  11. Evolutionary Conservation and Divergence of Gene Coexpression Networks in Gossypium (Cotton) Seeds.

    Science.gov (United States)

    Hu, Guanjing; Hovav, Ran; Grover, Corrinne E; Faigenboim-Doron, Adi; Kadmon, Noa; Page, Justin T; Udall, Joshua A; Wendel, Jonathan F

    2016-12-01

    The cotton genus (Gossypium) provides a superior system for the study of diversification, genome evolution, polyploidization, and human-mediated selection. To gain insight into phenotypic diversification in cotton seeds, we conducted coexpression network analysis of developing seeds from diploid and allopolyploid cotton species and explored network properties. Key network modules and functional associations were identified related to seed oil content and seed weight. We compared species-specific networks to reveal topological changes, including rewired edges and differentially coexpressed genes, associated with speciation, polyploidy, and cotton domestication. Network comparisons among species indicate that topologies are altered in addition to gene expression profiles, indicating that changes in transcriptomic coexpression relationships play a role in the developmental architecture of cotton seed development. The global network topology of allopolyploids, especially for domesticated G. hirsutum, resembles the network of the A-genome diploid more than that of the D-genome parent, despite its D-like phenotype in oil content. Expression modifications associated with allopolyploidy include coexpression level dominance and transgressive expression, suggesting that the transcriptomic architecture in polyploids is to some extent a modular combination of that of its progenitor genomes. Among allopolyploids, intermodular relationships are more preserved between two different wild allopolyploid species than they are between wild and domesticated forms of a cultivated cotton, and regulatory connections of oil synthesis-related pathways are denser and more closely clustered in domesticated vs. wild G. hirsutum. These results demonstrate substantial modification of genic coexpression under domestication. Our work demonstrates how network inference informs our understanding of the transcriptomic architecture of phenotypic variation associated with temporal scales ranging from

  12. Conserved toxic responses across divergent phylogenetic lineages: a meta-analysis of the neurotoxic effects of RDX among multiple species using toxicogenomics.

    Science.gov (United States)

    Garcia-Reyero, Natàlia; Habib, Tanwir; Pirooznia, Mehdi; Gust, Kurt A; Gong, Ping; Warner, Chris; Wilbanks, Mitchell; Perkins, Edward

    2011-05-01

    At military training sites, a variety of pollutants such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), may contaminate the area originating from used munitions. Studies investigating the mechanism of toxicity of RDX have shown that it affects the central nervous system causing seizures in humans and animals. Environmental pollutants such as RDX have the potential to affect many different species, therefore it is important to establish how phylogenetically distant species may respond to these types of emerging pollutants. In this paper, we have used a transcriptional network approach to compare and contrast the neurotoxic effects of RDX among five phylogenetically disparate species: rat (Sprague-Dawley), Northern bobwhite quail (Colinus virginianus), fathead minnow (Pimephales promelas), earthworm (Eisenia fetida), and coral (Acropora formosa). Pathway enrichment analysis indicated a conservation of RDX impacts on pathways related to neuronal function in rat, Northern bobwhite quail, fathead minnows and earthworm, but not in coral. As evolutionary distance increased common responses decreased with impacts on energy and metabolism dominating effects in coral. A neurotransmission related transcriptional network based on whole rat brain responses to RDX exposure was used to identify functionally related modules of genes, components of which were conserved across species depending upon evolutionary distance. Overall, the meta-analysis using genomic data of the effects of RDX on several species suggested a common and conserved mode of action of the chemical throughout phylogenetically remote organisms. © Springer Science+Business Media, LLC (outside the USA) 2011

  13. ICOS gene haplotypes correlate with IL10 secretion and multiple sclerosis evolution.

    Science.gov (United States)

    Castelli, Luca; Comi, Cristoforo; Chiocchetti, Annalisa; Nicola, Stefania; Mesturini, Riccardo; Giordano, Mara; D'Alfonso, Sandra; Cerutti, Elisa; Galimberti, Daniela; Fenoglio, Chiara; Tesser, Fabiana; Yagi, Junji; Rojo, José Maria; Perla, Franco; Leone, Maurizio; Scarpini, Elio; Monaco, Francesco; Dianzani, Umberto

    2007-05-01

    Human ICOS is a T cell costimulatory molecule supporting IL10 secretion. A pilot study investigating variations of the ICOS gene 3'UTR detected 8 polymorphisms forming three haplotypes (A, B, C). Haplotype-A and -C displayed the highest difference. Activated T cells from healthy AA homozygotes expressed significantly less ICOS and secreted more IL10 than AC heterozygotes, whereas AB heterozygotes displayed intermediate levels. Analysis of 441 multiple sclerosis patients and 793 controls showed that frequency of AA homozygosity was significantly lower in MS patients with relapsing-remitting onset (N=416) than in controls (OR=0.70). Moreover, AA patients with relapsing-remitting onset had lower relapse rate and multiple sclerosis severity score than non-AA patients.

