WorldWideScience

Sample records for multiple cellular roles

  1. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis.

    Choy, Kay Rui; Watters, Dianne J

    2018-01-01

    Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process

    Druzhinina Irina S

    2007-12-01

    Full Text Available Abstract Background In fungi, light is primarily known to influence general morphogenesis and both sexual and asexual sporulation. In order to expand the knowledge on the effect of light in fungi and to determine the role of the light regulatory protein ENVOY in the implementation of this effect, we performed a global screen for genes, which are specifically effected by light in the fungus Hypocrea jecorina (anamorph Trichoderma reesei using Rapid Subtraction Hybridization (RaSH. Based on these data, we analyzed whether these genes are influenced by ENVOY and if overexpression of ENVOY in darkness would be sufficient to execute its function. Results The cellular functions of the detected light responsive genes comprised a variety of roles in transcription, translation, signal transduction, metabolism, and transport. Their response to light with respect to the involvement of ENVOY could be classified as follows: (i ENVOY-mediated upregulation by light; (ii ENVOY-independent upregulation by light; (iii ENVOY-antagonized upregulation by light; ENVOY-dependent repression by light; (iv ENVOY-independent repression by light; and (v both positive and negative regulation by ENVOY of genes not responsive to light in the wild-type. ENVOY was found to be crucial for normal growth in light on various carbon sources and is not able to execute its regulatory function if overexpressed in the darkness. Conclusion The different responses indicate that light impacts fungi like H. jecorina at several cellular processes, and that it has both positive and negative effects. The data also emphasize that ENVOY has an apparently more widespread cellular role in this process than only in modulating the response to light.

  3. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond.

    Michelini, Flavia; Jalihal, Ameya P; Francia, Sofia; Meers, Chance; Neeb, Zachary T; Rossiello, Francesca; Gioia, Ubaldo; Aguado, Julio; Jones-Weinert, Corey; Luke, Brian; Biamonti, Giuseppe; Nowacki, Mariusz; Storici, Francesca; Carninci, Piero; Walter, Nils G; Fagagna, Fabrizio d'Adda di

    2018-03-30

    Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.

  4. A gene pathway analysis highlights the role of cellular adhesion molecules in multiple sclerosis susceptibility

    Damotte, V; Guillot-Noel, L; Patsopoulos, N A

    2014-01-01

    adhesion molecule (CAMs) biological pathway using Cytoscape software. This network is a strong candidate, as it is involved in the crossing of the blood-brain barrier by the T cells, an early event in MS pathophysiology, and is used as an efficient therapeutic target. We drew up a list of 76 genes...... in interaction with other genes as a group. Pathway analysis is an alternative way to highlight such group of genes. Using SNP association P-values from eight multiple sclerosis (MS) GWAS data sets, we performed a candidate pathway analysis for MS susceptibility by considering genes interacting in the cell...... belonging to the CAM network. We highlighted 64 networks enriched with CAM genes with low P-values. Filtering by a percentage of CAM genes up to 50% and rejecting enriched signals mainly driven by transcription factors, we highlighted five networks associated with MS susceptibility. One of them, constituted...

  5. Endoplasmic reticulum stress-induced apoptosis accompanies enhanced expression of multiple inositol polyphosphate phosphatase 1 (Minpp1): a possible role for Minpp1 in cellular stress response.

    Kilaparty, Surya P; Agarwal, Rakhee; Singh, Pooja; Kannan, Krishnaswamy; Ali, Nawab

    2016-07-01

    Inositol polyphosphates represent a group of differentially phosphorylated inositol metabolites, many of which are implicated to regulate diverse cellular processes such as calcium mobilization, vesicular trafficking, differentiation, apoptosis, etc. The metabolic network of these compounds is complex and tightly regulated by various kinases and phosphatases present predominantly in the cytosol. Multiple inositol polyphosphate phosphatase 1 (Minpp1) is the only known endoplasmic reticulum (ER) luminal enzyme that hydrolyzes various inositol polyphosphates in vitro as well as in vivo conditions. However, access of the Minpp1 to cytosolic substrates has not yet been demonstrated clearly and hence its physiological function. In this study, we examined a potential role for Minpp1 in ER stress-induced apoptosis. We generated a custom antibody and characterized its specificity to study the expression of Minpp1 protein in multiple mammalian cells under experimentally induced cellular stress conditions. Our results demonstrate a significant increase in the expression of Minpp1 in response to a variety of cellular stress conditions. The protein expression was corroborated with the expression of its mRNA and enzymatic activity. Further, in an attempt to link the role of Minpp1 to apoptotic stress, we studied the effect of Minpp1 expression on apoptosis following silencing of the Minpp1 gene by its specific siRNA. Our results suggest an attenuation of apoptotic parameters following knockdown of Minpp1. Thus, in addition to its known role in inositol polyphosphate metabolism, we have identified a novel role for Minpp1 as a stress-responsive protein. In summary, our results provide, for the first time, a probable link between ER stress-induced apoptosis and Minpp1 expression.

  6. Green Virtualization for Multiple Collaborative Cellular Operators

    Farooq, Muhammad Junaid; Ghazzai, Hakim; Yaacoub, Elias; Kadri, Abdullah; Alouini, Mohamed-Slim

    2017-01-01

    This paper proposes and investigates a green virtualization framework for infrastructure sharing among multiple cellular operators whose networks are powered by a combination of conventional and renewable sources of energy. Under the proposed

  7. Green Virtualization for Multiple Collaborative Cellular Operators

    Farooq, Muhammad Junaid

    2017-06-05

    This paper proposes and investigates a green virtualization framework for infrastructure sharing among multiple cellular operators whose networks are powered by a combination of conventional and renewable sources of energy. Under the proposed framework, the virtual network formed by unifying radio access infrastructures of all operators is optimized for minimum energy consumption by deactivating base stations (BSs) with low traffic loads. The users initially associated to those BSs are off-loaded to neighboring active ones. A fairness criterion for collaboration based on roaming prices is introduced to cover the additional energy costs incurred by host operators. The framework also ensures that any collaborating operator is not negatively affected by its participation in the proposed virtualization. A multi-objective linear programming problem is formulated to achieve energy and cost efficiency of the networks\\' operation by identifying the set of inter-operator roaming prices. For the case when collaboration among all operators is infeasible due to profitability, capacity, or power constraints, an iterative algorithm is proposed to determine the groups of operators that can viably collaborate. Results show significant energy savings using the proposed virtualization as compared to the standalone case. Moreover, collaborative operators exploiting locally generated renewable energy are rewarded more than traditional ones.

  8. Thymocyte migration: an affair of multiple cellular interactions?

    Savino W.

    2003-01-01

    Full Text Available Cell migration is a crucial event in the general process of thymocyte differentiation. The cellular interactions involved in the control of this migration are beginning to be defined. At least chemokines and extracellular matrix proteins appear to be part of the game. Cells of the thymic microenvironment produce these two groups of molecules, whereas developing thymocytes express the corresponding receptors. Moreover, although chemokines and extracellular matrix can drive thymocyte migration per se, a combined role for these molecules appears to contribute to the resulting migration patterns of thymocytes in their various stages of differentiation. The dynamics of chemokine and extracellular matrix production and degradation is not yet well understood. However, matrix metalloproteinases are likely to play a role in the breakdown of intrathymic extracellular matrix contents. Thus, the physiological migration of thymocytes should be envisioned as a resulting vector of multiple, simultaneous and/or sequential stimuli involving chemokines, adhesive and de-adhesive extracellular matrix proteins, as well as matrix metalloproteinases. Accordingly, it is conceivable that any pathological change in any of these loops may result in the alteration of normal thymocyte migration. This seems to be the case in murine infection by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas' disease. A better knowledge of the physiological mechanisms governing thymocyte migration will provide new clues for designing therapeutic strategies targeting developing T cells.

  9. Role of cellular adhesions in tissue dynamics spectroscopy

    Merrill, Daniel A.; An, Ran; Turek, John; Nolte, David

    2014-02-01

    Cellular adhesions play a critical role in cell behavior, and modified expression of cellular adhesion compounds has been linked to various cancers. We tested the role of cellular adhesions in drug response by studying three cellular culture models: three-dimensional tumor spheroids with well-developed cellular adhesions and extracellular matrix (ECM), dense three-dimensional cell pellets with moderate numbers of adhesions, and dilute three-dimensional cell suspensions in agarose having few adhesions. Our technique for measuring the drug response for the spheroids and cell pellets was biodynamic imaging (BDI), and for the suspensions was quasi-elastic light scattering (QELS). We tested several cytoskeletal chemotherapeutic drugs (nocodazole, cytochalasin-D, paclitaxel, and colchicine) on three cancer cell lines chosen from human colorectal adenocarcinoma (HT-29), human pancreatic carcinoma (MIA PaCa-2), and rat osteosarcoma (UMR-106) to exhibit differences in adhesion strength. Comparing tumor spheroid behavior to that of cell suspensions showed shifts in the spectral motion of the cancer tissues that match predictions based on different degrees of cell-cell contacts. The HT-29 cell line, which has the strongest adhesions in the spheroid model, exhibits anomalous behavior in some cases. These results highlight the importance of using three-dimensional tissue models in drug screening with cellular adhesions being a contributory factor in phenotypic differences between the drug responses of tissue and cells.

  10. Prevalence and multiplicity of cutaneous beta papilloma viruses in plucked hairs depend on cellular DNA input.

    Weissenborn, S J; Neale, R; de Koning, M N C; Waterboer, T; Abeni, D; Bouwes Bavinck, J N; Wieland, U; Pfister, H J

    2009-11-01

    In view of the low loads of beta human papillomaviruses in skin samples, amounts of cellular DNA used in qualitative PCR may become limiting for virus detection and introduce variations in prevalence and multiplicity. This issue was explored within the context of a multicentre study and increasing prevalence and multiplicity was found with increasing input amounts of cellular DNA extracted from hair bulbs. To improve the quality and comparability between different epidemiologic studies ideally equal amounts of cellular DNA should be employed. When cellular DNA input varies this should be clearly taken into account in assessing viral prevalence and multiplicity.

  11. Cellular roles of ADAM12 in health and disease

    Kveiborg, Marie; Albrechtsen, Reidar; Couchman, John R

    2008-01-01

    and it is a potential biomarker for breast cancer. It is therefore important to understand ADAM12's functions. Many cellular roles for ADAM12 have been suggested. It is an active metalloprotease, and has been implicated in insulin-like growth factor (IGF) receptor signaling, through cleavage of IGF-binding proteins......, and in epidermal growth factor receptor (EGFR) pathways, via ectodomain shedding of membrane-tethered EGFR ligands. These proteolytic events may regulate diverse cellular responses, such as altered cell differentiation, proliferation, migration, and invasion. ADAM12 may also regulate cell-cell and cell...... to or from the cell interior. These ADAM12-mediated cellular effects appear to be critical events in both biological and pathological processes. This review presents current knowledge on ADAM12 functions gained from in vitro and in vivo observations, describes ADAM12's role in both normal physiology...

  12. [Multiple roles and health among Korean women].

    Cho, Su-Jin; Jang, Soong-Nang; Cho, Sung-Il

    2008-09-01

    Most studies about multiple roles and women's health suggested that combining with paid job, being married and having children was more likely to improve health status than in case of single or traditional roles. We investigated whether there was better health outcome in multiple roles among Korean women coinciding with previous studies of other nations. Data were from the 2005 Korea National Health & Nutritional Examination Survey, a subsample of women aged 25-59 years (N=2,943). Health status was assessed for self-rated poor health, perceived stress and depression, respectively based on one questionnaire item. The age-standardized prevalence of all health outcomes were calculated by role categories and socioeconomic status. Multiple logistic regression was used to assess the association of self rated health, perceived stress, and depression with multiple roles adjusted for age, education, household income, number of children and age of children. Having multiple roles with working role was not associated with better health and psychological wellbeing. Compared to those with traditional roles, employed women more frequently experienced perceived stress, with marital and/or parental roles. Non-working single mothers suffered depression more often than women with traditional roles or other role occupancy. Socioeconomic status indicators were potent independent correlates of self-rated health and perceived stress. Employment of women with other roles did not confer additional health benefit to traditional family responsibility. Juggling of work and family responsibility appeared more stressful than traditional unemployed parental and marital role in Korean women.

  13. Radio Access Sharing Strategies for Multiple Operators in Cellular Networks

    Popovska Avramova, Andrijana; Iversen, Villy Bæk

    2015-01-01

    deployments (required for coverage enhancement), increased base station utilization, and reduced overall power consumption. Today, network sharing in the radio access part is passive and limited to cell sites. With the introduction of Cloud Radio Access Network and Software Defined Networking adoption...... to the radio access network, the possibility for sharing baseband processing and radio spectrum becomes an important aspect of network sharing. This paper investigates strategies for active sharing of radio access among multiple operators, and analyses the individual benefits depending on the sharing degree...

  14. Balancing multiple roles through consensus

    Oshima, Sae

    2014-01-01

    , the stylist and the client negotiate not only the quality of the cut, but also their expected roles. Caring about both the bodies and the minds of customers is an important element in measuring the quality of cosmetological services, a consideration which may oblige stylists to immediately agree with and act...... upon every client request or concern. However, simply yielding to the customer’s opinions can threaten the stylist’s role as a beauty expert, one who possesses their own professional standards. The analysis reveals that the participants frequently transform revision requests/offers into mutual...... decisions through a combination of verbal and bodily actions. In doing so, they harmonize the sometimes conflicting responsibilities of “service provider/patron” and “expert/novice.”...

  15. Tools and Models for Integrating Multiple Cellular Networks

    Gerstein, Mark [Yale Univ., New Haven, CT (United States). Gerstein Lab.

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  16. Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms.

    Ramos-Leví, Ana Maria; Marazuela, Mónica

    2016-10-01

    Hashimoto's thyroiditis (HT) and Graves' disease (GD) are two very common organ-specific autoimmune diseases which are characterized by circulating antibodies and lymphocyte infiltration. Although humoral and cellular mechanisms have been classically considered separately in the pathogenesis of autoimmune thyroid diseases (AITD), recent research suggests a close reciprocal relationship between these two immune pathways. Several B- and T-cell activation pathways through antigen-presenting cells (APCs) and cytokine production lead to specific differentiation of T helper (Th) and T regulatory (Treg) cells. This review will focus on the cellular mechanisms involved in the pathogenesis of AITD. Specifically, it will provide reasons for discarding the traditional simplistic dichotomous view of the T helper type 1 and 2 pathways (Th1/Th2) and will focus on the role of the recently characterized T cells, Treg and Th17 lymphocytes, as well as B lymphocytes and APCs, especially dendritic cells (DCs). Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. The Multiple Roles of Exosomes in Metastasis

    WEIDLE, H. ULRICH; BIRZELE, FABIAN; KOLLMORGEN, GWEN; RÜGER, RÜDIGER

    2016-01-01

    Exosomes are important contributors to cell−cell communication and their role as diagnostic markers for cancer and the pathogenesis for cancer is under intensive investigation. Here, we focus on their role in metastasis-related processes. We discuss their impact regarding promotion of invasion and migration of tumor cells, conditioning of lymph nodes, generation of premetastatic niches and organotropism of metastasis. Furthermore, we highlight interactions of exosomes with bone marrow and stromal components such as fibroblasts, endothelial cells, myeloid- and other immune-related cells in the context of metastases. For all processes as described above, we outline molecular and cellular components for therapeutic intervention with metastatic processes. PMID:28031234

  18. Role of Crk Adaptor Proteins in Cellular Migration and Invasion in Human Breast Cancer

    Fathers, Kelly E

    2007-01-01

    The Crk adaptor proteins (CrkI, CrkII and CrkL) play an important role during cellular signalling by mediating the formation of protein-protein complexes and are involved in cellular migration, invasion, and adhesion...

  19. Role of Crk Adaptor Proteins in Cellular Migration and Invasion in Human Breast Cancer

    Fathers, Kelly E

    2008-01-01

    The Crk adaptor proteins (CrkI, CrkII and CrkL) play an important role during cellular signalling by mediating the formation of protein-protein complexes and are involved in cellular migration, invasion, and adhesion...

  20. Multiple repair pathways mediate cellular tolerance to resveratrol-induced DNA damage.

    Liu, Ying; Wu, Xiaohua; Hu, Xiaoqing; Chen, Ziyuan; Liu, Hao; Takeda, Shunichi; Qing, Yong

    2017-08-01

    Resveratrol (RSV) has been reported to exert health benefits for the prevention and treatment of many diseases, including cancer. The anticancer mechanisms of RSV seem to be complex and may be associated with genotoxic potential. To better understand the genotoxic mechanisms, we used wild-type (WT) and a panel of isogenic DNA-repair deficient DT40 cell lines to identify the DNA damage effects and molecular mechanisms of cellular tolerance to RSV. Our results showed that RSV induced significant formation of γ-H2AX foci and chromosome aberrations (CAs) in WT cells, suggesting direct DNA damage effects. Comparing the survival of WT with isogenic DNA-repair deficient DT40 cell lines demonstrated that single strand break repair (SSBR) deficient cell lines of Parp1 -/- , base excision repair (BER) deficient cell lines of Polβ -/- , homologous recombination (HR) mutants of Brca1 -/- and Brca2 -/- and translesion DNA synthesis (TLS) mutants of Rev3 -/- and Rad18 -/- were more sensitive to RSV. The sensitivities of cells were associated with enhanced DNA damage comparing the accumulation of γ-H2AX foci and number of CAs of isogenic DNA-repair deficient DT40 cell lines with WT cells. These results clearly demonstrated that RSV-induced DNA damage in DT40 cells, and multiple repair pathways including BER, SSBR, HR and TLS, play critical roles in response to RSV- induced genotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  1. The Tumorigenic Roles of the Cellular REDOX Regulatory Systems

    Stéphanie Anaís Castaldo

    2016-01-01

    Full Text Available The cellular REDOX regulatory systems play a central role in maintaining REDOX homeostasis that is crucial for cell integrity, survival, and proliferation. To date, a substantial amount of data has demonstrated that cancer cells typically undergo increasing oxidative stress as the tumor develops, upregulating these important antioxidant systems in order to survive, proliferate, and metastasize under these extreme oxidative stress conditions. Since a large number of chemotherapeutic agents currently used in the clinic rely on the induction of ROS overload or change of ROS quality to kill the tumor, the cancer cell REDOX adaptation represents a significant obstacle to conventional chemotherapy. In this review we will first examine the different factors that contribute to the enhanced oxidative stress generally observed within the tumor microenvironment. We will then make a comprehensive assessment of the current literature regarding the main antioxidant proteins and systems that have been shown to be positively associated with tumor progression and chemoresistance. Finally we will make an analysis of commonly used chemotherapeutic drugs that induce ROS. The current knowledge of cancer cell REDOX adaptation raises the issue of developing novel and more effective therapies for these tumors that are usually resistant to conventional ROS inducing chemotherapy.

  2. The Green Function cellular method and its relation to multiple scattering theory

    Butler, W.H.; Zhang, X.G.; Gonis, A.

    1992-01-01

    This paper investigates techniques for solving the wave equation which are based on the idea of obtaining exact local solutions within each potential cell, which are then joined to form a global solution. The authors derive full potential multiple scattering theory (MST) from the Lippmann-Schwinger equation and show that it as well as a closely related cellular method are techniques of this type. This cellular method appears to have all of the advantages of MST and the added advantage of having a secular matrix with only nearest neighbor interactions. Since this cellular method is easily linearized one can rigorously reduce electronic structure calculation to the problem of solving a nearest neighbor tight-binding problem

  3. CELLULAR VACCINES IN LISTERIOSIS: ROLE OF THE LISTERIA ANTIGEN GAPDH.

    Ricardo eCalderon-Gonzalez

    2014-02-01

    Full Text Available The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH, and several epitopes such as the LLO peptides, LLO189–201 and LLO91–99 and the GAPDH peptide, GAPDH1–22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1–22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91–99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1–22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes.

  4. Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH

    Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M. Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L.; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Álvarez-Domínguez, Carmen

    2014-01-01

    The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189−201 and LLO91−99 and the GAPDH peptide, GAPDH1−22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1−22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91−99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1−22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes. PMID:24600592

  5. Gender, multiple roles, role meaning, and mental health.

    Simon, R W

    1995-06-01

    This paper examines gender differences in the consequences of combining spouse, parent, and worker roles for mental health. I suggest that work and family roles have different meanings for males and females, and that differences in the meaning of these roles may be partially responsible for why the mental health advantages of holding multiple roles are fewer for women than for men. Based on qualitative analyses of follow-up, in-depth interviews with 40 employed married parents who participated in a community panel study of mental health, I find that sex differences in the perceived relationship between work and family roles may help account for sex differences in distress by contributing to male-female differences in both the extent and nature of work-parent conflicts, attributions of responsibility for marital problems, feelings of guilt, and self-evaluations as parents and spouses. By identifying gender differences in the meaning of roles among individuals who have the same multiple role configuration, and suggesting how these differences can help explain sex differences in well-being; this research may expand existing theories about the mental health consequences of multiple role involvements.

  6. Role of nitric oxide in cellular iron metabolism.

    Kim, Sangwon; Ponka, Prem

    2003-03-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO*, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  7. Multiple-channel detection of cellular activities by ion-sensitive transistors

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  8. The cellular adaptive response the role in life organisms

    Smith, H.

    1998-01-01

    Exposure of living cells to ionizing radiation may cause DNA damage that are generally harmful to the organism. This paper discuss the cellular adaptive response which may be seen when cells which have already been exposed to low concentration radiation doses are subsequently exposed to high concentration doses. It also discusses evidence of the adaptive response in laboratory animals and from limited epidemiological studies. (Author)

  9. Role of the blood service in cellular therapy.

    Rebulla, Paolo; Giordano, Rosaria

    2012-05-01

    Cellular therapy is a novel form of medical or surgical treatment using cells in place of or in addition to traditional chemical drugs. The preparation of cellular products - called advanced therapy medicinal products - ATMP in Europe, requires compliance with good manufacturing practices (GMP). Based on long-term experience in blood component manufacturing, product traceability and hemovigilance, selected blood services may represent ideal settings for the development and experimental use of ATMP. International harmonization of the protocols and procedures for the preparation of ATMP is of paramount importance to facilitate the development of multicenter clinical trials with adequate sample size, which are urgently needed to determine the clinical efficacy of ATMP. This article describes European regulations on cellular therapy and summarizes the activities of the 'Franco Calori' Cell Factory, a GMP unit belonging to the department of regenerative medicine of a large public university hospital, which acquired a certification for the GMP production of ATMP in 2007 and developed nine experimental clinical protocols during 2003-2011. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  10. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection.

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.

  11. Women and multiple roles: myths and reality.

    Barnett, Rosalind Chait

    2004-01-01

    Strong beliefs persist about the negative effects of maternal employment on women, their marriages, and their children, in spite of considerable systematic research indicating that, on average, employment has positive effects. The underlying assumption is that the roles of wife and mother are "natural" roles and are therefore performed without undue stress. In contrast, the role of employee is seen as "unnatural" and therefore highly demanding. These beliefs affect clinical practice, fostering a concern among mental health professionals about whether women can handle the demands of multiple roles without serious negative health consequences. It is therefore important to evaluate these beliefs in light of the empirical literature. Such an evaluation is especially critical at this particular time, when demographic trends suggest that the number of employed women with children is increasing, that paid employment will be a central component in most women's life experiences, and that as a society we are highly unlikely to return to the days of the "traditional" family. The need for careful scrutiny is underscored by the current political climate, in which there is much rhetoric implying that maternal employment "causes" many of our social ills--school dropouts, drug abuse, juvenile violence, and divorce.

  12. Differential Cellular Responses to Hedgehog Signalling in Vertebrates—What is the Role of Competence?

    Clemens Kiecker; Anthony Graham; Malcolm Logan

    2016-01-01

    A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal—a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in compete...

  13. A Novel Algorithm for Efficient Downlink Packet Scheduling for Multiple-Component-Carrier Cellular Systems

    Yao-Liang Chung

    2016-11-01

    Full Text Available The simultaneous aggregation of multiple component carriers (CCs for use by a base station constitutes one of the more promising strategies for providing substantially enhanced bandwidths for packet transmissions in 4th and 5th generation cellular systems. To the best of our knowledge, however, few previous studies have undertaken a thorough investigation of various performance aspects of the use of a simple yet effective packet scheduling algorithm in which multiple CCs are aggregated for transmission in such systems. Consequently, the present study presents an efficient packet scheduling algorithm designed on the basis of the proportional fair criterion for use in multiple-CC systems for downlink transmission. The proposed algorithm includes a focus on providing simultaneous transmission support for both real-time (RT and non-RT traffic. This algorithm can, when applied with sufficiently efficient designs, provide adequate utilization of spectrum resources for the purposes of transmissions, while also improving energy efficiency to some extent. According to simulation results, the performance of the proposed algorithm in terms of system throughput, mean delay, and fairness constitute substantial improvements over those of an algorithm in which the CCs are used independently instead of being aggregated.

  14. The biophysical model for accuracy of cellular sensing spatial gradients of multiple chemoattractants

    Chang, Qiang; Zuo, Li

    2013-01-01

    Spatial gradients of surrounding chemoattractants are the key factors in determining the directionality of eukaryotic cell movement. Thus, it is important for cells to accurately measure the spatial gradients of surrounding chemoattractants. Here, we study the precision of sensing the spatial gradients of multiple chemoattractants using cooperative receptor clusters. Cooperative receptors on cells are modeled as an Ising chain of Monod–Wyman–Changeux clusters subject to multiple chemical-gradient fields to study the physical limits of multiple chemoattractants spatial gradients sensing. We found that eukaryotic cells cannot sense each chemoattractant gradient individually. Instead, cells can only sense a weighted sum of surrounding chemical gradients. Moreover, the precision of sensing one chemical gradient is signicantly affected by coexisting chemoattractant concentrations. These findings can provide a further insight into the role of chemoattractants in immune response and help develop novel treatments for inflammatory diseases. (paper)

  15. Role of multiple cusps in tooth fracture.

    Barani, Amir; Bush, Mark B; Lawn, Brian R

    2014-07-01

    The role of multiple cusps in the biomechanics of human molar tooth fracture is analysed. A model with four cusps at the bite surface replaces the single dome structure used in previous simulations. Extended finite element modelling, with provision to embed longitudinal cracks into the enamel walls, enables full analysis of crack propagation from initial extension to final failure. The cracks propagate longitudinally around the enamel side walls from starter cracks placed either at the top surface (radial cracks) or from the tooth base (margin cracks). A feature of the crack evolution is its stability, meaning that extension occurs steadily with increasing applied force. Predictions from the model are validated by comparison with experimental data from earlier publications, in which crack development was followed in situ during occlusal loading of extracted human molars. The results show substantial increase in critical forces to produce longitudinal fractures with number of cuspal contacts, indicating a capacity for an individual tooth to spread the load during mastication. It is argued that explicit critical force equations derived in previous studies remain valid, at the least as a means for comparing the capacity for teeth of different dimensions to sustain high bite forces. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characterisation of cellular adhesion reinforcement by multiple bond force spectroscopy in alveolar epithelial cells.

    Nguyen, Ngoc-Minh; Angely, Christelle; Andre Dias, Sofia; Planus, Emmanuelle; Filoche, Marcel; Pelle, Gabriel; Louis, Bruno; Isabey, Daniel

    2017-07-01

    Integrin-mediated adhesion is a key process by which cells physically connect with their environment, and express sensitivity and adaptation through mechanotransduction. A critical step of cell adhesion is the formation of the first bonds which individually generate weak contacts (∼tens pN) but can sustain thousand times higher forces (∼tens nN) when associated. We propose an experimental validation by multiple bond force spectroscopy (MFS) of a stochastic model predicting adhesion reinforcement permitted by non-cooperative, multiple bonds on which force is homogeneously distributed (called parallel bond configuration). To do so, spherical probes (diameter: 6.6 μm), specifically coated by RGD-peptide to bind integrins, are used to statically indent and homogenously stretch the multiple bonds created for short contact times (2 s) between the bead and the surface of epithelial cells (A549). Using different separation speeds (v = 2, 5, 10 μm/s) and measuring cellular Young's modulus as well as the local stiffness preceding local rupture events, we obtain cell-by-cell the effective loading rates both at the global cell level and at the local level of individual constitutive bonds. Local rupture forces are in the range: f*=60-115 pN , whereas global rupture (detachment) forces reach F*=0.8-1.7 nN . Global and local rupture forces both exhibit linear dependencies with the effective loading rate, the slopes of these two linear relationships providing an estimate of the number of independent integrin bonds constituting the tested multiple bond structure (∼12). The MFS method enables to validate the reinforcement of integrin-mediated adhesion induced by the multiple bond configuration in which force is homogeneously distributed amongst parallel bonds. Local rupture events observed in the course of a spectroscopy manoeuver (MFS) lead to rupture force values considered in the literature as single-integrin bonds. Adhesion reinforcement permitted by the parallel

  17. A Novel Power-Saving Transmission Scheme for Multiple-Component-Carrier Cellular Systems

    Yao-Liang Chung

    2016-04-01

    Full Text Available As mobile data traffic levels have increased exponentially, resulting in rising energy costs in recent years, the demand for and development of green communication technologies has resulted in various energy-saving designs for cellular systems. At the same time, recent technological advances have allowed multiple component carriers (CCs to be simultaneously utilized in a base station (BS, a development that has made the energy consumption of BSs a matter of increasing concern. To help address this concern, herein we propose a novel scheme aimed at efficiently minimizing the power consumption of BS transceivers during transmission, while still ensuring good service quality and fairness for users. Specifically, the scheme utilizes the dynamic activation/deactivation of CCs during data transmission to increase power usage efficiency. To test its effectiveness, the proposed scheme was applied to a model consisting of a BS with orthogonal frequency division multiple access-based CCs in a downlink transmission environment. The results indicated that, given periods of relatively light traffic loads, the total power consumption of the proposed scheme is significantly lower than that of schemes in which all the CCs of a BS are constantly activated, suggesting the scheme’s potential for reducing both energy costs and carbon dioxide emissions.

  18. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.

  19. The Role of Pontin and Reptin in Cellular Physiology and Cancer Etiology

    Yu-Qian Mao

    2017-08-01

    Full Text Available Pontin (RUVBL1, TIP49, TIP49a, Rvb1 and Reptin (RUVBL2, TIP48, TIP49b, Rvb2 are highly conserved ATPases of the AAA+ (ATPases Associated with various cellular Activities superfamily and are involved in various cellular processes that are important for oncogenesis. First identified as being upregulated in hepatocellular carcinoma and colorectal cancer, their overexpression has since been shown in multiple cancer types such as breast, lung, gastric, esophageal, pancreatic, kidney, bladder as well as lymphatic, and leukemic cancers. However, their exact functions are still quite unknown as they interact with many molecular complexes with vastly different downstream effectors. Within the nucleus, Pontin and Reptin participate in the TIP60 and INO80 complexes important for chromatin remodeling. Although not transcription factors themselves, Pontin and Reptin modulate the transcriptional activities of bona fide proto-oncogenes such as MYC and β-catenin. They associate with proteins involved in DNA damage repair such as PIKK complexes as well as with the core complex of Fanconi anemia pathway. They have also been shown to be important for cell cycle progression, being involved in assembly of telomerase, mitotic spindle, RNA polymerase II, and snoRNPs. When the two ATPases localize to the cytoplasm, they were reported to promote cancer cell invasion and metastasis. Due to their various roles in carcinogenesis, it is not surprising that Pontin and Reptin are proving to be important biomarkers for diagnosis and prognosis of various cancers. They are also current targets for the development of new therapeutic anticancer drugs.

  20. Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: Identification of novel targets.

    Marimuthu, Srinivasan; Chivukula, Raghavender S V; Alfonso, Lloyd F; Moridani, Majid; Hagen, Fred K; Bhat, G Jayarama

    2011-11-01

    Epidemiological and clinical observations provide consistent evidence that regular intake of aspirin may effectively inhibit the occurrence of epithelial tumors; however, the molecular mechanisms are not completely understood. In the present study, we determined the ability of aspirin to acetylate and post-translationally modify cellular proteins in HCT-116 human colon cancer cells to understand the potential mechanisms by which it may exerts anti-cancer effects. Using anti-acetyl lysine antibodies, here we demonstrate that aspirin causes the acetylation of multiple proteins whose molecular weight ranged from 20 to 200 kDa. The identity of these proteins was determined, using immuno-affinity purification, mass spectrometry and immuno-blotting. A total of 33 cellular proteins were potential targets of aspirin-mediated acetylation, while 16 were identified as common to both the control and aspirin-treated samples. These include enzymes of glycolytic pathway, cytoskeleton proteins, histones, ribosomal and mitochondrial proteins. The glycolytic enzymes which were identified include aldolase, glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase M2, and lactate dehydrogenase A and B chains. Immunoblotting experiment showed that aspirin also acetylated glucose-6-phosphate dehydrogenase and transketolase, both enzymes of pentose phosphate pathway involved in ribonucleotide biosynthesis. In vitro assays of these enzymes revealed that aspirin did not affect pyruvate kinase and lactate dehydrogenase activity; however, it decreased glucose 6 phosphate dehydrogenase activity. Similar results were also observed in HT-29 human colon cancer cells. Selective inhibition of glucose-6-phosphate dehydrogenase may represent an important mechanism by which aspirin may exert its anti-cancer effects through inhibition of ribonucleotide synthesis.

  1. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants

    Remy, Estelle; Duque, Paula

    2014-01-01

    Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617

  2. Multiple Role Conflict and Graduate Students' Academic Performance.

    Feldmann, Shirley; Martinez-Pons, Manuel

    This study examined the effect of multiple social roles on the psychological functioning of 60 adult students (age 25 to 51 years) in an introductory graduate course in educational research. Using multiple role conflict (MRC), perceived ability to cope (PAC), subject anxiety (SA), academic self-efficacy (SE), self-regulation (SR), and course…

  3. The cellular wall role of different mosses species in Cs 137 sorption

    Sobchenko, V.A.; Khramchenkova, O.M.; Perevolockij, A.N.

    2001-01-01

    In studying experiment with live and modified mosses (Pleurozium schreberi (Brid.) Mitt., Dicranum polysetum Sw., Hylocomium splendens (Hedw.) B.S.G. and Ptilium crista-castrensis (Hedw.) De Not.) had shown the cellular wall main role in Cs 137 sorption

  4. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets

    Coque, Emmanuelle; Raoul, Cédric; Bowerman, Mélissa

    2014-01-01

    Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice. PMID:25221469

  5. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets

    Emmanuelle eCoque

    2014-08-01

    Full Text Available Spinal muscular atrophy (SMA is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the surviving motor neuron 1 (SMN1 gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK, which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myocytes, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice.

  6. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction

    Kiran Sree Pokkuluri

    2014-01-01

    Full Text Available Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000. The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata and MCC (modified clonal classifier to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992 datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006 dataset and nonpromoters from EID (Saxonov et al., 2000 and UTRdb (Pesole et al., 2002 datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.

  7. Cucurbitacin IIb exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes.

    Yao Wang

    Full Text Available Cucurbitacin IIb (CuIIb is one of the major active compounds in Hemsleyadine tablets which have been used for clinical treatment of bacillary dysentery, enteritis and acute tonsilitis. However, its action mechanism has not been completely understood. This study aimed to explore the anti-inflammatory activity of CuIIb and its underlying mechanism in mitogen-activated lymphocytes isolated from mouse mesenteric lymph nodes. The results showed that CuIIb inhibited the proliferation of concanavalin A (Con A-activated lymphocytes in a time- and dose-dependent manner. CuIIb treatment arrested their cell cycle in S and G2/M phases probably due to the disruption of the actin cytoskeleton and the modulation of p27(Kip1 and cyclin levels. Moreover, the surface expression of activation markers CD69 and CD25 on Con A-activated CD3(+ T lymphocytes was suppressed by CuIIb treatment. Both Con A- and phorbol ester plus ionomycin-induced expression of TNF-α, IFN-γ and IL-6 proteins was attenuated upon exposure to CuIIb. Mechanistically, CuIIb treatment suppressed the phosphorylation of JNK and Erk1/2 but not p38 in Con A-activated lymphocytes. Although CuIIb unexpectedly enhanced the phosphorylation of IκB and NF-κB (p65, it blocked the nuclear translocation of NF-κB (p65. In support of this, CuIIb significantly decreased the mRNA levels of IκBα and TNF-α, two target genes of NF-κB, in Con A-activated lymphocytes. In addition, CuIIb downregulated Con A-induced STAT3 phosphorylation and increased cell apoptosis. Collectively, these results suggest that CuIIb exhibits its anti-inflammatory activity through modulating multiple cellular behaviors and signaling pathways, leading to the suppression of the adaptive immune response.

  8. The essential role of t cells in multiple sclerosis: A reappraisal

    Cris S Constantinescu

    2014-04-01

    Full Text Available Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system in which destruction of myelin and nerve axons has been shown to be mediated by immune mechanisms. Although the focus of research has been traditionally on T cells as key mediators of the immunopathology, more recent efforts at understanding this complex disorder have been directed increasingly at other cellular and humoral elements of the immune response. This review is a reappraisal of the crucial role of T cells, in particular the CD4+ helper T-cell subset, in multiple sclerosis. Recent evidence is discussed underlining the predominant contribution of T-cell-associated genes to the genome-wide association study results of multiple sclerosis susceptibility, the loss of T-cell quiescence in the conversion from clinically isolated syndrome to clinically definite multiple sclerosis, and the fact that T cells represent the main target of effective immunomodulatory and immunosuppressive treatments in multiple sclerosis.

  9. The role of the Parkinson's disease gene PARK9 in essential cellular pathways and the manganese homeostasis network in yeast.

    Alessandra Chesi

    Full Text Available YPK9 (Yeast PARK9; also known as YOR291W is a non-essential yeast gene predicted by sequence to encode a transmembrane P-type transport ATPase. However, its substrate specificity is unknown. Mutations in the human homolog of YPK9, ATP13A2/PARK9, have been linked to genetic forms of early onset parkinsonism. We previously described a strong genetic interaction between Ypk9 and another Parkinson's disease (PD protein α-synuclein in multiple model systems, and a role for Ypk9 in manganese detoxification in yeast. In humans, environmental exposure to toxic levels of manganese causes a syndrome similar to PD and is thus an environmental risk factor for the disease. How manganese contributes to neurodegeneration is poorly understood. Here we describe multiple genome-wide screens in yeast aimed at defining the cellular function of Ypk9 and the mechanisms by which it protects cells from manganese toxicity. In physiological conditions, we found that Ypk9 genetically interacts with essential genes involved in cellular trafficking and the cell cycle. Deletion of Ypk9 sensitizes yeast cells to exposure to excess manganese. Using a library of non-essential gene deletions, we screened for additional genes involved in tolerance to excess manganese exposure, discovering several novel pathways involved in manganese homeostasis. We defined the dependence of the deletion strain phenotypes in the presence of manganese on Ypk9, and found that Ypk9 deletion modifies the manganese tolerance of only a subset of strains. These results confirm a role for Ypk9 in manganese homeostasis and illuminates cellular pathways and biological processes in which Ypk9 likely functions.

  10. Cerebriform intradermal nevus presenting as cutis verticis gyrata with multiple cellular blue nevus over the body: A rare occurrence

    Somenath Sarkar

    2014-01-01

    Full Text Available Cutis verticis gyrata is a rare skin condition characterized by swelling of scalp resembling the surface of the brain. Various conditions, like cerebriform intradermal nevus (CIN, may give rise to this clinical entity. Moreover, its association with cellular blue nevus is extremely rare and has not been reported so far. Here, we report a 28-year-old male with a huge cerebriform swelling covering the occipital lobe along with multiple nodules all over the body. Histology of the scalp swelling showed solitary or clusters of nevus cells in the dermis and from the body lesions showed features of cellular blue nevus. The diagnosis of CIN with cellular blue nevus was confirmed

  11. The Role of Immunotherapy in Multiple Myeloma

    Mehmet Kocoglu

    2016-01-01

    Full Text Available Multiple myeloma is the second most common hematologic malignancy. The treatment of this disease has changed considerably over the last two decades with the introduction to the clinical practice of novel agents such as proteasome inhibitors and immunomodulatory drugs. Basic research efforts towards better understanding of normal and missing immune surveillence in myeloma have led to development of new strategies and therapies that require the engagement of the immune system. Many of these treatments are under clinical development and have already started providing encouraging results. We, for the second time in the last two decades, are about to witness another shift of the paradigm in the management of this ailment. This review will summarize the major approaches in myeloma immunotherapies.

  12. Cellular Suspensions Establishment and Multiplication of Cymbopogon citratus (D.C Staff

    Elisa Quiala

    2002-07-01

    Full Text Available Cellular suspensions settled down starting from callus of Cymbopogon citratus (D.C Stapf cultivated in semisolid medium, according to the methodology described for Freire (1998, for the cultivation of the cane of sugar and later on modified by Licea and Gómez (2000 for the cultivated callus of Cane Santa, with the objective of analyzing the effect of the cellular density on the cellular growth, being studied the behavior of the fresh mass, dry mass and the pH in three inocule densities (20, 40 and 60 gMF.l-1. The development of roots was evaluated in the cellular aggregated and it was also analyzed directly the influence of the explants on the callus formation cultivated directly in liquid medium, starting from cultivated plants in vitro. The biggest increment of fresh mass was obtained when 20 gMF.l-1 was used, the values of mass dry off they behaved in a similar way, being obtained the biggest rate of growth in this same treatment. The pH in the three densities of studied inocule, diminished during the first eight days and stayed stable starting from this moment. The alone presence of roots was appreciated only in the cellular aggregated cultivated without coconut water. The formation of callus directly in liquid medium took place in the region near to the meristematic area. Key words: coconut water, biomass production, lemon grass, root formation

  13. Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes

    Marchitti, Satori A.; Chen, Ying; Thompson, David C.; Vasiliou, Vasilis

    2011-01-01

    Solar ultraviolet radiation (UVR) exposes the human eye to near constant oxidative stress. Evidence suggests that UVR is the most important environmental insult leading to the development of a variety of ophthalmoheliosis disorders. UVR-induced reactive oxygen species are highly reactive with DNA, proteins and cellular membranes, resulting in cellular and tissue damage. Antioxidant defense systems present in ocular tissues function to combat reactive oxygen species and protect the eye from oxidative damage. Important enzymatic antioxidants are the superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase and members of the aldehyde dehydrogenase (ALDH) superfamily. Glutathione, ascorbic and uric acids, α-tocopherol, NADPH and ferritin serve as small molecule, nonenzymatic antioxidants. Ocular tissues have high levels of these antioxidants which are essential for the maintenance of redox homeostasis in the eye and protection against oxidative damage. ALDH1A1 and ALDH3A1, present abundantly in the cornea and lens, have been shown to have unique roles in the defense against UVR and the downstream effects of oxidative stress. This review presents the properties and functions of ocular antioxidants that play critical roles in the cellular response to UVR exposure, including a focused discussion of the unique roles that the ALDH1A1 and ALDH3A1 enzymes have as multi-functional ocular antioxidants. PMID:21670692

  14. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    Mierke, Claudia Tanja

    2013-01-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation. (paper)

  15. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  16. Coulomb coupling and the role of symmetries in quantum-dot arrays for cellular automata

    Ramirez, F.; Cota, E.; Ulloa, S. E.

    2000-01-01

    Using a group-theoretical analysis of the symmetries of a quantum dot array, we investigate the role of defects on the energetics of the system and the resulting charge configurations (or polarization of the cell). We find that for the typical four- or five-element geometries proposed, even small asymmetries introduced by defects in the system, or variations in the local electrostatic environment, can give rise to large effects on the polarization of the ground state and the corresponding low-energy excitations. These shifts are likely to produce important effects in the operation of the cellular automata proposed using these quantum dots. In particular, we find that the sensitivity to polarization changes induced by a driver cell decreases dramatically, and the polarization values are no longer fully defined. These effects would both force the use of stronger driving fields, and may also complicate the dynamical behavior of the cellular automata. (c) 2000 The American Physical Society

  17. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.

    Lill, Roland; Hoffmann, Bastian; Molik, Sabine; Pierik, Antonio J; Rietzschel, Nicole; Stehling, Oliver; Uzarska, Marta A; Webert, Holger; Wilbrecht, Claudia; Mühlenhoff, Ulrich

    2012-09-01

    Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Multiple-integrations of HPV16 genome and altered transcription of viral oncogenes and cellular genes are associated with the development of cervical cancer.

    Xulian Lu

    Full Text Available The constitutive expression of the high-risk HPV E6 and E7 viral oncogenes is the major cause of cervical cancer. To comprehensively explore the composition of HPV16 early transcripts and their genomic annotation, cervical squamous epithelial tissues from 40 HPV16-infected patients were collected for analysis of papillomavirus oncogene transcripts (APOT. We observed different transcription patterns of HPV16 oncogenes in progression of cervical lesions to cervical cancer and identified one novel transcript. Multiple-integration events in the tissues of cervical carcinoma (CxCa are significantly more often than those of low-grade squamous intraepithelial lesions (LSIL and high-grade squamous intraepithelial lesions (HSIL. Moreover, most cellular genes within or near these integration sites are cancer-associated genes. Taken together, this study suggests that the multiple-integrations of HPV genome during persistent viral infection, which thereby alters the expression patterns of viral oncogenes and integration-related cellular genes, play a crucial role in progression of cervical lesions to cervix cancer.

  19. The role of nuclear factor κB in the cellular response to different radiation qualities

    Koch, Kristina

    2013-04-11

    Radiation is currently one of the most important limiting factors for manned space flight. During such missions, there is a constant exposure to low doses of galactic cosmic radiation and in particular high-energy heavy ions. Together this is associated with an increased cancer risk which currently cannot be sufficiently reduced by shielding. As such, cellular radiation response needs to be further studied in order to improve risk estimation and develop appropriate countermeasures. It has been shown that exposure of human cells to accelerated heavy ions, in fluences that can be reached during long-term missions, leads to activation of the Nuclear Factor κB (NF-κB) pathway. Heavy ions with a linear energy transfer (LET) of 90 to 300 keV/μm were most effective in activating NF-κB. NF-κB as an important modulating factor in the cellular radiation response could improve cellular survival after heavy ion exposure, thereby influencing the cancer risk of astronauts. The NF-κB pathway may be a potential pharmacological target in the mitigation of radiation response during space missions; such as the prevention of massive cell death after high dose irradiation (acute effects), in addition to neoplastic cell transformation during chronic low-dose exposure (late effects). The aim of this work was to examine the role of NF-κB in the cellular response to space-relevant radiation. Firstly, NF-κB activation in human embryonic kidney cells (HEK) after exposure to different radiation qualities and quantities was investigated. Key elements of different NF-κB sub-pathways were chemically inhibited to analyze their role in NF-κB activation induced by low and high LET ionizing radiation. Finally a cell line, stably transfected with a plasmid coding for a short-hairpin RNA (shRNA) for a knockdown of the NF-κB subunit RelA, was established to assess the role of RelA in the cellular response to space-relevant radiation. The knockdown was verified on several levels and the cell

  20. The role of nuclear factor κB in the cellular response to different radiation qualities

    Koch, Kristina

    2013-01-01

    Radiation is currently one of the most important limiting factors for manned space flight. During such missions, there is a constant exposure to low doses of galactic cosmic radiation and in particular high-energy heavy ions. Together this is associated with an increased cancer risk which currently cannot be sufficiently reduced by shielding. As such, cellular radiation response needs to be further studied in order to improve risk estimation and develop appropriate countermeasures. It has been shown that exposure of human cells to accelerated heavy ions, in fluences that can be reached during long-term missions, leads to activation of the Nuclear Factor κB (NF-κB) pathway. Heavy ions with a linear energy transfer (LET) of 90 to 300 keV/μm were most effective in activating NF-κB. NF-κB as an important modulating factor in the cellular radiation response could improve cellular survival after heavy ion exposure, thereby influencing the cancer risk of astronauts. The NF-κB pathway may be a potential pharmacological target in the mitigation of radiation response during space missions; such as the prevention of massive cell death after high dose irradiation (acute effects), in addition to neoplastic cell transformation during chronic low-dose exposure (late effects). The aim of this work was to examine the role of NF-κB in the cellular response to space-relevant radiation. Firstly, NF-κB activation in human embryonic kidney cells (HEK) after exposure to different radiation qualities and quantities was investigated. Key elements of different NF-κB sub-pathways were chemically inhibited to analyze their role in NF-κB activation induced by low and high LET ionizing radiation. Finally a cell line, stably transfected with a plasmid coding for a short-hairpin RNA (shRNA) for a knockdown of the NF-κB subunit RelA, was established to assess the role of RelA in the cellular response to space-relevant radiation. The knockdown was verified on several levels and the cell

  1. On the effectiveness of single and multiple base station sleep modes in cellular networks

    Marsan, Marco Ajmone; Chiaraviglio, Luca; Ciullo, Delia; Meo, Michela

    2013-01-01

    In this paper we study base station sleep modes that, by reducing power consumption in periods of low traffic, improve the energy efficiency of cellular access networks. We assume that when some base stations enter sleep mode, radio coverage and service provisioning are provided by the base stations that remain active, so as to guarantee that service is available over the whole area at all times. This may be an optimistic assumption in the case of the sparse base station layouts typical of ru...

  2. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles

    Fröhlich E

    2012-11-01

    Full Text Available Eleonore FröhlichCenter for Medical Research, Medical University of Graz, Graz, AustriaAbstract: Many types of nanoparticles (NPs are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging.Keywords: endocytosis, plasma membrane, lysosomes, polystyrene particles, quantum dots, dendrimers

  3. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease.

    Stürner, Elisabeth; Behl, Christian

    2017-01-01

    In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 ( BCL-2-associated athanogene 3 ). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer's disease (tau-protein), Huntington's disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.

  4. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley

    Shirvanehdeh, Behrooz Darbani; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular...... protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes...... and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs’ functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear...

  5. Role of Proangiogenic Factors in Immunopathogenesis of Multiple Sclerosis.

    Hamid, Kabir Magaji; Mirshafiey, Abbas

    2016-02-01

    Angiogenesis is a complex and balanced process in which new blood vessels form from preexisting ones by sprouting, splitting, growth and remodeling. This phenomenon plays a vital role in many physiological and pathological processes. However, the disturbance in physiological process can play a role in pathogenesis of some chronic inflammatory diseases, including multiple sclerosis (MS) in human and its animal model. Although the relation between abnormal blood vessels and MS lesions was established in previous studies, but the role of pathological angiogenesis remains unclear. In this study, the link between proangiogenic factors and multiple sclerosis pathogenesis was examined by conducting a systemic review. Thus we searched the English medical literature via PubMed, ISI web of knowledge, Medline and virtual health library (VHL) databases. In this review, we describe direct and indirect roles of some proangiogenic factors in MS pathogenesis and report the association of these factors with pathological and inflammatory angiogenesis.

  6. The Multiple Roles of Women Pursuing Doctoral Studies

    Malone, Laurell Coleman M.S.

    1998-01-01

    Increases in the employment of women in administrative and managerial careers have drawn attention to a need for research that examines the interdependency of work and family roles, a need that is particularly crucial in the area of academic administration. This was a qualitative study of the strategies and support systems women educational administrators use to deal with the multiple roles they perform in life and work while pursuing doctoral studies. Forty-four women educational admini...

  7. Cellular response of pulp fibroblast to single or multiple photobiomodulation applications

    Fernandes, Amanda; Lourenço Neto, Natalino; Teixeira Marques, Nadia Carolina; Lourenço Ribeiro Vitor, Luciana; Tavares Oliveira Prado, Mariel; Cardoso Oliveira, Rodrigo; Moreira Machado, Maria Aparecida Andrade; Marchini Oliveira, Thais

    2018-06-01

    This study aimed to evaluate in vitro the effects of single or multiple photobiomodulation (PBM) applications on the viability and proliferation of pulp fibroblasts. Pulp fibroblasts from human deciduous teeth were obtained from a biorepository, plated into 96-well plates, and irradiated according to the experimental groups. At 24 h, 48 h, and 72 h after irradiation, cell viability and proliferation were assessed through MTT and Crystal Violet assays, respectively. The intragroup comparison revealed statistically significant differences for 2.5 J cm‑2 (3×) with increasing viability at 72 h over 48 h (p  =  0.027). The intergroup analysis showed a greater viability of the multiple PBM applications 2.5 J cm‑2 (3×) over the single application 7.5 J cm‑2 (1×) at 72 h. The application of 5 J cm‑2 (1×) exhibited greater proliferation than the application of 7.5 J cm‑2 (1×), 2.5 J cm‑2 (2×) and 2.5 J cm‑2 (3×). Single or multiple PBM applications demonstration different stimulatory effects on pulp fibroblast. The results show that the group submitted to multiple irradiation presented significantly higher cell viability than the groups with single irradiation at 72 h. However, the photobiomodulation therapy with single irradiations was more effective on cell proliferation at 24 h.

  8. Role of Cellular Immunity in Cow’s Milk Allergy: Pathogenesis, Tolerance Induction, and Beyond

    Juandy Jo

    2014-01-01

    Full Text Available Food allergy is an aberrant immune-mediated reaction against harmless food substances, such as cow’s milk proteins. Due to its very early introduction, cow’s milk allergy is one of the earliest and most common food allergies. For this reason cow’s milk allergy can be recognized as one of the first indications of an aberrant inflammatory response in early life. Classically, cow’s milk allergy, as is true for most other allergies as well, is primarily associated with abnormal humoral immune responses, that is, elevation of specific immunoglobulin E levels. There is growing evidence indicating that cellular components of both innate and adaptive immunity play significant roles during the pathogenesis of cow’s milk allergy. This is true for the initiation of the allergic phenotype (stimulation and skewing towards sensitization, development and outgrowth of the allergic disease. This review discusses findings pertaining to roles of cellular immunity in allergic inflammation, and tolerance induction against cow’s milk proteins. In addition, a possible interaction between immune mechanisms underlying cow’s milk allergy and other types of inflammation (infections and noncommunicable diseases is discussed.

  9. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications

    Jia Liu

    2017-08-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease that affects upper motor neurons (MNs comprising the corticospinal tract and lower MNs arising from the brain stem nuclei and ventral roots of the spinal cord, leading to fatal paralysis. Currently, there are no effective therapies for ALS. Increasing evidence indicates that neuroinflammation plays an important role in ALS pathogenesis. The neuroinflammation in ALS is characterized by infiltration of lymphocytes and macrophages, activation of microglia and reactive astrocytes, as well as the involvement of complement. In this review, we focus on the key cellular players of neuroinflammation during the pathogenesis of ALS by discussing not only their detrimental roles but also their immunomodulatory actions. We will summarize the pharmacological therapies for ALS that target neuroinflammation, as well as recent advances in the field of stem cell therapy aimed at modulating the inflammatory environment to preserve the remaining MNs in ALS patients and animal models of the disease.

  10. Homesickness in University Students: The Role of Multiple Place Attachment

    Scopelliti, Massimiliano; Tiberio, Lorenza

    2010-01-01

    The transition to college or university can lead to the challenge of adapting to a new setting. Homesickness has been frequently investigated as a potential negative consequence of relocation. This study analyzed the role of multiple place attachment in the development of homesickness among university students. The study used a multicausal…

  11. Lateral root formation and the multiple roles of auxin

    Du, Yujuan; Scheres, Ben

    2018-01-01

    Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles

  12. Differential Cellular Responses to Hedgehog Signalling in Vertebrates—What is the Role of Competence?

    Kiecker, Clemens; Graham, Anthony; Logan, Malcolm

    2016-01-01

    A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal—a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH) signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases—including several types of cancer—are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic. PMID:29615599

  13. Differential Cellular Responses to Hedgehog Signalling in Vertebrates—What is the Role of Competence?

    Clemens Kiecker

    2016-12-01

    Full Text Available A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal—a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases—including several types of cancer—are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic.

  14. Effects of multiple enzyme–substrate interactions in basic units of cellular signal processing

    Seaton, D D; Krishnan, J

    2012-01-01

    Covalent modification cycles are a ubiquitous feature of cellular signalling networks. In these systems, the interaction of an active enzyme with the unmodified form of its substrate is essential for signalling to occur. However, this interaction is not necessarily the only enzyme–substrate interaction possible. In this paper, we analyse the behaviour of a basic model of signalling in which additional, non-essential enzyme–substrate interactions are possible. These interactions include those between the inactive form of an enzyme and its substrate, and between the active form of an enzyme and its product. We find that these additional interactions can result in increased sensitivity and biphasic responses, respectively. The dynamics of the responses are also significantly altered by the presence of additional interactions. Finally, we evaluate the consequences of these interactions in two variations of our basic model, involving double modification of substrate and scaffold-mediated signalling, respectively. We conclude that the molecular details of protein–protein interactions are important in determining the signalling properties of enzymatic signalling pathways. (paper)

  15. Multiple Molecular and Cellular Mechanisms of Action of Lycopene in Cancer Inhibition

    Cristina Trejo-Solís

    2013-01-01

    Full Text Available Epidemiological studies suggest that including fruits, vegetables, and whole grains in regular dietary intake might prevent and reverse cellular carcinogenesis, reducing the incidence of primary tumours. Bioactive components present in food can simultaneously modulate more than one carcinogenic process, including cancer metabolism, hormonal balance, transcriptional activity, cell-cycle control, apoptosis, inflammation, angiogenesis and metastasis. Some studies have shown an inverse correlation between a diet rich in fruits, vegetables, and carotenoids and a low incidence of different types of cancer. Lycopene, the predominant carotenoid found in tomatoes, exhibits a high antioxidant capacity and has been shown to prevent cancer, as evidenced by clinical trials and studies in cell culture and animal models. In vitro studies have shown that lycopene treatment can selectively arrest cell growth and induce apoptosis in cancer cells without affecting normal cells. In vivo studies have revealed that lycopene treatment inhibits tumour growth in the liver, lung, prostate, breast, and colon. Clinical studies have shown that lycopene protects against prostate cancer. One of the main challenges in cancer prevention is the integration of new molecular findings into clinical practice. Thus, the identification of molecular biomarkers associated with lycopene levels is essential for improving our understanding of the mechanisms underlying its antineoplastic activity.

