WorldWideScience

Sample records for multiple aerial image

  1. 3D Power Line Extraction from Multiple Aerial Images

    Directory of Open Access Journals (Sweden)

    Jaehong Oh

    2017-09-01

    Full Text Available Power lines are cables that carry electrical power from a power plant to an electrical substation. They must be connected between the tower structures in such a way that ensures minimum tension and sufficient clearance from the ground. Power lines can stretch and sag with the changing weather, eventually exceeding the planned tolerances. The excessive sags can then cause serious accidents, while hindering the durability of the power lines. We used photogrammetric techniques with a low-cost drone to achieve efficient 3D mapping of power lines that are often difficult to approach. Unlike the conventional image-to-object space approach, we used the object-to-image space approach using cubic grid points. We processed four strips of aerial images to automatically extract the power line points in the object space. Experimental results showed that the approach could successfully extract the positions of the power line points for power line generation and sag measurement with the elevation accuracy of a few centimeters.

  2. A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs

    Science.gov (United States)

    Yahyanejad, Saeed; Rinner, Bernhard

    2015-06-01

    The use of multiple small-scale UAVs to support first responders in disaster management has become popular because of their speed and low deployment costs. We exploit such UAVs to perform real-time monitoring of target areas by fusing individual images captured from heterogeneous aerial sensors. Many approaches have already been presented to register images from homogeneous sensors. These methods have demonstrated robustness against scale, rotation and illumination variations and can also cope with limited overlap among individual images. In this paper we focus on thermal and visual image registration and propose different methods to improve the quality of interspectral registration for the purpose of real-time monitoring and mobile mapping. Images captured by low-altitude UAVs represent a very challenging scenario for interspectral registration due to the strong variations in overlap, scale, rotation, point of view and structure of such scenes. Furthermore, these small-scale UAVs have limited processing and communication power. The contributions of this paper include (i) the introduction of a feature descriptor for robustly identifying corresponding regions of images in different spectrums, (ii) the registration of image mosaics, and (iii) the registration of depth maps. We evaluated the first method using a test data set consisting of 84 image pairs. In all instances our approach combined with SIFT or SURF feature-based registration was superior to the standard versions. Although we focus mainly on aerial imagery, our evaluation shows that the presented approach would also be beneficial in other scenarios such as surveillance and human detection. Furthermore, we demonstrated the advantages of the other two methods in case of multiple image pairs.

  3. Marker Detection in Aerial Images

    KAUST Repository

    Alharbi, Yazeed

    2017-04-09

    The problem that the thesis is trying to solve is the detection of small markers in high-resolution aerial images. Given a high-resolution image, the goal is to return the pixel coordinates corresponding to the center of the marker in the image. The marker has the shape of two triangles sharing a vertex in the middle, and it occupies no more than 0.01% of the image size. An improvement on the Histogram of Oriented Gradients (HOG) is proposed, eliminating the majority of baseline HOG false positives for marker detection. The improvement is guided by the observation that standard HOG description struggles to separate markers from negatives patches containing an X shape. The proposed method alters intensities with the aim of altering gradients. The intensity-dependent gradient alteration leads to more separation between filled and unfilled shapes. The improvement is used in a two-stage algorithm to achieve high recall and high precision in detection of markers in aerial images. In the first stage, two classifiers are used: one to quickly eliminate most of the uninteresting parts of the image, and one to carefully select the marker among the remaining interesting regions. Interesting regions are selected by scanning the image with a fast classifier trained on the HOG features of markers in all rotations and scales. The next classifier is more precise and uses our method to eliminate the majority of the false positives of standard HOG. In the second stage, detected markers are tracked forward and backward in time. Tracking is needed to detect extremely blurred or distorted markers that are missed by the previous stage. The algorithm achieves 94% recall with minimal user guidance. An average of 30 guesses are given per image; the user verifies for each whether it is a marker or not. The brute force approach would return 100,000 guesses per image.

  4. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning

    Science.gov (United States)

    Vetrivel, Anand; Gerke, Markus; Kerle, Norman; Nex, Francesco; Vosselman, George

    2018-06-01

    Oblique aerial images offer views of both building roofs and façades, and thus have been recognized as a potential source to detect severe building damages caused by destructive disaster events such as earthquakes. Therefore, they represent an important source of information for first responders or other stakeholders involved in the post-disaster response process. Several automated methods based on supervised learning have already been demonstrated for damage detection using oblique airborne images. However, they often do not generalize well when data from new unseen sites need to be processed, hampering their practical use. Reasons for this limitation include image and scene characteristics, though the most prominent one relates to the image features being used for training the classifier. Recently features based on deep learning approaches, such as convolutional neural networks (CNNs), have been shown to be more effective than conventional hand-crafted features, and have become the state-of-the-art in many domains, including remote sensing. Moreover, often oblique images are captured with high block overlap, facilitating the generation of dense 3D point clouds - an ideal source to derive geometric characteristics. We hypothesized that the use of CNN features, either independently or in combination with 3D point cloud features, would yield improved performance in damage detection. To this end we used CNN and 3D features, both independently and in combination, using images from manned and unmanned aerial platforms over several geographic locations that vary significantly in terms of image and scene characteristics. A multiple-kernel-learning framework, an effective way for integrating features from different modalities, was used for combining the two sets of features for classification. The results are encouraging: while CNN features produced an average classification accuracy of about 91%, the integration of 3D point cloud features led to an additional

  5. Peach Flower Monitoring Using Aerial Multispectral Imaging

    Directory of Open Access Journals (Sweden)

    Ryan Horton

    2017-01-01

    Full Text Available One of the tools for optimal crop production is regular monitoring and assessment of crops. During the growing season of fruit trees, the bloom period has increased photosynthetic rates that correlate with the fruiting process. This paper presents the development of an image processing algorithm to detect peach blossoms on trees. Aerial images of peach (Prunus persica trees were acquired from both experimental and commercial peach orchards in the southwestern part of Idaho using an off-the-shelf unmanned aerial system (UAS, equipped with a multispectral camera (near-infrared, green, blue. The image processing algorithm included contrast stretching of the three bands to enhance the image and thresholding segmentation method to detect the peach blossoms. Initial results showed that the image processing algorithm could detect peach blossoms with an average detection rate of 84.3% and demonstrated good potential as a monitoring tool for orchard management.

  6. Improving settlement type classification of aerial images

    CSIR Research Space (South Africa)

    Mdakane, L

    2014-10-01

    Full Text Available , an automated method can be used to help identify human settlements in a fixed, repeatable and timely manner. The main contribution of this work is to improve generalisation on settlement type classification of aerial imagery. Images acquired at different dates...

  7. Orientation Strategies for Aerial Oblique Images

    Science.gov (United States)

    Wiedemann, A.; Moré, J.

    2012-07-01

    Oblique aerial images become more and more distributed to fill the gap between vertical aerial images and mobile mapping systems. Different systems are on the market. For some applications, like texture mapping, precise orientation data are required. One point is the stable interior orientation, which can be achieved by stable camera systems, the other a precise exterior orientation. A sufficient exterior orientation can be achieved by a large effort in direct sensor orientation, whereas minor errors in the angles have a larger effect than in vertical imagery. The more appropriate approach is by determine the precise orientation parameters by photogrammetric methods using an adapted aerial triangulation. Due to the different points of view towards the object the traditional aerotriangulation matching tools fail, as they produce a bunch of blunders and require a lot of manual work to achieve a sufficient solution. In this paper some approaches are discussed and results are presented for the most promising approaches. We describe a single step approach with an aerotriangulation using all available images; a two step approach with an aerotriangulation only of the vertical images plus a mathematical transformation of the oblique images using the oblique cameras excentricity; and finally the extended functional model for a bundle block adjustment considering the mechanical connection between vertical and oblique images. Beside accuracy also other aspects like efficiency and required manual work have to be considered.

  8. Automated Archiving of Archaeological Aerial Images

    Directory of Open Access Journals (Sweden)

    Michael Doneus

    2016-03-01

    Full Text Available The main purpose of any aerial photo archive is to allow quick access to images based on content and location. Therefore, next to a description of technical parameters and depicted content, georeferencing of every image is of vital importance. This can be done either by identifying the main photographed object (georeferencing of the image content or by mapping the center point and/or the outline of the image footprint. The paper proposes a new image archiving workflow. The new pipeline is based on the parameters that are logged by a commercial, but cost-effective GNSS/IMU solution and processed with in-house-developed software. Together, these components allow one to automatically geolocate and rectify the (oblique aerial images (by a simple planar rectification using the exterior orientation parameters and to retrieve their footprints with reasonable accuracy, which is automatically stored as a vector file. The data of three test flights were used to determine the accuracy of the device, which turned out to be better than 1° for roll and pitch (mean between 0.0 and 0.21 with a standard deviation of 0.17–0.46 and better than 2.5° for yaw angles (mean between 0.0 and −0.14 with a standard deviation of 0.58–0.94. This turned out to be sufficient to enable a fast and almost automatic GIS-based archiving of all of the imagery.

  9. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.

    Science.gov (United States)

    Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S

    2017-01-01

    Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.

  10. Superpixel-Based Feature for Aerial Image Scene Recognition

    Directory of Open Access Journals (Sweden)

    Hongguang Li

    2018-01-01

    Full Text Available Image scene recognition is a core technology for many aerial remote sensing applications. Different landforms are inputted as different scenes in aerial imaging, and all landform information is regarded as valuable for aerial image scene recognition. However, the conventional features of the Bag-of-Words model are designed using local points or other related information and thus are unable to fully describe landform areas. This limitation cannot be ignored when the aim is to ensure accurate aerial scene recognition. A novel superpixel-based feature is proposed in this study to characterize aerial image scenes. Then, based on the proposed feature, a scene recognition method of the Bag-of-Words model for aerial imaging is designed. The proposed superpixel-based feature that utilizes landform information establishes top-task superpixel extraction of landforms to bottom-task expression of feature vectors. This characterization technique comprises the following steps: simple linear iterative clustering based superpixel segmentation, adaptive filter bank construction, Lie group-based feature quantification, and visual saliency model-based feature weighting. Experiments of image scene recognition are carried out using real image data captured by an unmanned aerial vehicle (UAV. The recognition accuracy of the proposed superpixel-based feature is 95.1%, which is higher than those of scene recognition algorithms based on other local features.

  11. Aerial Triangulation Close-range Images with Dual Quaternion

    Directory of Open Access Journals (Sweden)

    SHENG Qinghong

    2015-05-01

    Full Text Available A new method for the aerial triangulation of close-range images based on dual quaternion is presented. Using dual quaternion to represent the spiral screw motion of the beam in the space, the real part of dual quaternion represents the angular elements of all the beams in the close-range area networks, the real part and the dual part of dual quaternion represents the line elements corporately. Finally, an aerial triangulation adjustment model based on dual quaternion is established, and the elements of interior orientation and exterior orientation and the object coordinates of the ground points are calculated. Real images and large attitude angle simulated images are selected to run the experiments of aerial triangulation. The experimental results show that the new method for the aerial triangulation of close-range images based on dual quaternion can obtain higher accuracy.

  12. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, Mohammad Akbar Hosain

    2014-12-04

    Various examples are provided for generalized internal multiple imaging (GIMI). In one example, among others, a method includes generating a higher order internal multiple image using a background Green\\'s function and rendering the higher order internal multiple image for presentation. In another example, a system includes a computing device and a generalized internal multiple imaging (GIMI) application executable in the computing device. The GIMI application includes logic that generates a higher order internal multiple image using a background Green\\'s function and logic that renders the higher order internal multiple image for display on a display device. In another example, a non-transitory computer readable medium has a program executable by processing circuitry that generates a higher order internal multiple image using a background Green\\'s function and renders the higher order internal multiple image for display on a display device.

  13. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, Mohammad Akbar Hosain; Alkhalifah, Tariq

    2014-01-01

    Various examples are provided for generalized internal multiple imaging (GIMI). In one example, among others, a method includes generating a higher order internal multiple image using a background Green's function and rendering the higher order internal multiple image for presentation. In another example, a system includes a computing device and a generalized internal multiple imaging (GIMI) application executable in the computing device. The GIMI application includes logic that generates a higher order internal multiple image using a background Green's function and logic that renders the higher order internal multiple image for display on a display device. In another example, a non-transitory computer readable medium has a program executable by processing circuitry that generates a higher order internal multiple image using a background Green's function and renders the higher order internal multiple image for display on a display device.

  14. Combining Constraint Types From Public Data in Aerial Image Segmentation

    DEFF Research Database (Denmark)

    Jacobsen, Thomas Stig; Jensen, Jacob Jon; Jensen, Daniel Rune

    2013-01-01

    We introduce a method for image segmentation that constraints the clustering with map and point data. The method is showcased by applying the spectral clustering algorithm on aerial images for building detection with constraints built from a height map and address point data. We automatically det...

  15. Mission control of multiple unmanned aerial vehicles: a workload analysis.

    Science.gov (United States)

    Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon

    2005-01-01

    With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.

  16. Use of Aerial Hyperspectral Imaging For Monitoring Forest Health

    Science.gov (United States)

    Milton O. Smith; Nolan J. Hess; Stephen Gulick; Lori G. Eckhardt; Roger D. Menard

    2004-01-01

    This project evaluates the effectiveness of aerial hyperspectral digital imagery in the assessment of forest health of loblolly stands in central Alabama. The imagery covers 50 square miles, in Bibb and Hale Counties, south of Tuscaloosa, AL, which includes intensive managed forest industry sites and National Forest lands with multiple use objectives. Loblolly stands...

  17. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, M. A. H.; Alkhalifah, Tariq Ali

    2014-01-01

    Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not have sharp contrasts to reproduce such scattering in the Green’s function through forward modeling

  18. Augmenting camera images for operators of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Veltman, J.A.; Oving, A.B.

    2003-01-01

    The manual control of the camera of an unmanned aerial vehicle (UAV) can be difficult due to several factors such as 1) time delays between steering input and changes of the monitor content, 2) low update rates of the camera images and 3) lack of situation awareness due to the remote position of the

  19. Rectification of aerial images using piecewise linear transformation

    International Nuclear Information System (INIS)

    Liew, L H; Lee, B Y; Wang, Y C; Cheah, W S

    2014-01-01

    Aerial images are widely used in various activities by providing visual records. This type of remotely sensed image is helpful in generating digital maps, managing ecology, monitoring crop growth and region surveying. Such images could provide insight into areas of interest that have lower altitude, particularly in regions where optical satellite imaging is prevented due to cloudiness. Aerial images captured using a non-metric cameras contain real details of the images as well as unexpected distortions. Distortions would affect the actual length, direction and shape of objects in the images. There are many sources that could cause distortions such as lens, earth curvature, topographic relief and the attitude of the aircraft that is used to carry the camera. These distortions occur differently, collectively and irregularly in the entire image. Image rectification is an essential image pre-processing step to eliminate or at least reduce the effect of distortions. In this paper, a non-parametric approach with piecewise linear transformation is investigated in rectifying distorted aerial images. The non-parametric approach requires a set of corresponding control points obtained from a reference image and a distorted image. The corresponding control points are then applied with piecewise linear transformation as geometric transformation. Piecewise linear transformation divides the image into regions by triangulation. Different linear transformations are employed separately to triangular regions instead of using a single transformation as the rectification model for the entire image. The result of rectification is evaluated using total root mean square error (RMSE). Experiments show that piecewise linear transformation could assist in improving the limitation of using global transformation to rectify images

  20. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, M. A. H.

    2014-08-05

    Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not have sharp contrasts to reproduce such scattering in the Green’s function through forward modeling. If properly imaged, internal multiples (internally scattered energy) can enhance the seismic image. Conventionally, to image internal multiples, accurate, sharp contrasts in the velocity model are required to construct a Green’s function with all the scattered energy. As an alternative, we have developed a generalized internal multiple imaging procedure that images any order internal scattering using the background Green’s function (from the surface to each image point), constructed from a smooth velocity model, usually used for conventional imaging. For the first-order internal multiples, the approach consisted of three steps, in which we first back propagated the recorded surface seismic data using the background Green’s function, then crosscorrelated the back-propagated data with the recorded data, and finally crosscorrelated the result with the original background Green’s function. This procedure images the contribution of the recorded first-order internal multiples, and it is almost free of the single-scattering recorded energy. The cost includes one additional crosscorrelation over the conventional single-scattering imaging application. We generalized this method to image internal multiples of any order separately. The resulting images can be added to the conventional single-scattering image, obtained, e.g., from Kirchhoff or reverse-time migration, to enhance the image. Application to synthetic data with reflectors illuminated by multiple scattering (double scattering) demonstrated the effectiveness of the approach.

  1. Radiometric corrections of the vignetting effect in aerial digital images

    Directory of Open Access Journals (Sweden)

    Andrés L. G. Jaime

    2004-07-01

    Full Text Available Monitoring agriculture cultures by aerial remote sensing present high potential of application. Despite of that potential, some problems still have been detected. One of them is the vignetting effect. This phenomenon introduces error in DN as far away as geometric image center the target is, according to the cos4Theta law. To study this effect it was adopted the procedure that computes Equation - Equação. If these values increase with the distances from images geometric center then the vignetting effect increases proportionally. The study was carried out analyzing the DN of white plate targets in aerial images in two dates 02/11/2001 and 11/04/2002. The white plate targets were distributed in the field and could be seen around the images geometric center, in different distances. In the aerial images the DN from the plates were extracted according to the cos4Theta law and compared to several distances in conformity to Equation - Equação. The results showed that the effect was observed in the first (02/11/2001 images, but not in later (11/04/2002 images. That difference can be explained by the different atmospheric haze and sensor-illumination source geometry. On the other hand when the experiment was performed at ground level the vignetting effect was identified. Therefore the effect exists and can be modeled.

  2. A Simple Aerial Photogrammetric Mapping System Overview and Image Acquisition Using Unmanned Aerial Vehicles (UAVs

    Directory of Open Access Journals (Sweden)

    Wenang Anurogo

    2017-06-01

    Full Text Available Aerial photogrammetry is one of the Alternative technologies for more detailed data, real time, fast and cheaper. Nowadays, many photogrammetric mapping methods have used UAV / unmanned drones or drones to retrieve and record data from an object in the earth. The application of drones in the field of geospatial science today is in great demand because of its relatively easy operation and relatively affordable cost compared to satellite systems especially high - resolution satellite imagery.  This research aims to determine the stage or overview of data retrieval process with DJI Phantom 4 (multi - rotor quad - copter drone with processing using third party software. This research also produces 2 - dimensional high resolution image data on the research area. Utilization of third party software (Agisoft PhotoScan making it easier to acquire and process aerial photogrammetric data. The results of aerial photogrammetric recording with a flying altitude of 70 meters obtained high resolution images with a spatial resolution of 2 inches / pixels.

  3. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    Science.gov (United States)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  4. ACCURACY OF MEASUREMENTS IN OBLIQUE AERIAL IMAGES FOR URBAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    W. Ostrowski

    2016-10-01

    Full Text Available Oblique aerial images have been a source of data for urban areas for several years. However, the accuracy of measurements in oblique images during this time has been limited to a single meter due to the use of direct -georeferencing technology and the underlying digital elevation model. Therefore, oblique images have been used mostly for visualization purposes. This situation changed in recent years as new methods, which allowed for a higher accuracy of exterior orientation, were developed. Current developments include the process of determining exterior orientation and the previous but still crucial process of tie point extraction. Progress in this area was shown in the ISPRS/EUROSDR Benchmark on Multi-Platform Photogrammetry and is also noticeable in the growing interest in the use of this kind of imagery. The higher level of accuracy in the orientation of oblique aerial images that has become possible in the last few years should result in a higher level of accuracy in the measurements of these types of images. The main goal of this research was to set and empirically verify the accuracy of measurements in oblique aerial images. The research focused on photogrammetric measurements composed of many images, which use a high overlap within an oblique dataset and different view angles. During the experiments, two series of images of urban areas were used. Both were captured using five DigiCam cameras in a Maltese cross configuration. The tilt angles of the oblique cameras were 45 degrees, and the position of the cameras during flight used a high grade GPS/INS navigation system. The orientation of the images was set using the Pix4D Mapper Pro software with both measurements of the in-flight camera position and the ground control points (measured with GPS RTK technology. To control the accuracy, check points were used (which were also measured with GPS RTK technology. As reference data for the whole study, an area of the city-based map was used

  5. Damage Degree Evaluation of Earthquake Area Using UAV Aerial Image

    Directory of Open Access Journals (Sweden)

    Jinhong Chen

    2016-01-01

    Full Text Available An Unmanned Aerial Vehicle (UAV system and its aerial image analysis method are developed to evaluate the damage degree of earthquake area. Both the single-rotor and the six-rotor UAVs are used to capture the visible light image of ground targets. Five types of typical ground targets are considered for the damage degree evaluation: the building, the road, the mountain, the riverway, and the vegetation. When implementing the image analysis, first the Image Quality Evaluation Metrics (IQEMs, that is, the image contrast, the image blur, and the image noise, are used to assess the imaging definition. Second, once the image quality is qualified, the Gray Level Cooccurrence Matrix (GLCM texture feature, the Tamura texture feature, and the Gabor wavelet texture feature are computed. Third, the Support Vector Machine (SVM classifier is employed to evaluate the damage degree. Finally, a new damage degree evaluation (DDE index is defined to assess the damage intensity of earthquake. Many experiment results have verified the correctness of proposed system and method.

  6. BUILDING DETECTION USING AERIAL IMAGES AND DIGITAL SURFACE MODELS

    Directory of Open Access Journals (Sweden)

    J. Mu

    2017-05-01

    Full Text Available In this paper a method for building detection in aerial images based on variational inference of logistic regression is proposed. It consists of three steps. In order to characterize the appearances of buildings in aerial images, an effective bag-of-Words (BoW method is applied for feature extraction in the first step. In the second step, a classifier of logistic regression is learned using these local features. The logistic regression can be trained using different methods. In this paper we adopt a fully Bayesian treatment for learning the classifier, which has a number of obvious advantages over other learning methods. Due to the presence of hyper prior in the probabilistic model of logistic regression, approximate inference methods have to be applied for prediction. In order to speed up the inference, a variational inference method based on mean field instead of stochastic approximation such as Markov Chain Monte Carlo is applied. After the prediction, a probabilistic map is obtained. In the third step, a fully connected conditional random field model is formulated and the probabilistic map is used as the data term in the model. A mean field inference is utilized in order to obtain a binary building mask. A benchmark data set consisting of aerial images and digital surfaced model (DSM released by ISPRS for 2D semantic labeling is used for performance evaluation. The results demonstrate the effectiveness of the proposed method.

  7. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    Directory of Open Access Journals (Sweden)

    Kalle Eerikäinen

    2008-08-01

    Full Text Available The aim was to use high resolution Aerial Laser Scanning (ALS data and aerial images to detect European aspen (Populus tremula L. from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species.

  8. A FAST APPROACH FOR STITCHING OF AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    A. Moussa

    2016-06-01

    Full Text Available The last few years have witnessed an increasing volume of aerial image data because of the extensive improvements of the Unmanned Aerial Vehicles (UAVs. These newly developed UAVs have led to a wide variety of applications. A fast assessment of the achieved coverage and overlap of the acquired images of a UAV flight mission is of great help to save the time and cost of the further steps. A fast automatic stitching of the acquired images can help to visually assess the achieved coverage and overlap during the flight mission. This paper proposes an automatic image stitching approach that creates a single overview stitched image using the acquired images during a UAV flight mission along with a coverage image that represents the count of overlaps between the acquired images. The main challenge of such task is the huge number of images that are typically involved in such scenarios. A short flight mission with image acquisition frequency of one second can capture hundreds to thousands of images. The main focus of the proposed approach is to reduce the processing time of the image stitching procedure by exploiting the initial knowledge about the images positions provided by the navigation sensors. The proposed approach also avoids solving for all the transformation parameters of all the photos together to save the expected long computation time if all the parameters were considered simultaneously. After extracting the points of interest of all the involved images using Scale-Invariant Feature Transform (SIFT algorithm, the proposed approach uses the initial image’s coordinates to build an incremental constrained Delaunay triangulation that represents the neighborhood of each image. This triangulation helps to match only the neighbor images and therefore reduces the time-consuming features matching step. The estimated relative orientation between the matched images is used to find a candidate seed image for the stitching process. The pre

  9. An automatic high precision registration method between large area aerial images and aerial light detection and ranging data

    Science.gov (United States)

    Du, Q.; Xie, D.; Sun, Y.

    2015-06-01

    The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.

  10. Optimal event handling by multiple unmanned aerial vehicles

    NARCIS (Netherlands)

    de Roo, Martijn; Frasca, Paolo; Carloni, Raffaella

    This paper proposes a control architecture for a fleet of unmanned aerial vehicles that is responsible for handling the events that take place in a given area. The architecture guarantees that each event is handled by the required number of vehicles in the shortest time, while the rest of the fleet

  11. BUILDING FAÇADE SEPARATION IN VERTICAL AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    P. Meixner

    2012-07-01

    Full Text Available Three-dimensional models of urban environments have great appeal and offer promises of interesting applications. While initially it was of interest to just have such 3D data, it increasingly becomes evident that one really would like to have interpreted urban objects. To be able to interpret buildings we have to split a visible whole building block into its different single buildings. Usually this is done using cadastral information to divide the single land parcels. The problem in this case is that sometimes the building boundaries derived from the cadastre are insufficiently accurate due to several reasons like old databases with lower accuracies or inaccuracies due to transformation between two coordinate systems. For this reason it can happen that a cadastral boundary coming from an old map is displaced by up to several meters and therefore divides two buildings incorrectly. To overcome such problems we incorporate the information from vertical aerial images. We introduce a façade separation method that is able to find individual building façades using multi view stereo. The purpose is to identify the individual façades and separate them from one another before on proceeds with the analysis of a façade's details. The source was a set of overlapping, thus "redundant" vertical aerial images taken by an UltraCam digital aerial camera. Therefore in a first step we determine the building block outlines using the building classification and use the height values from the Digital Surface Model (DSM to determine approximate "façade quadrilaterals". We also incorporate height discontinuities using the height profiles along the building outlines to enhance our façade separation. In a next step we detect repeated pattern in these "façade images" and use them to separate the façades respectively building blocks from one another. We show that this method can be successfully used to separate building façades using vertical aerial images with a

  12. Automatic Georeferencing of Aerial Images by Means of Topographic Database Information

    DEFF Research Database (Denmark)

    Høhle, Joachim

    The book includes a preface and four articles which deal with the automatic georeferencing of aerial images. The articles are the written contribution of an seminar, held at Aalborg University in October 2002. The georeferencing or orientation of aerial images is the first step in mapping tasks l...... like generation of orthoimages, updating of topographic map data bases and generation of digial terrain models.......The book includes a preface and four articles which deal with the automatic georeferencing of aerial images. The articles are the written contribution of an seminar, held at Aalborg University in October 2002. The georeferencing or orientation of aerial images is the first step in mapping tasks...

  13. Direct Penguin Counting Using Unmanned Aerial Vehicle Image

    Science.gov (United States)

    Hyun, C. U.; Kim, H. C.; Kim, J. H.; Hong, S. G.

    2015-12-01

    This study presents an application of unmanned aerial vehicle (UAV) images to monitor penguin colony in Baton Peninsula, King George Island, Antarctica. The area around Narębski Point located on the southeast coast of Barton Peninsula was designated as Antarctic Specially Protected Area No. 171 (ASPA 171), and Chinstrap and Gentoo penguins inhabit in this area. The UAV images were acquired in a part of ASPA 171 from four flights in a single day, Jan 18, 2014. About 360 images were mosaicked as an image of about 3 cm spatial resolution and then a subset including representative penguin rookeries was selected. The subset image was segmented based on gradient map of pixel values, and spectral and spatial attributes were assigned to each segment. The object based image analysis (OBIA) was conducted with consideration of spectral attributes including mean and minimum values of each segment and various shape attributes such as area, length, compactness and roundness to detect individual penguin. The segments indicating individual penguin were effectively detected on rookeries with high contrasts in the spectral and shape attributes. The importance of periodic and precise monitoring of penguins has been recognized because variations of their populations reflect environmental changes and disturbance from human activities. Utilization of very high resolution imaging method shown in this study can be applied to other penguin habitats in Antarctica, and the results will be able to support establishing effective environmental management plans.