  14. Gene expression risk signatures maintain prognostic power in multiple myeloma despite microarray probe set translation

    DEFF Research Database (Denmark)

    Hermansen, N E U; Borup, R; Andersen, M K

    2016-01-01

    INTRODUCTION: Gene expression profiling (GEP) risk models in multiple myeloma are based on 3'-end microarrays. We hypothesized that GEP risk signatures could retain prognostic power despite being translated and applied to whole-transcript microarray data. METHODS: We studied CD138-positive bone...... marrow plasma cells in a prospective cohort of 59 samples from newly diagnosed patients eligible for high-dose therapy (HDT) and 67 samples from previous HDT patients with progressive disease. We used Affymetrix Human Gene 1.1 ST microarrays for GEP. Nine GEP risk signatures were translated by probe set......-87). Various translated GEP risk signatures or combinations hereof were significantly correlated with survival: among newly diagnosed patients mainly in combination with cytogenetic high-risk markers and among relapsed patients mainly in combination with ISS stage III. CONCLUSION: Translated GEP risk...

  15. Experimental cancer gene therapy by multiple anti-survivin hammerhead ribozymes

    Institute of Scientific and Technical Information of China (English)

    Qi Fei; Yuwen Ke; Xuebiao Yao; Jingde Zhu; Hongyu Zhang; Lili Fu; Xinlan Dai; Baomei Gao; Min Ni; Chao Ge; Jinjun Li; Xia Ding

    2008-01-01

    To improve the efficacy of gene therapy for cancer, we designed four hammerhead ribozyme adenoviruses (R1 to R4) targeting the exposed regions of survivin mRNA. In addition to the in vitro characterization, which included a determination of the sequence specificity of cleavage by primer extension, assays for cell proliferation and for in vivo tumor growth were used to score for ribozyme efficiency.The resulting suppression of survivin expression induced mitotic catastrophe and cell death via the caspase-3-dependent pathway. Importantly, administration of the ribozyme adenoviruses inhibited tumor growth in a hepato-cellular carcinoma xenograft mouse model. Co-expression of R1, R3 and R4 ribozymes synergistically suppressed survivin and, as this combination targets all major forms of the survivin transcripts, produced the most potent anti-cancer effects. The adenoviruses carrying the multiple hammerhead ribozymes described in this report offered a robust gene therapy strategy against cancer.

  16. Fine-scaling mapping of the gene responsible for multiple endocrine neoplasia type I (MEN1)

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Minoru; Nakamura, Yusuke (Cancer Institute, Tokyo (Japan)); Wells, S.A. (Washington University School of Medicine, St. Louis (United States))

    1992-02-01

    The authors have constructed a high-resolution genetic linkage map in the vicinity of the gene responsible for multiple endocrine neoplasia type 1 (MEN1). The mutation causing this disease, inherited as an autosomal dominant, predisposes carriers to development of neoplastic tumors in the parathyroid, the endocrine pancreas, and the anterior lobe of the pituitary. The 12 markers on the genetic linkage map reported here span nearly 20 cM, and linkage analysis of MEN1 pedigrees has placed the MEN1 locus within the 8-cM region between D11S480 and D11S546. The markers on this map will be useful for prenatal or presymptomatic diagnosis of individuals in families that segregate a mutant allele of the MEN1 gene.

  17. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.

    Science.gov (United States)

    Warmflash, Aryeh; Francois, Paul; Siggia, Eric D

    2012-10-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.

  18. Glatiramer acetate antibodies, gene expression and disease activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn Thorup; Hedegaard, Chris Juul; Krakauer, M;

    2011-01-01

    Background: Glatiramer acetate (GA) treatment suppresses disease activity in multiple sclerosis (MS). The immunological response to treatment may differ in patients who are stable on GA therapy and patients with breakthrough disease activity, but the results of previous studies are inconsistent....... Objectives: We studied the immunological response to GA and its relationship with disease activity. Methods: Anti-GA antibodies in plasma and the expression of genes encoding cytokines and T-cell-polarizing transcription factors in blood cells were analysed by flow cytometric bead array and polymerase chain...