  16. Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch

    David Ross

    2017-08-01

    Full Text Available NQO1 is one of the two major quinone reductases in mammalian systems. It is highly inducible and plays multiple roles in cellular adaptation to stress. A prevalent polymorphic form of NQO1 results in an absence of NQO1 protein and activity so it is important to elucidate the specific cellular functions of NQO1. Established roles of NQO1 include its ability to prevent certain quinones from one electron redox cycling but its role in quinone detoxification is dependent on the redox stability of the hydroquinone generated by two-electron reduction. Other documented roles of NQO1 include its ability to function as a component of the plasma membrane redox system generating antioxidant forms of ubiquinone and vitamin E and at high levels, as a direct superoxide reductase. Emerging roles of NQO1 include its function as an efficient intracellular generator of NAD+ for enzymes including PARP and sirtuins which has gained particular attention with respect to metabolic syndrome. NQO1 interacts with a growing list of proteins, including intrinsically disordered proteins, protecting them from 20S proteasomal degradation. The interactions of NQO1 also extend to mRNA. Recent identification of NQO1 as a mRNA binding protein have been investigated in more detail using SERPIN1A1 (which encodes the serine protease inhibitor α-1-antitrypsin as a target mRNA and indicate a role of NQO1 in control of translation of α-1-antitrypsin, an important modulator of COPD and obesity related metabolic syndrome. NQO1 undergoes structural changes and alterations in its ability to bind other proteins as a result of the cellular reduced/oxidized pyridine nucleotide ratio. This suggests NQO1 may act as a cellular redox switch potentially altering its interactions with other proteins and mRNA as a result of the prevailing redox environment.

  17. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease

    Elisabeth Stürner

    2017-06-01

    Full Text Available In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy. One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3. Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein, Huntington’s disease (mutated huntingtin/polyQ proteins, and amyotrophic lateral sclerosis (mutated SOD1. In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.

  18. Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease.

    Bubb, Kristen J; Birgisdottir, Asa Birna; Tang, Owen; Hansen, Thomas; Figtree, Gemma A

    2017-08-01

    Rapid and coordinated release of a variety of reactive oxygen species (ROS) such as superoxide (O 2 .- ), hydrogen peroxide (H 2 O 2 ) and peroxynitrite, in specific microdomains, play a crucial role in cell signalling in the cardiovascular system. These reactions are mediated by reversible and functional modifications of a wide variety of key proteins. Dysregulation of this oxidative signalling occurs in almost all forms of cardiovascular disease (CVD), including at the very early phases. Despite the heavily publicized failure of "antioxidants" to improve CVD progression, pharmacotherapies such as those targeting the renin-angiotensin system, or statins, exert at least part of their large clinical benefit via modulating cellular redox signalling. Over 250 proteins, including receptors, ion channels and pumps, and signalling proteins are found in the caveolae. An increasing proportion of these are being recognized as redox regulated-proteins, that reside in the immediate vicinity of the two major cellular sources of ROS, nicotinamide adenine dinucleotide phosphate oxidase (Nox) and uncoupled endothelial nitric oxide synthase (eNOS). This review focuses on what is known about redox signalling within the caveolae, as well as endogenous protective mechanisms utilized by the cell, and new approaches to targeting dysregulated redox signalling in the caveolae as a therapeutic strategy in CVD. Copyright © 2017. Published by Elsevier Inc.

  19. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response.

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    Osteoarthritis (OA) is a complex disease of the joint for which current treatments are unsatisfactory, thus motivating development of tissue engineering (TE)-based therapies. To date, TE strategies have had some success, developing replacement tissue constructs with biochemical properties approaching that of native cartilage. However, poor biomechanical properties and limited postimplantation integration with surrounding tissue are major shortcomings that need to be addressed. Functional tissue engineering strategies that apply physiologically relevant biophysical cues provide a platform to improve TE constructs before implantation. In the previous decade, new experimental and theoretical findings in cartilage biomechanics and electromechanics have emerged, resulting in an increased understanding of the complex interplay of multiple biophysical cues in the extracellular matrix of the tissue. The effect of biophysical stimulation on cartilage, and the resulting chondrocyte-mediated biosynthesis, remodeling, degradation, and repair, has, therefore, been extensively explored by the TE community. This article compares and contrasts the cellular response of chondrocytes to multiple biophysical stimuli, and may be read in conjunction with its companion paper that compares and contrasts the subsequent intracellular signal transduction cascades. Mechanical, magnetic, and electrical stimuli promote proliferation, differentiation, and maturation of chondrocytes within established dose parameters or "biological windows." This knowledge will provide a framework for ongoing studies incorporating multiple biophysical cues in TE functional neocartilage for treatment of OA.

  20. The effect of ranitidine on cellular immunity in patients with multiple myeloma

    Nielsen, Hans Jørgen; Nielsen, H; Moesgaard, F

    1990-01-01

    .19-2.25 nmol/min) (P less than 0.005 between groups). Among ranitidine-treated patients spontaneous NK cell activity was unchanged, while in vitro interleukin-2- and interferon-alpha-stimulated NK cell activity decreased (P less than 0.03, respectively). As production of oxygen radicals constitutes...... after previous cytotoxic therapy were in a stable phase of their disease. All were without clinical signs of infections and at that time had not been treated with other immunomodulating agents. The patients were randomized to oral ranitidine 300 mg twice a day for 21 days or placebo, and several...... immunological parameters related to multiple myeloma were studied. The blood monocyte chemotactic response was improved in patients treated with ranitidine, and superoxide anion production increased from 2.02 nmol/min to 3.86 nmol/min (median values), while it was unchanged in patients given placebo (2...

  1. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems

    Sung Ryul Lee

    2018-01-01

    Full Text Available Zinc is recognized as an essential trace metal required for human health; its deficiency is strongly associated with neuronal and immune system defects. Although zinc is a redox-inert metal, it functions as an antioxidant through the catalytic action of copper/zinc-superoxide dismutase, stabilization of membrane structure, protection of the protein sulfhydryl groups, and upregulation of the expression of metallothionein, which possesses a metal-binding capacity and also exhibits antioxidant functions. In addition, zinc suppresses anti-inflammatory responses that would otherwise augment oxidative stress. The actions of zinc are not straightforward owing to its numerous roles in biological systems. It has been shown that zinc deficiency and zinc excess cause cellular oxidative stress. To gain insights into the dual action of zinc, as either an antioxidant or a prooxidant, and the conditions under which each role is performed, the oxidative stresses that occur in zinc deficiency and zinc overload in conjunction with the intracellular regulation of free zinc are summarized. Additionally, the regulatory role of zinc in mitochondrial homeostasis and its impact on oxidative stress are briefly addressed.

  2. The primary cilium as a multiple cellular signaling scaffold in development and disease

    Hyuk Wan Ko*

    2012-08-01

    Full Text Available Primary cilia, single hair-like appendage on the surface of themost mammalian cells, were once considered to be vestigialcellular organelles for a past century because of their tinystructure and unknown function. Although they lack ancestralmotility function of cilia or flagella, they share common groundwith multiciliated motile cilia and flagella on internal structuresuch as microtubule based nine outer doublets nucleated from thebase of mother centrioles called basal body. Making cilia,ciliogenesis, in cells depends on the cell cycle stage due to reuseof centrioles for cell division forming mitotic spindle pole (Mphase and assembling cilia from basal body (starting G1 phaseand maintaining most of interphase. Ciliary assembly requiredtwo conflicting processes such as assembly and disassembly andbalance between these two processes determines the length ofcilia. Both process required highly conserved transport system tosupply needed substance to grow tip of cilia and bring ciliaryturnover product back to the base of cilia using motor protein,kinesin and dynein, and transport protein complex, IFT particles.Disruption of ciliary structure or function causes multiple humandisorder called ciliopathies affecting disease of diverse ciliatedtissues ranging from eye, kidney, respiratory tract and brain.Recent explosion of research on the primary cilia and theirinvolvement on animal development and disease attracts scientificinterest on how extensively the function of cilia related to specificcell physiology and signaling pathway. In this review, I introducegeneral features of primary cilia and recent progress inunderstanding of the ciliary length control and signaling pathwaystransduced through primary cilia in vertebrates.

  3. Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis

    Lee Phil

    2011-06-01

    Full Text Available Abstract Background Perivenular inflammation is a common early pathological feature in multiple sclerosis (MS. A recent hypothesis stated that CNS inflammation is induced by perivenular iron deposits that occur in response to altered blood flow in MS subjects. In order to evaluate this hypothesis, an animal model was developed, called cerebral experimental autoimmune encephalomyelitis (cEAE, which presents with CNS perivascular iron deposits. This model was used to investigate the relationship of iron deposition to inflammation. Methods In order to generate cEAE, mice were given an encephalitogen injection followed by a stereotactic intracerebral injection of TNF-α and IFN-γ. Control animals received encephalitogen followed by an intracerebral injection of saline, or no encephalitogen plus an intracerebral injection of saline or cytokines. Laser Doppler was used to measure cerebral blood flow. MRI and iron histochemistry were used to localize iron deposits. Additional histological procedures were used to localize inflammatory cell infiltrates, microgliosis and astrogliosis. Results Doppler analysis revealed that cEAE mice had a reduction in cerebral blood flow compared to controls. MRI revealed T2 hypointense areas in cEAE animals that spatially correlated with iron deposition around vessels and at some sites of inflammation as detected by iron histochemistry. Vessels with associated iron deposits were distributed across both hemispheres. Mice with cEAE had more iron-labeled vessels compared to controls, but these vessels were not commonly associated with inflammatory cell infiltrates. Some iron-laden vessels had associated microgliosis that was above the background microglial response, and iron deposits were observed within reactive microglia. Vessels with associated astrogliosis were more commonly observed without colocalization of iron deposits. Conclusion The findings indicate that iron deposition around vessels can occur independently of

  4. GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration

    Loren Pickart

    2015-01-01

    Full Text Available GHK (glycyl-L-histidyl-L-lysine is present in human plasma, saliva, and urine but declines with age. It is proposed that GHK functions as a complex with copper 2+ which accelerates wound healing and skin repair. GHK stimulates both synthesis and breakdown of collagen and glycosaminoglycans and modulates the activity of both metalloproteinases and their inhibitors. It stimulates collagen, dermatan sulfate, chondroitin sulfate, and the small proteoglycan, decorin. It also restores replicative vitality to fibroblasts after radiation therapy. The molecule attracts immune and endothelial cells to the site of an injury. It accelerates wound-healing of the skin, hair follicles, gastrointestinal tract, boney tissue, and foot pads of dogs. It also induces systemic wound healing in rats, mice, and pigs. In cosmetic products, it has been found to tighten loose skin and improve elasticity, skin density, and firmness, reduce fine lines and wrinkles, reduce photodamage, and hyperpigmentation, and increase keratinocyte proliferation. GHK has been proposed as a therapeutic agent for skin inflammation, chronic obstructive pulmonary disease, and metastatic colon cancer. It is capable of up- and downregulating at least 4,000 human genes, essentially resetting DNA to a healthier state. The present review revisits GHK’s role in skin regeneration in the light of recent discoveries.

  5. Identification of Circular RNAs From the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Behrooz eDarbani

    2016-06-01

    Full Text Available RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.Keywords: circular RNAs, coding and non-coding transcripts, leaves, seeds, transfer cells, micronutrients, mitochondria

  6. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase

    Brown, Charles O.; Salem, Kelley; Wagner, Brett A.; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R.; Goel, Apollina

    2012-01-01

    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plu...

  7. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes

    Poth, Jens M.; Fini, Mehdi A.; Olschewski, Andrea; El Kasmi, Karim C.; Stenmark, Kurt R.

    2014-01-01

    Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop “out-of-proportion” severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines (“second hit”) antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease. PMID:25416383

  8. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles

    Peng Chen, Koki Kanehira and Akiyoshi Taniguchi

    2013-01-01

    Full Text Available Innate immune response is believed to be among the earliest provisional cellular responses, and mediates the interactions between microbes and cells. Toll-like receptors (TLRs are critical to these interactions. We hypothesize that TLRs also play an important role in interactions between nanoparticles (NPs and cells, although little information has been reported concerning such an interaction. In this study, we investigated the role of TLR3, TLR4 and TLR7 in cellular uptake of titanium dioxide NP (TiO2 NP agglomerates and the resulting inflammatory responses to these NPs. Our data indicate that TLR4 is involved in the uptake of TiO2 NPs and promotes the associated inflammatory responses. The data also suggest that TLR3, which has a subcellular location distinct from that of TLR4, inhibits the denaturation of cellular protein caused by TiO2 NPs. In contrast, the unique cellular localization of TLR7 has middle-ground functional roles in cellular response after TiO2 NP exposure. These findings are important for understanding the molecular interaction mechanisms between NPs and cells.

  9. The Role of Instabilities on the Mechanical Response of Cellular Solids and Structures

    Kyriakides, S

    1997-01-01

    .... The relatively regular and periodic microstructure of these two-dimensional materials makes them excellent models for studying the mechanisms that govern the compressive response of cellular materials...

  10. The role of epigenetics in the biology of multiple myeloma

    Dimopoulos, K; Gimsing, P; Grønbæk, K

    2014-01-01

    Several recent studies have highlighted the biological complexity of multiple myeloma (MM) that arises as a result of several disrupted cancer pathways. Apart from the central role of genetic abnormalities, epigenetic aberrations have also been shown to be important players in the development of MM......, and a lot of research during the past decades has focused on the ways DNA methylation, histone modifications and noncoding RNAs contribute to the pathobiology of MM. This has led to, apart from better understanding of the disease biology, the development of epigenetic drugs, such as histone deacetylase...... inhibitors that are already used in clinical trials in MM with promising results. This review will present the role of epigenetic abnormalities in MM and how these can affect specific pathways, and focus on the potential of novel 'epidrugs' as future treatment modalities for MM....

  11. Role of intestinal microbiota in the development of multiple sclerosis.

    Castillo-Álvarez, F; Marzo-Sola, M E

    2017-04-01

    Multiple sclerosis (MS) is a demyelinating disease that affects young adults; in that age group, it represents the second leading cause of disability in our setting. Its precise aetiology has not been elucidated, but it is widely accepted to occur in genetically predisposed patients who are exposed to certain environmental factors. The discovery of the regulatory role played by intestinal microbiota in various autoimmune diseases has opened a new line of research in this field, which is discussed in this review. We reviewed published studies on the role of the microbiota in the development of both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). In mice, it has been shown that intestinal microorganisms regulate the polarisation of T helper cells from Th1-Th17 up to Th2, the function of regulatory T cells, and the activity of B cells; they participate in the pathogenesis of EAE and contribute to its prevention and treatment. In contrast, evidence in humans is still scarce and mainly based on case-control studies that point to the presence of differences in certain bacterial communities. Multiple evidence points to the role of microbiota in EAE. Extrapolation of these results to MS is still in the early stages of research, and studies are needed to define which bacterial populations are associated with MS, the role they play in pathogenesis, and the therapeutic possibilities this knowledge offers us. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Role of SUMO-specific protease 2 in reprogramming cellular glucose metabolism.

    Shuang Tang

    Full Text Available Most cancer cells exhibit a shift in glucose metabolic strategy, displaying increased glycolysis even with adequate oxygen supply. SUMO-specific proteases (SENPs de-SUMOylate substrates including HIF1α and p53,two key regulators in cancer glucose metabolism, to regulate their activity, stability and subcellular localization. However, the role of SENPs in tumor glucose metabolism remains unclear. Here we report that SUMO-specific protease 2 (SENP2 negatively regulates aerobic glycolysis in MCF7 and MEF cells. Over-expression of SENP2 reduces the glucose uptake and lactate production, increasing the cellular ATP levels in MCF7 cells, while SENP2 knockout MEF cells show increased glucose uptake and lactate production along with the decreased ATP levels. Consistently, the MCF7 cells over-expressing SENP2 exhibit decreased expression levels of key glycolytic enzymes and an increased rate of glucose oxidation compared with control MCF7 cells, indicating inhibited glycolysis but enhanced oxidative mitochondrial respiration. Moreover, SENP2 over-expressing MCF7 cells demonstrated a reduced amount of phosphorylated AKT, whereas SENP2 knockout MEFs exhibit increased levels of phosphorylated AKT. Furthermore, inhibiting AKT phosphorylation by LY294002 rescued the phenotype induced by SENP2 deficiency in MEFs. In conclusion, SENP2 represses glycolysis and shifts glucose metabolic strategy, in part through inhibition of AKT phosphorylation. Our study reveals a novel function of SENP2 in regulating glucose metabolism.

  13. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme.

    Liaimer, Anton; Helfrich, Eric J N; Hinrichs, Katrin; Guljamow, Arthur; Ishida, Keishi; Hertweck, Christian; Dittmann, Elke

    2015-02-10

    Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation of N. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in the pks2(-) mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis with Gunnera manicata and Blasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites within N. punctiforme.

  14. The roles of cellular and molecular components of a hematoma at early stage of bone healing.

    Shiu, Hoi Ting; Leung, Ping Chung; Ko, Chun Hay

    2018-04-01

    Bone healing is a complex repair process that commences with the formation of a blood clot at the injured bone, termed hematoma. It has evidenced that a lack of a stable hematoma causes delayed bone healing or non-union. The hematoma at the injured bone constitutes the early healing microenvironment. It appears to dictate healing pathways that ends in a regenerative bone. However, the hematoma is often clinically removed from the damaged site. Conversely, blood-derived products have been used in bone tissue engineering for treating critical sized defects, including fibrin gels and platelet-rich plasma. A second generation of platelet concentrate that is based on leukocyte and fibrin content has also been developed and introduced in market. Conflicting effect of these products in bone repair are reported. We propose that the bone healing response becomes dysregulated if the blood response and subsequent formation and properties of a hematoma are altered. This review focuses on the central structural, cellular, and molecular components of a fracture hematoma, with a major emphasis on their roles in regulating bone healing mechanism, and their interactions with mesenchymal stem cells. New angles towards a better understanding of these factors and relevant mechanisms involved at the beginning of bone healing may help to clarify limited or adverse effects of blood-derived products on bone repair. We emphasize that the recreation of an early hematoma niche with critical compositions might emerge as a viable therapeutic strategy for enhanced skeletal tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  15. The role of the cytoskeleton in cellular force generation in 2D and 3D environments

    Kraning-Rush, Casey M; Carey, Shawn P; Califano, Joseph P; Smith, Brooke N; Reinhart-King, Cynthia A

    2011-01-01

    To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments

  16. The cellular wall role of Pleurozium schreberi (Brid.) Mitt. in sorbtion and lengthy retention of 137Cs

    Sobchenko, V.A.

    2001-05-01

    After tree month experiment desorption the 137 Cs content of moss was about 60% of initial one. It shown the possibility of 137 Cs lengthy retention in forest moss cover. In studying experiment with live and mortified mosses (Pleurozium schreberi (Brid.) Mitt.) had shown the cellular wall main role in 137 Cs sorption

  17. The role of information system in multiple sclerosis management.

    Ajami, Sima; Ahmadi, Golchehreh; Etemadifar, Masoud

    2014-12-01

    Multiple sclerosis (MS) is a chronic disease of central nervous system. The multiple sclerosis information system (MSIS), such as other information system (IS), depends on identification, collection and processing of data for producing useful information. Lack of the integrated IS for collecting standard data causes undesirable effects on exchanging, comparing, and managing. The aim of this study was to recognize the role of the IS in the MS management and determine the advantages and barriers in implementing of the MSIS. The present study was a nonsystematized review that was done in order to recognize the role of the IS in the MS management. In this study, electronic scientific resources such as scientific magazines and books and published topics at conferences were used. We used key words (IS, chronic disease management, and multiple sclerosis), their combination or their synonyms in title, key words, abstracts, and text of English articles and published reports from 1980 until 2013, and by using search engines such as Google, Google Scholar and scientific databases and electronic issues such as iPubMed, sufficiently important difference, Scopus, Medlib, and Magiran for gathering information. More than 200 articles and reports were collected and assessed and 139 of them. Findings showed that the MSIS can reduce of disease expenses through continuously collecting correct, accurate, sufficient, and timely patients and disease nature information; recoding; editing; processing; exchanging, and distributing among different health care centers. Although the MSIS has many advantages; but, we cannot ignore cultural, economic, technical, organizational, and managerial barriers. Therefore, it is necessary to do studies for preventing, reducing, and controlling them. One of the ways is to recognize the advantages of the MSIS and usage information technology in optimizing disease management.

  18. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy

    Markus Schosserer

    2017-11-01

    Full Text Available Cellular senescence describes an irreversible growth arrest characterized by distinct morphology, gene expression pattern, and secretory phenotype. The final or intermediate stages of senescence can be reached by different genetic mechanisms and in answer to different external and internal stresses. It has been maintained in the literature but never proven by clearcut experiments that the induction of senescence serves the evolutionary purpose of protecting the individual from development and growth of cancers. This hypothesis was recently scrutinized by new experiments and found to be partly true, but part of the gene activities now known to happen in senescence are also needed for cancer growth, leading to the view that senescence is a double-edged sword in cancer development. In current cancer therapy, cellular senescence is, on the one hand, intended to occur in tumor cells, as thereby the therapeutic outcome is improved, but might, on the other hand, also be induced unintentionally in non-tumor cells, causing inflammation, secondary tumors, and cancer relapse. Importantly, organismic aging leads to accumulation of senescent cells in tissues and organs of aged individuals. Senescent cells can occur transiently, e.g., during embryogenesis or during wound healing, with beneficial effects on tissue homeostasis and regeneration or accumulate chronically in tissues, which detrimentally affects the microenvironment by de- or transdifferentiation of senescent cells and their neighboring stromal cells, loss of tissue specific functionality, and induction of the senescence-associated secretory phenotype, an increased secretory profile consisting of pro-inflammatory and tissue remodeling factors. These factors shape their surroundings toward a pro-carcinogenic microenvironment, which fuels the development of aging-associated cancers together with the accumulation of mutations over time. We are presenting an overview of well-documented stress

  19. The role of astrocytes in multiple sclerosis pathogenesis.

    Guerrero-García, J J

    2017-09-25

    Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS), in which astrocytes play an important role as CNS immune cells. However, the activity of astrocytes as antigen-presenting cells (APC) continues to be subject to debate. This review analyses the existing evidence on the participation of astrocytes in CNS inflammation in MS and on several mechanisms that modify astrocyte activity in the disease. Astrocytes play a crucial role in the pathogenesis of MS because they express toll-like receptors (TLR) and major histocompatibility complex (MHC) classI andII. In addition, astrocytes participate in regulating the blood-brain barrier (BBB) and in modulating T cell activity through the production of cytokines. Future studies should focus on the role of astrocytes in order to find new therapeutic targets for the treatment of MS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini.

    Metz, D C; Patto, R J; Mrozinski, J E; Jensen, R T; Turner, R J; Gardner, J D

    1992-10-15

    In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.

  1. Cellular and molecular aspects of diabetic nephropathy; the role of VEGF-A.

    Carranza, Katherine; Veron, Dolores; Cercado, Alicia; Bautista, Noemi; Pozo, Wilson; Tufro, Alda; Veron, Delma

    2015-01-01

    The prevalence of diabetes mellitus increased during the last century and it is estimated that 45% of the patients are not diagnosed. In South America the prevalence of diabetes and chronic kidney disease (CKD) increased, with a great disparity among the countries with respect to access to dialysis. In Ecuador it is one of the main causes of mortality, principally in the provinces located on the coast of the Pacific Ocean. The greatest single cause of beginning dialysis is diabetic nephropathy (DN). Even using the best therapeutic options for DN, the residual risk of proteinuria and of terminal CKD remains high. In this review we indicate the importance of the problem globally and in our region. We analyse relevant cellular and molecular studies that illustrate the crucial significance of glomerular events in DN development and evolution and in insulin resistance. We include basic anatomical, pathophysiological and clinical concepts, with special attention to the role of angiogenic factors such as the vascular endothelial growth factor (VEGF-A) and their relationship to the insulin receptor, endothelial isoform of nitric oxide synthase (eNOS) and angiopoietins. We also propose various pathways that have therapeutic potential in our opinion. Greater in-depth study of VEGF-A and angiopoietins, the state of glomerular VEGF resistance, the relationship of VEGF receptor 2/nephrin, VEGF/insulin receptors/nephrin and the relationship of VEGF/eNOS-NO at glomerular level could provide solutions to the pressing world problem of DN and generate new treatment alternatives. Copyright © 2015. Published by Elsevier España, S.L.U.

  2. Cellular response to ionizing radiations: a study of the roles of physics and biology

    DeWyngaert, J.K.

    1982-01-01

    A study of the complementary roles of physics and biology in determining the response of cellular systems to ionizing radiations has been conducted. Upon exposure to radiation, a cell responds in a binary (yes/no) manner in terms of its proliferative ability (survival). The relationship between the survival probability and absorbed dose may then be examined in terms of relevant physical and biological parameters. The approach to these studies was to vary the physics and biology independently and observe separately their influences upon the measured effect. Unique to these studies was the use of heterogeneous tumor systems. These are solid tumors found to consist of genetically related but identifiably distinct populations of cells. The two heterogeneous systems studied, a murine system consisting of four subpopulations and a human tumor system with two subpopulations, were exposed to graded doses of 14 MeV neutrons or x-rays and their effectiveness in inducing cell lethality compared. A further examination of the radiation effect involved a study at the chemical level, measuring the ability of oxygen to potentiate the damage produced by photon irradiation. To summarize, the physics, biology and the environment have all been varied, and the systematics of the responses studied. The data were analyzed within the formalisms of the dual theory of radiation action, the repair-misrepair model, and the repair saturation model of cell killing. The change in survival curve shape and the increased effectiveness in cell killing for higher Linear Energy Transfer (LET) radiations (neutrons vs. x-rays) are discussed in relation to explanations in terms of either physical or biochemical processes

  3. The role of thiols in cellular response to radiation and drugs

    Biaglow, J.E.; Varnes, M.E.; Clark, E.P.; Epp, E.R.

    1983-01-01

    Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme A. GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Some nitroheterocyclic radiosensitizing drugs also deplete cellular thiols under aerobic conditions. Such reactivity may be the reason that they show anomalous radiation sensitization (i.e., better than predicted on the basis of electron affinity). Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole

  4. Epilepsy in multiple sclerosis: The role of temporal lobe damage.

    Calabrese, M; Castellaro, M; Bertoldo, A; De Luca, A; Pizzini, F B; Ricciardi, G K; Pitteri, M; Zimatore, S; Magliozzi, R; Benedetti, M D; Manganotti, P; Montemezzi, S; Reynolds, R; Gajofatto, A; Monaco, S

    2017-03-01

    Although temporal lobe pathology may explain some of the symptoms of multiple sclerosis (MS), its role in the pathogenesis of seizures has not been clarified yet. To investigate the role of temporal lobe damage in MS patients suffering from epilepsy, by the application of advanced multimodal 3T magnetic resonance imaging (MRI) analysis. A total of 23 relapsing remitting MS patients who had epileptic seizures (RRMS/E) and 23 disease duration matched RRMS patients without any history of seizures were enrolled. Each patient underwent advanced 3T MRI protocol specifically conceived to evaluate grey matter (GM) damage. This includes grey matter lesions (GMLs) identification, evaluation of regional cortical thickness and indices derived from the Neurite Orientation Dispersion and Density Imaging model. Regional analysis revealed that in RRMS/E, the regions most affected by GMLs were the hippocampus (14.2%), the lateral temporal lobe (13.5%), the cingulate (10.0%) and the insula (8.4%). Cortical thinning and alteration of diffusion metrics were observed in several regions of temporal lobe, in insular cortex and in cingulate gyrus of RRMS/E compared to RRMS ( ptemporal lobe, which exceeds what would be expected on the basis of the global GM damage observed.

  5. Lateral root formation and the multiple roles of auxin.

    Du, Yujuan; Scheres, Ben

    2018-01-04

    Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles throughout LR development. In this review, we summarize recent advances in our understanding of four aspects of LR formation: (i) LR positioning, which determines the spatial distribution of lateral root primordia (LRP) and LRs along primary roots; (ii) LR initiation, encompassing the activation of nuclear migration in specified lateral root founder cells (LRFCs) up to the first asymmetric cell division; (iii) LR outgrowth, the 'primordium-intrinsic' patterning of de novo organ tissues and a meristem; and (iv) LR emergence, an interaction between LRP and overlaying tissues to allow passage through cell layers. We discuss how auxin signaling, embedded in a changing developmental context, plays important roles in all four phases. In addition, we discuss how rapid progress in gene network identification and analysis, modeling, and four-dimensional imaging techniques have led to an increasingly detailed understanding of the dynamic regulatory networks that control LR development. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Yersinia pestis Ail: multiple roles of a single protein

    Kolodziejek, Anna M.; Hovde, Carolyn J.; Minnich, Scott A.

    2012-01-01

    Yersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague—a systemic disease that has claimed millions of human lives throughout history. Y. pestis survival in insect and mammalian host species requires fine-tuning to sense and respond to varying environmental cues. Multiple Y. pestis attributes participate in this process and contribute to its pathogenicity and highly efficient transmission between hosts. These include factors inherited from its enteric predecessors; Y. enterocolitica and Y. pseudotuberculosis, as well as phenotypes acquired or lost during Y. pestis speciation. Representatives of a large Enterobacteriaceae Ail/OmpX/PagC/Lom family of outer membrane proteins (OMPs) are found in the genomes of all pathogenic Yersiniae. This review describes the current knowledge regarding the role of Ail in Y. pestis pathogenesis and virulence. The pronounced role of Ail in the following areas are discussed (1) inhibition of the bactericidal properties of complement, (2) attachment and Yersinia outer proteins (Yop) delivery to host tissue, (3) prevention of PMNL recruitment to the lymph nodes, and (4) inhibition of the inflammatory response. Finally, Ail homologs in Y. enterocolitica and Y. pseudotuberculosis are compared to illustrate differences that may have contributed to the drastic bacterial lifestyle change that shifted Y. pestis from an enteric to a vector-born systemic pathogen. PMID:22919692

  7. Role of thiols in cellular response to radiation and drugs. Symposium: thiols

    Biaglow, J.E.; Varnes, M.E.; Clark, E.P.; Epp, E.R.

    1983-01-01

    Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme. A GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole. In conclusion, we propose an altered thiol model which includes a mechanism for thiol involvement in the aerobic radiation response of cells

  8. THE ROLE OF MULTIPLICITY IN DISK EVOLUTION AND PLANET FORMATION

    Kraus, Adam L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Ireland, Michael J. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Hillenbrand, Lynne A. [California Institute of Technology, Department of Astrophysics, MC 249-17, Pasadena, CA 91125 (United States); Martinache, Frantz [National Astronomical Observatory of Japan, Subaru Telescope, Hilo, HI 96720 (United States)

    2012-01-20

    The past decade has seen a revolution in our understanding of protoplanetary disk evolution and planet formation in single-star systems. However, the majority of solar-type stars form in binary systems, so the impact of binary companions on protoplanetary disks is an important element in our understanding of planet formation. We have compiled a combined multiplicity/disk census of Taurus-Auriga, plus a restricted sample of close binaries in other regions, in order to explore the role of multiplicity in disk evolution. Our results imply that the tidal influence of a close ({approx}<40 AU) binary companion significantly hastens the process of protoplanetary disk dispersal, as {approx}2/3 of all close binaries promptly disperse their disks within {approx}<1 Myr after formation. However, prompt disk dispersal only occurs for a small fraction of wide binaries and single stars, with {approx}80%-90% retaining their disks for at least {approx}2-3 Myr (but rarely for more than {approx}5 Myr). Our new constraints on the disk clearing timescale have significant implications for giant planet formation; most single stars have 3-5 Myr within which to form giant planets, whereas most close binary systems would have to form giant planets within {approx}<1 Myr. If core accretion is the primary mode for giant planet formation, then gas giants in close binaries should be rare. Conversely, since almost all single stars have a similar period of time within which to form gas giants, their relative rarity in radial velocity (RV) surveys indicates either that the giant planet formation timescale is very well matched to the disk dispersal timescale or that features beyond the disk lifetime set the likelihood of giant planet formation.

  9. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  10. The role of multiple barriers in assuring waste package reliability

    Bradford, R.M.

    1993-08-01

    Yucca Mountain in southwestern Nevada is being studied as a potential repository site for the permanent storage of high-level nuclear waste. Regulators have set performance standards that the potential repository must meet in order to obtain regulatory approval. Nuclear Regulatory Commission (NRC) regulations state that containment of radioactivity must be ''substantially complete'' for the first 1000 years after closure of the facility. Thereafter, the acceptable annual limit on releases is 1/100,000 of each radionuclide remaining in the inventory after 1000 years. To demonstrate that the potential facility is in compliance with the regulations, it is necessary to obtain some understanding of the probability distribution of the cumulative quantity of releases by certain time points. This paper will discuss the probability distribution of waste container lifetimes and how the understanding of this distribution will play a role in finding the distribution of the release quantities over time. It will be shown that, for reasonable assumptions about the process of barrier failure, the reliability of a multiple-barrier container can be achieved and demonstrated much more readily than a container consisting of a single barrier. The discussion will focus primarily on the requirement of substantially complete containment for the first 1000 years

  11. The Role of Fungi in the Etiology of Multiple Sclerosis

    Julián Benito-León

    2017-10-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system. Infectious triggers of MS are being actively investigated. Substantial evidence supports the involvement of the Epstein-Barr virus (EBV, though other viruses, bacteria, protists, and fungi are also being considered. Many links between fungi and diseases involving chronic inflammation have been found recently. Evidence linking MS and fungi is reviewed here. The HLA-DRB1*15 allele group is the most important genetic risk factor of MS, and is a risk factor in several other conditions linked to fungal infections. Many biomarkers of MS are consistent with fungal infections, such as IL-17, chitotriosidase, and antibodies against fungi. Dimethyl fumarate (DMF, first used as an industrial fungicide, was recently repurposed to reduce MS symptoms. Its mechanisms of action in MS have not been firmly established. The low risk of MS during childhood and its moderate association with herpes simplex virus type 2 suggest genital exposure to microbes (including fungi should be investigated as a possible trigger. Molecular and epidemiological evidence support a role for infections such as EBV in MS. Though fungal infections have not been widely studied in MS, many lines of evidence are consistent with a fungal etiology. Future microbiome and serological studies should consider fungi as a possible risk factor for MS, and future clinical studies should consider the effect of fungicides other than DMF on MS symptoms.

  12. Multiple roles of the coagulation protease cascade during virus infection.

    Antoniak, Silvio; Mackman, Nigel

    2014-04-24

    The coagulation cascade is activated during viral infections. This response may be part of the host defense system to limit spread of the pathogen. However, excessive activation of the coagulation cascade can be deleterious. In fact, inhibition of the tissue factor/factor VIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever. Other studies showed that incorporation of tissue factor into the envelope of herpes simplex virus increases infection of endothelial cells and mice. Furthermore, binding of factor X to adenovirus serotype 5 enhances infection of hepatocytes but also increases the activation of the innate immune response to the virus. Coagulation proteases activate protease-activated receptors (PARs). Interestingly, we and others found that PAR1 and PAR2 modulate the immune response to viral infection. For instance, PAR1 positively regulates TLR3-dependent expression of the antiviral protein interferon β, whereas PAR2 negatively regulates expression during coxsackievirus group B infection. These studies indicate that the coagulation cascade plays multiple roles during viral infections.

  13. The multiple roles and functions of English in South Korea

    Gene Vasilopoulos

    2013-10-01

    Full Text Available In the field of language and identity, the subcategory of gender has been an area of growing interest (Pavlenko, 2001; Norton & Pavlenko, 2004; Menard-Warwick, 2008; and Higgins, 2010. Adopting the view of gender as “a system of social relationships and discursive practices” (Norton & Pavlenko, 2004, p. 504, social context is fundamental in understanding how gender relates to foreign language learning. This qualitative study focused on the extent to which gender impacts English language learning and English language use in the context of teaching English as a foreign language in South Korea. More specifically, it investigates how gender shapes self and social identity, and how these identities relate to English language learning and English language use, at present and/or in the future, in both real and/or imagined communities. Four male and four female participants were selected using purposive homogenous sampling techniques based on the criteria of having lived abroad in an English speaking community for over 5 years—a criterion which assumes the formation of self and social identity in addition to their native Korean L1. Data was collected through multiple methods including open-ended questionnaires, in-depth interviews, and focus group discussions. Interview and questionnaire data reveals gender differences in the symbolic meaning of English language, the relevance of English in self and social positioning, and the role of English in shaping future professional trajectories with males situating themselves in international contexts and females in the local.

  14. Immune resistance of Multiple Myeloma : the role of the microenvironment

    de Haart, SJ

    2017-01-01

    Immunotherapeutic strategies in Multiple Myeloma are under development. In this thesis we present a new perspective in optimizing immunotherapy in Multiple Myeloma patient. We propose that currently, immunotherapy is limited in efficacy through interactions of Multiple Myeloma cells with the bone

  15. Exploring the role of microglia in mood disorders associated with experimental multiple sclerosis

    Antonietta eGentile

    2015-06-01

    Full Text Available Microglia is increasingly recognized to play a crucial role in the pathogenesis of psychiatric diseases. In particular, microglia may be the cellular link between inflammation and behavioural alterations: by releasing a number of soluble factors, among which pro-inflammatory cytokines, they can regulate synaptic activity, thereby leading to perturbation of behaviour.In multiple sclerosis (MS, the most common neuroinflammatory disorder affecting young adults, microglia activation and dysfunction may account for mood symptoms, like depression and anxiety, that are often diagnosed in patients even in the absence of motor disability. Behavioural studies in experimental autoimmune encephalomyelitis (EAE, the animal model of MS, have shown that emotional changes occur early in the disease and in correlation to inflammatory mediator and neurotransmitter level alterations. However, such studies lack a full and comprehensive analysis of the role played by microglia in EAE-behavioural syndrome. We review the experimental studies addressing behavioural symptoms in EAE, and propose the study of neuron-glia interaction as a powerful but still poorly explored tool to investigate the burden of microglia in mood alterations associated to MS.

  16. Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by gamma-rays.

    Lee, S H; Jo, S H; Lee, S M; Koh, H J; Song, H; Park, J W; Lee, W H; Huh, T L

    2004-09-01

    To investigate the regulation of NADPH-producing isocitrate dehydrogenase (ICDH) in cytosol (IDPc) and mitochondria (IDPm) upon gamma-ray irradiation, and the roles of IDPc and IDPm in the protection against cellular damage induced by gamma-ray irradiation. Changes of IDPc and IDPm proteins upon gamma-ray irradiation to NIH3T3 cells were analysed by immunoblotting. To increase or decrease the expression of IDPc or IDPm, NIH3T3 cells were stably transfected with mouse IDPc or IDPm cDNA in either the sense or the antisense direction. The transfected cells with either increased or decreased IDPc or IDPm were exposed to gamma-rays, and the levels of reactive oxygen species generation, protein oxidation and lipid peroxidation were measured. Both IDPc and IDPm activities were induced by gamma-ray in NIH3T3 cells. Cells with decreased expression of IDPc or IDPm had elevated reactive oxygen species generation, lipid peroxidation and protein oxidation. Conversely, overproduction of IDPc or IDPm protein partially protected the cells from oxidative damage induced by gamma-ray irradiation. The protective role of IDPc and IDPm against gamma-ray-induced cellular damage can be attributed to elevated NADPH, reducing equivalents needed for recycling reduced glutathione in the cytosol and mitochondria. Thus, a primary biological function of the ICDHs may be production of NADPH, which is a prerequisite for some cellular defence systems against oxidative damage.

  17. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-01-01

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair

  18. Role of specimen size upon the measured toughness of cellular solids

    Christodoulou, I; Tan, P J

    2013-01-01

    It is well known that the mechanical properties of cellular solids depend critically upon the specimen size and that a 'sufficiently' large test specimen is needed to obtain representative bulk values. Notwithstanding, the fracture toughness of cellular solids is still measured experimentally based on standards, such as the ASTM E399 and E813, developed for solid materials that do not possess an intermediate, 'cell-level' length scale. Experimental data in the literature appears to show that the toughness of stochastic 3D foams is, also, size-dependent. This paper presents the results of a detailed finite element (FE) study that will quantify, and identify the physical origin of, the size-dependent effect. Three-point bending of a single-edge notched (or SEN(B)) specimen, with a 2D Voronoi micro-architecture, is modelled numerically to obtain estimates of fracture toughness which are compared to those obtained with a 'boundary-layer' analysis

  19. A Novel Role for Keratin 17 in Coordinating Oncogenic Transformation and Cellular Adhesion in Ewing Sarcoma

    Sankar, Savita; Tanner, Jason M.; Bell, Russell; Chaturvedi, Aashi; Randall, R. Lor; Beckerle, Mary C.

    2013-01-01

    Oncogenic transformation in Ewing sarcoma is caused by EWS/FLI, an aberrant transcription factor fusion oncogene. Glioma-associated oncogene homolog 1 (GLI1) is a critical target gene activated by EWS/FLI, but the mechanism by which GLI1 contributes to the transformed phenotype of Ewing sarcoma was unknown. In this work, we identify keratin 17 (KRT17) as a direct downstream target gene upregulated by GLI1. We demonstrate that KRT17 regulates cellular adhesion by activating AKT/PKB (protein kinase B) signaling. In addition, KRT17 is necessary for oncogenic transformation in Ewing sarcoma and accounts for much of the GLI1-mediated transformation function but via a mechanism independent of AKT signaling. Taken together, our data reveal previously unknown molecular functions for a cytoplasmic intermediate filament protein, KRT17, in coordinating EWS/FLI- and GLI1-mediated oncogenic transformation and cellular adhesion in Ewing sarcoma. PMID:24043308

  20. Role of cellular heparan sulfate proteoglycans in infection of human adenovirus serotype 3 and 35.

    Sebastian Tuve

    2008-10-01

    Full Text Available Species B human adenoviruses (Ads are increasingly associated with outbreaks of acute respiratory disease in U.S. military personnel and civil population. The initial interaction of Ads with cellular attachment receptors on host cells is via Ad fiber knob protein. Our previous studies showed that one species B Ad receptor is the complement receptor CD46 that is used by serotypes 11, 16, 21, 35, and 50 but not by serotypes 3, 7, and 14. In this study, we attempted to identify yet-unknown species B cellular receptors. For this purpose we used recombinant Ad3 and Ad35 fiber knobs in high-throughput receptor screening methods including mass spectrometry analysis and glycan arrays. Surprisingly, we found that the main interacting surface molecules of Ad3 fiber knob are cellular heparan sulfate proteoglycans (HSPGs. We subsequently found that HSPGs acted as low-affinity co-receptors for Ad3 but did not represent the main receptor of this serotype. Our study also revealed a new CD46-independent infection pathway of Ad35. This Ad35 infection mechanism is mediated by cellular HSPGs. The interaction of Ad35 with HSPGs is not via fiber knob, whereas Ad3 interacts with HSPGs via fiber knob. Both Ad3 and Ad35 interacted specifically with the sulfated regions within HSPGs that have also been implicated in binding physiologic ligands. In conclusion, our findings show that Ad3 and Ad35 directly utilize HSPGs as co-receptors for infection. Our data suggest that adenoviruses evolved to simulate the presence of physiologic HSPG ligands in order to increase infection.

  1. The role of ORMDL proteins, guardians of cellular sphingolipids, in asthma

    Paulenda, Tomáš; Dráber, Petr

    2016-01-01

    Roč. 71, č. 7 (2016), s. 918-930 ISSN 0105-4538 R&D Projects: GA ČR(CZ) GA14-00703S; GA ČR(CZ) GA14-09807S; GA ČR(CZ) GBP302/12/G101 Institutional support: RVO:68378050 Keywords : asthma * cellular membranes * endoplasmic * reticulum * ORMDL3 * sphingolipids Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.361, year: 2016

  2. “Pulling the plug” on cellular copper: The role of mitochondria in copper export

    Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2008-01-01

    Mitochondria contain two enzymes, Cu, Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondria...

  3. Current role of radiation therapy for multiple myeloma.

    Talamo, Giampaolo; Dimaio, Christopher; Abbi, Kamal K S; Pandey, Manoj K; Malysz, Jozef; Creer, Michael H; Zhu, Junjia; Mir, Muhammad A; Varlotto, John M

    2015-01-01

    Radiation therapy (RT) is a treatment modality traditionally used in patients with multiple myeloma (MM), but little is known regarding the role and effectiveness of RT in the era of novel agents, i.e., immunomodulatory drugs and proteasome inhibitors. We retrospectively reviewed data from 449 consecutive MM patients seen at our institute in 2010-2012 to assess indications for RT as well as its effectiveness. Pain response was scored similarly to RTOG 0631 and used the Numerical Rating Pain Scale. Among 442 evaluable patients, 149 (34%) patients and 262 sites received RT. The most common indication for RT was palliation of bone pain (n = 109, 42%), followed by prevention/treatment of pathological fractures (n = 73, 28%), spinal cord compression (n = 26, 10%), and involvement of vital organs/extramedullary disease (n = 25, 10%). Of the 55 patients evaluable for pain relief, complete and partial responses were obtained in 76.4 and 7.2%, respectively. Prior RT did not significantly decrease the median number of peripheral blood stem cells collected for autologous transplant, even when prior RT was given to both the spine and pelvis. Inadequacy of stem cell collection for autologous stem cell transplant (ASCT) was not significantly different and it occurred in 9 and 15% of patients receiving no RT and spine/pelvic RT, respectively. None of the three cases of therapy-induced acute myelogenous leukemia/MDS occurred in the RT group. Despite the introduction of novel effective agents in the treatment of MM, RT remains a major therapeutic component for the management in 34% of patients, and it effectively provides pain relief while not interfering with successful peripheral blood stem cell collection for ASCT.

  4. Multiple Roles and Women's Mental Health in Canada

    Ansara Donna; Glynn Keva; Maclean Heather

    2004-01-01

    Abstract Health Issue Research on the relationship between women's social roles and mental health has been equivocal. Although a greater number of roles often protect mental health, certain combinations can lead to strain. Our study explored the moderating affects of different role combinations on women's mental health by examining associations with socioeconomic status and differences in women's distress (depressive symptoms, personal stress (role strain) and chronic stress (role strain plus...

  5. Critical Role of Crystalline Anisotropy in the Stability of Cellular Array Structures in Directional Solidification

    Kopczynski, P.; Rappel, W.; Karma, A.

    1996-01-01

    We calculate numerically the full Floquet-Bloch stability spectrum of cellular array structures in a symmetric model of directional solidification. Our results demonstrate that crystalline anisotropy critically influences the stability of these structures. Without anisotropy, the stability balloon of cells in the plane of wave number and velocity closes near the onset of morphological instability. With a finite, but even small, amount of anisotropy this balloon remains open and a band of stable solutions persists for higher velocities into a deep cell regime. The width of the balloon depends critically on the anisotropy strength. copyright 1996 The American Physical Society

  6. Role of dimethyl fumarate in oxidative stress of multiple sclerosis: A review.

    Suneetha, A; Raja Rajeswari, K

    2016-04-15

    Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS affecting both white and grey matter. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis. Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2). Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapy with dimethyl fumarate. The clinical utility of DMF in multiple sclerosis is being explored through phase III trials with BG-12, which is an oral therapeutic agent. Currently a wide research is going on to find out the exact mechanism of DMF, till date it is not clear. Based on strong signals of nephrotoxicity in non-humans and the theoretical risk of renal cell cancer from intracellular accumulation of fumarate, post-marketing study of a large population of patients will be necessary to fully assess the long-term safety of dimethyl fumarate. The current treatment goals are to shorten the duration and severity of relapses, prolong the time between relapses, and delay progression of disability. In this regard, dimethyl fumarate offers a promising alternative to orally administered fingolimod (GILENYA) or teriflunomide (AUBAGIO), which are currently marketed in the United States under FDA-mandated Risk Evaluation and Mitigation Strategy (REMS) programs because of serious safety concerns. More clinical experience with all three agents will be necessary to differentiate the tolerability of long-term therapy for patients diagnosed with multiple sclerosis. This write-up provides the detailed information of dimethyl fumarate in treating the neuro disease, multiple sclerosis and its mechanism involved via

  7. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase.

    Brown, Charles O; Salem, Kelley; Wagner, Brett A; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R; Goel, Apollina

    2012-06-15

    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-κB (nuclear factor κB) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-κB activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-α, IL-6 induced an early perturbation in reduced glutathione level and increased NF-κB-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy.

  8. Role of excision repair in postradiation recovery of biological activity of cellular DNA Bacillus subtilis

    Filippov, V.D.

    1976-01-01

    DNA extracted from UV-irradiated prototroph cells of Bacillus subtilis uvr + (45 sec. of UV light, 20% survivals) has a lowered transforming activity (TA) of markers purB and metB, and a lowered ratio TA pur/TA met. During the subsequent incubation of uvr + cells in glucose-salt medium free of nitrogen sources the TA of markers and the ratio between them increase. No increase is observed during the postradiation incubation under the same conditions or in a nutrition medium of uvr cells, deficient in escision of pyrimidine dimers. The increment of DNA begins approsimately in 30 min. after the beginning of incubation of irradiated uvr cells in nutrition medium. On the basis of these facts it is concluded that neither the replication of damaged DNA nor the postreplication repair, but only excision repair, can provide the recovery of biological (transforming) activity of cellular DNA in Bac. subtilis. The system given might be a suitable model for testing compounds which affect the activity of this process. The well-known inhibitors of dark repair, caffeine, proflavine to inhibit reversibly the initial steps of the process/ and especially acriflavine, delay the recovery of markers of cellular DNA in irradiated uvr + cells. Caffeine is proved to inhibit reversibly the initial steps of the process

  9. A critical role of a cellular membrane traffic protein in poliovirus RNA replication.

    George A Belov

    2008-11-01

    Full Text Available Replication of many RNA viruses is accompanied by extensive remodeling of intracellular membranes. In poliovirus-infected cells, ER and Golgi stacks disappear, while new clusters of vesicle-like structures form sites for viral RNA synthesis. Virus replication is inhibited by brefeldin A (BFA, implicating some components(s of the cellular secretory pathway in virus growth. Formation of characteristic vesicles induced by expression of viral proteins was not inhibited by BFA, but they were functionally deficient. GBF1, a guanine nucleotide exchange factor for the small cellular GTPases, Arf, is responsible for the sensitivity of virus infection to BFA, and is required for virus replication. Knockdown of GBF1 expression inhibited virus replication, which was rescued by catalytically active protein with an intact N-terminal sequence. We identified a mutation in GBF1 that allows growth of poliovirus in the presence of BFA. Interaction between GBF1 and viral protein 3A determined the outcome of infection in the presence of BFA.

  10. The Role of Mechanical Force in Molecular and Cellular during Orthodontic Tooth Movement

    Ida Bagus Narmada

    2012-10-01

    Full Text Available Application of mechanical force on abnormally positioned tooth, cause changes in tooth location and transmitted to the bone ia the periodontal ligament (PDL produce orthodontic tooth movement. This force application is further way that remodeling in the area occurs. In order to develop biological strategies for enhancing this movement of teeth in bone, the underlying mechanisms of bone resorption and apposition should be understood in detail. Analysis of gingival crevicular fluid (GCF may be a good means of examining the on going molecular and cellular process associated with gingival and bone turnover during orthodontic tooth movement. If it could be possible to biologically monitor and predict the outcome of orthodontic force, then the appliance management could be based on dividual tissue response and the effectiveness of the treatment could be improved and understanding their biology is critical to finding ways to modify bone biology to move teeth faster. The present article reviewed a short introduction to some mayors advanced mechanical force in molecular and cellular biology during orthodontic tooth movement.DOI: 10.14693/jdi.v15i3.30

  11. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell...... cellular model. With the use of the developed hierarchical model, the influence of the microstructure, including microfibril angles (MFAs, which characterizes the orientation of the cellulose fibrils with respect to the cell axis), the thickness of the cell wall, the shape of the cell cross...... is presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element...

  12. 231 Using Multiple Regression Analysis in Modelling the Role of ...

    User

    of Internal Revenue, Tourism Bureau and hotel records. The multiple regression .... additional guest facilities such as restaurant, a swimming pool or child care and social function ... and provide good quality service to the public. Conclusion.

  13. CURRENT APPROACHES TO THE LABORATORY DIAGNOSIS OF RHEUMATIC DISEASES: ROLE OF MOLECULAR AND CELLULAR BIOMARKERS

    E. N. Aleksandrova

    2016-01-01

    Full Text Available Laboratory medicine in the early 21st century has achieved advances due to the development and prompt practical introduction of innovative molecular cell technologies, which have assisted in increasing the diagnostic sensitivity and specificity of laboratory tests and in substantially expanding the spectrum of study biomarkers in rheumatology. High-technology automated analytical systems using both classical uniplex methods for immunochemical analysis (indirect immunofluorescence test, enzyme immunoassay, immunoblotting, immunodot assay, immunonephelometry, chemiluminescence immunoassay, and radioimmunoassay and multiplex diagnostic platforms based on DNA, RNA, protein and cellular microchips, polymerase chain reaction, flow cytometry, and mass spectrometry have been used in the past decade to determine biomarkers of rheumatic diseases (RD in blood, synovial fluid, urine, biopsy specimens of the synovial membrane, kidney, and other affected tissues.Present-day generation of molecular and cellular biomarkers (autoantibodies, acute-phase inflammatory proteins, cytokines, chemokines, vascular endothelial activation markers, immunoglobulins, complement components, lymphocyte subpopulations, osseous and cartilaginous tissue metabolic products, intracellular signaling molecules, proteases, and genetic, epigenetic, and transcriptomic markers is an important tool for prevention, early diagnosis, assessment of disease activity, progression rate, clinical laboratory subtypes of RD, prediction of the efficiency of therapy and the risk of adverse events during treatment. Deciphering of the key pathogenetic mechanisms of RD could identify the molecular and cellular biomarkers that might be used as therapeutic targets. Biologicals (monoclonal antibodies and hybrid protein molecules that selectively inhibit proinflammatory cytokines and membrane molecules mediating the pathological activation of immunocompetent cells are successfully used to treat RD today

  14. The role of cellular catalase on the radiosensitization of bacterial vegetative cells by N2O

    Watanabe, H.; Takehisa, M.

    1983-01-01

    The radiosensitizing effect of N 2 O on eight strains of bacteria was measured in dilute suspensions. The dose-modifying factors (DMF) of N 2 O on M. radiodurans R 1 , P. radiora O-1, M. lysodeikticus and B. pumilus E601 (vegetative cells) were 3.4, 2.9, 2.4 and 1.7, respectively. But P. radiora RP-C, P. fluorescens B3-1, E. coli B/r and E. coli K-12 were hardly sensitized by N 2 O. From measurements of catalase activity of each bacterium, it was found that the DMF increases with increased catalase activity, suggesting that cellular catalase promotes the sensitizing action of N 2 O. (author)

  15. The Role of MreB in Escherichia Coli's Cellular Rigidity

    Shaevitz, Joshua W.

    2009-03-01

    Bacteria possess homologs of all three classes of eukaryotic cytoskeletal proteins. These filamentous proteins have been shown to localize proteins essential for a number of cell-biological processes in prokaryotes such as cell growth and division. However, to date, there has been no direct evidence that the cytoskeleton in bacteria bears mechanical loads or can generate physical forces than are used by the cell. I will present evidence from combined fluorescence and force microscopy measurements that MreB, an actin homolog, is responsible for half of Escherichia coli's cellular rigidity. These data support an interpretation in which the cytoskeleton, the peptidoglycan cell wall and a large turgor pressure work together to give gram-negative cells their mechanical properties.

  16. Anomalous transport in cellular flows: The role of initial conditions and aging

    Pöschke, Patrick; Sokolov, Igor M.; Nepomnyashchy, Alexander A.; Zaks, Michael A.

    2016-09-01

    We consider the diffusion-advection problem in two simple cellular flow models (often invoked as examples of subdiffusive tracer motion) and concentrate on the intermediate time range, in which the tracer motion indeed may show subdiffusion. We perform extensive numerical simulations of the systems under different initial conditions and show that the pure intermediate-time subdiffusion regime is only evident when the particles start at the border between different cells, i.e., at the separatrix, and is less pronounced or absent for other initial conditions. The motion moreover shows quite peculiar aging properties, which are also mirrored in the behavior of the time-averaged mean squared displacement for single trajectories. This kind of behavior is due to the complex motion of tracers trapped inside the cell and is absent in classical models based on continuous-time random walks with no dynamics in the trapped state.