  14. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    Science.gov (United States)

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  15. FITTING OF PARAMETRIC BUILDING MODELS TO OBLIQUE AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    U. S. Panday

    2012-09-01

    Full Text Available In literature and in photogrammetric workstations many approaches and systems to automatically reconstruct buildings from remote sensing data are described and available. Those building models are being used for instance in city modeling or in cadastre context. If a roof overhang is present, the building walls cannot be estimated correctly from nadir-view aerial images or airborne laser scanning (ALS data. This leads to inconsistent building outlines, which has a negative influence on visual impression, but more seriously also represents a wrong legal boundary in the cadaster. Oblique aerial images as opposed to nadir-view images reveal greater detail, enabling to see different views of an object taken from different directions. Building walls are visible from oblique images directly and those images are used for automated roof overhang estimation in this research. A fitting algorithm is employed to find roof parameters of simple buildings. It uses a least squares algorithm to fit projected wire frames to their corresponding edge lines extracted from the images. Self-occlusion is detected based on intersection result of viewing ray and the planes formed by the building whereas occlusion from other objects is detected using an ALS point cloud. Overhang and ground height are obtained by sweeping vertical and horizontal planes respectively. Experimental results are verified with high resolution ortho-images, field survey, and ALS data. Planimetric accuracy of 1cm mean and 5cm standard deviation was obtained, while buildings' orientation were accurate to mean of 0.23° and standard deviation of 0.96° with ortho-image. Overhang parameters were aligned to approximately 10cm with field survey. The ground and roof heights were accurate to mean of – 9cm and 8cm with standard deviations of 16cm and 8cm with ALS respectively. The developed approach reconstructs 3D building models well in cases of sufficient texture. More images should be acquired for

  16. Research of aerial imaging spectrometer data acquisition technology based on USB 3.0

    Science.gov (United States)

    Huang, Junze; Wang, Yueming; He, Daogang; Yu, Yanan

    2016-11-01

    With the emergence of UAV (unmanned aerial vehicle) platform for aerial imaging spectrometer, research of aerial imaging spectrometer DAS(data acquisition system) faces new challenges. Due to the limitation of platform and other factors, the aerial imaging spectrometer DAS requires small-light, low-cost and universal. Traditional aerial imaging spectrometer DAS system is expensive, bulky, non-universal and unsupported plug-and-play based on PCIe. So that has been unable to meet promotion and application of the aerial imaging spectrometer. In order to solve these problems, the new data acquisition scheme bases on USB3.0 interface.USB3.0 can provide guarantee of small-light, low-cost and universal relying on the forward-looking technology advantage. USB3.0 transmission theory is up to 5Gbps.And the GPIF programming interface achieves 3.2Gbps of the effective theoretical data bandwidth.USB3.0 can fully meet the needs of the aerial imaging spectrometer data transmission rate. The scheme uses the slave FIFO asynchronous data transmission mode between FPGA and USB3014 interface chip. Firstly system collects spectral data from TLK2711 of high-speed serial interface chip. Then FPGA receives data in DDR2 cache after ping-pong data processing. Finally USB3014 interface chip transmits data via automatic-dma approach and uploads to PC by USB3.0 cable. During the manufacture of aerial imaging spectrometer, the DAS can achieve image acquisition, transmission, storage and display. All functions can provide the necessary test detection for aerial imaging spectrometer. The test shows that system performs stable and no data lose. Average transmission speed and storage speed of writing SSD can stabilize at 1.28Gbps. Consequently ,this data acquisition system can meet application requirements for aerial imaging spectrometer.

  17. Semantic Segmentation of Aerial Images with AN Ensemble of Cnns

    Science.gov (United States)

    Marmanis, D.; Wegner, J. D.; Galliani, S.; Schindler, K.; Datcu, M.; Stilla, U.

    2016-06-01

    This paper describes a deep learning approach to semantic segmentation of very high resolution (aerial) images. Deep neural architectures hold the promise of end-to-end learning from raw images, making heuristic feature design obsolete. Over the last decade this idea has seen a revival, and in recent years deep convolutional neural networks (CNNs) have emerged as the method of choice for a range of image interpretation tasks like visual recognition and object detection. Still, standard CNNs do not lend themselves to per-pixel semantic segmentation, mainly because one of their fundamental principles is to gradually aggregate information over larger and larger image regions, making it hard to disentangle contributions from different pixels. Very recently two extensions of the CNN framework have made it possible to trace the semantic information back to a precise pixel position: deconvolutional network layers undo the spatial downsampling, and Fully Convolution Networks (FCNs) modify the fully connected classification layers of the network in such a way that the location of individual activations remains explicit. We design a FCN which takes as input intensity and range data and, with the help of aggressive deconvolution and recycling of early network layers, converts them into a pixelwise classification at full resolution. We discuss design choices and intricacies of such a network, and demonstrate that an ensemble of several networks achieves excellent results on challenging data such as the ISPRS semantic labeling benchmark, using only the raw data as input.

  18. Autonomous aerial vehicles : guidance, control, signal and image processing platform

    International Nuclear Information System (INIS)

    Al-Jarrah, M.; Adiansyah, S.; Marji, Z. M.; Chowdhury, M. S.

    2011-01-01

    The use of unmanned systems is gaining momentum in civil applications after successful use by the armed forces around the globe. Autonomous aerial vehicles are important for providing assistance in monitoring highways, power grid lines, borders, and surveillance of critical infrastructures. It is envisioned that cargo shipping will be completely handled by UAVs by the 2025. Civil use of unmanned autonomous systems brings serious challenges. The need for cost effectiveness, reliability, operation simplicity, safety, and cooperation with human and with other agents are among these challenges. Aerial vehicles operating in the civilian aerospace is the ultimate goal which requires these systems to achieve the reliability of manned aircraft while maintaining their cost effectiveness. In this presentation the development of an autonomous fixed and rotary wing aerial vehicle will be discussed. The architecture of the system from the mission requirements to low level auto pilot control laws will be discussed. Trajectory tracking and path following guidance and control algorithms commonly used and their implementation using of the shelf low cost components will be presented. Autonomous takeo? landing is a key feature that was implemented onboard the vehicle to complete its degree of autonomy. This is implemented based on accurate air-data system designed and fused with sonar measurements, INS/GPS measurements, and vector field method guidance laws. The outcomes of the proposed research is that the AUS-UAV platform named MAZARI is capable of autonomous takeoff and landing based on a pre scheduled flight path using way point navigation and sensor fusion of the inertial navigation system (INS) and global positioning system (GPS). Several technologies need to be mastered when developing a UAV. The navigation task and the need to fuse sensory information to estimate the location of the vehicle is critical to successful autonomous vehicle. Currently extended Kalman filtering is

  19. Mapping Reflectance Anisotropy of a Potato Canopy Using Aerial Images Acquired with an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Peter P. J. Roosjen

    2017-04-01

    Full Text Available Viewing and illumination geometry has a strong influence on optical measurements of natural surfaces due to their anisotropic reflectance properties. Typically, cameras on-board unmanned aerial vehicles (UAVs are affected by this because of their relatively large field of view (FOV and thus large range of viewing angles. In this study, we investigated the magnitude of reflectance anisotropy effects in the 500–900 nm range, captured by a frame camera mounted on a UAV during a standard mapping flight. After orthorectification and georeferencing of the images collected by the camera, we calculated the viewing geometry of all observations of each georeferenced ground pixel, forming a dataset with multi-angular observations. We performed UAV flights on two days during the summer of 2016 over an experimental potato field where different zones in the field received different nitrogen fertilization treatments. These fertilization levels caused variation in potato plant growth and thereby differences in structural properties such as leaf area index (LAI and canopy cover. We fitted the Rahman–Pinty–Verstraete (RPV model through the multi-angular observations of each ground pixel to quantify, interpret, and visualize the anisotropy patterns in our study area. The Θ parameter of the RPV model, which controls the proportion of forward and backward scattering, showed strong correlation with canopy cover, where in general an increase in canopy cover resulted in a reduction of backward scattering intensity, indicating that reflectance anisotropy contains information on canopy structure. In this paper, we demonstrated that anisotropy data can be extracted from measurements using a frame camera, collected during a typical UAV mapping flight. Future research will focus on how to use the anisotropy signal as a source of information for estimation of physical vegetation properties.

  20. Scheduling System for Multiple Unmanned Aerial Vehicles in Indoor Environments Using the CSP Approach

    DEFF Research Database (Denmark)

    Park, Youngsoo; Khosiawan, Yohanes; Moon, Ilkyeong

    2016-01-01

    In recent years there has been an increased demand in use of multiple unmanned aerial vehicles (UAVs) for surveillance and material handling tasks in indoor environments. However, only a limited number of studies have been reported on UAV scheduling in an indoor 3D environment. This paper present...

  1. Using aerial photography and image analysis to measure changes in giant reed populations

    Science.gov (United States)

    A study was conducted along the Rio Grande in southwest Texas to evaluate color-infrared aerial photography combined with supervised image analysis to quantify changes in giant reed (Arundo donax L.) populations over a 6-year period. Aerial photographs from 2002 and 2008 of the same seven study site...

  2. Aerial imaging for FABs: productivity and yield aspects

    Science.gov (United States)

    Englard, Ilan; Cohen, Yaron; Elblinger, Yair; Attal, Shay; Berns, Neil; Shoval, Lior; Ben-Yishai, Michael; Mangan, Shmoolik

    2009-03-01

    The economy of wafer fabs is changing faster for 3x geometry requirements and below. Mask set and exposure tool costs are almost certain to increase the overall cost per die requiring manufacturers to develop productivity and yield improvements to defray the lithography cell economic burden. Lithography cell cost effectiveness can be significantly improved by increasing mask availability while reducing the amount of mask sets needed during a product life cycle. Further efficiency can be gained from reducing send-ahead wafers and qualification cycle time, and elimination of inefficient metrology. Yield is the overriding die cost modulator and is significantly more sensitive to lithography as a result of masking steps required to fabricate the integrated circuit. Thus, for productivity to increase with minimal yield risk, the sample space of reticle induced source of variations should be large, with shortest measurement acquisition time possible. This paper presents the latest introduction of mask aerial imaging technology for the fab, Aera2TM for Lithography with IntenCTM, as an enabler for efficient lithography manufacturing. IntenCD is a high throughput, high density mask-based critical dimension (CD) mapping technology, with the potential for increasing productivity and yield in a wafer production environment. Connecting IntenCD to a feed forward advance process control (APC) reduces significantly the amount of traditional CD metrology required for robust wafer CD uniformity (CDU) correction and increases wafer CD uniformity. This in turn improves the lithography process window and yield and contributes to cost reduction and cycle time reduction of new reticles qualification. Advanced mask technology has introduced a new challenge. Exposure to 193nm wavelength stimulates haze growth on the mask and imposes a regular cleaning schedule. Cleaning eventually causes mask degradation. Haze growth impacts mask CD uniformity and induce global transmission fingerprint

  3. Comparison of Small Unmanned Aerial Vehicles Performance Using Image Processing

    Directory of Open Access Journals (Sweden)

    Esteban Cano

    2017-01-01

    Full Text Available Precision agriculture is a farm management technology that involves sensing and then responding to the observed variability in the field. Remote sensing is one of the tools of precision agriculture. The emergence of small unmanned aerial vehicles (sUAV have paved the way to accessible remote sensing tools for farmers. This paper describes the development of an image processing approach to compare two popular off-the-shelf sUAVs: 3DR Iris+ and DJI Phantom 2. Both units are equipped with a camera gimbal attached with a GoPro camera. The comparison of the two sUAV involves a hovering test and a rectilinear motion test. In the hovering test, the sUAV was allowed to hover over a known object and images were taken every quarter of a second for two minutes. For the image processing evaluation, the position of the object in the images was measured and this was used to assess the stability of the sUAV while hovering. In the rectilinear test, the sUAV was allowed to follow a straight path and images of a lined track were acquired. The lines on the images were then measured on how accurate the sUAV followed the path. The hovering test results show that the 3DR Iris+ had a maximum position deviation of 0.64 m (0.126 m root mean square RMS displacement while the DJI Phantom 2 had a maximum deviation of 0.79 m (0.150 m RMS displacement. In the rectilinear motion test, the maximum displacement for the 3DR Iris+ and the DJI phantom 2 were 0.85 m (0.134 m RMS displacement and 0.73 m (0.372 m RMS displacement. These results demonstrated that the two sUAVs performed well in both the hovering test and the rectilinear motion test and thus demonstrated that both sUAVs can be used for civilian applications such as agricultural monitoring. The results also showed that the developed image processing approach can be used to evaluate performance of a sUAV and has the potential to be used as another feedback control parameter for autonomous navigation.

  4. Mapping reflectance anisotropy of a potato canopy using aerial images acquired with an unmanned aerial vehicle

    NARCIS (Netherlands)

    Roosjen, Peter; Suomalainen, Juha; Bartholomeus, Harm; Kooistra, Lammert; Clevers, Jan

    2017-01-01

    Viewing and illumination geometry has a strong influence on optical measurements of natural surfaces due to their anisotropic reflectance properties. Typically, cameras on-board unmanned aerial vehicles (UAVs) are affected by this because of their relatively large field of view (FOV) and thus large

  5. Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)

    Science.gov (United States)

    Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu

    2017-06-01

    The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.

  6. Local Deep Hashing Matching of Aerial Images Based on Relative Distance and Absolute Distance Constraints

    Directory of Open Access Journals (Sweden)

    Suting Chen

    2017-12-01

    Full Text Available Aerial images have features of high resolution, complex background, and usually require large amounts of calculation, however, most algorithms used in matching of aerial images adopt the shallow hand-crafted features expressed as floating-point descriptors (e.g., SIFT (Scale-invariant Feature Transform, SURF (Speeded Up Robust Features, which may suffer from poor matching speed and are not well represented in the literature. Here, we propose a novel Local Deep Hashing Matching (LDHM method for matching of aerial images with large size and with lower complexity or fast matching speed. The basic idea of the proposed algorithm is to utilize the deep network model in the local area of the aerial images, and study the local features, as well as the hash function of the images. Firstly, according to the course overlap rate of aerial images, the algorithm extracts the local areas for matching to avoid the processing of redundant information. Secondly, a triplet network structure is proposed to mine the deep features of the patches of the local image, and the learned features are imported to the hash layer, thus obtaining the representation of a binary hash code. Thirdly, the constraints of the positive samples to the absolute distance are added on the basis of the triplet loss, a new objective function is constructed to optimize the parameters of the network and enhance the discriminating capabilities of image patch features. Finally, the obtained deep hash code of each image patch is used for the similarity comparison of the image patches in the Hamming space to complete the matching of aerial images. The proposed LDHM algorithm evaluates the UltraCam-D dataset and a set of actual aerial images, simulation result demonstrates that it may significantly outperform the state-of-the-art algorithm in terms of the efficiency and performance.

  7. Remote Sensing Image Registration Using Multiple Image Features

    Directory of Open Access Journals (Sweden)

    Kun Yang

    2017-06-01

    Full Text Available Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform distance which is endowed with the intensity information is used to measure the scale space extrema. (iii To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.

  8. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen

    2017-12-22

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  9. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen; Schuster, Gerard T.

    2017-01-01

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  10. THE USE OF MOBILE LASER SCANNING DATA AND UNMANNED AERIAL VEHICLE IMAGES FOR 3D MODEL RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2013-08-01

    Full Text Available The increasing availability in multiple data sources acquired by different sensor platforms has provided the great advantages for desired result achievement. This paper proposes the use of both mobile laser scanning (MLS data and Unmanned Aerial Vehicle (UAV images for 3D model reconstruction. Due to no available exterior orientation parameters for UAV images, the first task is to georeference these images to 3D points. In order to fast and accurate acquire 3D points which are also easy to be found the corresponding locations on UAV images, automated pole extraction from MLS was developed. After georeferencing UAV images, building roofs are acquired from those images and building walls are extracted from MLS data. The roofs and the walls are combined to achieve the complete building models.

  11. Multiple Segmentation of Image Stacks

    DEFF Research Database (Denmark)

    Smets, Jonathan; Jaeger, Manfred

    2014-01-01

    We propose a method for the simultaneous construction of multiple image segmentations by combining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden Markov random field structure. The resulting method constructs for a single image several, alternative...

  12. High Density Aerial Image Matching: State-Of and Future Prospects

    Science.gov (United States)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  13. STUDY OF AUTOMATIC IMAGE RECTIFICATION AND REGISTRATION OF SCANNED HISTORICAL AERIAL PHOTOGRAPHS

    Directory of Open Access Journals (Sweden)

    H. R. Chen

    2016-06-01

    Full Text Available Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  14. NEAR REAL-TIME GEOREFERENCE OF UMANNED AERIAL VEHICLE IMAGES FOR POST-EARTHQUAKE RESPONSE

    OpenAIRE

    Wang, S.; Wang, X.; Dou, A.; Yuan, X.; Ding, L.; Ding, X.

    2018-01-01

    The rapid collection of Unmanned Aerial Vehicle (UAV) remote sensing images plays an important role in the fast submitting disaster information and the monitored serious damaged objects after the earthquake. However, for hundreds of UAV images collected in one flight sortie, the traditional data processing methods are image stitching and three-dimensional reconstruction, which take one to several hours, and affect the speed of disaster response. If the manual searching method is employed, we ...

  15. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.

    Science.gov (United States)

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-11-24

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.

  16. Road Extraction and Car Detection from Aerial Image Using Intensity and Color

    Directory of Open Access Journals (Sweden)

    Vahid Ghods

    2011-07-01

    Full Text Available In this paper a new automatic approach to road extraction from aerial images is proposed. The initialization strategies are based on the intensity, color, and Hough transform. After road elements extraction, chain codes are calculated. In the last step, using shadow, cars on the roads are detected. We implemented our method on the 25 images from "Google Earth" database. The experiments show an increase in both the completeness and the quality indexes for the extracted road.

  17. Unmanned Aerial Vehicles for Photogrammetry: Analysis of Orthophoto Images over the Territory of Lithuania

    Directory of Open Access Journals (Sweden)

    J. Suziedelyte Visockiene

    2016-01-01

    Full Text Available It has been recently observed that aircrafts tend to be replaced by light, simple structure unmanned aerial vehicles (UAV or mini unmanned aerial vehicles (MUAV with the purpose of updating the field of aerial photogrammetry. The built-in digital photo camera takes images of the Earth’s surface. To satisfy the photogrammetric requirements of the photographic images, it is necessary to carry out the terrestrial project planning of the flight path before the flight, to select the appropriate flying height, the time for acquiring images, the speed of the UAV, and other parameters. The paper presents the results of project calculations concerning the UAV flights and the analysis of the terrestrial images acquired during the field-testing flights. The experience carried out so far in the Lithuanian landscape is shown. The taken images have been processed by PhotoMod photogrammetric system. The paper presents the results of calculation of the project values of the UAV flights taking the images by digital camera Canon S100 and the analysis of the possibilities of the UAV orthophoto images’ mode.

  18. Evaluation of Color Settings in Aerial Images with the Use of Eye-Tracking User Study

    Science.gov (United States)

    Mirijovsky, J.; Popelka, S.

    2016-06-01

    The main aim of presented paper is to find the most realistic and preferred color settings for four different types of surfaces on the aerial images. This will be achieved through user study with the use of eye-movement recording. Aerial images taken by the unmanned aerial system were used as stimuli. From each image, squared crop area containing one of the studied types of surfaces (asphalt, concrete, water, soil, and grass) was selected. For each type of surface, the real value of reflectance was found with the use of precise spectroradiometer ASD HandHeld 2 which measures the reflectance. The device was used at the same time as aerial images were captured, so lighting conditions and state of vegetation were equal. The spectral resolution of the ASD device is better than 3.0 nm. For defining the RGB values of selected type of surface, the spectral reflectance values recorded by the device were merged into wider groups. Finally, we get three groups corresponding to RGB color system. Captured images were edited with the graphic editor Photoshop CS6. Contrast, clarity, and brightness were edited for all surface types on images. Finally, we get a set of 12 images of the same area with different color settings. These images were put into the grid and used as stimuli for the eye-tracking experiment. Eye-tracking is one of the methods of usability studies and it is considered as relatively objective. Eye-tracker SMI RED 250 with the sampling frequency 250 Hz was used in the study. As respondents, a group of 24 students of Geoinformatics and Geography was used. Their task was to select which image in the grid has the best color settings. The next task was to select which color settings they prefer. Respondents' answers were evaluated and the most realistic and most preferable color settings were found. The advantage of the eye-tracking evaluation was that also the process of the selection of the answers was analyzed. Areas of Interest were marked around each image in the

  19. Application of machine learning for the evaluation of turfgrass plots using aerial images

    Science.gov (United States)

    Ding, Ke; Raheja, Amar; Bhandari, Subodh; Green, Robert L.

    2016-05-01

    Historically, investigation of turfgrass characteristics have been limited to visual ratings. Although relevant information may result from such evaluations, final inferences may be questionable because of the subjective nature in which the data is collected. Recent advances in computer vision techniques allow researchers to objectively measure turfgrass characteristics such as percent ground cover, turf color, and turf quality from the digital images. This paper focuses on developing a methodology for automated assessment of turfgrass quality from aerial images. Images of several turfgrass plots of varying quality were gathered using a camera mounted on an unmanned aerial vehicle. The quality of these plots were also evaluated based on visual ratings. The goal was to use the aerial images to generate quality evaluations on a regular basis for the optimization of water treatment. Aerial images are used to train a neural network so that appropriate features such as intensity, color, and texture of the turfgrass are extracted from these images. Neural network is a nonlinear classifier commonly used in machine learning. The output of the neural network trained model is the ratings of the grass, which is compared to the visual ratings. Currently, the quality and the color of turfgrass, measured as the greenness of the grass, are evaluated. The textures are calculated using the Gabor filter and co-occurrence matrix. Other classifiers such as support vector machines and simpler linear regression models such as Ridge regression and LARS regression are also used. The performance of each model is compared. The results show encouraging potential for using machine learning techniques for the evaluation of turfgrass quality and color.

  20. A Backward Pyramid Oriented Optical Flow Field Computing Method for Aerial Image

    Directory of Open Access Journals (Sweden)

    LI Jiatian

    2016-09-01

    Full Text Available Aerial image optical flow field is the foundation for detecting moving objects at low altitude and obtaining change information. In general,the image pyramid structure is embedded in numerical procedure in order to enhance the convergence globally. However,more often than not,the pyramid structure is constructed using a bottom-up approach progressively,ignoring the geometry imaging process.In particular,when the ground objects moving it will lead to miss optical flow or the optical flow too small that could hardly sustain the subsequent modeling and analyzing issues. So a backward pyramid structure is proposed on the foundation of top-level standard image. Firstly,down sampled factors of top-level image are calculated quantitatively through central projection,which making the optical flow in top-level image represent the shifting threshold of the set ground target. Secondly,combining top-level image with its original,the down sampled factors in middle layer are confirmed in a constant proportion way. Finally,the image of middle layer is achieved by Gaussian smoothing and image interpolation,and meanwhile the pyramid is formed. The comparative experiments and analysis illustrate that the backward pyramid can calculate the optic flow field in aerial image accurately,and it has advantages in restraining small ground displacement.

  1. Oblique aerial images and their use in cultural heritage documentation

    DEFF Research Database (Denmark)

    Höhle, Joachim

    2013-01-01

    on automatically derived point clouds of high density. Each point will be supplemented with colour and other attributes. The problems experienced in these processes and the solutions to these problems are presented. The applied tools are a combination of professional tools, free software, and of own software...... developments. Special attention is given to the quality of input images. Investigations are carried out on edges in the images. The combination of oblique and nadir images enables new possibilities in the processing. The use of the near-infrared channel besides the red, green, and blue channel of the applied...

  2. Employing Multiple Unmanned Aerial Vehicles for Co-Operative Path Planning

    Directory of Open Access Journals (Sweden)

    Durdana Habib

    2013-05-01

    Full Text Available Abstract In this paper, we work to develop a path planning solution for a group of Unmanned Aerial Vehicles (UAVs using a Mixed Integer Linear Programming (MILP approach. Co-operation among team members not only helps reduce mission time, it makes the execution more robust in dynamic environments. However, the problem becomes more challenging as it requires optimal resource allocation and is NP-hard. Since UAVs may be lost or may suffer significant damage during the course of the mission, plans may need to be modified in real-time as the mission proceeds. Therefore, multiple UAVs have a better chance of completing a mission in the face of failures. Such military operations can be treated as a variant of the Multiple Depot Vehicle Routing Problem (MDVRP. The proposed solution must be such that m UAVs start from multiple source locations to visit n targets and return to a set of destination locations such that (1 each target is visited exactly by one of the chosen UAVs (2 the total distance travelled by the group is minimized and (3 the number of targets that each UAV visits may not be less than K or greater than L.

  3. Detection of High-Density Crowds in Aerial Images Using Texture Classification

    Directory of Open Access Journals (Sweden)

    Oliver Meynberg

    2016-06-01

    Full Text Available Automatic crowd detection in aerial images is certainly a useful source of information to prevent crowd disasters in large complex scenarios of mass events. A number of publications employ regression-based methods for crowd counting and crowd density estimation. However, these methods work only when a correct manual count is available to serve as a reference. Therefore, it is the objective of this paper to detect high-density crowds in aerial images, where counting– or regression–based approaches would fail. We compare two texture–classification methodologies on a dataset of aerial image patches which are grouped into ranges of different crowd density. These methodologies are: (1 a Bag–of–words (BoW model with two alternative local features encoded as Improved Fisher Vectors and (2 features based on a Gabor filter bank. Our results show that a classifier using either BoW or Gabor features can detect crowded image regions with 97% classification accuracy. In our tests of four classes of different crowd-density ranges, BoW–based features have a 5%–12% better accuracy than Gabor.

  4. Auditory decision aiding in supervisory control of multiple unmanned aerial vehicles.

    Science.gov (United States)

    Donmez, Birsen; Cummings, M L; Graham, Hudson D

    2009-10-01

    This article is an investigation of the effectiveness of sonifications, which are continuous auditory alerts mapped to the state of a monitored task, in supporting unmanned aerial vehicle (UAV) supervisory control. UAV supervisory control requires monitoring a UAV across multiple tasks (e.g., course maintenance) via a predominantly visual display, which currently is supported with discrete auditory alerts. Sonification has been shown to enhance monitoring performance in domains such as anesthesiology by allowing an operator to immediately determine an entity's (e.g., patient) current and projected states, and is a promising alternative to discrete alerts in UAV control. However, minimal research compares sonification to discrete alerts, and no research assesses the effectiveness of sonification for monitoring multiple entities (e.g., multiple UAVs). The authors conducted an experiment with 39 military personnel, using a simulated setup. Participants controlled single and multiple UAVs and received sonifications or discrete alerts based on UAV course deviations and late target arrivals. Regardless of the number of UAVs supervised, the course deviation sonification resulted in reactions to course deviations that were 1.9 s faster, a 19% enhancement, compared with discrete alerts. However, course deviation sonifications interfered with the effectiveness of discrete late arrival alerts in general and with operator responses to late arrivals when supervising multiple vehicles. Sonifications can outperform discrete alerts when designed to aid operators to predict future states of monitored tasks. However, sonifications may mask other auditory alerts and interfere with other monitoring tasks that require divided attention. This research has implications for supervisory control display design.

  5. Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover

    Science.gov (United States)

    Melin, M.; Korhonen, L.; Kukkonen, M.; Packalen, P.

    2017-07-01

    Canopy cover (CC) is a variable used to describe the status of forests and forested habitats, but also the variable used primarily to define what counts as a forest. The estimation of CC has relied heavily on remote sensing with past studies focusing on satellite imagery as well as Airborne Laser Scanning (ALS) using light detection and ranging (lidar). Of these, ALS has been proven highly accurate, because the fraction of pulses penetrating the canopy represents a direct measurement of canopy gap percentage. However, the methods of photogrammetry can be applied to produce point clouds fairly similar to airborne lidar data from aerial images. Currently there is little information about how well such point clouds measure canopy density and gaps. The aim of this study was to assess the suitability of aerial image point clouds for CC estimation and compare the results with those obtained using spectral data from aerial images and Landsat 5. First, we modeled CC for n = 1149 lidar plots using field-measured CCs and lidar data. Next, this data was split into five subsets in north-south direction (y-coordinate). Finally, four CC models (AerialSpectral, AerialPointcloud, AerialCombi (spectral + pointcloud) and Landsat) were created and they were used to predict new CC values to the lidar plots, subset by subset, using five-fold cross validation. The Landsat and AerialSpectral models performed with RMSEs of 13.8% and 12.4%, respectively. AerialPointcloud model reached an RMSE of 10.3%, which was further improved by the inclusion of spectral data; RMSE of the AerialCombi model was 9.3%. We noticed that the aerial image point clouds managed to describe only the outermost layer of the canopy and missed the details in lower canopy, which was resulted in weak characterization of the total CC variation, especially in the tails of the data.

  6. Counter Unmanned Aerial Systems Testing: Evaluation of VIS SWIR MWIR and LWIR passive imagers.

    Energy Technology Data Exchange (ETDEWEB)

    Birch, Gabriel Carlisle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Woo, Bryana Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report contains analysis of unmanned aerial systems as imaged by visible, short-wave infrared, mid-wave infrared, and long-wave infrared passive devices. Testing was conducted at the Nevada National Security Site (NNSS) during the week of August 15, 2016. Target images in all spectral bands are shown and contrast versus background is reported. Calculations are performed to determine estimated pixels-on-target for detection and assessment levels, and the number of pixels needed to cover a hemisphere for detection or assessment at defined distances. Background clutter challenges are qualitatively discussed for different spectral bands, and low contrast scenarios are highlighted for long-wave infrared imagers.