  19. Exclusion of the phosphatidylinositol-specific phospholipase C beta 3 (PLC beta 3) gene as candidate for the multiple endocrine neoplasia type 1 (MEN 1) gene

    NARCIS (Netherlands)

    de Wit, M J; Landsvater, R M; Sinke, R J; Geurts van Kessel, A; Lips, C J; Höppener, J W

    1997-01-01

    Multiple endocrine neoplasia type 1 (MEN 1) is inherited as an autosomal dominant disorder, characterized by hyperplasia and neoplasia in several endocrine organs. The MEN 1 gene, which is most probably a tumor suppressor gene, has been localized to a 900-kb region on chromosome 11q13. The human pho

  20. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    Science.gov (United States)

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level.

  1. Biomaterial constructs for delivery of multiple therapeutic genes: a spatiotemporal evaluation of efficacy using molecular beacons.

    Directory of Open Access Journals (Sweden)

    Jennifer C Alexander

    Full Text Available Gene therapy is emerging as a potential therapeutic approach for cardiovascular pathogenesis. An appropriate therapy may require multiple genes to enhance therapeutic outcome by modulating inflammatory response and angiogenesis in a controlled and time-dependent manner. Thus, the aim of this research was to assess the spatiotemporal efficacy of a dual-gene therapy model based on 3D collagen scaffolds loaded with the therapeutic genes interleukin 10 (IL-10, a potent anti-inflammatory cytokine, and endothelial nitric oxide synthase (eNOS, a promoter of angiogenesis. A collagen-based scaffold loaded with plasmid IL-10 polyplexes and plasmid eNOS polyplexes encapsulated into microspheres was used to transfect HUVECs and HMSCs cells.The therapeutic efficacy of the system was monitored at 2, 7 and 14 days for eNOS and IL-10 mRNA expression using RT-PCR and live cell imaging molecular beacon technology. The dual gene releasing collagen-based scaffold provided both sustained and delayed release of functional polyplexes in vitro over a 14 day period which was corroborated with variation in expression levels seen using RT-PCR and MB imaging. Maximum fold increases in IL-10 mRNA and eNOS mRNA expression levels occurred at day 7 in HMSCs and HUVECs. However, IL-10 mRNA expression levels seemed dependent on frequency of media changes and/or ease of transfection of the cell type. It was demonstrated that molecular beacons are able to monitor changes in mRNA levels at various time points, in the presence of a 3D scaffolding gene carrier system and the results complemented those of RT-PCR.

  2. Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms.

    Science.gov (United States)

    Hinman, Veronica F; Yankura, Kristen A; McCauley, Brenna S

    2009-04-01

    Developmental gene regulatory networks (GRNs) explain how regulatory states are established in particular cells during development and how these states then determine the final form of the embryo. Evolutionary changes to the sequence of the genome will direct reorganization of GRN architectures, which in turn will lead to the alteration of developmental programs. A comparison of GRN architectures must consequently reveal the molecular basis for the evolution of developmental programs among different organisms. This review highlights some of the important findings that have emerged from the most extensive direct comparison of GRN architectures to date. Comparison of the orthologous GRNs for endomesodermal specification in the sea urchin and sea star, provides examples of several discrete, functional GRN subcircuits and shows that they are subject to diverse selective pressures. This demonstrates that different regulatory linkages may be more or less amenable to evolutionary change. One of the more surprising findings from this comparison is that GRN-level functions may be maintained while the factors performing the functions have changed, suggesting that GRNs have a high capacity for compensatory changes involving transcription factor binding to cis regulatory modules.

  3. Time-varying sensitivity analysis of hydrologic and sediment parameters at multiple timescales: Implications for conservation practices.

    Science.gov (United States)

    Xie, Hui; Shen, Zhenyao; Chen, Lei; Qiu, Jiali; Dong, Jianwei

    2017-11-15

    Environmental models can be used to better understand the hydrologic and sediment behavior in a watershed system. However, different processes may dominate at different time periods and timescales, which highly complicate the model interpretation. The related parameter uncertainty may be significant and needs to be addressed to avoid bias in the watershed management. In this study, we used the time-varying and multi-timescale (TVMT) method to characterize the temporal dynamics of parameter sensitivity at different timescales in hydrologic and sediment modeling. As a case study, the first order sensitivity indices were estimated with the Fourier amplitude sensitivity test (FAST) method for the Hydrological Simulation Program - Fortran (HSPF) model in the Zhangjiachong catchment in the Three Gorge Reservoir Region (TGRR) in China. The results were compared to those of the traditional aggregate method to demonstrate the merits of the TVMT method. The time-varying nature of the hydrologic and sediment parameters was revealed and explained m