  17. Salt-Stress effects on crop plants: Role of proline, glycinebetaine and calcium at whole-plant and cellular levels

    Akhtar, L.H.; Gorham, J.; Siddiqui, S.Z.; Jamil, M.; Arshad, M.

    2002-01-01

    Salinity affects the physiological and biochemical processes of the plants in a variety of ways. In this manuscript, variability in plant, with respect to salinity-tolerance and morphological adaptations in plants for salinity-tolerance, have been discussed. Salinity effects on growth of plants, cell membranes, proteins, sugars, nucleic acids, starch, cell sap, transpiration, stomatal conductance, pollen viability, Co/sub 2/ assimilation, chlorophyll, photosynthesis and enzymes have been reviewed. Proline and glycinebetaine accumulation, localisation in the cell and their physiological role under salt-stress has been presented. Cellular mechanism of salt-tolerance and role of calcium in salt-stress have been reviewed. The possible approaches to deal with all types of stresses have been suggested. (author)

  18. Mental Health and American Indian Women's Multiple Roles.

    Napholz, Linda

    1995-01-01

    Survey of 148 college educated, employed American Indian women in urban Wisconsin examined sex role orientation and indicators of mental well-being. Sex-typed respondents had significantly higher depression, higher role conflict, lower self-esteem, and lower life satisfaction than cross-typed or androgynous respondents. Undifferentiated…

  19. Role of phytohormones in organogenic ability of elm multiplicated shoots

    Malá, J.; Gaudinová, Alena; Dobrev, Petre; Eder, Josef; Cvikrová, Milena

    2006-01-01

    Roč. 50, č. 1 (2006), s. 8-14 ISSN 0006-3134 Institutional research plan: CEZ:AV0Z5038910; CEZ:AV0Z50380511 Keywords : auxin * cytokinins * multiplication of elm Subject RIV: GK - Forestry Impact factor: 1.198, year: 2006

  20. The role of the cerebellum in multiple sclerosis

    Weier, Katrin; Banwell, Brenda; Cerasa, Antonio

    2015-01-01

    In multiple sclerosis (MS), cerebellar signs and symptoms as well as cognitive dysfunction are frequent and contribute to clinical disability with only poor response to symptomatic treatment. The current consensus paper highlights the broad range of clinical signs and symptoms of MS patients, which...

  1. A Role for Attentional Reorienting During Approximate Multiplication and Division

    Curren Katz

    2017-12-01

    Full Text Available When asked to estimate the outcome of arithmetic problems, participants overestimate for addition problems and underestimate for subtraction problems, both in symbolic and non-symbolic format. This bias is referred to as operational momentum effect (OM. The attentional shifts account holds that during computation of the outcome participants are propelled too far along a spatial number representation. OM was observed in non-symbolic multiplication and division while being absent in symbolic multiplication and division. Here, we investigate whether (a the absence of the OM in symbolic multiplication and division was due to the presentation of the correct outcome amongst the response alternatives, putatively triggering verbally mediated fact retrieval, and whether (b OM is correlated with attentional parameters, as stipulated by the attentional account. Participants were presented with symbolic and non-symbolic multiplication and division problems. Among seven incorrect response alternatives participants selected the most plausible result. Participants were also presented with a Posner task, with valid (70%, invalid (15% and neutral (15% cues pointing to the position at which a subsequent target would appear. While no OM was observed in symbolic format, non-symbolic problems were subject to OM. The non-symbolic OM was positively correlated with reorienting after invalid cues. These results provide further evidence for a functional association between spatial attention and approximate arithmetic, as stipulated by the attentional shifts account of OM. They also suggest that the cognitive processes underlying multiplication and division are less prone to spatial biases compared to addition and subtraction, further underlining the involvement of differential cognitive processes.

  2. Molecular Determinants of the Cellular Entry of Asymmetric Peptide Dendrimers and Role of Caveolae.

    Prarthana V Rewatkar

    Full Text Available Caveolae are flask-shaped plasma membrane subdomains abundant in most cell types that participate in endocytosis. Caveola formation and functions require membrane proteins of the caveolin family, and cytoplasmic proteins of the cavin family. Cationic peptide dendrimers are non-vesicular chemical carriers that can transport pharmacological agents or genetic material across the plasma membrane. We prepared a panel of cationic dendrimers and investigated whether they require caveolae to enter into cells. Cell-based studies were performed using wild type or caveola-deficient i.e. caveolin-1 or PTRF gene-disrupted cells. There was a statistically significant difference in entry of cationic dendrimers between wild type and caveola-deficient cells. We further unveiled differences between dendrimers with varying charge density and head groups. Our results show, using a molecular approach, that (i expression of caveola-forming proteins promotes cellular entry of cationic dendrimers and (ii dendrimer structure can be modified to promote endocytosis in caveola-forming cells.

  3. Molecular Determinants of the Cellular Entry of Asymmetric Peptide Dendrimers and Role of Caveolae.

    Rewatkar, Prarthana V; Parekh, Harendra S; Parat, Marie-Odile

    2016-01-01

    Caveolae are flask-shaped plasma membrane subdomains abundant in most cell types that participate in endocytosis. Caveola formation and functions require membrane proteins of the caveolin family, and cytoplasmic proteins of the cavin family. Cationic peptide dendrimers are non-vesicular chemical carriers that can transport pharmacological agents or genetic material across the plasma membrane. We prepared a panel of cationic dendrimers and investigated whether they require caveolae to enter into cells. Cell-based studies were performed using wild type or caveola-deficient i.e. caveolin-1 or PTRF gene-disrupted cells. There was a statistically significant difference in entry of cationic dendrimers between wild type and caveola-deficient cells. We further unveiled differences between dendrimers with varying charge density and head groups. Our results show, using a molecular approach, that (i) expression of caveola-forming proteins promotes cellular entry of cationic dendrimers and (ii) dendrimer structure can be modified to promote endocytosis in caveola-forming cells.

  4. Role of correlation in the operation of quantum-dot cellular automata

    Toth, Geza; Lent, Craig S.

    2001-01-01

    Quantum-dot cellular automata (QCA) may offer a viable alternative of traditional transistor-based technology at the nanoscale. When modeling a QCA circuit, the number of degrees of freedom necessary to describe the quantum mechanical state increases exponentially making modeling even modest size cell arrays difficult. The intercellular Hartree approximation largely reduces the number of state variables and still gives good results especially when the system remains near ground state. This suggests that a large part of the correlation degrees of freedom are not essential from the point of view of the dynamics. In certain cases, however, such as, for example, the majority gate with unequal input legs, the Hartree approximation gives qualitatively wrong results. An intermediate model is constructed between the Hartree approximation and the exact model, based on the coherence vector formalism. By including correlation effects to a desired degree, it improves the results of the Hartree method and gives the approximate dynamics of the correlation terms. It also models the majority gate correctly. Beside QCA cell arrays, our findings are valid for Ising spin chains in transverse magnetic field, and can be straightforwardly generalized for coupled two-level systems with a more complicated Hamiltonian. [copyright] 2001 American Institute of Physics

  5. Multiple Roles and Women's Mental Health in Canada.

    Maclean, Heather; Glynn, Keva; Ansara, Donna

    2004-08-25

    HEALTH ISSUE: Research on the relationship between women's social roles and mental health has been equivocal. Although a greater number of roles often protect mental health, certain combinations can lead to strain. Our study explored the moderating affects of different role combinations on women's mental health by examining associations with socioeconomic status and differences in women's distress (depressive symptoms, personal stress (role strain) and chronic stress (role strain plus environmental stressors). KEY FINDINGS: Women with children, whether single or partnered, had a higher risk of personal stress. Distress, stress and chronic stress levels of mothers, regardless of employment, or marital status, are staggeringly high. Single, unemployed mothers were significantly more likely than all other groups to experience financial stress and food insecurity. For partnered mothers, rates of personal stress and chronic stress were significantly lower among unemployed partnered mothers. Married and partnered mothers reported better mental health than their single counterparts. Lone, unemployed mothers were twice as likely to report a high level of distress compared with other groups. Lone mothers, regardless of employment status, were more likely to report high personal and chronic stress. DATA GAPS AND RECOMMENDATIONS: National health surveys need to collect more data on the characteristics of women's work environment and their care giving responsibilities. Questions on household composition should include inter-generational households, same sex couples and multifamily arrangements. Data disaggregation by ethno-racial background would be helpful. Data should be collected on perceived quality of domestic and partnership roles and division of labours.

  6. Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients.

    Lendvai, Nikoletta; Gnjatic, Sacha; Ritter, Erika; Mangone, Michael; Austin, Wayne; Reyner, Karina; Jayabalan, David; Niesvizky, Ruben; Jagannath, Sundar; Bhardwaj, Nina; Chen-Kiang, Selina; Old, Lloyd J; Cho, Hearn Jay

    2010-01-29

    The type I melanoma antigen gene (MAGE) proteins CT7 (MAGE-C1) and MAGE-A3 are commonly expressed in multiple myeloma (MM), and their expression correlates with increased plasma cell proliferation and poor clinical outcome. They belong to the cancer-testis antigen (CTAg) group of tumor-associated proteins, some of which elicit spontaneous immune responses in cancer patients. CT7 and MAGE-A3 are promising antigenic targets for therapeutic tumor vaccines in myeloma; therefore, it is critical to determine if they are immunogenic in MM patients. We analyzed cellular and humoral immune responses against CTAgs in patients with plasma cell dyscrasias: MM, monoclonal gammopathy of undetermined significance (MGUS), and Waldenström's macroglobulinemia (WM). Bone marrow lymphocytes from two of four untreated MM patients exhibited CT7-specific cellular immune responses as measured by an autologous cellular immunity assay, the first such immune response to CT7 to be reported in cancer patients. Sera from 24 patients were screened by ELISA for humoral immune responses to CTAgs. Two patients with MM demonstrated positive titers, one for MAGE-A1 and the other for SSX1. These data demonstrate that CTAgs, particularly CT7, are immunogenic in MM patients and merit further exploration as targets of immunological therapy in MM.

  7. Interactions between vertebrate hemoglobins and red cell proteins: Possible roles in regulating cellular metabolism and rheology

    Weber, Roy E.

    2007-01-01

    , chicken and human cdB3 peptides on O2 binding properties of fish, bird and mammalian Hbs are consistent with such a role in endothermic, but not in ectothermic, vertebrates3. Measurements of the interaction between Hbs and anionic domains of Band 3, other membrane proteins and intracellular proteins (band...

  8. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells.

    Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede

    2012-01-01

    Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Our findings suggest an integral

  9. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    Zhao Weihong; Zhong Li; Wu Jianqing; Chen Linyuan; Qing Keyun; Weigel-Kelley, Kirsten A.; Larsen, Steven H.; Shou Weinian; Warrington, Kenneth H.; Srivastava, Arun

    2006-01-01

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by ∼25-fold in WT MEFs, but only by ∼4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency ∼23-fold in WT MEFs, but only ∼4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, ∼59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only ∼28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant AAV vectors in human gene

  10. Complement factor H family proteins in their non-canonical role as modulators of cellular functions.

    Józsi, Mihály; Schneider, Andrea E; Kárpáti, Éva; Sándor, Noémi

    2018-01-04

    Complement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence. Factor H and some of the factor H-related proteins also appear in a non-canonical function that is beyond their role in the modulation of complement activation. This review covers our current understanding on this emerging role of factor H family proteins in modulating the activation and function of various cells by binding to receptors or receptor ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Vitamin A, Cancer Treatment and Prevention: The New Role of Cellular Retinol Binding Proteins

    Elena Doldo

    2015-01-01

    Full Text Available Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs. CRBP-1, the most diffuse CRBP isoform, is a small 15 KDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cells in vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients’ screening for a more personalized and efficacy retinoid therapy.

  12. Multiple roles for orexin/hypocretin in addiction

    Mahler, Stephen V.; Smith, Rachel J.; Moorman, David E.; Sartor, Gregory C.; Aston-Jones, Gary

    2013-01-01

    Orexins/hypocretins are hypothalamic peptides involved in arousal and wakefulness, but also play a critical role in drug addiction and reward-related behaviors. Here, we review the roles played by orexins in a variety of animal models of drug addiction, emphasizing both commonalities and differences for orexin’s involvement in seeking of the major classes of abused drugs, as well as food. One common theme that emerges is an involvement of orexins in drug seeking triggered by external stimuli (e.g., cues, contexts or stressors). We also discuss the functional neuronal circuits in which orexins are embedded, and how these circuits mediate addiction-related behaviors, with particular focus on the role of orexin and glutamate interactions within the ventral tegmental area. Finally, we attempt to contextualize the role of orexins in reward by discussing ways in which these peptides, expressed in only a few thousand neurons in the brain, can have such wide-ranging effects on behavior. PMID:22813971

  13. The Multiple Roles that Youth Development Program Leaders Adopt with Youth

    Walker, Kathrin C.

    2011-01-01

    The roles that program leaders establish in their relationships with youth structure how leaders are able to foster youth development. This article examines the complex roles program leaders create in youth programs and investigates how they balanced multiple roles to most effectively respond to the youth they serve. Analyses of qualitative data…

  14. Symposium cellular response to DNA damage the role of poly(ADP-ribose) poly(ADP-ribose) in the cellular response to DNA damage

    Berger, N.A.

    1985-01-01

    Poly(ADP-ribose) polymerase is a chromatin-bound enzyme which, on activation by DNA strand breaks, catalyzes the successive transfer of ADP-ribose units from NAD to nuclear proteins. Poly(ADP-ribose) synthesis is stimulated by DNA strand breaks, and the polymer may alter the structure and/or function of chromosomal proteins to facilitate the DNA repair process. Inhibitors of Poly(ADP-ribose) polymerase or deficiencies of the substrate, NAD, lead to retardation of the DNA repair process. When DNA strand breaks are extensive or when breaks fail to be repaired, the stimulus for activation of Poly(ADP-ribose) persists and the activated enzyme is capable of totaly consuming cellular pools of NAD. Depletion of NAD and consequent lowering of cellular ATP pools, due to activation of Poly(ADP-ribose) polymerase, may account for rapid cell death before DNA repair takes place and before the genetic effects of DNA damage become manifest

  15. Multiple roles and therapeutic implications of Akt signaling in cancer

    Emiliano Calvo

    2009-06-01

    Full Text Available Emiliano Calvo1, Victoria Bolós2, Enrique Grande21Centro Integral Oncológico Clara Campal (CiOCC, Madrid. Spain; 2Pfizer Oncology, Alcobendas-Madrid, SpainAbstract: The prominence of the PI3K-Akt signaling pathway in several tumors indicates a relationship with tumor grade and proliferation. Critical cellular processes are driven through this pathway. More detailed knowledge of the pathogenesis of tumors would enable us to design targeted drugs to block both membrane tyrosine kinase receptors and the intracellular kinases involved in the transmission of the signal. The newly approved molecular inhibitors sunitinib (an inhibitor of vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and other tyrosine kinase receptors, sorafenib (a serine–threonine kinase inhibitor that acts against B-Raf and temsirolimus (an mTOR inhibitor shown clinical activity in advanced kidney cancer. Chronic myeloid leukemia has changed its natural history thanks to imatinib and dasatinib, both of which inhibit the intracellular bcr/abl protein derived from the alteration in the Philadelphia chromosome. Intracellular pathways are still important in cancer development and their blockade directly affects outcome. Cross-talk has been observed but is not well understood. Vertical and horizontal pathway blockade are promising anticancer strategies. Indeed, preclinical and early clinical data suggest that combining superficial and intracellular blocking agents can synergize and leverage single-agent activity. The implication of the Akt signaling pathway in cancer is well established and has led to the development of new anticancer agents that block its activation.Keywords: Akt, cancer, therapeutic target, Akt inhibitors

  16. Strangulation and Its Role in Multiple Causes of Death.

    Hlavaty, Leigh; Sung, LokMan

    2017-12-01

    Forensic pathologists have a duty to determine the cause and manner of death and are bound by international guidelines in the completion of the death certificate. Sometimes, there are complex circumstances surrounding a death that cannot be captured in the structure of the death certificate and its requirement of listing only 1 cause of death per line. Cases may have multiple causes of death with comorbid medical conditions or inflicted injuries that equally contribute to the ultimate demise. Compared with other forms of homicide, autopsy evidence of strangulation will often be found with other life-threatening traumatic injuries. The Wayne County Medical Examiner's Office conducted a retrospective study of strangulation cases that came into the office from mid-2007 to the end of 2016. The purpose of the study was to examine patterns of injuries in strangulation cases and identify those with additional traumatic injuries of commensurate extent that required incorporation into the cause of death. A total of 43 strangulation cases were found, of which there were equal numbers of ligature and manual strangulations (19 each) and 5 cases in which the method was not specified, and decedents were divided: 63% female and 37% male. Fourteen of these cases were recognized to have multiple causes of death, where blunt force trauma was the most common additional cause, and the sex distribution weighed heavily toward the female (approximately 79%).

  17. An Analysis of Student Affairs Professionals' Management of Role Conflict and Multiple Roles in Relation to Work/Life Balance

    Mayo, Nicole Lepone

    2013-01-01

    The purpose of this inquiry is to study how student affairs professionals manage role conflict in relation to work/life balance based on the challenging culture of the field. The underlying goals are to identify the barriers or challenges of managing multiple roles as a student affairs administrator and identify strategies to assist employees in…

  18. New insights on the functional role of URG7 in the cellular response to ER stress.

    Armentano, Maria Francesca; Caterino, Marianna; Miglionico, Rocchina; Ostuni, Angela; Pace, Maria Carmela; Cozzolino, Flora; Monti, Maria; Milella, Luigi; Carmosino, Monica; Pucci, Piero; Bisaccia, Faustino

    2018-04-28

    Up-regulated Gene clone 7 (URG7) is an ER resident protein, whose expression is up-regulated in the presence of hepatitis B virus X antigen (HBxAg) during HBV infection. In virus-infected hepatocytes, URG7 shows an anti-apoptotic activity due to the PI3K/AKT signalling activation, does not seem to have tumorigenic properties, but it appears to promote the development and progression of fibrosis. However, the molecular mechanisms underlying URG7 activity remain largely unknown. To shed light on URG7 activity, we first analysed its interactome in HepG2 transfected cells: this analysis suggests that URG7 could have a role in affecting protein synthesis, folding and promoting proteins degradation. Moreover, keeping into account its subcellular localisation in the ER and that several viral infections give rise to ER stress, a panel of experiments was performed to evaluate a putative role of URG7 in ER stress. Our main results demonstrate that in ER-stressed cells URG7 is able to modulate the expression of Unfolded Protein Response (UPR) markers towards survival outcomes, up-regulating GRP78 protein and down-regulating the pro-apoptotic protein CHOP. Furthermore, URG7 reduces the ER stress by decreasing the amount of unfolded proteins, by increasing both the total protein ubiquitination and the AKT activation and reducing Caspase 3 activation. All together these data suggest that URG7 plays a pivotal role as a reliever of ER stress-induced apoptosis. This is the first characterisation of URG7 activity under ER stress conditions. The results presented here will help to hypothesise new strategies to counteract the antiapoptotic activity of URG7 in the context of the viral infection. © 2018 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  19. A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana.

    García-Gómez, Mónica L; Azpeitia, Eugenio; Álvarez-Buylla, Elena R

    2017-04-01

    The study of the concerted action of hormones and transcription factors is fundamental to understand cell differentiation and pattern formation during organ development. The root apical meristem of Arabidopsis thaliana is a useful model to address this. It has a stem cell niche near its tip conformed of a quiescent organizer and stem or initial cells around it, then a proliferation domain followed by a transition domain, where cells diminish division rate before transiting to the elongation zone; here, cells grow anisotropically prior to their final differentiation towards the plant base. A minimal model of the gene regulatory network that underlies cell-fate specification and patterning at the root stem cell niche was proposed before. In this study, we update and couple such network with both the auxin and cytokinin hormone signaling pathways to address how they collectively give rise to attractors that correspond to the genetic and hormonal activity profiles that are characteristic of different cell types along A. thaliana root apical meristem. We used a Boolean model of the genetic-hormonal regulatory network to integrate known and predicted regulatory interactions into alternative models. Our analyses show that, after adding some putative missing interactions, the model includes the necessary and sufficient components and regulatory interactions to recover attractors characteristic of the root cell types, including the auxin and cytokinin activity profiles that correlate with different cellular behaviors along the root apical meristem. Furthermore, the model predicts the existence of activity configurations that could correspond to the transition domain. The model also provides a possible explanation for apparently paradoxical cellular behaviors in the root meristem. For example, how auxin may induce and at the same time inhibit WOX5 expression. According to the model proposed here the hormonal regulation of WOX5 might depend on the cell type. Our results

  20. A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana.

    Mónica L García-Gómez

    2017-04-01

    Full Text Available The study of the concerted action of hormones and transcription factors is fundamental to understand cell differentiation and pattern formation during organ development. The root apical meristem of Arabidopsis thaliana is a useful model to address this. It has a stem cell niche near its tip conformed of a quiescent organizer and stem or initial cells around it, then a proliferation domain followed by a transition domain, where cells diminish division rate before transiting to the elongation zone; here, cells grow anisotropically prior to their final differentiation towards the plant base. A minimal model of the gene regulatory network that underlies cell-fate specification and patterning at the root stem cell niche was proposed before. In this study, we update and couple such network with both the auxin and cytokinin hormone signaling pathways to address how they collectively give rise to attractors that correspond to the genetic and hormonal activity profiles that are characteristic of different cell types along A. thaliana root apical meristem. We used a Boolean model of the genetic-hormonal regulatory network to integrate known and predicted regulatory interactions into alternative models. Our analyses show that, after adding some putative missing interactions, the model includes the necessary and sufficient components and regulatory interactions to recover attractors characteristic of the root cell types, including the auxin and cytokinin activity profiles that correlate with different cellular behaviors along the root apical meristem. Furthermore, the model predicts the existence of activity configurations that could correspond to the transition domain. The model also provides a possible explanation for apparently paradoxical cellular behaviors in the root meristem. For example, how auxin may induce and at the same time inhibit WOX5 expression. According to the model proposed here the hormonal regulation of WOX5 might depend on the cell

  1. The multiple roles of Fatty Acid Handling Proteins in brain

    Valentine SF Moullé

    2012-09-01

    Full Text Available Lipids are essential components of a living organism as energy source but also as constituent of the membrane lipid bilayer. In addition fatty acid (FA derivatives interact with many signaling pathways. FAs have amphipathic properties and therefore require being associated to protein for both transport and intracellular trafficking. Here we will focus on several fatty acid handling proteins, among which the fatty acid translocase/CD36 (FAT/CD36, members of fatty acid transport proteins (FATPs, and lipid chaperones fatty acid-binding proteins (FABPs. A decade of extensive studies has helped decipher the mechanism of action of these proteins in peripheral tissue with high lipid metabolism. However, considerably less information is available regarding their role in the brain, despite the high lipid content of this tissue. This review will primarily focus on the recent studies that have highlighted the crucial role of lipid handling proteins in brain FA transport, neuronal differentiation and development, cognitive processes and brain diseases. Finally a special focus will be made on the recent studies that have revealed the role of FAT/CD36 in brain lipid sensing and nervous control of energy balance.

  2. Multiple roles for the actin cytoskeleton during regulated exocytosis

    Porat-Shliom, Natalie; Milberg, Oleg; Masedunskas, Andrius; Weigert, Roberto

    2014-01-01

    Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e. secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules. PMID:22986507

  3. Multiple Autoantibodies Display Association with Lymphopenia, Proteinuria, and Cellular Casts in a Large, Ethnically Diverse SLE Patient Cohort

    Rufei Lu

    2012-01-01

    Full Text Available Purpose. This study evaluates high-throughput autoantibody screening and determines associated systemic lupus erythematosus (SLE clinical features in a large lupus cohort. Methods. Clinical and demographic information, along with serum samples, were obtained from each SLE study participant after appropriate informed consent. Serum samples were screened for 10 distinct SLE autoantibody specificities and examined for association with SLE ACR criteria and subcriteria using conditional logistic regression analysis. Results. In European-American SLE patients, autoantibodies against 52 kD Ro and RNP 68 are independently enriched in patients with lymphopenia, anti-La, and anti-ribosomal P are increased in patients with malar rash, and anti-dsDNA and anti-Sm are enriched in patients with proteinuria. In African-American SLE patients, cellular casts associate with autoantibodies against dsDNA, Sm, and Sm/nRNP. Conclusion. Using a high-throughput, bead-based method of autoantibody detection, anti-dsDNA is significantly enriched in patienets with SLE ACR renal criteria as has been previously described. However, lymphopenia is associated with several distinct autoantibody specificities. These findings offer meaningful information to allow clinicians and clinical investigators to understand which autoantibodies correlate with select SLE clinical manifestations across common racial groups using this novel methodology which is expanding in clinical use.

  4. The EBI2 signalling pathway plays a role in cellular crosstalk between astrocytes and macrophages.

    Rutkowska, Aleksandra; O'Sullivan, Sinead A; Christen, Isabelle; Zhang, Juan; Sailer, Andreas W; Dev, Kumlesh K

    2016-05-11

    EBI2 is a G protein-coupled receptor activated by oxysterol 7α, 25-dihydroxycholesterol (7α25HC) and regulates T cell-dependant antibody response and B cell migration. We recently found EBI2 is expressed in human astrocytes, regulates intracellular signalling and modulates astrocyte migration. Here, we report that LPS treatment of mouse astrocytes alters mRNA levels of EBI2 and oxysterols suggesting that the EBI2 signalling pathway is sensitive to LPS-mediated immune challenge. We also find that conditioned media obtained from LPS-stimulated mouse astrocytes induces macrophage migration, which is inhibited by the EBI2 antagonist NIBR189. These results demonstrate a role for the EBI2 signalling pathway in astrocytes as a sensor for immune challenge and for communication with innate immune cells such as macrophages.

  5. Characterization of osteopontin-uranyl interaction: role of multiple phosphorylations

    Qi, Lei

    2014-01-01

    While some metals are essential for Life, other ones are only toxicants for living organisms, tolerated below well-definite concentrations. This is the case for uranium, a natural element which has no known biological function. It is a low α emitter and its chemical toxicity rather than its radiological toxicity is a subject of concern. Once in the body, this metal reaches the blood and accumulates in the bones under the action of unknown mechanisms. Uranium mainly exists in form of uranyl ion (UO 2 2+ ) in aqueous media and particularly reacts with carboxylates, phenolates and phosphates of the proteins. Previous studies have highlighted that UO 2 2+ modulates the SPP1 expression, a gene which codes for osteopontin (OPN). This highly phosphorylated glycoprotein plays an important role in bone homeostasis. This role and its biochemical properties led us to hypothesize that OPN might be a potential target of UO 2 2+ and involved in its accumulation in bones. A simple and original purification process was optimized to produce very highly purified OPN starting from human and bovine milk. Various biophysical approaches were set up and confirmed that both bovine and human OPN display very high affinity for UO 2 2+ . Moreover, the formation of stable UO 2 -protein complexes originating from structural changes was evidenced. The major role of phosphorylations, both on the OPN's affinity for UO 2 2+ and the stability of the UO 2 -protein complexes, was confirmed. These results demonstrate that OPN presents all the characteristics to be a major UO 2 2+ binding-protein in vitro, and they open new insights in the understanding of the UO 2 2+ mineralization process mechanisms. (author) [fr

  6. Multiple role occupancy in midlife: balancing work and family life in Britain.

    Evandrou, Maria; Glaser, Karen; Henz, Ursula

    2002-12-01

    This article investigates the extent of multiple-role occupancy among midlife individuals in Britain in cross-section and over the life course, focusing on work and family commitments. The association between demographic and social factors and multiple-role obligations is also investigated. The research is based on secondary analysis of the British Family and Working Lives Survey, which contains retrospective paid work, caregiving, and child coresidence histories. The proportion of individuals in midlife (women aged 45-59 and men aged 45-64) who have multiple roles, in terms of paid work and consistent family care, at any one point in time is low (2%). This is primarily due to the relatively small proportion (7%) of people in this age group who are caring for a dependent. Being older, unmarried, and in poor health significantly reduces the number of roles held among men and women. Although the frequency of multiple role occupancy, and intensive multiple role occupancy, is low on a cross-sectional basis, a much higher proportion of individuals have ever occupied multiple roles over their life course (14%). The findings will inform debate on how policy can best aid those endeavouring to balance paid work, family life, and caring responsibilities.

  7. Cellular prion protein is required for neuritogenesis: fine-tuning of multiple signaling pathways involved in focal adhesions and actin cytoskeleton dynamics

    Alleaume-Butaux A

    2013-07-01

    Full Text Available Aurélie Alleaume-Butaux,1,2 Caroline Dakowski,1,2 Mathéa Pietri,1,2 Sophie Mouillet-Richard,1,2 Jean-Marie Launay,3,4 Odile Kellermann,1,2 Benoit Schneider1,2 1INSERM, UMR-S 747, 2Paris Descartes University, Sorbonne Paris Cité, UMR-S 747, 3Public Hospital of Paris, Department of Biochemistry, INSERM UMR-S 942, Lariboisière Hospital, Paris, France; 4Pharma Research Department, Hoffmann La Roche Ltd, Basel, Switzerland Abstract: Neuritogenesis is a dynamic phenomenon associated with neuronal differentiation that allows a rather spherical neuronal stem cell to develop dendrites and axon, a prerequisite for the integration and transmission of signals. The acquisition of neuronal polarity occurs in three steps: (1 neurite sprouting, which consists of the formation of buds emerging from the postmitotic neuronal soma; (2 neurite outgrowth, which represents the conversion of buds into neurites, their elongation and evolution into axon or dendrites; and (3 the stability and plasticity of neuronal polarity. In neuronal stem cells, remodeling and activation of focal adhesions (FAs associated with deep modifications of the actin cytoskeleton is a prerequisite for neurite sprouting and subsequent neurite outgrowth. A multiple set of growth factors and interactors located in the extracellular matrix and the plasma membrane orchestrate neuritogenesis by acting on intracellular signaling effectors, notably small G proteins such as RhoA, Rac, and Cdc42, which are involved in actin turnover and the dynamics of FAs. The cellular prion protein (PrPC, a glycosylphosphatidylinositol (GPI-anchored membrane protein mainly known for its role in a group of fatal neurodegenerative diseases, has emerged as a central player in neuritogenesis. Here, we review the contribution of PrPC to neuronal polarization and detail the current knowledge on the signaling pathways fine-tuned by PrPC to promote neurite sprouting, outgrowth, and maintenance. We emphasize that Pr

  8. Multiple roles of genome-attached bacteriophage terminal proteins

    Redrejo-Rodríguez, Modesto; Salas, Margarita

    2014-01-01

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer

  9. Multiple roles of genome-attached bacteriophage terminal proteins

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.

  10. [Role of radiotherapy in the treatment of multiple myeloma].

    Mose, S; Pfitzner, D; Rahn, A; Nierhoff, C; Schiemann, M; Böttcher, H D

    2000-11-01

    Chemotherapy is the treatment of choice in multiple myeloma; but there are no curative options. Therefore, the treatment rationale is characterized by reduction of symptoms and inhibition of complications. Regarding reduction of pain, treatment of (impending) fractures, and spinal cord compression radiation is an important part of palliative treatment. In our retrospective study we report the effect of radiotherapy on reduction of pain, recalcification and the reduction of neurological symptoms and evaluate factors which have an impact on therapeutic outcome. From 1, Jan 1988 to 31, Dec 1998, 42 patients (19 women, 23 men; range of ages 46 to 85 years, median age 64.9 years) with 71 target volumes were irradiated (median dose 36 Gy, 2 to 3 Gy 5 times/week) because of symptomatic disease (67/71: osseous pain, 45/71: fractures/impending fractures, 13/71: spinal cord compression) (Tables 1 and 2). The median time from diagnosis to the first course of radiotherapy was 11.9 months (0.3 to 90 months). At the time of first irradiation, 5 and 37 patients were in tumor Stage II and III (Salmon/Durie), respectively. The median value of the Karnofsky performance was 70% (40 to 90%). During follow-up (at least 6 months) in 85% of target volumes complete and partial pain relief (measured by patients' perception and the use of analgetic medication) was achieved; recurrences were seen in 8.8%. In 26/56 (46.4%) lesions evaluable a recalcification was seen whereas 17.9% showed progressive disease (comparison of radiographs before and after radiation). In 22.3% of all lesions initially with impending fracture (4/18) radiotherapy failed because of fracture after treatment (Tables 3 and 4). Simultaneous chemotherapy and a Karnofsky performance > or = 70 had a significant impact on a positive response to treatment, respectively. Spinal cord compression symptoms were reduced in 7/13 (53.8%) of patients (scaled due to the classification by Findlay 1987). The median survival from

  11. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  12. Systematic genetic array analysis links the Saccharomyces cerevisiae SAGA/SLIK and NuA4 component Tra1 to multiple cellular processes

    Andrews Brenda

    2008-07-01

    Full Text Available Abstract Background Tra1 is an essential 437-kDa component of the Saccharomyces cerevisiae SAGA/SLIK and NuA4 histone acetyltransferase complexes. It is a member of a group of key signaling molecules that share a carboxyl-terminal domain related to phosphatidylinositol-3-kinase but unlike many family members, it lacks kinase activity. To identify genetic interactions for TRA1 and provide insight into its function we have performed a systematic genetic array analysis (SGA on tra1SRR3413, an allele that is defective in transcriptional regulation. Results The SGA analysis revealed 114 synthetic slow growth/lethal (SSL interactions for tra1SRR3413. The interacting genes are involved in a range of cellular processes including gene expression, mitochondrial function, and membrane sorting/protein trafficking. In addition many of the genes have roles in the cellular response to stress. A hierarchal cluster analysis revealed that the pattern of SSL interactions for tra1SRR3413 most closely resembles deletions of a group of regulatory GTPases required for membrane sorting/protein trafficking. Consistent with a role for Tra1 in cellular stress, the tra1SRR3413 strain was sensitive to rapamycin. In addition, calcofluor white sensitivity of the strain was enhanced by the protein kinase inhibitor staurosporine, a phenotype shared with the Ada components of the SAGA/SLIK complex. Through analysis of a GFP-Tra1 fusion we show that Tra1 is principally localized to the nucleus. Conclusion We have demonstrated a genetic association of Tra1 with nuclear, mitochondrial and membrane processes. The identity of the SSL genes also connects Tra1 with cellular stress, a result confirmed by the sensitivity of the tra1SRR3413 strain to a variety of stress conditions. Based upon the nuclear localization of GFP-Tra1 and the finding that deletion of the Ada components of the SAGA complex result in similar phenotypes as tra1SRR3413, we suggest that the effects of tra1SRR3413

  13. New roles of glycosaminoglycans in α-synuclein aggregation in a cellular model of Parkinson disease.

    Sonia Lehri-Boufala

    Full Text Available The causes of Parkinson disease (PD remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD, the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology.

  14. Sortilin and Its Multiple Roles in Cardiovascular and Metabolic Diseases

    Goettsch, Claudia; Kjølby, Mads Fuglsang; Aikawa, Elena

    2018-01-01

    Cardiovascular disease is a leading cause of morbidity and mortality in the Western world. Studies of sortilin's influence on cardiovascular and metabolic diseases goes far beyond the genome-wide association studies that have revealed an association between cardiovascular diseases and the 1p13...... locus that encodes sortilin. Emerging evidence suggests a significant role of sortilin in the pathogenesis of vascular and metabolic diseases; this includes type II diabetes mellitus via regulation of insulin resistance, atherosclerosis through arterial wall inflammation and calcification...... of sortilin's contributions to cardiovascular and metabolic diseases but focuses particularly on atherosclerosis. We summarize recent clinical findings that suggest that sortilin may be a cardiovascular risk biomarker and also discuss sortilin as a potential drug target....

  15. Cellular Proliferation by Multiplex Immunohistochemistry Identifies High-Risk Multiple Myeloma in Newly Diagnosed, Treatment-Naive Patients.

    Ely, Scott; Forsberg, Peter; Ouansafi, Ihsane; Rossi, Adriana; Modin, Alvin; Pearse, Roger; Pekle, Karen; Perry, Arthur; Coleman, Morton; Jayabalan, David; Di Liberto, Maurizio; Chen-Kiang, Selina; Niesvizky, Ruben; Mark, Tomer M

    2017-12-01

    Therapeutic options for multiple myeloma (MM) are growing, yet clinical outcomes remain heterogeneous. Cytogenetic analysis and disease staging are mainstays of risk stratification, but data suggest a complex interplay between numerous abnormalities. Myeloma cell proliferation is a metric shown to predict outcomes, but available methods are not feasible in clinical practice. Multiplex immunohistochemistry (mIHC), using multiple immunostains simultaneously, is universally available for clinical use. We tested mIHC as a method to calculate a plasma cell proliferation index (PCPI). By mIHC, marrow trephine core biopsy samples were costained for CD138, a plasma cell-specific marker, and Ki-67. Myeloma cells (CD138 + ) were counted as proliferating if coexpressing Ki-67. Retrospective analysis was performed on 151 newly diagnosed, treatment-naive patients divided into 2 groups on the basis of myeloma cell proliferation: low (PCPI ≤ 5%, n = 87), and high (PCPI > 5%, n = 64). Median overall survival (OS) was not reached versus 78.9 months (P = .0434) for the low versus high PCPI groups. Multivariate analysis showed that only high-risk cytogenetics (hazard ratio [HR] = 2.02; P = .023), International Staging System (ISS) stage > I (HR = 2.30; P = .014), and PCPI > 5% (HR = 1.70; P = .041) had independent effects on OS. Twenty-three (36%) of the 64 patients with low-risk disease (ISS stage 1, without high-risk cytogenetics) were uniquely reidentified as high risk by PCPI. PCPI is a practical method that predicts OS in newly diagnosed myeloma and facilitates broader use of MM cell proliferation for risk stratification. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Role of DNA-PK in cellular responses to DNA double-strand breaks

    Chen, D.J.

    2003-01-01

    DNA double-strand breaks (DSBs) are probably the most dangerous of the many different types of DNA damage that occur within the cell. DSBs are generated by exogenous agents such as ionizing radiation (IR) or by endogenously generated reactive oxygen species and occur as intermediates during meiotic and V(D)J recombination. The repair of DSBs is of paramount importance to the cell as misrepair of DSBs can lead to cell death or promote tumorigenesis. In eukaryotes there exists two distinct mechanisms for DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, however, it is clear that nonhomologous repair of DSBs is highly active and plays a major role in conferring radiation resistance to the cell. The NHEJ machinery minimally consists of the DNA-dependent Protein Kinase (DNA-PK) and a complex of XRCC4 and DNA Ligase IV. The DNA-PK complex is composed of a 470 kDa catalytic subunit (DNA-PKcs), and the heterodimeric Ku70 and Ku80 DNA end-binding complex. DNA-PKcs is a PI-3 kinase with homology to ATM and ATR in its C-terminal kinase domain. The DNA-PK complex protects and tethers the ends, and directs assembly and, perhaps, the activation of other NHEJ proteins. We have previously demonstrated that the kinase activity of DNA-PK is essential for DNA DSB repair and V(D)J recombination. It is, therefore, of immense interest to determine the in vivo targets of DNA-PKcs and the mechanisms by which phosphorylation of these targets modulates NHEJ. Recent studies have resulted in the identification of a number of protein targets that are phosphorylated by and/or interact with DNA-PKcs. Our laboratory has recently identified autophosphorylation site(s) on DNA-PKcs. We find that phosphorylation at these sites in vivo is an early and essential response to DSBs and demonstrate, for the first time, the localization of DNA-PKcs to the sites of DNA damage in vivo. Furthermore, mutation of these phosphorylation sites in mammalian

  17. Predominant Expression of Hybrid N-Glycans Has Distinct Cellular Roles Relative to Complex and Oligomannose N-Glycans

    M. Kristen Hall

    2016-06-01

    Full Text Available Glycosylation modulates growth, maintenance, and stress signaling processes. Consequently, altered N-glycosylation is associated with reduced fitness and disease. Therefore, expanding our understanding of N-glycans in altering biological processes is of utmost interest. Herein, clustered regularly interspaced short palindromic repeats/caspase9 (CRISPR/Cas9 technology was employed to engineer a glycosylation mutant Chinese Hamster Ovary (CHO cell line, K16, which expresses predominantly hybrid type N-glycans. This newly engineered cell line enabled us to compare N-glycan effects on cellular properties of hybrid type N-glycans, to the well-established Pro−5 and Lec1 cell lines, which express complex and oligomannose types of N-glycans, respectively. Lectin binding studies revealed the predominant N-glycan expressed in K16 is hybrid type. Cell dissociation and migration assays demonstrated the greatest strength of cell–cell adhesion and fastest migratory rates for oligomannose N-glycans, and these properties decreased as oligomannose type were converted to hybrid type, and further decreased upon conversion to complex type. Next, we examined the roles of three general types of N-glycans on ectopic expression of E-cadherin, a cell–cell adhesion protein. Microscopy revealed more functional E-cadherin at the cell–cell border when N-glycans were oligomannose and these levels decreased as the oligomannose N-glycans were processed to hybrid and then to complex. Thus, we provide evidence that all three general types of N-glycans impact plasma membrane architecture and cellular properties.

  18. Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections.

    Nadine T Nehme

    2011-03-01

    Full Text Available Two NF-kappaB signaling pathways, Toll and immune deficiency (imd, are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense.In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus, we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival--independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response.Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen.

  19. Role of radiotherapy in the treatment of multiple myeloma

    Mose, S.; Pfitzner, D.; Rahn, A.; Nierhoff, C.; Schiemann, M.; Boettcher, H.D.

    2000-01-01

    suppose that in multiple myeloma the local response to radiation is supported by a favorable performance status and simultaneous chemotherapy. Irradiation treatment does not change prognosis regarding overall survival. (orig.) [de

  20. Wireless Cellular Mobile Communications

    Zalud, V.

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  1. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  2. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Mаhmoud Youns

    Full Text Available Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2, colorectal (Caco-2 and pancreatic (Suit-2 cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  3. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097

  4. Assessment of glucose metabolism and cellular proliferation in multiple myeloma: a first report on combined 18F-FDG and 18F-FLT PET/CT imaging.

    Sachpekidis, C; Goldschmidt, H; Kopka, K; Kopp-Schneider, A; Dimitrakopoulou-Strauss, A

    2018-04-10

    Despite the significant upgrading in recent years of the role of 18 F-FDG PET/CT in multiple myeloma (MM) diagnostics, there is a still unmet need for myeloma-specific radiotracers. 3'-Deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT) is the most studied cellular proliferation PET agent, considered a potentially new myeloma functional imaging tracer. The aim of this pilot study was to evaluate 18 F-FLT PET/CT in imaging of MM patients, in the context of its combined use with 18 F-FDG PET/CT. Eight patients, four suffering from symptomatic MM and four suffering from smoldering MM (SMM), were enrolled in the study. All patients underwent 18 F-FDG PET/CT and 18 F-FLT PET/CT imaging by means of static (whole body) and dynamic PET/CT of the lower abdomen and pelvis (dPET/CT) in two consecutive days. The evaluation of PET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modeling. 18 F-FDG PET/CT demonstrated focal, 18 F-FDG avid, MM-indicative bone marrow lesions in five patients. In contrary, 18 F-FLT PET/CT showed focal, 18 F-FLT avid, myeloma-indicative lesions in only two patients. In total, 48 18 F-FDG avid, focal, MM-indicative lesions were detected with 18 F-FDG PET/CT, while 17 18 F-FLT avid, focal, MM-indicative lesions were detected with 18 F-FLT PET/CT. The number of myeloma-indicative lesions was significantly higher for 18 F-FDG PET/CT than for 18 F-FLT PET/CT. A common finding was a mismatch of focally increased 18 F-FDG uptake and reduced 18 F-FLT uptake (lower than the surrounding bone marrow). Moreover, 18 F-FLT PET/CT was characterized by high background activity in the bone marrow compartment, further complicating the evaluation of bone marrow lesions. Semi-quantitative evaluation revealed that both SUV mean and SUV max were significantly higher for 18 F-FLT than for 18 F-FDG in both MM lesions and reference tissue. SUV values were higher in MM lesions than in

  5. Effect of UVB irradiation of the blood on cellular volume adherence and phagocytosis in probands and patients with multiple sclerosis

    Mix, E; Jenssen, H L; Lehmitz, R; Buddenhagen, F; Hitzschke, B; Richter, M

    1988-01-01

    UVB-induced changes of blood cell properties were investigated in 12 multiple sclerosis (MS) patients and in 10 healthy volunteers. The mean cell volume (MCV) was determined by electronic sizing, the granulocyte and lymphocyte adherence was estimated in a capillary assay, and the phagocytic activity of granulocytes was measured in a test system based on the incorporation of opsonized baker's yeast. In MS patients the MCV of red cells and lymphocytes decreased rapidly within 6 UVB treatments. In contrast, the reduction of the granulocyte volume was delayed (between the 6th and 12th UVB). In the control group the mean value of the red cell and lymphocyte MCV remained rather unaffected. There was a slight rise of the granulocyte volume after the 6th UVB. The only significant change of adherence was an increase of granulocyte adherence in MS patients. Untreated patients had a significantly enhanced phagocytic activity in comparison to the control group. 6 UVB treatments induced a singificant reduction of the phagocytic activity in MS patients. However, subsequently the percentage of phagocytizing cells increased again, whereas the particle uptake per cell continued to decrease. In the control group only minor UVB-induced changes of phagocytosis were observed. The in vitro UV irradiation caused an enhanced phagocytosis in the majority of cases in both controls and MS patients. In general, under the UVB treatment all parameters examined changed in the sense of a normalisation, in that the measured values reached a new level lying between the extreme pretreatment values accompanied by a reduced standard deviation. The effect of UVB was more pronounced in MS patients when compared with normal control. This could result from an enhanced sensitivity to the influence of UVB of pathologically altered cells in MS patients. (Abstract Truncated)

  6. Effect of UVB irradiation of the blood on cellular volume adherence and phagocytosis in probands and patients with multiple sclerosis

    Mix, E.; Jenssen, H.L.; Lehmitz, R.; Buddenhagen, F.; Hitzschke, B.; Richter, M.

    1988-01-01

    UVB-induced changes of blood cell properties were investigated in 12 multiple sclerosis (MS) patients and in 10 healthy volunteers. The mean cell volume (MCV) was determined by electronic sizing, the granulocyte and lymphocyte adherence was estimated in a capillary assay, and the phagocytic activity of granulocytes was measured in a test system based on the incorporation of opsonized baker's yeast. In MS patients the MCV of red cells and lymphocytes decreased rapidly within 6 UVB treatments. In contrast, the reduction of the granulocyte volume was delayed (between the 6th and 12th UVB). In the control group the mean value of the red cell and lymphocyte MCV remained rather unaffected. There was a slight rise of the granulocyte volume after the 6th UVB. The only significant change of adherence was an increase of granulocyte adherence in MS patients. Untreated patients had a significantly enhanced phagocytic activity in comparison to the control group. 6 UVB treatments induced a singificant reduction of the phagocytic activity in MS patients. However, subsequently the percentage of phagocytizing cells increased again, whereas the particle uptake per cell continued to decrease. In the control group only minor UVB-induced changes of phagocytosis were observed. The in vitro UV irradiation caused an enhanced phagocytosis in the majority of cases in both controls and MS patients. In general, under the UVB treatment all parameters examined changed in the sense of a normalisation, in that the measured values reached a new level lying between the extreme pretreatment values accompanied by a reduced standard deviation. The effect of UVB was more pronounced in MS patients when compared with normal control. This could result from an enhanced sensitivity to the influence of UVB of pathologically altered cells in MS patients. The monitoring of the MCV of red cells and lymphocytes as well as the repeated testing of granulocyte phagocytosis are recommended for supportion of therapy

  7. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  8. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Debashis Barik

    2016-12-01

    Full Text Available The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  9. [The multiple social roles of female lay caretakers of hospitalized children].

    Wegner, Wiliam; Pedro, Eva Neri Rubim

    2010-06-01

    This is a qualitative, descriptive, exploratory, and interventionist research carried out with nine female lay caretakers of children undergoing oncologic treatment. The objectives were to present the multiple social roles performed by female lay caretakers of children with cancer and to discuss the caretaker's role in society. The study was carried out between March and April, 2007, at Hospital de Clinicas de Porto Alegre, Rio Grande do Sul, Brazil. The data collection was performed with the focal group technique. The results were examined through the analysis of thematic content, which evidenced the multiple social roles performed by women, the main group of caretakers in society, regardless of the context. Final considerations enhance a discussion in the educational, political and social levels about the redistribution of social roles, particularly family responsibility between men and women. The participation of the nursing staff can take place through the comprehension of those roles imposed by the context and facilitate family inclusion in the care relationship.

  10. The role of the tunneling matrix element and nuclear reorganization in the design of quantum-dot cellular automata molecules

    Henry, Jackson; Blair, Enrique P.

    2018-02-01

    Mixed-valence molecules provide an implementation for a high-speed, energy-efficient paradigm for classical computing known as quantum-dot cellular automata (QCA). The primitive device in QCA is a cell, a structure with multiple quantum dots and a few mobile charges. A single mixed-valence molecule can function as a cell, with redox centers providing quantum dots. The charge configuration of a molecule encodes binary information, and device switching occurs via intramolecular electron transfer between dots. Arrays of molecular cells adsorbed onto a substrate form QCA logic. Individual cells in the array are coupled locally via the electrostatic electric field. This device networking enables general-purpose computing. Here, a quantum model of a two-dot molecule is built in which the two-state electronic system is coupled to the dominant nuclear vibrational mode via a reorganization energy. This model is used to explore the effects of the electronic inter-dot tunneling (coupling) matrix element and the reorganization energy on device switching. A semi-classical reduction of the model also is made to investigate the competition between field-driven device switching and the electron-vibrational self-trapping. A strong electron-vibrational coupling (high reorganization energy) gives rise to self-trapping, which inhibits the molecule's ability to switch. Nonetheless, there remains an expansive area in the tunneling-reorganization phase space where molecules can support adequate tunneling. Thus, the relationship between the tunneling matrix element and the reorganization energy affords significant leeway in the design of molecules viable for QCA applications.

  11. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum

    Valenzuela Jacob

    2012-06-01

    DIC levels. Based upon overall low gene expression levels for fatty acid synthesis, the results also suggest that the build-up of precursors to the acetyl-CoA carboxylases may play a more significant role in TAG synthesis rather than the actual enzyme levels of acetyl-CoA carboxylases per se. The presented insights into the types and timing of cellular responses to inorganic carbon will help maximize photoautotrophic carbon flow to lipid accumulation.

  12. Stress and the multiple-role woman: taking a closer look at the "superwoman".

    Sumra, Monika K; Schillaci, Michael A

    2015-01-01

    In the academic literature there is debate as to whether women who engage in multiple social roles experience more or less stress than women in fewer roles. For the present research we examined the relationship between levels of engagement in seven distinct roles and perceived stress and life satisfaction in a small non-random sample of women in North America (N = 308). We did not find a significant correlation between role engagement and perceived stress, though we did find a small but significant positive correlation between role engagement and life satisfaction. Similarly, in a subset of the participants (N = 31), there was not a significant relationship between the level of role engagement and physiological stress as measured by hair or urinary cortisol levels. We found a significant negative correlation between perceived stress and life satisfaction, and role satisfaction. The results from multiple regression models did not identify the level of role engagement as a significant predictor of either perceived stress or life satisfaction. Role satisfaction in addition to several life style variables such as the frequency of sex and exercise were identified as significant predictors of both outcome variables. We also examined the popularized notion of the "superwoman", which we defined as women who fell within the 4th quartile of role engagement, or those engaged in the wife/mother/worker/homemaker role combination. Based on popular discourses surrounding the superwoman we expected that superwomen would exhibit higher levels of perceived stress. Our results revealed that superwomen do not experience a significantly higher level of perceived stress than non-superwomen. The results of our study therefore suggest that multiple role engagement in women, even at a relatively high level as experienced by "superwomen", is not associated with significantly higher stress, or reduced life satisfaction.

  13. Stress and the multiple-role woman: taking a closer look at the "superwoman".

    Monika K Sumra

    Full Text Available In the academic literature there is debate as to whether women who engage in multiple social roles experience more or less stress than women in fewer roles. For the present research we examined the relationship between levels of engagement in seven distinct roles and perceived stress and life satisfaction in a small non-random sample of women in North America (N = 308. We did not find a significant correlation between role engagement and perceived stress, though we did find a small but significant positive correlation between role engagement and life satisfaction. Similarly, in a subset of the participants (N = 31, there was not a significant relationship between the level of role engagement and physiological stress as measured by hair or urinary cortisol levels. We found a significant negative correlation between perceived stress and life satisfaction, and role satisfaction. The results from multiple regression models did not identify the level of role engagement as a significant predictor of either perceived stress or life satisfaction. Role satisfaction in addition to several life style variables such as the frequency of sex and exercise were identified as significant predictors of both outcome variables. We also examined the popularized notion of the "superwoman", which we defined as women who fell within the 4th quartile of role engagement, or those engaged in the wife/mother/worker/homemaker role combination. Based on popular discourses surrounding the superwoman we expected that superwomen would exhibit higher levels of perceived stress. Our results revealed that superwomen do not experience a significantly higher level of perceived stress than non-superwomen. The results of our study therefore suggest that multiple role engagement in women, even at a relatively high level as experienced by "superwomen", is not associated with significantly higher stress, or reduced life satisfaction.

  14. Stress and the Multiple-Role Woman: Taking a Closer Look at the “Superwoman”

    Sumra, Monika K.; Schillaci, Michael A.

    2015-01-01

    In the academic literature there is debate as to whether women who engage in multiple social roles experience more or less stress than women in fewer roles. For the present research we examined the relationship between levels of engagement in seven distinct roles and perceived stress and life satisfaction in a small non-random sample of women in North America (N = 308). We did not find a significant correlation between role engagement and perceived stress, though we did find a small but significant positive correlation between role engagement and life satisfaction. Similarly, in a subset of the participants (N = 31), there was not a significant relationship between the level of role engagement and physiological stress as measured by hair or urinary cortisol levels. We found a significant negative correlation between perceived stress and life satisfaction, and role satisfaction. The results from multiple regression models did not identify the level of role engagement as a significant predictor of either perceived stress or life satisfaction. Role satisfaction in addition to several life style variables such as the frequency of sex and exercise were identified as significant predictors of both outcome variables. We also examined the popularized notion of the “superwoman”, which we defined as women who fell within the 4th quartile of role engagement, or those engaged in the wife/mother/worker/homemaker role combination. Based on popular discourses surrounding the superwoman we expected that superwomen would exhibit higher levels of perceived stress. Our results revealed that superwomen do not experience a significantly higher level of perceived stress than non-superwomen. The results of our study therefore suggest that multiple role engagement in women, even at a relatively high level as experienced by “superwomen”, is not associated with significantly higher stress, or reduced life satisfaction. PMID:25816317

  15. Balancing multiple roles among a group of urban midlife American Indian working women.

    Napholz, L

    2000-06-01

    Presented are the results of a secondary analysis of group data from a study of a six-week role conflict reduction intervention among a group of urban American Indian women (n = 8). The specific aim of this researcher was to understand the process of balancing multiple roles as expressed in the participants' daily lived experiences as mothers, wives, and workers. A construction of the process of balancing multiple roles was accomplished through the use of narratives. Balancing multiple roles represented a major current attempt on the part of the participants to integrate and balance traditional and contemporary feminine strengths in a positive, culturally consistent manner. The study themes included: traditional sex role expectation conflicts, family guilt, guilt management, transitioning inner conflict and stress, breaking the silence-learning to say no, and healing the spirit to reclaim the self. Further support for retraditionalization of roles for this group of Indian women was maintained as an effective means of balancing roles and achieving Indian self-determination.

  16. Local sequence information in cellular retinoic acid-binding protein I: specific residue roles in beta-turns.

    Rotondi, Kenneth S; Gierasch, Lila M

    2003-01-01

    We have recently shown that two of the beta-turns (III and IV) in the ten-stranded, beta-clam protein, cellular retinoic acid-binding protein I (CRABP I), are favored in short peptide fragments, arguing that they are encoded by local interactions (K. S. Rotondi and L. M. Gierasch, Biochemistry, 2003, Vol. 42, pp. 7976-7985). In this paper we examine these turns in greater detail to dissect the specific local interactions responsible for their observed native conformational biases. Conformations of peptides corresponding to the turn III and IV fragments were examined under conditions designed to selectively disrupt stabilizing interactions, using pH variation, chaotrope addition, or mutagenesis to probe specific side-chain influences. We find that steric constraints imposed by excluded volume effects between near neighbor residues (i,i+2), favorable polar (i,i+2) interactions, and steric permissiveness of glycines are the principal factors accounting for the observed native bias in these turns. Longer-range stabilizing interactions across the beta-turns do not appear to play a significant role in turn stability in these short peptides, in contrast to their importance in hairpins. Additionally, our data add to a growing number of examples of the 3:5 type I turn with a beta-bulge as a class of turns with high propensity to form locally defined structure. Current work is directed at the interplay between the local sequence information in the turns and more long-range influences in the mechanism of folding of this predominantly beta-sheet protein. Copyright 2004 Wiley Periodicals, Inc.

  17. Arterial grafts exhibiting unprecedented cellular infiltration and remodeling in vivo: the role of cells in the vascular wall.