  7. ORIENTATION AND DENSE RECONSTRUCTION OF UNORDERED TERRESTRIAL AND AERIAL WIDE BASELINE IMAGE SETS

    Directory of Open Access Journals (Sweden)

    J. Bartelsen

    2012-07-01

    Full Text Available In this paper we present an approach for detailed and precise automatic dense 3D reconstruction using images from consumer cameras. The major difference between our approach and many others is that we focus on wide-baseline image sets. We have combined and improved several methods, particularly, least squares matching, RANSAC, scale-space maxima and bundle adjustment, for robust matching and parameter estimation. Point correspondences and the five-point algorithm lead to relative orientation. Due to our robust matching method it is possible to orient images under much more unfavorable conditions, for instance concerning illumination changes or scale differences, than for often used operators such as SIFT. For dense reconstruction, we use our orientation as input for Semiglobal Matching (SGM resulting into dense depth images. The latter can be fused into a 2.5D model for eliminating the redundancy of the highly overlapping depth images. However, some applications require full 3D models. A solution to this problem is part of our current work, for which preliminary results are presented in this paper. With very small unmanned aerial systems (Micro UAS it is possible to acquire images which have a perspective similar to terrestrial images and can thus be combined with them. Such a combination is useful for an almost complete 3D reconstruction of urban scenes. We have applied our approach to several hundred aerial and terrestrial images and have generated detailed 2.5D and 3D models of urban areas.

  8. Application of aerial image based information for coastal habitat research

    DEFF Research Database (Denmark)

    Juel, Anders

    2014-01-01

    and research in coastal terrestrial habitats. It further presents new insight into the mechanisms determining the spatial patterns of vegetation across coastal landscapes. These topics are investigated by combining fine-scale vegetation information from a comprehensive field programme with object-based image...

  9. Operational Data Augmentation in Classifying Single Aerial Images of Animals

    NARCIS (Netherlands)

    Okafor, Emmanuel; Smit, Rik; Schomaker, Lambertus; Wiering, Marco

    2017-01-01

    In deep learning, data augmentation is important to increase the amount of training images to obtain higher classification accuracies. Most data-augmentation methods adopt the use of the following techniques: cropping, mirroring, color casting, scaling and rotation for creating additional training

  10. Moving object detection using dynamic motion modelling from UAV aerial images.

    Science.gov (United States)

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

  11. First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima

    Science.gov (United States)

    Mochizuki, S.; Kataoka, J.; Tagawa, L.; Iwamoto, Y.; Okochi, H.; Katsumi, N.; Kinno, S.; Arimoto, M.; Maruhashi, T.; Fujieda, K.; Kurihara, T.; Ohsuka, S.

    2017-11-01

    Considerable amounts of radioactive substances (mainly 137Cs and 134Cs) were released into the environment after the Japanese nuclear disaster in 2011. Some restrictions on residence areas were lifted in April 2017, owing to the successive and effective decontamination operations. However, the distribution of radioactive substances in vast areas of mountain, forest and satoyama close to the city is still unknown; thus, decontamination operations in such areas are being hampered. In this paper, we report on the first aerial gamma-ray imaging of a schoolyard in Fukushima using a drone that carries a high sensitivity Compton camera. We show that the distribution of 137Cs in regions with a diameter of several tens to a hundred meters can be imaged with a typical resolution of 2-5 m within a 10-20 min flights duration. The aerial gamma-ray images taken 10 m and 20 m above the ground are qualitatively consistent with a dose map reconstructed from the ground-based measurements using a survey meter. Although further quantification is needed for the distance and air-absorption corrections to derive in situ dose map, such an aerial drone system can reduce measurement time by a factor of ten and is suitable for place where ground-based measurement are difficult.

  12. Moving object detection in top-view aerial videos improved by image stacking

    Science.gov (United States)

    Teutsch, Michael; Krüger, Wolfgang; Beyerer, Jürgen

    2017-08-01

    Image stacking is a well-known method that is used to improve the quality of images in video data. A set of consecutive images is aligned by applying image registration and warping. In the resulting image stack, each pixel has redundant information about its intensity value. This redundant information can be used to suppress image noise, resharpen blurry images, or even enhance the spatial image resolution as done in super-resolution. Small moving objects in the videos usually get blurred or distorted by image stacking and thus need to be handled explicitly. We use image stacking in an innovative way: image registration is applied to small moving objects only, and image warping blurs the stationary background that surrounds the moving objects. Our video data are coming from a small fixed-wing unmanned aerial vehicle (UAV) that acquires top-view gray-value images of urban scenes. Moving objects are mainly cars but also other vehicles such as motorcycles. The resulting images, after applying our proposed image stacking approach, are used to improve baseline algorithms for vehicle detection and segmentation. We improve precision and recall by up to 0.011, which corresponds to a reduction of the number of false positive and false negative detections by more than 3 per second. Furthermore, we show how our proposed image stacking approach can be implemented efficiently.

  13. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    Directory of Open Access Journals (Sweden)

    Maria Marsella

    2014-12-01

    Full Text Available In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP and current Digital Elevation Models (DEM are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy.

  14. Comparisons of feature extraction algorithm based on unmanned aerial vehicle image

    Directory of Open Access Journals (Sweden)

    Xi Wenfei

    2017-07-01

    Full Text Available Feature point extraction technology has become a research hotspot in the photogrammetry and computer vision. The commonly used point feature extraction operators are SIFT operator, Forstner operator, Harris operator and Moravec operator, etc. With the high spatial resolution characteristics, UAV image is different from the traditional aviation image. Based on these characteristics of the unmanned aerial vehicle (UAV, this paper uses several operators referred above to extract feature points from the building images, grassland images, shrubbery images, and vegetable greenhouses images. Through the practical case analysis, the performance, advantages, disadvantages and adaptability of each algorithm are compared and analyzed by considering their speed and accuracy. Finally, the suggestions of how to adapt different algorithms in diverse environment are proposed.

  15. Digital image integration technique of multi-geoscience information dominated by aerial radiometric measurements

    International Nuclear Information System (INIS)

    Liu Dechang; Sun Maorong; Zhu Deling; Zhang Jingbo; He Jianguo; Dong Xiuzhen

    1992-02-01

    The geologic metallogenetic environment of uranium at Lian Shan Guan region has been studied by using digital image integration technique of multi-geoscience information with aerial radiometric measurements. It includes the classification of uranium-bearing rock, recognizing patterns of ore-forming and geologic mapping in ore field. Some new tectonic structure was found in this region that gives significant information for further exploring of uranium ore. After multi-parameters screening of aerial radiometric data, patterns recognizing and multi-geoscience information integration analysis, four prospective metallogenetic zones were predicted, and the predication was proved by further geologic survey. Three of the four zones are very encouraging, where ore-forming structures, hydrothermal deposits, wall-rock alteration, primary and secondary uranium ore and rich uranium mineralization are discovered. The department of geologic exploring has decided that these zones will enjoy priority in the examination for further prospecting of uranium ores

  16. COMPREHENSIVE COMPARISON OF TWO IMAGE-BASED POINT CLOUDS FROM AERIAL PHOTOS WITH AIRBORNE LIDAR FOR LARGE-SCALE MAPPING

    Directory of Open Access Journals (Sweden)

    E. Widyaningrum

    2017-09-01

    Full Text Available The integration of computer vision and photogrammetry to generate three-dimensional (3D information from images has contributed to a wider use of point clouds, for mapping purposes. Large-scale topographic map production requires 3D data with high precision and accuracy to represent the real conditions of the earth surface. Apart from LiDAR point clouds, the image-based matching is also believed to have the ability to generate reliable and detailed point clouds from multiple-view images. In order to examine and analyze possible fusion of LiDAR and image-based matching for large-scale detailed mapping purposes, point clouds are generated by Semi Global Matching (SGM and by Structure from Motion (SfM. In order to conduct comprehensive and fair comparison, this study uses aerial photos and LiDAR data that were acquired at the same time. Qualitative and quantitative assessments have been applied to evaluate LiDAR and image-matching point clouds data in terms of visualization, geometric accuracy, and classification result. The comparison results conclude that LiDAR is the best data for large-scale mapping.

  17. Registration of airborne LiDAR data and aerial images based on straight lines and POS data

    Science.gov (United States)

    Du, Quanye; Xu, Biao; Cao, Hui

    2009-10-01

    This paper presents a registration method which based on straight lines primitive. Firstly, 2D straight lines are extracted from aerial images using Canny operator and straight line fitting. In the similar way, 3D straight lines are extracted from LiDAR range images which derive from laser scanning point cloud. Secondly, 3D straight lines are projected to aerial images using collinearity equations and Position and Orientation System (POS) data. Then the corresponding lines are determined by straight line error. At last, each image's new exterior orientation elements are calculated by generalized point (straight line) photogrammetry.

  18. Registration of Urban Aerial Image and LiDAR Based on Line Vectors

    Directory of Open Access Journals (Sweden)

    Qinghong Sheng

    2017-09-01

    Full Text Available In a traditional registration of a single aerial image with airborne light detection and ranging (LiDAR data using linear features that regard line direction as a control or linear features as constraints in the solution, lacking the constraint of linear position leads to the error propagation of the adjustment model. To solve this problem, this paper presents a line vector-based registration mode (LVR in which image rays and LiDAR lines are expressed by a line vector that integrates the line direction and the line position. A registration equation of line vector is set up by coplanar imaging rays and corresponding control lines. Three types of datasets consisting of synthetic, theInternational Society for Photogrammetry and Remote Sensing (ISPRS test project, and real aerial data are used. A group of progressive experiments is undertaken to evaluate the robustness of the LVR. Experimental results demonstrate that the integrated line direction and the line position contributes a great deal to the theoretical and real accuracies of the unknowns, as well as the stability of the adjustment model. This paper provides a new suggestion that, for a single image and LiDAR data, registration in urban areas can be accomplished by accommodating rich line features.

  19. Algorithm for automatic image dodging of unmanned aerial vehicle images using two-dimensional radiometric spatial attributes

    Science.gov (United States)

    Li, Wenzhuo; Sun, Kaimin; Li, Deren; Bai, Ting

    2016-07-01

    Unmanned aerial vehicle (UAV) remote sensing technology has come into wide use in recent years. The poor stability of the UAV platform, however, produces more inconsistencies in hue and illumination among UAV images than other more stable platforms. Image dodging is a process used to reduce these inconsistencies caused by different imaging conditions. We propose an algorithm for automatic image dodging of UAV images using two-dimensional radiometric spatial attributes. We use object-level image smoothing to smooth foreground objects in images and acquire an overall reference background image by relative radiometric correction. We apply the Contourlet transform to separate high- and low-frequency sections for every single image, and replace the low-frequency section with the low-frequency section extracted from the corresponding region in the overall reference background image. We apply the inverse Contourlet transform to reconstruct the final dodged images. In this process, a single image must be split into reasonable block sizes with overlaps due to large pixel size. Experimental mosaic results show that our proposed method reduces the uneven distribution of hue and illumination. Moreover, it effectively eliminates dark-bright interstrip effects caused by shadows and vignetting in UAV images while maximally protecting image texture information.

  20. ANALYZING SPECTRAL CHARACTERISTICS OF SHADOW AREA FROM ADS-40 HIGH RADIOMETRIC RESOLUTION AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    Y.-T. Hsieh

    2016-06-01

    Full Text Available The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i The DN values in shadow area are much lower than in nonshadow area; (ii DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv The shadow area NIR of vegetation category also shows a strong reflection; (v Generally, vegetation indexes (NDVI still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40 is potential for the extract land cover information of shadow areas.

  1. Mapping rock forming minerals at Boundary Canyon, Death Valey National Park, California, using aerial SEBASS thermal infrared hyperspectral image data

    Science.gov (United States)

    Aslett, Zan; Taranik, James V.; Riley, Dean N.

    2018-02-01

    Aerial spatially enhanced broadband array spectrograph system (SEBASS) long-wave infrared (LWIR) hyperspectral image data were used to map the distribution of rock-forming minerals indicative of sedimentary and meta-sedimentary lithologies around Boundary Canyon, Death Valley, California, USA. Collection of data over the Boundary Canyon detachment fault (BCDF) facilitated measurement of numerous lithologies representing a contact between the relatively unmetamorphosed Grapevine Mountains allochthon and the metamorphosed core complex of the Funeral Mountains autochthon. These included quartz-rich sandstone, quartzite, conglomerate, and alluvium; muscovite-rich schist, siltstone, and slate; and carbonate-rich dolomite, limestone, and marble, ranging in age from late Precambrian to Quaternary. Hyperspectral data were reduced in dimensionality and processed to statistically identify and map unique emissivity spectra endmembers. Some minerals (e.g., quartz and muscovite) dominate multiple lithologies, resulting in a limited ability to differentiate them. Abrupt variations in image data emissivity amongst pelitic schists corresponded to amphibolite; these rocks represent gradation from greenschist- to amphibolite-metamorphic facies lithologies. Although the full potential of LWIR hyperspectral image data may not be fully utilized within this study area due to lack of measurable spectral distinction between rocks of similar bulk mineralogy, the high spectral resolution of the image data was useful in characterizing silicate- and carbonate-based sedimentary and meta-sedimentary rocks in proximity to fault contacts, as well as for interpreting some mineral mixtures.

  2. Automated Registration Of Images From Multiple Sensors

    Science.gov (United States)

    Rignot, Eric J. M.; Kwok, Ronald; Curlander, John C.; Pang, Shirley S. N.

    1994-01-01

    Images of terrain scanned in common by multiple Earth-orbiting remote sensors registered automatically with each other and, where possible, on geographic coordinate grid. Simulated image of terrain viewed by sensor computed from ancillary data, viewing geometry, and mathematical model of physics of imaging. In proposed registration algorithm, simulated and actual sensor images matched by area-correlation technique.

  3. Extracting Buildings from True Color Stereo Aerial Images Using a Decision Making Strategy

    Directory of Open Access Journals (Sweden)

    Eufemia Tarantino

    2011-07-01

    Full Text Available The automatic extraction of buildings from true color stereo aerial imagery in a dense built-up area is the main focus of this paper. Our approach strategy aimed at reducing the complexity of the image content by means of a three-step procedure combining reliable geospatial image analysis techniques. Even if it is a rudimentary first step towards a more general approach, the method presented proved useful in urban sprawl studies for rapid map production in flat area by retrieving indispensable information on buildings from scanned historic aerial photography. After the preliminary creation of a photogrammetric model to manage Digital Surface Model and orthophotos, five intermediate mask-layers data (Elevation, Slope, Vegetation, Shadow, Canny, Shadow, Edges were processed through the combined use of remote sensing image processing and GIS software environments. Lastly, a rectangular building block model without roof structures (Level of Detail, LoD1 was automatically generated. System performance was evaluated with objective criteria, showing good results in a complex urban area featuring various types of building objects.

  4. Siamese-GAN: Learning Invariant Representations for Aerial Vehicle Image Categorization

    Directory of Open Access Journals (Sweden)

    Laila Bashmal

    2018-02-01

    Full Text Available In this paper, we present a new algorithm for cross-domain classification in aerial vehicle images based on generative adversarial networks (GANs. The proposed method, called Siamese-GAN, learns invariant feature representations for both labeled and unlabeled images coming from two different domains. To this end, we train in an adversarial manner a Siamese encoder–decoder architecture coupled with a discriminator network. The encoder–decoder network has the task of matching the distributions of both domains in a shared space regularized by the reconstruction ability, while the discriminator seeks to distinguish between them. After this phase, we feed the resulting encoded labeled and unlabeled features to another network composed of two fully-connected layers for training and classification, respectively. Experiments on several cross-domain datasets composed of extremely high resolution (EHR images acquired by manned/unmanned aerial vehicles (MAV/UAV over the cities of Vaihingen, Toronto, Potsdam, and Trento are reported and discussed.

  5. Near Real-Time Georeference of Umanned Aerial Vehicle Images for Post-Earthquake Response

    Science.gov (United States)

    Wang, S.; Wang, X.; Dou, A.; Yuan, X.; Ding, L.; Ding, X.

    2018-04-01

    The rapid collection of Unmanned Aerial Vehicle (UAV) remote sensing images plays an important role in the fast submitting disaster information and the monitored serious damaged objects after the earthquake. However, for hundreds of UAV images collected in one flight sortie, the traditional data processing methods are image stitching and three-dimensional reconstruction, which take one to several hours, and affect the speed of disaster response. If the manual searching method is employed, we will spend much more time to select the images and the find images do not have spatial reference. Therefore, a near-real-time rapid georeference method for UAV remote sensing disaster data is proposed in this paper. The UAV images are achieved georeference combined with the position and attitude data collected by UAV flight control system, and the georeferenced data is organized by means of world file which is developed by ESRI. The C # language is adopted to compile the UAV images rapid georeference software, combined with Geospatial Data Abstraction Library (GDAL). The result shows that it can realize rapid georeference of remote sensing disaster images for up to one thousand UAV images within one minute, and meets the demand of rapid disaster response, which is of great value in disaster emergency application.

  6. NEAR REAL-TIME GEOREFERENCE OF UMANNED AERIAL VEHICLE IMAGES FOR POST-EARTHQUAKE RESPONSE

    Directory of Open Access Journals (Sweden)

    S. Wang

    2018-04-01

    Full Text Available The rapid collection of Unmanned Aerial Vehicle (UAV remote sensing images plays an important role in the fast submitting disaster information and the monitored serious damaged objects after the earthquake. However, for hundreds of UAV images collected in one flight sortie, the traditional data processing methods are image stitching and three-dimensional reconstruction, which take one to several hours, and affect the speed of disaster response. If the manual searching method is employed, we will spend much more time to select the images and the find images do not have spatial reference. Therefore, a near-real-time rapid georeference method for UAV remote sensing disaster data is proposed in this paper. The UAV images are achieved georeference combined with the position and attitude data collected by UAV flight control system, and the georeferenced data is organized by means of world file which is developed by ESRI. The C # language is adopted to compile the UAV images rapid georeference software, combined with Geospatial Data Abstraction Library (GDAL. The result shows that it can realize rapid georeference of remote sensing disaster images for up to one thousand UAV images within one minute, and meets the demand of rapid disaster response, which is of great value in disaster emergency application.

  7. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles.

    Science.gov (United States)

    Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe; Thom, Christian

    2017-07-18

    Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l'information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N -th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.

  8. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Ahmad Audi

    2017-07-01

    Full Text Available Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l’information géographique camera, which has an IMU (Inertial Measurement Unit sensor and an SoC (System on Chip/FPGA (Field-Programmable Gate Array. To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.

  9. Selective interferometric imaging of internal multiples

    KAUST Repository

    Zuberi, M. A H

    2013-01-01

    Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not reproduce such scattering in the Green’s function. If properly imaged, internal multiples (and internally-scattered energy) can enhance the seismic image and illuminate areas otherwise neglected or poorly imaged by conventional single-scattering approaches. Conventionally, in order to image internal multiples, accurate, sharp contrasts in the velocity model are required to construct a Green’s function with all the scattered energy. As an alternative, we develop a three-step procedure, which images the first-order internal scattering using the background Green’s function (from the surface to each image point), constructed from a smooth velocity model: We first back-propagate the recorded surface data using the background Green’s function, then cross-correlate the back-propagated data with the recorded data and finally cross-correlate the result with the original background Green’s function. This procedure images the contribution of the recorded first-order internal multiples and is almost free of the single-scattering recorded energy. This image can be added to the conventional single-scattering image, obtained e.g. from Kirchhoff migration, to enhance the image. Application to synthetic data with reflectors illuminated by multiple scattering only demonstrates the effectiveness of the approach.

  10. Semantic labeling of high-resolution aerial images using an ensemble of fully convolutional networks

    Science.gov (United States)

    Sun, Xiaofeng; Shen, Shuhan; Lin, Xiangguo; Hu, Zhanyi

    2017-10-01

    High-resolution remote sensing data classification has been a challenging and promising research topic in the community of remote sensing. In recent years, with the rapid advances of deep learning, remarkable progress has been made in this field, which facilitates a transition from hand-crafted features designing to an automatic end-to-end learning. A deep fully convolutional networks (FCNs) based ensemble learning method is proposed to label the high-resolution aerial images. To fully tap the potentials of FCNs, both the Visual Geometry Group network and a deeper residual network, ResNet, are employed. Furthermore, to enlarge training samples with diversity and gain better generalization, in addition to the commonly used data augmentation methods (e.g., rotation, multiscale, and aspect ratio) in the literature, aerial images from other datasets are also collected for cross-scene learning. Finally, we combine these learned models to form an effective FCN ensemble and refine the results using a fully connected conditional random field graph model. Experiments on the ISPRS 2-D Semantic Labeling Contest dataset show that our proposed end-to-end classification method achieves an overall accuracy of 90.7%, a state-of-the-art in the field.

  11. Archaeological Feature Detection from Archive Aerial Photography with a Sfm-Mvs and Image Enhancement Pipeline

    Science.gov (United States)

    Peppa, M. V.; Mills, J. P.; Fieber, K. D.; Haynes, I.; Turner, S.; Turner, A.; Douglas, M.; Bryan, P. G.

    2018-05-01

    Understanding and protecting cultural heritage involves the detection and long-term documentation of archaeological remains alongside the spatio-temporal analysis of their landscape evolution. Archive aerial photography can illuminate traces of ancient features which typically appear with different brightness values from their surrounding environment, but are not always well defined. This research investigates the implementation of the Structure-from-Motion - Multi-View Stereo image matching approach with an image enhancement algorithm to derive three epochs of orthomosaics and digital surface models from visible and near infrared historic aerial photography. The enhancement algorithm uses decorrelation stretching to improve the contrast of the orthomosaics so as archaeological features are better detected. Results include 2D / 3D locations of detected archaeological traces stored into a geodatabase for further archaeological interpretation and correlation with benchmark observations. The study also discusses the merits and difficulties of the process involved. This research is based on a European-wide project, entitled "Cultural Heritage Through Time", and the case study research was carried out as a component of the project in the UK.

  12. Neural-network classifiers for automatic real-world aerial image recognition

    Science.gov (United States)

    Greenberg, Shlomo; Guterman, Hugo

    1996-08-01

    We describe the application of the multilayer perceptron (MLP) network and a version of the adaptive resonance theory version 2-A (ART 2-A) network to the problem of automatic aerial image recognition (AAIR). The classification of aerial images, independent of their positions and orientations, is required for automatic tracking and target recognition. Invariance is achieved by the use of different invariant feature spaces in combination with supervised and unsupervised neural networks. The performance of neural-network-based classifiers in conjunction with several types of invariant AAIR global features, such as the Fourier-transform space, Zernike moments, central moments, and polar transforms, are examined. The advantages of this approach are discussed. The performance of the MLP network is compared with that of a classical correlator. The MLP neural-network correlator outperformed the binary phase-only filter (BPOF) correlator. It was found that the ART 2-A distinguished itself with its speed and its low number of required training vectors. However, only the MLP classifier was able to deal with a combination of shift and rotation geometric distortions.

  13. Building Change Detection from Bi-Temporal Dense-Matching Point Clouds and Aerial Images.

    Science.gov (United States)

    Pang, Shiyan; Hu, Xiangyun; Cai, Zhongliang; Gong, Jinqi; Zhang, Mi

    2018-03-24

    In this work, a novel building change detection method from bi-temporal dense-matching point clouds and aerial images is proposed to address two major problems, namely, the robust acquisition of the changed objects above ground and the automatic classification of changed objects into buildings or non-buildings. For the acquisition of changed objects above ground, the change detection problem is converted into a binary classification, in which the changed area above ground is regarded as the foreground and the other area as the background. For the gridded points of each period, the graph cuts algorithm is adopted to classify the points into foreground and background, followed by the region-growing algorithm to form candidate changed building objects. A novel structural feature that was extracted from aerial images is constructed to classify the candidate changed building objects into buildings and non-buildings. The changed building objects are further classified as "newly built", "taller", "demolished", and "lower" by combining the classification and the digital surface models of two periods. Finally, three typical areas from a large dataset are used to validate the proposed method. Numerous experiments demonstrate the effectiveness of the proposed algorithm.

  14. Multiple-image oscilloscope camera

    International Nuclear Information System (INIS)

    Yasillo, N.J.

    1978-01-01

    An optical device for placing automatically a plurality of images at selected locations on one film comprises a stepping motor coupled to a rotating mirror and lens. A mechanical connection from the mirror controls an electronic logical system to allow rotation of the mirror to place a focused image at tge desired preselected location. The device is of especial utility when used to place four images on a single film to record oscilloscope views obtained in gamma radiography

  15. Investigation of an Autofocusing Method for Visible Aerial Cameras Based on Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Zhichao Chen

    2016-01-01

    Full Text Available In order to realize the autofocusing in aerial camera, an autofocusing system is established and its characteristics such as working principle and optical-mechanical structure and focus evaluation function are investigated. The reason for defocusing in aviation camera is analyzed and several autofocusing methods along with appropriate focus evaluation functions are introduced based on the image processing techniques. The proposed autofocusing system is designed and implemented using two CMOS detectors. The experiment results showed that the proposed method met the aviation camera focusing accuracy requirement, and a maximum focusing error of less than half of the focus depth is achieved. The system designed in this paper can find the optical imaging focal plane in real-time; as such, this novel design has great potential in practical engineering, especially aerospace applications.

  16. Preliminary analysis of the forest health state based on multispectral images acquired by Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Czapski Paweł

    2015-09-01

    Full Text Available The main purpose of this publication is to present the current progress of the work associated with the use of a lightweight unmanned platforms for various environmental studies. Current development in information technology, electronics and sensors miniaturisation allows mounting multispectral cameras and scanners on unmanned aerial vehicle (UAV that could only be used on board aircraft and satellites. Remote Sensing Division in the Institute of Aviation carries out innovative researches using multisensory platform and lightweight unmanned vehicle to evaluate the health state of forests in Wielkopolska province. In this paper, applicability of multispectral images analysis acquired several times during the growing season from low altitude (up to 800m is presented. We present remote sensing indicators computed by our software and common methods for assessing state of trees health. The correctness of applied methods is verified using analysis of satellite scenes acquired by Landsat 8 OLI instrument (Operational Land Imager.

  17. CLASSIFICATION OF CROP-SHELTER COVERAGE BY RGB AERIAL IMAGES: A COMPENDIUM OF EXPERIENCES AND FINDINGS

    Directory of Open Access Journals (Sweden)

    Claudia Arcidiacono

    2010-09-01

    Full Text Available Image processing is a powerful tool apt to perform selective data extraction from high-content images. In agricultural studies, image processing has been applied to different scopes, among them the classification of crop shelters has been recently considered especially in areas where there is a lack of public control in the building activity. The application of image processing to crop-shelter feature recognition make it possible to automatically produce thematic maps that constitute a basic knowledge for local authorities to cope with environmental problems and for technicians to be used in their planning activity. This paper reviews the authors’ experience in the definition of methodologies, based on the main image processing methods, for crop-shelter feature extraction from aerial digital images. Some experiences of pixel-based and object-oriented methods are described and discussed. The results show that the methodology based on object-oriented methods improves crop-shelter classification and reduces computational time, compared to pixel-based methodologies.

  18. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining.

    Science.gov (United States)

    Tang, Tianyu; Zhou, Shilin; Deng, Zhipeng; Zou, Huanxin; Lei, Lin

    2017-02-10

    Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods.

  19. Robust vehicle detection in aerial images based on salient region selection and superpixel classification

    Science.gov (United States)

    Sahli, Samir; Duval, Pierre-Luc; Sheng, Yunlong; Lavigne, Daniel A.

    2011-05-01

    For detecting vehicles in large scale aerial images we first used a non-parametric method proposed recently by Rosin to define the regions of interest, where the vehicles appear with dense edges. The saliency map is a sum of distance transforms (DT) of a set of edges maps, which are obtained by a threshold decomposition of the gradient image with a set of thresholds. A binary mask for highlighting the regions of interest is then obtained by a moment-preserving thresholding of the normalized saliency map. Secondly, the regions of interest were over-segmented by the SLIC superpixels proposed recently by Achanta et al. to cluster pixels into the color constancy sub-regions. In the aerial images of 11.2 cm/pixel resolution, the vehicles in general do not exceed 20 x 40 pixels. We introduced a size constraint to guarantee no superpixels exceed the size of a vehicle. The superpixels were then classified to vehicle or non-vehicle by the Support Vector Machine (SVM), in which the Scale Invariant Feature Transform (SIFT) features and the Linear Binary Pattern (LBP) texture features were used. Both features were extracted at two scales with two size patches. The small patches capture local structures and the larger patches include the neighborhood information. Preliminary results show a significant gain in the detection. The vehicles were detected with a dense concentration of the vehicle-class superpixels. Even dark color cars were successfully detected. A validation process will follow to reduce the presence of isolated false alarms in the background.

  20. Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation

    Directory of Open Access Journals (Sweden)

    Nico Mölg

    2017-10-01

    Full Text Available The application of structure-from-motion (SfM to generate digital terrain models (DTMs derived from different image sources has strongly increased, the major reason for this being that processing is substantially easier with SfM than with conventional photogrammetry. To test the functionality in a demanding environment, we applied SfM and conventional photogrammetry to archival aerial images from Zmuttgletscher, a mountain glacier in Switzerland, for nine dates between 1946 and 2005 using the most popular software packages, and compared the results regarding bundle adjustment and final DTM quality. The results suggest that by using SfM it is possible to produce DTMs of similar quality as with conventional photogrammetry. Higher point cloud density and less noise allow a higher ground resolution of the final DTM, and the time effort from the user is 3–6 times smaller, while the controls of the commercial software packages Agisoft PhotoScan (Version 1.2; Agisoft, St. Petersburg, Russia and Pix4Dmapper (Version 3.0; Pix4D, Lausanne, Switzerland are limited in comparison to ERDAS photogrammetry. SfM performs less reliably when few images with little overlap are processed. Even though SfM facilitates the largely automated production of high quality DTMs, the user is not exempt from a thorough quality check, at best with reference data where available. The resulting DTM time series revealed an average change in surface elevation at the glacier tongue of −67.0 ± 5.3 m. The spatial pattern of changes over time reflects the influence of flow dynamics and the melt of clean ice and that under debris cover. With continued technological advances, we expect to see an increasing use of SfM in glaciology for a variety of purposes, also in processing archival aerial imagery.