    Row, Sindhu; Peng, Haofan; Schlaich, Evan M; Koenigsknecht, Carmon; Andreadis, Stelios T; Swartz, Daniel D

    2015-05-01

    To engineer and implant vascular grafts in the arterial circulation of a pre-clinical animal model and assess the role of donor medial cells in graft remodeling and function. Vascular grafts were engineered using Small Intestinal Submucosa (SIS)-fibrin hybrid scaffold and implanted interpositionally into the arterial circulation of an ovine model. We sought to demonstrate implantability of SIS-Fibrin based grafts; examine the remodeling; and determine whether the presence of vascular cells in the medial wall was necessary for cellular infiltration from the host and successful remodeling of the implants. We observed no occlusions or anastomotic complications in 18 animals that received these grafts. Notably, the grafts exhibited unprecedented levels of host cell infiltration that was not limited to the anastomotic sites but occurred through the lumen as well as the extramural side, leading to uniform cell distribution. Incoming cells remodeled the extracellular matrix and matured into functional smooth muscle cells as evidenced by expression of myogenic markers and development of vascular reactivity. Interestingly, tracking the donor cells revealed that their presence was beneficial but not necessary for successful grafting. Indeed, the proliferation rate and number of donor cells decreased over time as the vascular wall was dominated by host cells leading to significant remodeling and development of contractile function. These results demonstrate that SIS-Fibrin grafts can be successfully implanted into the arterial circulation of a clinically relevant animal model, improve our understanding of vascular graft remodeling and raise the possibility of engineering mural cell-free arterial grafts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Gender and gender role differences in self- and other-estimates of multiple intelligences.

    Szymanowicz, Agata; Furnham, Adrian

    2013-01-01

    This study examined participant gender and gender role differences in estimates of multiple intelligences for self, partner, and various hypothetical, stereotypical, and counter-stereotypical target persons. A general population sample of 261 British participants completed one of four questionnaires that required them to estimate their own and others' multiple intelligences and personality traits. Males estimated their general IQ slightly, but mathematic IQ significantly higher than females, who rated their social and emotional intelligence higher than males. Masculine individuals awarded themselves somewhat higher verbal and practical IQ scores than did female participants. Both participant gender and gender role differences in IQ estimates were found, with gender effects stronger in cognitive and gender role than in "personal" ability estimates. There was a significant effect of gender role on hypothetical persons' intelligence evaluations, with masculine targets receiving significantly higher intelligence estimates compared to feminine targets. More intelligent hypothetical figures were judged as more masculine and less feminine than less intelligent ones.

  19. Multiple Functional Domains and Complexes of the Two Nonstructural Proteins of Human Respiratory Syncytial Virus Contribute to Interferon Suppression and Cellular Location▿

    Swedan, Samer; Andrews, Joel; Majumdar, Tanmay; Musiyenko, Alla; Barik, Sailen

    2011-01-01

    Human respiratory syncytial virus (RSV), a major cause of severe respiratory diseases, efficiently suppresses cellular innate immunity, represented by type I interferon (IFN), using its two unique nonstructural proteins, NS1 and NS2. In a search for their mechanism, NS1 was previously shown to decrease levels of TRAF3 and IKKε, whereas NS2 interacted with RIG-I and decreased TRAF3 and STAT2. Here, we report on the interaction, cellular localization, and functional domains of these two proteins. We show that recombinant NS1 and NS2, expressed in lung epithelial A549 cells, can form homo- as well as heteromers. Interestingly, when expressed alone, substantial amounts of NS1 and NS2 localized to the nuclei and to the mitochondria, respectively. However, when coexpressed with NS2, as in RSV infection, NS1 could be detected in the mitochondria as well, suggesting that the NS1-NS2 heteromer localizes to the mitochondria. The C-terminal tetrapeptide sequence, DLNP, common to both NS1 and NS2, was required for some functions, but not all, whereas only the NS1 N-terminal region was important for IKKε reduction. Finally, NS1 and NS2 both interacted specifically with host microtubule-associated protein 1B (MAP1B). The contribution of MAP1B in NS1 function was not tested, but in NS2 it was essential for STAT2 destruction, suggesting a role of the novel DLNP motif in protein-protein interaction and IFN suppression. PMID:21795342

  20. Preliminary Investigation of the Role of Cellular Immunity in Estrous Cycle Modulation of Post-Resection Breast Cancer Spread

    Hrushesky, William

    2002-01-01

    It is hypothesized that the short term objectives of doing this proposal are to better understand which sex steroids and which cellular immune functions control post resection metastatic cancer spread...

  1. Role of Heparan Sulfate in Cellular Infection of Integrin-Binding Coxsackievirus A9 and Human Parechovirus 1 Isolates.

    Pirjo Merilahti

    Full Text Available Heparan sulfate/heparin class of proteoglycans (HSPG have been shown to function in cellular attachment and infection of numerous viruses including picornaviruses. Coxsackievirus A9 (CV-A9 and human parechovirus 1 (HPeV-1 are integrin-binding members in the family Picornaviridae. CV-A9 Griggs and HPeV-1 Harris (prototype strains have been reported not to bind to heparin, but it was recently shown that some CV-A9 isolates interact with heparin in vitro via VP1 protein with a specific T132R/K mutation. We found that the infectivity of both CV-A9 Griggs and HPeV-1 Harris was reduced by sodium chlorate and heparinase suggestive of HSPG interactions. We analyzed the T132 site in fifty-four (54 CV-A9 clinical isolates and found that only one of them possessed T132/R mutation while the other nine (9 had T132K. We then treated CV-A9 Griggs and HPeV-1 Harris and eight CV-A9 and six HPeV-1 clinical isolates with heparin and protamine. Although infectivity of Griggs strain was slightly reduced (by 25%, heparin treatment did not affect the infectivity of the CV-A9 isolates that do not possess the T132R/K mutation, which is in line with the previous findings. Some of the HPeV-1 isolates were also affected by heparin treatment, which suggested that there may be a specific heparin binding site in HPeV-1. In contrast, protamine (a specific inhibitor of heparin completely inhibited the infection of both prototypes and clinical CV-A9 and HPeV-1 isolates. We conclude that T132R/K mutation has a role in heparin binding of CV-A9, but we also show data, which suggest that there are other HSPG binding sites in CV-A9. In all, we suggest that HSPGs play a general role in both CV-A9 and HPeV-1 infections.

  2. Biomechanics of cellular solids.

    Gibson, Lorna J

    2005-03-01

    Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.

  3. Managing multiple roles - Personality, stress, and work-family interference in dual-earner couples

    Wierda-Boer, H.H.; Gerris, J.R.M.; Vermulst, A.A.

    2009-01-01

    Today many parents have multiple roles. This study examined how personality, domain-specific stress, and work-family interference are interrelated. Questionnaire data of 276 Dutch dual-earner couples with young children were analyzed using structural equation modeling. Findings demonstrated that job

  4. Epistemological and Reading Beliefs Profiles and Their Role in Multiple Text Comprehension

    Mateos, Mar; Solé, Isabel; Martín, Elena; Castells, Nuria; Cuevas, Isabel; González-Lamas, Jara

    2016-01-01

    Introduction: The aim of this study was to analyse the role of epistemological beliefs and reading beliefs in the comprehension of multiple texts which presented conflicting positions about a controversial topic (nuclear energy). More specifically, we investigated the influence of the multidimensional configuration of epistemological and reading…

  5. Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells.

    Swalwell, Helen; Latimer, Jennifer; Haywood, Rachel M; Birch-Machin, Mark A

    2012-02-01

    Skin cancer incidence is dramatically increasing worldwide, with exposure to ultraviolet radiation (UVR) a predominant factor. The UVA component initiates oxidative stress in human skin, although its exact role in the initiation of skin cancer, particularly malignant melanoma, remains unclear and is controversial because there is evidence for a melanin-dependent mechanism in UVA-linked melanoma studies. Nonpigmented (CHL-1, A375), moderately pigmented (FM55, SKmel23), and highly pigmented (FM94, hyperpigmented FM55) human melanoma cell lines have been used to investigate UVA-induced production of reactive oxygen species using FACS analysis, at both the cellular (dihydrorhodamine-123) and the mitochondrial (MitoSOX) level, where most cellular stress is generated. For the first time, downstream mtDNA damage (utilizing a quantitative long-PCR assay) has been investigated. Using UVA, UVB, and H(2)O(2) as cellular stressors, we have explored the dual roles of melanin as a photoprotector and photosensitizer. The presence of melanin has no influence over cellular oxidative stress generation, whereas, in contrast, melanin protects against mitochondrial superoxide generation and mtDNA damage (one-way ANOVA with post hoc Tukey's analysis, Pmelanin binds directly to DNA, it acts as a direct photosensitizer of mtDNA damage during UVA irradiation (Pmelanin. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Prognostic role of the CDNK1B V109G polymorphism in multiple endocrine neoplasia type 1.

    Circelli, Luisa; Ramundo, Valeria; Marotta, Vincenzo; Sciammarella, Concetta; Marciello, Francesca; Del Prete, Michela; Sabatino, Lina; Pasquali, Daniela; Izzo, Francesco; Scala, Stefania; Colao, Annamaria; Faggiano, Antongiulio; Colantuoni, Vittorio

    2015-07-01

    CDKN1B encodes the cyclin-dependent kinase inhibitor p27/Kip1. CDKN1B mutations and polymorphisms are involved in tumorigenesis; specifically, the V109G single nucleotide polymorphism has been linked to different tumours with controversial results. Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant syndrome, characterized by the development of different types of neuroendocrine tumours and increased incidence of other malignancies. A clear genotype-phenotype correlation in MEN1 has not been established yet. In this study, we assessed whether the CDKN1B V109G polymorphism was associated with the development of aggressive tumours in 55 consecutive patients affected by MEN1. The polymorphism was investigated by PCR amplification of germline DNA followed by direct sequencing. Baseline and follow-up data of tumour types and their severity were collected and associated with the genetic data. MEN1-related aggressive and other malignant tumours of any origin were detected in 16.1% of wild-type and 33.3% of polymorphism allele-bearing patients (P = NS). The time interval between birth and the first aggressive tumour was significantly shorter in patients with the CDKN1B V109G polymorphism (median 46 years) than in those without (median not reached; P = 0.03). Similarly, shorter was the time interval between MEN1 diagnosis and age of the first aggressive tumour (P = 0.02). Overall survival could not be estimated as 96% patients were still alive at the time of the study. In conclusion, CDKN1B V109G polymorphism seems to play a role in the development of aggressive tumours in MEN1. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. A review on potential roles of vitamins in incidence, progression, and improvement of multiple sclerosis

    Matin Khosravi-Largani

    2018-03-01

    Full Text Available Multiple Sclerosis (MS is an inflammatory and neurodegenerative disease, with unknown etiology. Vitamins, as important micronutrients playing different roles in body, seem to be important in MS pathogenesis. In vitro, in vivo and human studies, supports the protective role of some vitamins in MS occurrence or progression. Current study reviews recent insights and reports about the importance of vitamins in MS incidence or progression. In accordance, the importance of all water and fat-soluble vitamins in MS pathogenesis based on observational studies in human population and their role in the function of immune system as well as possible therapeutic opportunities are discussed in depth throughout this review. Keywords: Multiple sclerosis, Experimental autoimmune encephalomyelitis, Vitamin A, Vitamin E, Vitamin D, Folic acid, Vitamin B 12, Vitamins

  8. Development and validation of the work-family-school role conflicts and role-related social support scales among registered nurses with multiple roles.

    Xu, Lijuan; Song, Rhayun

    2013-10-01

    The purpose of this study was to develop work-family-school role conflicts and role-related social support scales, and to validate the psychometrics of those scales among registered nurses with multiple roles. The concepts, generation of items, and the scale domains of work-family-school role conflicts and role-related social support scales were constructed based on a review of the literature. The validity and reliability of the scales were examined by administering them to 201 registered nurses who were recruited from 8 university hospitals in South Korea. The content validity was examined by nursing experts using a content validity index. Exploratory factor analysis and confirmatory factor analysis were used to establish the construct validity. The correlation with depression was examined to assess concurrent validity. Finally, internal consistency was assessed using Cronbach's alpha coefficients. The work-family-school role conflicts scale comprised ten items with three factors: work-school-to-family conflict (three items), family-school-to-work conflict (three items), and work-family-to-school conflict (four items). The role-related social support scale comprised nine items with three factors: support from family (three items), support from work (three items), and support from school (three items). Cronbach's alphas were 0.83 and 0.76 for the work-family-school role conflicts and role-related social support scales, respectively. Both instruments exhibited acceptable construct and concurrent validity. The validity and reliability of the developed scales indicate their potential usefulness for the assessment of work-family-school role conflict and role-related social support among registered nurses with multiple roles in Korea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening

    Wilson, Jodie [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Berntsen, Hanne Friis; Zimmer, Karin Elisabeth [Norwegian University of Life Sciences, Oslo (Norway); Frizzell, Caroline [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Verhaegen, Steven; Ropstad, Erik [Norwegian University of Life Sciences, Oslo (Norway); Connolly, Lisa, E-mail: l.connolly@qub.ac.uk [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom)

    2016-03-01

    complex mixtures. • Multiple cytotoxic endpoints were investigated for defined mixtures of persistent organic pollutants (POPs). • POP mixtures are based on levels relevant to human exposure. • POP mixtures can increase ROS induction and impact mitochondrial health, which could result in apoptosis. • HCA can detect pre-lethal and reversible signs of cellular stress.

  10. Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening

    Wilson, Jodie; Berntsen, Hanne Friis; Zimmer, Karin Elisabeth; Frizzell, Caroline; Verhaegen, Steven; Ropstad, Erik; Connolly, Lisa

    2016-01-01

    complex mixtures. • Multiple cytotoxic endpoints were investigated for defined mixtures of persistent organic pollutants (POPs). • POP mixtures are based on levels relevant to human exposure. • POP mixtures can increase ROS induction and impact mitochondrial health, which could result in apoptosis. • HCA can detect pre-lethal and reversible signs of cellular stress.

  11. Mothers of young adults with intellectual disability: multiple roles, ethnicity and well-being.

    Eisenhower, A; Blacher, J

    2006-12-01

    Two opposing perspectives--role strain and role enhancement--were considered as predictive of women's psychological and physical health. The authors examined the relation between multiple role occupancy (parenting, employment, marriage) and well-being (depression and health) among mothers of young adults with intellectual disability (ID). Participants were 226 mothers aged 35-70 years old caring for a young adult aged 16-26 years old with moderate to severe/profound ID. Mothers were of either Latino ethnicity (n=117) or Anglo (n=109). Mothers' ethnicity and degree of acculturation and young adults' adaptive behaviour and behaviour problems were examined as potential moderators. Mothers who were employed, married, or both reported better well-being than mothers who were both unemployed and unmarried, especially when their offspring had relatively higher adaptive functioning. This relationship between role occupancy and well-being was fully mediated by socio-economic status (SES) factors. Results did not suggest a role enhancement effect, but instead indicated a role shortage effect; unemployed, unmarried mothers experienced markedly poor well-being, while all other mothers experienced comparable well-being. Well-being scores were higher for Anglo than for Latino mothers; this relationship was entirely accounted for by SES. In Latina mothers, the relation between role occupancy and well-being was moderated by degree of acculturation. Findings suggest that multiple roles benefit mothers of young adults with ID primarily through their impact on socio-economic resources. For more acculturated Latina mothers, occupying more roles predicted better well-being even after controlling for SES. Latina mothers who were unemployed and unmarried had lower SES, and this group emerged as at particular risk. The latter group may benefit most from respite assistance and other interventions aimed at addressing their physical and mental health.

  12. Role of cellular oxalate in oxalate clearance of patients with calcium oxalate monohydrate stone formation and normal controls.

    Oehlschläger, Sven; Fuessel, Susanne; Meye, Axel; Herrmann, Jana; Froehner, Michael; Albrecht, Steffen; Wirth, Manfred P

    2009-03-01

    To examine the cellular, plasma, and urinary oxalate and erythrocyte oxalate flux in patients with calcium oxalate monohydrate (COM) stone formation vs normal controls. Pathologic oxalate clearance in humans is mostly integrated in calcium oxalate stone formation. An underlying cause of deficient oxalate clearance could be defective transmembrane oxalate transport, which, in many tissues, is regulated by an anion exchanger (SLC26). We studied 2 groups: 40 normal controls and 41 patients with COM stone formation. Red blood cells were divided for cellular oxalate measurement and for resuspension in a buffered solution (pH 7.40); 0.1 mmol/L oxalate was added. The supernatant was measured for oxalate immediately and 1 hour after incubation. The plasma and urinary oxalate were analyzed in parallel. The mean cellular oxalate concentrations were significantly greater in the normal controls (5.25 +/- 0.47 micromol/L) than in those with COM stone formation (2.36 +/- 0.28 micromol/L; P stone formation (0.31 +/- 0.02 mmol/L) than in the controls (0.24 +/- 0.02 mmol/L; P r = 0.49-0.63; P r = -0.29-0.41; P r = -0.30; P r = 0.25; P stone formation. Our data implicate the presence of a cellular oxalate buffer to stabilize plasma and urinary oxalate concentrations in normal controls.

  13. Bridges or Barriers? Conceptualization of the Role of Multiple Identity Gateway Groups in Intergroup Relations

    Aharon Levy

    2017-06-01

    Full Text Available The modern era of globalization has been accompanied by a massive growth in interconnections between groups, and has led to the sharing of multiple identities by individuals and groups. Following these developments, research has focused on the issue of multiple identities, and has shed important light on how individuals who hold these complex forms of identity feel and behave, and on the reactions they elicit from members of other groups. However, the potential of groups with such multiple identities (e.g., biracials, immigrants, etc. to affect the intergroup relations between the groups that represent the respective sources of the different identities (e.g., Blacks and Whites, country of origin and country of residence, etc. has not been examined to date. Accordingly, in this paper, we first systematically explore the potential of groups in which people identify with multiple social categories, or groups that are perceived as such by others, to play a role in intergroup dynamics. Next, we offer a theoretical framework outlining what functions groups of people with shared multiple identities may serve (as bridges or barriers by proposing how their presence may facilitate or deteriorate intergroup relations. Finally, we present recent empirical research examining how groups of people with shared multiple identities can act as gateways and bridge the cleft between two separate groups that represent the respective sources of their different identities, and discuss the theoretical and practical implications for the field of intergroup relations.

  14. Multiple role occupancy and social participation among midlife wives and husbands in the United Kingdom.

    Glaser, Karen; Evandrou, Maria; Tomassini, Cecilia

    2006-01-01

    We investigated the relationship between intensive multiple role occupancy and one key dimension of well-being, social participation (i.e., frequency of participation in social and leisure activities and meeting friends or relatives). Moreover, we examined gender differences in the association between individual, spousal and couple intensive multiple role commitments and individual social participation. Our research is based on a sample of mid-life wives (45-59) and their husbands from the 2000 British Household Panel Study (BHPS). Our findings show that, among wives whose husbands were providing care to a dependent for 20 or more hours a week, there was a negative association with social and leisure activity participation, whereas husbands' level of participation in social and leisure activities was higher if their wives were in full-time paid work. We also found lower odds of meeting friends or relatives among wives and husbands in full-time employment, and higher odds of meeting friends and relatives among wives providing care for 20 or more hours a week. Our results will aid policy thinking in addressing how people can be best supported to balance work and family commitments in order to optimize different dimensions of well-being in later life and help alleviate the pressures associated with multiple-role occupancy in mid-life.

  15. Cellular gravity

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  16. Decisional role preferences, risk knowledge and information interests in patients with multiple sclerosis.

    Heesen, Christoph; Kasper, Jürgen; Segal, Julia; Köpke, Sascha; Mühlhauser, Ingrid

    2004-12-01

    Shared decision making is increasingly recognized as the ideal model of patient-physician communication especially in chronic diseases with partially effective treatments as multiple sclerosis (MS). To evaluate prerequisite factors for this kind of decision making we studied patients' decisional role preferences in medical decision making, knowledge on risks, information interests and the relations between these factors in MS. After conducting focus groups to generate hypotheses, 219 randomly selected patients from the MS Outpatient Clinic register (n = 1374) of the University Hospital Hamburg received mailed questionnaires on their knowledge of risks in MS, their perception of their own level of knowledge, information interests and role preferences. Most patients (79%) indicated that they preferred an active role in treatment decisions giving the shared decision and the informed choice model the highest priority. MS risk knowledge was low but questionnaire results depended on disease course, disease duration and ongoing immune therapy. Measured knowledge as well as perceived knowledge was only weakly correlated with preferences of active roles. Major information interests were related to symptom alleviation, diagnostic procedures and prognosis. Patients with MS claimed autonomous roles in their health care decisions. The weak correlation between knowledge and preferences for active roles implicates that other factors largely influence role preferences.

  17. Task Group 7B: Cellular and Molecular Mechanisms of Biological Aging: The Roles of Nature, Nurture and Chance in the Maintenance of Human Healthspan

    Weier, Heinz-Ulrich; Arya, Suresh; Grant, Christine; Miller, Linda; Ono, Santa Jeremy; Patil, Chris; Shay, Jerry; Topol, Eric; Torry, Michael; Weier, Heinz-Ulrich G.; Tse, Iris; Lin, Su-Ju; Miller, Richard

    2007-11-14

    The degree to which an individual organism maintains healthspan and lifespan is a function of complex interactions between genetic inheritance ('nature'), environment, including cultural inheritance (nurture) and stochastic events ('luck' or 'chance'). This task group will focus upon the role of chance because it is so poorly understood and because it appears to be of major importance in the determination of individual variations in healthspan and lifespan within species. The major factor determining variations in healthspan and lifespan between species is genetic inheritance. Broader aspects of cellular and molecular mechanisms of biological aging will also be considered, given their importance for understanding the cellular and molecular basis of successful aging. The task force will consider the cellular and molecular basis for nature, nurture and chance in healthspan and life span determination. On the basis of comparisons between identical and non-identical twins, geneticists have estimated that genes control no more than about a quarter of the inter-individual differences in lifespan (Herskind 1996). Twin studies of very old individuals, however, show substantially greater genetic contributions to Healthspan (McClearn 2004; Reed 2003). The environment clearly plays an important role in the length and the quality of life. Tobacco smoke, for example has the potential to impact upon multiple body systems in ways that appear to accelerate the rates at which those systems age (Bernhard 2007). To document the role of chance events on aging, one must rigorously control both the genetic composition of an organism and its environment. This has been done to a remarkable degree in a species of nematodes, Caenorhabditis elegans (Vanfleteren 1998). The results confirm hundreds of previous studies with a wide range of species, especially those with inbred rodents housed under apparently identical but less well controlled environments. One

  18. Dispersant affects the cellular influences of single-wall carbon nanotube: the role of CNT as carrier of dispersants.

    Horie, Masanori; Stowe, Mayumi; Tabei, Miki; Kato, Haruhisa; Nakamura, Ayako; Endoh, Shigehisa; Morimoto, Yasuo; Fujita, Katsuhide

    2013-06-01

    The application of carbon nanotube (CNT) as a functional material to engineering and life sciences is advanced. In order to evaluate the cytotoxicity of CNT in vitro, some chemical and biological reagents are used for dispersants. In the present study, the cellular influences of six kinds of chemical or biological reagents used as dispersants were examined. Pluronic F-127, Pluronic F-68, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), pulmonary surfactant preparation Surfacten®, bovine serum albumin (BSA) and Tween 80 were used in the preparation of CNT-medium dispersants. The influences of each reagent on cell viability in human lung carcinoma A549 cells were small. However, Pluronic F-127, DPPC, Surfacten® and Tween 80 induced an increase of intracellular reactive oxygen species (ROS) level. Next, CNT-medium dispersions were prepared, using each reagent as a dispersant and applied to A549 cells. The cellular influences depended on the kind of dispersant. Cells exposed to CNT dispersion including Pluronic® F-127, Surfacten®, DPPC and Tween 80 showed LDH release to the culture supernatant. Induction of intracellular ROS level was observed in cells exposed to CNT dispersion including each reagent except BSA. These results suggest that the adsorbed dispersant reagents on the surface of the CNT affect its cellular influences, particularly the induction of oxidative stress.

  19. MIMO Communication for Cellular Networks

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  20. Managing multiple roles: development of the Work-Family Conciliation Strategies Scale.

    Matias, Marisa; Fontaine, Anne Marie

    2014-07-17

    Juggling the demands of work and family is becoming increasingly difficult in today's world. As dual-earners are now a majority and men and women's roles in both the workplace and at home have changed, questions have been raised regarding how individuals and couples can balance family and work. Nevertheless, research addressing work-family conciliation strategies is limited to a conflict-driven approach and context-specific instruments are scarce. This study develops an instrument for assessing how dual-earners manage their multiple roles detaching from a conflict point of view highlighting the work-family conciliation strategies put forward by these couples. Through qualitative and quantitative procedures the Work-Family Conciliation Strategies Scales was developed and is composed by 5 factors: Couple Coping; Positive Attitude Towards Multiple Roles, Planning and Management Skills, Professional Adjustments and Institutional Support; with good adjustment [χ2/df = 1.22; CFI = .90, RMSEA = .04, SRMR = .08.] and good reliability coefficients [from .67 to .87]. The developed scale contributes to research because of its specificity to the work-family framework and its focus on the proactive nature of balancing work and family roles. The results support further use of this instrument.

  1. The Impact of Multiple Roles on Psychological Distress among Japanese Workers.

    Honda, Ayumi; Abe, Yasuyo; Date, Yutaka; Honda, Sumihisa

    2015-06-01

    There has been considerable interest in Japanese society in the problem of work-related stress leading to depressive symptoms, and an increasing number of primary houseworkers maintain paid employment. The purpose of this study was to examine the differential impact of multiple roles associated with psychological distress among Japanese workers. We studied 722 men and women aged 18-83 years in a cross-sectional study. The K10 questionnaire was used to examine psychological distress. The proportion of participants with psychological distress was higher in women (17.8%) compared with men (11.5%). Having three roles significantly decreased the risk of psychological distress [women: odds ratio (OR), 0.37-fold; men: OR, 0.41] compared with only one role. In working married women, there was significantly less psychological distress (OR, 0.27), and those with childrearing or caregiving responsibilities for elderly parents had significantly less psychological distress (OR, 0.38) than those with only an employment role. Similarly, working married men who had childrearing or caregiving responsibilities for elderly parents had significantly less psychological distress (OR, 0.41) than those who had only an employment role. The present study demonstrated that participants who had only an employment role had an increased risk of psychological distress. The degree of psychological distress was not determined solely by the number of roles. It is important to have balance between work and family life to reduce role conflict and/or role submersion, which in turn may reduce the risk of psychological distress.

  2. Playing [with] multiple roles: Readers, authors, and characters in "Who Is Blaise Zabini?" [symposium

    Anne Collins Smith

    2009-11-01

    Full Text Available Fans who produce fan works in genres such as fiction, music, and music video take on dual roles in the process, as readers of the original canon and as creators of their own products. These roles—and more—are creatively explored in the Parselmouths' wizard rock composition "Who Is Blaise Zabini?". Like many works of fan fiction, the Parselmouths' songs move beyond a reader's ordinary role, taking on an authorial role to generate new characters and events in the Harry Potter universe. What makes this particular work unusual is that at the same time that they are adopting the roles of authors, and even of participants, the Parselmouths also restrict their own authorial and participatory power, claiming that the Slytherin characters they portray could not perceive their classmate Blaise Zabini until J. K. Rowling provided a complete description of him. To untangle their multiple roles and to recognize the creativity exercised by the Parselmouths in collapsing the boundaries among them, it will be helpful to turn to a theory of audience response that delineates specific roles and that specifies the limitations and the powers inherent in them.

  3. The Part-Time Student Role: Implications for the Emotional Experience of Managing Multiple Roles amongst Hong Kong Public Health Nurses.

    Shiu, Ann Tak-Ying

    1999-01-01

    Nine public-health nurses studying part time and 11 other nurses sampled their mood states randomly over seven days. The part-time student role created additional strain for nurses with children. The stress of managing multiple roles was greatest when both work and nonwork role responsibilities were heavy. (SK)

  4. Stress appraisals and cellular aging: A key role for anticipatory threat in the relationship between psychological stress and telomere length

    O’Donovan, Aoife; Tomiyama, A. Janet; Lin, Jue; Puterman, Eli; Adler, Nancy E.; Kemeny, Margaret; Wolkowitz, Owen M.; Blackburn, Elizabeth H.; Epel, Elissa S.

    2012-01-01

    Chronic psychological stressis a risk factor formultiple diseases of aging. Accelerated cellular aging as indexed by short telomere length has emerged as a potential common biological mechanism linking various forms of psychological stress and diseases of aging. Stress appraisals determine the degree and type of biological stress responses and altered stress appraisals may be a common psychological mechanism linking psychological stress and diseases of aging. However, no previous studies have examined the relationship between stress appraisals and telomere length. We exposed chronically stressed female caregivers and non-caregiving controls (N= 50; M age = 62.14±6.10) to a standardized acute laboratory stressor and measured their anticipatory and retrospective threat and challenge appraisals of the stressor. We hypothesized that threat and challenge appraisals would be associated with shorter and longer telomere length respectively, and that chronic care giving stress would influence telomere length through altered stress appraisals. Higher anticipatory threat appraisals were associated with shorter age-adjusted telomere length (β = −.32, p = .03), but challenge appraisals and retrospective threat appraisals showed no independent association with telomere length. Caregivers reported significantly higher anticipatory (β = −.36, p = .006)and retrospective (β = −.29, p = .03) threat appraisals than controls, but similar challenge appraisals. Although there was no significant main effect of caregiver status on telomere length, care giving had a significant indirect effect on telomere length through anticipatory threat appraisals. Exaggerated anticipatory threat appraisals may be a common and modifiable psychological mechanism of psychological stress effects on cellular aging. PMID:22293459

  5. The role of glatiramer acetate in the early treatment of multiple sclerosis

    David W Brandes

    2010-06-01

    Full Text Available David W BrandesHope MS Center, Knoxville, TN, USA; ULCA, Los Angeles, CA, USAAbstract: The treatment of the underlying disease process causing multiple sclerosis has continued to evolve since the initial approval of interferon-beta-1b in 1993. Current emphasis is on early treatment, including treatment after a single clinical attack (clinically isolated syndrome. The assessment of which disease modifying medication to use as initial therapy has continued to remain a combination of science and the art of medicine. Equally important are the assessment of treatment failure and the subsequent choice of medication change. This article will present scientific information, as well as information about clinical decision making, about these choices, with emphasis on the changing role of glatiramer acetate in this process.Keywords: glatiramer acetate, early treatment, multiple sclerosis

  6. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Thomas D. GRIFFIN

    2012-10-01

    Full Text Available The main goal for the current study was to investigate whether individual differences in domaingeneral thinking dispositions might affect learning from multiple-document inquiry tasks in science.Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be different from what has been observed in the past from those documents. Understanding was assessed with two measures: an essay task and an inference verification task. Domain-general thinking dispositions were assessed with a Commitment to Logic, Evidence, and Reasoning (CLEAR thinking scale. The measures of understanding wereuniquely predicted by both reading skills and CLEAR thinking scores, and these effects were not attributable to prior knowledge or interest. The results suggest independent roles for thinkingdispositions and reading ability when students read to learn from multiple-document inquiry tasks in science.

  7. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti

    2011-01-01

    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown...... the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture...... underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working...

  8. The potential role for ocrelizumab in the treatment of multiple sclerosis

    Sorensen, Per Soelberg; Blinkenberg, Morten

    2016-01-01

    B cells play a central role in the pathogenesis in multiple sclerosis (MS), being involved in the activation of proinflammatory T cells, secretion of proinflammatory cytokines, and production of autoantibodies directed against myelin. Hence, the usage of B-cell-depleting monoclonal antibodies....... Other anti-CD20 monoclonal antibodies have been tested as treatments for MS, including ofatumumab that has shown beneficial results in placebo-controlled phase II trials in patients with relapsing-remitting MS. Ocrelizumab is now in phase III development for the treatment of relapsing-remitting MS...

  9. Integrating the ICF with positive psychology: Factors predicting role participation for mothers with multiple sclerosis.

    Farber, Ruth S; Kern, Margaret L; Brusilovsky, Eugene

    2015-05-01

    Being a mother has become a realizable life role for women with disabilities and chronic illnesses, including multiple sclerosis (MS). Identifying psychosocial factors that facilitate participation in important life roles-including motherhood-is essential to help women have fuller lives despite the challenge of their illness. By integrating the International Classification of Functioning, Disability, and Health (ICF) and a positive psychology perspective, this study examined how environmental social factors and positive personal factors contribute to daily role participation and satisfaction with parental participation. One hundred and 11 community-dwelling mothers with MS completed Ryff's Psychological Well-Being Scales, the Medical Outcome Study Social Support Survey, the Short Form-36, and the Parental Participation Scale. Hierarchical regression analyses examined associations between social support and positive personal factors (environmental mastery, self-acceptance, purpose in life) with daily role participation (physical and emotional) and satisfaction with parental participation. One-way ANOVAs tested synergistic combinations of social support and positive personal factors. Social support predicted daily role participation (fewer limitations) and greater satisfaction with parental participation. Positive personal factors contributed additional unique variance. Positive personal factors and social support synergistically predicted better function and greater satisfaction than either alone. Integrating components of the ICF and positive psychology provides a useful model for understanding how mothers with MS can thrive despite challenge or impairment. Both positive personal factors and environmental social factors were important contributors to positive role functioning. Incorporating these paradigms into treatment may help mothers with MS participate more fully in meaningful life roles. (c) 2015 APA, all rights reserved).

  10. New developments in the management of relapsed/refractory multiple myeloma – the role of ixazomib

    Richardson PG

    2017-08-01

    Full Text Available Paul G Richardson,1 Shaji Kumar,2 Jacob P Laubach,1 Claudia Paba-Prada,1 Neeraj Gupta,3 Deborah Berg,3 Helgi van de Velde,3 Philippe Moreau4 1Division of Hematologic Malignancy, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, USA; 2Division of Hematology, Mayo Clinic, Rochester, MN, USA; 3Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd, Cambridge, MA, USA; 4Hematology Department, University Hospital Hotel-Dieu, Nantes, France Abstract: Ixazomib is the first oral proteasome inhibitor to be approved, in combination with lenalidomide and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy. Approval was on the basis of results from the phase 3, double-blind, placebo-controlled TOURMALINE-MM1 study, which demonstrated a 35% improvement in progression-free survival with the all-oral combination of ixazomib plus lenalidomide–dexamethasone versus lenalidomide–dexamethasone alone (median: 20.6 vs 14.7 months; hazard ratio: 0.74, p=0.012; median follow-up 14.7 months. The addition of ixazomib to the lenalidomide–dexamethasone regimen was associated with limited additional toxicity and had no adverse impact on patient-reported quality of life. Common grade ≥3 adverse events with ixazomib include gastrointestinal adverse events, rash, and thrombocytopenia. Here, we review the efficacy, safety, pharmacokinetics, and patient-reported quality of life data seen with ixazomib, and discuss the role of this oral agent in the treatment of patients with relapsed/refractory multiple myeloma, including in patients with high-risk cytogenetic abnormalities and those with multiple prior therapies. Keywords: ixazomib, multiple myeloma, proteasome inhibitor, clinical, efficacy, tolerability, pharmacokinetics 

  11. The role of infections in the pathogenesis and course of multiple sclerosis

    Pawate Siddharama

    2010-01-01

    Full Text Available Interplay between susceptibility genes and environmental factors is considered important player in the genesis of multiple sclerosis (MS. Among environmental factors, a role for an infectious pathogen has long been considered central to the disease process. This opinion has support both from epidemiological data and the findings of immunological abnormalities in spinal fluid that reflect an immune response to an as yet undetermined antigen, possibly a pathogen, in the cerebrospinal fluid. Our review will outline the current understanding of the role of infection in the causation and progression of MS. We will review the data that point to an infectious cause of MS and consider the specific agents Chlamydophila (Chlamydia pneumoniae, Human Herpes Virus 6, and Epstein-Barr Virus, that are implicated in either the development or progression of MS.

  12. Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis.

    Sipahi, Rifat; Zupanc, Günther K H

    2018-05-14

    Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The Arabidopsis thaliana homolog of the helicase RTEL1 plays multiple roles in preserving genome stability.

    Recker, Julia; Knoll, Alexander; Puchta, Holger

    2014-12-01

    In humans, mutations in the DNA helicase Regulator of Telomere Elongation Helicase1 (RTEL1) lead to Hoyeraal-Hreidarsson syndrome, a severe, multisystem disorder. Here, we demonstrate that the RTEL1 homolog in Arabidopsis thaliana plays multiple roles in preserving genome stability. RTEL1 suppresses homologous recombination in a pathway parallel to that of the DNA translocase FANCM. Cytological analyses of root meristems indicate that RTEL1 is involved in processing DNA replication intermediates independently from FANCM and the nuclease MUS81. Moreover, RTEL1 is involved in interstrand and intrastrand DNA cross-link repair independently from FANCM and (in intrastrand cross-link repair) parallel to MUS81. RTEL1 contributes to telomere homeostasis; the concurrent loss of RTEL1 and the telomerase TERT leads to rapid, severe telomere shortening, which occurs much more rapidly than it does in the single-mutant line tert, resulting in developmental arrest after four generations. The double mutant rtel1-1 recq4A-4 exhibits massive growth defects, indicating that this RecQ family helicase, which is also involved in the suppression of homologous recombination and the repair of DNA lesions, can partially replace RTEL1 in the processing of DNA intermediates. The requirement for RTEL1 in multiple pathways to preserve genome stability in plants can be explained by its putative role in the destabilization of DNA loop structures, such as D-loops and T-loops. © 2014 American Society of Plant Biologists. All rights reserved.

  14. Wireless Cellular Mobile Communications

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  15. Cellular targets of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) and its role in the inhibition of glycolysis in macrophages

    Love, D; Barrett, T.J.; White, M.Y.

    2016-01-01

    the cellular targets of HOSCN in macrophages (J774A.1). We report that multiple thiol-containing proteins involved in metabolism and glycolysis; fructose bisphosphate aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and creatine kinase, together with a number of chaperone......, antioxidant and structural proteins, were modified in a reversible manner in macrophages treated with HOSCN. The modification of the metabolic enzymes was associated with a decrease in basal glycolysis, glycolytic reserve, glycolytic capacity and lactate release, which was only partly reversible on further...... incubation in the absence of HOSCN. Inhibition of glycolysis preceded cell death and was seen in cells exposed to low concentrations (r25 mM) of HOSCN. The ability of HOSCN to inhibit glycolysis and perturb energy production is likely to contribute to the cell death seen in macrophages on further incubation...

  16. Role of whole-body 64-slice multidetector computed tomography in treatment planning for multiple myeloma.

    Razek, Ahmed Abdel Khalek Abdel; Ezzat, Amany; Azmy, Emad; Tharwat, Nehal

    2013-08-01

    The authors evaluated the role of whole-body 64-slice multidetector computed tomography (WB-MDCT) in treatment planning for multiple myeloma. This was a prospective study of 28 consecutive patients with multiple myeloma (19 men, nine women; age range, 51-73 years; mean age, 60 years) who underwent WB-MDCT and conventional radiography (CR) of the skeleton. The images were interpreted for the presence of bony lesions, medullary lesions, fractures and extraosseous lesions. We evaluated any changes in treatment planning as a result of WB-MDCT findings. WB-MDCT was superior to CR for detecting bony lesions (p=0.001), especially of the spine (p=0.001) and thoracic cage (p=0.006). WB-MDCT upstaged 14 patients, with a significant difference in staging (p=0.002) between WB-MDCT and CR. Medullary involvement either focal (n=6) or diffuse (n=3) had a positive correlation with the overall score (r=0.790) and stage (r=0.618) of disease. Spine fractures were better detected at WB-MDCT (n=4) than at CR (n=2). Extraosseous soft tissue lesions (n=7) were detected only at WB-MDCT. Findings detected at the WB-MDCT led to changes in the patient's treatment plan in 39% of cases. Upstaging of seven patients (25%) altered the medical treatment plan, and four of 28 (14%) patients required additional radiotherapy (7%) and vertebroplasty (7%). We conclude that WB-MDCT has an impact on treatment planning and prognosis in patients with multiple myeloma, as it has high rate of detecting cortical and medullary bone lesions, spinal fracture and extraosseous lesions. This information may alter treatment planning in multiple myeloma due to disease upstaging and detection of spine fracture and extraosseous spinal lesions.

  17. Multiple Roles of Autophagy in the Sorafenib Resistance of Hepatocellular Carcinoma

    Ting Sun

    2017-11-01

    Full Text Available Hepatocellular carcinoma (HCC is the second leading cause of cancer-related death worldwide, and prognosis remains unsatisfactory since the disease is often diagnosed at the advanced stages. Currently, the multikinase inhibitor sorafenib is the only drug approved for the treatment of advanced HCC. However, primary or acquired resistance to sorafenib develops, generating a roadblock in HCC therapy. Autophagy is an intracellular lysosomal pathway involved in protein and organelle degradation, with an astonishing number of connections to human disease and physiology. Current understanding of the role of autophagy in the progression of cancer and the response to cancer therapy remains controversial. Sorafenib is able to induce autophagy in HCC, but the effect of autophagy is indistinct. Some studies established that sorafenib-induced autophagy serves as a pro-survival response. However, other studies found that sorafenib-induced autophagy improves the lethality of sorafenib against HCC cells. The mechanisms underlying autophagy and sorafenib resistance remain elusive. The purpose of this review is to summarize the progress of research focused on autophagy and sorafenib resistance and to update current knowledge of how cellular autophagy impacts sorafenib sensitivity in HCC treatment.

  18. Metabolomics Reveals New Mechanisms for Pathogenesis in Barth Syndrome and Introduces Novel Roles for Cardiolipin in Cellular Function.

    Yana Sandlers

    Full Text Available Barth Syndrome is the only known Mendelian disorder of cardiolipin remodeling, with characteristic clinical features of cardiomyopathy, skeletal myopathy, and neutropenia. While the primary biochemical defects of reduced mature cardiolipin and increased monolysocardiolipin are well-described, much of the downstream biochemical dysregulation has not been uncovered, and biomarkers are limited. In order to further expand upon the knowledge of the biochemical abnormalities in Barth Syndrome, we analyzed metabolite profiles in plasma from a cohort of individuals with Barth Syndrome compared to age-matched controls via 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. A clear distinction between metabolite profiles of individuals with Barth Syndrome and controls was observed, and was defined by an array of metabolite classes including amino acids and lipids. Pathway analysis of these discriminating metabolites revealed involvement of mitochondrial and extra-mitochondrial biochemical pathways including: insulin regulation of fatty acid metabolism, lipid metabolism, biogenic amine metabolism, amino acid metabolism, endothelial nitric oxide synthase signaling, and tRNA biosynthesis. Taken together, this data indicates broad metabolic dysregulation in Barth Syndrome with wide cellular effects.

  19. Role of the viral and cellular encoded thymidine kinase in the repair of UV-irradiated herpes simplex virus

    Rainbow, A.J.; McMaster Univ., Hamilton, ON

    1989-01-01

    A strain of herpes simplex type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk + ) gene and a thymidine kinase deficient (tk - ) mutant strain (HSC-1:PTK3B) were used as probes to examine the repair of UV-damaged viral DNA in one tk - (143) and two tk + (R970-5 and AC4) human cell lines. UV survival for each HSC-1 strain was similar for infection of both tk - and tk + cells suggesting that the repair of viral DNA was not dependent on the expression of a functional cellular tk gene. In contrast, UV survival of HSV-1:PTK3B was substantially reduced compared to HSV-1:KOS when infecting all 3 human cell lines, as well as Vero monkey kidney cells and LPM1A mouse cells. Tjese results suggest that the repair of UV-irradiated HSV-1 in lytically infected mammalian cells depends, in part at least, on the expression of the viral encoded tk. (author). 20 refs.; 1 fig

  20. Cellular interactions in the germinal center: role of adhesion receptors and significance for the pathogenesis of AIDS and malignant lymphoma

    Koopman, G.; Pals, S. T.

    1992-01-01

    The germinal center forms a specialized microenvironment that is thought to play a key role in the induction of antibody synthesis, affinity maturation of B cells, isotype switching, and memory B-cell formation. Moreover, the germinal center may also be involved in the maintenance of T-cell memory.

  1. New Roles Assigned to the α1–β1 (and α2–β2 Interface of the Human Hemoglobin Molecule from Physiological to Cellular

    Yoshiaki Sugawara

    2011-11-01

    Full Text Available Cellular life is reliant upon rapid and efficient responses to internal and external conditions. The basic molecular events associated with these processes are the structural transitions of the proteins (structural protein allostery involved. From this view, the human hemoglobin (Hb molecule (α2β2 holds a special position in this field. Hb has two types of αβ interface (i.e., α1β1 [and α2β2] and α1β2 [and α2β1]. The latter α1–β2 (and α2–β1 interface is known to be associated with cooperative O2 binding, and exhibits principal roles if the molecule goes from its deoxy to oxy quaternary structure. However, the role of the former α1–β1 (and α2–β2 interface has been unclear for a long time. In this regard, important and intriguing observations have been accumulating. A new role was attributed first as stabilizing the HbO2 tetramer against acidic autoxidation. That is, the α1–β1 (and α2–β2 interface produces a conformational constraint in the β chain whereby the distal (E7 histidine (His residue is tilted slightly away from the bound O2 so as to prevent proton-catalyzed displacement of O2– by a solvent water molecule. The β chains thus acquire pH-dependent delayed autoxidation in the HbO2 tetramer. The next role was suggested by our studies searching for similar phenomena in normal human erythrocytes under mild heating. Tilting of the distal (E7 His in turn triggered degradation of the Hb molecule to hemichrome, and subsequent clustering of Heinz bodies within the erythrocyte. As Heinz body-containing red cells become trapped in the spleen, it was demonstrated that the α1–β1 (and α2–β2 interface may exert delicate control of the fate (removal of its own erythrocyte. Herein we review and summarize the related results and current interpretation of the oxidative behavior of human Hb, emphasizing the correlation between hemichrome emergence and Heinz-body formation, and specifically discuss the new roles

  2. The role of nutritional factors in cellular protection against DNA damage, altered gene expression and malignant transformation

    Borek, C.

    1986-01-01

    In recent years data from epidemiological studies and laboratory experiments have revealed numerous links between diet and cancer. The complex role of nutritional factors in modifying cancer incidence may be attributed in part to dietary agents acting as potentiators or promoters of cancer, serving as auxilliary agents to other environmental factors; as causes of cancer, or as cancer preventive agents. Studies can be carried on in vitro, in cell culture systems, where malignant transformation serves as an end point. These systems afford the opportunity to study the direct effect of nutrition in oncogenesis and the role of dietary factors in modulating the frequency and course of neoplastic development in its various stages. 20 refs., 1 fig., 3 tabs

  3. Sleep, Plasticity and the Pathophysiology of Neurodevelopmental Disorders: The Potential Roles of Protein Synthesis and Other Cellular Processes

    Dante Picchioni

    2014-03-01

    Full Text Available Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders.

  4. Managing treatment fatigue in patients with multiple sclerosis on long-term therapy: the role of multiple sclerosis nurses

    Crawford A

    2014-08-01

    Full Text Available Ann Crawford, Sally Jewell,* Holly Mara, Laura McCatty, Regina Pelfrey The Lash Group; Frisco, TX, USA *Sally Jewell is now retired Abstract: This article discusses the many ways that nurses can address the factors that lead to treatment fatigue in patients with multiple sclerosis (MS on long-term disease-modifying therapy, ultimately helping to preserve the patient’s health and quality of life. Patients with MS on long-term therapy may suffer from treatment fatigue and poor adherence due to a variety of different factors, including difficulties with injections, anxiety/depression, financial problems, and inaccurate beliefs about the MS disease process. Because MS nurses have regular interactions with patients, they are ideally situated to help patients cope with these and other factors that may limit adherence. Keywords: multiple sclerosis, disease-modifying therapy, injection, nurse

  5. The role of KIR2DS1 in multiple sclerosis--KIR in Portuguese MS patients.

    Bettencourt, Andreia; Silva, Ana Martins; Carvalho, Cláudia; Leal, Bárbara; Santos, Ernestina; Costa, Paulo P; Silva, Berta M

    2014-04-15

    Killer Immunoglobulin-like Receptor (KIR) genes may influence both resistance and susceptibility to different autoimmune diseases, but their role in the pathogenesis of Multiple Sclerosis (MS) is still unclear. We investigated the influence of KIR genes on MS susceptibility in 447 MS Portuguese patients, and also whether genetic interactions between specific KIR genes and their HLA class I ligands could contribute to the pathogenesis of MS. We observed a negative association between the activating KIR2DS1 gene and MS (adjusted OR=0.450, p=0.030) independently from the presence of HLA-DRB1*15 allele. The activating KIR2DS1 receptor seems to confer protection against MS most probably through modulation of autoreactive T cells by Natural Killer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti; Spencer, Chris C.A.; Patsopoulos, Nikolaos A.; Moutsianas, Loukas; Dilthey, Alexander; Su, Zhan; Freeman, Colin; Hunt, Sarah E.; Edkins, Sarah; Gray, Emma; Booth, David R.; Potter, Simon C.; Goris, An; Band, Gavin; Oturai, Annette Bang; Strange, Amy; Saarela, Janna; Bellenguez, Céline; Fontaine, Bertrand; Gillman, Matthew; Hemmer, Bernhard; Gwilliam, Rhian; Zipp, Frauke; Jayakumar, Alagurevathi; Martin, Roland; Leslie, Stephen; Hawkins, Stanley; Giannoulatou, Eleni; D’alfonso, Sandra; Blackburn, Hannah; Boneschi, Filippo Martinelli; Liddle, Jennifer; Harbo, Hanne F.; Perez, Marc L.; Spurkland, Anne; Waller, Matthew J; Mycko, Marcin P.; Ricketts, Michelle; Comabella, Manuel; Hammond, Naomi; Kockum, Ingrid; McCann, Owen T.; Ban, Maria; Whittaker, Pamela; Kemppinen, Anu; Weston, Paul; Hawkins, Clive; Widaa, Sara; Zajicek, John; Dronov, Serge; Robertson, Neil; Bumpstead, Suzannah J.; Barcellos, Lisa F.; Ravindrarajah, Rathi; Abraham, Roby; Alfredsson, Lars; Ardlie, Kristin; Aubin, Cristin; Baker, Amie; Baker, Katharine; Baranzini, Sergio E.; Bergamaschi, Laura; Bergamaschi, Roberto; Bernstein, Allan; Berthele, Achim; Boggild, Mike; Bradfield, Jonathan P.; Brassat, David; Broadley, Simon A.; Buck, Dorothea; Butzkueven, Helmut; Capra, Ruggero; Carroll, William M.; Cavalla, Paola; Celius, Elisabeth G.; Cepok, Sabine; Chiavacci, Rosetta; Clerget-Darpoux, Françoise; Clysters, Katleen; Comi, Giancarlo; Cossburn, Mark; Cournu-Rebeix, Isabelle; Cox, Mathew B.; Cozen, Wendy; Cree, Bruce A.C.; Cross, Anne H.; Cusi, Daniele; Daly, Mark J.; Davis, Emma; de Bakker, Paul I.W.; Debouverie, Marc; D’hooghe, Marie Beatrice; Dixon, Katherine; Dobosi, Rita; Dubois, Bénédicte; Ellinghaus, David; Elovaara, Irina; Esposito, Federica; Fontenille, Claire; Foote, Simon; Franke, Andre; Galimberti, Daniela; Ghezzi, Angelo; Glessner, Joseph; Gomez, Refujia; Gout, Olivier; Graham, Colin; Grant, Struan F.A.; Guerini, Franca Rosa; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Hartung, Hans-Peter; Heard, Rob N.; Heath, Simon; Hobart, Jeremy; Hoshi, Muna; Infante-Duarte, Carmen; Ingram, Gillian; Ingram, Wendy; Islam, Talat; Jagodic, Maja; Kabesch, Michael; Kermode, Allan G.; Kilpatrick, Trevor J.; Kim, Cecilia; Klopp, Norman; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Lechner-Scott, Jeannette S.; Leone, Maurizio A.; Leppä, Virpi; Liljedahl, Ulrika; Bomfim, Izaura Lima; Lincoln, Robin R.; Link, Jenny; Liu, Jianjun; Lorentzen, Åslaug R.; Lupoli, Sara; Macciardi, Fabio; Mack, Thomas; Marriott, Mark; Martinelli, Vittorio; Mason, Deborah; McCauley, Jacob L.; Mentch, Frank; Mero, Inger-Lise; Mihalova, Tania; Montalban, Xavier; Mottershead, John; Myhr, Kjell-Morten; Naldi, Paola; Ollier, William; Page, Alison; Palotie, Aarno; Pelletier, Jean; Piccio, Laura; Pickersgill, Trevor; Piehl, Fredrik; Pobywajlo, Susan; Quach, Hong L.; Ramsay, Patricia P.; Reunanen, Mauri; Reynolds, Richard; Rioux, John D.; Rodegher, Mariaemma; Roesner, Sabine; Rubio, Justin P.; Rückert, Ina-Maria; Salvetti, Marco; Salvi, Erika; Santaniello, Adam; Schaefer, Catherine A.; Schreiber, Stefan; Schulze, Christian; Scott, Rodney J.; Sellebjerg, Finn; Selmaj, Krzysztof W.; Sexton, David; Shen, Ling; Simms-Acuna, Brigid; Skidmore, Sheila; Sleiman, Patrick M.A.; Smestad, Cathrine; Sørensen, Per Soelberg; Søndergaard, Helle Bach; Stankovich, Jim; Strange, Richard C.; Sulonen, Anna-Maija; Sundqvist, Emilie; Syvänen, Ann-Christine; Taddeo, Francesca; Taylor, Bruce; Blackwell, Jenefer M.; Tienari, Pentti; Bramon, Elvira; Tourbah, Ayman; Brown, Matthew A.; Tronczynska, Ewa; Casas, Juan P.; Tubridy, Niall; Corvin, Aiden; Vickery, Jane; Jankowski, Janusz; Villoslada, Pablo; Markus, Hugh S.; Wang, Kai; Mathew, Christopher G.; Wason, James; Palmer, Colin N.A.; Wichmann, H-Erich; Plomin, Robert; Willoughby, Ernest; Rautanen, Anna; Winkelmann, Juliane; Wittig, Michael; Trembath, Richard C.; Yaouanq, Jacqueline; Viswanathan, Ananth C.; Zhang, Haitao; Wood, Nicholas W.; Zuvich, Rebecca; Deloukas, Panos; Langford, Cordelia; Duncanson, Audrey; Oksenberg, Jorge R.; Pericak-Vance, Margaret A.; Haines, Jonathan L.; Olsson, Tomas; Hillert, Jan; Ivinson, Adrian J.; De Jager, Philip L.; Peltonen, Leena; Stewart, Graeme J.; Hafler, David A.; Hauser, Stephen L.; McVean, Gil; Donnelly, Peter; Compston, Alastair

    2011-01-01

    Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis. PMID:21833088

  7. From understanding cellular function to novel drug discovery: the role of planar patch-clamp array chip technology

    Christophe ePy

    2011-10-01

    Full Text Available All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions – including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor-intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, resulting in questionable models of true physiological function, and are unsuitable for studies involving neuronal communication. Multi-electrode arrays (MEA, in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, the approach to the chemical patterning for cell placement, and present physiological data from cultured neuronal cells.

  8. Cellular metabolism

    Hildebrand, C.E.; Walters, R.A.

    1977-01-01

    Progress is reported on the following research projects: chromatin structure; the use of circular synthetic polydeoxynucleotides as substrates for the study of DNA repair enzymes; human cellular kinetic response following exposure to DNA-interactive compounds; histone phosphorylation and chromatin structure in cell proliferation; photoaddition products induced in chromatin by uv light; pollutants and genetic information transfer; altered RNA metabolism as a function of cadmium accumulation and intracellular distribution in cultured cells; and thymidylate chromophore destruction by water free radicals

  9. Creating a Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte to Study the Role of Cellular Architecture in Cardiomyocyte Systems Biology.

    Rajagopal, Vijay; Bass, Gregory; Ghosh, Shouryadipta; Hunt, Hilary; Walker, Cameron; Hanssen, Eric; Crampin, Edmund; Soeller, Christian

    2018-04-18

    With the advent of three-dimensional (3D) imaging technologies such as electron tomography, serial-block-face scanning electron microscopy and confocal microscopy, the scientific community has unprecedented access to large datasets at sub-micrometer resolution that characterize the architectural remodeling that accompanies changes in cardiomyocyte function in health and disease. However, these datasets have been under-utilized for investigating the role of cellular architecture remodeling in cardiomyocyte function. The purpose of this protocol is to outline how to create an accurate finite element model of a cardiomyocyte using high resolution electron microscopy and confocal microscopy images. A detailed and accurate model of cellular architecture has significant potential to provide new insights into cardiomyocyte biology, more than experiments alone can garner. The power of this method lies in its ability to computationally fuse information from two disparate imaging modalities of cardiomyocyte ultrastructure to develop one unified and detailed model of the cardiomyocyte. This protocol outlines steps to integrate electron tomography and confocal microscopy images of adult male Wistar (name for a specific breed of albino rat) rat cardiomyocytes to develop a half-sarcomere finite element model of the cardiomyocyte. The procedure generates a 3D finite element model that contains an accurate, high-resolution depiction (on the order of ~35 nm) of the distribution of mitochondria, myofibrils and ryanodine receptor clusters that release the necessary calcium for cardiomyocyte contraction from the sarcoplasmic reticular network (SR) into the myofibril and cytosolic compartment. The model generated here as an illustration does not incorporate details of the transverse-tubule architecture or the sarcoplasmic reticular network and is therefore a minimal model of the cardiomyocyte. Nevertheless, the model can already be applied in simulation-based investigations into the

  10. A Molecular and Cellular Context-Dependent Role for Ir76b in Detection of Amino Acid Taste

    Anindya Ganguly

    2017-01-01

    Full Text Available Amino acid taste is expected to be a universal property among animals. Although sweet, bitter, salt, and water tastes have been well characterized in insects, the mechanisms underlying amino acid taste remain elusive. From a Drosophila RNAi screen, we identify an ionotropic receptor, Ir76b, as necessary for yeast preference. Using calcium imaging, we identify Ir76b+ amino acid taste neurons in legs, overlapping partially with sweet neurons but not those that sense other tastants. Ir76b mutants have reduced responses to amino acids, which are rescued by transgenic expression of Ir76b and a mosquito ortholog AgIr76b. Co-expression of Ir20a with Ir76b is sufficient for conferring amino acid responses in sweet-taste neurons. Notably, Ir20a also serves to block salt response of Ir76b. Our study establishes the role of a highly conserved receptor in amino acid taste and suggests a mechanism for mutually exclusive roles of Ir76b in salt- and amino-acid-sensing neurons.

  11. Roles of viral and cellular proteins in the expression of alternatively spliced HTLV-1 pX mRNAs

    Princler, Gerald L.; Julias, John G.; Hughes, Stephen H.; Derse, David

    2003-01-01

    The human T cell leukemia virus type 1 (HTLV-1) genome contains a cluster of at least five open reading frames (ORFs) near the 3' terminus within the pX region. The pX ORFs are encoded by mono- or bicistronic mRNAs that are generated by alternative splicing. The various pX mRNAs result from skipping of the internal exon (2-exon versus 3-exon isofoms) or from the utilization of alternative splice acceptor sites in the terminal exon. The Rex and Tax proteins, encoded by ORFs X-III and X-IV, have been studied intensively and are encoded by the most abundant of the alternative 3-exon mRNAs. The protein products of the other pX ORFs have not been detected in HTLV-1-infected cell lines and the levels of the corresponding mRNAs have not been accurately established. We have used real-time RT-PCR with splice-site specific primers to accurately measure the levels of individual pX mRNA species in chronically infected T cell lines. We have asked whether virus regulatory proteins or ectopic expression of cellular factors influence pX mRNA splicing in cells that were transfected with HTLV-1 provirus clones. In chronically infected cell lines, the pX-tax/rex mRNA was present at 500- to 2500-fold higher levels than the pX-tax-orfII mRNA and at approximately 1000-fold higher levels than pX-rex-orfI mRNA. Chronically infected cell lines that contain numerous defective proviruses expressed 2-exon forms of pX mRNAs at significantly higher levels compared to cell lines that contain a single full-length provirus. Cells transfected with provirus expression plasmids expressed similar relative amounts of 3-exon pX mRNAs but lower levels of 2-exon mRNA forms compared to cells containing a single, full-length provirus. The pX mRNA expression patterns were nearly identical in cells transfected with wild-type, Tax-minus, or Rex-minus proviruses. Cotransfection of cells with HTLV-1 provirus in combination with SF2/ASF expression plasmid resulted in a relative increase in pX-tax/rex m

  12. Physics and Its Multiple Roles in the International Atomic Energy Agency

    Massey, Charles D.

    2017-01-01

    The IAEA is the world's centre for cooperation in the nuclear field. It was set up as the world's ``Atoms for Peace'' organization in 1957 within the United Nations family. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies. Three main areas of work underpin the IAEA's mission: Safety and Security, Science and Technology, and Safeguards and Verification. To carry out its mission, the Agency is authorized to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world; foster the exchange of scientific and technical information on peaceful uses of atomic energy; and encourage the exchange of training of scientists and experts in the field of peaceful uses of atomic energy. Nowadays, nuclear physics and nuclear technology are applied in a great variety of social areas, such as power production, medical diagnosis and therapies, environmental protection, security control, material tests, food processing, waste treatments, agriculture and artifacts analysis. This presentation will cover the role and practical application of physics at the IAEA, and, in particular, focus on the role physics has, and will play, in nuclear security.

  13. "ROLE OF ALLOGENEIC TRANSPLANTATION IN MULTIPLE MYELOMA IN THE ERA OF NEW DRUGS"

    Benedetto Bruno

    2010-06-01

                Allografting is a potentially curative treatment for a subset of multiple myeloma patients for its well documented graft-vs-myeloma effects. However, its role has been hotly debated. Even though molecular remissions have been reported up to 50% after high-dose myeloablative conditionings, their applications, given the high toxicity, have been for long limited to younger relapsed/refractory patients. These limitations have greatly been reduced through the introduction of non-myeloablative/reduced-intensity conditionings.             The introduction of new drugs, characterised by low risks of early mortality, indeed requires to define role and timing of an allograft to capture the subset of patients who may most benefit from graft-vs-myeloma effects.   Ultimately, new drugs should not be viewed as mutually exclusive with an allograft. They may be employed to achieve profound cytoreduction before and enhance graft-versus-myeloma effects as consolidation/maintenance therapy after an allograft. However, this combination should be explored only in well-designed clinical trials.

  14. The role of cellular and molecular studies in evaluation of health effects from combined radiation and chemical exposures

    Brooks, A.L.; Gilbert, E.S.; Kitchin, R.M.; Johnson, N.F.

    1992-06-01

    Additive models are currently used to predict risks following exposure to multiple agents or complex mixtures. Use of these models is questioned because different methods are used to derive risks for chemical and physical agents depending on the database used. Risks for the induction of cancer from radiation are based on large sets of human data, while standards are set for most chemical carcinogens using information derived from animal studies. However, it is not, from a scientific point of view, appropriate to add risks from physical and chemical agents to derive potential health impact from combined exposures. The range of safety factors built into the estimates, the large differences in the data sets used to evaluate and establish standards, and the differences in the basic philosophy for deriving risks for physical and chemical agents make the additive model unacceptable for estimating risks from combined exposures. To understand the potential health impacts from environmental exposure, it is important (1) to consider how risks were derived and (2) to determine if interactions exist between damage induced by the different agents to ensure that additive assumptions are valid. This presentation discusses a number of these safety factors for specific chemicals

  15. Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation

    Mukerji Joya

    2012-06-01

    Full Text Available Abstract Background HIV-1 Nef protein contributes to pathogenesis via multiple functions that include enhancement of viral replication and infectivity, alteration of intracellular trafficking, and modulation of cellular signaling pathways. Nef stimulates formation of tunneling nanotubes and virological synapses, and is transferred to bystander cells via these intercellular contacts and secreted microvesicles. Nef associates with and activates Pak2, a kinase that regulates T-cell signaling and actin cytoskeleton dynamics, but how Nef promotes nanotube formation is unknown. Results To identify Nef binding partners involved in Pak2-association dependent Nef functions, we employed tandem mass spectrometry analysis of Nef immunocomplexes from Jurkat cells expressing wild-type Nef or Nef mutants defective for the ability to associate with Pak2 (F85L, F89H, H191F and A72P, A75P in NL4-3. We report that wild-type, but not mutant Nef, was associated with 5 components of the exocyst complex (EXOC1, EXOC2, EXOC3, EXOC4, and EXOC6, an octameric complex that tethers vesicles at the plasma membrane, regulates polarized exocytosis, and recruits membranes and proteins required for nanotube formation. Additionally, Pak2 kinase was associated exclusively with wild-type Nef. Association of EXOC1, EXOC2, EXOC3, and EXOC4 with wild-type, but not mutant Nef, was verified by co-immunoprecipitation assays in Jurkat cells. Furthermore, shRNA-mediated depletion of EXOC2 in Jurkat cells abrogated Nef-mediated enhancement of nanotube formation. Using bioinformatic tools, we visualized protein interaction networks that reveal functional linkages between Nef, the exocyst complex, and the cellular endocytic and exocytic trafficking machinery. Conclusions Exocyst complex proteins are likely a key effector of Nef-mediated enhancement of nanotube formation, and possibly microvesicle secretion. Linkages revealed between Nef and the exocyst complex suggest a new paradigm of

  16. Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain.

    Beauvais-Flück, Rebecca; Chaumot, Arnaud; Gimbert, Frédéric; Quéau, Hervé; Geffard, Olivier; Slaveykova, Vera I; Cosio, Claudia

    2016-12-15

    Mercury (Hg) represents an important risk for human health through the food webs contamination. Macrophytes bioaccumulate Hg and play a role in Hg transfer to food webs in shallow aquatic ecosystems. Nevertheless, the compartmentalization of Hg within macrophytes, notably major accumulation in the cell wall and its impact on trophic transfer to primary consumers are overlooked. The present work focusses on the trophic transfer of inorganic Hg (IHg) and monomethyl-Hg (MMHg) from the intracellular and cell wall compartments of the macrophyte Elodea nuttallii - considered a good candidate for phytoremediation - to the crustacean Gammarus fossarum. The results demonstrated that Hg accumulated in both compartments was trophically bioavailable to gammarids. Besides IHg from both compartments were similarly transferred to G. fossarum, while for MMHg, uptake rates were ∼2.5-fold higher in G. fossarum fed with the cell wall vs the intracellular compartment. During the depuration phase, Hg concentrations in G. fossarum varied insignificantly suggesting that both IHg and MMHg were strongly bound to biological ligands in the crustacean. Our data imply that cell walls have to be considered as an important source of Hg to consumers in freshwater food webs when developing procedures for enhancing aquatic environment protection during phytoremediation programs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Modeling Multiple-Core Updraft Plume Rise for an Aerial Ignition Prescribed Burn by Coupling Daysmoke with a Cellular Automata Fire Model

    G. L Achtemeier; S. L. Goodrick; Y. Liu

    2012-01-01

    Smoke plume rise is critically dependent on plume updraft structure. Smoke plumes from landscape burns (forest and agricultural burns) are typically structured into “sub-plumes” or multiple-core updrafts with the number of updraft cores depending on characteristics of the landscape, fire, fuels, and weather. The number of updraft cores determines the efficiency of...

  18. The multiple roles of Bub1 in chromosome segregation during mitosis and meiosis

    Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-19

    Aneuploidy, any deviation from an exact multiple of the haploid number of chromosomes, is a common occurrence in cancer and represents the most frequent chromosomal disorder in newborns. Eukaryotes have evolved mechanisms to assure the fidelity of chromosome segregation during cell division that include a multiplicity of checks and controls. One of the main cell division control mechanisms is the spindle assembly checkpoint (SAC) that monitors the proper attachment of chromosomes to spindle fibers and prevents anaphase until all kinetochores are properly attached. The mammalian SAC is composed by at least 14 evolutionary-conserved proteins that work in a coordinated fashion to monitor the establishment of amphitelic attachment of all chromosomes before allowing cell division to occur. Among the SAC proteins, the budding uninhibited by benzimidazole protein 1 (Bub1), is a highly conserved protein of prominent importance for the proper functioning of the SAC. Studies have revealed many roles for Bub1 in both mitosis and meiosis, including the localization of other SAC proteins to the kinetochore, SAC signaling, metaphase congression and the protection of the sister chromatid cohesion. Recent data show striking sex specific differences in the response to alterations in Bub1 activity. Proper Bub1 functioning is particularly important during oogenesis in preventing the generation of aneuploid gametes that can have detrimental effects on the health status of the fetus and the newborn. These data suggest that Bub1 is a master regulator of SAC and chromosomal segregation in both mitosis and meiosis. Elucidating its many essential functions in regulating proper chromosome segregation can have important consequences for preventing tumorigenesis and developmental abnormalities.

  19. The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors

    Tünde eSzatmári

    2013-12-01

    Full Text Available Proteoglycans and in particular the syndecans are involved in the differentiation process across the epithelial-mesenchymal axis, principally through their ability to bind growth factors and modulate their downstream signalling. Malignant tumors have individual proteoglycan profiles, which are closely associated with their differentiation and biological behavior, mesenchymal tumors showing a different profile from that of epithelial tumors. Syndecan-1 is the main syndecan of epithelial malignancies, whereas in sarcomas its expression level is generally low, in accordance with their mesenchymal phenotype and highly malignant behaviour. This proteoglycan is often overexpressed in adenocarcinoma cells, whereas mesothelioma and fibrosarcoma cells express syndecan-2 and syndecan-4 more abundantly. Increased expression of syndecan-1 in mesenchymal tumors changes the tumor cell morphology to an epithelioid direction whereas downregulation results in a change in shape from polygonal to spindle-like morphology. Although syndecan-1 plays major roles on the cell surface, there are also intracellular functions, which are not very well studied. On the functional level, syndecan-1 affects mesenchymal tumor cell proliferation, adhesion, migration and motility, and the effect varies with the different domains of the core protein. Syndecan-1 may exert stimulatory or inhibitory effects, depending on the concentration of various mitogens, enzymes and signalling molecules, the ratio between the shed and membrane-associated syndecan-1 and histological grade of the tumour. Growth factor signaling seems to be delicately controlled by regulatory loops involving the syndecan expression levels and their sulfation patterns. Overexpression of syndecan-1 modulates the biosynthesis and sulfation of heparan sulfate and it also affects the expression of other proteoglycans. On transcriptomic level, syndecan-1 modulation results in profound effects on genes involved in

  20. Expression of MLN64 influences cellular matrix adhesion of breast cancer cells, the role for focal adhesion kinase.

    Cai, Wei; Ye, Lin; Sun, Jiabang; Mansel, Robert E; Jiang, Wen G

    2010-04-01

    The metastatic lymph node 64 (MLN64) gene was initially identified as highly expressed in the metastatic lymph node from breast cancer. It is localized in q12-q21 of the human chromosome 17 and is often co-amplified with erbB-2. However, the role played by MLN64 in breast cancer remains unclear. In the present study, the expression of MLN64 was examined in a breast cancer cohort using quantitative real-time PCR and immunohistochemical staining. It demonstrated that MLN64 was highly expressed in breast tumours compared to corresponding background tissues at both transcript level and protein level. The elevated level of MLN64 transcripts was correlated with the poor prognosis and overall survival of the patients. A panel of breast cancer cell sublines was subsequently developed by knockdown of MLN64 expression. Loss of MLN64 expression in MCF-7 cells resulted in a significant reduction of cell growth (absorbance for MCF-7DeltaMLN64 being 0.87+/-0.07, Padhesion assay, MDA-MB-231DeltaMLN64 cells showed a significant increase in adhesion (86+/-14), padhesion kinase (FAK) in MDA-MB-231DeltaMLN64 cells using Western blot analysis and immunofluorescent staining of FAK. Moreover, addition of FAK inhibitor to these cells diminished the effect of MLN64 on cell-matrix adhesion, suggesting that FAK contributed to the increased adhesion in MDA-MB-231DeltaMLN64 cells. In conclusion, MLN64 is overexpressed in breast cancer, and its level correlates with poor prognosis and patient survival. MLN64 contributes to the development and progression of breast cancer through the regulation of cell proliferation and adhesive capacity.

  1. Loss of positional information when tracking multiple moving dots: the role of visual memory.

    Narasimhan, Sathyasri; Tripathy, Srimant P; Barrett, Brendan T

    2009-01-01

    Pylyshyn, Z.W. and Storm, R.W. (1988) (Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179-197) proposed that human observers could simultaneously track up to five dots when presented with an array of dots moving in a random manner. In contrast, Tripathy, S.P., and Barrett, B.T. (2004) (Severe loss of positional information when detecting deviations in multiple trajectories. Journal of Vision, 4(12):4, 1020-1043, http://journalofvision.org/4/14/4/, doi: 10.1167/4.12.4) showed that when a threshold paradigm was employed, observers' ability to track deviations in straight-line trajectories is severely compromised when attending to two or more dots. In this study we present a series of four experiments that investigates the role of attention and visual memory while tracking deviations in multiple trajectories using a threshold paradigm. Our stimuli consisted of several linear, non-parallel, left-to-right trajectories, each moving at the same speed. At the trajectory mid-point (reached simultaneously by all dots), one of the dots (target) deviated clockwise or counter-clockwise. The observers' task was to identify the direction of deviation. The target trajectory was cued in the second half of the trial either by disappearance of distractors at the monitor's mid-line (Experiment 1) or by means of a change in colour of the target (Experiment 2); in both cases deviation thresholds rose steeply when the number of distractor trajectories was increased from 0 (typical threshold approximately 2 degrees) to 3 (typical threshold>20 degrees). When all the trajectories were presented statically in a single frame (Experiment 3), thresholds for identifying the orientation change of the target trajectory remained relatively unchanged as the number of distractor trajectories was increased. When a temporal delay of a few hundred milliseconds was introduced between the first and second halves of trajectories (Experiment 4

  2. The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design

    Pearl Gregory J

    2011-09-01

    Full Text Available Abstract Background Autologous bone marrow-derived stem cells have been ascribed an important therapeutic role in No-Option Critical limb Ischemia (NO-CLI. One primary endpoint for evaluating NO-CLI therapy is major amputation (AMP, which is usually combined with mortality for AMP-free survival (AFS. Only a trial which is double blinded can eliminate physician and patient bias as to the timing and reason for AMP. We examined factors influencing AMP in a prospective double-blinded pilot RCT (2:1 therapy to control of 48 patients treated with site of service obtained bone marrow cells (BMAC as well as a systematic review of the literature. Methods Cells were injected intramuscularly in the CLI limbs as either BMAC or placebo (peripheral blood. Six month AMP rates were compared between the two arms. Both patient and treating team were blinded of the assignment in follow-up examinations. A search of the literature identified 9 NO-CLI trials, the control arms of which were used to determine 6 month AMP rates and the influence of tissue loss. Results Fifteen amputations occurred during the 6 month period, 86.7% of these during the first 4 months. One amputation occurred in a Rutherford 4 patient. The difference in amputation rate between patients with rest pain (5.6% and those with tissue loss (46.7%, irrespective of treatment group, was significant (p = 0.0029. In patients with tissue loss, treatment with BMAC demonstrated a lower amputation rate than placebo (39.1% vs. 71.4%, p = 0.1337. The Kaplan-Meier time to amputation was longer in the BMAC group than in the placebo group (p = 0.067. Projecting these results to a pivotal trial, a bootstrap simulation model showed significant difference in AFS between BMAC and placebo with a power of 95% for a sample size of 210 patients. Meta-analysis of the literature confirmed a difference in amputation rate between patients with tissue loss and rest pain. Conclusions BMAC shows promise in improving AMP

  3. The role of the Frank-Starling law in the transduction of cellular work to whole organ pump function: a computational modeling analysis.

    Steven A Niederer

    2009-04-01

    Full Text Available We have developed a multi-scale biophysical electromechanics model of the rat left ventricle at room temperature. This model has been applied to investigate the relative roles of cellular scale length dependent regulators of tension generation on the transduction of work from the cell to whole organ pump function. Specifically, the role of the length dependent Ca(2+ sensitivity of tension (Ca(50, filament overlap tension dependence, velocity dependence of tension, and tension dependent binding of Ca(2+ to Troponin C on metrics of efficient transduction of work and stress and strain homogeneity were predicted by performing simulations in the absence of each of these feedback mechanisms. The length dependent Ca(50 and the filament overlap, which make up the Frank-Starling Law, were found to be the two dominant regulators of the efficient transduction of work. Analyzing the fiber velocity field in the absence of the Frank-Starling mechanisms showed that the decreased efficiency in the transduction of work in the absence of filament overlap effects was caused by increased post systolic shortening, whereas the decreased efficiency in the absence of length dependent Ca(50 was caused by an inversion in the regional distribution of strain.

  4. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    Peña-Soler, Esther; Fernandez, Francisco J; López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J; Quintana, Juan F; Rudd, Kenneth E; Coll, Miquel; Vega, M Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  5. Genetic factors and multiple sclerosis in the Moroccan population: a role for HLA class II.

    Ouadghiri, S; El Alaoui Toussi, K; Brick, C; Ait Benhaddou, E H; Benseffaj, N; Benomar, A; El Yahyaoui, M; Essakalli, M

    2013-12-01

    Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system that mainly affects young adults. The association between susceptibility to MS and HLA class II genes, in particular the DRB1*15 allele, has been reported in diverse ethnic groups. The aim of our study was to investigate the distribution of HLA-DRB1* and -DQB1* alleles in Moroccan population and their implication in the susceptibility to the disease. Fifty-seven MS patients were compared to 172 healthy controls unrelated to one another and matched by age, sex and ethnic origin. HLA class II (DRB1* and DQB1*) typing was performed by PCR-SSP and/or Luminex (PCR-SSO). Allelic and haplotypic frequencies, P-values, odds ratio (OR) and 95% confidence interval (CI) were calculated using the software SPSS. A significant increase of DRB1*15 allele frequency (17.6% vs 8.4%, OR=2.67, 95% CI=1.36-5.23, P=0.004) and HLA-DRB1*15-DQB1*06 haplotype (8.8% vs 4.08%, OR=2.78, 95% CI=1.41-5.48, P=0.002) were observed in Moroccan MS patients. No association of the DR15 allele with sex or age at onset was appreciated. Concerning HLA-DQB1* alleles, no significant difference between patients and controls was found. Our results reveal a role for HLA-DRB1*15 allele molecules in the predisposition of Moroccan patients to MS. Although this study should be confirmed on a larger sample size, it analyzes for the first time the possible role of a genetic marker for susceptibility to MS in Moroccan population. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Stress and serial adult metamorphosis: Multiple roles for the stress axis in socially regulated sex change

    Tessa K Solomon-Lane

    2013-11-01

    Full Text Available Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis. Through actions of both corticotropin-releasing factor and glucocorticoids (GCs, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli, a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.

  7. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change.

    Solomon-Lane, Tessa K; Crespi, Erica J; Grober, Matthew S

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli), a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.

  8. The Essential Role of Epstein-Barr Virus in the Pathogenesis of Multiple Sclerosis

    Pender, Michael P.

    2011-01-01

    There is increasing evidence that infection with the Epstein-Barr virus (EBV) plays a role in the development of multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the CNS. This article provides a four-tier hypothesis proposing (1) EBV infection is essential for the development of MS; (2) EBV causes MS in genetically susceptible individuals by infecting autoreactive B cells, which seed the CNS where they produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells that would otherwise die in the CNS by apoptosis; (3) the susceptibility to develop MS after EBV infection is dependent on a genetically determined quantitative deficiency of the cytotoxic CD8+ T cells that normally keep EBV infection under tight control; and (4) sunlight and vitamin D protect against MS by increasing the number of CD8+ T cells available to control EBV infection. The hypothesis makes predictions that can be tested, including the prevention and successful treatment of MS by controlling EBV infection. PMID:21075971

  9. Ecstatic epileptic seizures: a glimpse into the multiple roles of the insula

    Markus eGschwind

    2016-02-01

    Full Text Available Ecstatic epileptic seizures are a rare but compelling epileptic entity. During the first seconds of these seizures, ecstatic auras provoke feelings of well-being, intense serenity, bliss, and enhanced self-awareness. They are associated with the impression of time dilation, and can be described as a mystic experience by some patients. The functional neuroanatomy of ecstatic seizures is still debated. During recent years several patients presenting with ecstatic auras have been reported by others and us (in total n=49; a few of them in the setting of presurgical evaluation including electrical brain stimulation. According to the recently recognized functions of the insula, and the results of nuclear brain imaging and electrical stimulation, the ecstatic symptoms in these patients seem to localize to a functional network centered around the anterior insular cortex, where we thus propose to locate this rare ictal phenomenon. Here we summarize the role of the multiple sensory, autonomic, affective and cognitive functions of the insular cortex, which are integrated into the creation of self-awareness, and we suggest how this system may become dysfunctional on several levels during ecstatic aura.

  10. The role of Acinetobacter in the pathogenesis of multiple sclerosis examined by using Popper sequences.

    Ebringer, Alan; Rashid, Taha; Wilson, Clyde

    2012-06-01

    Multiple sclerosis (MS) is an autoimmune neurological disorder. The role of 'Acinetobacter' has been examined using the method of Karl Popper and involves nine "Popper sequences". (1) The frequency of MS increases with latitudes in the Northern Hemisphere, and the reverse is found in the Southern Hemisphere. (2) Sinusitis is found frequently at colder latitudes. (3) Sinusitis occurs frequently in patients with MS. (4) Specific sequences of bovine myelin when injected into experimental animals will produce a neurological disorder resembling MS which is called "experimental allergic encephalomyelitis". (5) Computer analysis of myelin shows molecular mimicry with sequences found in Acinetobacter. (6) Antibodies to Acinetobacter bacteria are found in MS patients. (7) Acinetobacter bacteria are located on human skin and in the nasal sinuses. (8) IgA antibodies are preferentially elevated in the sera of MS patients, thereby suggesting the trigger microbe is acting across a mucosal surface probably located in the nasal sinuses. (9) Only Acinetobacter bacteria and no other microbes evoke statistically significant titres of antibodies in MS patients. These nine Popper sequences suggest that MS is most probably caused by infections with Acinetobacter bacteria in the nasal sinuses, and this could have therapeutic implications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Autographa californica multiple nucleopolyhedrovirus ac53 plays a role in nucleocapsid assembly

    Liu Chao; Li Zhaofei; Wu Wenbi; Li Lingling; Yuan Meijin; Pan Lijing; Yang Kai; Pang Yi

    2008-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf53 (ac53) is a highly conserved gene existing in all sequenced Lepidoptera and Hymenoptera baculoviruses, but its function remains unknown. To investigate its role in the baculovirus life cycle, an ac53 deletion virus (vAc ac53KO-PH-GFP ) was generated through homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis revealed that vAc ac53KO-PH-GFP could not produce infectious budded virus in infected Sf9 cells. Real-time PCR demonstrated that the ac53 deletion did not affect the levels of viral DNA replication. Electron microscopy showed that many lucent tubular shells devoid of the nucleoprotein core are present in the virogenic stroma and ring zone, indicating that the ac53 knockout affected nucleocapsid assembly. With a recombinant virus expressing an Ac53-GFP fusion protein, we observed that Ac53 was distributed within the cytoplasm and nucleus at 24 h post-infection, but afterwards accumulated predominantly near the nucleus-cytoplasm boundary. These data demonstrate that ac53 is involved in nucleocapsid assembly and is an essential gene for virus production

  12. THE ROLE OF EPSTEIN-BARR VIRUS AND HUMAN ENDOGENOUS RETROVIRUSES IN THE PATHOGENESIS OF MULTIPLE SCLEROSIS

    Zelenska, A. D.

    2018-04-01

    Full Text Available Multiple sclerosis (MS is an autoimmune demyelinating disease of the central nervous system (CNS, the development of which is associated with the action of a large number of pathogenetic factors which role can vary significantly at different stages of the disease. Although the etiology of MS still remains unclear, in recent years the hypothesis of the pathogenetic role of Epstein-Barr virus (EBV and human endogenous retroviruses, such as MSRV / HERV-W, is actively considered. EBV has a unique ability to infect, activate, and latently persist within B lymphocytes during human life. Immune control of EBV infection in healthy organisms is realized through humoral and cellular mechanisms – EBV virions are destroyed by neutralizing antibodies, and proliferating and lytically active EBV-infected B cells are the targets of specific CD8+ T cells. At the same time, EBV remains latent for most of the life of the infected individual, expressing a single gene (EBNA1 within memory B cells. EBNA1 protein is not well recognized by CD8+ T cells, allowing infected memory B cells to avoid detection. In addition to epidemiological data, association of EBV with MS is indicated by a significant increase in IgG titres to EBV antigens, mainly to EBNA1, in serum of patients a few years before the onset of clinical manifestations of the disease. Although the data on the presence of EBV in the CNS remain controversial due to a number of methodological difficulties, a number of studies have shown the presence of EBV-infected B cells in the CNS, as well as effector CD8+ T cells specific for them in meningeal inflammatory infiltrates and white matter lesions in brain samples of MS patients. At the same time, the EBV bystander damage hypothesis which considers CNS damage in multiple sclerosis as a result of EBV-targeted cytotoxic reactions of CD8+ T cells, does not explain the autoimmune nature of MS, although secondary autoimmune responses could develop as a result of

  13. Investigating the role of Clinical Nurse Consultants in one health district from multiple stakeholder perspectives: a cooperative inquiry.

    Walsh, Kenneth; Bothe, Janine; Edgar, Denise; Beaven, Geraldine; Burgess, Bernadette; Dickson, Vhari; Dunn, Stephen; Horning, Lynda; Jensen, Janice; Kandl, Bronia; Nonu, Miriam; Owen, Fran; Moss, Cheryle

    2015-01-01

    The impetus for this research came from a group of 11 Clinical Nurse Consultants (CNCs) within a health service in NSW, Australia, who wanted to investigate the CNC role from multiple stakeholder perspectives. With support from academic researchers, the CNCs designed and implemented the study. The aim of this research project was to investigate the role of the CNC from the multiple perspectives of CNCs and other stakeholders who work with CNCs in the Health District. This was a co-operative inquiry that utilised qualitative descriptive research approach. Co-operative inquiry methods enabled 11 CNCs to work as co-researchers and to conduct the investigation. The co-researchers implemented a qualitative descriptive design for the research and used interviews (7) and focus groups (16) with CNC stakeholders (n = 103) to gather sufficient data to investigate the role of the CNC in the organisation. Thematic analysis was undertaken to obtain the results. The CNC role is invaluable to all stakeholders and it was seen as the "glue" which holds teams together. Stakeholder expectations of the CNC role were multiple and generally agreed. Five themes derived from the data are reported as "clinical leadership as core", "making a direct difference to patient care", "service development as an outcome", "role breadth or narrowness and boundaries", and "career development". There was clear appreciation of the work that CNCs do in their roles, and the part that the CNC role plays in achieving quality health outcomes. The role of the CNC is complex and the CNCs themselves often negotiate these complexities to ensure beneficial outcomes for the patient and organisation. For the wider audience this study has given further insights into the role of these nurses and the perspectives of those with whom they work.

  14. Regulator LdhR and d-Lactate Dehydrogenase LdhA of Burkholderia multivorans Play Roles in Carbon Overflow and in Planktonic Cellular Aggregate Formation.

    Silva, Inês N; Ramires, Marcelo J; Azevedo, Lisa A; Guerreiro, Ana R; Tavares, Andreia C; Becker, Jörg D; Moreira, Leonilde M

    2017-10-01

    LysR-type transcriptional regulators (LTTRs) are the most commonly found regulators in Burkholderia cepacia complex, comprising opportunistic pathogens causing chronic respiratory infections in cystic fibrosis (CF) patients. Despite LTTRs being global regulators of pathogenicity in several types of bacteria, few have been characterized in Burkholderia Here, we show that gene ldhR of B. multivorans encoding an LTTR is cotranscribed with ldhA encoding a d-lactate dehydrogenase and evaluate their implication in virulence traits such as exopolysaccharide (EPS) synthesis and biofilm formation. A comparison of the wild type (WT) and its isogenic Δ ldhR mutant grown in medium with 2% d-glucose revealed a negative impact on EPS biosynthesis and on cell viability in the presence of LdhR. The loss of viability in WT cells was caused by intracellular acidification as a consequence of the cumulative secretion of organic acids, including d-lactate, which was absent from the Δ ldhR mutant supernatant. Furthermore, LdhR is implicated in the formation of planktonic cellular aggregates. WT cell aggregates reached 1,000 μm in size after 24 h in liquid cultures, in contrast to Δ ldhR mutant aggregates that never grew more than 60 μm. The overexpression of d-lactate dehydrogenase LdhA in the Δ ldhR mutant partially restored the formed aggregate size, suggesting a role for fermentation inside aggregates. Similar results were obtained for surface-attached biofilms, with WT cells producing more biofilm. A systematic evaluation of planktonic aggregates in Burkholderia CF clinical isolates showed aggregates in 40 of 74. As CF patients' lung environments are microaerophilic and bacteria are found as free aggregates/biofilms, LdhR and LdhA might have central roles in adapting to this environment. IMPORTANCE Cystic fibrosis patients often suffer from chronic respiratory infections caused by several types of microorganisms. Among them are the Burkholderia cepacia complex bacteria, which

  15. A Qualitative Exploration of Multiple Case Studies of the Perception of School Social Workers Concerning Their Roles in Public Schools

    Morrison, Alesha Nicole

    2016-01-01

    This qualitative exploration in the form of multiple case studies interviewed a group of seven social workers from the St. Louis Metropolitan area to gain their perception as school social workers concerning their roles in public schools. The literature on school social workers indicated that school social workers brought unique knowledge and…

  16. Exploring the Behavioral Patterns of Learners in an Educational Massively Multiple Online Role-Playing Game (MMORPG)

    Hou, Huei-Tse

    2012-01-01

    Massively multiple online role-playing games (MMORPGs) are very popular among students. Educational MMORPGs, however, are very rare, as are studies on gamers' behavioral patterns during such games. The current study is an empirical observation and analysis of the behavioral patterns of 100 gamers participating in an educational MMORPG called…

  17. The Role of the External Personal Assistants for Children with Profound Intellectual and Multiple Disabilities Working in the Children's Home

    Axelsson, Anna Karin

    2015-01-01

    Background: Children with profound intellectual and multiple disabilities need support to function in an optimal way. However, there is a limited knowledge about the role of external personal assistants working in the children's home. Materials and Methods: A mixed method study was performed including qualitative data from interviews with 11…

  18. Ethnic and Racial Socialization and Self-Esteem of Asian Adoptees: The Mediating Role of Multiple Identities

    Mohanty, Jayashree

    2013-01-01

    Positive identity development during adolescence in general is a complex process and may pose additional challenges for adolescents adopted from a different culture. Using a web-based survey design with a sample of 100 internationally adopted Asian adolescent and young adults, the present study examined the mediating role of multiple identities…

  19. The role of multiple neuromodulators in reinforcement learning that is based on competition between eligibility traces

    Marco A Huertas

    2016-12-01

    neuromodulators for expressing the LTP and LTD traces? Here we expand on our previous model to include several neuromodulators, and illustrate through various examples how different neuromodulators contribute to learning reward-timing within a wide set of training paradigms and propose further roles that multiple neuromodulators can play in encoding additional information of the rewarding signal.

  20. The Role of Multiple Neuromodulators in Reinforcement Learning That Is Based on Competition between Eligibility Traces.

    Huertas, Marco A; Schwettmann, Sarah E; Shouval, Harel Z

    2016-01-01

    expressing the LTP and LTD traces? Here we expand on our previous model to include several neuromodulators, and illustrate through various examples how different these contribute to learning reward-timing within a wide set of training paradigms and propose further roles that multiple neuromodulators can play in encoding additional information of the rewarding signal.

  1. The multiple roles of hypothetical gene BPSS1356 in Burkholderia pseudomallei.

    Hokchai Yam

    Full Text Available Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the β' subunit (RpoC of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ΔBPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ΔBPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes.

  2. The Impact of Multiple Roles on Psychological Distress among Japanese Workers

    Ayumi Honda

    2015-06-01

    Conclusion: The present study demonstrated that participants who had only an employment role had an increased risk of psychological distress. The degree of psychological distress was not determined solely by the number of roles. It is important to have balance between work and family life to reduce role conflict and/or role submersion, which in turn may reduce the risk of psychological distress.

  3. Clinical diagnostic criteria of multiple sclerosis: the role of magnetic resonance imaging

    Belair, M.; Girard, M.

    2004-01-01

    The objective of this article is to summarize the diagnostic criteria recommended by the International Panel on the Diagnosis of Multiple Sclerosis in 2001. The recommendations of another working group, the Consortium of Multiple Sclerosis Centers Consensus Meeting, which met in Vancouver in 2001, concerning the diagnosis and follow-up of patients with multiple sclerosis are also presented in an effort to standardize the protocols for magnetic resonance imaging of these patients. (author)

  4. Similarly Torn, Differentially Shorn? The Experience and Management of Conflict between Multiple Roles, Relationships, and Social Categories

    Janelle M. Jones

    2017-10-01

    Full Text Available In three studies we examined the experience and management of conflict between different types of multiple identities. Participants described a conflict between pairs of role, relational, or social identities before rating the experience (i.e., magnitude, stress, and growth and management of conflict on a newly developed scale assessing four strategies: reconciliation, where identities are integrated, realignment, where one identity is chosen over another, retreat, where both identities are avoided, and reflection, where fit (with others, situation determines identity selection. In general, the types of identities mattered for conflict management but not its experience: Magnitude and growth did not differ, however, stress was greater for role identity conflicts (Study 3 only and participants endorsed the use of more realignment for role conflicts (Study 2 and more retreat for relational conflicts (Study 3 relative to other types of identity conflicts. Furthermore, findings suggested that the perceived flexibility of identities, not their importance or valence, were associated with realignment and retreat for roles and with retreat for relationships. Experiencing conflicts between multiple identities leaves people similarly torn, but multiple roles and relationships may be differentially shorn to manage conflict.

  5. Similarly Torn, Differentially Shorn? The Experience and Management of Conflict between Multiple Roles, Relationships, and Social Categories

    Jones, Janelle M.; Hynie, Michaela

    2017-01-01

    In three studies we examined the experience and management of conflict between different types of multiple identities. Participants described a conflict between pairs of role, relational, or social identities before rating the experience (i.e., magnitude, stress, and growth) and management of conflict on a newly developed scale assessing four strategies: reconciliation, where identities are integrated, realignment, where one identity is chosen over another, retreat, where both identities are avoided, and reflection, where fit (with others, situation) determines identity selection. In general, the types of identities mattered for conflict management but not its experience: Magnitude and growth did not differ, however, stress was greater for role identity conflicts (Study 3 only) and participants endorsed the use of more realignment for role conflicts (Study 2) and more retreat for relational conflicts (Study 3) relative to other types of identity conflicts. Furthermore, findings suggested that the perceived flexibility of identities, not their importance or valence, were associated with realignment and retreat for roles and with retreat for relationships. Experiencing conflicts between multiple identities leaves people similarly torn, but multiple roles and relationships may be differentially shorn to manage conflict. PMID:29051744

  6. Similarly Torn, Differentially Shorn? The Experience and Management of Conflict between Multiple Roles, Relationships, and Social Categories.

    Jones, Janelle M; Hynie, Michaela

    2017-01-01

    In three studies we examined the experience and management of conflict between different types of multiple identities. Participants described a conflict between pairs of role, relational, or social identities before rating the experience (i.e., magnitude, stress, and growth) and management of conflict on a newly developed scale assessing four strategies: reconciliation , where identities are integrated, realignment , where one identity is chosen over another, retreat , where both identities are avoided, and reflection , where fit (with others, situation) determines identity selection. In general, the types of identities mattered for conflict management but not its experience: Magnitude and growth did not differ, however, stress was greater for role identity conflicts ( Study 3 only ) and participants endorsed the use of more realignment for role conflicts ( Study 2 ) and more retreat for relational conflicts ( Study 3 ) relative to other types of identity conflicts. Furthermore, findings suggested that the perceived flexibility of identities, not their importance or valence, were associated with realignment and retreat for roles and with retreat for relationships. Experiencing conflicts between multiple identities leaves people similarly torn, but multiple roles and relationships may be differentially shorn to manage conflict.

  7. Cellular dosimetry

    Humm, J.L.; Chin, L.M.

    1989-01-01

    Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors

  8. Multiple magnet ingestion: is there a role for early surgical intervention?

    Salimi, Amrollah; Kooraki, Soheil; Esfahani, Shadi Abdar; Mehdizadeh, Mehrzad

    2012-01-01

    Children often swallow foreign bodies. Multiple magnet ingestion is rare, but can result in serious complications. This study presents three unique cases of multiple magnet ingestion: one case an 8-year-old boy with multiple magnet ingestion resulting in gastric obstruction and the other two cases with intestinal perforations due to multiple magnet intake. History and physical examination are unreliable in children who swallow multiple magnets. Sometimes radiological findings are not conclusive, whether one magnet is swallowed or more. If magnets are not moved in sequential radiology images, we recommend early surgical intervention before gastrointestinal complications develop. Toy companies, parents, physicians, and radiologists should be warned about the potential complications of such toys.

  9. The expression and evolution of virulence in multiple infections: the role of specificity, relative virulence and relative dose.

    Ben-Ami, Frida; Routtu, Jarkko

    2013-05-03

    Multiple infections of the same host by different strains of the same microparasite species are believed to play a crucial role during the evolution of parasite virulence. We investigated the role of specificity, relative virulence and relative dose in determining the competitive outcome of multiple infections in the Daphnia magna-Pasteuria ramosa host-parasite system. We found that infections by P. ramosa clones (single genotype) were less virulent and produced more spores than infections by P. ramosa isolates (possibly containing multiple genotypes). We also found that two similarly virulent isolates of P. ramosa differed considerably in their within-host competitiveness and their effects on host offspring production when faced with coinfecting P. ramosa isolates and clones. Although the relative virulence of a P. ramosa isolate/clone appears to be a good indicator of its competitiveness during multiple infections, the relative dose may alter the competitive outcome. Moreover, spore counts on day 20 post-infection indicate that the competitive outcome is largely decided early in the parasite's growth phase, possibly mediated by direct interference or apparent competition. Our results emphasize the importance of epidemiology as well as of various parasite traits in determining the outcome of within-host competition. Incorporating realistic epidemiological and ecological conditions when testing theoretical models of multiple infections, as well as using a wider range of host and parasite genotypes, will enable us to better understand the course of virulence evolution.

  10. Centrality of women's multiple roles: beneficial and detrimental consequences for psychological well-being.

    Martire, L M; Stephens, M A; Townsend, A L

    2000-03-01

    Theorists have proposed that greater centrality (personal importance) of a social role is associated with better psychological well-being but that role centrality exacerbates the negative effects of stress in that same social role on well-being. The present study found evidence to support both hypotheses in a sample of 296 women who simultaneously occupied the roles of parent care provider, mother, wife, and employee. Greater centrality of all four roles was related to better psychological well-being. As predicted, wife centrality exacerbated the effects of wife stress on life satisfaction, and employee centrality exacerbated the effects of employee stress on depressive symptoms. Contrary to prediction, centrality of the mother role buffered women from the negative effects of mother stress on depressive symptoms. These findings point to an aspect of role identity that can benefit well-being but that has complex effects in the context of role stress.

  11. Role Clarification Processes for Better Integration of Nurse Practitioners into Primary Healthcare Teams: A Multiple-Case Study

    Isabelle Brault

    2014-01-01

    Full Text Available Role clarity is a crucial issue for effective interprofessional collaboration. Poorly defined roles can become a source of conflict in clinical teams and reduce the effectiveness of care and services delivered to the population. Our objective in this paper is to outline processes for clarifying professional roles when a new role is introduced into clinical teams, that of the primary healthcare nurse practitioner (PHCNP. To support our empirical analysis we used the Canadian National Interprofessional Competency Framework, which defines the essential components for role clarification among professionals. A qualitative multiple-case study was conducted on six cases in which the PHCNP role was introduced into primary care teams. Data collection included 34 semistructured interviews with key informants involved in the implementation of the PHCNP role. Our results revealed that the best performing primary care teams were those that used a variety of organizational and individual strategies to carry out role clarification processes. From this study, we conclude that role clarification is both an organizational process to be developed and a competency that each member of the primary care team must mobilize to ensure effective interprofessional collaboration.

  12. Role clarification processes for better integration of nurse practitioners into primary healthcare teams: a multiple-case study.

    Brault, Isabelle; Kilpatrick, Kelley; D'Amour, Danielle; Contandriopoulos, Damien; Chouinard, Véronique; Dubois, Carl-Ardy; Perroux, Mélanie; Beaulieu, Marie-Dominique

    2014-01-01

    Role clarity is a crucial issue for effective interprofessional collaboration. Poorly defined roles can become a source of conflict in clinical teams and reduce the effectiveness of care and services delivered to the population. Our objective in this paper is to outline processes for clarifying professional roles when a new role is introduced into clinical teams, that of the primary healthcare nurse practitioner (PHCNP). To support our empirical analysis we used the Canadian National Interprofessional Competency Framework, which defines the essential components for role clarification among professionals. A qualitative multiple-case study was conducted on six cases in which the PHCNP role was introduced into primary care teams. Data collection included 34 semistructured interviews with key informants involved in the implementation of the PHCNP role. Our results revealed that the best performing primary care teams were those that used a variety of organizational and individual strategies to carry out role clarification processes. From this study, we conclude that role clarification is both an organizational process to be developed and a competency that each member of the primary care team must mobilize to ensure effective interprofessional collaboration.

  13. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti

    2011-01-01

    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that g...

  14. The role of microcredit in reducing women's vulnerabilities to multiple disasters.

    Ray-Bennett, Nibedita S

    2010-01-01

    This article explores the relationship between microcredit and vulnerability reduction for women-headed households in'multiple disasters'. Here multiple disasters are understood as disasters that occur in one specific place and cause severe devastation. The case study covers the super-cyclone in 1999, floods in 2001 and 2003, and drought in 2002 in Orissa, India. The study entailed eight months fieldwork and interviews with several governmental and non-governmental officials and 12 women-headed households from different social castes. The findings suggest that microcredit is a useful tool to replace women's livelihood assets that have been lost in multiple disasters. But inefficient microcredit delivery can cause microdebts and exacerbate caste, class and gender inequalities. It is posited that microcredit delivery cannot achieve vulnerability reduction for women in multiple disasters unless it is complemented by effective financial services, integrated policy planning and disaster management between government, non-governmental organisations and the community.

  15. A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis

    Jagodic, Maja; Colacios, Celine; Nohra, Rita

    2009-01-01

    Multiple sclerosis, the most common cause of progressive neurological disability in young adults, is a chronic inflammatory disease. There is solid evidence for a genetic influence in multiple sclerosis, and deciphering the causative genes could reveal key pathways influencing the disease. A genome...... region on rat chromosome 9 regulates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Using interval-specific congenic rat lines and association of single-nucleotide polymorphisms with inflammatory phenotypes, we localized the gene of influence to Vav1, which codes for a signal......-transducing protein in leukocytes. Analysis of seven human cohorts (12,735 individuals) demonstrated an association of rs2546133-rs2617822 haplotypes in the first VAV1 intron with multiple sclerosis (CA: odds ratio, 1.18; CG: odds ratio, 0.86; TG: odds ratio, 0.90). The risk CA haplotype also predisposed for higher...

  16. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells

    Xiao Wei; Yang Yi; Weng Qingbei; Lin Tiehao; Yuan Meijin; Yang Kai; Pang Yi

    2009-01-01

    Many viruses activate the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, thereby modulating diverse downstream signaling pathways associated with antiapoptosis, proliferation, cell cycling, protein synthesis and glucose metabolism, in order to augment their replication. To date, the role of the PI3K-Akt pathway in Baculovirus replication has not been defined. In the present study, we demonstrate that infection of Sf9 cells with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) elevated cellular Akt phosphorylation at 1 h post-infection. The maximum Akt phosphorylation occurred at 6 h post-infection and remained unchanged until 18 h post-infection. The PI3K-specific inhibitor, LY294002, suppressed Akt phosphorylation in a dose-dependent manner, suggesting that AcMNPV-induced Akt phosphorylation is PI3K-dependent. The inhibition of PI3K-Akt activation by LY294002 significantly reduced the viral yield, including a reduction in budded viruses and occlusion bodies. The virus production was reduced only when the inhibitor was added within 24 h of infection, implying that activation of PI3K occurred early in infection. Correspondingly, both viral DNA replication and late (VP39) and very late (POLH) viral protein expression were impaired by LY294002 treatment; LY294002 had no effect on immediate-early (IE1) and early-late (GP64) protein expression. These results demonstrate that the PI3K-Akt pathway is required for efficient Baculovirus replication.

  17. Proteomic investigation of Vibrio alginolyticus challenged Caenorhabditis elegans revealed regulation of cellular homeostasis proteins and their role in supporting innate immune system.

    Durai, Sellegounder; Singh, Nirpendra; Kundu, Suman; Balamurugan, Krishnaswamy

    2014-08-01

    Caenorhabditis elegans has been the preferred model system for many investigators to study pathogenesis. In the present investigation, regulation of C. elegans proteome was explored against V. alginolyticus infection using quantitative proteomics approach. Proteins were separated using 2D-DIGE and the differentially regulated proteins were identified using PMF and MALDI TOF/TOF analysis. The results thus obtained were validated using Western blotting for candidate proteins. The corresponding transcriptional regulation was quantified subsequently using real-time PCR. Interaction network for candidate proteins was predicted using search tool for the retrieval of interacting genes/proteins (STRING) and functional validation was performed using respective mutant strains. Out of the 25 proteins identified, 21 proteins appeared to be upregulated while four were downregulated. Upregulated proteins included those involved in stress-response (PDI-2, HSP-6), immune-response (protein kinase -18, GST-8) and energy-production (ATP-2) while proteins involved in structural maintenance (IFB-2) and lipid metabolism (SODH-1) were downregulated. The roles of these players in the host system during Vibrio infection was analyzed in vivo using wild type and mutant C. elegans. Survival assays using mutants lacking pdi-2, ire-1, and xbp-1 displayed enhanced susceptibility to V. alginolyticus. Cellular stress generated by V. alginolyticus was determined using ROS assay. This is the first report of proteome changes in C. elegans against V. alginolyticus challenge and highlights the significance of unfolded protein response (UPR) pathway during bacterial infection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparative genomic analysis of buffalo (Bubalus bubalis NOD1 and NOD2 receptors and their functional role in in-vitro cellular immune response.

    Biswajit Brahma

    Full Text Available Nucleotide binding and oligomerization domain (NOD-like receptors (NLRs are innate immune receptors that recognize bacterial cell wall components and initiate host immune response. Structure and function of NLRs have been well studied in human and mice, but little information exists on genetic composition and role of these receptors in innate immune system of water buffalo--a species known for its exceptional disease resistance. Here, a comparative study on the functional domains of NOD1 and NOD2 was performed across different species. The NOD mediated in-vitro cellular responses were studied in buffalo peripheral blood mononuclear cells, resident macrophages, mammary epithelial, and fibroblast cells. Buffalo NOD1 (buNOD1 and buNOD2 showed conserved domain architectures as found in other mammals. The domains of buNOD1 and buNOD2 showed analogy in secondary and tertiary conformations. Constitutive expressions of NODs were ubiquitous in different tissues. Following treatment with NOD agonists, peripheral lymphocytes showed an IFN-γ response along-with production of pro-inflammatory cytokines. Alveolar macrophages and mammary epithelial cells showed NOD mediated in-vitro immune response through NF-κB dependent pathway. Fibroblasts showed pro-inflammatory cytokine response following agonist treatment. Our study demonstrates that both immune and non-immune cells could generate NOD-mediated responses to pathogens though the type and magnitude of response depend on the cell types. The structural basis of ligand recognition by buffalo NODs and knowledge of immune response by different cell types could be useful for development of non-infective innate immune modulators and next generation anti-inflammatory compounds.

  19. Molecular and cellular mechanisms of cadmium carcinogenesis

    Waisberg, Michael; Joseph, Pius; Hale, Beverley; Beyersmann, Detmar

    2003-01-01

    Cadmium is a heavy metal, which is widely used in industry, affecting human health through occupational and environmental exposure. In mammals, it exerts multiple toxic effects and has been classified as a human carcinogen by the International Agency for Research on Cancer. Cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Cd 2+ does not catalyze Fenton-type reactions because it does not accept or donate electrons under physiological conditions, and it is only weakly genotoxic. Hence, indirect mechanisms are implicated in the carcinogenicity of cadmium. In this review multiple mechanisms are discussed, such as modulation of gene expression and signal transduction, interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species (ROS), inhibition of DNA repair and DNA methylation, role in apoptosis and disruption of E-cadherin-mediated cell-cell adhesion. Cadmium affects both gene transcription and translation. The major mechanisms of gene induction by cadmium known so far are modulation of cellular signal transduction pathways by enhancement of protein phosphorylation and activation of transcription and translation factors. Cadmium interferes with antioxidant defense mechanisms and stimulates the production of reactive oxygen species, which may act as signaling molecules in the induction of gene expression and apoptosis. The inhibition of DNA repair processes by cadmium represents a mechanism by which cadmium enhances the genotoxicity of other agents and may contribute to the tumor initiation by this metal. The disruption of E-cadherin-mediated cell-cell adhesion by cadmium probably further stimulates the development of tumors. It becomes clear that there exist multiple mechanisms which contribute to the carcinogenicity of cadmium, although the relative weights of these contributions are difficult to estimate

  20. Elder Care, Multiple Role Involvement, and Well-Being Among Middle-Aged Men and Women in Japan.

    Kikuzawa, Saeko

    2015-12-01

    Japan's population is aging at an unprecedented rate. Combined with the tradition of family responsibility for elder care, this rapid population aging has resulted in middle-aged Japanese people being much more likely today than in past decades to face the responsibility of caring for their elderly parents alongside their other major roles. Using nationally representative Japanese data, this study assessed the individual and combined implications of caregiving and other role involvements for the well-being of middle-aged men and women. Some evidence was found for deleterious psychological consequences of the caregiver role. However, in contrast to expectations, the interaction between the roles of caregiver and worker was positively associated with well-being among both men and women. The results suggest the importance of middle-aged adults being able to keep working when they have to care for their aging parents. Another important finding was significant gender differences in the psychological consequences of holding multiple family- and work-related roles and in combining these with the caregiver role. Further analysis showed that the spousal role was also negatively associated with depressive symptoms and positively associated with satisfaction for men but not for women. Gender differences in the findings appear to reflect the significant gender asymmetry in role experiences in Japan.

  1. Cellular commitment in the developing cerebellum

    Marzban, Hassan; Del Bigio, Marc R.; Alizadeh, Javad; Ghavami, Saeid; Zachariah, Robby M.; Rastegar, Mojgan

    2014-01-01

    The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum. PMID:25628535

  2. Cellular Commitment in the Developing Cerebellum

    Hassan eMarzban

    2015-01-01

    Full Text Available The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we then discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.

  3. Health Behavior Among Men Occupying Multiple Family Roles and the Moderating Effects of Perceived Partner Relationship Quality

    DePasquale, Nicole; Polenick, Courtney A.; Hinde, Jesse; Bray, Jeremy W.; Zarit, Steven H.; Moen, Phyllis; Hammer, Leslie B.; Almeida, David M.

    2016-01-01

    Men in the U.S. are increasingly involved in their children’s lives and currently represent 40% of informal caregivers to dependent relatives or friends aged 18 years or older. Yet, much more is known about the health effects of varying family role occupancies for women relative to men. The present research sought to fill this empirical gap by first comparing the health behavior (sleep duration, cigarette smoking, alcohol consumption, exercise, fast food consumption) of men who only occupy partner roles and partnered men who also fill father, informal caregiver, or both father and informal caregiver (i.e., sandwiched) roles. The moderating effects of perceived partner relationship quality, conceptualized here as partner support and strain, on direct family role-health behavior linkages were also examined. Secondary analysis of survey data from 366 cohabiting and married men in the Work, Family and Health Study indicated that men’s multiple family role occupancies were generally not associated with health behavior. With men continuing to take on more family responsibilities, as well as the serious health consequences of unhealthy behavior, the implications of these null effects are encouraging: additional family roles can be integrated into cohabiting and married men’s role repertoires without health behavior risks. Moderation analysis revealed, however, that men’s perceived partner relationship constituted a significant factor in determining whether multiple family role occupancies had positive or negative consequences for their sleep duration, alcohol consumption, and fast food consumption. These findings are discussed in terms of their empirical and practical implications for partnered men and their families. PMID:27449994

  4. Gratitude and Adolescents' Subjective Well-Being in School: The Multiple Mediating Roles of Basic Psychological Needs Satisfaction at School.

    Tian, Lili; Pi, Luyang; Huebner, E S; Du, Minmin

    2016-01-01

    Based on the relation between gratitude and general subjective well-being (SWB), and Basic Psychological Needs Theory (Ryan and Deci, 2000), the present study's aim was to use structural equation modeling to test the multiple mediational roles of the satisfaction of three basic psychological needs at school in accounting for the association between gratitude and SWB in school (school satisfaction, school affect) in adolescents. A total of 881 Chinese adolescents (427 males; Mean age = 12.97) completed a multi-measure questionnaire that tapped the targeted variables. Findings revealed that gratitude related significantly, positively to adolescents' SWB in school. Moreover, a multiple-mediators analysis suggested that relatedness and competence needs satisfaction at school mediated the relation between gratitude and SWB in school. Lastly, a multiple-mediators analysis also indicated that autonomy needs satisfaction mediated the relation between relatedness and competence needs and SWB in school. Limitations and practical applications of the study were discussed.