  1. Aerial image measurement technique for automated reticle defect disposition (ARDD) in wafer fabs

    Science.gov (United States)

    Zibold, Axel M.; Schmid, Rainer M.; Stegemann, B.; Scheruebl, Thomas; Harnisch, Wolfgang; Kobiyama, Yuji

    2004-08-01

    The Aerial Image Measurement System (AIMS)* for 193 nm lithography emulation has been brought into operation successfully worldwide. A second generation system comprising 193 nm AIMS capability, mini-environment and SMIF, the AIMS fab 193 plus is currently introduced into the market. By adjustment of numerical aperture (NA), illumination type and partial illumination coherence to match the conditions in 193 nm steppers or scanners, it can emulate the exposure tool for any type of reticles like binary, OPC and PSM down to the 65 nm node. The system allows a rapid prediction of wafer printability of defects or defect repairs, and critical features, like dense patterns or contacts on the masks without the need to perform expensive image qualification consisting of test wafer exposures followed by SEM measurements. Therefore, AIMS is a mask quality verification standard for high-end photo masks and established in mask shops worldwide. The progress on the AIMS technology described in this paper will highlight that besides mask shops there will be a very beneficial use of the AIMS in the wafer fab and we propose an Automated Reticle Defect Disposition (ARDD) process. With smaller nodes, where design rules are 65 nm or less, it is expected that smaller defects on reticles will occur in increasing numbers in the wafer fab. These smaller mask defects will matter more and more and become a serious yield limiting factor. With increasing mask prices and increasing number of defects and severability on reticles it will become cost beneficial to perform defect disposition on the reticles in wafer production. Currently ongoing studies demonstrate AIMS benefits for wafer fab applications. An outlook will be given for extension of 193 nm aerial imaging down to the 45 nm node based on emulation of immersion scanners.

  2. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    Science.gov (United States)

    de Castro, Ana I; Ehsani, Reza; Ploetz, Randy C; Crane, Jonathan H; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red-Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection

  3. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    Directory of Open Access Journals (Sweden)

    Ana I de Castro

    Full Text Available Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana. This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs, band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR, (Red-Green and Combination 1 (COMB1 in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the

  4. PET imaging in multiple sclerosis

    NARCIS (Netherlands)

    Faria, Daniele de Paula; Copray, Sjef; Buchpiguel, Carlos; Dierckx, Rudi; de Vries, Erik

    Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus

  5. The orthorectified technology for UAV aerial remote sensing image based on the Programmable GPU

    International Nuclear Information System (INIS)

    Jin, Liu; Ying-cheng, Li; De-long, Li; Chang-sheng, Teng; Wen-hao, Zhang

    2014-01-01

    Considering the time requirements of the disaster emergency aerial remote sensing data acquisition and processing, this paper introduced the GPU parallel processing in orthorectification algorithm. Meanwhile, our experiments verified the correctness and feasibility of CUDA parallel processing algorithm, and the algorithm can effectively solve the problem of calculation large, time-consuming for ortho rectification process, realized fast processing of UAV airborne remote sensing image orthorectification based on GPU. The experimental results indicate that using the assumption of same accuracy of proposed method with CPU, the processing time is reduced obviously, maximum acceleration can reach more than 12 times, which greatly enhances the emergency surveying and mapping processing of rapid reaction rate, and has a broad application

  6. Multimodality imaging features of hereditary multiple exostoses

    OpenAIRE

    Kok, H K; Fitzgerald, L; Campbell, N; Lyburn, I D; Munk, P L; Buckley, O; Torreggiani, W C

    2013-01-01

    Hereditary multiple exostoses (HME) or diaphyseal aclasis is an inherited disorder characterised by the formation of multiple osteochondromas, which are cartilage-capped osseous outgrowths, and the development of associated osseous deformities. Individuals with HME may be asymptomatic or develop clinical symptoms, which prompt imaging studies. Different modalities ranging from plain radiographs to cross-sectional and nuclear medicine imaging studies can be helpful in the diagnosis and detecti...

  7. Multiple Image Radiography With Diffraction Enhanced Imaging For Breast Specimen

    International Nuclear Information System (INIS)

    Oltulu, Oral; Zhong Zhong; Hasnah, Moumen; Chapman, Dean

    2007-01-01

    Biological samples are of great interest for many imaging techniques. The samples usually contain small structures and weak absorption properties. The combinations of weak signals with overlying structures make feature recognition difficult in many cases. In the x-ray regime, a relatively new imaging technique Diffraction Enhanced Imaging (DEI) has superior tissue contrast over conventional radiography and is proven to be very sensitive method. Multiple images taken by DEI are called Multiple Image Radiography (MIR). The purpose of this study is to validate the potential application of the method and to show that MIR-DEI method may give more information about the sample

  8. A New Approach to Urban Road Extraction Using High-Resolution Aerial Image

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-07-01

    Full Text Available Road information is fundamental not only in the military field but also common daily living. Automatic road extraction from a remote sensing images can provide references for city planning as well as transportation database and map updating. However, owing to the spectral similarity between roads and impervious structures, the current methods solely using spectral characteristics are often ineffective. By contrast, the detailed information discernible from the high-resolution aerial images enables road extraction with spatial texture features. In this study, a knowledge-based method is established and proposed; this method incorporates the spatial texture feature into urban road extraction. The spatial texture feature is initially extracted by the local Moran’s I, and the derived texture is added to the spectral bands of image for image segmentation. Subsequently, features like brightness, standard deviation, rectangularity, aspect ratio, and area are selected to form the hypothesis and verification model based on road knowledge. Finally, roads are extracted by applying the hypothesis and verification model and are post-processed based on the mathematical morphology. The newly proposed method is evaluated by conducting two experiments. Results show that the completeness, correctness, and quality of the results could reach approximately 94%, 90% and 86% respectively, indicating that the proposed method is effective for urban road extraction.

  9. Evaluation of Different Irrigation Methods for an Apple Orchard Using an Aerial Imaging System

    Directory of Open Access Journals (Sweden)

    Duke M. Bulanon

    2016-06-01

    Full Text Available Regular monitoring and assessment of crops is one of the keys to optimal crop production. This research presents the development of a monitoring system called the Crop Monitoring and Assessment Platform (C-MAP. The C-MAP is composed of an image acquisition unit which is an off-the-shelf unmanned aerial vehicle (UAV equipped with a multispectral camera (near-infrared, green, blue, and an image processing and analysis component. The experimental apple orchard at the Parma Research and Extension Center of the University of Idaho was used as the target for monitoring and evaluation. Five experimental rows of the orchard were randomly treated with five different irrigation methods. An image processing algorithm to detect individual trees was developed to facilitate the analysis of the rows and it was able to detect over 90% of the trees. The image analysis of the experimental rows was based on vegetation indices and results showed that there was a significant difference in the Enhanced Normalized Difference Vegetation Index (ENDVI among the five different irrigation methods. This demonstrates that the C-MAP has very good potential as a monitoring tool for orchard management.

  10. Automated Snow Extent Mapping Based on Orthophoto Images from Unmanned Aerial Vehicles

    Science.gov (United States)

    Niedzielski, Tomasz; Spallek, Waldemar; Witek-Kasprzak, Matylda

    2018-04-01

    The paper presents the application of the k-means clustering in the process of automated snow extent mapping using orthophoto images generated using the Structure-from-Motion (SfM) algorithm from oblique aerial photographs taken by unmanned aerial vehicle (UAV). A simple classification approach has been implemented to discriminate between snow-free and snow-covered terrain. The procedure uses the k-means clustering and classifies orthophoto images based on the three-dimensional space of red-green-blue (RGB) or near-infrared-red-green (NIRRG) or near-infrared-green-blue (NIRGB) bands. To test the method, several field experiments have been carried out, both in situations when snow cover was continuous and when it was patchy. The experiments have been conducted using three fixed-wing UAVs (swinglet CAM by senseFly, eBee by senseFly, and Birdie by FlyTech UAV) on 10/04/2015, 23/03/2016, and 16/03/2017 within three test sites in the Izerskie Mountains in southwestern Poland. The resulting snow extent maps, produced automatically using the classification method, have been validated against real snow extents delineated through a visual analysis and interpretation offered by human analysts. For the simplest classification setup, which assumes two classes in the k-means clustering, the extent of snow patches was estimated accurately, with areal underestimation of 4.6% (RGB) and overestimation of 5.5% (NIRGB). For continuous snow cover with sparse discontinuities at places where trees or bushes protruded from snow, the agreement between automatically produced snow extent maps and observations was better, i.e. 1.5% (underestimation with RGB) and 0.7-0.9% (overestimation, either with RGB or with NIRRG). Shadows on snow were found to be mainly responsible for the misclassification.

  11. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.

    Science.gov (United States)

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r(2)=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance.

  12. Multiplicative calculus in biomedical image analysis

    NARCIS (Netherlands)

    Florack, L.M.J.; Assen, van H.C.

    2011-01-01

    We advocate the use of an alternative calculus in biomedical image analysis, known as multiplicative (a.k.a. non-Newtonian) calculus. It provides a natural framework in problems in which positive images or positive definite matrix fields and positivity preserving operators are of interest. Indeed,

  13. COMPARISON OF POINT CLOUDS DERIVED FROM AERIAL IMAGE MATCHING WITH DATA FROM AIRBORNE LASER SCANNING

    Directory of Open Access Journals (Sweden)

    Dominik Wojciech

    2017-04-01

    Full Text Available The aim of this study was to invest igate the properties of point clouds derived from aerial image matching and to compare them with point clouds from airborne laser scanning. A set of aerial images acquired in years 2010 - 2013 over the city of Elblag were used for the analysis. Images were acquired with the use of three digital cameras: DMC II 230, DMC I and DigiCAM60 with a GSD varying from 4.5 cm to 15 cm. Eight sets of images that were used in the study were acquired at different stages of the growing season – from March to December. Two L iDAR point clouds were used for the comparison – one with a density of 1.3 p/m 2 and a second with a density of 10 p/m 2 . Based on the input images point clouds were created with the use of the semi - global matching method. The properties of the obtained poi nt clouds were analyzed in three ways: – b y the comparison of the vertical accuracy of point clouds with reference to a terrain profile surveyed on bare ground with GPS - RTK method – b y visual assessment of point cloud profiles generated both from SGM and LiDAR point clouds – b y visual assessment of a digital surface model generated from a SGM point cloud with reference to a digital surface model generated from a LiDAR point cloud. The conducted studies allowed a number of observations about the quality o f SGM point clouds to be formulated with respect to different factors. The main factors having influence on the quality of SGM point clouds are GSD and base/height ratio. The essential problem related to SGM point clouds are areas covered with vegetation w here SGM point clouds are visibly worse in terms of both accuracy and the representation of terrain surface. It is difficult to expect that in these areas SG M point clouds could replace LiDAR point clouds. This leads to a general conclusion that SGM point clouds are less reliable, more unpredictable and are dependent on more factors than LiDAR point clouds. Nevertheless, SGM point

  14. Registration of Aerial Optical Images with LiDAR Data Using the Closest Point Principle and Collinearity Equations.

    Science.gov (United States)

    Huang, Rongyong; Zheng, Shunyi; Hu, Kun

    2018-06-01

    Registration of large-scale optical images with airborne LiDAR data is the basis of the integration of photogrammetry and LiDAR. However, geometric misalignments still exist between some aerial optical images and airborne LiDAR point clouds. To eliminate such misalignments, we extended a method for registering close-range optical images with terrestrial LiDAR data to a variety of large-scale aerial optical images and airborne LiDAR data. The fundamental principle is to minimize the distances from the photogrammetric matching points to the terrestrial LiDAR data surface. Except for the satisfactory efficiency of about 79 s per 6732 × 8984 image, the experimental results also show that the unit weighted root mean square (RMS) of the image points is able to reach a sub-pixel level (0.45 to 0.62 pixel), and the actual horizontal and vertical accuracy can be greatly improved to a high level of 1/4⁻1/2 (0.17⁻0.27 m) and 1/8⁻1/4 (0.10⁻0.15 m) of the average LiDAR point distance respectively. Finally, the method is proved to be more accurate, feasible, efficient, and practical in variety of large-scale aerial optical image and LiDAR data.

  15. Earth analog image digitization of field, aerial, and lab experiment studies for Planetary Data System archiving.

    Science.gov (United States)

    Williams, D. A.; Nelson, D. M.

    2017-12-01

    A portion of the earth analog image archive at the Ronald Greeley Center for Planetary Studies (RGCPS)-the NASA Regional Planetary Information Facility at Arizona State University-is being digitized and will be added to the Planetary Data System (PDS) for public use. This will be a first addition of terrestrial data to the PDS specifically for comparative planetology studies. Digitization is separated into four tasks. First is the scanning of aerial photographs of volcanic and aeolian structures and flows. The second task is to scan field site images taken from ground and low-altitude aircraft of volcanic structures, lava flows, lava tubes, dunes, and wind streaks. The third image set to be scanned includes photographs of lab experiments from the NASA Planetary Aeolian Laboratory wind tunnels, vortex generator, and of wax models. Finally, rare NASA documents are being scanned and formatted as PDF files. Thousands of images are to be scanned for this project. Archiving of the data will follow the PDS4 standard, where the entire project is classified as a single bundle, with individual subjects (i.e., the Amboy Crater volcanic structure in the Mojave Desert of California) as collections. Within the collections, each image is considered a product, with a unique ID and associated XML document. Documents describing the image data, including the subject and context, will be included with each collection. Once complete, the data will be hosted by a PDS data node and available for public search and download. As one of the first earth analog datasets to be archived by the PDS, this project could prompt the digitizing and making available of historic datasets from other facilities for the scientific community.

  16. A Robust Transform Estimator Based on Residual Analysis and Its Application on UAV Aerial Images

    Directory of Open Access Journals (Sweden)

    Guorong Cai

    2018-02-01

    Full Text Available Estimating the transformation between two images from the same scene is a fundamental step for image registration, image stitching and 3D reconstruction. State-of-the-art methods are mainly based on sorted residual for generating hypotheses. This scheme has acquired encouraging results in many remote sensing applications. Unfortunately, mainstream residual based methods may fail in estimating the transform between Unmanned Aerial Vehicle (UAV low altitude remote sensing images, due to the fact that UAV images always have repetitive patterns and severe viewpoint changes, which produce lower inlier rate and higher pseudo outlier rate than other tasks. We performed extensive experiments and found the main reason is that these methods compute feature pair similarity within a fixed window, making them sensitive to the size of residual window. To solve this problem, three schemes that based on the distribution of residuals are proposed, which are called Relational Window (RW, Sliding Window (SW, Reverse Residual Order (RRO, respectively. Specially, RW employs a relaxation residual window size to evaluate the highest similarity within a relaxation model length. SW fixes the number of overlap models while varying the length of window size. RRO takes the permutation of residual values into consideration to measure similarity, not only including the number of overlap structures, but also giving penalty to reverse number within the overlap structures. Experimental results conducted on our own built UAV high resolution remote sensing images show that the proposed three strategies all outperform traditional methods in the presence of severe perspective distortion due to viewpoint change.

  17. AN AERIAL-IMAGE DENSE MATCHING APPROACH BASED ON OPTICAL FLOW FIELD

    Directory of Open Access Journals (Sweden)

    W. Yuan

    2016-06-01

    Full Text Available Dense matching plays an important role in many fields, such as DEM (digital evaluation model producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching’s requirements. The comparison experiments demonstrated that our approach’s matching efficiency is higher than semi-global matching (SGM and Patch-based multi-view stereo matching (PMVS which verifies the feasibility and effectiveness of the algorithm.

  18. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    Science.gov (United States)

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  19. Aerial image geolocalization by matching its line structure with route map

    Science.gov (United States)

    Kunina, I. A.; Terekhin, A. P.; Khanipov, T. M.; Kuznetsova, E. G.; Nikolaev, D. P.

    2017-03-01

    The classic way of aerial photographs geolocation is to bind their local coordinates to a geographic coordinate system using GPS and IMU data. At the same time the possibility of geolocation in a jammed navigation field is also of interest for practical purposes. In this paper we consider one approach to visual localization relatively to a vector road map without GPS. We suggest a geolocalization algorithm which detects image line segments and looks for a geometrical transformation which provides the best mapping between the obtained segments set and line segments in the road map. We consider IMU and altimeter data still known which allows to work with orthorectified images. The problem is hence reduced to a search for a transformation which contains an arbitrary shift and bounded rotation and scaling relatively to the vector map. These parameters are estimated using RANSAC by matching straight line segments from the image to vector map segments. We also investigate how the proposed algorithm's stability is influenced by segment coordinates (two spatial and one angular).

  20. Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery

    Science.gov (United States)

    Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.

    2016-06-01

    Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability

  1. FUNCTIONALITY ASSESSMENT OF ALGORITHMS FOR THE COLORING OF IMAGES IN TERMS OF INCREASING RADIOMETRIC VALUES OF AERIAL PHOTOGRAPHS ARCHIVES

    Directory of Open Access Journals (Sweden)

    Ewiak Ireneusz

    2016-12-01

    Full Text Available Available on the commercial market are a number of algorithms that enable assigning to pixels of a monochrome digital image suitable colors according to a strictly defined schedule. These algorithms have been recently used by professional film studios involved in the coloring of archival productions. This article provides an overview on the functionality of coloring algorithms in terms of their use to improve the interpretation quality of historical, black - and - white aerial photographs. The analysis covered intuitive (Recolored programs, as well as more advanced (Adobe After Effect, DaVinci Resolve programs. The use of their full functionality was limited by the too large information capacity of aerial photograph images. Black - and - white historical aerial photographs, which interpretation quality in many cases does not meet the criteria posed on photogrammetric developments, require an increase of their readability. The solution in this regard may be the process of coloring images. The authors of this article conducted studies aimed to determine to what extent the tested coloring algorithms enable an automatic detection of land cover elements on historical aerial photographs and provide color close to the natural. Used in the studies were archival black - and - white aerial photographs of the western part of Warsaw district made available by the Main Centre of Geodetic and Cartographic Documentation , the selection of which was associated with the presence in this area of various elements of land cover, such as water, forests, crops, exposed soils and also anthropogenic objects. In the analysis of different algorithms are included: format and size of the image, degree of automation of the process, degree of compliance of the result and processing time. The accuracy of the coloring process was different for each class of objects mapped on the photograph. The main limitation of the coloring process created shadows of anthropogenic objects

  2. Secure image retrieval with multiple keys

    Science.gov (United States)

    Liang, Haihua; Zhang, Xinpeng; Wei, Qiuhan; Cheng, Hang

    2018-03-01

    This article proposes a secure image retrieval scheme under a multiuser scenario. In this scheme, the owner first encrypts and uploads images and their corresponding features to the cloud; then, the user submits the encrypted feature of the query image to the cloud; next, the cloud compares the encrypted features and returns encrypted images with similar content to the user. To find the nearest neighbor in the encrypted features, an encryption with multiple keys is proposed, in which the query feature of each user is encrypted by his/her own key. To improve the key security and space utilization, global optimization and Gaussian distribution are, respectively, employed to generate multiple keys. The experiments show that the proposed encryption can provide effective and secure image retrieval for each user and ensure confidentiality of the query feature of each user.

  3. True Orthophoto Generation from Aerial Frame Images and LiDAR Data: An Update

    Directory of Open Access Journals (Sweden)

    Hamid Gharibi

    2018-04-01

    Full Text Available Image spectral and Light Detection and Ranging (LiDAR positional information can be related through the orthophoto generation process. Orthophotos have a uniform scale and represent all objects in their correct planimetric locations. However, orthophotos generated using conventional methods suffer from an artifact known as the double-mapping effect that occurs in areas occluded by tall objects. The double-mapping problem can be resolved through the commonly known true orthophoto generation procedure, in which an occlusion detection process is incorporated. This paper presents a review of occlusion detection methods, from which three techniques are compared and analyzed using experimental results. The paper also describes a framework for true orthophoto production based on an angle-based occlusion detection method. To improve the performance of the angle-based technique, two modifications to this method are introduced. These modifications, which aim at resolving false visibilities reported within the angle-based occlusion detection process, are referred to as occlusion extension and radial section overlap. A weighted averaging approach is also proposed to mitigate the seamline effect and spectral dissimilarity that may appear in true orthophoto mosaics. Moreover, true orthophotos generated from high-resolution aerial images and high-density LiDAR data using the updated version of angle-based methodology are illustrated for two urban study areas. To investigate the potential of image matching techniques in producing true orthophotos and point clouds, a comparison between the LiDAR-based and image-matching-based true orthophotos and digital surface models (DSMs for an urban study area is also presented in this paper. Among the investigated occlusion detection methods, the angle-based technique demonstrated a better performance in terms of output and running time. The LiDAR-based true orthophotos and DSMs showed higher qualities compared to their

  4. UAV remote sensing atmospheric degradation image restoration based on multiple scattering APSF estimation

    Science.gov (United States)

    Qiu, Xiang; Dai, Ming; Yin, Chuan-li

    2017-09-01

    Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.

  5. Crowdsourcing Rapid Assessment of Collapsed Buildings Early after the Earthquake Based on Aerial Remote Sensing Image: A Case Study of Yushu Earthquake

    Directory of Open Access Journals (Sweden)

    Shuai Xie

    2016-09-01

    Full Text Available Remote sensing (RS images play a significant role in disaster emergency response. Web2.0 changes the way data are created, making it possible for the public to participate in scientific issues. In this paper, an experiment is designed to evaluate the reliability of crowdsourcing buildings collapse assessment in the early time after an earthquake based on aerial remote sensing image. The procedure of RS data pre-processing and crowdsourcing data collection is presented. A probabilistic model including maximum likelihood estimation (MLE, Bayes’ theorem and expectation-maximization (EM algorithm are applied to quantitatively estimate the individual error-rate and “ground truth” according to multiple participants’ assessment results. An experimental area of Yushu earthquake is provided to present the results contributed by participants. Following the results, some discussion is provided regarding accuracy and variation among participants. The features of buildings labeled as the same damage type are found highly consistent. This suggests that the building damage assessment contributed by crowdsourcing can be treated as reliable samples. This study shows potential for a rapid building collapse assessment through crowdsourcing and quantitatively inferring “ground truth” according to crowdsourcing data in the early time after the earthquake based on aerial remote sensing image.

  6. Individual Building Rooftop and Tree Crown Segmentation from High-Resolution Urban Aerial Optical Images

    Directory of Open Access Journals (Sweden)

    Jichao Jiao

    2016-01-01

    Full Text Available We segment buildings and trees from aerial photographs by using superpixels, and we estimate the tree’s parameters by using a cost function proposed in this paper. A method based on image complexity is proposed to refine superpixels boundaries. In order to classify buildings from ground and classify trees from grass, the salient feature vectors that include colors, Features from Accelerated Segment Test (FAST corners, and Gabor edges are extracted from refined superpixels. The vectors are used to train the classifier based on Naive Bayes classifier. The trained classifier is used to classify refined superpixels as object or nonobject. The properties of a tree, including its locations and radius, are estimated by minimizing the cost function. The shadow is used to calculate the tree height using sun angle and the time when the image was taken. Our segmentation algorithm is compared with other two state-of-the-art segmentation algorithms, and the tree parameters obtained in this paper are compared to the ground truth data. Experiments show that the proposed method can segment trees and buildings appropriately, yielding higher precision and better recall rates, and the tree parameters are in good agreement with the ground truth data.

  7. Method of transmission of dynamic multibit digital images from micro-unmanned aerial vehicles

    Science.gov (United States)

    Petrov, E. P.; Kharina, N. L.

    2018-01-01

    In connection with successful usage of nanotechnologies in remote sensing great attention is paid to the systems in micro-unmanned aerial vehicles (MUAVs) capable to provide high spatial resolution of dynamic multibit digital images (MDI). Limited energy resources on board the MUAV do not allow transferring a large amount of video information in the shortest possible time. It keeps back the broad development of MUAV. The search for methods to shorten the transmission time of dynamic MDIs from MUAV over the radio channel leads to the methods of MDI compression without computational operations onboard the MUAV. The known compression codecs of video information can not be applied because of the limited energy resources. In this paper we propose a method for reducing the transmission time of dynamic MDIs without computational operations and distortions onboard the MUAV. To develop the method a mathematical apparatus of the theory of conditional Markov processes with discrete arguments was used. On its basis a mathematical model for the transformation of the MDI represented by binary images (BI) in the MDI, consisting of groups of neighboring BIs (GBI) transmitted by multiphase (MP) signals, is constructed. The algorithm for multidimensional nonlinear filtering of MP signals is synthesized, realizing the statistical redundancy of the MDI to compensate for the noise stability losses caused by the use of MP signals.

  8. A CNN-Based Method of Vehicle Detection from Aerial Images Using Hard Example Mining

    Directory of Open Access Journals (Sweden)

    Yohei Koga

    2018-01-01

    Full Text Available Recently, deep learning techniques have had a practical role in vehicle detection. While much effort has been spent on applying deep learning to vehicle detection, the effective use of training data has not been thoroughly studied, although it has great potential for improving training results, especially in cases where the training data are sparse. In this paper, we proposed using hard example mining (HEM in the training process of a convolutional neural network (CNN for vehicle detection in aerial images. We applied HEM to stochastic gradient descent (SGD to choose the most informative training data by calculating the loss values in each batch and employing the examples with the largest losses. We picked 100 out of both 500 and 1000 examples for training in one iteration, and we tested different ratios of positive to negative examples in the training data to evaluate how the balance of positive and negative examples would affect the performance. In any case, our method always outperformed the plain SGD. The experimental results for images from New York showed improved performance over a CNN trained in plain SGD where the F1 score of our method was 0.02 higher.

  9. Generating Impact Maps from Automatically Detected Bomb Craters in Aerial Wartime Images Using Marked Point Processes

    Science.gov (United States)

    Kruse, Christian; Rottensteiner, Franz; Hoberg, Thorsten; Ziems, Marcel; Rebke, Julia; Heipke, Christian

    2018-04-01

    The aftermath of wartime attacks is often felt long after the war ended, as numerous unexploded bombs may still exist in the ground. Typically, such areas are documented in so-called impact maps which are based on the detection of bomb craters. This paper proposes a method for the automatic detection of bomb craters in aerial wartime images that were taken during the Second World War. The object model for the bomb craters is represented by ellipses. A probabilistic approach based on marked point processes determines the most likely configuration of objects within the scene. Adding and removing new objects to and from the current configuration, respectively, changing their positions and modifying the ellipse parameters randomly creates new object configurations. Each configuration is evaluated using an energy function. High gradient magnitudes along the border of the ellipse are favored and overlapping ellipses are penalized. Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing provides the global energy optimum, which describes the conformance with a predefined model. For generating the impact map a probability map is defined which is created from the automatic detections via kernel density estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively. Our results show the general potential of the method for the automatic detection of bomb craters and its automated generation of an impact map in a heterogeneous image stock.

  10. Low-resolution ship detection from high-altitude aerial images

    Science.gov (United States)

    Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang

    2018-02-01

    Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.

  11. A typical MR imaging of multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, Shinako; Kan, Shinichi; Ikeda, Toshiaki; Nishiyama, Syougo; Nishimaki, Hiroshi; Matsubayashi, Takashi; Hata, Takashi [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine

    1995-06-01

    MR imaging is very useful in detecting the intracranial lesion of multiple sclerosis (MS). We present six patients of MS with atypical MR imaging findings. Six patients aged 27-56 years (mean 36 years), and sexuality of six patients were 2 men and 4 females. Three patient`s clinical course had episodes of optic neuritis. The plaque`s size of the predominant lesion of the patients ranged from 3.0 to 9.0 cm in diameter. The plaques were oval, elliptically and other shaped. At acute stage, MR imaging detected perfocal edema and focal mass effect in three cases of our study. Two out of six cases showed multiple irregularly enhancing lesion with Gadolinium-DTPA. Plaques of all cases did not disappear completely in final MR imaging study. (author).

  12. A typical MR imaging of multiple sclerosis

    International Nuclear Information System (INIS)

    Katagiri, Shinako; Kan, Shinichi; Ikeda, Toshiaki; Nishiyama, Syougo; Nishimaki, Hiroshi; Matsubayashi, Takashi; Hata, Takashi

    1995-01-01

    MR imaging is very useful in detecting the intracranial lesion of multiple sclerosis (MS). We present six patients of MS with atypical MR imaging findings. Six patients aged 27-56 years (mean 36 years), and sexuality of six patients were 2 men and 4 females. Three patient's clinical course had episodes of optic neuritis. The plaque's size of the predominant lesion of the patients ranged from 3.0 to 9.0 cm in diameter. The plaques were oval, elliptically and other shaped. At acute stage, MR imaging detected perfocal edema and focal mass effect in three cases of our study. Two out of six cases showed multiple irregularly enhancing lesion with Gadolinium-DTPA. Plaques of all cases did not disappear completely in final MR imaging study. (author)

  13. Attenuation of multiples in image space

    Science.gov (United States)

    Alvarez, Gabriel F.

    In complex subsurface areas, attenuation of 3D specular and diffracted multiples in data space is difficult and inaccurate. In those areas, image space is an attractive alternative. There are several reasons: (1) migration increases the signal-to-noise ratio of the data; (2) primaries are mapped to coherent events in Subsurface Offset Domain Common Image Gathers (SODCIGs) or Angle Domain Common Image Gathers (ADCIGs); (3) image space is regular and smaller; (4) attenuating the multiples in data space leaves holes in the frequency-Wavenumber space that generate artifacts after migration. I develop a new equation for the residual moveout of specular multiples in ADCIGs and use it for the kernel of an apex-shifted Radon transform to focus and separate the primaries from specular and diffracted multiples. Because of small amplitude, phase and kinematic errors in the multiple estimate, we need adaptive matching and subtraction to estimate the primaries. I pose this problem as an iterative least-squares inversion that simultaneously matches the estimates of primaries and multiples to the data. Standard methods match only the estimate of the multiples. I demonstrate with real and synthetic data that the method produces primaries and multiples with little cross-talk. In 3D, the multiples exhibit residual moveout in SODCIGs in in-line and cross-line offsets. They map away from zero subsurface offsets when migrated with the faster velocity of the primaries. In ADCIGs the residual moveout of the primaries as a function of the aperture angle, for a given azimuth, is flat for those angles that illuminate the reflector. The multiples have residual moveout towards increasing depth for increasing aperture angles at all azimuths. As a function of azimuth, the primaries have better azimuth resolution than the multiples at larger aperture angles. I show, with a real 3D dataset, that even below salt, where illumination is poor, the multiples are well attenuated in ADCIGs with the new

  14. Free Surface Downgoing VSP Multiple Imaging

    Science.gov (United States)

    Maula, Fahdi; Dac, Nguyen

    2018-03-01

    The common usage of a vertical seismic profile is to capture the reflection wavefield (upgoing wavefield) so that it can be used for further well tie or other interpretations. Borehole Seismic (VSP) receivers capture the reflection from below the well trajectory, traditionally no seismic image information above trajectory. The non-traditional way of processing the VSP multiple can be used to expand the imaging above the well trajectory. This paper presents the case study of using VSP downgoing multiples for further non-traditional imaging applications. In general, VSP processing, upgoing and downgoing arrivals are separated during processing. The up-going wavefield is used for subsurface illumination, whereas the downgoing wavefield and multiples are normally excluded from the processing. In a situation where the downgoing wavefield passes the reflectors several times (multiple), the downgoing wavefield carries reflection information. Its benefit is that it can be used for seismic tie up to seabed, and possibility for shallow hazards identifications. One of the concepts of downgoing imaging is widely known as mirror-imaging technique. This paper presents a case study from deep water offshore Vietnam. The case study is presented to demonstrate the robustness of the technique, and the limitations encountered during its processing.

  15. Intra- and interspecific variation in tropical tree and liana phenology derived from Unmanned Aerial Vehicle images

    Science.gov (United States)

    Bohlman, S.; Park, J.; Muller-Landau, H. C.; Rifai, S. W.; Dandois, J. P.

    2017-12-01

    Phenology is a critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical tree and liana phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. Spectral, texture, and image information was extracted from the UAV images for individual tree crowns, which was then used as inputs for a machine learning algorithm to predict percent leaf and branch cover. We obtained the species identities of 2000 crowns in the images via field mapping. The objectives of this study are to (1) determined if machine learning algorithms, applied to UAV images, can effectively quantify changes in leaf cover, which we term "deciduousness; (2) determine how liana cover effects deciduousness and (3) test how well UAV-derived deciduousness patterns match satellite-derived temporal patterns. Machine learning algorithms trained on a variety of image parameters could effectively determine leaf cover, despite variation in lighting and viewing angles. Crowns with higher liana cover have less overall deciduousness (tree + liana together) than crowns with lower liana cover. Individual crown deciduousness, summed over all crowns measured in the 50-ha plot, showed a similar seasonal pattern as MODIS EVI composited over 10 years. However

  16. Interesting images: Multiple coronary artery aneurysms.

    Science.gov (United States)

    Howard, Jonathon M; Viswanath, Omar; Armas, Alfredo; Santana, Orlando; Rosen, Gerald P

    2017-01-01

    We present the case of a 65-year-old male who presented with stable angina and dyspnea on exertion. His initial workup yielded a positive treadmill stress test for reversible apical ischemia, and transthoracic echocardiogram demonstrated impaired systolic function. Cardiac catheterization was then performed, revealing severe atherosclerotic disease including multiple coronary artery aneurysms. As a result, the patient was advised to and subsequently underwent a coronary artery bypass graft. This case highlights the presence of multiple coronary artery aneurysms and the ability to appreciate these pathologic findings on multiple imaging modalities, including coronary angiogram, transesophageal echocardiography, and direct visualization through the surgical field.

  17. High Dynamic Range Imaging Using Multiple Exposures

    Science.gov (United States)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  18. REGISTRATION OF LASER SCANNING POINT CLOUDS AND AERIAL IMAGES USING EITHER ARTIFICIAL OR NATURAL TIE FEATURES

    Directory of Open Access Journals (Sweden)

    P. Rönnholm

    2012-07-01

    Full Text Available Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was

  19. AERIAL IMAGES FROM AN UAV SYSTEM: 3D MODELING AND TREE SPECIES CLASSIFICATION IN A PARK AREA

    Directory of Open Access Journals (Sweden)

    R. Gini

    2012-07-01

    Full Text Available The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment: it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes. Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  20. Pre-harvest assessment of perennial weeds in cereals based on images from unmanned aerial systems (UAS)

    DEFF Research Database (Denmark)

    Egilsson, Jon; Pedersen, Kim Steenstrup; Olsen, Søren Ingvor

    2015-01-01

    Unmanned aerial systems (UAS) are able to deliver images of agricultural fields of high spatial and temporal resolution. It is, however, not trivial to extract quantitative information about weed infestations from images. This study contributes to weed research by using state-of-the-art computer....... In order to provide ground truth prior to the modeling phase in Python, a subset of 600 images was annotated by experts with 16000 regions of weeds or crop. Following this, images were segmented into regions with weeds or crop by subdividing each image into 64 by 64 pixel patches and classifying each patch...... as either crop or weed. A collection of geo-referenced segmented images may subsequently be used to map weed occurrences in fields. To find a robust and fully automated assessment method both texture and color information was used to build a number of different competing weed-crop classifiers, including...

  1. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana

    Science.gov (United States)

    Barras, John A.

    2007-01-01

    -water datasets derived from the Landsat TM satellite imagery were combined with 2001 marsh vegetative communities (Chabreck and others, unpub. data, 2001) to identify land-water configurations by marsh community before and after the hurricanes. Links to the Landsat TM images and aerial photographs are given below (figs. 1-29). Comparison of land area before the storms to land area after the storms is made possible by the inclusion of Landsat TM images and aerial photographs taken in the years and months before the storms. The figures are arranged geographically from east to west to follow the chronology of the effects of the storms. For a more detailed analysis of the changes wrought by these storms, see 'Land Area Changes in Coastal Louisiana After Hurricanes Katrina and Rita' (Barras, in press).

  2. Automated hotspot analysis with aerial image CD metrology for advanced logic devices

    Science.gov (United States)

    Buttgereit, Ute; Trautzsch, Thomas; Kim, Min-ho; Seo, Jung-Uk; Yoon, Young-Keun; Han, Hak-Seung; Chung, Dong Hoon; Jeon, Chan-Uk; Meyers, Gary

    2014-09-01

    Continuously shrinking designs by further extension of 193nm technology lead to a much higher probability of hotspots especially for the manufacturing of advanced logic devices. The CD of these potential hotspots needs to be precisely controlled and measured on the mask. On top of that, the feature complexity increases due to high OPC load in the logic mask design which is an additional challenge for CD metrology. Therefore the hotspot measurements have been performed on WLCD from ZEISS, which provides the benefit of reduced complexity by measuring the CD in the aerial image and qualifying the printing relevant CD. This is especially of advantage for complex 2D feature measurements. Additionally, the data preparation for CD measurement becomes more critical due to the larger amount of CD measurements and the increasing feature diversity. For the data preparation this means to identify these hotspots and mark them automatically with the correct marker required to make the feature specific CD measurement successful. Currently available methods can address generic pattern but cannot deal with the pattern diversity of the hotspots. The paper will explore a method how to overcome those limitations and to enhance the time-to-result in the marking process dramatically. For the marking process the Synopsys WLCD Output Module was utilized, which is an interface between the CATS mask data prep software and the WLCD metrology tool. It translates the CATS marking directly into an executable WLCD measurement job including CD analysis. The paper will describe the utilized method and flow for the hotspot measurement. Additionally, the achieved results on hotspot measurements utilizing this method will be presented.

  3. Cost-Effective Class-Imbalance Aware CNN for Vehicle Localization and Categorization in High Resolution Aerial Images

    Directory of Open Access Journals (Sweden)

    Feimo Li

    2017-05-01

    Full Text Available Joint vehicle localization and categorization in high resolution aerial images can provide useful information for applications such as traffic flow structure analysis. To maintain sufficient features to recognize small-scaled vehicles, a regions with convolutional neural network features (R-CNN -like detection structure is employed. In this setting, cascaded localization error can be averted by equally treating the negatives and differently typed positives as a multi-class classification task, but the problem of class-imbalance remains. To address this issue, a cost-effective network extension scheme is proposed. In it, the correlated convolution and connection costs during extension are reduced by feature map selection and bi-partite main-side network construction, which are realized with the assistance of a novel feature map class-importance measurement and a new class-imbalance sensitive main-side loss function. By using an image classification dataset established from a set of traditional real-colored aerial images with 0.13 m ground sampling distance which are taken from the height of 1000 m by an imaging system composed of non-metric cameras, the effectiveness of the proposed network extension is verified by comparing with its similarly shaped strong counter-parts. Experiments show an equivalent or better performance, while requiring the least parameter and memory overheads are required.

  4. Magnetic resonance imaging in multiple sclerosis

    International Nuclear Information System (INIS)

    Kesselring, J.; Ormerod, I.E.C.; Miller, D.H.; Du Boulay, G.H.; McDonald, W.I.

    1989-01-01

    In 1983 the Multiple Sclerosis Society of Great Britain and Northern Ireland set up the Multiple Sclerosis NMR Research Group at the Institute of Neurology and the National Hospital, Queen Square. The first aim of the Group was to define the role of MRI in the diagnosis and differential diagnosis of multiple sclerosis, and this Atlas represents a summary of that work. Our strategy was to determine the pattern of MRI abnormalities in clinically definite MS and to compare it with those of isolated clinical syndromes of the kind seen in MS (e.g. optic neuritis) and of other disorders with which MS can be confused clinically or radiologically. We have also been involved in a major program of experimental work designed to elucidate the origin of the abnormal signals in MRI. To describe this in full detail would go beyond the scope of the Atlas, but we have incorporated such results as far as they illuminate our clinical problems. The imager used was a 0.5 Tesla Picker superconducting system. Technical advances have been rapid since we began. Nevertheless, the quality of the images obtained at our relatively low field has enabled us to establish the patterns of abnormality in the brain in MS and the diseases which must be distinguished from it. (orig./MG)

  5. Registration of Aerial Image with Airborne LiDAR Data Based on Plücker Line

    Directory of Open Access Journals (Sweden)

    SHENG Qinghong

    2015-07-01

    Full Text Available Registration of aerial image with airborne LiDAR data is a key to feature extraction. A registration model based on Plücker line is proposed. The relative position and attitude relationship between the conjugate lines in LiDAR and image is determined based on Plücker linear equation, which describes line transformation in space, then coplanarity condition equation is established. Finally, coordinate transformation between image point and corresponding LiDAR point is achieved by the spiral movement of Plücker lines in the image. The registration model of Plücker linear coplanarity condition equation is simple, and jointly describes the rotation and translation to avoid coupling error between them, so the accuracy is approved. This research provides technical support for high-quality earth spatial information acquisition.

  6. Benefits and limitations of imaging multiples: Mirror migration

    KAUST Repository

    Hanafy, Sherif M.; Huang, Yunsong; Schuster, Gerard T.

    2015-01-01

    The benefits and limitations of imaging multiples are reviewed for mirror migration. Synthetic and field data examples are used to characterize the effectiveness of migrating multiples relative to primary imaging.

  7. Benefits and limitations of imaging multiples: Mirror migration

    KAUST Repository

    Hanafy, Sherif M.

    2015-07-01

    The benefits and limitations of imaging multiples are reviewed for mirror migration. Synthetic and field data examples are used to characterize the effectiveness of migrating multiples relative to primary imaging.

  8. Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging.

    Science.gov (United States)

    Zhang, Dongyan; Zhou, Xingen; Zhang, Jian; Lan, Yubin; Xu, Chao; Liang, Dong

    2018-01-01

    Detection and monitoring are the first essential step for effective management of sheath blight (ShB), a major disease in rice worldwide. Unmanned aerial systems have a high potential of being utilized to improve this detection process since they can reduce the time needed for scouting for the disease at a field scale, and are affordable and user-friendly in operation. In this study, a commercialized quadrotor unmanned aerial vehicle (UAV), equipped with digital and multispectral cameras, was used to capture imagery data of research plots with 67 rice cultivars and elite lines. Collected imagery data were then processed and analyzed to characterize the development of ShB and quantify different levels of the disease in the field. Through color features extraction and color space transformation of images, it was found that the color transformation could qualitatively detect the infected areas of ShB in the field plots. However, it was less effective to detect different levels of the disease. Five vegetation indices were then calculated from the multispectral images, and ground truths of disease severity and GreenSeeker measured NDVI (Normalized Difference Vegetation Index) were collected. The results of relationship analyses indicate that there was a strong correlation between ground-measured NDVIs and image-extracted NDVIs with the R2 of 0.907 and the root mean square error (RMSE) of 0.0854, and a good correlation between image-extracted NDVIs and disease severity with the R2 of 0.627 and the RMSE of 0.0852. Use of image-based NDVIs extracted from multispectral images could quantify different levels of ShB in the field plots with an accuracy of 63%. These results demonstrate that a customer-grade UAV integrated with digital and multispectral cameras can be an effective tool to detect the ShB disease at a field scale.

  9. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    OpenAIRE

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability fo...

  10. Multiple image x-radiography for functional lung imaging

    Science.gov (United States)

    Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.

    2018-01-01

    Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.

  11. Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2010-02-01

    We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.

  12. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees

    DEFF Research Database (Denmark)

    Garcia Ruiz, Francisco Jose; Sankaran, Sindhuja; Maja, Joe Mari

    2013-01-01

    and HLB-infected trees. During classification studies, accuracies in the range of 67–85% and false negatives from 7% to 32% were acquired from UAV-based data; while corresponding values were 61–74% and 28–45% with aircraft-based data. Among the tested classification algorithms, support vector machine (SVM......) with kernel resulted in better performance than other methods such as SVM (linear), linear discriminant analysis and quadratic discriminant analysis. Thus, high-resolution aerial sensing has good prospect for the detection of HLB-infected trees....

  13. Images crossing borders: image and workflow sharing on multiple levels.

    Science.gov (United States)

    Ross, Peeter; Pohjonen, Hanna

    2011-04-01

    Digitalisation of medical data makes it possible to share images and workflows between related parties. In addition to linear data flow where healthcare professionals or patients are the information carriers, a new type of matrix of many-to-many connections is emerging. Implementation of shared workflow brings challenges of interoperability and legal clarity. Sharing images or workflows can be implemented on different levels with different challenges: inside the organisation, between organisations, across country borders, or between healthcare institutions and citizens. Interoperability issues vary according to the level of sharing and are either technical or semantic, including language. Legal uncertainty increases when crossing national borders. Teleradiology is regulated by multiple European Union (EU) directives and legal documents, which makes interpretation of the legal system complex. To achieve wider use of eHealth and teleradiology several strategic documents were published recently by the EU. Despite EU activities, responsibility for organising, providing and funding healthcare systems remains with the Member States. Therefore, the implementation of new solutions requires strong co-operation between radiologists, societies of radiology, healthcare administrators, politicians and relevant EU authorities. The aim of this article is to describe different dimensions of image and workflow sharing and to analyse legal acts concerning teleradiology in the EU.

  14. Magnetic resonance imaging in multiple sclerosis

    International Nuclear Information System (INIS)

    Kojima, Shigeyuki; Hirayama, Keizo

    1989-01-01

    Magnetic resonance imaging (MRI) of the brain was performed in a total of 45 patients with multiple sclerosis (MS), comprising 27 with brain symptoms and 18 without it. The results were compared with X-ray computed tomography (CT). Some of the 45 MS patients were also examined by neurophysiological studies for comparison. MRI showed demyelinating plaques of the brain in a total of 31 patients (69%) - 20 symptomatic and 11 asymptomatic patients. For symptomatic patients, MRI was capable of detecting brain lesions in 6 (86%) of 7 acute stage patients and 14 (70%) of 20 non-acute stage patients. It was also capable of detecting brain lesions in 21 (70%) of 30 clinically definite MR patients and 10 (67%) of 15 clinically probable MS patients. Concurrently available X-ray CT revealed brain lesions in 9 symptomatic patients (33%) and one asymptomatic patient (6%). Visual evoked potentials examined in 31 patients showed abnormality in one (11%) of 9 patients without symptoms of optic neuritis and all (100%) of the other 22 patients with symptoms. In 19 evaluable patients, auditory brainstem responses were abnormal in one (11%) of 9 patients without brainstem symptoms and 3 (30%) of 10 patients with symptoms. MRI of the brain was far superior to X-ray CT, visual evoked potentials and auditory brainstem responses in detecting clinically unsuspected lesions. We proposed new diagnostic criteria including MRI findings of the brain in the Japanese MS diagnostic criteria. MRI of the spinal cord was performed in 12 MS patients with spinal cord symptoms by sagittal and coronal images. It demonstrated demyelinating lesions within the cervical and superior thoracic cord in 8 MS acute stage patients. Spinal cord lesions were longitudinally continuous as long as many spinal segments, with swelling in 6 patients and atrophy in 2 patients. MRI of spinal cord was useful in deciding superior and inferior limits of cord lesions and in visualizing cord swelling or atrophy. (Namekawa, K)

  15. Far-field super-resolution imaging of resonant multiples

    KAUST Repository

    Guo, Bowen

    2016-05-20

    We demonstrate for the first time that seismic resonant multiples, usually considered as noise, can be used for super-resolution imaging in the far-field region of sources and receivers. Tests with both synthetic data and field data show that resonant multiples can image reflector boundaries with resolutions more than twice the classical resolution limit. Resolution increases with the order of the resonant multiples. This procedure has important applications in earthquake and exploration seismology, radar, sonar, LIDAR (light detection and ranging), and ultrasound imaging, where the multiples can be used to make high-resolution images.

  16. Analysis of Unmanned Aerial System-Based CIR Images in Forestry—A New Perspective to Monitor Pest Infestation Levels

    Directory of Open Access Journals (Sweden)

    Jan Rudolf Karl Lehmann

    2015-03-01

    Full Text Available The detection of pest infestation is an important aspect of forest management. In the case of the oak splendour beetle (Agrilus biguttatus infestation, the affected oaks (Quercus sp. show high levels of defoliation and altered canopy reflection signature. These critical features can be identified in high-resolution colour infrared (CIR images of the tree crown and branches level captured by Unmanned Aerial Systems (UAS. In this study, we used a small UAS equipped with a compact digital camera which has been calibrated and modified to record not only the visual but also the near infrared reflection (NIR of possibly infested oaks. The flight campaigns were realized in August 2013, covering two study sites which are located in a rural area in western Germany. Both locations represent small-scale, privately managed commercial forests in which oaks are economically valuable species. Our workflow includes the CIR/NIR image acquisition, mosaicking, georeferencing and pixel-based image enhancement followed by object-based image classification techniques. A modified Normalized Difference Vegetation Index (NDVImod derived classification was used to distinguish between five vegetation health classes, i.e., infested, healthy or dead branches, other vegetation and canopy gaps. We achieved an overall Kappa Index of Agreement (KIA   of 0.81 and 0.77 for each study site, respectively. This approach offers a low-cost alternative to private forest owners who pursue a sustainable management strategy.

  17. Generation and Assessment of Urban Land Cover Maps Using High-Resolution Multispectral Aerial Images

    DEFF Research Database (Denmark)

    Höhle, Joachim; Höhle, Michael

    2013-01-01

    a unique method for the automatic generation of urban land cover maps. In the present paper, imagery of a new medium-format aerial camera and advanced geoprocessing software are applied to derive normalized digital surface models and vegetation maps. These two intermediate products then become input...... to a tree structured classifier, which automatically derives land cover maps in 2D or 3D. We investigate the thematic accuracy of the produced land cover map by a class-wise stratified design and provide a method for deriving necessary sample sizes. Corresponding survey adjusted accuracy measures...... and their associated confidence intervals are used to adequately reflect uncertainty in the assessment based on the chosen sample size. Proof of concept for the method is given for an urban area in Switzerland. Here, the produced land cover map with six classes (building, wall and carport, road and parking lot, hedge...

  18. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    Science.gov (United States)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  19. Doppler radar observation, CG lightning activity and aerial survey of a multiple downburst in southern Germany on 23 March 2001

    OpenAIRE

    Dotzek, Nikolai; Lang, Peter; Hagen, Martin; Fehr, Thorsten; Hellmiss, Werner

    2007-01-01

    Two downburst events from one thunderstorm are investigated, which occurred on 23 March 2001, in Germany's climatologic annual minimum of downburst activity. Observations by two Doppler radars are combined with hail reports, ground lightning detection and an aerial survey conducted after the event. The downburst-producing storm had formed at a synoptic convergence line within the warm sector of a cyclone. It had a remarkably high propagation speed of up to 31 m s−1 corresponding to the mid...

  20. Integrating dynamic and distributed compressive sensing techniques to enhance image quality of the compressive line sensing system for unmanned aerial vehicles application

    Science.gov (United States)

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling

    2017-07-01

    The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.

  1. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    Science.gov (United States)

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  2. Land Cover Change Detection in Urban Lake Areas Using Multi-Temporary Very High Spatial Resolution Aerial Images

    Directory of Open Access Journals (Sweden)

    Wenyuan Zhang

    2018-01-01

    Full Text Available The availability of very high spatial resolution (VHR remote sensing imagery provides unique opportunities to exploit meaningful change information in detail with object-oriented image analysis. This study investigated land cover (LC changes in Shahu Lake of Wuhan using multi-temporal VHR aerial images in the years 1978, 1981, 1989, 1995, 2003, and 2011. A multi-resolution segmentation algorithm and CART (classification and regression trees classifier were employed to perform highly accurate LC classification of the individual images, while a post-classification comparison method was used to detect changes. The experiments demonstrated that significant changes in LC occurred along with the rapid urbanization during 1978–2011. The dominant changes that took place in the study area were lake and vegetation shrinking, replaced by high density buildings and roads. The total area of Shahu Lake decreased from ~7.64 km2 to ~3.60 km2 during the past 33 years, where 52.91% of its original area was lost. The presented results also indicated that urban expansion and inadequate legislative protection are the main factors in Shahu Lake’s shrinking. The object-oriented change detection schema presented in this manuscript enables us to better understand the specific spatial changes of Shahu Lake, which can be used to make reasonable decisions for lake protection and urban development.

  3. Magnetic resonance imaging in multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Aotsuka, Akiyo; Shinotoh, Hitoshi; Hirayama, Keizo [Chiba Univ. (Japan). School of Medicine; Ikehira, Hiroo; Hashimoto, Takahiro

    1992-08-01

    We studied 18 patients with multiple system atrophy (MSA) by high field strength MRI: 6 striatonigral degeneration (SND), 4 Shy-Drager syndrome (SDS), and 8 olivo-ponto-cerebellar atrophy (OPCA). We also studied 30 Parkinson's disease (PD) and 10 age-matched controls. The diagnosis of SND, SDS, and OPCA were based on criteria after Hirayama et al (1985). Bradykinesia, rigidity, and tremor were assessed with the summed scores of the signs used as the extrapyramidal scores. The mean extrapyramidal scores were not significantly different in patients with SND, SDS, OPCA, and PD. MRI studies were performed on 1.5 tesla MRI unit, using a T[sub 2]-weighted spin echo pulse sequence (TR2500 ms/TE40 ms). The width of the pars compacta signal in all subjects was measured by the method of Duguid et al (1986). Intensity profiles were made on a straight line perpendicular to the pars compacta through the center of the red nucleus on an image of the midbrain. We measured the width of the valley at half-height between the peaks of an index of the width of the pars compacta signal. The mean widths of the pars compacta signal were: 2.8[+-]0.4 mm (SND), 2.8[+-]0.7 mm (SDS), 3.6[+-]0.6 mm (OPCA), 2.7[+-]0.3 mm (PD), and 4.3[+-]0.6 mm (control). The mean widths of the pars compacta signal in PD, SND, and SDS were significantly narrower than that in the control group (p<0.05), while the OPCA group was not significantly narrower. The results may indicate that the time course of nigral involvement is milder in OPCA than in SND and SDS. The extrapyramidal signs in OPCA may be attributed mainly to the degeneration of the putamen rather than to that of the substantia nigra. Abnormal hypointensity in the posterolateral putamen was found in only one SND patient and in two OPCA patients, even though this finding has been frequently observed in MSA. Since no PD patients exhibited this finding, it may of some value in differentiating MSA from PD. (author).

  4. Optical cell sorting with multiple imaging modalities

    DEFF Research Database (Denmark)

    Banas, Andrew; Carrissemoux, Caro; Palima, Darwin

    2017-01-01

    healthy cells. With the richness of visual information, a lot of microscopy techniques have been developed and have been crucial in biological studies. To utilize their complementary advantages we adopt both fluorescence and brightfield imaging in our optical cell sorter. Brightfield imaging has...... the advantage of being non-invasive, thus maintaining cell viability. Fluorescence imaging, on the other hand, takes advantages of the chemical specificity of fluorescence markers and can validate machine vision results from brightfield images. Visually identified cells are sorted using optical manipulation...

  5. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    Science.gov (United States)

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  6. Exploration of mineral resource deposits based on analysis of aerial and satellite image data employing artificial intelligence methods

    Science.gov (United States)

    Osipov, Gennady

    2013-04-01

    includes noncontact registration of eye motion, reconstruction of "attention landscape" fixed by the expert, recording the comments of the expert who is a specialist in the field of images` interpretation, and transfer this information into knowledge base.Creation of base of ophthalmologic images (OI) includes making semantic contacts from great number of OI based on analysis of OI and expert's comments.Processing of OI and making generalized OI (GOI) is realized by inductive logic algorithms and consists in synthesis of structural invariants of OI. The mode of recognition and interpretation of unknown images consists of several stages, which include: comparison of unknown image with the base of structural invariants of OI; revealing of structural invariants in unknown images; ynthesis of interpretive message of the structural invariants base and OI base (the experts` comments stored in it). We want to emphasize that the training mode does not assume special involvement of experts to teach the system - it is realized in the process of regular experts` work on image interpretation and it becomes possible after installation of a special apparatus for non contact registration of experts` attention. Consequently, the technology, which principles is described there, provides fundamentally new effective solution to the problem of exploration of mineral resource deposits based on computer analysis of aerial and satellite image data.

  7. Selective interferometric imaging of internal multiples

    KAUST Repository

    Zuberi, M. A H; Alkhalifah, Tariq Ali

    2013-01-01

    are required to construct a Green’s function with all the scattered energy. As an alternative, we develop a three-step procedure, which images the first-order internal scattering using the background Green’s function (from the surface to each image point

  8. Seismic reflection imaging, accounting for primary and multiple reflections

    Science.gov (United States)

    Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel

    2015-04-01

    Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are

  9. MATCHING AERIAL IMAGES TO 3D BUILDING MODELS BASED ON CONTEXT-BASED GEOMETRIC HASHING

    Directory of Open Access Journals (Sweden)

    J. Jung

    2016-06-01

    Full Text Available In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs of a single image. This model-to-image matching process consists of three steps: 1 feature extraction, 2 similarity measure and matching, and 3 adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  10. Real-time multiple image manipulations

    International Nuclear Information System (INIS)

    Arenson, J.S.; Shalev, S.; Legris, J.; Goertzen, Y.

    1984-01-01

    There are many situations in which it is desired to manipulate two or more images under real-time operator control. The authors have investigated a number of such cases in order to determine their value and applicability in clinical medicine and laboratory research. Several examples are presented in detail. The DICOM-8 video image computer system was used due to its capability of storing two 512 x 512 x 8 bit images and operating on them, and/or an incoming video frame, with any of a number of real time operations including addition, subtraction, inversion, averaging, logical AND, NAND, OR, NOR, NOT, XOR and XNOR, as well as combinations of these. Some applications involve manipulations of or among the stored images. In others, a stored image is used as a mask or template for positioning or adjusting a second image to be grabbed via a video camera. The accuracy of radiotherapy treatment is verified by comparing port films with the original radiographic planning film, which is previously digitized and stored. Moving the port film on the light box while viewing the real-time subtraction image allows for adjustments of zoom, translation and rotation, together with contrast and edge enhancement

  11. Fast Aerial Video Stitching

    Directory of Open Access Journals (Sweden)

    Jing Li

    2014-10-01

    Full Text Available The highly efficient and robust stitching of aerial video captured by unmanned aerial vehicles (UAVs is a challenging problem in the field of robot vision. Existing commercial image stitching systems have seen success with offline stitching tasks, but they cannot guarantee high-speed performance when dealing with online aerial video sequences. In this paper, we present a novel system which has an unique ability to stitch high-frame rate aerial video at a speed of 150 frames per second (FPS. In addition, rather than using a high-speed vision platform such as FPGA or CUDA, our system is running on a normal personal computer. To achieve this, after the careful comparison of the existing invariant features, we choose the FAST corner and binary descriptor for efficient feature extraction and representation, and present a spatial and temporal coherent filter to fuse the UAV motion information into the feature matching. The proposed filter can remove the majority of feature correspondence outliers and significantly increase the speed of robust feature matching by up to 20 times. To achieve a balance between robustness and efficiency, a dynamic key frame-based stitching framework is used to reduce the accumulation errors. Extensive experiments on challenging UAV datasets demonstrate that our approach can break through the speed limitation and generate an accurate stitching image for aerial video stitching tasks.