  5. Gratitude and Adolescents’ Subjective Well-Being in School: The Multiple Mediating Roles of Basic Psychological Needs Satisfaction at School

    Tian, Lili; Pi, Luyang; Huebner, E. S.; Du, Minmin

    2016-01-01

    Based on the relation between gratitude and general subjective well-being (SWB), and Basic Psychological Needs Theory (Ryan and Deci, 2000), the present study’s aim was to use structural equation modeling to test the multiple mediational roles of the satisfaction of three basic psychological needs at school in accounting for the association between gratitude and SWB in school (school satisfaction, school affect) in adolescents. A total of 881 Chinese adolescents (427 males; Mean age = 12.97) completed a multi-measure questionnaire that tapped the targeted variables. Findings revealed that gratitude related significantly, positively to adolescents’ SWB in school. Moreover, a multiple-mediators analysis suggested that relatedness and competence needs satisfaction at school mediated the relation between gratitude and SWB in school. Lastly, a multiple-mediators analysis also indicated that autonomy needs satisfaction mediated the relation between relatedness and competence needs and SWB in school. Limitations and practical applications of the study were discussed. PMID:27708601

  6. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation

    Song, Han; Zheng, Gang; Liu, Yang; Shen, Xue-Feng; Zhao, Zai-Hua [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Aschner, Michael [Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Luo, Wen-Jing, E-mail: luowenj@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Chen, Jing-Yuan, E-mail: jy_chen@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China)

    2016-04-15

    As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation. - Highlights: • Pb is sequestrated in choroid plexus both in vivo and in vitro. • Cx43 knockdown/overexpression prevents/increases Pb accumulations. • Cx43 hemichannels are required for Pb uptake. • Pb-induced Erk

  7. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation

    Song, Han; Zheng, Gang; Liu, Yang; Shen, Xue-Feng; Zhao, Zai-Hua; Aschner, Michael; Luo, Wen-Jing; Chen, Jing-Yuan

    2016-01-01

    As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation. - Highlights: • Pb is sequestrated in choroid plexus both in vivo and in vitro. • Cx43 knockdown/overexpression prevents/increases Pb accumulations. • Cx43 hemichannels are required for Pb uptake. • Pb-induced Erk

  8. Cultural scripts, memories of childhood abuse, and multiple identities: a study of role-played enactments.

    Stafford, Jane; Lynn, Steven Jay

    2002-01-01

    This study compared the reports of satanic, sexual, and physical abuse of persons instructed to role-play either dissociative identity disorder (DID) (n = 33), major depression (n = 33), or a college student who experienced minor adjustment problems ("normal") (n = 33) across a number of trials that included role-played hypnosis. As hypothesized, more of the participants who were asked to role-play DID reported at least one instance of satanic ritual abuse and sexual abuse compared with those who role-played depression or a college student with minor adjustment problems. DID role-players reported more incidents of sexual abuse and more severe physical and sexual abuse than did the major depression role-players. Further, the DID role-players differed from the normal role-players on all the measures of frequency and severity of physical and sexual abuse. Participants in all groups reported more frequent and severe incidents of physical abuse after role-played hypnosis than they did prior to it.

  9. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational app...

  10. Cellular Kinetics of Perivascular MSC Precursors

    William C. W. Chen

    2013-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.

  11. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    David Judah

    Full Text Available Integrin-linked kinase (ILK is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  12. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E; Dagnino, Lina

    2012-01-01

    Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  13. The Role of Gender on Consumer Attitudes toward Multiple Celebrity Advertisements

    Işık Özge YUMURTACI

    2013-12-01

    Full Text Available Although its has been widely used in advertising, the impact of multiple celebrity endorsement on consumers has not been known. Therefore, the aim of this study is to examine whether consumers’ attitudes towards advertisement and brand, and their purchase intention differ regarding to the gender of consumers in multiple celebrity endorsement. Hence, survey study was conducted with 256 individuals. The findings of this study indicates that when two celebrities are used in an advertisement, based on the consumers’ attitudes towards the celebrities, the attitudes towards advertisement and brand, and purchase intentions may show discrepancies according to the gender of consumers. This study may shed light on how to use multiple celebrities in companies’ marketing strategies in a more accurate and effective way while considering consumer gender differences

  14. Role-Playing in Science Education: An Effective Strategy for Developing Multiple Perspectives

    Howes, Elaine V.; Cruz, Barbara C.

    2009-01-01

    Role-playing can be an engaging and creative strategy to use in the college classroom. Using official accounts, personal narratives, and diaries to recreate a particular time period, event, or personality, the instructional strategy alternately referred to as role-playing, dramatic improvisation, or first-person characterization can be an…

  15. The Role of Metacognitive Strategies in Learning Music: A Multiple Case Study

    Colombo, Barbara; Antonietti, Alessandro

    2017-01-01

    The positive role of metacognition in music learning and practice is well assessed, but the role of musicians' metacognitive skills in such a context is not yet clear. Teachers often state that they apply a metacognitive approach during their lessons, but students fail to acknowledge it and report that they become metacognitive learners thanks to…

  16. The Emerging Role of Zinc in the Pathogenesis of Multiple Sclerosis

    Bo Young Choi

    2017-09-01

    Full Text Available Our lab has previously demonstrated that multiple sclerosis-induced spinal cord white matter damage and motor deficits are mediated by the pathological disruption of zinc homeostasis. Abnormal vesicular zinc release and intracellular zinc accumulation may mediate several steps in the pathophysiological processes of multiple sclerosis (MS, such as matrix metallopeptidase 9 (MMP-9 activation, blood-brain barrier (BBB disruption, and subsequent immune cell infiltration from peripheral systems. Oral administration of a zinc chelator decreased BBB disruption, immune cell infiltration, and spinal white matter myelin destruction. Therefore, we hypothesized that zinc released into the extracellular space during MS progression is involved in destruction of the myelin sheath in spinal cord white mater and in generation of motor deficits. To confirm our previous study, we employed zinc transporter 3 (ZnT3 knockout mice to test whether vesicular zinc depletion shows protective effects on multiple sclerosis-induced white matter damage and motor deficits. ZnT3 gene deletion profoundly reduced the daily clinical score of experimental autoimmune encephalomyelitis (EAE by suppression of inflammation and demyelination in the spinal cord. ZnT3 gene deletion also remarkably inhibited formation of multiple sclerosis-associated aberrant synaptic zinc patches, MMP-9 activation, and BBB disruption. These two studies strongly support our hypothesis that zinc release from presynaptic terminals may be involved in multiple sclerosis pathogenesis. Further studies will no doubt continue to add mechanistic detail to this process and with luck, clarify how these observations may lead to development of novel therapeutic approaches for the treatment of multiple sclerosis.

  17. The Emerging Role of Zinc in the Pathogenesis of Multiple Sclerosis.

    Choi, Bo Young; Jung, Jong Won; Suh, Sang Won

    2017-09-28

    Our lab has previously demonstrated that multiple sclerosis-induced spinal cord white matter damage and motor deficits are mediated by the pathological disruption of zinc homeostasis. Abnormal vesicular zinc release and intracellular zinc accumulation may mediate several steps in the pathophysiological processes of multiple sclerosis (MS), such as matrix metallopeptidase 9 (MMP-9) activation, blood-brain barrier (BBB) disruption, and subsequent immune cell infiltration from peripheral systems. Oral administration of a zinc chelator decreased BBB disruption, immune cell infiltration, and spinal white matter myelin destruction. Therefore, we hypothesized that zinc released into the extracellular space during MS progression is involved in destruction of the myelin sheath in spinal cord white mater and in generation of motor deficits. To confirm our previous study, we employed zinc transporter 3 ( ZnT3 ) knockout mice to test whether vesicular zinc depletion shows protective effects on multiple sclerosis-induced white matter damage and motor deficits. ZnT3 gene deletion profoundly reduced the daily clinical score of experimental autoimmune encephalomyelitis (EAE) by suppression of inflammation and demyelination in the spinal cord. ZnT3 gene deletion also remarkably inhibited formation of multiple sclerosis-associated aberrant synaptic zinc patches, MMP-9 activation, and BBB disruption. These two studies strongly support our hypothesis that zinc release from presynaptic terminals may be involved in multiple sclerosis pathogenesis. Further studies will no doubt continue to add mechanistic detail to this process and with luck, clarify how these observations may lead to development of novel therapeutic approaches for the treatment of multiple sclerosis.

  18. The Role of Sound in Residential Facilities for People With Profound Intellectual and Multiple Disabilities

    van den Bosch, Kirsten A.; Andringa, Tjeerd C.; Baskent, Deniz; Vlaskamp, Carla

    2016-01-01

    Attention to the auditory environment of people with profound intellectual and multiple disabilities (PIMD) is limited, both in research and practice. As there is a dynamic interplay between the quality of the auditory environment and well-being, a study was undertaken to test the validity of the

  19. Resonance properties of tidal channels with multiple retention basisn: role of adjacent sea

    Roos, Pieter C.; Schuttelaars, H.M.

    2015-01-01

    We present an idealised model of the tidal response in a main channel with multiple secondary basins, co-oscillating with an adjacent sea. The sea is represented as a semi-infinite strip of finite width, anywhere between the limits of a channel extension (narrow) and a half-plane (wide). The sea

  20. Partial replicas of uv-irradiated bacteriophage T4 genomes and their role in multiplicity reactivation

    Rayssiguier, C.; Kozinski, A.W.; Doermann, A.H.

    1980-01-01

    A physicochemical study was made of the replication and transmission of uv-irradiated T4 genomes. The data presented in this paper justify the following conclusions. (i) For both low and high multiplicity of infection there was abundant replication from uv-irradiated parental templates. It exceeded by far the efficiency predicted by the hypothesis that a single lethal hit completely prevents replication of the killed phage DNA: i.e., some dead phage particles must replicate parts of their DNA. (ii) Replication of the uv-irradiated DNA was repetitive as shown by density reversal experiments. (iii) Newly synthesized progeny DNA originating from uv-irradiated templates appeared as significantly shorter segments of the genomes than progeny DNA produced from non-uv-irradiated templates. A good correlation existed between the number of uv hits and the number of random cuts that would be needed to reduce replication fragments to the length observed. (iv) The contribution of uv-irradiated parental DNA among progeny phage in multiplicity reactivation was disposed in shorter subunits than was the DNA from unirradiated parental phage. It is important to emphasize that it was mainly in the form of replicative hybrid. These conclusions appear to justify excluding interparental recombination as a prerequisite for multiplicity reactivation. They lead directly to some form of partial replica hypothesis for multiplicity reactivation

  1. Investigating the Role of Multiple Intelligences in Determining Vocabulary Learning Strategies for L2 Learners

    Sistani, Mahsa; Hashemian, Mahmood

    2016-01-01

    This study, first, examined whether there was any relationship between Iranian L2 learners' vocabulary learning strategies (VLSs), on the one hand, and their multiple intelligences (MI) types, on the other hand. In so doing, it explored the extent to which MI would predict L2 learners' VLSs. To these ends, 40 L2 learners from Isfahan University of…

  2. Pathogenesis of Renal Failure in Multiple Myeloma: Any Role of Contrast Media?

    Michele Mussap

    2014-01-01

    Full Text Available The spectrum of kidney disease-associated monoclonal immunoglobulin and plasma cell malignancies is remarkably broad and encompasses nearly all nephropathologic entities. Multiple myeloma with kidney impairment at presentation is a medical emergency since the recovery of kidney function is associated with survival benefits. In most cases, kidney impairment may be the first clinical manifestation of malignant plasma cell dyscrasias like multiple myeloma and light chain amyloidosis. Multiple myeloma per se cannot be considered a main risk factor for developing acute kidney injury following intravascular administration of iodinated contrast media. The risk is increased by comorbidities such as chronic kidney disease, diabetes, hypercalcemia, dehydration, and use of nephrotoxic drugs. Before the administration of contrast media, the current recommended laboratory tests for assessing kidney function are serum creatinine measurement and the estimation of glomerular filtration rate by using the CKD-EPI equation. The assessment of Bence Jones proteinuria is unnecessary for evaluating the risk of kidney failure in patients with multiple myeloma, since this test cannot be considered a surrogate biomarker of kidney function.

  3. Pathogenesis of Renal Failure in Multiple Myeloma: Any Role of Contrast Media?

    Mussap, Michele; Merlini, Giampaolo

    2014-01-01

    The spectrum of kidney disease-associated monoclonal immunoglobulin and plasma cell malignancies is remarkably broad and encompasses nearly all nephropathologic entities. Multiple myeloma with kidney impairment at presentation is a medical emergency since the recovery of kidney function is associated with survival benefits. In most cases, kidney impairment may be the first clinical manifestation of malignant plasma cell dyscrasias like multiple myeloma and light chain amyloidosis. Multiple myeloma per se cannot be considered a main risk factor for developing acute kidney injury following intravascular administration of iodinated contrast media. The risk is increased by comorbidities such as chronic kidney disease, diabetes, hypercalcemia, dehydration, and use of nephrotoxic drugs. Before the administration of contrast media, the current recommended laboratory tests for assessing kidney function are serum creatinine measurement and the estimation of glomerular filtration rate by using the CKD-EPI equation. The assessment of Bence Jones proteinuria is unnecessary for evaluating the risk of kidney failure in patients with multiple myeloma, since this test cannot be considered a surrogate biomarker of kidney function. PMID:24877060

  4. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Griffin, Thomas D.; Wiley, Jennifer; Britt, M. Anne; Salas, Carlos R.

    2012-01-01

    The main goal for the current study was to investigate whether individual differences in domain-general thinking dispositions might affect learning from multiple-document inquiry tasks in science. Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be…

  5. Environment Aware Cellular Networks

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  6. Cellular senescence and organismal aging.

    Jeyapalan, Jessie C; Sedivy, John M

    2008-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.

  7. The role of multiple negative social relationships in inflammatory cytokine responses to a laboratory stressor

    Sunmi Song

    2015-06-01

    Full Text Available The present study examined the unique impact of perceived negativity in multiple social relationships on endocrine and inflammatory responses to a laboratory stressor. Via hierarchical cluster analysis, those who reported negative social exchanges across relationships with a romantic partner, family, and their closest friend had higher mean IL-6 across time and a greater increase in TNF-α from 15 min to 75 min post stress. Those who reported negative social exchanges across relationships with roommates, family, and their closest friend showed greater IL-6 responses to stress. Differences in mean IL-6 were accounted for by either depressed mood or hostility, whereas differences in the cytokine stress responses remained significant after controlling for those factors. Overall, this research provides preliminary evidence to suggest that having multiple negative relationships may exacerbate acute inflammatory responses to a laboratory stressor independent of hostility and depressed mood.

  8. Pooling Data from Multiple Longitudinal Studies: The Role of Item Response Theory in Integrative Data Analysis

    Curran, Patrick J.; Hussong, Andrea M.; Cai, Li; Huang, Wenjing; Chassin, Laurie; Sher, Kenneth J.; Zucker, Robert A.

    2010-01-01

    There are a number of significant challenges encountered when studying development over an extended period of time including subject attrition, changing measurement structures across group and developmental period, and the need to invest substantial time and money. Integrative data analysis is an emerging set of methodologies that overcomes many of the challenges of single sample designs through the pooling of data drawn from multiple existing developmental studies. This approach is characterized by a host of advantages, but this also introduces several new complexities that must be addressed prior to broad adoption by developmental researchers. In this paper we focus on methods for fitting measurement models and creating scale scores using data drawn from multiple longitudinal studies. We present findings from the analysis of repeated measures of internalizing symptomatology that were pooled from three existing developmental studies. We describe and demonstrate each step in the analysis and we conclude with a discussion of potential limitations and directions for future research. PMID:18331129

  9. The role of multiple negative social relationships in inflammatory cytokine responses to a laboratory stressor.

    Song, Sunmi; Graham-Engeland, Jennifer E; Corwin, Elizabeth J; Ceballos, Rachel M; Taylor, Shelley E; Seeman, Teresa; Klein, Laura Cousino

    2015-01-01

    The present study examined the unique impact of perceived negativity in multiple social relationships on endocrine and inflammatory responses to a laboratory stressor. Via hierarchical cluster analysis, those who reported negative social exchanges across relationships with a romantic partner, family, and their closest friend had higher mean IL-6 across time and a greater increase in TNF-α from 15 min to 75 min post stress. Those who reported negative social exchanges across relationships with roommates, family, and their closest friend showed greater IL-6 responses to stress. Differences in mean IL-6 were accounted for by either depressed mood or hostility, whereas differences in the cytokine stress responses remained significant after controlling for those factors. Overall, this research provides preliminary evidence to suggest that having multiple negative relationships may exacerbate acute inflammatory responses to a laboratory stressor independent of hostility and depressed mood.

  10. Quality of Care for Patients with Multiple Chronic Conditions: The Role of Comorbidity Interrelatedness

    Zulman, Donna M.; Asch, Steven M.; Martins, Susana B.; Kerr, Eve A.; Hoffman, Brian B.; Goldstein, Mary K.

    2013-01-01

    Multimorbidity—the presence of multiple chronic conditions in a patient—has a profound impact on health, health care utilization, and associated costs. Definitions of multimorbidity in clinical care and research have evolved over time, initially focusing on a patient’s number of comorbidities and the associated magnitude of required care processes, and later recognizing the potential influence of comorbidity characteristics on patient care and outcomes. In this article, we review the relation...

  11. The role of assessment in enhancing the vocational success of people with multiple sclerosis.

    Roessler, R T

    1996-01-01

    The person/environment or ecological perspective on vocational evaluation provides a comprehensive assessment strategy for people with multiple sclerosis. The ecological model requires assessment of both personal variables such as rehabilitation outlook and MS symptoms and environmental variables such as barriers to workplace accessibility and performance of essential job functions. Measures of person and environment constructs are presented as are applications of the resulting information in vocational counseling and disability management services.

  12. Dynamic cellular manufacturing system design considering ...

    Kamal Deep

    cellular manufacturing system in a company is division of ... designed to be assembled from a small number of stan- ..... contingency part process route in addition to the alternate .... istic industrial manufacturing vision considering multiple.

  13. HMGB1 and Histones Play a Significant Role in Inducing Systemic Inflammation and Multiple Organ Dysfunctions in Severe Acute Pancreatitis

    Runkuan Yang

    2017-01-01

    Full Text Available Severe acute pancreatitis (SAP starts as a local inflammation of pancreatic tissue that induces the development of multiple extrapancreatic organs dysfunction; however, the underlying mechanisms are still not clear. Ischemia-reperfusion, circulating inflammatory cytokines, and possible bile cytokines significantly contribute to gut mucosal injury and intestinal bacterial translocation (BT during SAP. Circulating HMGB1 level is significantly increased in SAP patients and HMGB1 is an important factor that mediates (at least partly gut BT during SAP. Gut BT plays a critical role in triggering/inducing systemic inflammation/sepsis in critical illness, and profound systemic inflammatory response syndrome (SIRS can lead to multiple organ dysfunction syndrome (MODS during SAP, and systemic inflammation with multiorgan dysfunction is the cause of death in experimental SAP. Therefore, HMGB1 is an important factor that links gut BT and systemic inflammation. Furthermore, HMGB1 significantly contributes to multiple organ injuries. The SAP patients also have significantly increased circulating histones and cell-free DNAs levels, which can reflect the disease severity and contribute to multiple organ injuries in SAP. Hepatic Kupffer cells (KCs are the predominant source of circulating inflammatory cytokines in SAP, and new evidence indicates that hepatocyte is another important source of circulating HMGB1 in SAP; therefore, treating the liver injury is important in SAP.

  14. The Drosophila BTB domain protein Jim Lovell has roles in multiple larval and adult behaviors.

    Sonia M Bjorum

    Full Text Available Innate behaviors have their origins in the specification of neural fates during development. Within Drosophila, BTB (Bric-a-brac,Tramtrack, Broad domain proteins such as Fruitless are known to play key roles in the neural differentiation underlying such responses. We previously identified a gene, which we have termed jim lovell (lov, encoding a BTB protein with a role in gravity responses. To understand more fully the behavioral roles of this gene we have investigated its function through several approaches. Transcript and protein expression patterns have been examined and behavioral phenotypes of new lov mutations have been characterized. Lov is a nuclear protein, suggesting a role as a transcriptional regulator, as for other BTB proteins. In late embryogenesis, Lov is expressed in many CNS and PNS neurons. An examination of the PNS expression indicates that lov functions in the late specification of several classes of sensory neurons. In particular, only two of the five abdominal lateral chordotonal neurons express Lov, predicting functional variation within this highly similar group. Surprisingly, Lov is also expressed very early in embryogenesis in ways that suggests roles in morphogenetic movements, amnioserosa function and head neurogenesis. The phenotypes of two new lov mutations that delete adjacent non-coding DNA regions are strikingly different suggesting removal of different regulatory elements. In lov(47 , Lov expression is lost in many embryonic neurons including the two lateral chordotonal neurons. lov(47 mutant larvae show feeding and locomotor defects including spontaneous backward movement. Adult lov(47 males perform aberrant courtship behavior distinguished by courtship displays that are not directed at the female. lov(47 adults also show more defective negative gravitaxis than the previously isolated lov(91Y mutant. In contrast, lov(66 produces largely normal behavior but severe female sterility associated with ectopic lov

  15. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity

    Speijer, Dave

    2011-01-01

    Recently, constructive neutral evolution has been touted as an important concept for the understanding of the emergence of cellular complexity. It has been invoked to help explain the development and retention of, amongst others, RNA splicing, RNA editing and ribosomal and mitochondrial respiratory

  16. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  17. Multiple Role Balance, Job Satisfaction, and Life Satisfaction in Women School Counselors

    Bryant, Rhonda M.; Constantine, Madonna G.

    2006-01-01

    Many prior studies have reported that school counselors are at risk for experiencing mental health difficulties (e.g., professional burnout) as a result of their participation in a wide variety of service-oriented roles. The majority of school counselors are women, which underscores the importance of examining these individuals' unique…

  18. Young Children's Role-Playing for Enhancing Personal Intelligences in Multiple Intelligences Theory

    Wee, Su-Jeong; Shin, Hwa-Sik; Kim, Myung-Hee

    2013-01-01

    This article examines young children's role-play in an effort to develop methods with which teachers can enhance children's interpersonal and intrapersonal intelligences. Examining how MI practice is applied in different cultural and social contexts is important because it can provide new insights on enriching and enhancing curricula and…

  19. Multiple roles of the prostaglandin D2 signaling pathway in reproduction.

    Rossitto, Moïra; Ujjan, Safdar; Poulat, Francis; Boizet-Bonhoure, Brigitte

    2015-01-01

    Prostaglandins signaling molecules are involved in numerous physiological processes. They are produced by several enzyme-limited reactions upon fatty acids, which are catalyzed by two cyclooxygenases and prostaglandin synthases. In particular, the prostaglandins E2 (PGE2), D2 (PGD2), and F2 (PGF2 α) have been shown to be involved in female reproductive mechanisms. Furthermore, widespread expression of lipocalin- and hematopoietic-PGD2 synthases in the male reproductive tract supports the purported roles of PGD2 in the development of both embryonic and adult testes, sperm maturation, and spermatogenesis. In this review, we summarize the putative roles of PGD2 signaling and the roles of both PGD2 synthases in testicular formation and function. We review the data reporting the involvement of PGD2 signaling in the differentiation of Sertoli and germ cells of the embryonic testis. Furthermore, we discuss the roles of lipocalin-PGD2 synthase in steroidogenesis and spermatogenesis, in terms of lipid molecule transport and PGD2 production. Finally, we discuss the hypothesis that PGD2 signaling may be affected in certain reproductive diseases, such as infertility, cryptorchidism, and testicular cancer. © 2015 Society for Reproduction and Fertility.

  20. Modeling and cellular studies

    Anon.

    1982-01-01

    Testing the applicability of mathematical models with carefully designed experiments is a powerful tool in the investigations of the effects of ionizing radiation on cells. The modeling and cellular studies complement each other, for modeling provides guidance for designing critical experiments which must provide definitive results, while the experiments themselves provide new input to the model. Based on previous experimental results the model for the accumulation of damage in Chlamydomonas reinhardi has been extended to include various multiple two-event combinations. Split dose survival experiments have shown that models tested to date predict most but not all the observed behavior. Stationary-phase mammalian cells, required for tests of other aspects of the model, have been shown to be at different points in the cell cycle depending on how they were forced to stop proliferating. These cultures also demonstrate different capacities for repair of sublethal radiation damage

  1. Role of sequential hemi-body irradiation in multiple myeloma: preliminary observations

    Kumar, H.S.; Chaudhary, R.K.; Kumar, Vanita

    1993-01-01

    Ten patients with multiple myeloma presenting in a highly painful condition were included in the study. They were treated by sequential hemi-body irradiation. A dose of 600 cGy was delivered to the upper hemi-body and 800 c Gy to the lower hemi-body. All patients has appreciable relief from pain. The maximum effect was achieved within 24 to 48 hours of treatment. 9 out of the 10 patients has an improvement in the performance status. All these patients were later subjected to combination chemotherapy. (author). 9 refs., 3 tabs

  2. Metabolomics: A potential way to know the role of vitamin D on multiple sclerosis.

    Luque-Córdoba, Diego; Luque de Castro, María D

    2017-03-20

    The literature about the influence of vitamin D on multiple sclerosis (MS) is very controversial, possibly as a result of the way through which the research on the subject has been conducted. The studies developed so far have been focused exclusively on gene expression: the effect of a given vitamin D metabolite on target receptors. The influence of the vitamin D status (either natural or after supplementation) on MS has been studied by measurement of the 25 monohydroxylated metabolite (also known as circulating form), despite the 1,25 dihydroxylated metabolite is considered the active form. In the light of the multiple metabolic pathways in which both forms of vitamin D (D 2 and D 3 ) are involved, monitoring of the metabolites is crucial to know the activity of the target enzymes as a function of both the state of the MS patient and the clinical treatment applied. The study of metabolomics aspects is here proposed to clarify the present controversy. In "omics" terms, our proposal is to take profit from up-stream information-thus is, from metabolomics to genomics-with a potential subsequent step to systems biology, if required. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The role of NIGMS P50 sponsored team science in our understanding of multiple organ failure.

    Moore, Frederick A; Moore, Ernest E; Billiar, Timothy R; Vodovotz, Yoram; Banerjee, Anirban; Moldawer, Lyle L

    2017-09-01

    The history of the National Institute of General Medical Sciences (NIGMS) Research Centers in Peri-operative Sciences (RCIPS) is the history of clinical, translational, and basic science research into the etiology and treatment of posttraumatic multiple organ failure (MOF). Born out of the activism of trauma and burn surgeons after the Viet Nam War, the P50 trauma research centers have been a nidus of research advances in the field and the training of future academic physician-scientists in the fields of trauma, burns, sepsis, and critical illness. For over 40 years, research conducted under the aegis of this funding program has led to numerous contributions at both the bedside and at the bench. In fact, it has been this requirement for team science with a clinician-scientist working closely with basic scientists from multiple disciplines that has led the RCIPS to its unrivaled success in the field. This review will briefly highlight some of the major accomplishments of the RCIPS program since its inception, how they have both led and evolved as the field moved steadily forward, and how they are responsible for much of our current understanding of the etiology and pathology of MOF. This review is not intended to be all encompassing nor a historical reference. Rather, it serves as recognition to the foresight and support of many past and present individuals at the NIGMS and at academic institutions who have understood the cost of critical illness and MOF to the individual and to society.

  4. The dual role of multiple-transistor charge sharing collection in single-event transients

    Guo Yang; Chen Jian-Jun; He Yi-Bai; Liang Bin; Liu Bi-Wei

    2013-01-01

    As technologies scale down in size, multiple-transistors being affected by a single ion has become a universal phenomenon, and some new effects are present in single event transients (SETs) due to the charge sharing collection of the adjacent multiple-transistors. In this paper, not only the off-state p-channel metal—oxide semiconductor field-effect transistor (PMOS FET), but also the on-state PMOS is struck by a heavy-ion in the two-transistor inverter chain, due to the charge sharing collection and the electrical interaction. The SET induced by striking the off-state PMOS is efficiently mitigated by the pulse quenching effect, but the SET induced by striking the on-state PMOS becomes dominant. It is indicated in this study that in the advanced technologies, the SET will no longer just be induced by an ion striking the off-state transistor, and the SET sensitive region will no longer just surround the off-state transistor either, as it is in the older technologies. We also discuss this issue in a three-transistor inverter in depth, and the study illustrates that the three-transistor inverter is still a better replacement for spaceborne integrated circuit design in advanced technologies. (condensed matter: structural, mechanical, and thermal properties)

  5. New approaches in the management of spasticity in multiple sclerosis patients: role of cannabinoids

    Paul F Smith

    2010-02-01

    Full Text Available Paul F SmithDepartment of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New ZealandAbstract: Cannabinoids such as Cannabis-based medicinal extracts (CBMEs are increasingly being used in the treatment of spasticity associated with multiple sclerosis (MS. They have been shown to have a beneficial effect on spasticity; however, this evidence is largely based on subjective rating scales. Objective measurements using the Ashworth scale have tended to show no significant effect; however, the validity of this scale has been questioned. The available clinical trial data suggest that the adverse side effects associated with using CBMEs are generally mild, such as dry mouth, dizziness, somnolence, nausea and intoxication. However, most of these trials were run over a period of months and it is possible that other adverse side effects could develop with long-term use. There may be reason to be concerned about the use of therapeutic cannabinoids by adolescents, people predisposed to psychosis and pregnant women.Keywords: multiple sclerosis, spasticity, cannabinoids, Cannabis

  6. The role of backward associative strength in false recognition of DRM lists with multiple critical words.

    Beato, María S; Arndt, Jason

    2017-08-01

    Memory is a reconstruction of the past and is prone to errors. One of the most widely-used paradigms to examine false memory is the Deese/Roediger-McDermott (DRM) paradigm. In this paradigm, participants studied words associatively related to a non-presented critical word. In a subsequent memory test critical words are often falsely recalled and/or recognized. In the present study, we examined the influence of backward associative strength (BAS) on false recognition using DRM lists with multiple critical words. In forty-eight English DRM lists, we manipulated BAS while controlling forward associative strength (FAS). Lists included four words (e.g., prison, convict, suspect, fugitive) simultaneously associated with two critical words (e.g., CRIMINAL, JAIL). The results indicated that true recognition was similar in high-BAS and low-BAS lists, while false recognition was greater in high-BAS lists than in low-BAS lists. Furthermore, there was a positive correlation between false recognition and the probability of a resonant connection between the studied words and their associates. These findings suggest that BAS and resonant connections influence false recognition, and extend prior research using DRM lists associated with a single critical word to studies of DRM lists associated with multiple critical words.

  7. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa

    Pamp, Sünje Johanna; Tolker-Nielsen, Tim

    2007-01-01

    Recent studies have indicated that biosurfactants produced by Pseudomonas aeruginosa play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. Through the use of flow cell technology and enhanced confocal laser scanning microscopy......, we have obtained results which suggest that the biosurfactants produced by P. aeruginosa play additional roles in structural biofilm development. We present genetic evidence that during biofilm development by P. aeruginosa, biosurfactants promote microcolony formation in the initial phase...... and facilitate migration-dependent structural development in the later phase. P. aeruginosa rhl4 mutants, deficient in synthesis of biosurfactants, were not capable of forming microcolonies in the initial phase of biofilm formation. Experiments involving two-color-coded mixed-strain biofilms showed that P...

  8. Facebook Role Play Addiction - A Comorbidity with Multiple Compulsive-Impulsive Spectrum Disorders.

    Nathan, Deeepa; Shukla, Lekhansh; Kandasamy, Arun; Benegal, Vivek

    2016-06-01

    Background Problematic Internet use (PIU) is an emerging entity with varied contents. Behavioral addictions have high comorbidity of attention deficit hyperactivity disorder and obsessive-compulsive spectrum disorders. Social networking site (SNS) addiction and role playing game (RPG) addiction are traditionally studied as separate entities. We present a case with excessive Internet use, with a particular focus on phenomenology and psychiatric comorbidities. Case presentation Fifteen-year-old girl with childhood onset attention deficit disorder, obsessive-compulsive disorder, adolescent onset trichotillomania, and disturbed family environment presented with excessive Facebook use. Main online activity was creating profiles in names of mainstream fictional characters and assuming their identity (background, linguistic attributes, etc.). This was a group activity with significant socialization in the virtual world. Craving, salience, withdrawal, mood modification, and conflict were clearly elucidated and significant social and occupational dysfunction was evident. Discussion This case highlights various vulnerability and sociofamilial factors contributing to behavioral addiction. It also highlights the presence of untreated comorbidities in such cases. The difference from contemporary RPGs and uniqueness of role playing on SNS is discussed. SNS role playing as a separate genre of PIU and its potential to reach epidemic proportions are discussed. Conclusions Individuals with temperamental vulnerability are likely to develop behavioral addictions. Identification and management of comorbid conditions are important. The content of PIU continues to evolve and needs further study.

  9. Electrophysiology and Beyond: Multiple roles of Na+ channel β subunits in development and disease

    Patino, Gustavo A.; Isom, Lori L.

    2010-01-01

    Voltage-gated Na+ channel (VGSC) β subunits are not “auxiliary.” These multifunctional molecules not only modulate Na+ current (INa), but also function as cell adhesion molecules (CAMs) – playing roles in aggregation, migration, invasion, neurite outgrowth, and axonal fasciculation. β subunits are integral members of VGSC signaling complexes at nodes of Ranvier, axon initial segments, and cardiac intercalated disks, regulating action potential propagation through critical intermolecular and cell-cell communication events. At least in vitro, many β subunit cell adhesive functions occur both in the presence and absence of pore-forming VGSC α subunits, and in vivo β subunits are expressed in excitable as well as non-excitable cells, thus β subunits may play important functional roles on their own, in the absence of α subunits. VGSC β1 subunits are essential for life and appear to be especially important during brain development. Mutations in β subunit genes result in a variety of human neurological and cardiovascular diseases. Moreover, some cancer cells exhibit alterations in β subunit expression during metastasis. In short, these proteins, originally thought of as merely accessory to α subunits, are critical players in their own right in human health and disease. Here we discuss the role of VGSC β subunits in the nervous system. PMID:20600605

  10. Facebook Role Play Addiction – A Comorbidity with Multiple Compulsive–Impulsive Spectrum Disorders

    Nathan, Deeepa; Shukla, Lekhansh; Kandasamy, Arun; Benegal, Vivek

    2016-01-01

    Background Problematic Internet use (PIU) is an emerging entity with varied contents. Behavioral addictions have high comorbidity of attention deficit hyperactivity disorder and obsessive–compulsive spectrum disorders. Social networking site (SNS) addiction and role playing game (RPG) addiction are traditionally studied as separate entities. We present a case with excessive Internet use, with a particular focus on phenomenology and psychiatric comorbidities. Case presentation Fifteen-year-old girl with childhood onset attention deficit disorder, obsessive–compulsive disorder, adolescent onset trichotillomania, and disturbed family environment presented with excessive Facebook use. Main online activity was creating profiles in names of mainstream fictional characters and assuming their identity (background, linguistic attributes, etc.). This was a group activity with significant socialization in the virtual world. Craving, salience, withdrawal, mood modification, and conflict were clearly elucidated and significant social and occupational dysfunction was evident. Discussion This case highlights various vulnerability and sociofamilial factors contributing to behavioral addiction. It also highlights the presence of untreated comorbidities in such cases. The difference from contemporary RPGs and uniqueness of role playing on SNS is discussed. SNS role playing as a separate genre of PIU and its potential to reach epidemic proportions are discussed. Conclusions Individuals with temperamental vulnerability are likely to develop behavioral addictions. Identification and management of comorbid conditions are important. The content of PIU continues to evolve and needs further study. PMID:27156380

  11. B cell follicle-like structures in multiple sclerosis-with focus on the role of B cell activating factor

    Morten, Haugen; Frederiksen, Jette L; Vinter, Matilda Degn

    2014-01-01

    B lymphocytes play an important role in the pathogenesis of multiple sclerosis (MS). Follicle-like structures (FLS) have recently been found in the subarachnoid space in the leptomeninges in some patients with secondary progressive MS (SPMS). They contain proliferating B lymphocytes, plasma cells......, helper T lymphocytes and a network of follicular dendritic cells. FLS have been shown to correlate with increased cortical demyelination, neuronal loss, meningeal infiltration and central nervous system inflammation, as well as lower age at disease onset and progression to severe disability and death....... In this review, we will discuss the role of FLS in MS pathogenesis and disease course and the possible influence by B cell activating factor (BAFF) and C-X-C motif chemokine 13 (CXCL13)....

  12. Role of socio-economic and reproductive factors in the risk of multiple sclerosis

    Magyari, Melinda

    2015-01-01

    rapid to be explained by gene alterations. We investigated the effect of numerous biological social physical and chemical environmental exposures in different periods of life. These data were available from population-based registries and were used in a case-control approach. This study database...... children reduced the risk of multiple sclerosis (MS) in women but not in men. Childbirths reduced the risk of MS by about 46% during the following 5 years. Even pregnancies terminated early had a protective effect on the risk of developing MS suggesting a temporary immunosuppression during pregnancy. Our...... data on social behaviour regarding educational level income and relationship stability did not indicate reverse causality. A greater likelihood to be exposed to common infections did not show any effect on the risk of MS neither in puberty nor in adulthood. Socio-economic status and lifestyle expressed...

  13. The role of the thalamus and hippocampus in episodic memory performance in patients with multiple sclerosis.

    Koenig, Katherine A; Rao, Stephen M; Lowe, Mark J; Lin, Jian; Sakaie, Ken E; Stone, Lael; Bermel, Robert A; Trapp, Bruce D; Phillips, Micheal D

    2018-03-01

    Episodic memory loss is one of the most common cognitive symptoms in patients with multiple sclerosis (MS), but the pathophysiology of this symptom remains unclear. Both the hippocampus and thalamus have been implicated in episodic memory and show regional atrophy in patients with MS. In this work, we used functional magnetic resonance imaging (fMRI) during a verbal episodic memory task, lesion load, and volumetric measures of the hippocampus and thalamus to assess the relative contributions to verbal and visual-spatial episodic memory. Functional activation, lesion load, and volumetric measures from 32 patients with MS and 16 healthy controls were used in a predictive analysis of episodic memory function. After adjusting for disease duration, immediate recall performance on a visual-spatial episodic memory task was significantly predicted by hippocampal volume ( p memory measures, functional activation of the thalamus during encoding was more predictive than that of volume measures ( p episodic memory loss in patients with MS.

  14. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis.

    Freedman, Samantha N; Shahi, Shailesh K; Mangalam, Ashutosh K

    2018-01-01

    Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.

  15. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Patrizia Tosi

    2012-11-01

    Full Text Available Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  16. Cerebellar metastases – may surgery play a role in the presence of multiple lesions?

    Dabija M.

    2017-06-01

    Full Text Available Brain metastases are the most common form of malignancy presence in the CNS having a more frequent appearance than primary brain tumors. Although secondary cerebellar tumors represent only 15% of all intracranial metastases, they are quite frequent among primary oncological patients and pose a challenge for all of the medical caretakers starting with the neurosurgeon. Among those, a small percent of patients have multiple cerebellar lesions and the therapeutic challenge turns into a medical controversy, especially when it comes to surgical treatment taking into consideration that the life expectancy is lower than one year. A key asset which we have on our side is the anatomical vicinity these lesions occur, this leading us to take into consideration eliminating as many lesions in one single operative time as possible without changing the position of the head during surgery. Based on a retrospective study which concluded that patients with resection of all lesions tend to have a longer life expectancy, and on modern concepts of risks and benefits of oncological surgery and surgery in general, we followed up on three patients presenting posterior and even multiple posterior fossa metastases, taking into consideration individual comorbidities, tumor aspects and the possibility/opportunity of surgical treatment. It turned out that surgery is a safe and effective treatment option and should not be considered harmful or aggressive especially because all of the patients which were under study had a favorable post-operative prognostic and an improved quality of life. We emphasize furthermore the importance of complete lesion resection in as few interventions as possible followed up by radiotherapy/chemotherapy as a key in prolonging these patients life expectancy taking into consideration that the outcome is directly related to the number of lesions rather to the location or volume of them.

  17. Exposure to predator odor influences the relative use of multiple memory systems: role of basolateral amygdala.

    Leong, Kah-Chung; Packard, Mark G

    2014-03-01

    In a dual-solution plus-maze task in which both hippocampus-dependent place learning and dorsolateral striatal-dependent response learning provide an adequate solution, the relative use of multiple memory systems can be influenced by emotional state. Specifically, pre-training peripheral or intra-basolateral (BLA) administration of anxiogenic drugs result in the predominant use of response learning. The present experiments were designed to extend these findings by examining whether exposure to a putatively ethologically valid stressor would also produce a predominant use of response learning. In experiment 1, adult male Long-Evans rats were exposed to either a predator odor (trimethylthiazoline [TMT], a component of fox feces) or distilled water prior to training in a dual-solution water plus maze task. On a probe trial 24h following task acquisition, rats previously exposed to TMT predominantly displayed response learning relative to control animals. In experiment 2, rats trained on a single-solution plus maze task that required the use of response learning displayed enhanced acquisition following pre-training TMT exposure. In experiment 3, rats exposed to TMT or distilled water were trained in the dual-solution task and received post-training intra-BLA injections of the sodium channel blocker bupivacaine (1.0% solution, 0.5 μl) or saline. Relative to control animals, rats exposed to TMT predominantly displayed response learning on the probe trial, and this effect was blocked by neural inactivation of the BLA. The findings indicate that (1) the use of dorsal striatal-dependent habit memory produced by emotional arousal generalizes from anxiogenic drug administration to a putatively ecologically valid stressor (i.e. predator odor), and (2) the BLA mediates the modulatory effect of exposure to predator odor on the relative use of multiple memory systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Factors predicting work outcome in Japanese patients with schizophrenia: role of multiple functioning levels

    Chika Sumiyoshi

    2015-09-01

    Full Text Available Functional outcomes in individuals with schizophrenia suggest recovery of cognitive, everyday, and social functioning. Specifically improvement of work status is considered to be most important for their independent living and self-efficacy. The main purposes of the present study were 1 to identify which outcome factors predict occupational functioning, quantified as work hours, and 2 to provide cut-offs on the scales for those factors to attain better work status. Forty-five Japanese patients with schizophrenia and 111 healthy controls entered the study. Cognition, capacity for everyday activities, and social functioning were assessed by the Japanese versions of the MATRICS Cognitive Consensus Battery (MCCB, the UCSD Performance-based Skills Assessment-Brief (UPSA-B, and the Social Functioning Scale Individuals’ version modified for the MATRICS-PASS (Modified SFS for PASS, respectively. Potential factors for work outcome were estimated by multiple linear regression analyses (predicting work hours directly and a multiple logistic regression analyses (predicting dichotomized work status based on work hours. ROC curve analyses were performed to determine cut-off points for differentiating between the better- and poor work status. The results showed that a cognitive component, comprising visual/verbal learning and emotional management, and a social functioning component, comprising independent living and vocational functioning, were potential factors for predicting work hours/status. Cut-off points obtained in ROC analyses indicated that 60–70% achievements on the measures of those factors were expected to maintain the better work status. Our findings suggest that improvement on specific aspects of cognitive and social functioning are important for work outcome in patients with schizophrenia.

  19. Factors predicting work outcome in Japanese patients with schizophrenia: role of multiple functioning levels.

    Sumiyoshi, Chika; Harvey, Philip D; Takaki, Manabu; Okahisa, Yuko; Sato, Taku; Sora, Ichiro; Nuechterlein, Keith H; Subotnik, Kenneth L; Sumiyoshi, Tomiki

    2015-09-01

    Functional outcomes in individuals with schizophrenia suggest recovery of cognitive, everyday, and social functioning. Specifically improvement of work status is considered to be most important for their independent living and self-efficacy. The main purposes of the present study were 1) to identify which outcome factors predict occupational functioning, quantified as work hours, and 2) to provide cut-offs on the scales for those factors to attain better work status. Forty-five Japanese patients with schizophrenia and 111 healthy controls entered the study. Cognition, capacity for everyday activities, and social functioning were assessed by the Japanese versions of the MATRICS Cognitive Consensus Battery (MCCB), the UCSD Performance-based Skills Assessment-Brief (UPSA-B), and the Social Functioning Scale Individuals' version modified for the MATRICS-PASS (Modified SFS for PASS), respectively. Potential factors for work outcome were estimated by multiple linear regression analyses (predicting work hours directly) and a multiple logistic regression analyses (predicting dichotomized work status based on work hours). ROC curve analyses were performed to determine cut-off points for differentiating between the better- and poor work status. The results showed that a cognitive component, comprising visual/verbal learning and emotional management, and a social functioning component, comprising independent living and vocational functioning, were potential factors for predicting work hours/status. Cut-off points obtained in ROC analyses indicated that 60-70% achievements on the measures of those factors were expected to maintain the better work status. Our findings suggest that improvement on specific aspects of cognitive and social functioning are important for work outcome in patients with schizophrenia.

  20. Role of thalamic diffusion for disease differentiation between multiple sclerosis and ischemic cerebral small vessel disease

    Oeztoprak, Bilge; Oeztoprak, Ibrahim; Salk, Ismail; Topalkara, Kamil; Erkoc, Mustafa F.

    2015-01-01

    Cerebral small vessel disease (CSVD) and multiple sclerosis (MS) both harbor multiple, T2-hyperintense white matter lesions on conventional magnetic resonance imaging (MRI).We aimed to determine the microstructural changes via diffusion-weighted imaging (DWI) in normal appearing thalami. We hypothesized that the apparent diffusion coefficient (ADC) values would be different in CSVD and MS, since the extent of arterial involvement is different in these two diseases. DWI was performed for 50 patients with CSVD and 35 patients with MS along with gender- and age-matched controls whose conventional MRI revealed normal findings. DWI was done with 1.5 Tesla MR devices using echo planar imaging (EPI) for b = 0, 1000 s/mm 2 . ADC values were obtained from the thalami which appeared normal on T2-weighted and FLAIR images. Standard oval regions of interest (ROIs) of 0.5 cm 2 which were oriented parallel to the long axis of the thalamus were used for this purpose. The mean ADC value of the thalamus was (0.99 ± 0.16) x 10 -3 mm 2 /s in patients with CSVD, whereas the mean ADC value was (0.78 ± 0.06) x 10 -3 mm 2 /s in the control group. The mean ADC value was significantly higher in patients with CSVD compared to the controls (p < 0.001). The mean ADC values of the thalamus were (0.78 ± 0.08) x 10 -3 mm 2 /s in MS patients, and (0.75 ± 0.08) x 10 -3 mm 2 /s in the control group, which are not significantly different (p > 0.05). Our study revealed a difference in the diffusion of the thalami between CSVD and MS. DWI may aid in the radiological disease differentiation. (orig.)

  1. Role of thalamic diffusion for disease differentiation between multiple sclerosis and ischemic cerebral small vessel disease

    Oeztoprak, Bilge; Oeztoprak, Ibrahim; Salk, Ismail [Cumhuriyet University School of Medicine, Department of Radiology, Sivas (Turkey); Topalkara, Kamil [Bayindir Hospital, Department of Neurology, Ankara (Turkey); Erkoc, Mustafa F. [Bozok University School of Medicine, Department of Radiology, Yozgat (Turkey)

    2015-04-01

    Cerebral small vessel disease (CSVD) and multiple sclerosis (MS) both harbor multiple, T2-hyperintense white matter lesions on conventional magnetic resonance imaging (MRI).We aimed to determine the microstructural changes via diffusion-weighted imaging (DWI) in normal appearing thalami. We hypothesized that the apparent diffusion coefficient (ADC) values would be different in CSVD and MS, since the extent of arterial involvement is different in these two diseases. DWI was performed for 50 patients with CSVD and 35 patients with MS along with gender- and age-matched controls whose conventional MRI revealed normal findings. DWI was done with 1.5 Tesla MR devices using echo planar imaging (EPI) for b = 0, 1000 s/mm{sup 2}. ADC values were obtained from the thalami which appeared normal on T2-weighted and FLAIR images. Standard oval regions of interest (ROIs) of 0.5 cm{sup 2} which were oriented parallel to the long axis of the thalamus were used for this purpose. The mean ADC value of the thalamus was (0.99 ± 0.16) x 10{sup -3} mm{sup 2}/s in patients with CSVD, whereas the mean ADC value was (0.78 ± 0.06) x 10{sup -3} mm{sup 2}/s in the control group. The mean ADC value was significantly higher in patients with CSVD compared to the controls (p < 0.001). The mean ADC values of the thalamus were (0.78 ± 0.08) x 10{sup -3} mm{sup 2}/s in MS patients, and (0.75 ± 0.08) x 10{sup -3} mm{sup 2}/s in the control group, which are not significantly different (p > 0.05). Our study revealed a difference in the diffusion of the thalami between CSVD and MS. DWI may aid in the radiological disease differentiation. (orig.)

  2. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity.

    Speijer, Dave

    2011-05-01

    Recently, constructive neutral evolution has been touted as an important concept for the understanding of the emergence of cellular complexity. It has been invoked to help explain the development and retention of, amongst others, RNA splicing, RNA editing and ribosomal and mitochondrial respiratory chain complexity. The theory originated as a welcome explanation of isolated small scale cellular idiosyncrasies and as a reaction to 'overselectionism'. Here I contend, that in its extended form, it has major conceptual problems, can not explain observed patterns of complex processes, is too easily dismissive of alternative selectionist models, underestimates the creative force of complexity as such, and--if seen as a major evolutionary mechanism for all organisms--could stifle further thought regarding the evolution of highly complex biological processes. Copyright © 2011 WILEY Periodicals, Inc.

  3. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium

    Cartas Espinel, Irene; Guerra, Priscila Regina; Jelsbak, Lotte

    2016-01-01

    . Typhimurium virulence is the ability to survive and replicate inside macrophages and resisting the antimicrobial attacks in the form of oxidative and nitrosative stress elicited from these cells. In the present study, we have investigated the role of polyamines in intracellular survival and systemic...... infections of mice. Using a S. Typhimurium mutant defective for putrescine and spermidine biosynthesis, we show that polyamines are essential for coping with reactive nitrogen species, possibly linking polyamines to increased intracellular stress resistance. However, using a mouse model defective for nitric...

  4. The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb-Sb alloys for lead acid battery grids

    Osorio, Wislei R.; Rosa, Daniel M.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas-UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil)

    2008-01-03

    During the past 20 years, lead acid batteries manufacturers have modified grid manufacturing processes and the chemical composition of the used alloys in order to decrease battery grid weight as well as to reduce the production costs, and to increase the battery life-time cycle and the corrosion resistance. The aim of this study was to evaluate the effects of cellular and dendritic microstructures of two different Pb-Sb alloys on the resultant corrosion behavior. A water-cooled unidirectional solidification system was used to obtain cellular and dendritic structures. Macrostructural and microstructural aspects along the casting have been characterized by optical microscopy and SEM techniques. Electrochemical impedance spectroscopy and potentiodynamic polarization curves were used to analyze the corrosion resistance of samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. For cellular microstructures the corrosion rate decreases with increasing cell spacing. In contrast, finer dendritic spacings exhibit better corrosion resistance than coarser ones. The microstructural pre-programming may be used as an alternative way to produce Pb alloy components in conventional casting, rolled-expanded, and continuous drum casting with better corrosion resistance. (author)

  5. The Arabidopsis thaliana Homolog of the Helicase RTEL1 Plays Multiple Roles in Preserving Genome Stability[C][W

    Recker, Julia; Knoll, Alexander; Puchta, Holger

    2014-01-01

    In humans, mutations in the DNA helicase Regulator of Telomere Elongation Helicase1 (RTEL1) lead to Hoyeraal-Hreidarsson syndrome, a severe, multisystem disorder. Here, we demonstrate that the RTEL1 homolog in Arabidopsis thaliana plays multiple roles in preserving genome stability. RTEL1 suppresses homologous recombination in a pathway parallel to that of the DNA translocase FANCM. Cytological analyses of root meristems indicate that RTEL1 is involved in processing DNA replication intermediates independently from FANCM and the nuclease MUS81. Moreover, RTEL1 is involved in interstrand and intrastrand DNA cross-link repair independently from FANCM and (in intrastrand cross-link repair) parallel to MUS81. RTEL1 contributes to telomere homeostasis; the concurrent loss of RTEL1 and the telomerase TERT leads to rapid, severe telomere shortening, which occurs much more rapidly than it does in the single-mutant line tert, resulting in developmental arrest after four generations. The double mutant rtel1-1 recq4A-4 exhibits massive growth defects, indicating that this RecQ family helicase, which is also involved in the suppression of homologous recombination and the repair of DNA lesions, can partially replace RTEL1 in the processing of DNA intermediates. The requirement for RTEL1 in multiple pathways to preserve genome stability in plants can be explained by its putative role in the destabilization of DNA loop structures, such as D-loops and T-loops. PMID:25516598

  6. Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family.

    Pecenova, L; Farkas, Robert

    2016-07-01

    Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numerous metabolic pathways, and can be misregulated in many types of cancers. Their enormous functional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and highlight some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways.

  7. Radiation, nitric oxide and cellular death

    Dubner, D.; Perez, M.R. Del; Michelin, S.C.; Gisone, P.A.

    1997-01-01

    The mechanisms of radiation induced cellular death constitute an objective of research ever since the first biological effects of radiation were first observed. The explosion of information produced in the last 20 years calls for a careful analysis due to the apparent contradictory data related to the cellular system studied and the range of doses used. This review focuses on the role of the active oxygen species, in particular the nitric oxides, in its relevance as potential mediator of radiation induced cellular death

  8. Fatigue in multiple sclerosis: neural correlates and the role of non-invasive brain stimulation

    Moussa A. Chalah

    2015-11-01

    Full Text Available Multiple sclerosis (MS is a chronic progressive inflammatory disease of the central nervous system and the major cause of non-traumatic disability in young adults. Fatigue is a frequent symptom reported by the majority of MS patients during their disease course and drastically af-fects their quality of life. Despite its significant prevalence and impact, the underlying patho-physiological mechanisms are not well elucidated. MS fatigue is still considered the result of multifactorial and complex constellations, and is commonly classified into primary fatigue related to the pathological changes of the disease itself, and secondary fatigue attributed to mimicking symptoms, comorbid sleep and mood disorders, and medications side effects. Data from neuroimaging, neurophysiology, neuroendocrine and neuroimmune studies have raised hypotheses regarding the origin of this symptom, some of which have succeeded in identifying an association between MS fatigue and structural or functional abnormalities within various brain networks. Hence, the aim of this work is to reappraise the neural correlates of MS fatigue and to discuss the rationale for the emergent use of noninvasive brain stimulation (NIBS techniques as potential treatments. This will include a presentation of the various NIBS modalities and a proposition of their potential mechanisms of action in this context. Specific issues related to the value of transcranial direct current stimulation will be addressed.

  9. Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance

    Kilic, C.; Raible, C. C.; Stocker, T. F.

    2017-01-01

    Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant. Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.

  10. Resonance properties of tidal channels with multiple retention basins: role of adjacent sea

    Roos, Pieter C.; Schuttelaars, Henk M.

    2015-03-01

    We present an idealised model of the tidal response in a main channel with multiple secondary basins, co-oscillating with an adjacent sea. The sea is represented as a semi-infinite strip of finite width, anywhere between the limits of a channel extension (narrow) and a half-plane (wide). The sea geometry controls the extent to which radiative damping takes place and hence the type of conditions that effectively apply at the channel mouth. These conditions range between the two extremes of prescribing elevation (deep sea limit) and prescribing the incoming wave (sea as channel extension of the same depth, as done in an earlier study). The closer to this first extreme, the stronger the oscillations in the secondary basins may feed back onto the channel mouth and thus produce an amplified or weakened response in the system as a whole. The possibly resonant response is explained by analysing the additional waves that emerge on either side of the entrance of the secondary basin. Finally, we show that the simultaneous presence of two secondary basins may amplify or weaken the accumulated responses to these basins individually.

  11. The Role of Allogeneic Transplantation in the Treatment of Multiple Myeloma.

    Majolino, I

    1998-01-01

    In multiple myeloma (MM) attempts to improve upon the results of standard melphalanpredisone with other conventional dose drug combinations, have generally been unsuccessful, producing only minor improvements in response rate, with little effect on survival. The only treatment capable of producing a dramatic change in response and life expectancy is high-dose chemo-radiotherapy followed by stem cell transplantation. However, after autologous transplant relapse will almost inevitably occur, and freedom from recurrence curves show no plateau in most studies. Besides the resistance of the disease to chemotherapy, another possible explanation is tumor contamination of the graft. This is one major advantage of allogeneic transplantation over autologous, the other being an immune mediated mechanism of tumor suppression in part related to GVHD. Application of allogeneic transplantation to MM has met a number of obstacles, but is now entering a phase of reappraisal, due in part to a tendency to earlier transplantation, in part to the use of novel technologies such as allogeneic peripheral blood stem cells instead of marrow. The goal should be the reduction of transplant related deaths, to better exploit the higher eradication potential of allogeneic cell therapies. The most intriguing perspectives are those related to immune manipulation of recipient and/or donor.

  12. The Mechanisms of Water Exchange: The Regulatory Roles of Multiple Interactions in Social Wasps.

    Agrawal, Devanshu; Karsai, Istvan

    2016-01-01

    Evolutionary benefits of task fidelity and improving information acquisition via multiple transfers of materials between individuals in a task partitioned system have been shown before, but in this paper we provide a mechanistic explanation of these phenomena. Using a simple mathematical model describing the individual interactions of the wasps, we explain the functioning of the common stomach, an information center, which governs construction behavior and task change. Our central hypothesis is a symmetry between foragers who deposit water and foragers who withdraw water into and out of the common stomach. We combine this with a trade-off between acceptance and resistance to water transfer. We ultimately derive a mathematical function that relates the number of interactions that foragers complete with common stomach wasps during a foraging cycle. We use field data and additional model assumptions to calculate values of our model parameters, and we use these to explain why the fullness of the common stomach stabilizes just below 50 percent, why the average number of successful interactions between foragers and the wasps forming the common stomach is between 5 and 7, and why there is a variation in this number of interactions over time. Our explanation is that our proposed water exchange mechanism places natural bounds on the number of successful interactions possible, water exchange is set to optimize mediation of water through the common stomach, and the chance that foragers abort their task prematurely is very low.

  13. Examination of the role of magnetic resonance imaging in multiple sclerosis: A problem-orientated approach

    McFarland Henry

    2009-01-01

    Full Text Available Magnetic Resonance Imaging (MRI has brought in several benefits to the study of Multiple Sclerosis (MS. It provides accurate measurement of disease activity, facilitates precise diagnosis, and aid in the assessment of newer therapies. The imaging guidelines for MS are broadly divided in to approaches for imaging patients with suspected MS or clinically isolated syndromes (CIS or for monitoring patients with established MS. In this review, the technical aspects of MR imaging for MS are briefly discussed. The imaging process need to capture the twin aspects of acute MS viz. the autoimmune acute inflammatory process and the neurodegenerative process. Gadolinium enhanced MRI can identify acute inflammatory lesions precisely. The commonly applied MRI marker of disease progression is brain atrophy. Whole brain magnetization Transfer Ratio (MTR and Magnetic Resonance Spectroscopy (MRS are two other techniques use to monitor disease progression. A variety of imaging techniques such as Double Inversion Recovery (DIR, Spoiled Gradient Recalled (SPGR acquisition, and Fluid Attenuated Inversion Recovery (FLAIR have been utilized to study the cortical changes in MS. MRI is now extensively used in the Phase I, II and III clinical trials of new therapies. As the technical aspects of MRI advance rapidly, and higher field strengths become available, it is hoped that the impact of MRI on our understanding of MS will be even more profound in the next decade.

  14. Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance

    Kilic, C.; Raible, C. C.; Stocker, T. F., E-mail: stocker@climate.unibe.ch [Climate and Environmental Physics, Physics Institute, University of Bern (Switzerland)

    2017-08-01

    Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant. Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.

  15. The role of multiple-group measurement invariance in family psychology research.

    Kern, Justin L; McBride, Brent A; Laxman, Daniel J; Dyer, W Justin; Santos, Rosa M; Jeans, Laurie M

    2016-04-01

    Measurement invariance (MI) is a property of measurement that is often implicitly assumed, but in many cases, not tested. When the assumption of MI is tested, it generally involves determining if the measurement holds longitudinally or cross-culturally. A growing literature shows that other groupings can, and should, be considered as well. Additionally, it is noted that the standard techniques for investigating MI have been focused almost exclusively on the case of 2 groups, with very little work on the case of more than 2 groups, even though the need for such techniques is apparent in many fields of research. This paper introduces and illustrates a model building technique to investigating MI for more than 2 groups. This technique is an extension of the already-existing hierarchy for testing MI introduced by Meredith (1993). An example using data on father involvement in 5 different groups of families of children with and without developmental disabilities from the Early Childhood Longitudinal Study-Birth Cohort dataset will be given. We show that without considering the possible differential functioning of the measurements on multiple developmental groups, the differences present between the groups in terms of the measurements may be obscured. This could lead to incorrect conclusions. (c) 2016 APA, all rights reserved).

  16. The Role of Clinical and Instrumented Outcome Measures in Balance Control of Individuals with Multiple Sclerosis

    Neeta Kanekar

    2013-01-01

    Full Text Available Purpose. The aim of the study was to investigate differences in balance control between individuals with multiple sclerosis (MS and healthy control subjects using clinical scales and instrumented measures of balance and determine relationships between balance measures, fatigue, and disability levels in individuals with MS with and without a history of falls. Method. Twelve individuals with MS and twelve healthy controls were evaluated using the Berg Balance and Activities-specific Balance Confidence Scales, Modified Clinical Test of Sensory Interaction on Balance, and Limits of Stability Tests as well as Fatigue Severity Scale and Barthel Index. Results. Mildly affected individuals with MS had significant balance performance deficits and poor balance confidence levels (P<0.05. MS group had higher sway velocities and diminished stability limits (P<0.05, significant sensory impairments, high fatigue and disability levels (P<0.05. Sway velocity was a significant predictor of balance performance and the ability to move towards stability limits for the MS group. For the MS-fallers group, those with lower disability levels had faster movement velocities and better balance performance. Conclusion. Implementation of both clinical and instrumented tests of balance is important for the planning and evaluation of treatment outcomes in balance rehabilitation of people with MS.

  17. Management of multiple sclerosis: the role of coping self-efficacy and self-esteem.

    Mikula, Pavol; Nagyova, Iveta; Vitkova, Marianna; Szilasiova, Jarmila

    2018-02-07

    Patients with multiple sclerosis (MS) engage in various coping behaviours in order to manage their disease. The aim of this study is to find out if the self-esteem of patients is associated with coping strategies - problem-focused (e.g. making a plan of action when confronted with a problem); emotion focused (e.g. get emotional support from community); and focused on stopping unpleasant emotions and thoughts (e.g. keeping oneself from feeling sad), and if it can enhance or hinder coping efforts in the disease management. We collected data from 155 consecutive MS patients who completed the Coping Self-Efficacy Scale (CSE) and the Rosenberg Self-esteem Scale (RSE). Explained variance for problem-focused coping, emotion-focused coping, and coping focused on stopping unpleasant emotions and thoughts was 33, 24, and 31%, respectively. Self-esteem seems to be associated with coping strategies indicating that feelings of self-worth are linked with the ability to handle difficult life situations and can be helpful in chronic disease management.

  18. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Patrizia Tosi

    2012-01-01

    Full Text Available

    Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  19. Cortical injury in multiple sclerosis; the role of the immune system

    Walker Caroline A

    2011-12-01

    Full Text Available Abstract The easily identifiable, ubiquitous demyelination and neuronal damage that occurs within the cerebral white matter of patients with multiple sclerosis (MS has been the subject of extensive study. Accordingly, MS has historically been described as a disease of the white matter. Recently, the cerebral cortex (gray matter of patients with MS has been recognized as an additional and major site of disease pathogenesis. This acknowledgement of cortical tissue damage is due, in part, to more powerful MRI that allows detection of such injury and to focused neuropathology-based investigations. Cortical tissue damage has been associated with inflammation that is less pronounced to that which is associated with damage in the white matter. There is, however, emerging evidence that suggests cortical damage can be closely associated with robust inflammation not only in the parenchyma, but also in the neighboring meninges. This manuscript will highlight the current knowledge of inflammation associated with cortical tissue injury. Historical literature along with contemporary work that focuses on both the absence and presence of inflammation in the cerebral cortex and in the cerebral meninges will be reviewed.

  20. Multiple roles of the Y chromosome in the biology of Drosophila melanogaster.

    Piergentili, Roberto

    2010-09-01

    The X and Y chromosomes of Drosophila melanogaster were the first examples of chromosomes associated with genetic information. Thanks to the serendipitous discovery of a male with white eyes in 1910, T.H. Morgan was able to associate the X chromosome of the fruit fly with a phenotypic character (the eye color) for the first time. A few years later, his student, C.B. Bridges, demonstrated that X0 males, although phenotypically normal, are completely sterile. This means that the X chromosome, like the autosomes, harbors genes that control several phenotypic traits, while the Y chromosome is important for male fertility only. Notwithstanding its long history--almost 100 years in terms of genetic studies--most of the features of the Y chromosome are still a mystery. This is due to the intrinsic nature of this genetic element, namely, (1) its molecular composition (mainly transposable elements and satellite DNA), (2) its genetic inertia (lack of recombination due to its heterochromatic nature), (3) the absence of homology with the X (with the only exception of the nucleolar organizer), (4) the lack of visible phenotypes when it is missing (indeed, except for their sterility, X0 flies are normal males), and (5) its low density as for protein-coding sequences (to date, only 13 genes out of approximately 14,000 have been mapped on this chromosome in D. melanogaster, i.e., ~0.1% of the total). Nonetheless, a more accurate analysis reveals that this chromosome can influence several complex phenotypes: (1) it has a role in the fertility of both sexes and viability of males when over-represented; (2) it can unbalance the intracellular nucleotide pool; (3) it can interfere with the gene expression either by recruiting proteins involved in chromatin remodeling (PEV) or, to a higher extent, by influencing the expression of up to 1,000 different genes, probably by changing the availability of transcription factors; (4) it plays a major role (up to 50%) in the resistance to heat

  1. Brd4 and HEXIM1: Multiple Roles in P-TEFb Regulation and Cancer

    Ruichuan Chen

    2014-01-01

    Full Text Available Bromodomain-containing protein 4 (Brd4 and hexamethylene bisacetamide (HMBA inducible protein 1 (HEXIM1 are two opposing regulators of the positive transcription elongation factor b (P-TEFb, which is the master modulator of RNA polymerase II during transcriptional elongation. While Brd4 recruits P-TEFb to promoter-proximal chromatins to activate transcription, HEXIM1 sequesters P-TEFb into an inactive complex containing the 7SK small nuclear RNA. Besides regulating P-TEFb’s transcriptional activity, recent evidence demonstrates that both Brd4 and HEXIM1 also play novel roles in cell cycle progression and tumorigenesis. Here we will discuss the current knowledge on Brd4 and HEXIM1 and their implication as novel therapeutic options against cancer.

  2. The role of stem cell mobilization regimen on lymphocyte collection yield in patients with multiple myeloma.

    Hiwase, D K; Hiwase, S; Bailey, M; Bollard, G; Schwarer, A P

    2008-01-01

    The lymphocyte dose (LY-DO) infused during an autograft influences absolute lymphocyte (ALC) recovery and survival following autologous stem cell transplantation (ASCT) in multiple myeloma (MM) patients. Factors influencing lymphocyte yield (LY-C) during leukapheresis have been poorly studied. Factors that could influence survival, LY-C and CD34(+) cell yield were analyzed in 122 MM patients. Three mobilization regimens were used, granulocyte-colony-stimulating factor (G-CSF) alone (n=13), cyclophosphamide 1-2 g/m(2) plus G-CSF (LD-CY, n=62) and cyclophosphamide 3-4 g/m(2) and G-CSF (ID-CY, n=47). Using multivariate analysis, age, LY-C, ALC on day 30 (ALC-30) and International Staging System stage significantly influenced overall (OS) and progression-free survival (PFS) following ASCT. PFS (56 versus 29 months, P=0.05) and OS (72 versus 49 months; P=0.07) were longer in the LY-C>or=0.12x10(9)/kg group than the LY-Cradiotherapy and number of leukaphereses significantly influenced LY-C. Significantly higher LY-C was obtained with G-CSF alone compared with the LD-CY and ID-CY groups. CD34(+) count on the day of leukapheresis, prior chemotherapy with prednisone, cyclophosphamide, adriamycin and BCNU or melphalan, and stem cell mobilization regimen significantly influenced CD34(+) cell yield. LY-C influenced ALC-15 and survival following ASCT. Factors that influenced CD34(+) cell yield and LY-C during leukapheresis were different. Mobilization should be tailored to maximize the LY-C and CD34(+) cell yield.

  3. Critical appraisal of the role of fingolimod in the treatment of multiple sclerosis

    Warnke C

    2011-09-01

    Full Text Available Clemens Warnke1,2, Olaf Stüve3,4, Hans-Peter Hartung1, Anna Fogdell-Hahn2, Bernd C Kieseier11Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany; 2Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; 3Department of Neurology, Dallas Veterans Affairs Medical Center, TX, USA; 4Department of Neurology, University of Texas Southwestern Medical Center at Dallas, TX, USAAbstract: This review summarizes Phase III clinical trial data available for fingolimod. The main purpose is to evaluate the benefit-risk profile of fingolimod, the first oral compound available for treatment of multiple sclerosis (MS and just recently approved by the European authorities. The authors place this evaluation in the context of the known safety and efficacy profile of established compounds for therapy of MS to outline the current and future potential of fingolimod. The authors conclude that only long-term safety data from post-marketing surveillance plans, together with additional head-to-head studies, would allow evidence-based treatment decisions. Furthermore, risk-profile analyses including patient history, exposure data to certain pathogens, and genetic analyses may potentially help to choose the right drug for individual patients in the future. Until these approaches toward an individualized medicine have been validated, treatment decisions for one or the other compound will have to be based partly on class IV evidence. Therefore, a close dialog with the well-informed patient, secured by effective risk mitigation plans, is required to choose the compound.Keywords: FTY720, oral drug, spingosine 1-phosphate receptor

  4. On the role of the amygdala for experiencing fatigue in patients with multiple sclerosis.

    Hanken, Katrin; Francis, Yoselin; Kastrup, Andreas; Eling, Paul; Klein, Jan; Hildebrandt, Helmut

    2018-02-01

    Recently, we proposed a model explaining the origin of fatigue in multiple sclerosis (MS) patients. This model assumes that the feeling of fatigue results from inflammation-induced information processing within interoceptive brain areas. To investigate the association between self-reported cognitive fatigue and structural integrity of interoceptive brain areas in MS patients. 95 MS patients and 28 healthy controls participated in this study. All participants underwent diffusion tensor MRI and fractional anisotropy data were calculated for the amygdala, the stria terminalis and the corpus callosum, a non-interoceptive brain area. Based on the cognitive fatigue score of the Fatigue Scale for Motor and Cognition, patients were divided into moderately cognitively fatigued (cognitive fatigue score ≥ 28) and cognitively non-fatigued (cognitive fatigue score < 28) MS patients. Healthy controls were recruited as a third group. Repeated measures analyses of covariance, controlling for age, depression and brain atrophy, were performed to investigate whether the factor Group had a significant effect on the fractional anisotropy data. A significant effect of Group was observed for the amygdala (F = 3.389, p = 0.037). MS patients without cognitive fatigue presented lower values of the amygdala than MS patients with cognitive fatigue and healthy controls. For the stria terminalis and the corpus callosum, no main effect of Group was observed. The structural integrity of the amygdala in non-fatigued MS patients appears to be reduced. According to our model this might indicate that the absence of fatigue in non-fatigued MS patients might result from disturbed inflammation-induced information processing in the amygdala. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis.

    Calvo-Barreiro, Laura; Eixarch, Herena; Montalban, Xavier; Espejo, Carmen

    2018-02-01

    The commensal microbiota has emerged as an environmental risk factor for multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE) models have shown that the commensal microbiota is an essential player in triggering autoimmune demyelination. Likewise, the commensal microbiota modulates the host immune system, alters the integrity and function of biological barriers and has a direct effect on several types of central nervous system (CNS)-resident cells. Moreover, a characteristic gut dysbiosis has been recognized as a consistent feature during the clinical course of MS, and the MS-related microbiota is gradually being elucidated. This review highlights animal studies in which commensal microbiota modulation was tested in EAE, as well as the mechanisms of action and influence of the commensal microbiota not only in the local milieu but also in the innate and adaptive immune system and the CNS. Regarding human research, this review focuses on studies that show how the commensal microbiota might act as a pathogenic environmental risk factor by directing immune responses towards characteristic pathogenic profiles of MS. We speculate how specific microbiome signatures could be obtained and used as potential pathogenic events and biomarkers for the clinical course of MS. Finally, we review recently published and ongoing clinical trials in MS patients regarding the immunomodulatory properties exerted by some microorganisms. Because MS is a complex disease with a large variety of associated environmental risk factors, we suggest that current treatments combined with strategies that modulate the commensal microbiota would constitute a broader immunotherapeutic approach and improve the clinical outcome for MS patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mental Health in Multiple Sclerosis Patients without Limitation of Physical Function: The Role of Physical Activity

    Alexander Tallner

    2015-07-01

    Full Text Available Multiple sclerosis (MS patients, in general, show reduced physical function, physical activity, and quality of life. Positive associations between physical activity and quality of life have been reported. In particular, we were interested in the relation between physical activity and mental health in MS patients without limitation of physical function, since limitations of physical function may influence both physical activity and quality of life. Assessment comprised the Baecke questionnaire on physical activity, the Short Form 36 Health Survey (SF-36, and Beck Depression Inventory (BDI. We ranked our sample according to physical activity into four groups and performed an ANOVA to analyze the relationship between levels of physical activity and health-related quality of life (HRQoL. Then we performed a subgroup analysis and included patients with unlimited walking distance and a score of less than 18 in the BDI. Most active vs. inactive patients were compared for the mental subscales of the SF-36 and depression scores. From 632 patients, 265 met inclusion criteria and hence quartiles were filled with 67 patients each. Active and inactive patients did not differ considerably in physical function. In contrast, mental subscales of the SF-36 were higher in active patients. Remarkable and significant differences were found regarding vitality, general health perception, social functioning and mental health, all in favor of physically active patients. Our study showed that higher physical activity is still associated with higher mental health scores even if limitations of physical function are accounted for. Therefore, we believe that physical activity and exercise have considerable health benefits for MS patients.

  7. Cellular Factors Shape 3D Genome Landscape

    Researchers, using novel large-scale imaging technology, have mapped the spatial location of individual genes in the nucleus of human cells and identified 50 cellular factors required for the proper 3D positioning of genes. These spatial locations play important roles in gene expression, DNA repair, genome stability, and other cellular activities.

  8. Role of multiple hosts in the cross-species transmission and emergence of a pandemic parvovirus.

    Allison, Andrew B; Harbison, Carole E; Pagan, Israel; Stucker, Karla M; Kaelber, Jason T; Brown, Justin D; Ruder, Mark G; Keel, M Kevin; Dubovi, Edward J; Holmes, Edward C; Parrish, Colin R

    2012-01-01

    Understanding the mechanisms of cross-species virus transmission is critical to anticipating emerging infectious diseases. Canine parvovirus type 2 (CPV-2) emerged as a variant of a feline parvovirus when it acquired mutations that allowed binding to the canine transferrin receptor type 1 (TfR). However, CPV-2 was soon replaced by a variant virus (CPV-2a) that differed in antigenicity and receptor binding. Here we show that the emergence of CPV involved an additional host range variant virus that has circulated undetected in raccoons for at least 24 years, with transfers to and from dogs. Raccoon virus capsids showed little binding to the canine TfR, showed little infection of canine cells, and had altered antigenic structures. Remarkably, in capsid protein (VP2) phylogenies, most raccoon viruses fell as evolutionary intermediates between the CPV-2 and CPV-2a strains, suggesting that passage through raccoons assisted in the evolution of CPV-2a. This highlights the potential role of alternative hosts in viral emergence.

  9. Role of Multiple Hosts in the Cross-Species Transmission and Emergence of a Pandemic Parvovirus

    Allison, Andrew B.; Harbison, Carole E.; Pagan, Israel; Stucker, Karla M.; Kaelber, Jason T.; Brown, Justin D.; Ruder, Mark G.; Keel, M. Kevin; Dubovi, Edward J.; Holmes, Edward C.

    2012-01-01

    Understanding the mechanisms of cross-species virus transmission is critical to anticipating emerging infectious diseases. Canine parvovirus type 2 (CPV-2) emerged as a variant of a feline parvovirus when it acquired mutations that allowed binding to the canine transferrin receptor type 1 (TfR). However, CPV-2 was soon replaced by a variant virus (CPV-2a) that differed in antigenicity and receptor binding. Here we show that the emergence of CPV involved an additional host range variant virus that has circulated undetected in raccoons for at least 24 years, with transfers to and from dogs. Raccoon virus capsids showed little binding to the canine TfR, showed little infection of canine cells, and had altered antigenic structures. Remarkably, in capsid protein (VP2) phylogenies, most raccoon viruses fell as evolutionary intermediates between the CPV-2 and CPV-2a strains, suggesting that passage through raccoons assisted in the evolution of CPV-2a. This highlights the potential role of alternative hosts in viral emergence. PMID:22072763

  10. The Role of Environment and Lifestyle in Determining the Risk of Multiple Sclerosis.

    Hedström, Anna Karin; Olsson, Tomas; Alfredsson, Lars

    2015-01-01

    MS is a complex disease where both genetic and environmental factors contribute to disease susceptibility. The substantially increased risk of developing MS in relatives of affected individuals gives solid evidence for a genetic base for susceptibility, whereas the modest familial risk, most strikingly demonstrated in the twin studies, is a very strong argument for an important role of lifestyle/environmental factors in determining the risk of MS, sometimes interacting with MS risk genes. Lifestyle factors and environmental exposures are harder to accurately study and quantify than genetic factors. However, it is important to identify these factors since they, as opposed to risk genes, are potentially preventable. We have reviewed the evidence for environmental factors that have been repeatedly shown to influence the risk of MS: Epstein-Barr virus (EBV) infection, ultraviolet radiation (UVR) exposure habits /vitamin D status, and smoking. We have also reviewed a number of additional environmental factors, published in the past 5 years, that have been described to influence MS risk. Independent replication, preferably by a variety of methods, may give still more firm evidence for their involvement.

  11. The multiple roles of computational chemistry in fragment-based drug design

    Law, Richard; Barker, Oliver; Barker, John J.; Hesterkamp, Thomas; Godemann, Robert; Andersen, Ole; Fryatt, Tara; Courtney, Steve; Hallett, Dave; Whittaker, Mark

    2009-08-01

    Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.

  12. Role of aliskiren in cardio-renal protection and use in hypertensives with multiple risk factors

    Eduardo Pimenta

    2009-05-01

    Full Text Available Eduardo Pimenta1, Suzanne Oparil21Endocrine Hypertension Research Center and Clinical Center of Research Excellence in Cardiovascular Disease and Metabolic Disorders, University of Queensland School of Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia; 2Vascular Biology and Hypertension Program, University of Alabama at Birmingham, Birmingham, AL, USAbstract: The renin-angiotensin-aldosterone system (RAAS is an important mediator of blood pressure (BP and volume regulation in both normotensive and hypertensive persons and is a major contributor to hypertension-related target organ damage. The concept of renin inhibition for managing hypertension by blocking the RAAS pathway at its point of activation is very attractive since the renin-angiotensinogen reaction is the first and rate-limiting step in the generation of angiotensin II (Ang II. Aliskiren, the first in a new class of orally effective direct renin inhibitors (DRIs, is approved for the treatment of hypertension. It is effective in reducing BP in the general population of hypertensive patients and in special patient groups such as obese persons, and has a tolerability and safety profile similar to placebo. Aliskiren has renoprotective, cardioprotective and anti-atherosclerotic effects in animal models that appear to be independent of BP lowering. It reduces proteinuria in diabetic patients and has favorable neurohumoral effects in patients with symptomatic heart failure. Additional outcome trials are needed to establish the role of this novel class of antihypertensive medication in the therapeutic armamentarium.Keywords: hypertension, renin inhibitors, renin-angiotensin-aldosterone system

  13. Multiple roles for apoptosis facilitating condensation of the Drosophila ventral nerve cord.

    Page, Damon T; Olofsson, Birgitta

    2008-02-01

    At the end of embryogenesis, the ventral nerve cord (VNC) of Drosophila undergoes a shape change, termed condensation. During condensation the length of the VNC shortens by 25%, a process dependent on extracellular matrix deposited by hemocytes, an intact cytoskeleton of glia and neurons and neural activity. Here we show that cell death contributes to nerve cord shortening. Firstly, apoptosis occurs at the interface of the epidermis and the nerve cord where it plays a role in the separation of these two tissues. Separation precedes condensation and in conditions where separation is prevented, condensation fails. Secondly, many cells undergo apoptosis within VNC during condensation. This cell death is localized mainly to the posterior part of the nerve cord where more than half of all cell death occurs. Preventing apoptosis either in neurons or glia partially inhibits VNC shortening during condensation. Despite the importance of midline glia in axon tract development, preventing midline glia cell death results in normal hatching and adult formation. We find that undead midline glia are eliminated from the midline and become mispositioned or expelled from the nervous system. We suggest that this represent a form of pattern repair that operates to reduce the impact of the additional cells. (c) 2008 Wiley-Liss, Inc.

  14. Emotional and behavioural resilience to multiple risk exposure in early life: the role of parenting.

    Flouri, Eirini; Midouhas, Emily; Joshi, Heather; Tzavidis, Nikos

    2015-07-01

    Ecological and transactional theories link child outcomes to neighbourhood disadvantage, family poverty and adverse life events. Traditionally, these three types of risk factors have been examined independently of one another or combined into one cumulative risk index. The first approach results in poor prediction of child outcomes, and the second is not well rooted in ecological theory as it does not consider that distal risk factors (such as poverty) may indirectly impact children through proximal risk factors (such as adverse life events). In this study, we modelled simultaneously the longitudinal effects of these three risk factors on children's internalising and externalising problems, exploring the role of parenting in moderating these effects. Our sample followed 16,916 children (at ages 3, 5 and 7 years; N = 16,916; 49% girls) from the UK Millennium Cohort Study. Parenting was characterised by quality of parent-child relationship, parental involvement in learning and parental discipline. Neighbourhood disadvantage, family poverty and adverse events were all simultaneously related to the trajectories of both outcomes. As expected, parenting moderated risk effects. Positive parent-child relationship, rather than greater involvement or authoritative discipline, most consistently 'buffered' risk effects. These findings suggest that a good parent-child relationship may promote young children's emotional and behavioural resilience to different types of environmental risk.

  15. Role of aliskiren in cardio-renal protection and use in hypertensives with multiple risk factors

    Eduardo Pimenta

    2009-06-01

    Full Text Available Eduardo Pimenta1, Suzanne Oparil21Endocrine Hypertension Research Centre and Clinical Centre of Research Excellence in Cardiovascular Disease and Metabolic Disorders, University of Queensland School of Medicine, Greenslopes Princess Alexandra Hospitals, Brisbane, QLD, Australia; 2Vascular Biology and Hypertension Program, University of Alabama at Birmingham, Birmingham, AL, USAAbstract: The renin–angiotensin–aldosterone system (RAAS is a key mediator of blood pressure (BP and volume regulation in both normotensive and hypertensive persons. Stimulation of RAAS also contributes to hypertension-related target organ damage. The renin–angiotensinogen reaction is the first and rate-limiting step in the generation of angiotensin II (Ang II and has been a target of antihypertensive drug development for decades. Aliskiren is the first in a new class of orally effective direct renin inhibitors (DRIs and is approved for the treatment of hypertension in humans. It effectively reduces BP in the general population of hypertensive patients and has a tolerability and safety profile similar to placebo. Aliskiren has favorable effects on vascular inflammation and remodeling, on neurohumoral mediators of various forms of cardiovascular disease, including heart failure, and on proteinuria in diabetic patients. Additional outcome trials are needed to establish the role of this novel class of antihypertensive medication in preventing cardiovascular disease morbidity and mortality.Keywords: hypertension, renin inhibitors, renin-angiotensin-aldosterone system

  16. The multiple roles of titin in muscle contraction and force production.

    Herzog, Walter

    2018-01-20

    Titin is a filamentous protein spanning the half-sarcomere, with spring-like properties in the I-band region. Various structural, signaling, and mechanical functions have been associated with titin, but not all of these are fully elucidated and accepted in the scientific community. Here, I discuss the primary mechanical functions of titin, including its accepted role in passive force production, stabilization of half-sarcomeres and sarcomeres, and its controversial contribution to residual force enhancement, passive force enhancement, energetics, and work production in shortening muscle. Finally, I provide evidence that titin is a molecular spring whose stiffness changes with muscle activation and actin-myosin-based force production, suggesting a novel model of force production that, aside from actin and myosin, includes titin as a "third contractile" filament. Using this three-filament model of sarcomeres, the stability of (half-) sarcomeres, passive force enhancement, residual force enhancement, and the decrease in metabolic energy during and following eccentric contractions can be explained readily.

  17. The role of multiple partners in a digestive mutualism with a protocarnivorous plant.

    Nishi, Aline Hiroko; Vasconcellos-Neto, João; Romero, Gustavo Quevedo

    2013-01-01

    ). This is the first study that demonstrates partitioning effects from multiple partners in a digestion-based mutualism. Despite most of the nitrogen being absorbed through their roots (via termites), P. bromelioides has all the attributes necessary to be considered as a carnivorous plant in the context of digestive mutualism.

  18. The role of specialist nurses in multiple sclerosis: a rapid and systematic review.

    De Broe, S; Christopher, F; Waugh, N

    2001-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system. The cause is unknown. There are about 80-160 people with MS per 100,000 population, with twice as many women affected as men. The management of individuals with MS includes treatment of acute relapses and chronic symptoms. The care of MS patients is provided by various healthcare professionals, such as general practitioners (GPs), neurologists, physiotherapists, occupational therapists and nurses. Some MS patients have access to an MS specialist nurse, although this provision varies geographically. The aim of this report is to assess the effectiveness and relative cost-effectiveness of MS specialist nurses in improving care and outcomes for patients with MS. A systematic review of the literature, involving a range of databases, was performed. Full details are described in the main report. Only one study was identified that tried to evaluate the benefit of MS specialist nurses. The study concluded that MS patients and their carers found the MS specialist nurse to be helpful, particularly in improving their knowledge of MS, ability to cope, mood and confidence about the future. GPs also reported finding the nurse to be helpful with their MS patients, and 40% of the GPs stated they would purchase the services of an MS specialist nurse if their practices became fundholding. However, there were considerable methodological weaknesses inherent in the study design, and it was unclear whether the results of the study could be extrapolated to other settings or to other MS patient groups. RESULTS - ONGOING RESEARCH: There are two ongoing research studies regarding MS specialist nurses. One of these studies involves the provision of MS nurses to several areas, but also has two control populations to allow evaluation of the health benefits of the nurses to MS patients and their carers. This study will help to fill the evidence gap. RESULTS - COSTS: The costs of providing MS specialist nurses consist of their

  19. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  20. The Calibration Target for the Mars 2020 SHERLOC Instrument: Multiple Science Roles for Future Manned and Unmanned Mars Exploration

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.

    2014-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  1. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  2. Filovirus tropism: Cellular molecules for viral entry

    Ayato eTakada

    2012-02-01

    Full Text Available In human and nonhuman primates, filoviruses (Ebola and Marburg viruses cause severe hemorrhagic fever.Recently, other animals such as pigs and some species of fruit bats have also been shown to be susceptible to these viruses. While having a preference for some cell types such as hepatocytes, endothelial cells, dendritic cells, monocytes, and macrophages, filoviruses are known to be pantropic in infection of primates. The envelope glycoprotein (GP is responsible for both receptor binding and fusion of the virus envelope with the host cell membrane. It has been demonstrated that filovirus GP interacts with multiple molecules for entry into host cells, whereas none of the cellular molecules so far identified as a receptor/coreceptor fully explains filovirus tissue tropism and host range. Available data suggest that the mucin-like region (MLR on GP plays an important role in attachment to the preferred target cells, whose infection is likely involved in filovirus pathogenesis, whereas the MLR is not essential for the fundamental function of the GP in viral entry into cells in vitro. Further studies elucidating the mechanisms of cellular entry of filoviruses may shed light on the development of strategies for prophylaxis and treatment of Ebola and Marburg hemorrhagic fevers.

  3. Deconstructing the symbol digit modalities test in multiple sclerosis: The role of memory.

    Patel, Viral P; Walker, Lisa A S; Feinstein, Anthony

    2017-10-01

    The Symbol Digit Modalities Test (SDMT) is a sensitive measure of impaired cognition in people with MS. While the SDMT is primarily considered a test of information processing speed, other components such as visual scanning and oral-motor ability have also been linked to performance. The objective of this study was to determine the role of memory in the performance of the SDMT. Two version of a modified computerized SDMT (c-SDMT) were employed, a fixed and a variable. For each group 50 MS and 33 healthy control (HC) participants were recruited. In the fixed c-SDMT, the symbol-digit code is kept constant for the entire test whereas in the variable version, it changes eight times. Unlike the traditional SDMT which records the correct number of responses, the c-SDMT presented here measures the mean response time (in seconds) for the eight trials. MS participants were slower than HC on the fixed (p < 0.001) and variable (p = 0.005) c-SDMT. Trend analysis showed performance improvement on the fixed, but not on the variable c-SDMT in both MS and HC groups. Furthermore, immediate visual memory recall was associated with the fixed (β = -0.299, p = 0.017), but not variable (B = -0.057, p = 0.260) c-SDMT. Immediate verbal memory was not associated with either versions of the c-SDMT. Given that the fixed and variable c-SDMTs are identical in every way apart from the fixity of the code, the ability of participants to speed up responses over the course of the fixed version only points to the contribution of incidental visual memory in test performance. Copyright © 2017. Published by Elsevier B.V.

  4. Gamma-Klotho exhibits multiple roles in tumor growth of human bladder cancer.

    Hori, Shunta; Miyake, Makito; Tatsumi, Yoshihiro; Morizawa, Yosuke; Nakai, Yasushi; Onishi, Sayuri; Onishi, Kenta; Iida, Kota; Gotoh, Daisuke; Tanaka, Nobumichi; Fujimoto, Kiyohide

    2018-04-13

    Alpha-Klotho (KLα) and beta-Klotho (KLβ) have recently been reported to correlate with cancer prognosis in some malignancies and we previously reported the association between KLα, KLβ, and urothelial carcinoma of the bladder (UCB), indicating that KLβ acts as a tumor promoter. However, the association between gamma-Klotho (KLγ) and cancer prognosis remains unclear. In the present study, we evaluated the association between KLγ and UCB. To evaluate the effect of KLγ on human bladder cancer cell lines in vitro assays were performed. Exogenous KLγ increased the ability of human bladder cancer cells to proliferate, migrate, invade, form colonies, and provide anchorage-independent growth potential. In in vivo assays, eighteen mice bearing xenografts inoculated using UM-UC-3, were randomly divided into three groups and treated with a small interfering RNA (siRNA) by intratumoral administration once a week for four weeks. Knockdown of KLγ with siRNA led to a dramatic change in tumor growth and suggested that KLγ had effects on tumor growth, including promotion of cell proliferation, inhibition of apoptosis, and enhancement of the epithelial-mesenchymal transition. To confirm the study, human tissue samples were used and patients were divided into two groups according to KLγ expression level. High expression of KLγ was significantly associated with higher stage and grade cancer and the presence of lymphovascular invasion compared to patients with lower expression of KLγ. Our results suggest that KLγ plays an important role in tumor invasion and progression and these results may lead to the development of new therapies and diagnostic methods for UCB.

  5. Qualitative aspects of representational competence among college chemistry students: Multiple representations and their role in the understanding of ideal gases

    Madden, Sean Patrick

    This study examined the role of multiple representations of chemical phenomena, specifically, the temperature-pressure relationship of ideal gases, in the problem solving strategies of college chemistry students. Volunteers included students enrolled in a first semester general chemistry course at a western university. Two additional volunteers from the same university were asked to participate and serve as models of greater sophistication. One was a senior chemistry major; another was a junior science writing major. Volunteers completed an initial screening task involving multiple representations of concentration and dilution concepts. Based on the results of this screening instrument a smaller set of subjects were asked to complete a think aloud session involving multiple representations of the temperature-pressure relationship. Data consisted of the written work of the volunteers and transcripts from videotaped think aloud sessions. The data were evaluated by the researcher and two other graduate students in chemical education using a coding scheme (Kozma, Schank, Coppola, Michalchik, and Allen. 2000). This coding scheme was designed to identify essential features of representational competence and differences in uses of multiple representations. The results indicate that students tend to have a strong preference for one type of representation. Students scoring low on representational competence, as measured by the rubric, ignored important features of some representations or acknowledged them only superficially. Students scoring higher on representational competence made meaningful connections among representations. The more advanced students, those who rated highly on representational competence, tended to use their preferred representation in a heuristic manner to establish meaning for other representations. The more advanced students also reflected upon the problem at greater length before beginning work. Molecular level sketches seemed to be the most

  6. Chloroplastic thioredoxin-f and thioredoxin-m1/4 play important roles in brassinosteroids-induced changes in CO2 assimilation and cellular redox homeostasis in tomato

    Cheng, Fei; Zhou, Yan-Hong; Xia, Xiao-Jian; Shi, Kai; Zhou, Jie; Yu, Jing-Quan

    2014-01-01

    Chloroplast thioredoxins (TRXs) and glutathione function as redox messengers in the regulation of photosynthesis. In this work, the roles of chloroplast TRXs in brassinosteroids (BRs)-induced changes in cellular redox homeostasis and CO2 assimilation were studied in the leaves of tomato plants. BRs-deficient d ^im plants showed decreased transcripts of TRX-f, TRX-m2, TRX-m1/4, and TRX-x, while exogenous BRs significantly induced CO2 assimilation and the expression of TRX-f, TRX-m2, TRX-m1/4, ...

  7. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero.

    Marina Gálvez-Peralta

    Full Text Available Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn(2+/(HCO(3(-(2 symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo homozygotes from gestational day(GD-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+ and Slc39a8(neo/neo offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele; this cross generated viable Slc39a8(neo/neo_BTZIP8-3(+/+ pups showing none of the above-mentioned congenital defects-proving Slc39a8(neo/neo causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis.

  8. Cellular compartments cause multistability and allow cells to process more information

    Harrington, Heather A; Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    recent developments from dynamical systems and chemical reaction network theory to identify and characterize the key-role of the spatial organization of eukaryotic cells in cellular information processing. In particular, the existence of distinct compartments plays a pivotal role in whether a system...... is capable of multistationarity (multiple response states), and is thus directly linked to the amount of information that the signaling molecules can represent in the nucleus. Multistationarity provides a mechanism for switching between different response states in cell signaling systems and enables multiple...

  9. Multiple regulatory roles of the mouse transmembrane adaptor protein NTAL in gene transcription and mast cell physiology.

    Iva Polakovicova

    Full Text Available Non-T cell activation linker (NTAL; also called LAB or LAT2 is a transmembrane adaptor protein that is expressed in a subset of hematopoietic cells, including mast cells. There are conflicting reports on the role of NTAL in the high affinity immunoglobulin E receptor (FcεRI signaling. Studies carried out on mast cells derived from mice with NTAL knock out (KO and wild type mice suggested that NTAL is a negative regulator of FcεRI signaling, while experiments with RNAi-mediated NTAL knockdown (KD in human mast cells and rat basophilic leukemia cells suggested its positive regulatory role. To determine whether different methodologies of NTAL ablation (KO vs KD have different physiological consequences, we compared under well defined conditions FcεRI-mediated signaling events in mouse bone marrow-derived mast cells (BMMCs with NTAL KO or KD. BMMCs with both NTAL KO and KD exhibited enhanced degranulation, calcium mobilization, chemotaxis, tyrosine phosphorylation of LAT and ERK, and depolymerization of filamentous actin. These data provide clear evidence that NTAL is a negative regulator of FcεRI activation events in murine BMMCs, independently of possible compensatory developmental alterations. To gain further insight into the role of NTAL in mast cells, we examined the transcriptome profiles of resting and antigen-activated NTAL KO, NTAL KD, and corresponding control BMMCs. Through this analysis we identified several genes that were differentially regulated in nonactivated and antigen-activated NTAL-deficient cells, when compared to the corresponding control cells. Some of the genes seem to be involved in regulation of cholesterol-dependent events in antigen-mediated chemotaxis. The combined data indicate multiple regulatory roles of NTAL in gene expression and mast cell physiology.

  10. Roles sociales de la sociedad contemporánea en la película 'Multiplicity' de Harold Ramis

    Raquel Fernández Cobo

    2015-10-01

    Full Text Available Multiplicity (2010, dirigida por Harold Ramis, plasma en pantalla a través del motivo del doble los elementos que constituyen la crisis del sujeto y que representan al individuo bajo el signo de la disipación. Mediante un análisis temático y discursivo del motivo del doble examinamos cómo el protagonista, al intentar llevar a cabo la totalidad de los roles sociales, se ve abocada a las contradicciones más agudas de la sociedad, manifestadas, sobre todo, a nivel del cuerpo, tanto en el manifiesto simbolismo del motivo del doble como en el “terror biológico” que de forma absolutamente irónica y humorística se representa en el último clon del protagonista.

  11. Ethnic and racial socialization and self-esteem of Asian adoptees: the mediating role of multiple identities.

    Mohanty, Jayashree

    2013-02-01

    Positive identity development during adolescence in general is a complex process and may pose additional challenges for adolescents adopted from a different culture. Using a web-based survey design with a sample of 100 internationally adopted Asian adolescent and young adults, the present study examined the mediating role of multiple identities (i.e., ethnic, adoptive and interpersonal ego identities) in explaining the relationship between ethnic and racial socializations, ethnic neighborhood, and self-esteem. The results showed that (a) adoptive identity mediated the influence of racial socialization on psychological well-being, and (b) ethnic affirmation mediated the influence of ethnic socialization on adoptees' well-being. This study illustrates the importance of providing supportive counseling services for adoptees who are exploring their adoptive identity. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  12. Podocalyxin Is a Novel Polysialylated Neural Adhesion Protein with Multiple Roles in Neural Development and Synapse Formation

    Vitureira, Nathalia; Andrés, Rosa; Pérez-Martínez, Esther; Martínez, Albert; Bribián, Ana; Blasi, Juan; Chelliah, Shierley; López-Doménech, Guillermo; De Castro, Fernando; Burgaya, Ferran; McNagny, Kelly; Soriano, Eduardo

    2010-01-01

    Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development. PMID:20706633

  13. Techno-economic assessment and policy of gas power generation considering the role of multiple stakeholders in China

    Dong Jun; Zhang Xu; Xu Xiaolin

    2012-01-01

    In accordance with the energy planning in China, within the “Twelfth Five-Year” period (2011–2015), the proportion of natural gas among primary energy consumption is expected to increase from the current 4% to 8%. In 2015, about 17 natural gas pipelines will be completed. This paper reviews the current situation of gas power generation, analyzes the main opportunities and obstacles of gas power generation development in China, and conducts a techno-economic assessment of the natural gas power generation, taking into account the role and the interaction of the multiple stakeholders in the natural gas industry chain. Taking a power plant fueled with the natural gas transported by the second West-to-East Pipeline as an example, it is found that the on-grid power price fluctuates upward with the rise of gas price and downward with the increase of annual utilization hours, and the influences of tax policies on the on-grid power price prove to be highly significant. As the analysis and calculation indicate, the environmental benefits of natural gas power generation ought to be strongly emphasized, compared with coal-fired power generation. Finally, this paper puts forward specific policy recommendations, from the perspectives of electricity price, gas price, tax, power grid dispatching, etc. - Highlights: ► Presents the opportunities and obstacles of gas power generation development in China. ► Analyzes the interactions of multiple stakeholders in the natural gas industry chain. ► Conducts a techno-economic assessment on the natural gas power generation. ► Discusses the responsibilities and risks of multiple stakeholders. ► Puts forward policy recommendations, from electricity price, gas price, tax, etc.

  14. The Role of Coping Styles in the Relationship between Personality Traits and Quality of Life of Multiple Sclerosis Patients

    Seyed Amir Hejazi Taghanaki

    2016-06-01

    Full Text Available Background and Objectives: Individuals with multiple sclerosis (MS show different reactions to the disease according to their personality traits, which can affect their quality of life. In this research, the mediator role of coping styles was investigated in the relationship between personality traits and quality of life in individuals with multiple sclerosis (MS. Methods: Of all individuals with MS, who were member of MS Society of Qom province, 170 persons were selected using probability convenient sampling. All the patients were investigated using a general questionnaire in addition to 3 international approved standard tools (including Stress Coping Styles, Quality of life, and Personality Traits questionnaires. Data analysis was performed by descriptive-analytical statistics, Pearson’s correlation coefficient. The significance level was considered as p<0.05. Results: The mean age of the patients was in the range of 18-59 years, 32.34±8.71, of whom 138 subjects (83.2% were female. In this research, there was a significant correlation between coping styles and quality of life and its dimensions in MS patients. The correlation between coping styles and personality traits, was significant. There was a significant correlation between personality traits and quality of life and its dimensions in MS patients. In this study, path analysis results proved the mediator role of coping styles in the relationship between variables of quality of life and personality traits. Conclusion: According to the results of this study, there is a significant correlation between personality traits of the individuals with MS and type of the used coping styles, which can affect the quality of life in these patients.

  15. The role of multiple ionization and subshell coupling effects in L-shell ionization of Au by oxygen ions

    Banas, D.; Braziewicz, J.; Pajek, M.; Semaniak, J.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2002-01-01

    The ionization of L-subshell electrons in gold by the impact of 0.4-2.2 MeV amu -1 O ions was studied by observing excited Lγ(L-N, O) x-rays. We demonstrate that both the multiple ionization in outer M- and N-shells as well as the coupling effects in the L-shell play an important role in understanding the measured L-subshell ionization cross sections. The multiple ionization was found to be important in two aspects: first, the analysis of x-ray energy shifts and line broadening was crucial for proper interpretation of measured x-ray spectra; second, the additional vacancies in the M- and N-shells substantially influenced the L 1 -subshell fluorescence and Coster-Kronig (CK) yields, mainly by closing strong L 1 -L 3 M 4,5 CK transitions. The data are compared with the simplified coupled-channels calculations using the 'coupled-subshell model' (CSM) based on the semiclassical approximation (SCA), which describes both direct Coulomb ionization as well as the L-subshell couplings within the same theoretical approach. A good agreement of the present data with the theoretical predictions based on the discussed SCA-CSM approach is observed. Present findings partly explain the long-standing problem of inadequate theoretical description of L-shell ionization by heavy ion impact. (author)

  16. Transcriptome Analysis Reveals Novel Entry Mechanisms and a Central Role of SRC in Host Defense during High Multiplicity Mycobacterial Infection.

    Jay Zhang

    Full Text Available Mycobacterium tuberculosis (MTB infects an estimated one-third of the global population and is one of the main causes of mortality from an infectious agent. The characteristics of macrophages challenged by MTB with a high multiplicity of infection (MOI, which mimics both clinical disseminated infection and granuloma formation, are distinct from macrophages challenged with a low MOI. To better understand the cross talk between macrophage host cells and mycobacteria, we compared the transcription patterns of mouse macrophages infected with bacille Calmette-Guérin, H37Ra and M. smegmatis. Attention was focused on the changes in the abundance of transcripts related to immune system function. From the results of a transcriptome profiling study with a high mycobacterial MOI, we defined a pathogen-specific host gene expression pattern. The present study suggests that two integrins, ITGA5 and ITGAV, are novel cell surface receptors mediating mycobacterium entry into macrophages challenged with high MOI. Our results indicate that SRC likely plays a central role in regulating multiple unique signaling pathways activated by MTB infection. The integrated results increase our understanding of the molecular networks behind the host innate immune response and identify important targets that might be useful for the development of tuberculosis therapy.

  17. Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection

    Yuefei Jin

    2018-03-01

    Full Text Available Enterovirus 71 (EV71 infection has become a major threat to global public health, especially in infants and young children. Epidemiological studies have indicated that EV71 infection is responsible for severe and even fatal cases of hand, foot, and mouth disease (HFMD. Accumulated evidence indicates that EV71 infection triggers a plethora of interactive signaling pathways, resulting in host immune evasion and inflammatory response. This review mainly covers the effects of EV71 infection on major antiviral and inflammatory cellular signal pathways. EV71 can activate cellular signaling networks including multiple cell surface and intracellular receptors, intracellular kinases, calcium flux, and transcription factors that regulate antiviral innate immunity and inflammatory response. Cellular signaling plays a critical role in the regulation of host innate immune and inflammatory pathogenesis. Elucidation of antiviral and inflammatory cellular signaling pathways initiated by EV71 will not only help uncover the potential mechanisms of EV71 infection-induced pathogenesis, but will also provide clues for the design of therapeutic strategies against EV71 infection.

  18. Immunological Dysregulation in Multiple Myeloma Microenvironment

    Romano, Alessandra; Conticello, Concetta; Cavalli, Maide; Vetro, Calogero; La Fauci, Alessia; Parrinello, Nunziatina Laura; Di Raimondo, Francesco

    2014-01-01

    Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extr...

  19. Current Understanding on the Role of Standard and Immunoproteasomes in Inflammatory/Immunological Pathways of Multiple Sclerosis

    Elena Bellavista

    2014-01-01

    Full Text Available The ubiquitin-proteasome system is the major intracellular molecular machinery for protein degradation and maintenance of protein homeostasis in most human cells. As ubiquitin-proteasome system plays a critical role in the regulation of the immune system, it might also influence the development and progression of multiple sclerosis (MS. Both ex vivo analyses and animal models suggest that activity and composition of ubiquitin-proteasome system are altered in MS. Proteasome isoforms endowed of immunosubunits may affect the functionality of different cell types such as CD8+ and CD4+ T cells and B cells as well as neurons during MS development. Furthermore, the study of proteasome-related biomarkers, such as proteasome antibodies and circulating proteasomes, may represent a field of interest in MS. Proteasome inhibitors are already used as treatment for cancer and the recent development of inhibitors selective for immunoproteasome subunits may soon represent novel therapeutic approaches to the different forms of MS. In this review we describe the current knowledge on the potential role of proteasomes in MS and discuss the pro et contra of possible therapies for MS targeting proteasome isoforms.

  20. Teacher’s Autonomy Support and Engagement in Math: Multiple Mediating Roles of Self-efficacy, Intrinsic Value, and Boredom

    Wang, Jia; Liu, Ru-De; Ding, Yi; Xu, Le; Liu, Ying; Zhen, Rui

    2017-01-01

    Previous studies have highlighted the impacts of environmental factors (teacher’s autonomy support) and individual factors (self-efficacy, intrinsic value, and boredom) on academic engagement. This study aimed to investigate these variables and examine the relations among them. Three structural equation models tested the multiple mediational roles of self-efficacy, intrinsic value, and boredom in the relation between teacher’s autonomy support and behavioral, emotional, and cognitive engagement, respectively, in math. A total of 637 Chinese middle school students (313 males, 324 females; mean age = 14.82) voluntarily participated in this study. Results revealed that self-efficacy, intrinsic value, and boredom played important and mediating roles between perceived teacher’s autonomy support and student engagement. Specifically, these three individual variables partly mediated the relations between perceived teacher’s autonomy support and behavioral and cognitive engagement, while fully mediating the relation between perceived teacher’s autonomy support and emotional engagement. These findings complement and extend the understanding of factors affecting students’ engagement in math. PMID:28690560

  1. Their function on angiogenesis and cellular signalling

    Copper, although known as a micronutrient, has a pivotal role in modulating the cellular metabolism. Many studieshave reported the role of copper in angiogenesis. Copper chaperones are intracellular proteins that mediate coppertrafficking to various cell organelles. However, the role and function of copper chaperones in ...

  2. Dynamic cellular uptake of mixed-monolayer protected nanoparticles.

    Carney, Randy P; Carney, Tamara M; Mueller, Marie; Stellacci, Francesco

    2012-12-01

    Nanoparticles (NPs) are gaining increasing attention for potential application in medicine; consequently, studying their interaction with cells is of central importance. We found that both ligand arrangement and composition on gold nanoparticles play a crucial role in their cellular internalization. In our previous investigation, we showed that 66-34OT nanoparticles coated with stripe-like domains of hydrophobic (octanethiol, OT, 34%) and hydrophilic (11-mercaptoundecane sulfonate, MUS, 66%) ligands permeated through the cellular lipid bilayer via passive diffusion, in addition to endo-/pino-cytosis. Here, we show an analysis of NP internalization by DC2.4, 3T3, and HeLa cells at two temperatures and multiple time points. We study four NPs that differ in their surface structures and ligand compositions and report on their cellular internalization by intracellular fluorescence quantification. Using confocal laser scanning microscopy we have found that all three cell types internalize the 66-34OT NPs more than particles coated only with MUS, or particles coated with a very similar coating but lacking any detectable ligand shell structure, or 'striped' particles but with a different composition (34-66OT) at multiple data points.

  3. Multiple sclerosis

    Grunwald, I.Q.; Kuehn, A.L.; Backens, M.; Papanagiotou, P.; Shariat, K.; Kostopoulos, P.

    2008-01-01

    Multiple sclerosis is the most common chronic inflammatory disease of myelin with interspersed lesions in the white matter of the central nervous system. Magnetic resonance imaging (MRI) plays a key role in the diagnosis and monitoring of white matter diseases. This article focuses on key findings in multiple sclerosis as detected by MRI. (orig.) [de

  4. Cellularity of certain quantum endomorphism algebras

    Andersen, Henning Haahr; Lehrer, G. I.; Zhang, R.

    Let $\\tA=\\Z[q^{\\pm \\frac{1}{2}}][([d]!)\\inv]$ and let $\\Delta_{\\tA}(d)$ be an integral form of the Weyl module of highest weight $d \\in \\N$ of the quantised enveloping algebra $\\U_{\\tA}$ of $\\fsl_2$. We exhibit for all positive integers $r$ an explicit cellular structure for $\\End...... of endomorphism algebras, and another which relates the multiplicities of indecomposable summands to the dimensions of simple modules for an endomorphism algebra. Our cellularity result then allows us to prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above...

  5. Role of executive functions in prospective memory in multiple sclerosis: Impact of the strength of cue-action association.

    Dagenais, Emmanuelle; Rouleau, Isabelle; Tremblay, Alexandra; Demers, Mélanie; Roger, Élaine; Jobin, Céline; Duquette, Pierre

    2016-01-01

    Patients diagnosed with multiple sclerosis (MS) often report prospective memory (PM) deficits. Although PM is important for daily functioning, it is not formally assessed in clinical practice. The aim of this study was to examine the role of executive functions in MS patients' PM revealed by the effect of strength of cue-action association on PM performance. Thirty-nine MS patients were compared to 18 healthy controls matched for age, gender, and education on a PM task modulating the strength of association between the cue and the intended action. Deficits in MS patients affecting both prospective and retrospective components of PM were confirmed using 2 × 2 × 2 mixed analyses of variance (ANOVAs). Among patients, multiple regression analyses revealed that the impairment was modulated by the efficiency of executive functions, whereas retrospective memory seemed to have little impact on PM performance, contrary to expectation. More specifically, results of 2 × 2 × 2 mixed-model analyses of covariance (ANCOVAs) showed that low-executive patients had more difficulty detecting and, especially, retrieving the appropriate action when the cue and the action were unrelated, whereas high-executive patients' performance seemed to be virtually unaffected by the cue-action association. Using an objective measure, these findings confirm the presence of PM deficits in MS. They also suggest that such deficits depend on executive functioning and can be reduced when automatic PM processes are engaged through semantic cue-action association. They underscore the importance of assessing PM in clinical settings through a cognitive evaluation and offer an interesting avenue for rehabilitation.

  6. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors

    Pal Choudhuri, Shreoshi; Delay, Rona J.; Delay, Eugene R.

    2015-01-01

    Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex. PMID:26110622

  7. Health-related quality of life in multiple sclerosis: role of cognitive appraisals of self, illness and treatment.

    Wilski, Maciej; Tasiemski, Tomasz

    2016-07-01

    Health-related quality of life (HRQoL) is considered an important measure of treatment and rehabilitation outcomes in multiple sclerosis (MS) patients. In this study, we used multivariate regression analysis to examine the role of cognitive appraisals, adjusted for clinical, socioeconomic and demographic variables, as correlates of HRQoL in MS. The cross-sectional study included 257 MS patients, who completed Multiple Sclerosis Impact Scale, Generalized Self-Efficacy Scale, Rosenberg Self-Esteem Scale, Brief Illness Perception Questionnaire, Treatment Beliefs Scale, Actually Received Support Scale (a part of Berlin Social Support Scale) and Socioeconomic Resources Scale. Demographic and clinical characteristics of the participants were collected with a self-report survey. Correlation and regression analyses were conducted to determine associations between the variables. Five variables, illness identity (β = 0.29, p ≤ 0.001), self-esteem (β = -0.22, p ≤ 0.001), general self-efficacy (β = -0.21, p ≤ 0.001), disability subgroup "EDSS" (β = 0.14, p = 0.006) and age (β = 0.12, p = 0.012), were significant correlates of HRQoL in MS. These variables explained 46 % of variance in the dependent variable. Moreover, we identified correlates of physical and psychological dimensions of HRQoL. Cognitive appraisals, such as general self-efficacy, self-esteem and illness perception, are more salient correlates of HRQoL than social support, socioeconomic resources and clinical characteristics, such as type and duration of MS. Therefore, interventions aimed at cognitive appraisals may also improve HRQoL of MS patients.

  8. The role of appraisal and coping style in relation with societal participation in fatigued patients with multiple sclerosis: a cross-sectional multiple mediator analysis

    Akker, L.E. van den; Beckerman, H.; Collette, E.H.; Bleijenberg, G.; Dekker, J.; Knoop, H.; Groot, V. de; Jong, B.A. de; et al.,

    2016-01-01

    To determine the relationship between appraisal and societal participation in fatigued patients with Multiple Sclerosis (MS), and whether this relation is mediated by coping styles. 265 severely-fatigued MS patients. Appraisal, a latent construct, was created from the General Self-Efficacy Scale and

  9. The role of appraisal and coping style in relation with societal participation in fatigued patients with multiple sclerosis : a cross-sectional multiple mediator analysis

    van den Akker, Lizanne Eva; Beckerman, Heleen; Collette, Emma Hubertine; Bleijenberg, Gijs; Dekker, Joost; Knoop, Hans; de Groot, Vincent; TREFAMS-ACE study group, study group; de Groot, V.; Beckerman, H.; Malekzadeh, A.; van den Akker, L. E.; Looijmans, M.; Sanches, S. A.; Dekker, J.; Collette, E. H.; van Oosten, B. W.; Teunissen, C. E.; Blankenstein, M. A.; Eijssen, I. C J M; Rietberg, M.; Heine, M.; Verschuren, O.; Kwakkel, G.; Visser-Meily, J. M A; van de Port, I. G L; Lindeman, E.; Blikman, L. J M; van Meeteren, J.; Bussmann, J. B J; Stam, H. J.; Hintzen, R. Q.; Hacking, H. G A; Hoogervorst, E. L.; Frequin, S. T F M; Knoop, H.; de Jong, B. A.; de Laat, F. A J; Verhulsdonck, M. C.; van Munster, E. T H; Oosterwijk, C. J.; Aarts, G. J.