  12. Pareto-depth for multiple-query image retrieval.

    Science.gov (United States)

    Hsiao, Ko-Jen; Calder, Jeff; Hero, Alfred O

    2015-02-01

    Most content-based image retrieval systems consider either one single query, or multiple queries that include the same object or represent the same semantic information. In this paper, we consider the content-based image retrieval problem for multiple query images corresponding to different image semantics. We propose a novel multiple-query information retrieval algorithm that combines the Pareto front method with efficient manifold ranking. We show that our proposed algorithm outperforms state of the art multiple-query retrieval algorithms on real-world image databases. We attribute this performance improvement to concavity properties of the Pareto fronts, and prove a theoretical result that characterizes the asymptotic concavity of the fronts.

  13. INTEGRATED FUSION METHOD FOR MULTIPLE TEMPORAL-SPATIAL-SPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    H. Shen

    2012-08-01

    Full Text Available Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the proposed method is validated using simulated images.

  14. Woodland Mapping at Single-Tree Levels Using Object-Oriented Classification of Unmanned Aerial Vehicle (uav) Images

    Science.gov (United States)

    Chenari, A.; Erfanifard, Y.; Dehghani, M.; Pourghasemi, H. R.

    2017-09-01

    Remotely sensed datasets offer a reliable means to precisely estimate biophysical characteristics of individual species sparsely distributed in open woodlands. Moreover, object-oriented classification has exhibited significant advantages over different classification methods for delineation of tree crowns and recognition of species in various types of ecosystems. However, it still is unclear if this widely-used classification method can have its advantages on unmanned aerial vehicle (UAV) digital images for mapping vegetation cover at single-tree levels. In this study, UAV orthoimagery was classified using object-oriented classification method for mapping a part of wild pistachio nature reserve in Zagros open woodlands, Fars Province, Iran. This research focused on recognizing two main species of the study area (i.e., wild pistachio and wild almond) and estimating their mean crown area. The orthoimage of study area was consisted of 1,076 images with spatial resolution of 3.47 cm which was georeferenced using 12 ground control points (RMSE=8 cm) gathered by real-time kinematic (RTK) method. The results showed that the UAV orthoimagery classified by object-oriented method efficiently estimated mean crown area of wild pistachios (52.09±24.67 m2) and wild almonds (3.97±1.69 m2) with no significant difference with their observed values (α=0.05). In addition, the results showed that wild pistachios (accuracy of 0.90 and precision of 0.92) and wild almonds (accuracy of 0.90 and precision of 0.89) were well recognized by image segmentation. In general, we concluded that UAV orthoimagery can efficiently produce precise biophysical data of vegetation stands at single-tree levels, which therefore is suitable for assessment and monitoring open woodlands.

  15. WOODLAND MAPPING AT SINGLE-TREE LEVELS USING OBJECT-ORIENTED CLASSIFICATION OF UNMANNED AERIAL VEHICLE (UAV IMAGES

    Directory of Open Access Journals (Sweden)

    A. Chenari

    2017-09-01

    Full Text Available Remotely sensed datasets offer a reliable means to precisely estimate biophysical characteristics of individual species sparsely distributed in open woodlands. Moreover, object-oriented classification has exhibited significant advantages over different classification methods for delineation of tree crowns and recognition of species in various types of ecosystems. However, it still is unclear if this widely-used classification method can have its advantages on unmanned aerial vehicle (UAV digital images for mapping vegetation cover at single-tree levels. In this study, UAV orthoimagery was classified using object-oriented classification method for mapping a part of wild pistachio nature reserve in Zagros open woodlands, Fars Province, Iran. This research focused on recognizing two main species of the study area (i.e., wild pistachio and wild almond and estimating their mean crown area. The orthoimage of study area was consisted of 1,076 images with spatial resolution of 3.47 cm which was georeferenced using 12 ground control points (RMSE=8 cm gathered by real-time kinematic (RTK method. The results showed that the UAV orthoimagery classified by object-oriented method efficiently estimated mean crown area of wild pistachios (52.09±24.67 m2 and wild almonds (3.97±1.69 m2 with no significant difference with their observed values (α=0.05. In addition, the results showed that wild pistachios (accuracy of 0.90 and precision of 0.92 and wild almonds (accuracy of 0.90 and precision of 0.89 were well recognized by image segmentation. In general, we concluded that UAV orthoimagery can efficiently produce precise biophysical data of vegetation stands at single-tree levels, which therefore is suitable for assessment and monitoring open woodlands.

  16. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    Directory of Open Access Journals (Sweden)

    Jaewook Jung

    2016-06-01

    Full Text Available A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1 feature extraction; (2 similarity measure; and matching, and (3 estimating exterior orientation parameters (EOPs of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process.

  17. Radiometric Correction of Close-Range Spectral Image Blocks Captured Using an Unmanned Aerial Vehicle with a Radiometric Block Adjustment

    Directory of Open Access Journals (Sweden)

    Eija Honkavaara

    2018-02-01

    Full Text Available Unmanned airborne vehicles (UAV equipped with novel, miniaturized, 2D frame format hyper- and multispectral cameras make it possible to conduct remote sensing measurements cost-efficiently, with greater accuracy and detail. In the mapping process, the area of interest is covered by multiple, overlapping, small-format 2D images, which provide redundant information about the object. Radiometric correction of spectral image data is important for eliminating any external disturbance from the captured data. Corrections should include sensor, atmosphere and view/illumination geometry (bidirectional reflectance distribution function—BRDF related disturbances. An additional complication is that UAV remote sensing campaigns are often carried out under difficult conditions, with varying illumination conditions and cloudiness. We have developed a global optimization approach for the radiometric correction of UAV image blocks, a radiometric block adjustment. The objective of this study was to implement and assess a combined adjustment approach, including comprehensive consideration of weighting of various observations. An empirical study was carried out using imagery captured using a hyperspectral 2D frame format camera of winter wheat crops. The dataset included four separate flights captured during a 2.5 h time period under sunny weather conditions. As outputs, we calculated orthophoto mosaics using the most nadir images and sampled multiple-view hyperspectral spectra for vegetation sample points utilizing multiple images in the dataset. The method provided an automated tool for radiometric correction, compensating for efficiently radiometric disturbances in the images. The global homogeneity factor improved from 12–16% to 4–6% with the corrections, and a reduction in disturbances could be observed in the spectra of the object points sampled from multiple overlapping images. Residuals in the grey and white reflectance panels were less than 5% of the

  18. Benefits and limitations of imaging multiples: Interferometric and resonant migration

    KAUST Repository

    Guo, Bowen; Yu, Jianhua; Huang, Yunsong; Hanafy, Sherif M.; Schuster, Gerard T.

    2015-01-01

    The benefits and limitations of imaging multiples are reviewed for interferometric migration and resonant migration. Synthetic and field data examples are used to characterize the effectiveness of the methods.

  19. Benefits and limitations of imaging multiples: Interferometric and resonant migration

    KAUST Repository

    Guo, Bowen

    2015-07-01

    The benefits and limitations of imaging multiples are reviewed for interferometric migration and resonant migration. Synthetic and field data examples are used to characterize the effectiveness of the methods.

  20. Multiple sclerosis and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Truyen, Luc; Gheuens, Jan; Parizel, P.M.; Van de Vyver, F.L.; Martin, J.J.

    1991-01-01

    In previous studies it has been showed that standardization of the MRI examination and inclusion of sagittal proton-density images results in higher sensitivity and improved correlation with clinical findings. In the present study the usefulness of this MRI protocol in the follow-up of MS patients is evaluated. (author). 5 refs.; 2 figs.; 1 tab

  1. An integrated photogrammetric and spatial database management system for producing fully structured data using aerial and remote sensing images.

    Science.gov (United States)

    Ahmadi, Farshid Farnood; Ebadi, Hamid

    2009-01-01

    3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs); direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium) standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS) is presented.

  2. An Integrated Photogrammetric and Spatial Database Management System for Producing Fully Structured Data Using Aerial and Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Farshid Farnood Ahmadi

    2009-03-01

    Full Text Available 3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs; direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS is presented.

  3. Image processing in aerial surveillance and reconnaissance: From pixels to understanding

    NARCIS (Netherlands)

    Dijk, J.; Eekeren, A.W.M. van; Rajadell Rojas, O.; Burghouts, G.J.; Schutte, K.

    2013-01-01

    Surveillance and reconnaissance tasks are currently often performed using an airborne platform such as a UAV. The airborne platform can carry different sensors. EO/IR cameras can be used to view a certain area from above. To support the task from the sensor analyst, different image processing

  4. Multiple event 2D image intensifier scintillation detector

    International Nuclear Information System (INIS)

    Thieberger, P.; Wegner, H.E.; Lee, R.C.

    1981-01-01

    An image intensifier scintillation detector has been developed for the simultaneous detection of multiple light or heavy ions down to very low energies. The relative X-Y positions of each ion are read out by digitization of a television image of the light amplified scintillations. The maximum data rate is limited by the present television scan speed to 15 multiple events per second and to about one event second by the microcomputer presently used to store and process the data. (orig.)

  5. Aerial thermal images to assess irrigation efficiency in 'Vitis vinifera' cv. Albariño

    Science.gov (United States)

    Gonzalez, Xesús Pablo; Fandiño, María; Rey, Benjamín J.; José Cancela, Javier

    2017-04-01

    Canopy temperature was defined as key data to irrigation management and to detect crop water stress (Jackson, 1982). Recently, temperature camera was installed on board in a Unmanned Aerial Vehicle (UAV), thus heterogeneity within field could be determined. Pereira et al. (2012) have defined the conceptual and terminological study of crop water use indicators, mainly water use efficiency (WUE) and water productivity (WP). Actually, it is crucial achieve higher WP and WUE, where crop yield variability between years must be reduced with the smallest irrigation water, but with a correct management of crop water stress during the season. In this study, Albariño cultivar grapevine, priority in Galicia (Spain) in Designation of Origen 'Rías Baixas', was assessed in relation to water productivity index, focus on irrigation treatments aspects, during 2016. Albariño vineyard was planted in 1996 on 110-Richter at a spacing of 3 × 2 m (1667 vines ha-1) (41°57 6 N, 8°49 26 W, elevation 101 m). Vines were trained to a vertical trellis system on a Guyot oriented in the East-West direction. Three irrigation treatments were applied: irrigation from budburst to maturation (T1), from flowering to maturation (T2), and from veraison to maturation (T3), moreover a rain-fed treatment was implemented. All WP index was referred to farm yield level (kg ha-1); where the denominator applied to WP TWUfarm, introduced rainfall and irrigation depth; to WP Irrig, only irrigation depth applied; was used. Moreover, crop water stress index (CWSI) was used to determine homogenize areas within experimental plot, using an UAV with a thermal camera (ThermoMAP, senseFly, SW) to achieve a final map with 14 cm per pixel resolution. During August 11th, at the end of veraison, camera was installed in an 'eBee Ag' UAV (senseFly, SW) with a median flight altitude of 75 m over ground level. Yield per hectare were recorded and total irrigation depth per treatment during the growing season from March to

  6. Magnetic resonance imaging of the spine in multiple myeloma

    International Nuclear Information System (INIS)

    Tanaka, Masato; Nakahara, Shinnosuke; Koura, Hiroshi; Kai, Nobuo; Asaumi, Koji; Tanaka, Shunsuke; Sezaki, Tatsuo; Fukuda, Shunichi; Sunami, Kazutaka

    2000-01-01

    The characteristics of diagnostic imaging of the spine in multiple myeloma were examined. Twenty-one patients with stage II-III multiple myeloma (male=12, female=9, mean age=64) underwent MRI of the spine. Other diagnostic imaging modalities used in these patients included, CT bone scintigraphy, and radiography. All images of the spine were assessed and compared with the MRI images. The type of progression was evaluated based on the tumor distribution classification established by Sezaki. T1-weighted images of all 21 patients showed low signals in vertebral bodies, including 14 cases with a focal low signal intensity and 7 cases with diffuse low signal intensity. On the T2-weighted images, 15 of the 21 cases (71%) showed equivalent signals, while T2*-weighted images obtained by the field-echo method yielded high signals in 10 out of 11 cases. It was difficult to differentiate between senile osteoporosis and multiple myeloma by MRI, but CT images clearly distinguished between them. The results suggested that fat-suppressive T1-contrast images and T2*-weighted images are useful in detecting lesions, especially focal low signal intensity lesions. Patients with the multiple-lesion-tumor type of disease were more likely to develop paralysis more than those with the diffuse myeloproliferative type. Thus, the tumor distribution classification established by Sezaki was useful in considering radiotherapy for the treatment of patients at risk of paralysis. Bone scintigraphy revealed accumulation only in spinal lesions caused by compression fractures, while CT appeared to be useful in localizing the diffuse myeloproliferative type of lesions. The problems associated with diagnosis by MRI are differentiation of multiple myeloma from senile osteoporosis and metastatic bone tumors of the spine. There are few specific findings in multiple myeloma. (K.H.)

  7. Magnetic resonance imaging in the diagnostics of multiple sclerosis

    International Nuclear Information System (INIS)

    Larsen, J.P.; Tjoerstad, K.; Kaass, B.; Oedegaard, H.

    1987-01-01

    Multiple sclerosis is an important and frequent neurological disease and the diagnosis might be difficult. The clinical criteria of multiple sclerosis and the role of laboratory examinations in the diagnosis of the disease are discussed. In particular the help offered by the magnetic resonance imaging method is the subject of this paper. Three patients are reported and discussed

  8. An efficient multiple exposure image fusion in JPEG domain

    Science.gov (United States)

    Hebbalaguppe, Ramya; Kakarala, Ramakrishna

    2012-01-01

    In this paper, we describe a method to fuse multiple images taken with varying exposure times in the JPEG domain. The proposed algorithm finds its application in HDR image acquisition and image stabilization for hand-held devices like mobile phones, music players with cameras, digital cameras etc. Image acquisition at low light typically results in blurry and noisy images for hand-held camera's. Altering camera settings like ISO sensitivity, exposure times and aperture for low light image capture results in noise amplification, motion blur and reduction of depth-of-field respectively. The purpose of fusing multiple exposures is to combine the sharp details of the shorter exposure images with high signal-to-noise-ratio (SNR) of the longer exposure images. The algorithm requires only a single pass over all images, making it efficient. It comprises of - sigmoidal boosting of shorter exposed images, image fusion, artifact removal and saturation detection. Algorithm does not need more memory than a single JPEG macro block to be kept in memory making it feasible to be implemented as the part of a digital cameras hardware image processing engine. The Artifact removal step reuses the JPEGs built-in frequency analysis and hence benefits from the considerable optimization and design experience that is available for JPEG.

  9. MR imaging of multiple sclerosis in the cervical cord

    International Nuclear Information System (INIS)

    Shakudo, Miyuki; Takemoto, Kazumasa; Inoue, Yuichi; Onoyama, Yasuto; Nishimura, Masataka; Fujita, Masayuki.

    1987-01-01

    This is a case of a 34-year-old woman with multiple sclerosis (MS) in whom an enlarged cervical spinal cord with long T 1 and T 2 relaxation times was demonstrated on MR images. This report seems to be the first description of MR imaging of MS with an enlarged spinal cord. (author)

  10. The linearized inversion of the generalized interferometric multiple imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-06

    The generalized interferometric multiple imaging (GIMI) procedure can be used to image duplex waves and other higher order internal multiples. Imaging duplex waves could help illuminate subsurface zones that are not easily illuminated by primaries such as vertical and nearly vertical fault planes, and salt flanks. To image first-order internal multiple, the GIMI framework consists of three datuming steps, followed by applying the zero-lag cross-correlation imaging condition. However, the standard GIMI procedure yields migrated images that suffer from low spatial resolution, migration artifacts, and cross-talk noise. To alleviate these problems, we propose a least-squares GIMI framework in which we formulate the first two steps as a linearized inversion problem when imaging first-order internal multiples. Tests on synthetic datasets demonstrate the ability to localize subsurface scatterers in their true positions, and delineate a vertical fault plane using the proposed method. We, also, demonstrate the robustness of the proposed framework when imaging the scatterers or the vertical fault plane with erroneous migration velocities.

  11. The linearized inversion of the generalized interferometric multiple imaging

    KAUST Repository

    Aldawood, Ali; Hoteit, Ibrahim; Alkhalifah, Tariq Ali

    2016-01-01

    such as vertical and nearly vertical fault planes, and salt flanks. To image first-order internal multiple, the GIMI framework consists of three datuming steps, followed by applying the zero-lag cross-correlation imaging condition. However, the standard GIMI

  12. Multiple images of our galaxy in closed, multiply connected cosmologies

    International Nuclear Information System (INIS)

    Fagundes, H.V.

    1985-01-01

    Friedmanian cosmology with multiply connected spatial sections allows multiple images of cosmic sources, in particular of the galaxy itself. This is illustrated with a specific example of a closed hyperbolic model and a brief mention of a spherical model. Such images may eventually become observable (or recognized as such), thus providing a new test of relativistic cosmology. (Author) [pt

  13. Autonomy of image and use of single or multiple sense modalities in original verbal image production.

    Science.gov (United States)

    Khatena, J

    1978-06-01

    The use of a single or of multiple sense modalities in the production of original verbal images as related to autonomy of imagery was explored. 72 college adults were administered Onomatopoeia and Images and the Gordon Test of Visual Imagery Control. A modified scoring procedure for the Gordon scale differentiated imagers who were moderate or low in autonomy. The two groups produced original verbal images using multiple sense modalities more frequently than a single modality.

  14. Theoretical study for aerial image intensity in resist in high numerical aperture projection optics and experimental verification with one-dimensional patterns

    Science.gov (United States)

    Shibuya, Masato; Takada, Akira; Nakashima, Toshiharu

    2016-04-01

    In optical lithography, high-performance exposure tools are indispensable to obtain not only fine patterns but also preciseness in pattern width. Since an accurate theoretical method is necessary to predict these values, some pioneer and valuable studies have been proposed. However, there might be some ambiguity or lack of consensus regarding the treatment of diffraction by object, incoming inclination factor onto image plane in scalar imaging theory, and paradoxical phenomenon of the inclined entrance plane wave onto image in vector imaging theory. We have reconsidered imaging theory in detail and also phenomenologically resolved the paradox. By comparing theoretical aerial image intensity with experimental pattern width for one-dimensional pattern, we have validated our theoretical consideration.

  15. Structured diagnostic imaging in patients with multiple trauma

    International Nuclear Information System (INIS)

    Linsenmaier, U.; Rieger, J.; Rock, C.; Pfeifer, K.J.; Reiser, M.; Kanz, K.G.

    2002-01-01

    Purpose. Development of a concept for structured diagnostic imaging in patients with multiple trauma.Material and methods. Evaluation of data from a prospective trial with over 2400 documented patients with multiple trauma. All diagnostic and therapeutic steps, primary and secondary death and the 90 days lethality were documented.Structured diagnostic imaging of multiple injured patients requires the integration of an experienced radiologist in an interdisciplinary trauma team consisting of anesthesia, radiology and trauma surgery. Radiology itself deserves standardized concepts for equipment, personnel and logistics to perform diagnostic imaging for a 24-h-coverage with constant quality.Results. This paper describes criteria for initiation of a shock room or emergency room treatment, strategies for documentation and interdisciplinary algorithms for the early clinical care coordinating diagnostic imaging and therapeutic procedures following standardized guidelines. Diagnostic imaging consists of basic diagnosis, radiological ABC-rule, radiological follow-up and structured organ diagnosis using CT. Radiological trauma scoring allows improved quality control of diagnosis and therapy of multiple injured patients.Conclusion. Structured diagnostic imaging of multiple injured patients leads to a standardization of diagnosis and therapy and ensures constant process quality. (orig.) [de

  16. Magnetic resonance imaging in clinically-definite multiple sclerosis

    International Nuclear Information System (INIS)

    Noakes, J.B.; Herkes, G.K.; Frith, J.A.

    1990-01-01

    Forty-two patients with clinically-definite multiple sclerosis were examined by magnetic resonance imaging using a 1.5-T instrument. Magnetic resonance imaging detected an abnormality in 90% of patients. In four patients, no lesions were demonstrated. The number, size and site of the lesions by magnetic resonance imaging were compared with the patients' clinical status and other variables. The Kurtzke disability status scale score increased in patients with corpus callosum atrophy, brainstem and basal ganglia lesions, and correlated with the total number of lesions. No correlation was shown between the findings of magnetic resonance imaging and disease duration, age, sex or pattern-reversal visual-evoked potentials. The variety of magnetic resonance images that could be obtained in patients with clinically-definite multiple sclerosis is highlighted. 24 refs., 8 figs., 1 tab

  17. Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

    Directory of Open Access Journals (Sweden)

    K. Korzeniowska

    2017-10-01

    Full Text Available Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR ADS80-SH92 aerial imagery using an object-based image analysis (OBIA approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI, the normalised difference water index (NDWI, and its standard deviation (SDNDWI to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km−2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km−2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.

  18. MR imaging studies of multiple myeloma in the vertebral column

    International Nuclear Information System (INIS)

    Albert, S.; Leeds, N.E.

    1990-01-01

    This paper studies the sensitivity and characteristics of MR imaging in the diagnosis of myeloma in the vertebral column. The cervical, thoracic, and lumbar spines of 12 patients with known multiple myeloma were imaged with small flip angle, fast gradient-echo, proton-density (FPD) as well as spin-echo T1-weighted, T2-weighted, and intermediate (SE 2,000/20-30) imaging. The FPD images were acquired with pulse sequence gradient recalled acquisition in a steady state at a magnetic field strength of 1.5T with use of a license-plate and a circular surface coil

  19. A Cooperative Search and Coverage Algorithm with Controllable Revisit and Connectivity Maintenance for Multiple Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Zhong Liu

    2018-05-01

    Full Text Available In this paper, we mainly study a cooperative search and coverage algorithm for a given bounded rectangle region, which contains several unknown stationary targets, by a team of unmanned aerial vehicles (UAVs with non-ideal sensors and limited communication ranges. Our goal is to minimize the search time, while gathering more information about the environment and finding more targets. For this purpose, a novel cooperative search and coverage algorithm with controllable revisit mechanism is presented. Firstly, as the representation of the environment, the cognitive maps that included the target probability map (TPM, the uncertain map (UM, and the digital pheromone map (DPM are constituted. We also design a distributed update and fusion scheme for the cognitive map. This update and fusion scheme can guarantee that each one of the cognitive maps converges to the same one, which reflects the targets’ true existence or absence in each cell of the search region. Secondly, we develop a controllable revisit mechanism based on the DPM. This mechanism can concentrate the UAVs to revisit sub-areas that have a large target probability or high uncertainty. Thirdly, in the frame of distributed receding horizon optimizing, a path planning algorithm for the multi-UAVs cooperative search and coverage is designed. In the path planning algorithm, the movement of the UAVs is restricted by the potential fields to meet the requirements of avoiding collision and maintaining connectivity constraints. Moreover, using the minimum spanning tree (MST topology optimization strategy, we can obtain a tradeoff between the search coverage enhancement and the connectivity maintenance. The feasibility of the proposed algorithm is demonstrated by comparison simulations by way of analyzing the effects of the controllable revisit mechanism and the connectivity maintenance scheme. The Monte Carlo method is employed to validate the influence of the number of UAVs, the sensing radius

  20. AN IMPROVED SNAKE MODEL FOR REFINEMENT OF LIDAR-DERIVED BUILDING ROOF CONTOURS USING AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    Q. Chen

    2016-06-01

    Full Text Available Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  1. Complex Building Detection Through Integrating LIDAR and Aerial Photos

    Science.gov (United States)

    Zhai, R.

    2015-02-01

    This paper proposes a new approach on digital building detection through the integration of LiDAR data and aerial imagery. It is known that most building rooftops are represented by different regions from different seed pixels. Considering the principals of image segmentation, this paper employs a new region based technique to segment images, combining both the advantages of LiDAR and aerial images together. First, multiple seed points are selected by taking several constraints into consideration in an automated way. Then, the region growing procedures proceed by combining the elevation attribute from LiDAR data, visibility attribute from DEM (Digital Elevation Model), and radiometric attribute from warped images in the segmentation. Through this combination, the pixels with similar height, visibility, and spectral attributes are merged into one region, which are believed to represent the whole building area. The proposed methodology was implemented on real data and competitive results were achieved.

  2. A geometric stochastic approach based on marked point processes for road mark detection from high resolution aerial images

    Science.gov (United States)

    Tournaire, O.; Paparoditis, N.

    Road detection has been a topic of great interest in the photogrammetric and remote sensing communities since the end of the 70s. Many approaches dealing with various sensor resolutions, the nature of the scene or the wished accuracy of the extracted objects have been presented. This topic remains challenging today as the need for accurate and up-to-date data is becoming more and more important. Based on this context, we will study in this paper the road network from a particular point of view, focusing on road marks, and in particular dashed lines. Indeed, they are very useful clues, for evidence of a road, but also for tasks of a higher level. For instance, they can be used to enhance quality and to improve road databases. It is also possible to delineate the different circulation lanes, their width and functionality (speed limit, special lanes for buses or bicycles...). In this paper, we propose a new robust and accurate top-down approach for dashed line detection based on stochastic geometry. Our approach is automatic in the sense that no intervention from a human operator is necessary to initialise the algorithm or to track errors during the process. The core of our approach relies on defining geometric, radiometric and relational models for dashed lines objects. The model also has to deal with the interactions between the different objects making up a line, meaning that it introduces external knowledge taken from specifications. Our strategy is based on a stochastic method, and in particular marked point processes. Our goal is to find the objects configuration minimising an energy function made-up of a data attachment term measuring the consistency of the image with respect to the objects and a regularising term managing the relationship between neighbouring objects. To sample the energy function, we use Green algorithm's; coupled with a simulated annealing to find its minimum. Results from aerial images at various resolutions are presented showing that our

  3. Lossless Image Compression Based on Multiple-Tables Arithmetic Coding

    Directory of Open Access Journals (Sweden)

    Rung-Ching Chen

    2009-01-01

    Full Text Available This paper is intended to present a lossless image compression method based on multiple-tables arithmetic coding (MTAC method to encode a gray-level image f. First, the MTAC method employs a median edge detector (MED to reduce the entropy rate of f. The gray levels of two adjacent pixels in an image are usually similar. A base-switching transformation approach is then used to reduce the spatial redundancy of the image. The gray levels of some pixels in an image are more common than those of others. Finally, the arithmetic encoding method is applied to reduce the coding redundancy of the image. To promote high performance of the arithmetic encoding method, the MTAC method first classifies the data and then encodes each cluster of data using a distinct code table. The experimental results show that, in most cases, the MTAC method provides a higher efficiency in use of storage space than the lossless JPEG2000 does.

  4. Utilization of multiple frequencies in 3D nonlinear microwave imaging

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob

    2012-01-01

    The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenges...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....

  5. Increasing Benefit of Magnetic Resonance Imaging in Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Pyhtinen, J.; Karttunen, A.; Tikkakoski, T. [Radiologian Klinikka, Oulu (Finland)

    2006-11-15

    Magnetic resonance imaging (MRI) has emerged as an essential tool of multiple sclerosis (MS) diagnosis and has opened up completely new prospects in MS research and treatment trials. It is a sensitive method that gives direct evidence of tissue pathology and has greatly increased our knowledge of MS. In clinical work, MRI is used to confirm and exclude the diagnosis of MS. The international recommendation is that every suspected MS patient should undergo at least one brain MRI. T2-weighted images are the standard tool in clinical work, and functional imaging methods are mainly used in MS research. The subtypes and the course of the disease cause variation in MRI findings. Here, we present a general overview of MR findings in MS. Brain, magnetic resonance imaging, multiple sclerosis, spinal cord.

  6. Increasing Benefit of Magnetic Resonance Imaging in Multiple Sclerosis

    International Nuclear Information System (INIS)

    Pyhtinen, J.; Karttunen, A.; Tikkakoski, T.

    2006-01-01

    Magnetic resonance imaging (MRI) has emerged as an essential tool of multiple sclerosis (MS) diagnosis and has opened up completely new prospects in MS research and treatment trials. It is a sensitive method that gives direct evidence of tissue pathology and has greatly increased our knowledge of MS. In clinical work, MRI is used to confirm and exclude the diagnosis of MS. The international recommendation is that every suspected MS patient should undergo at least one brain MRI. T2-weighted images are the standard tool in clinical work, and functional imaging methods are mainly used in MS research. The subtypes and the course of the disease cause variation in MRI findings. Here, we present a general overview of MR findings in MS. Brain, magnetic resonance imaging, multiple sclerosis, spinal cord

  7. Significance of multiple scattering in imaging through turbid media

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.