    2016-01-01

    To determine the relationship between appraisal and societal participation in fatigued patients with Multiple Sclerosis (MS), and whether this relation is mediated by coping styles. 265 severely-fatigued MS patients. Appraisal, a latent construct, was created from the General Self-Efficacy Scale and

  10. CLMP Is Essential for Intestinal Development, but Does Not Play a Key Role in Cellular Processes Involved in Intestinal Epithelial Development

    van der Werf, Christine S.; Hsiao, Nai-Hua; Conroy, Siobhan; Paredes, Joana; Ribeiro, Ana S.; Sribudiani, Yunia; Seruca, Raquel; Hofstra, Robert M. W.; Westers, Helga; van IJzendoorn, Sven C. D.

    2013-01-01

    Loss-of-function mutations in CLMP have been found in patients with Congenital Short Bowel Syndrome (CSBS), suggesting that its encoded protein plays a major role in intestinal development. CLMP is a membrane protein that co-localizes with tight junction proteins, but its function is largely

  11. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson's disease and other neurological disorders

    van Veen, Sarah; Sørensen, Danny M.; Holemans, Tine

    2014-01-01

    -type ATPases. We critically review the available data concerning the role of ATP13A2 in heavy metal transport and propose a possible alternative hypothesis that ATP13A2 might be a flippase. As a flippase, ATP13A2 may transport an organic molecule, such as a lipid or a peptide, from one membrane leaflet...

  12. Beyond anaemia management: evolving role of erythropoietin therapy in neurological disorders, multiple myeloma and tumour hypoxia models.

    Boogaerts, Marc; Mittelman, Moshe; Vaupel, Peter

    2005-01-01

    Recombinant human erythropoietin (epoetin) has become the standard of care in the treatment of anaemia resulting from cancer and its treatment, and chronic kidney disease. The discovery that erythropoietin and its receptor are located in regions outside the erythropoietic system has led to interest in the potential role of epoetin in other tissues, such as the central nervous system. Animal studies have shown that systemically applied epoetin can cross the blood-brain barrier, where it reduces tissue injury associated with stroke, blunt trauma and experimental autoimmune encephalomyelitis. Pilot studies in humans have shown that epoetin treatment given within 8 h of stroke reduces infarct size and results in a significantly better outcome when compared with placebo treatment. Studies also suggest that epoetin has the potential to improve cognitive impairment associated with adjuvant chemotherapy in patients with cancer. Anaemia is a major factor causing tumour hypoxia, a condition that can promote changes within neoplastic cells that further tumour survival and malignant progression and also reduces the effectiveness of several anticancer therapies including radiotherapy and oxygen-dependent cytotoxic agents. Use of epoetin to prevent or correct anaemia has the potential to reduce tumour hypoxia and improve treatment outcome. Several therapeutic studies in anaemic animals with experimental tumours have shown a beneficial effect of epoetin on delaying tumour growth. Furthermore, clinical observations in patients with multiple myeloma and animal studies have suggested that epoetin has an antimyeloma effect, mediated via the immune system through activation of CD8+ T cells. Therefore, the role of epoetin may go well beyond that of increasing haemoglobin levels in anaemic patients, although additional studies are required to confirm these promising results. Copyright 2005 S. Karger AG, Basel.

  13. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed. © 2014 Scandinavian Plant Physiology Society.

  14. A qualitative study of Filipina immigrants' stress, distress and coping: the impact of their multiple, transnational roles as women.

    Straiton, Melanie L; Ledesma, Heloise Marie L; Donnelly, Tam T

    2017-09-05

    Migration is associated with a number of stress factors which can affect mental health. Ethnicity, gender and socioeconomic status can intertwine with and influence the process of migration and mental health. Philippine migration to Europe has increased in recent years and has become more feminised. Knowing more about the factors that influence immigrants' mental health and coping can help aid health care delivery and policy planning. The purpose of this qualitative study was to explore the contextual factors that influence the mental health of Filipinas living in Norway and their coping strategies. Individual in-depth interviews were conducted with fourteen Filipinas 24-49 years, living in Norway. The analysis was informed by the post-colonial feminist perspective in order to examine the process by which gender, ethnicity and socioeconomic status interact with contextual factors in these women's lives and influence their wellbeing. Data analysis revealed that all informants experienced some level of stress or distress. Two main factors: Sense of belonging and Securing a future contributed to the women's level of distress associated with living abroad as an immigrant woman. Distress was heighted by the women's multiple, transnational roles they occupied; roles as workers, breadwinners, daughters, wives and mothers. None of the women had sought professional help for their distress. Religion and informal support from friends and family appear to help these women cope with many of the challenges they face as immigrant women living and working abroad. Filipinas face a number of challenges related to their status as immigrant women and the juggling of their transnational lives. Understanding the context of these women's lives may aid the identification of mental health problems. Although the women show resilience and appear to cope successfully, some may benefit from professional help.

  15. Evaluation of the role of 8-iso-PGF levels at multiple sites during intracranial hemorrhage in pediatric patients.

    Qi, B-X; Yao, H; Shang, L; Sheng, L-P; Wang, X-C; Zhu, L; Zhang, X-X; Wang, J-P; Fang, D-H

    2017-09-01

    The present study was planned to explore the role of 8-isomeric-prostaglandinF2α (8-iso-PGF2α) levels at the multiple sites of cerebrospinal fluid in children with intracranial hemorrhage. 90 children with intracranial hemorrhage were admitted to Surgery Intensive Care Unit (SICU) of our hospital from January to December 2013 and were selected as study subjects. They were divided into group A (n=30), group B (n=30) and group C (n=30). The group A was given conventional treatment, the group B was treated with minimally invasive puncture and the group C was treated with cerebrospinal fluid decompression. After 1 d, 2 d, 3 d, and 7 d of hospitalization, enzyme-linked immunosorbent assay (ELISA) was used to detect the 8-iso-PGF2α levels in peripheral blood of children in all groups. On the day of admission and 10 d after treatment, 3 groups of children were implemented with brain nuclear magnetic resonance spectroscopy for metabolite analyses. On the day of admission there were no significant differences in the 8-iso-PGF2α levels among group A, B and C. Further, after 1 d, 3 d, 7 d of hospital stay, the 8-iso-PGF2α levels in peripheral blood showed a gradual downward trend, and decline range of the group C was greater than that of group A and B (p iso-PGF2α in peripheral blood (r = 0.546, p iso-PGF2α plays an important role in the pathogenesis of intracranial hemorrhage, and could be utilized as a biomarker of oxidative stress in children with intracranial hemorrhage. Further, cerebrospinal fluid decompression is a better method of treatment for intracranial hemorrhage.

  16. Development of an ex vivo cellular model of rheumatoid arthritis: critical role of CD14-positive monocyte/macrophages in the development of pannus tissue.

    Nozaki, Toshiko; Takahashi, Kyoko; Ishii, Osamu; Endo, Sachio; Hioki, Kyoji; Mori, Toshihito; Kikukawa, Tadahiro; Boumpas, Dimitrios T; Ozaki, Shoichi; Yamada, Hidehiro

    2007-09-01

    To establish an ex vivo cellular model of pannus, the aberrant overgrowth of human synovial tissue (ST). Inflammatory cells that infiltrated pannus tissue from patients with rheumatoid arthritis (RA) were collected without enzyme digestion, and designated as ST-derived inflammatory cells. Single-cell suspensions of ST-derived inflammatory cells were cultured in medium alone. Levels of cytokines produced in culture supernatants were measured using enzyme-linked immunosorbent assay kits. ST-derived inflammatory cells were transferred into the joints of immunodeficient mice to explore whether these cells could develop pannus. CD14 and CD2 cells were depleted by negative selection. Culture of ST-derived inflammatory cells from 92 of 111 patients with RA resulted in spontaneous reconstruction of inflammatory tissue in vitro within 4 weeks. Ex vivo tissue contained fibroblasts, macrophages, T cells, and tartrate-resistant acid phosphatase-positive multinucleated cells. On calcium phosphate-coated slides, ST-derived inflammatory cell cultures showed numerous resorption pits. ST-derived inflammatory cell cultures continuously produced matrix metalloproteinase 9 and proinflammatory cytokines associated with osteoclastogenesis, such as tumor necrosis factor alpha, interleukin-8, and macrophage colony-stimulating factor. More importantly, transferring ST-derived inflammatory cells into the joints of immunodeficient mice resulted in the development of pannus tissue and erosive joint lesions. Both in vitro development and in vivo development of pannus tissue by ST-derived inflammatory cells were inhibited by depleting CD14-positive, but not CD2-positive, cells from ST-derived inflammatory cells. These findings suggest that overgrowth of inflammatory cells from human rheumatoid synovium simulates the development of pannus. This may prove informative in the screening of potential antirheumatic drugs.

  17. Role of BMI and age in predicting pathologic vertebral fractures in newly diagnosed multiple myeloma patients: A retrospective cohort study.

    Chen, Yi-Lun; Liu, Yao-Chung; Wu, Chia-Hung; Yeh, Chiu-Mei; Chiu, Hsun-I; Lee, Gin-Yi; Lee, Yu-Ting; Hsu, Pei; Lin, Ting-Wei; Gau, Jyh-Pyng; Hsiao, Liang-Tsai; Chiou, Tzeon-Jye; Liu, Jin-Hwang; Liu, Chia-Jen

    2018-04-01

    Vertebral fractures affect approximately 30% of myeloma patients and lead to a poor impact on survival and life quality. In general, age and body mass index (BMI) are reported to have an important role in vertebral fractures. However, the triangle relationship among age, BMI, and vertebral fractures is still unclear in newly diagnosed multiple myeloma (NDMM) patients. This study recruited consecutive 394 patients with NDMM at Taipei Veterans General Hospital between January 1, 2005 and December 31, 2015. Risk factors for vertebral fractures in NDMM patients were collected and analyzed. The survival curves were demonstrated using Kaplan-Meier estimate. In total, 301 (76.4%) NDMM patients were enrolled in the cohort. In the median follow-up period of 18.0 months, the median survival duration in those with vertebral fractures ≥ 2 was shorter than those with vertebral fracture BMI BMI ≥ 24.0 kg/m 2 (adjusted RR, 2.79; 95% CI, 1.44-5.43). In multivariable logistic regression, BMI BMI ≥ 24.0 kg/m 2 (adjusted OR, 6.05; 95% CI, 2.43-15.08). Among age stratifications, patients with both old age and low BMI were at a greater risk suffering from increased vertebral fractures, especially in patients > 75 years and BMI BMI. Elder patients with low BMI should consider to routinely receive spinal radiographic examinations and regular follow-up. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function

    Trevor P. Fidler

    2017-07-01

    Full Text Available Anucleate platelets circulate in the blood to facilitate thrombosis and diverse immune functions. Platelet activation leading to clot formation correlates with increased glycogenolysis, glucose uptake, glucose oxidation, and lactic acid production. Simultaneous deletion of glucose transporter (GLUT 1 and GLUT3 (double knockout [DKO] specifically in platelets completely abolished glucose uptake. In DKO platelets, mitochondrial oxidative metabolism of non-glycolytic substrates, such as glutamate, increased. Thrombosis and platelet activation were decreased through impairment at multiple activation nodes, including Ca2+ signaling, degranulation, and integrin activation. DKO mice developed thrombocytopenia, secondary to impaired pro-platelet formation from megakaryocytes, and increased platelet clearance resulting from cytosolic calcium overload and calpain activation. Systemic treatment with oligomycin, inhibiting mitochondrial metabolism, induced rapid clearance of platelets, with circulating counts dropping to zero in DKO mice, but not wild-type mice, demonstrating an essential role for energy metabolism in platelet viability. Thus, substrate metabolism is essential for platelet production, activation, and survival.

  19. The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the "MS Microbiome".

    Pröbstel, Anne-Katrin; Baranzini, Sergio E

    2018-01-01

    Multiple sclerosis (MS) is the prototypic complex disease, in which both genes and the environment contribute to its pathogenesis. To date, > 200 independent loci across the genome have been associated with MS risk. However, these only explain a fraction of the total phenotypic variance, suggesting the possible presence of additional genetic factors, and, most likely, also environmental factors. New DNA sequencing technologies have enabled the sequencing of all kinds of microorganisms, including those living in and around humans (i.e., microbiomes). The study of bacterial populations inhabiting the gut is of particular interest in autoimmune diseases owing to their key role in shaping immune responses. In this review, we address the potential crosstalk between B cells and the gut microbiota, a relevant scenario in light of recently approved anti-B-cell therapies for MS. In addition, we review recent efforts to characterize the gut microbiome in patients with MS and discuss potential challenges and future opportunities. Finally, we describe the international MS microbiome study, a multicenter effort to study a large population of patients with MS and their healthy household partners to define the core MS microbiome, how it is shaped by disease-modifying therapies, and to explore potential therapeutic interventions.

  20. Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor.

    Milos B Rokic

    Full Text Available The binding of ATP to trimeric P2X receptors (P2XR causes an enlargement of the receptor extracellular vestibule, leading to opening of the cation-selective transmembrane pore, but specific roles of vestibule amino acid residues in receptor activation have not been evaluated systematically. In this study, alanine or cysteine scanning mutagenesis of V47-V61 and F324-N338 sequences of rat P2X4R revealed that V49, Y54, Q55, F324, and G325 mutants were poorly responsive to ATP and trafficking was only affected by the V49 mutation. The Y54F and Y54W mutations, but not the Y54L mutation, rescued receptor function, suggesting that an aromatic residue is important at this position. Furthermore, the Y54A and Y54C receptor function was partially rescued by ivermectin, a positive allosteric modulator of P2X4R, suggesting a rightward shift in the potency of ATP to activate P2X4R. The Q55T, Q55N, Q55E, and Q55K mutations resulted in non-responsive receptors and only the Q55E mutant was ivermectin-sensitive. The F324L, F324Y, and F324W mutations also rescued receptor function partially or completely, ivermectin action on channel gating was preserved in all mutants, and changes in ATP responsiveness correlated with the hydrophobicity and side chain volume of the substituent. The G325P mutant had a normal response to ATP, suggesting that G325 is a flexible hinge. A topological analysis revealed that the G325 and F324 residues disrupt a β-sheet upon ATP binding. These results indicate multiple roles of the extracellular vestibule amino acid residues in the P2X4R function: the V49 residue is important for receptor trafficking to plasma membrane, the Y54 and Q55 residues play a critical role in channel gating and the F324 and G325 residues are critical for vestibule widening.

  1. Linearizable cellular automata

    Nobe, Atsushi; Yura, Fumitaka

    2007-01-01

    The initial value problem for a class of reversible elementary cellular automata with periodic boundaries is reduced to an initial-boundary value problem for a class of linear systems on a finite commutative ring Z 2 . Moreover, a family of such linearizable cellular automata is given

  2. Does conflict between home and work explain the effect of multiple roles on mental health? A comparative study of Finland, Japan, and the UK.

    Chandola, Tarani; Martikainen, Pekka; Bartley, Mel; Lahelma, Eero; Marmot, Michael; Michikazu, Sekine; Nasermoaddeli, Ali; Kagamimori, Sadanobu

    2004-08-01

    Although there have been a number of studies on the effects of multiple roles on health and how a combination of work and family roles may be either advantageous (role enhancement) or disadvantageous (role strain) for health, there has been relatively little investigation on the psychosocial content of such roles. Work-to-family conflict and family-to-work conflict could arise from inability to combine multiple roles and result in stress and ill health. The question of whether both types of conflict mediate between the association of multiple roles with health has not been analysed before. This paper sets out to investigate whether: (1) work-to-family conflict or family-to-work conflict contributes towards explaining the association of multiple roles with mental health; (2) the effect of work-to-family conflict and family-to-work conflict on mental health varies by gender; (3) the effect of work-to-family and family-to-work conflict on mental health vary between countries with different welfare state arrangements and social norms. Cross-sectional data of economically active male and female public sector employees aged 35-60 in London (UK), Helsinki (Finland), and the West Coast of Japan. Linear regression models (separate for each gender and cohort) of SF-36 mental component scores were analysed with role combinations, family-to-work and work-to-family conflict as explanatory variables. Single fathers in all three cohorts and of single mothers in the Helsinki cohort had poor mental health, and this was partly explained by their higher levels family-to-work conflict. Both types of conflict affect the mental health of men and women independently of each other. Japanese women had the greatest conflict and poorest mental health while Helsinki women had the lowest conflict and best mental health. Both work-to-family and family-to-work conflict affect the mental health of men and women in three different countries. Work and family roles and the balance between the two

  3. Role of glutathione metabolism status in the definition of some cellular parameters and oxidative stress tolerance of Saccharomyces cerevisiae cells growing as biofilms.

    Gales, Grégoire; Penninckx, Michel; Block, Jean-Claude; Leroy, Pierre

    2008-08-01

    The resistance of Saccharomyces cerevisiae to oxidative stress (H(2)O(2) and Cd(2+)) was compared in biofilms and planktonic cells, with the help of yeast mutants deleted of genes related to glutathione metabolism and oxidative stress. Biofilm-forming cells were found predominantly in the G1 stage of the cell cycle. This might explain their higher tolerance to oxidative stress and the young replicative age of these cells in an old culture. The reduced glutathione status of S. cerevisiae was affected by the growth phase and apparently plays an important role in oxidative stress tolerance in cells growing as a biofilm.

  4. Evaluation of the radioprotective and curative role of a natural antioxidant against cellular ultrastructural hazards induced in rats by gamma radiation exposure

    Abdel-Azeem, M.G.

    2005-01-01

    This study was designed to investigate the effects of Nigella sativa known as black seed in the amelioration of the histological disorders that occur in different tissues of albino rats exposed to 8 Gy whole body gamma irradiation, delivered as a single dose. Nigella sativa oil was administered daily to rats at a dose of 30 mg / 100 g body weight by gavage, 10 days before irradiation and to another group 10 days after irradiation. Experimental investigations performed one day after radiation for the first group and ten days after radiation for the second group showed that Nigella sativa treatment exerted a radioprotective and curative role on the fine structure of the renal tissue detected as swelling and cristalysis of mitochondria, fragmentation and dilatation damage in the rough endoplasmic reticulum which exhibited in various degrees such as active lysosomes, irregular nuclear membrane, clumped marginal chromatin, pyknotic nucleus with abnormal brush border, absence of infolding and irregularity of basement membrane. Moreover, the radiated hepatic cells showed dilation and thickness in membrane of blood sinasoid as well as lysis of cytoplasmic matrix. Treatment of rats with Nigella sativa during 10 consecutive days either before or after exposure to 8 Gy single dose led to partial improvement of hepatic and kidney cells.The results of the current study indicated that Nigella sativa oil exerted an important protective and curative role against radiation-induced damage in the ultrastructure configuration of kidney and liver cells

  5. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia.

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  6. Investigating the interactive role of stressful life events, reinforcement sensitivity and personality traits in prediction of the severity of Multiple Sclerosis (MS symptoms

    2017-06-01

    Full Text Available Background & Objective: Multiple sclerosis is a chronic neurological condition recognized by demyelination in the central nervous system. The present study was conducted to investigate the interactive role of stressful life events, reinforcement sensitivity, and personality traits in prediction of the severity of symptoms of Multiple sclerosis (MS symptoms. Materials & Methods: This is a correlational study whose statistical population consisted of all the patients suffering from Multiple Sclerosis in Shiraz in the first half of 1394, among whom 162 patients were included in this research by means of purposive sampling method. Five-Factor Personality Inventory, Jackson Personality Inventory, Stressful Life Events Scale, and Expanded Disability Status Scale (EDSS were utilised as research tools. In order to analyze the data, descriptive and inferential methods were used. The data were analysed using Pearson correlation and hierarchical regression. Results: The findings revealed that stressful life events (β = 0.41, p <0.001, Behavioral Inhibition System (β = 0.26, p<0.05, and neuroticism index (β = 0.92, p <0.05 were able to predict variance of scores of the severity of symptoms of Multiple Sclerosis significantly. Conclusion: Stressful life events, Behavioral Inhibition System, and neuroticism showed a significant relationship with the severity of symptoms of Multiple Sclerosis; thus, it seems that interaction of personality traits and environmental conditions are among influential factors of the severity of symptoms of Multiple Sclerosis. This fact implies that individuals' personal traits play an eminent role in the progression of the disease.

  7. The role of appraisal and coping style in relation with societal participation in fatigued patients with multiple sclerosis: a cross-sectional multiple mediator analysis.

    van den Akker, Lizanne Eva; Beckerman, Heleen; Collette, Emma Hubertine; Bleijenberg, Gijs; Dekker, Joost; Knoop, Hans; de Groot, Vincent

    2016-10-01

    To determine the relationship between appraisal and societal participation in fatigued patients with Multiple Sclerosis (MS), and whether this relation is mediated by coping styles. 265 severely-fatigued MS patients. Appraisal, a latent construct, was created from the General Self-Efficacy Scale and the helplessness and acceptance subscales of the Illness Cognition Questionnaire. Coping styles were assessed using the Coping Inventory Stressful Situations (CISS21) and societal participation was assessed using the Impact on Participation and Autonomy. A multiple mediator model was developed and tested by structural equation modeling on cross-sectional data. We corrected for confounding by disease-related factors. Mediation was determined using a product-of-coefficients approach. A significant relationship existed between appraisal and participation (β = 0.21, 95 % CI 0.04-0.39). The pathways via coping styles were not significant. In patients with severe MS-related fatigue, appraisal and societal participation show a positive relationship that is not mediated by coping styles.

  8. Roles of calcium and IP3 in impaired colon contractility of rats following multiple organ dysfunction syndrome

    C. Zheyu

    2007-10-01

    Full Text Available The purpose of the present study was to explore changes in rat colon motility, and determine the roles of calcium and inositol (1,4,5-triphosphate (IP3 in colon dysmotility induced by multiple organ dysfunction syndrome (MODS caused by bacteria peritonitis. The number of stools, the contractility of the muscle strips and the length of smooth muscle cells (SMC in the colon, the concentration of calcium and IP3 in SMC, and serum nitric oxide were measured. Number of stools, fecal weight, IP3 concentration in SMC and serum nitric oxide concentration were 0.77 ± 0.52 pellets, 2.51 ± 0.39 g, 4.14 ± 2.07 pmol/tube, and 113.95 ± 37.89 µmol/L, respectively, for the MODS group (N = 11 vs 1.54 ± 0.64 pellets, 4.32 ± 0.57 g, 8.19 ± 3.11 pmol/tube, and 37.42 ± 19.56 µmol/L for the control group (N = 20; P < 0.05. After treatment with 0.1 mM acetylcholine and 0.1 M potassium chloride, the maximum contraction stress of smooth muscle strips, the length of SMC and the changes of calcium concentration were 593 ± 81 and 458 ± 69 g/cm³, 48.1 ± 11.8 and 69.2 ± 15.7 µM, 250 ± 70 and 167 ± 48%, respectively, for the control group vs 321 ± 53 and 284 ± 56 g/cm³, 65.1 ± 18.5 and 87.2 ± 23.7 µM, 127 ± 35 and 112 ± 35% for the MODS group (P < 0.05. Thus, colon contractility was decreased in MODS, a result possibly related to reduced calcium concentration and IP3 in SMC.

  9. Heterogeneous cellular networks

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  10. Cellular decomposition in vikalloys

    Belyatskaya, I.S.; Vintajkin, E.Z.; Georgieva, I.Ya.; Golikov, V.A.; Udovenko, V.A.

    1981-01-01

    Austenite decomposition in Fe-Co-V and Fe-Co-V-Ni alloys at 475-600 deg C is investigated. The cellular decomposition in ternary alloys results in the formation of bcc (ordered) and fcc structures, and in quaternary alloys - bcc (ordered) and 12R structures. The cellular 12R structure results from the emergence of stacking faults in the fcc lattice with irregular spacing in four layers. The cellular decomposition results in a high-dispersion structure and magnetic properties approaching the level of well-known vikalloys [ru

  11. Cellular Reflectarray Antenna

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  12. Human stefin B normal and patho-physiological role: molecular and cellular aspects of amyloid-type aggregation of certain EPM1 mutants.

    Mira ePolajnar

    2012-08-01

    Full Text Available Epilepsies are characterised by abnormal electrophysiological activity of the brain. Among various types of inherited epilepsies different epilepsy syndromes, among them progressive myoclonus epilepsies with features of ataxia and neurodegeneration, are counted. The progressive myoclonus epilepsy of type 1 (EPM1, also known as Unverricht-Lundborg disease presents with features of cerebellar atrophy and increased oxidative stress. It has been found that EPM1 is caused by mutations in human cystatin B gene (human stefin B. We first describe the role of protein aggregation in other neurodegenerative conditions. Protein aggregates appear intraneurally but are also excreted, such as is the case with senile plaques of amyloid- β (Aβ that accumulate in the brain parenchyma and vessel walls. A common characteristic of such diseases is the change of the protein conformation towards β secondary structure that accounts for the strong tendency of such proteins to aggregate and form amyloid fibrils. Second, we describe the patho-physiology of EPM1 and the normal and aberrant roles of stefin B in a mouse model of the disease. Furthermore, we discuss how the increased protein aggregation observed with some of the mutants of human stefin B may relate to the neurodegeneration that occurs in rare EPM1 patients. Our hypothesis (Ceru et al., 2005 states that some of the EPM1 mutants of human stefin B may undergo aggregation in neural cells, thus gaining additional toxic function (apart from loss of normal function. Our in vitro experiments thus far have confirmed that 4 mutants undergo increased aggregation relative to the wild-type protein. It has been shown that the R68X mutant forms amyloid-fibrils very rapidly, even at neutral pH and forms perinuclear inclusions, whereas the G4R mutant exhibits a prolonged lag phase, during which the toxic prefibrillar aggregates accumulate and are scattered more diffusely over the cytoplasm. Initial experiments on the G50E

  13. A dynamic cellular vertex model of growing epithelial tissues

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  14. Characterization of hemin-binding protein 35 (HBP35 in Porphyromonas gingivalis: its cellular distribution, thioredoxin activity and role in heme utilization

    Abiko Yoshimitsu

    2010-05-01

    Full Text Available Abstract Background The periodontal pathogen Porphyromonas gingivalis is an obligate anaerobe that requires heme for growth. To understand its heme acquisition mechanism, we focused on a hemin-binding protein (HBP35 protein, possessing one thioredoxin-like motif and a conserved C-terminal domain, which are proposed to be involved in redox regulation and cell surface attachment, respectively. Results We observed that the hbp35 gene was transcribed as a 1.1-kb mRNA with subsequent translation resulting in three proteins with molecular masses of 40, 29 and 27 kDa in the cytoplasm, and one modified form of the 40-kDa protein on the cell surface. A recombinant 40-kDa HBP35 exhibited thioredoxin activity in vitro and mutation of the two putative active site cysteine residues abolished this activity. Both recombinant 40- and 27-kDa proteins had the ability to bind hemin, and growth of an hbp35 deletion mutant was substantially retarded under hemin-depleted conditions compared with growth of the wild type under the same conditions. Conclusion P. gingivalis HBP35 exhibits thioredoxin and hemin-binding activities and is essential for growth in hemin-depleted conditions suggesting that the protein plays a significant role in hemin acquisition.

  15. Magnetohydrodynamics cellular automata

    Hatori, Tadatsugu.

    1990-02-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  16. Epigenetics and Cellular Metabolism

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  17. Modeling cellular systems

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  18. Magnetohydrodynamic cellular automata

    Hatori, Tadatsugu [National Inst. for Fusion Science, Nagoya (Japan)

    1990-03-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author).

  19. Magnetohydrodynamic cellular automata

    Hatori, Tadatsugu

    1990-01-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  20. Cellular MR Imaging

    Michel Modo

    2005-07-01

    Full Text Available Cellular MR imaging is a young field that aims to visualize targeted cells in living organisms. In order to provide a different signal intensity of the targeted cell, they are either labeled with MR contrast agents in vivo or prelabeled in vitro. Either (ultrasmall superparamagnetic iron oxide [(USPIO] particles or (polymeric paramagnetic chelates can be used for this purpose. For in vivo cellular labeling, Gd3+- and Mn2+- chelates have mainly been used for targeted hepatobiliary imaging, and (USPIO-based cellular imaging has been focused on imaging of macrophage activity. Several of these magneto-pharmaceuticals have been FDA-approved or are in late-phase clinical trials. As for prelabeling of cells in vitro, a challenge has been to induce a sufficient uptake of contrast agents into nonphagocytic cells, without affecting normal cellular function. It appears that this issue has now largely been resolved, leading to an active research on monitoring the cellular biodistribution in vivo following transplantation or transfusion of these cells, including cell migration and trafficking. New applications of cellular MR imaging will be directed, for instance, towards our understanding of hematopoietic (immune cell trafficking and of novel guided (stem cell-based therapies aimed to be translated to the clinic in the future.

  1. Investigating the Role of the Arabidopsis Homologue of the Human G3BP in RNA Metabolism, Cellular Stress Responses and Innate Immunity

    Abulfaraj, Aala A.

    2018-04-01

    Mitogen-activated protein kinases (MAPKs) belong to the most conserved signaling pathways and are found in all eukaryotes, including humans where they play important roles in various diseases and cancer. Stimulation of this signal transduction pathway by microbe-associated molecular patterns (MAMP) results in a multitude of events to regulate innate immune responses in Arabidopsis thaliana stimulating large-scale changes in gene expression. Starting from a phosphoproteomic screen in Arabidopsis thaliana wild type and mpk3, mpk4 and mpk6 mutants following microbe-associated molecular pattern (MAMP) treatment, several novel chromatin-associated proteins were identified that are differentially phosphorylated by stress-induced protein kinases. Arabidopsis Ras GTPase-activating protein SH3-domain-binding protein (AtG3BP-1) is a downstream putative substrate of the MAMP-stimulated MAPK pathway that is phosphorylated by MPK3, 4 and 6 in in vitro kinase assays. AtG3BP1 belongs to a highly conserved family of RNA-binding proteins in eukaryotes that link kinase receptormediated signaling to RNA metabolism. Here, we report the characterization of the Arabidopsis homolog of human G3BP1 in plant innate immunity. AtG3BP1 negatively regulates plant immunity and defense immune responses. Atg3bp1 mutant lines show constitutive stomata closure, expression of a number of key defense marker genes, and accumulate salicylic acid but not jasmonic acid. Furthermore, Atg3bp1 plants exhibit enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated by stomatal and apoplastic immunity in Atg3bp1. More generally, our data reinforce that AtG3BP1 is a key mediator of plant defense responses and transient expression of AtG3BP1 delivered striking disease resistance in the absence of yield penalty, highlighting a potential application of this gene in crop protection.

  2. Early Response Roles for Prolactin Cortisol and Circulating and Cellular Levels of Heat Shock Proteins 72 and 90α in Severe Sepsis and SIRS

    K. Vardas

    2014-01-01

    Full Text Available Objective. To evaluate the early heat shock protein (HSP and hormonal stress response of intensive care unit (ICU patients with severe sepsis/septic shock (SS or systemic inflammatory response syndrome (SIRS compared to healthy subjects (H. Methods. Patients with early (first 48 hrs SS (n=29 or SIRS (n=29 admitted to a university ICU and 16 H were enrolled in the study. Serum prolactin, cortisol, and plasma ACTH were determined using immunoassay analyzers. ELISA was used to evaluate extracellular HSPs (eHSP90α, eHSP72 and interleukins. Mean fluorescence intensity (MFI values for intracellular HSPs (iHSP72, iHSP90α were measured using 4-colour flow-cytometry. Results. Prolactin, cortisol, and eHSP90α levels were significantly increased in SS patients compared to SIRS and H (P<0.003. ACTH and eHSP72 were significantly higher in SS and SIRS compared to H (P<0.005. SS monocytes expressed lower iHSP72 MFI levels compared to H (P=0.03. Prolactin was related with SAPS III and APACHE II scores and cortisol with eHSP90α, IL-6, and lactate (P<0.05. In SS and SIRS eHSP90α was related with eHSP72, IL-6, and IL-10. Conclusion. Prolactin, apart from cortisol, may have a role in the acute stress response in severe sepsis. In this early-onset inflammatory process, cortisol relates to eHSP90α, monocytes suppress iHSP72, and plasma eHSP72 increases.

  3. Chloroplastic thioredoxin-f and thioredoxin-m1/4 play important roles in brassinosteroids-induced changes in CO2 assimilation and cellular redox homeostasis in tomato

    Cheng, Fei; Zhou, Yan-Hong; Xia, Xiao-Jian; Shi, Kai; Zhou, Jie; Yu, Jing-Quan

    2014-01-01

    Chloroplast thioredoxins (TRXs) and glutathione function as redox messengers in the regulation of photosynthesis. In this work, the roles of chloroplast TRXs in brassinosteroids (BRs)-induced changes in cellular redox homeostasis and CO2 assimilation were studied in the leaves of tomato plants. BRs-deficient d ^im plants showed decreased transcripts of TRX-f, TRX-m2, TRX-m1/4, and TRX-x, while exogenous BRs significantly induced CO2 assimilation and the expression of TRX-f, TRX-m2, TRX-m1/4, and TRX-x. Virus-induced gene silencing (VIGS) of the chloroplast TRX-f, TRX-m2, TRX-m1/4, and TRX-y genes individually increased membrane lipid peroxidation and accumulation of 2-Cys peroxiredoxin dimers, and decreased the activities of the ascorbate–glutathione cycle enzymes and the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in the leaves. Furthermore, partial silencing of TRX-f, TRX-m2, TRX-m1/4, and TRX-y resulted in decreased expression of genes involved in the Benson–Calvin cycle and decreased activity of the associated enzymes. Importantly, the BRs-induced increase in CO2 assimilation and the increased expression and activities of antioxidant- and photosynthesis-related genes and enzymes were compromised in the partially TRX-f- and TRX-m1/4-silenced plants. All of these results suggest that TRX-f and TRX-m1/4 are involved in the BRs-induced changes in CO2 assimilation and cellular redox homeostasis in tomato. PMID:24847092

  4. The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis

    Bernstock, Joshua D.; Pluchino, Stefano

    2015-01-01

    Multiple sclerosis is one of the most common causes of chronic neurological disability beginning in early to middle adult life. Multiple sclerosis is idiopathic in nature, yet increasing correlative evidence supports a strong association between one’s genetic predisposition, the environment and the immune system. Symptoms of multiple sclerosis have primarily been shown to result from a disruption in the integrity of myelinated tracts within the white matter of the central nervous system. However, recent research has also highlighted the hitherto underappreciated involvement of gray matter in multiple sclerosis disease pathophysiology, which may be especially relevant when considering the accumulation of irreversible damage and progressive disability. This review aims at providing a comprehensive overview of the interplay between inflammation, glial/neuronal damage and regeneration throughout the course of multiple sclerosis via the analysis of both white and gray matter lesional pathology. Further, we describe the common pathological mechanisms underlying both relapsing and progressive forms of multiple sclerosis, and analyze how current (as well as future) treatments may interact and/or interfere with its pathology. Understanding the putative mechanisms that drive disease pathogenesis will be key in helping to develop effective therapeutic strategies to prevent, mitigate, and treat the diverse morbidities associated with multiple sclerosis. PMID:25802011

  5. Multiple pyogenic liver abscesses formed after appendectomy: The role of percutaneous drainage in a critically ill patient

    Enver Zerem

    2012-11-01

    Full Text Available Multiple pyogenic liver abscesses formed after appendectomy andtheir percutaneous treatment with multiple catheters have been rarelydescribed. We report a case of multiple pyogenic liver abscesses in acritically ill patient, formed after appendectomy and treated successfully by antibiotics and drainage with six catheters that were introduced simultaneously under ultrasound control. Even though this was a case of liver abscess secondary to appendicitis, today very rare in Western countries, but still a serious complication in developing countries, it was successfully resolved by percutaneous drainage, along with antibiotic therapy. Conclusion. We emphasize the advantages of percutaneous treatment compared with surgery regarding the avoidance of perioperative complications and the risks of general anesthesia.

  6. Estimating cellular network performance during hurricanes

    Booker, Graham; Torres, Jacob; Guikema, Seth; Sprintson, Alex; Brumbelow, Kelly

    2010-01-01

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  7. Cellularized Cellular Solids via Freeze-Casting.

    Christoph, Sarah; Kwiatoszynski, Julien; Coradin, Thibaud; Fernandes, Francisco M

    2016-02-01

    The elaboration of metabolically active cell-containing materials is a decisive step toward the successful application of cell based technologies. The present work unveils a new process allowing to simultaneously encapsulate living cells and shaping cell-containing materials into solid-state macroporous foams with precisely controlled morphology. Our strategy is based on freeze casting, an ice templating materials processing technique that has recently emerged for the structuration of colloids into macroporous materials. Our results indicate that it is possible to combine the precise structuration of the materials with cellular metabolic activity for the model organism Saccharomyces cerevisiae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Epigenetics and Cellular Metabolism

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  9. POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, multiple myeloma and skin changes) with cranial vault plasmocytoma and the role of surgery in its management: a case report

    Plata Bello, Julio; Garcia-Marin, Victor

    2013-01-01

    Introduction POEMS syndrome (an acronym of polyneuropathy, organomegaly, endocrinopathy, multiple myeloma and skin changes) is a paraneoplastic disorder related to an underlying plasma cell dyscrasia. The development of such a syndrome is rare and its association with calvarial plasmocytoma is even less common, with only two previous reported cases. We describe, in detail, an unusual presentation of cranial plasmocytoma associated with POEMS syndrome and briefly discuss the possible role of s...

  10. Design and evaluation of cellular power converter architectures

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed

  11. Radiolabelled cellular blood elements

    Sinzinger, H.

    1990-01-01

    This book reports on radiolabelled cellular blood elements, covering new advances made during the past several years, in particular the use of Tc-99 as a tracer for blood elements. Coverage extends to several radiolabelled monoclonal antibodies that are specific for blood components and may label blood elements in vivo

  12. Building synthetic cellular organization

    Polka, Jessica K.; Silver, Pamela A.

    2013-01-01

    The elaborate spatial organization of cells enhances, restricts, and regulates protein–protein interactions. However, the biological significance of this organization has been difficult to study without ways of directly perturbing it. We highlight synthetic biology tools for engineering novel cellular organization, describing how they have been, and can be, used to advance cell biology.

  13. The New Cellular Immunology

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  14. Electromagnetic cellular interactions.

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Genetic Dominance & Cellular Processes

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  16. War-related trauma exposure and multiple risk behaviors among school-going adolescents in Northern Uganda: the mediating role of depression symptoms.

    Okello, James; Nakimuli-Mpungu, Etheldreda; Musisi, Seggane; Broekaert, Eric; Derluyn, Ilse

    2013-11-01

    The relationship between war-related trauma exposure, depressive symptoms and multiple risk behaviors among adolescents is less clear in sub-Saharan Africa. We analyzed data collected from a sample of school-going adolescents four years postwar. Participants completed interviews assessing various risk behaviors defined by the Youth Self Report (YSR) and a sexual risk behavior survey, and were screened for post-traumatic stress, anxiety and depression symptoms based on the Impact of Events Scale Revised (IESR) and Hopkins Symptom Checklist for Adolescents (HSCL-37A) respectively. Multivariate logistic regression was used to assess factors independently associated with multiple risk behaviors. The logistic regression model of Baron and Kenny (1986) was used to evaluate the mediating role of depression in the relationship between stressful war events and multiple risk behaviors. Of 551 participants, 139 (25%) reported multiple (three or more) risk behaviors in the past year. In the multivariate analyses, depression symptoms remained uniquely associated with multiple risk behavior after adjusting for potential confounders including socio-demographic characteristics, war-related trauma exposure variables, anxiety and post-traumatic stress symptoms. In mediation analysis, depression symptoms mediated the associations between stressful war events and multiple risk behaviors. The psychometric properties of the questionnaires used in this study are not well established in war affected African samples thus ethno cultural variation may decrease the validity of our measures. Adolescents with depression may be at a greater risk of increased engagement in multiple risk behaviors. Culturally sensitive and integrated interventions to treat and prevent depression among adolescents in post-conflict settings are urgently needed. © 2013 Elsevier B.V. All rights reserved.

  17. Multiple, disparate roles for calcium signaling in apoptosis of human prostate and cervical cancer cells exposed to diindolylmethane.

    Savino, John A; Evans, Jodi F; Rabinowitz, Dorianne; Auborn, Karen J; Carter, Timothy H

    2006-03-01

    Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, causes growth arrest and apoptosis of cancer cells in vitro. DIM also induces endoplasmic reticulum (ER) stress, and thapsigargin, a specific inhibitor of the sarcoplasmic reticulum/ER calcium-dependent ATPase, enhances this effect. We asked whether elevated cytosolic free calcium [Ca2+]i is required for cytotoxicity of DIM and thapsigargin in two cancer cells lines (C33A, from cervix, and DU145, from prostate). [Ca2+]i was measured in real-time by FURA-2 fluorescence. We tested whether DIM, thapsigargin, and DIM + thapsigargin cause apoptosis, measured by nucleosome release, under conditions that prevented elevation of [Ca2+]i, using both cell-permeable and cell-impermeable forms of the specific calcium chelator BAPTA. DIM, like thapsigargin, rapidly mobilized ER calcium. C33A and DU145 responded differently to perturbations in Ca2+ homeostasis, suggesting that DIM induces apoptosis by different mechanisms in these two cell lines and/or that calcium mobilization also activates different survival pathways in C33A and DU145. Apoptosis in C33A was independent of increased [Ca2+]i, suggesting that depletion of ER Ca2+ stores may be sufficient for cell killing, whereas apoptosis in DU145 required elevated [Ca2+]i for full response. Inhibitor studies using cyclosporin A and KN93 showed that Ca2+ signaling is important for cell survival but the characteristics of this response also differed in the two cell lines. Our results underscore the complex and variable nature of cellular responses to disrupted Ca2+ homeostasis and suggest that alteration Ca2+ homeostasis in the ER can induce cellular apoptosis by both calcium-dependent and calcium-independent mechanisms.

  18. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells.

    Steyfkens, Fenella; Zhang, Zhiqiang; Van Zeebroeck, Griet; Thevelein, Johan M

    2018-01-01

    The nutrient composition of the medium has dramatic effects on many cellular properties in the yeast Saccharomyces cerevisiae . In addition to the well-known specific responses to starvation for an essential nutrient, like nitrogen or phosphate, the presence of fermentable sugar or a respirative carbon source leads to predominance of fermentation or respiration, respectively. Fermenting and respiring cells also show strong differences in other properties, like storage carbohydrate levels, general stress tolerance and cellular growth rate. However, the main glucose repression pathway, which controls the switch between respiration and fermentation, is not involved in control of these properties. They are controlled by the protein kinase A (PKA) pathway. Addition of glucose to respiring yeast cells triggers cAMP synthesis, activation of PKA and rapid modification of its targets, like storage carbohydrate levels, general stress tolerance and growth rate. However, starvation of fermenting cells in a glucose medium for any essential macro- or micro-nutrient counteracts this effect, leading to downregulation of PKA and its targets concomitant with growth arrest and entrance into G0. Re-addition of the lacking nutrient triggers rapid activation of the PKA pathway, without involvement of cAMP as second messenger. Investigation of the sensing mechanism has revealed that the specific high-affinity nutrient transporter(s) induced during starvation function as transporter-receptors or transceptors for rapid activation of PKA upon re-addition of the missing substrate. In this way, transceptors have been identified for amino acids, ammonium, phosphate, sulfate, iron, and zinc. We propose a hypothesis for regulation of PKA activity by nutrient transceptors to serve as a conceptual framework for future experimentation. Many properties of transceptors appear to be similar to those of classical receptors and nutrient transceptors may constitute intermediate forms in the development

  19. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells

    Fenella Steyfkens

    2018-03-01

    Full Text Available The nutrient composition of the medium has dramatic effects on many cellular properties in the yeast Saccharomyces cerevisiae. In addition to the well-known specific responses to starvation for an essential nutrient, like nitrogen or phosphate, the presence of fermentable sugar or a respirative carbon source leads to predominance of fermentation or respiration, respectively. Fermenting and respiring cells also show strong differences in other properties, like storage carbohydrate levels, general stress tolerance and cellular growth rate. However, the main glucose repression pathway, which controls the switch between respiration and fermentation, is not involved in control of these properties. They are controlled by the protein kinase A (PKA pathway. Addition of glucose to respiring yeast cells triggers cAMP synthesis, activation of PKA and rapid modification of its targets, like storage carbohydrate levels, general stress tolerance and growth rate. However, starvation of fermenting cells in a glucose medium for any essential macro- or micro-nutrient counteracts this effect, leading to downregulation of PKA and its targets concomitant with growth arrest and entrance into G0. Re-addition of the lacking nutrient triggers rapid activation of the PKA pathway, without involvement of cAMP as second messenger. Investigation of the sensing mechanism has revealed that the specific high-affinity nutrient transporter(s induced during starvation function as transporter-receptors or transceptors for rapid activation of PKA upon re-addition of the missing substrate. In this way, transceptors have been identified for amino acids, ammonium, phosphate, sulfate, iron, and zinc. We propose a hypothesis for regulation of PKA activity by nutrient transceptors to serve as a conceptual framework for future experimentation. Many properties of transceptors appear to be similar to those of classical receptors and nutrient transceptors may constitute intermediate forms in

  20. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency

    Spaan, András N.; Ijlst, Lodewijk; van Roermund, Carlo W. T.; Wijburg, Frits A.; Wanders, Ronald J. A.; Waterham, Hans R.

    2005-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is most often caused by mutations in the genes encoding the alpha- or beta-subunit of electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETF-DH). Since not all patients have

  1. Appearance of Tissue Transglutaminase in Astrocytes in Multiple Sclerosis Lesions: A Role in Cell Adhesion and Migration?

    van Strien, M.; Drukarch, B.; Bol, J.G.J.M.; van der Valk, P.; van Horssen, J.; Gerritsen, W.H.; Breve, J.J.P.; van Dam, A.M.

    2011-01-01

    Multiple Sclerosis (MS) is a neuroinflammatory disease mainly affecting young adults. A major pathological hallmark of MS is the presence of demyelinated lesions in the central nervous system. In the active phase of the disease, astrocytes become activated, migrate and contribute to local tissue

  2. Health related quality of life in people with multiple sclerosis : the role of coping, social participation and self-esteem

    Mikula, Pavol

    2014-01-01

    Multiple sclerosis (MS) is the most common neurological disease with disabling consequences that occurs in young adults. Symptoms of MS are responsible for high levels of stress and low levels of overall health-related quality of life (HRQoL). In this dissertation we aimed at gaining insight into

  3. The role of helplessness as mediator between neurological disability, emotional instability, experienced fatigue and depression in patients with multiple sclerosis.

    Werf, S.P. van der; Evers, A.W.M.; Jongen, P.J.H.; Bleijenberg, G.

    2003-01-01

    The aim of this study was to test, in patients with multiple sclerosis (MS), whether the concept of helplessness might improve the understanding of the relationship between disease severity (neurological impairment) and personality characteristics (emotional instability) on one hand, and depressive

  4. The regulation of cellular apoptosis by the ROS-triggered PERK/EIF2α/chop pathway plays a vital role in bisphenol A-induced male reproductive toxicity

    Yin, Li [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Dai, Yanlin [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Medical Laboratory Technology Department, Chuxiong Medical College, Yunnan 675005 (China); Cui, Zhihong; Jiang, Xiao; Liu, Wenbin; Han, Fei; Lin, Ao; Cao, Jia [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Liu, Jinyi, E-mail: jinyiliutmmu@163.com [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China)

    2017-01-01

    Bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA) is ubiquitous in the environment, wildlife, and humans. Evidence from past studies suggests that BPA is associated with decreased semen quality. However, the molecular basis for the adverse effect of BPA on male reproductive toxicity remains unclear. We evaluated the effect of BPA on mouse spermatocytes GC-2 cells and adult mice, and we explored the potential mechanism of its action. The results showed that BPA inhibited cell proliferation and increased the apoptosis rate. The testes from BPA-treated mice showed fewer spermatogenic cells and sperm in the seminiferous tubules. In addition, BPA caused reactive oxygen species (ROS) accumulation. Previous study has verified that mitochondrion was the organelle affected by the BPA-triggered ROS accumulation. We found that BPA induced damage to the endoplasmic reticulum (ER) in addition to mitochondria, and most ER stress-related proteins were activated in cellular and animal models. Knocking down of the PERK/EIF2α/chop pathway, one of the ER stress pathways, partially recovered the BPA-induced cell apoptosis. In addition, an ROS scavenger attenuated the expression of the PERK/EIF2α/chop pathway-related proteins. Taken together, these data suggested that the ROS regulated PERK/EIF2α/chop pathway played a vital role in BPA-induced male reproductive toxicity. - Highlights: • BPA exposure caused the damage of the endoplasmic reticulum. • BPA exposure activated ER stress related proteins in male reproductive system. • ROS regulated PERK/EIF2α/chop pathway played a vital role in BPA-induced toxicity.

  5. Pulsed feedback defers cellular differentiation.

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  6. Dealing with negative stereotypes in sports: the role of cognitive anxiety when multiple identities are activated in sensorimotor tasks.

    Martiny, Sarah E; Gleibs, Ilka H; Parks-Stamm, Elizabeth J; Martiny-Huenger, Torsten; Froehlich, Laura; Harter, Anna Lena; Roth, Jenny

    2015-08-01

    Based on research on stereotype threat and multiple identities, this work explores the beneficial effects of activating a positive social identity when a negative identity is salient on women's performance in sports. Further, in line with research on the effects of anxiety in sports, we investigate whether the activation of a positive social identity buffers performance from cognitive anxiety associated with a negative stereotype. Two experiments tested these predictions in field settings. Experiment 1 (N = 83) shows that the simultaneous activation of a positive (i.e., member of a soccer team) and a negative social identity (i.e., woman) led to better performance than the activation of only a negative social identity for female soccer players. Experiment 2 (N = 46) demonstrates that identity condition moderated the effect of cognitive anxiety on performance for female basketball players. Results are discussed concerning multiple identities' potential for dealing with stressful situations.

  7. Dealing with negative stereotypes in sports: The role of cognitive anxiety when multiple identities are activated in sensorimotor tasks

    Martiny, Sarah E.; Gleibs, Ilka H.; Parks-Stamm, Elizabeth J.; Martiny-Huenger, Torsten; Froehlich, Laura; Harter, Anna-Lena; Roth, Jenny

    2015-01-01

    Accepted manuscript version. Published version at http://dx.doi.org/10.1123/jsep.2014-0284. Based on research on stereotype threat and multiple identities, this work explores the beneficial effects of activating a positive social identity when a negative identity is salient on women’s performance in sports. Further, in line with research on the effects of anxiety in sports, we investigate whether the activation of a positive social identity buffers performance from cognitive anxiety associ...

  8. Role of inflammation gene polymorphisms on pain and response to radiotherapy in multiple myeloma patients with painful bone destructions

    Rudžianskienė, Milda; Inčiūra, Arturas; Gerbutavičius, Rolandas; Dambrauskienė, Rūta; Rudžianskas, Viktoras; Juozaitytė, Elona

    2016-01-01

    Background: Previous researches have demonstrated, that the severity of pain perception and it’s response to analgesia is highly dependent on gene polymorphism encoding for cytokines. We evaluated 12 single nucleotide polymorphisms (SNP) in 6 genes encoding for cytokines in multiple myeloma patients (n = 81) and assessed their influence on pain severity and response to palliative radiotherapy. Methods: Pain intensity was assessed by Visual Analogue Scale. The total dose of opioids was convert...

  9. Health related quality of life in people with multiple sclerosis: the role of coping, social participation and self-esteem

    Mikula, Pavol

    2014-01-01

    Multiple sclerosis (MS) is the most common neurological disease with disabling consequences that occurs in young adults. Symptoms of MS are responsible for high levels of stress and low levels of overall health-related quality of life (HRQoL). In this dissertation we aimed at gaining insight into the associations between physical and psychosocial factors and HRQoL in order to identify areas that could benefit from intervention. We found that problem-focused coping, emotion-focused coping and ...

  10. A positive role of multiplicative noise on the emergence of flocking in a stochastic Cucker-Smale system

    Sun, Yongzheng, E-mail: yzsung@gmail.com [School of Science, China University of Mining and Technology, Xuzhou 221008 (China); Lin, Wei, E-mail: wlin@fudan.edu.cn [School of Mathematical Sciences, LMNS, and Shanghai Key Laboratory of Data Science, Fudan University, Shanghai 200433 (China)

    2015-08-15

    In this article, we investigate the flocking of a stochastic Cucker-Smale system with multiplicative measurement noise. We show that there is a noise strength, below which the flocking occurs and the convergence time is a decreasing function of noise strength. Specifically, we find a power-law relationship between the convergence time and the density of group. We also investigate the influence of control parameter and an optimal value is found that minimizes the convergence time.

  11. A positive role of multiplicative noise on the emergence of flocking in a stochastic Cucker-Smale system

    Sun, Yongzheng; Lin, Wei

    2015-01-01

    In this article, we investigate the flocking of a stochastic Cucker-Smale system with multiplicative measurement noise. We show that there is a noise strength, below which the flocking occurs and the convergence time is a decreasing function of noise strength. Specifically, we find a power-law relationship between the convergence time and the density of group. We also investigate the influence of control parameter and an optimal value is found that minimizes the convergence time

  12. A positive role of multiplicative noise on the emergence of flocking in a stochastic Cucker-Smale system.

    Sun, Yongzheng; Lin, Wei

    2015-08-01

    In this article, we investigate the flocking of a stochastic Cucker-Smale system with multiplicative measurement noise. We show that there is a noise strength, below which the flocking occurs and the convergence time is a decreasing function of noise strength. Specifically, we find a power-law relationship between the convergence time and the density of group. We also investigate the influence of control parameter and an optimal value is found that minimizes the convergence time.

  13. The role of international policy transfer within the Multiple Streams Approach: the case of smart electricity metering in Australia

    Lovell, Heather

    2016-01-01

    This paper draws on Kingdon’s Multiple Streams Approach (MSA) to consider international flows of policy, not just domestic. It is argued that using the MSA in conjunction with international policy transfer and mobility theories allows for a fuller explanation of the development of smart electricity metering policy in Australia. The MSA is based originally on empirical research within a single country - the USA - in the late 1970s, and all three of the ‘streams’ identified as important to poli...

  14. Molecular and Cellular Signaling

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  15. Nested cellular automata

    Quasthoff, U.

    1985-07-01

    Cellular automata by definition consist of a finite or infinite number of cells, say of unit length, with each cell having the same transition function. These cells are usually considered as the smallest elements and so the space filled with these cells becomes discrete. Nevertheless, large pictures created by such cellular automata look very fractal. So we try to replace each cell by a couple of smaller cells, which have the same transition functions as the large ones. There are automata where this replacement does not destroy the macroscopic structure. In these cases this nesting process can be iterated. The paper contains large classes of automata with the above properties. In the case of one dimensional automata with two states and next neighbour interaction and a nesting function of the same type a complete classification is given. (author)

  16. Cellular Senescence: A Translational Perspective

    James L. Kirkland

    2017-07-01

    Full Text Available Cellular senescence entails essentially irreversible replicative arrest, apoptosis resistance, and frequently acquisition of a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP. Senescent cells accumulate in various tissues with aging and at sites of pathogenesis in many chronic diseases and conditions. The SASP can contribute to senescence-related inflammation, metabolic dysregulation, stem cell dysfunction, aging phenotypes, chronic diseases, geriatric syndromes, and loss of resilience. Delaying senescent cell accumulation or reducing senescent cell burden is associated with delay, prevention, or alleviation of multiple senescence-associated conditions. We used a hypothesis-driven approach to discover pro-survival Senescent Cell Anti-apoptotic Pathways (SCAPs and, based on these SCAPs, the first senolytic agents, drugs that cause senescent cells to become susceptible to their own pro-apoptotic microenvironment. Several senolytic agents, which appear to alleviate multiple senescence-related phenotypes in pre-clinical models, are beginning the process of being translated into clinical interventions that could be transformative.

  17. Predictability in cellular automata.

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.

  18. Probabilistic cellular automata.

    Agapie, Alexandru; Andreica, Anca; Giuclea, Marius

    2014-09-01

    Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata.

  19. Wavefront cellular learning automata.

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  20. Algorithm for cellular reprogramming.

    Ronquist, Scott; Patterson, Geoff; Muir, Lindsey A; Lindsly, Stephen; Chen, Haiming; Brown, Markus; Wicha, Max S; Bloch, Anthony; Brockett, Roger; Rajapakse, Indika

    2017-11-07

    The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes. Copyright © 2017 the Author(s). Published by PNAS.