    1986-01-01

    The degradation of image quality in a turbid medium is analyzed within the framework of the small-angle approximation, the diffusion approximation, and a rigorous two-dimensional radiative transfer equation. These three approaches allow us to emphasize different aspects of the imaging problem when multiple scattering effects are important. For a medium with a forward-peaked phase function, the separation of multiple scattering into a series of scatterings of various order provides a fruitful technique. The use of the diffusion approximation and transport theory extends the determination of the modulation transfer function to a turbid medium with an arbitrary degree of anisotropy

  8. System and method for image registration of multiple video streams

    Science.gov (United States)

    Dillavou, Marcus W.; Shum, Phillip Corey; Guthrie, Baron L.; Shenai, Mahesh B.; Deaton, Drew Steven; May, Matthew Benton

    2018-02-06

    Provided herein are methods and systems for image registration from multiple sources. A method for image registration includes rendering a common field of interest that reflects a presence of a plurality of elements, wherein at least one of the elements is a remote element located remotely from another of the elements and updating the common field of interest such that the presence of the at least one of the elements is registered relative to another of the elements.

  9. High-field MR imaging of spinal cord multiple sclerosis

    International Nuclear Information System (INIS)

    De La Paz, R.L.; Floris, R.; Norman, D.; Enzmann, D.R.

    1987-01-01

    Fifty-one high-field MR imaging studies (1.5 T, General Electric Signa) of the spinal cord were performed in 42 patients (27 female, 15 male; mean age, 40 years) with clinically definitive (n = 34) or probable (n = 8) multiple sclerosis and suspected spinal cord lesions. MR imaging showed focal spinal cord abnormalities in 38 (75%) of 51 studies. T2-weighted images were abnormal (showing foci of high signal intensity) in 38 studies, T1-weighted images were abnormal (showing areas of low signal intensity or mass effect) in 16 (42%) of 38, and GRASS images were abnormal (showing foci of high signal intensity) in 9 (82%) of 11 cases. Brain MR imaging showed periventricular lesions typical of multiple sclerosis in 34 (81%) of 42 studies. Spinal cord studies were positive in eight cases with normal brain MR images, and brain studies were positive in 13 instances of normal spinal cord MR images. Four lesions were at the cervicomedullary junction, 44 in the cervical spinal cord, and three in the thoracic cord. Mass effect in cord lesions, simulating neoplasm, was seen in seven patients during the acute symptomatic phase. Serial studies in three patients with decreasing symptoms showed a reduction after 3-4 weeks and resolution of the mass effect after 2-6 months

  10. Diffusion weighted MR imaging in the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Hagen, T.; Schweigerer-Schroeter, G.; Wellnitz, J.; Wuerstle, T.

    2000-01-01

    Magnetic resonance (MR) imaging is one of the best methods in diagnosis of multiple sclerosis, particularly in disclosure of active demyelinating lesions. Aim of this study was to compare diffusion weighted imaging and contrast enhancement in the detection of active lesions. A MR study with a contrast enhanced T1-weighted pulse sequence with magnetization transfer presaturation and a diffusion weighted echoplanar pulse sequence (b=1000 s/mm 2 ) was performed in 17 patients (11 women, 6 men) with multiple sclerosis. 29 of 239 lesions showed an increased signal intensity in diffusion weighted imaging, 24 lesions a contrast enhancement, but only 16 lesions were visible in both pulse sequences. In patients with short clinical symptomatology significant more lesions could be detected with diffusion-weighted pulse sequence in comparison to patients with long standing symptomatology showing more lesions with contrast enhancement. Hence it is likely, that both pulse sequences detect different histopathologic changes. The early detection of demyelinating lesions in diffusion weighted imaging is attributed to the extracellular edema, however the contrast enhancement is caused by a blood brain barrier abnormality. It can be expected that diffusion weighted imaging will have a high impact on imaging of multiple sclerosis not only in therapeutic trials, but also in clinical routine. (orig.) [de

  11. Challenges in clinical studies with multiple imaging probes

    International Nuclear Information System (INIS)

    Krohn, Kenneth A.; O'Sullivan, Finbarr; Crowley, John; Eary, Janet F.; Linden, Hannah M.; Link, Jeanne M.; Mankoff, David A.; Muzi, Mark; Rajendran, Joseph G.; Spence, Alexander M.; Swanson, Kristin R.

    2007-01-01

    This article addresses two related issues: (a) When a new imaging agent is proposed, how does the imager integrate it with other biomarkers, either sampled or imaged? (b) When we have multiple imaging agents, is the information additive or duplicative and how is this objectively determined? Molecular biology is leading to new treatment options with reduced normal tissue toxicity, and imaging should have a role in objectively evaluating new treatments. There are two roles for molecular characterization of disease. Molecular imaging measurements before therapy help predict the aggressiveness of disease and identify therapeutic targets and, therefore, help choose the optimal therapy for an individual. Measurements of specific biochemical processes made during or after therapy should be sensitive measures of tumor response. The rules of evidence are not fully developed for the prognostic role of imaging biomarkers, but the potential of molecular imaging provides compelling motivation to push forward with convincing validation studies. New imaging procedures need to be characterized for their effectiveness under realistic clinical conditions to improve the management of patients and achieve a better outcome. The purpose of this article is to promote a critical discussion within the molecular imaging community because our future value to the overall biomedical community will be in supporting better treatment outcomes rather than in detection

  12. Tidal Flooding and Vegetation Patterns in a Salt Marsh Tidal Creek Imaged by Low-altitude Balloon Aerial Photography

    Science.gov (United States)

    White, S. M.; Madsen, E.

    2013-12-01

    soil water content. These other factors are all directly affected by the hydroperiod, creating a complex system of feedbacks. Inundation frequencies show a pronounced relationship to zonation. Creek bank height and the hydroperiod have a curvilinear relationship at low bank heights such that small decreases in creek bank height can result in large increases in inundation frequency. Biological zonation is not simply a result of bank height and inundation frequency, other contributing factors include species competition, adaptability, and groundwater flow. Vegetation patterns delineated by a ground-based GPS survey and image classification from the aerial photos show that not all changes in eco-zonation are a direct function of elevation. Some asymmetry across the creek is observed in plant habitat, and eliminating topography (and thereby tidal inundation) as a factor, we attribute the remaining variability to groundwater flow.

  13. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-04-13

    In this thesis, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the rst evaluation of many state of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. We also present a simulator that can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV "in the field", as well as, generate synthetic but photo-realistic tracking datasets with free ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator will be made publicly available to the vision community to further research in the area of object tracking from UAVs. Additionally, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by \\'handing over the camera\\' from one UAV to another. We integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  14. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    Science.gov (United States)

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system

  15. Magnetic resonance imaging abnormalities in multiple sclerosis: A review

    International Nuclear Information System (INIS)

    Saharian, M. A.; Shakaouri Rad, A.; Motamedi, M.; Pakdaman, H.; Radue, E. W.

    2007-01-01

    :During the last two decades, magnetic resonance imaging has been widely used In the diagnosis and treatment monitoring of multiple sclerosis. MRI, both conventional and non conventional methods, has transformed all aspects of M S research and clinical practice in recent years. Although advanced imaging methods have added much more to our knowledge about pathogenesis and natural history of the disease but their cost, availability, complexity and lack of validation have limited their use in routine clinical practice. Conventional MR techniques including proton density, T1/T2-Weighted images and fluid- attenuated inversion recovery sequences are now accepted in standard protocols for diagnosis and treatment outcome measures in clinical trials of multiple sclerosis. This review will focus on the type, morphology and evolution of M S lesions regarding conventional MRI and their use for treatment monitoring in daily clinical practice

  16. Generalized internal multiple imaging (GIMI) using Feynman-like diagrams

    KAUST Repository

    Zuberi, M. A. H.

    2014-05-19

    Single scattering events recorded in surface seismic data do not fully illuminate the subsurface structure, especially if it is complicated. In such cases, multiple internal scatterings (internal multiples) can help improve the illumination. We devise a generalized internal multiple imaging (GIMI) procedure that maps internal multiple energy to their true location with a relatively mild addition to the computational cost. GIMI theory relies heavily on seismic interferometry, which often involves cumbersome algebra, especially when one is dealing with high-order terms in the perturbation series. To make the derivations, and inference of the results easier, we introduce Feynman-like diagrams to represent different terms of the perturbation series (solution to the Lippman–Schwinger equation). The rules we define for the diagrams allow operations like convolution and cross-correlation in the series to be compressed in diagram form. The application of the theory to a double scattering example demonstrates the power of the method.

  17. Generalized internal multiple imaging (GIMI) using Feynman-like diagrams

    KAUST Repository

    Zuberi, M. A. H.; Alkhalifah, Tariq Ali

    2014-01-01

    Single scattering events recorded in surface seismic data do not fully illuminate the subsurface structure, especially if it is complicated. In such cases, multiple internal scatterings (internal multiples) can help improve the illumination. We devise a generalized internal multiple imaging (GIMI) procedure that maps internal multiple energy to their true location with a relatively mild addition to the computational cost. GIMI theory relies heavily on seismic interferometry, which often involves cumbersome algebra, especially when one is dealing with high-order terms in the perturbation series. To make the derivations, and inference of the results easier, we introduce Feynman-like diagrams to represent different terms of the perturbation series (solution to the Lippman–Schwinger equation). The rules we define for the diagrams allow operations like convolution and cross-correlation in the series to be compressed in diagram form. The application of the theory to a double scattering example demonstrates the power of the method.

  18. Suitable post processing algorithms for X-ray imaging using oversampled displaced multiple images

    International Nuclear Information System (INIS)

    Thim, J; Reza, S; Nawaz, K; Norlin, B; O'Nils, M; Oelmann, B

    2011-01-01

    X-ray imaging systems such as photon counting pixel detectors have a limited spatial resolution of the pixels, based on the complexity and processing technology of the readout electronics. For X-ray imaging situations where the features of interest are smaller than the imaging system pixel size, and the pixel size cannot be made smaller in the hardware, alternative means of resolution enhancement require to be considered. Oversampling with the usage of multiple displaced images, where the pixels of all images are mapped to a final resolution enhanced image, has proven a viable method of reaching a sub-pixel resolution exceeding the original resolution. The effectiveness of the oversampling method declines with the number of images taken, the sub-pixel resolution increases, but relative to a real reduction of imaging pixel sizes yielding a full resolution image, the perceived resolution from the sub-pixel oversampled image is lower. This is because the oversampling method introduces blurring noise into the mapped final images, and the blurring relative to full resolution images increases with the oversampling factor. One way of increasing the performance of the oversampling method is by sharpening the images in post processing. This paper focus on characterizing the performance increase of the oversampling method after the use of some suitable post processing filters, for digital X-ray images specifically. The results show that spatial domain filters and frequency domain filters of the same type yield indistinguishable results, which is to be expected. The results also show that the effectiveness of applying sharpening filters to oversampled multiple images increase with the number of images used (oversampling factor), leaving 60-80% of the original blurring noise after filtering a 6 x 6 mapped image (36 images taken), where the percentage is depending on the type of filter. This means that the effectiveness of the oversampling itself increase by using sharpening

  19. Textureless Macula Swelling Detection with Multiple Retinal Fundus Images

    Energy Technology Data Exchange (ETDEWEB)

    Giancardo, Luca [ORNL; Meriaudeau, Fabrice [ORNL; Karnowski, Thomas Paul [ORNL; Tobin Jr, Kenneth William [ORNL; Grisan, Enrico [University of Padua, Padua, Italy; Favaro, Paolo [Heriot-Watt University, Edinburgh; Ruggeri, Alfredo [University of Padua, Padua, Italy; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Retinal fundus images acquired with non-mydriatic digital fundus cameras are a versatile tool for the diagnosis of various retinal diseases. Because of the ease of use of newer camera models and their relatively low cost, these cameras can be employed by operators with limited training for telemedicine or Point-of-Care applications. We propose a novel technique that uses uncalibrated multiple-view fundus images to analyse the swelling of the macula. This innovation enables the detection and quantitative measurement of swollen areas by remote ophthalmologists. This capability is not available with a single image and prone to error with stereo fundus cameras. We also present automatic algorithms to measure features from the reconstructed image which are useful in Point-of-Care automated diagnosis of early macular edema, e.g., before the appearance of exudation. The technique presented is divided into three parts: first, a preprocessing technique simultaneously enhances the dark microstructures of the macula and equalises the image; second, all available views are registered using non-morphological sparse features; finally, a dense pyramidal optical flow is calculated for all the images and statistically combined to build a naiveheight- map of the macula. Results are presented on three sets of synthetic images and two sets of real world images. These preliminary tests show the ability to infer a minimum swelling of 300 microns and to correlate the reconstruction with the swollen location.

  20. Imaging moving objects from multiply scattered waves and multiple sensors

    International Nuclear Information System (INIS)

    Miranda, Analee; Cheney, Margaret

    2013-01-01

    In this paper, we develop a linearized imaging theory that combines the spatial, temporal and spectral components of multiply scattered waves as they scatter from moving objects. In particular, we consider the case of multiple fixed sensors transmitting and receiving information from multiply scattered waves. We use a priori information about the multipath background. We use a simple model for multiple scattering, namely scattering from a fixed, perfectly reflecting (mirror) plane. We base our image reconstruction and velocity estimation technique on a modification of a filtered backprojection method that produces a phase-space image. We plot examples of point-spread functions for different geometries and waveforms, and from these plots, we estimate the resolution in space and velocity. Through this analysis, we are able to identify how the imaging system depends on parameters such as bandwidth and number of sensors. We ultimately show that enhanced phase-space resolution for a distribution of moving and stationary targets in a multipath environment may be achieved using multiple sensors. (paper)

  1. Image Based Solution to Occlusion Problem for Multiple Robots Navigation

    Directory of Open Access Journals (Sweden)

    Taj Mohammad Khan

    2012-04-01

    Full Text Available In machine vision, occlusions problem is always a challenging issue in image based mapping and navigation tasks. This paper presents a multiple view vision based algorithm for the development of occlusion-free map of the indoor environment. The map is assumed to be utilized by the mobile robots within the workspace. It has wide range of applications, including mobile robot path planning and navigation, access control in restricted areas, and surveillance systems. We used wall mounted fixed camera system. After intensity adjustment and background subtraction of the synchronously captured images, the image registration was performed. We applied our algorithm on the registered images to resolve the occlusion problem. This technique works well even in the existence of total occlusion for a longer period.

  2. Imaging of multiple endocrine neoplasia (MEN II A)

    International Nuclear Information System (INIS)

    Tanaka, Hiroko; Kohno, Atsushi; Nojiri, Yoko

    1995-01-01

    A retrospective review of diagnostic imaging findings of 20 cases of multiple endocrine neoplasia II A (MEN II A) was performed. The characteristic findings of thyroidal medullary carcinomas were relatively well-defined hypo- to isoechoic masses on US and coarse calcifications on plain X-ray. The pheochromocytomas were smaller in size and less enhancing than the sporadic ones, and they revealed marked high intensity on T2WI of MRI. We consider that these imaging findings were useful for the supplementary diagnosis of MEN II A. (author)

  3. Measuring multiple nano-textured areas simultaneously with imaging scatterometry

    DEFF Research Database (Denmark)

    Madsen, Jonas Skovlund; Hansen, Poul Erik; Bilenberg, Brian

    2017-01-01

    and areas with defects can be avoided. These advantages make imaging scatterometry a very effective and user-friendly characterization method and allow us to determine the homogeneity of a nano- Textured surface by performing pixel-wise analyses. In the analysis an inverse modelling approach is used, where...... measured diffraction efficiencies are compared to simulated diffraction efficiencies using a least-square fitting approach. We demonstrate an imaging scatterometry setup built into an optical microscope. The setup is capable of measuring multiple 2D gratings with pitches of 200 nm simultaneously...

  4. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    Science.gov (United States)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  5. Parallel multiple instance learning for extremely large histopathology image analysis.

    Science.gov (United States)

    Xu, Yan; Li, Yeshu; Shen, Zhengyang; Wu, Ziwei; Gao, Teng; Fan, Yubo; Lai, Maode; Chang, Eric I-Chao

    2017-08-03

    Histopathology images are critical for medical diagnosis, e.g., cancer and its treatment. A standard histopathology slice can be easily scanned at a high resolution of, say, 200,000×200,000 pixels. These high resolution images can make most existing imaging processing tools infeasible or less effective when operated on a single machine with limited memory, disk space and computing power. In this paper, we propose an algorithm tackling this new emerging "big data" problem utilizing parallel computing on High-Performance-Computing (HPC) clusters. Experimental results on a large-scale data set (1318 images at a scale of 10 billion pixels each) demonstrate the efficiency and effectiveness of the proposed algorithm for low-latency real-time applications. The framework proposed an effective and efficient system for extremely large histopathology image analysis. It is based on the multiple instance learning formulation for weakly-supervised learning for image classification, segmentation and clustering. When a max-margin concept is adopted for different clusters, we obtain further improvement in clustering performance.

  6. Geodetic glacier mass balances at the push of a button: application of Structure from Motion technology on aerial images in mountain regions

    Science.gov (United States)

    Bolch, T.; Mölg, N.

    2017-12-01

    The application of Structure-from-Motion (SfM) to generate digital terrain models (DTMs) derived out of images from various kinds of sources has strongly increased in recent years. The major reason for this is its easy-to-use handling in comparison to conventional photogrammetry. In glaciology, DTMs are intensely used, among others, to calculate the geodetic mass balances. Few studies investigated the application of SfM to aerial images in mountainous terrain and results look promising. We tested this technique in a demanding environment in the Swiss Alps including very steep slopes, snow and ice covered terrain. SfM (using the commercial software packages of Agisoft Photoscan and Pix4DMapper) and conventional photogrammetry (ERDAS Photogrammetry) were applied on archival aerial images for nine dates between 1946 and 2005 the results were compared regarding bundle adjustment and final DTM quality. The overall precision of the DTMs could be defined with the use of a modern, high-quality reference DTM by Swisstopo. Results suggest a high performance of SfM to produce DTMs of similar quality as conventional photogrammetry. A ground resolution of high quality (little noise and artefacts) can be up to 50% higher, with 3-6 times less user effort. However, the controls on the commercial SfM software packages are limited in comparison to ERDAS Photogrammetry. SfM performs less reliably when few images with little overlap are processed. Overall, the uncertainty of DTMs from the different software are comparable and mostly within the uncertainty range of the reference DTM, making them highly valuable for glaciological purposes. Even though SfM facilitates the largely automated production of high quality DTMs, the user is not exempt from a thorough quality check, at best with reference data where available.

  7. Exploring manifold structure of face images via multiple graphs

    KAUST Repository

    Alghamdi, Masheal

    2013-01-01

    Geometric structure in the data provides important information for face image recognition and classification tasks. Graph regularized non-negative matrix factorization (GrNMF) performs well in this task. However, it is sensitive to the parameters selection. Wang et al. proposed multiple graph regularized non-negative matrix factorization (MultiGrNMF) to solve the parameter selection problem by testing it on medical images. In this paper, we introduce the MultiGrNMF algorithm in the context of still face Image classification, and conduct a comparative study of NMF, GrNMF, and MultiGrNMF using two well-known face databases. Experimental results show that MultiGrNMF outperforms NMF and GrNMF for most cases.

  8. Optimized multiple linear mappings for single image super-resolution

    Science.gov (United States)

    Zhang, Kaibing; Li, Jie; Xiong, Zenggang; Liu, Xiuping; Gao, Xinbo

    2017-12-01

    Learning piecewise linear regression has been recognized as an effective way for example learning-based single image super-resolution (SR) in literature. In this paper, we employ an expectation-maximization (EM) algorithm to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough experimental results carried on six publicly available datasets demonstrate that the proposed SR method can yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual image quality assessments.

  9. Exploring manifold structure of face images via multiple graphs

    KAUST Repository

    Alghamdi, Masheal

    2013-12-24

    Geometric structure in the data provides important information for face image recognition and classification tasks. Graph regularized non-negative matrix factorization (GrNMF) performs well in this task. However, it is sensitive to the parameters selection. Wang et al. proposed multiple graph regularized non-negative matrix factorization (MultiGrNMF) to solve the parameter selection problem by testing it on medical images. In this paper, we introduce the MultiGrNMF algorithm in the context of still face Image classification, and conduct a comparative study of NMF, GrNMF, and MultiGrNMF using two well-known face databases. Experimental results show that MultiGrNMF outperforms NMF and GrNMF for most cases.

  10. Optical image encryption scheme with multiple light paths based on compressive ghost imaging

    Science.gov (United States)

    Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan

    2018-02-01

    An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.

  11. Importance of multidetector CT imaging in multiple trauma

    International Nuclear Information System (INIS)

    Linsenmaier, U.; Geyer, L.L.; Reiser, M.; Wirth, S.; Koerner, M.

    2014-01-01

    Diagnostic imaging of complex multiple trauma remains a challenge for any department providing modern emergency radiology (ER) service. An early and comprehensive approach for ER imaging is crucial for a priority-oriented and timely therapy concept with the aim of identifying potentially life-threatening injuries early and initiating appropriate treatment. The basic diagnostic approach still consists of focused ultrasound using focused assessment with sonography for trauma (FAST) and conventional radiography (CR), usually limited to a single supine chest x-ray for triaging patients undergoing immediate operations. Multidetector computed tomography (MDCT) has become established as early whole body CT (WBCT) as the undisputable diagnostic method. The detection rate of injuries by WBCT is outstanding and it improves the probability of survival by 20-25 % compared with all other previous methods. At the same time, the spatial and temporal resolution of MDCT was improved resulting in considerably shortened examination times but WBCT is still associated with a significant radiation exposure, even in the acute single use setting. Using modern scanner and dose reduction technology, including iterative reconstruction, a dose reduction of up to 40 % could be achieved. The substantial number of images in WBCT is another challenge; images must be processed priority-oriented, read and transferred to the picture archiving and communications system (PACS). For rapid diagnosis, volume image reading (VIR) offers additional options to keep the diagnostic process on time. Modern WBCT after multiple trauma is performed early, comprehensively and personalized so that WBCT improves the probability of survival by 20-25 %. (orig.) [de

  12. AUTOMATIC 3D MAPPING USING MULTIPLE UNCALIBRATED CLOSE RANGE IMAGES

    Directory of Open Access Journals (Sweden)

    M. Rafiei

    2013-09-01

    Full Text Available Automatic three-dimensions modeling of the real world is an important research topic in the geomatics and computer vision fields for many years. By development of commercial digital cameras and modern image processing techniques, close range photogrammetry is vastly utilized in many fields such as structure measurements, topographic surveying, architectural and archeological surveying, etc. A non-contact photogrammetry provides methods to determine 3D locations of objects from two-dimensional (2D images. Problem of estimating the locations of 3D points from multiple images, often involves simultaneously estimating both 3D geometry (structure and camera pose (motion, it is commonly known as structure from motion (SfM. In this research a step by step approach to generate the 3D point cloud of a scene is considered. After taking images with a camera, we should detect corresponding points in each two views. Here an efficient SIFT method is used for image matching for large baselines. After that, we must retrieve the camera motion and 3D position of the matched feature points up to a projective transformation (projective reconstruction. Lacking additional information on the camera or the scene makes the parallel lines to be unparalleled. The results of SfM computation are much more useful if a metric reconstruction is obtained. Therefor multiple views Euclidean reconstruction applied and discussed. To refine and achieve the precise 3D points we use more general and useful approach, namely bundle adjustment. At the end two real cases have been considered to reconstruct (an excavation and a tower.

  13. Pseudomalignant myositis ossificans involving multiple masticatory muscles: Imaging evaluation

    International Nuclear Information System (INIS)

    Kamalapur, Muralidhar G; Patil, Pritam B; Joshi, Shyamsundar; Shastri, Dinesh

    2014-01-01

    Myositis ossificans is a rare cause of trismus. We present a case of pseudomalignant myositis ossificans involving medial pterygoid, lateral pterygoid, and temporalis muscles. Patient presented with gross limitation in mouth opening. There was no history of trauma. Computed tomography (CT) images revealed a bone density mass located in the region of medial and lateral pterygoid muscles on the right and temporalis muscle on the left. Magnetic resonance imaging (MRI) showed similar findings. Radiological diagnosis was pseudomalignant myositis ossificans. The masses were resected and histopathologic examination confirmed the above diagnosis. This report describes the characteristic CT and MRI features. The unique feature of this case is the absence of history of trauma with involvement of multiple masticatory muscles, which, to the best of our knowledge, has not been reported before

  14. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis

    DEFF Research Database (Denmark)

    Rocca, Maria A; Amato, Maria P; De Stefano, Nicola

    2015-01-01

    In patients with multiple sclerosis (MS), grey matter damage is widespread and might underlie many of the clinical symptoms, especially cognitive impairment. This relation between grey matter damage and cognitive impairment has been lent support by findings from clinical and MRI studies. However...... that causes clinical symptoms to trigger. Findings on cortical reorganisation support the contribution of brain plasticity and cognitive reserve in limiting cognitive deficits. The development of clinical and imaging biomarkers that can monitor disease development and treatment response is crucial to allow...

  15. Imaging outcomes for trials of remyelination in multiple sclerosis.

    Science.gov (United States)

    Mallik, Shahrukh; Samson, Rebecca S; Wheeler-Kingshott, Claudia A M; Miller, David H

    2014-12-01

    Trials of potential neuroreparative agents are becoming more important in the spectrum of multiple sclerosis research. Appropriate imaging outcomes are required that are feasible from a time and practicality point of view, as well as being sensitive and specific to myelin, while also being reproducible and clinically meaningful. Conventional MRI sequences have limited specificity for myelination. We evaluate the imaging modalities which are potentially more specific to myelin content in vivo, such as magnetisation transfer ratio (MTR), restricted proton fraction f (from quantitative magnetisation transfer measurements), myelin water fraction and diffusion tensor imaging (DTI) metrics, in addition to positron emission tomography (PET) imaging. Although most imaging applications to date have focused on the brain, we also consider measures with the potential to detect remyelination in the spinal cord and in the optic nerve. At present, MTR and DTI measures probably offer the most realistic and feasible outcome measures for such trials, especially in the brain. However, no one measure currently demonstrates sufficiently high sensitivity or specificity to myelin, or correlation with clinical features, and it should be useful to employ more than one outcome to maximise understanding and interpretation of findings with these sequences. PET may be less feasible for current and near-future trials, but is a promising technique because of its specificity. In the optic nerve, visual evoked potentials can indicate demyelination and should be correlated with an imaging outcome (such as optic nerve MTR), as well as clinical measures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Multiple-Event, Single-Photon Counting Imaging Sensor

    Science.gov (United States)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  17. Video Multiple Watermarking Technique Based on Image Interlacing Using DWT

    Directory of Open Access Journals (Sweden)

    Mohamed M. Ibrahim

    2014-01-01

    Full Text Available Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  18. Video multiple watermarking technique based on image interlacing using DWT.

    Science.gov (United States)

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  19. Multiple imaging procedures including MRI for the bladder cancer

    International Nuclear Information System (INIS)

    Mikata, Noriharu; Suzuki, Makoto; Takeuchi, Takumi; Kunisawa, Yositaka; Fukutani, Keiko; Kawabe, Kazuki

    1986-01-01

    Endoscopic photography, double contrast cystography, transurethral echography, X-ray CT scan, and MRI (magnetic resonance imaging) were utilized for the staging diagnosis of the four patients with carcinoma of the bladder. In the first case, a 70-year-old man, since all of the five imaging procedures suggested a superficial and pedunculated tumor, his bladder cancer was considered T1. The classification of stage T3 carcinoma was made for the second 86-year-old male. Because all of his imaging examinations showed a tumor infiltrating deep muscle and penetrating the bladder wall. The third case was a 36-year-old male. His clinical stage was diagnosed as T2 or T3a by cystophotography, double contrast cystogram, ultrasonography, and X-ray CT scan. However, MRI showed only thickened bladder wall and the infiltrating tumor could not be distinguished from the hypertrophic wall. The last patient, a 85-year-old female, had a smaller Ta cancer. Her double contrast cystography revealed the small tumor at the lateral bladder wall. But, the tumor could not be detected by transaxial, sagittal and coronal scans. Multiple imaging procedures combining MRI and staging diagnosis of the bladder carcinoma were discussed. (author)

  20. GEOPOSITIONING PRECISION ANALYSIS OF MULTIPLE IMAGE TRIANGULATION USING LRO NAC LUNAR IMAGES

    Directory of Open Access Journals (Sweden)

    K. Di

    2016-06-01

    Full Text Available This paper presents an empirical analysis of the geopositioning precision of multiple image triangulation using Lunar Reconnaissance Orbiter Camera (LROC Narrow Angle Camera (NAC images at the Chang’e-3(CE-3 landing site. Nine LROC NAC images are selected for comparative analysis of geopositioning precision. Rigorous sensor models of the images are established based on collinearity equations with interior and exterior orientation elements retrieved from the corresponding SPICE kernels. Rational polynomial coefficients (RPCs of each image are derived by least squares fitting using vast number of virtual control points generated according to rigorous sensor models. Experiments of different combinations of images are performed for comparisons. The results demonstrate that the plane coordinates can achieve a precision of 0.54 m to 2.54 m, with a height precision of 0.71 m to 8.16 m when only two images are used for three-dimensional triangulation. There is a general trend that the geopositioning precision, especially the height precision, is improved with the convergent angle of the two images increasing from several degrees to about 50°. However, the image matching precision should also be taken into consideration when choosing image pairs for triangulation. The precisions of using all the 9 images are 0.60 m, 0.50 m, 1.23 m in along-track, cross-track, and height directions, which are better than most combinations of two or more images. However, triangulation with selected fewer images could produce better precision than that using all the images.

  1. Measurement of the Energy-Dependent Angular Response of the ARES Detector System and Application to Aerial Imaging

    Science.gov (United States)

    Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen

    2017-07-01

    The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.

  2. Multiple speckle illumination for optical-resolution photoacoustic imaging

    Science.gov (United States)

    Poisson, Florian; Stasio, Nicolino; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2017-03-01

    Optical-resolution photoacoustic microscopy offers exquisite and specific contrast to optical absorption. Conventional approaches generally involves raster scanning a focused spot over the sample. Here, we demonstrate that a full-field illumination approach with multiple speckle illumination can also provide diffraction-limited optical-resolution photoacoustic images. Two different proof-of-concepts are demonstrated with micro-structured test samples. The first approach follows the principle of correlation/ghost imaging,1, 2 and is based on cross-correlating photoacoustic signals under multiple speckle illumination with known speckle patterns measured during a calibration step. The second approach is a speckle scanning microscopy technique, which adapts the technique proposed in fluorescence microscopy by Bertolotti and al.:3 in our work, spatially unresolved photoacoustic measurements are performed for various translations of unknown speckle patterns. A phase-retrieval algorithm is used to reconstruct the object from the knowledge of the modulus of its Fourier Transform yielded by the measurements. Because speckle patterns naturally appear in many various situations, including propagation through biological tissue or multi-mode fibers (for which focusing light is either very demanding if not impossible), speckle-illumination-based photoacoustic microscopy provides a powerful framework for the development of novel reconstruction approaches, well-suited to compressed sensing approaches.2

  3. Diffusion Weighted Imaging in Acute Attacks of Multiple Sclerosis

    International Nuclear Information System (INIS)

    Davoudi, Yasmin; Foroughipour, Mohsen; Torabi, Reza; Layegh, Parvaneh; Matin, Nassim; Shoeibi, Ali

    2016-01-01

    Multiple sclerosis (MS) is one of the most common autoimmune disorders of the central nervous system. In spite of various imaging modalities, the definitive diagnosis of MS remains challenging. This study was designed to evaluate the usefulness of diffusion weighted imaging (DWI) in the diagnosis of acute MS attack and to compare its results with contrast enhanced MRI (CE-MRI). In this cross sectional study, seventy patients with definite diagnosis of relapsing-remitting MS were included. CE-MRI using 0.1 mmol/kg gadolinium as well as DWI sequences were performed for all patients. The percentage of patients with positive DWI was compared with the results of CE-MRI and the consistency between the two imaging modalities was evaluated. Moreover, the relationship between the time of onset of patient’s symptoms and test results for both methods were investigated. CE-MRI yielded positive results for 61 (87%) patients and DWI yielded positive for 53 (76%) patients. In fifty patients (71.42%), both tests were positive and in six cases (8.57%), both were negative. The test results of three patients turned out to be positive in DWI, while they tested negative in CE-MRI. There was no significant relationship between the results of CE-MRI as well as DWI and the time of imaging from the onset of symptoms. These data indicate that while CE-MRI will depict more positive results, there are cases in which DWI will show a positive result while CE-MRI is negative. We suggest that the combination of these two imaging modalities might yield more positive results in diagnosing acute MS attack giving rise to a more accurate diagnosis

  4. Heterogeneity of Multiple Sclerosis Lesions in Multislice Myelin Water Imaging.

    Directory of Open Access Journals (Sweden)

    Tobias Djamsched Faizy

    Full Text Available To assess neuroprotection and remyelination in Multiple Sclerosis (MS, we applied a more robust myelin water imaging (MWI processing technique, including spatial priors into image reconstruction, which allows for lower SNR, less averages and shorter acquisition times. We sought to evaluate this technique in MS-patients and healthy controls (HC.Seventeen MS-patients and 14 age-matched HCs received a 3T Magnetic Resonance Imaging (MRI examination including MWI (8 slices, 12 minutes acquisition time, T2w and T1mprage pre and post gadolinium (GD administration. Black holes (BH, contrast enhancing lesions (CEL and T2 lesions were marked and registered to MWI. Additionally, regions of interest (ROI were defined in the frontal, parietal and occipital normal appearing white matter (NAWM/white matter (WM, the corticospinal tract (CST, the splenium (SCC and genu (GCC of the corpus callosum in patients and HCs. Mean values of myelin water fraction (MWF were determined for each ROI.Significant differences (p≤0.05 of the MWF were found in all three different MS-lesion types (BH, CEL, T2 lesions, compared to the WM of HCs. The mean MWF values among the different lesion types were significantly differing from each other. Comparing MS-patients vs. HCs, we found a significant (p≤0.05 difference of the MWF in all measured ROIs except of GCC and SCC. The mean reduction of MWF in the NAWM of MS-patients compared to HCs was 37%. No age, sex, disability score and disease duration dependency was found for the NAWM MWF.MWF measures were in line with previous studies and lesions were clearly visible in MWI. MWI allows for quantitative assessment of NAWM and lesions in MS, which could be used as an additional sensitive imaging endpoint for larger MS studies. Measurements of the MWF also differ between patients and healthy controls.

  5. Magnetic resonance imaging of spinal cord lesions in multiple sclerosis

    International Nuclear Information System (INIS)

    Kojima, Shigeyuki; Yagishita, Toshiyuki; Fukutake, Toshio; Hirayama, Keizo; Fukuda, Nobuo.

    1987-01-01

    Magnetic resonance imaging (MRI) was used in three patients with multiple sclerosis (MS) to demonstrate the longitudinal distribution of demyelinating plaques in the spinal cord and to measure their T1 relaxation time values in these disease processes. Neurological examination allowed the detection of the superior limit of the spinal cord lesions in the three patients, but did not permit detection of the inferior limit in two of the patients. With MRI, however, it was possible to demonstrate the longitudinal distribution of demyelinating plaques in all three patients from coronal or sagittal images using spin echo and inversion recovery pulse sequences. In two patients treated with prednisolone, serial T1 relaxation time values of MS spinal cord lesions were measured from T1 calculated images. In one patient with transverse myelopathy, the T1 relaxation time values of MS spinal cord lesions were significantly increased at a stage of acute exacerbation. This is apparently in contrast with the values at the stage of remission. In the patient with localized cervical myelopathy, the increase in T1 relaxation time values of MS spinal cord lesions at the acute stage was small and significantly different from the values at the remission stage. Several recent reports have indicated that MRI is extremely sensitive in the detection of MS plaques, but most efforts to use MRI in the diagnosis of MS have been concentrated on brain lesions in spite of their frequent associations with spinal cord involvements. It is concluded from our case studies that MRI coronal or sagittal image is useful in demonstrating the longitudinal distribution of MS spinal cord lesions. In addition, serial observations of T1 relaxation time values of MS plaques may be important in assessing the activity of MS plaques and evaluation of the steroid therapy in MS processes. (author)

  6. Color correction with blind image restoration based on multiple images using a low-rank model

    Science.gov (United States)

    Li, Dong; Xie, Xudong; Lam, Kin-Man

    2014-03-01

    We present a method that can handle the color correction of multiple photographs with blind image restoration simultaneously and automatically. We prove that the local colors of a set of images of the same scene exhibit the low-rank property locally both before and after a color-correction operation. This property allows us to correct all kinds of errors in an image under a low-rank matrix model without particular priors or assumptions. The possible errors may be caused by changes of viewpoint, large illumination variations, gross pixel corruptions, partial occlusions, etc. Furthermore, a new iterative soft-segmentation method is proposed for local color transfer using color influence maps. Due to the fact that the correct color information and the spatial information of images can be recovered using the low-rank model, more precise color correction and many other image-restoration tasks-including image denoising, image deblurring, and gray-scale image colorizing-can be performed simultaneously. Experiments have verified that our method can achieve consistent and promising results on uncontrolled real photographs acquired from the Internet and that it outperforms current state-of-the-art methods.

  7. AMRMS Aerial survey database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An aerial monitoring program was conducted during the period 1962 - 2003 in cooperation with aerial spotters working for the commercial purse seine fleet. Flights...

  8. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-01-01

    persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc

  9. Volume measurement of multiple sclerosis lesions with magnetic resonance images

    International Nuclear Information System (INIS)

    Wicks, D.A.G.; Tofts, P.S.; Miller, D.H.; Du Boulay, G.H.; Feinstein, A.; Harvey, I.; Brenner, R.; McDonald, W.I.; Sacares, R.P.

    1992-01-01

    The ability to visualise multiple sclerosis lesions in vivo with magnetic resonance imaging suggests an important role in monitoring the course of the disease. In order to help the long-term assessment of prospective treatments, a semi-automated technique for measuring lesion volume has been developed to provide a quantitative index of disease progression. Results are presented from a preliminary study with a single patient and compared to measurements taken from lesion outlines traced by a neuroradiologist, two neurologists and a technician. The semi-automated technique achieved a precision of 6% compared to a range of 12-33% for the manual tracing method. It also reduced the human interaction time from at least 60 min to 15 min. (orig.)

  10. Imaging by multiple modalities of patients with a carotidynia syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Nobuyuki; Uematsu, Hidemasa; Kimura, Hirohiko; Itoh, Harumi [University of Fukui, Department of Radiology, Faculty of Medical Sciences, Fukui (Japan); Sagoh, Tadashi; Noguchi, Masato [Fukui Red Cross Hospital, Department of Radiology, Fukui (Japan); Miyayama, Shiro [Fukuiken Saiseikai Hospital, Department of Diagnostic Radiology, Fukui (Japan)

    2007-09-15

    The purpose of this article is to familiarize readers with the clinical syndrome of carotidynia. In the past, the International Headache Society (IHS) described idiopathic carotidynia as a diagnostic entity consisting of a self-limiting neck pain syndrome and tenderness over the carotid bifurcation without structural abnormality and then recently removed it from its classification. Although the clinical criteria of carotidynia in the former classification of the IHS included the absence of structural abnormality, several publications have demonstrated associated radiological findings and have described the usefulness of radiological investigations in diagnosing this syndrome. In this paper, we report four additional cases with a carotidynia clinical syndrome (according to the former classification) and the presence of abnormal soft tissue infiltration surrounding the symptomatic carotid artery as demonstrated by multiple imaging modalities, without any other underlying cause for the carotid pain syndrome. Our findings support the hypothesis that carotidynia could be a distinct disease entity, possibly caused by inflammation. (orig.)

  11. Image reconstruction from multiple fan-beam projections

    International Nuclear Information System (INIS)

    Jelinek, J.; Overton, T.R.

    1984-01-01

    Special-purpose third-generation fan-beam CT systems can be greatly simplified by limiting the number of detectors, but this requires a different mode of data collection to provide a set of projections appropriate to the required spatial resolution in the reconstructed image. Repeated rotation of the source-detector fan, combined with shift of the detector array and perhaps offset of the source with respect to the fan's axis after each 360 0 rotation(cycle), provides a fairly general pattern of projection space filling. The authors' investigated the problem of optimal data-collection geometry for a multiple-rotation fan-beam scanner and of corresponding reconstruction algorithm

  12. Imaging by multiple modalities of patients with a carotidynia syndrome

    International Nuclear Information System (INIS)

    Kosaka, Nobuyuki; Uematsu, Hidemasa; Kimura, Hirohiko; Itoh, Harumi; Sagoh, Tadashi; Noguchi, Masato; Miyayama, Shiro

    2007-01-01

    The purpose of this article is to familiarize readers with the clinical syndrome of carotidynia. In the past, the International Headache Society (IHS) described idiopathic carotidynia as a diagnostic entity consisting of a self-limiting neck pain syndrome and tenderness over the carotid bifurcation without structural abnormality and then recently removed it from its classification. Although the clinical criteria of carotidynia in the former classification of the IHS included the absence of structural abnormality, several publications have demonstrated associated radiological findings and have described the usefulness of radiological investigations in diagnosing this syndrome. In this paper, we report four additional cases with a carotidynia clinical syndrome (according to the former classification) and the presence of abnormal soft tissue infiltration surrounding the symptomatic carotid artery as demonstrated by multiple imaging modalities, without any other underlying cause for the carotid pain syndrome. Our findings support the hypothesis that carotidynia could be a distinct disease entity, possibly caused by inflammation. (orig.)

  13. Magnetic resonance imaging in optic nerve lesions with multiple sclerosis

    International Nuclear Information System (INIS)

    Kojima, Shigeyuki; Hirayama, Keizo; Kakisu, Yonetsugu; Adachi, Emiko

    1990-01-01

    Magnetic resonance imaging (MRI) of the optic nerve was performed in 10 patients with multiple sclerosis (MS) using short inversion time inversion recovery (STIR) pulse sequences, and the results were compared with the visual evoked potentials (VEP). The 10 patients had optic neuritis in the chronic or remitting phase together with additional symptoms or signs allowing a diagnosis of clinically definite or probable MS. Sixteen optic nerves were clinically affected and 4 were unaffected. MRI was performed using a 0.5 tesla supeconducting unit, and multiple continuous 5 mm coronal and axial STIR images were obtained. A lesion was judged to be present if a focal or diffuse area of increased signal intensity was detectd in the optic nerve. In VEP, a delay in peak latency or no P 100 component was judged to be abnormal. With regard to the clinically affected optic nerves, MRI revealed a region of increased signal intensity in 14/16 (88%) and the VEP was abnormal in 16/16 (100%). In the clinically unaffected optic nerves, MRI revealed an increased signal intensity in 2/4 (50%). One of these nerves had an abnormal VEP and the other had a VEP latency at the upper limit of normal. The VEP was abnormal in 1/4 (25%). In the clinically affected optic nerves, the degree of loss of visual acuity was not associated with the longitudinal extent of the lesions shown by MRI. The mean length was 17.5 mm in optic nerves with a slight disturbance of visual acuity and 15.0 mm in nerves with severe visual loss. MRI using STIR pulse sequences was found to be almost as sensitive as VEP in detecting both clinically affected and unaffected optic nerve lesions in patients with MS, and was useful in visualizing the location or size of the lesions. (author)

  14. Magnetic resonance imaging in the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Kato, Hiroyuki; Takase, Sadao; Ichikawa, Nobumichi; Yamada, Kenji; Matsuzawa, Taiju.

    1987-01-01

    Seventeen patients with multiple sclerosis (MS), 11 clinically definite and 6 probable MS, were studied using magnetic resonance imaging (MRI) and other diagnostic techniques including cerebrospinal fluid (CSF) analysis, evoked potentials (EP) and CT. The MRI imager was operated at 0.14 tesla. The Carr-Purcell-Meiboom-Gill pulse sequence was employed and multiple spin echoes were acquired. T 1 and T 2 relaxation times of the MS plaques were calculated. Incidence of MS plaque detection was 82 % in MRI (100 % in definite MS and 50 % in probable MS). Incidence of abnormality was 65 % in CSF analysis (IgG, oligoclonal bands and myelin basic protein), 63 % in EP (auditory evoked brainstem response and somatosensory evoked response), and 24 % in CT. Lesion detection by MRI was more frequent when the patient was diagnosed as clinically definite, when the duration of disease was longer or the exacerbation was more frequent. T 1 and T 2 of the MS plaques were 715 ± 140 msec and 184 ± 42 msec, respectively, and were significantly prolonged compared to normal values (T 1 ; 351 ± 35 msec, T 2 ; 102 ± 12 msec). The relaxation times of the plaques which were detected by CT (T 1 ; 834 ± 106 msec, T 2 ; 216 ± 37 msec) were significantly longer than those which were not detected (T 1 ; 673 ± 128 msec, T 2 ; 165 ± 32 msec). Serial observations of relaxation times showed that they become short as time passes after the onset of symptoms. As a result, MRI was most sensitive among the diagnostic modalities of MS, and the relaxation times can serve as indices of the activity and severity of the disease. (author)

  15. Multiple foci of splenic tissue autotransplantation: Splenosis in diagnostic imaging

    International Nuclear Information System (INIS)

    Laskowska, K.; Burzynska-Makuch, M.; Drewa, S.; Lasek, W.; Pilecki, S.; Junik, R.

    2005-01-01

    Splenosis is usually defined as an autotransplantation of lienal tissue in the abdomen or cest following trauma to the spleen and/or splenectomy. The authors present the case of patient 15 years after a splenectomy performed because of extensive abdominal trauma. A new computed tomographic (CT) scan of the abdomen revealed multiple homogenous nodules, different in size, spread in the abdomen. Their density was characteristic of spleen. Ultrasound examination revealed only the largest tumors, located close to the liver and apparently isoechogenic to it. Static scintigraphy and SPECT were performed to prove the presence of splenosis. After treating the patient with colloid sulfide, multiple foci of increased radioisotope accumulation were identified in the abdomen, extrahepatic at the same locations as the masses visible on the CT scans, which were comparable to splenic tissue. Nodules revealed during CT or abdominal US in patients previously treated by splenectomy require further imaging with static scintigraphy of the liver and spleen in order to confirm or exclude splenosis. (author)

  16. Modern imaging techniques in patients with multiple myeloma

    International Nuclear Information System (INIS)

    Bannas, Peter; Adam, G.; Derlin, T.; Kroeger, N.

    2013-01-01

    Imaging studies are essential for both diagnosis and initial staging of multiple myeloma, as well as for differentiation from other monoclonal plasma cell diseases. Apart from conventional radiography, a variety of newer imaging modalities including whole-body low-dose-CT, whole-body MRI and 18F-FDG PET/CT may be used for detection of osseous and extraosseous myeloma manifestations. Despite of known limitations such as limited sensitivity and specificity and the inability to detect extraosseous lesions, conventional radiography still remains the gold standard for staging newly diagnosed myeloma, partly due to its wide availability and low costs. Whole-body low-dose CT is increasingly used due to its higher sensitivity for the detection of osseous lesions and its ability to diagnose extraosseous lesions, and is replacing conventional radiography at selected centres. The highest sensitivity for both detection of bone marrow disease and extraosseous lesions can be achieved with whole-body MRI or 18F-FDG PET/CT. Diffuse bone marrow infiltration may be visualized by whole-body MRI with high sensitivity. Whole-body MRI is at least recommended in all patients with normal conventional radiography and in all patients with an apparently solitary plasmacytoma of bone. To obtain the most precise readings, optimized examination protocols and dedicated radiologists and nuclear medicine physicians familiar with the complex and variable morphologies of myeloma lesions are required. (orig.)

  17. Multiple endocrine neoplasia detection on I-123 MIBG imaging

    International Nuclear Information System (INIS)

    Reinhardt, C.A.; McEwan, L.M.; Wong, J.C.H.

    2000-01-01

    Full text: An 123 I meta-iodobenzylguanidine (MIBG) scan was performed on a 54-year-old lady with familial phaeochromocytoma, to evaluate for bilateral or extra-adrenal disease. She has hypertension with raised catecholamines and CT evidence of a right adrenal phaeochromocytoma, and a female sibling with bilateral phaeochromocytoma. Thyroid blockade using Lugol's Iodine was given orally prior to intravenous administration of 370 MBq 123 I MIBG. Planar and SPECT imaging were acquired at 24 hours. There was intense uptake in the known right phaeochromocytoma. An unexpected finding was focal intense uptake in the region of the right thyroid lobe, which may be either a functioning paraganglioma arising from the cervical sympathetic ganglia or a medullary thyroid carcinoma (MTC). At 48 hours, a further image of the neck showed no changes. This was followed by a standard injection of 150 MBq 99 Tc m pertechnetate for thyroid scanning. Imaging obtained on 99 Tc m energy window setting showed a large hypofunctioning region in the right thyroid lobe, corresponding in location to the focal 123 I MIBG uptake. This is in keeping with a MTC, a neuroendocrine tumour, as other thyroid carcinomas are non-MIBG avid. A subsequent serum calcitonin assay showed elevated levels. The patient underwent surgical removal of the right phaeochromocytoma followed several weeks later by a right hemithyroidectomy. Histological reports confirmed the tumour diagnoses. The patient's familial phaeochromocytoma is therefore part of the multiple endocrine neoplasia syndrome Type 2A (MEN 2A). To date, biochemistry has not shown any evidence of hyperparathyroidism which occurs in 15-20 per cent of patients with MEN 2A. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  18. Spinal cord magnetic resonance imaging in suspected multiple sclerosis

    International Nuclear Information System (INIS)

    Lycklama a Nijeholt, G.J.; Bergers, E.; Castelijns, J.A.; Barkhof, F.; Uitdehaag, B.M.J.; Polman, C.H.

    2000-01-01

    We examined the value of spinal cord magnetic resonance imaging (MRI) in the diagnostic work-up of multiple sclerosis (MS). Forty patients suspected of having MS were examined within 24 months after the start of symptoms. Disability was assessed, and symptoms were categorized as either brain or spinal cord. Work-up further included cerebrospinal fluid analysis and standard proton-density, T2-, and T1-weighted gadolinium-enhanced brain and spinal cord MRI. Patients were categorized as either clinically definite MS (n = 13), laboratory-supported definite MS (n = 14), or clinically probable MS (n = 4); four patients had clinically probable MS, and in nine MS was suspected. Spinal cord abnormalities were found in 35 of 40 patients (87.5 %), consisting of focal lesions in 31, only diffuse abnormalities in two, and both in two. Asymptomatic spinal cord lesions occurred in six patients. All patients with diffuse spinal cord abnormality had clear spinal cord symptoms and a primary progressive disease course. In clinically definite MS, the inclusion of spinal imaging increased the sensitivity of MRI to 100 %. Seven patients without a definite diagnosis had clinically isolated syndromes involving the spinal cord. Brain MRI was inconclusive, while all had focal spinal cord lesions which explained symptoms and ruled out other causes. Two other patients had atypical brain abnormalities suggesting ischemic/vascular disease. No spinal cord abnormalities were found, and during follow-up MS was ruled out. Spinal cord abnormalities are common in suspected MS, and may occur asymptomatic. Although diagnostic classification is seldom changed, spinal cord imaging increases diagnostic sensitivity of MRI in patients with suspected MS. In addition, patients with primary progressive MS may possibly be earlier diagnosed. Finally, differentiation with atypical lesions may be improved. (orig.)

  19. Multiple myoma: current recommendations for imaging; Multiples Myelom: Aktuelle Empfehlungen fuer die Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Hillengass, J. [Medizinische Universitaetsklinik, Abteilung fuer Haematologie, Onkologie und Rheumatologie, Heidelberg (Germany); Deutsches Krebsforschungszentrum, Abteilung Radiologie E010, Heidelberg (Germany); Delorme, S. [Deutsches Krebsforschungszentrum, Abteilung Radiologie E010, Heidelberg (Germany)

    2012-04-15

    Imaging in monoclonal plasma cell disease serves to detect end organ damage, i.e., osteoporosis or bone destruction. Diffuse or circumscribed bone marrow infiltration without damage to mineralized bone is so far not regarded as end organ damage. Skeletal plain x-ray film survey to detect bone destruction, osteoporosis or fractures. Whole body low-dose computed tomography (CT) and whole body magnetic resonance imaging (MRI) allow a more sensitive assessment of both mineralized bone and bone marrow, with greater patient comfort and in the case of MRI without ionizing radiation. According to the literature, cross-sectional imaging is clearly superior to skeletal surveys and MRI is more sensitive than CT. Every locally destructive lesion will be detectable with MRI but for assessing the damage to mineralized bone CT is indispensible. The sensitivities of positron emission tomography (PET)/CT and MRI are comparable. If available whole body MRI and whole body low dose CT should replace conventional skeletal surveys. This has already been implemented in several centers in Germany. For the initial diagnosis of monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma or symptomatic multiple myeloma, a whole-body MRI and a whole body low-dose CT should be performed. For MGUS and asymptomatic myeloma, whole body MRI only should be performed for follow-up until detection of first bone destruction. Patients with symptomatic multiple myeloma and known bone destruction will usually have whole body low-dose CT, supplemented by MRI studies where clinically required. (orig.) [German] Aufgabe der bildgebenden Diagnostik monoklonaler Plasmazellerkrankungen ist der Nachweis der Endorganschaedigung, d. h. der Osteoporose oder der Destruktion des mineralisierten Knochens. Die alleinige umschriebene oder diffuse Markrauminfiltration ohne knoecherne Destruktion gilt nach heutiger Konvention nicht als Endorganschaedigung. Konventioneller Roentgenskelettstatus

  20. Aerial radiation surveys

    International Nuclear Information System (INIS)

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist

  1. Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging

    Science.gov (United States)

    van Puijenbroek, Marinka E. B.; Nolet, Corjan; de Groot, Alma V.; Suomalainen, Juha M.; Riksen, Michel J. P. M.; Berendse, Frank; Limpens, Juul

    2017-12-01

    Dune development along highly dynamic land-sea boundaries is the result of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of nebkha dune development under a changing climate, but has proven difficult due to the scarcity of spatially continuous monitoring data. This study explored the contributions of vegetation and dune size to dune development for locations differing in shelter from the sea. We monitored a natural nebkha dune field of 8 ha, along the coast of the island Texel, the Netherlands, for 1 year using an unmanned aerial vehicle (UAV) with camera. After constructing a digital surface model and orthomosaic we derived for each dune (1) vegetation characteristics (species composition, vegetation density, and maximum vegetation height), (2) dune size (dune volume, area, and maximum height), (3) degree of shelter (proximity to other nebkha dunes and the sheltering by the foredune). Changes in dune volume over summer and winter were related to vegetation, dune size and degree of shelter. We found that a positive change in dune volume (dune growth) was linearly related to initial dune volume over summer but not over winter. Big dunes accumulated more sand than small dunes due to their larger surface area. Exposed dunes increased more in volume (0.81 % per dune per week) than sheltered dunes (0.2 % per dune per week) over summer, while the opposite occurred over winter. Vegetation characteristics did not significantly affect dune growth in summer, but did significantly affect dune growth in winter. Over winter, dunes dominated by Ammophila arenaria, a grass species with high vegetation density throughout the year, increased more in volume than dunes dominated by Elytrigia juncea, a grass species with lower vegetation density (0.43 vs. 0.42 (m3 m-3) week-1). The effect of species was irrespective of dune size or

  2. Probabilistic images (PBIS): A concise image representation technique for multiple parameters

    International Nuclear Information System (INIS)

    Wu, L.C.; Yeh, S.H.; Chen, Z.; Liu, R.S.

    1984-01-01

    Based on m parametric images (PIs) derived from a dynamic series (DS), each pixel of DS is regarded as an m-dimensional vector. Given one set of normal samples (pixels) N and another of abnormal samples A, probability density functions (pdfs) of both sets are estimated. Any unknown sample is classified into N or A by calculating the probability of its being in the abnormal set using the Bayes' theorem. Instead of estimating the multivariate pdfs, a distance ratio transformation is introduced to map the m-dimensional sample space to one dimensional Euclidean space. Consequently, the image that localizes the regional abnormalities is characterized by the probability of being abnormal. This leads to the new representation scheme of PBIs. Tc-99m HIDA study for detecting intrahepatic lithiasis (IL) was chosen as an example of constructing PBI from 3 parameters derived from DS and such a PBI was compared with those 3 PIs, namely, retention ratio image (RRI), peak time image (TNMAX) and excretion mean transit time image (EMTT). 32 normal subjects and 20 patients with proved IL were collected and analyzed. The resultant sensitivity and specificity of PBI were 97% and 98% respectively. They were superior to those of any of the 3 PIs: RRI (94/97), TMAX (86/88) and EMTT (94/97). Furthermore, the contrast of PBI was much better than that of any other image. This new image formation technique, based on multiple parameters, shows the functional abnormalities in a structural way. Its good contrast makes the interpretation easy. This technique is powerful compared to the existing parametric image method

  3. Classification of Urban Feature from Unmanned Aerial Vehicle Images Using Gasvm Integration and Multi-Scale Segmentation

    Science.gov (United States)

    Modiri, M.; Salehabadi, A.; Mohebbi, M.; Hashemi, A. M.; Masumi, M.

    2015-12-01

    The use of UAV in the application of photogrammetry to obtain cover images and achieve the main objectives of the photogrammetric mapping has been a boom in the region. The images taken from REGGIOLO region in the province of, Italy Reggio -Emilia by UAV with non-metric camera Canon Ixus and with an average height of 139.42 meters were used to classify urban feature. Using the software provided SURE and cover images of the study area, to produce dense point cloud, DSM and Artvqvtv spatial resolution of 10 cm was prepared. DTM area using Adaptive TIN filtering algorithm was developed. NDSM area was prepared with using the difference between DSM and DTM and a separate features in the image stack. In order to extract features, using simultaneous occurrence matrix features mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation for each of the RGB band image was used Orthophoto area. Classes used to classify urban problems, including buildings, trees and tall vegetation, grass and vegetation short, paved road and is impervious surfaces. Class consists of impervious surfaces such as pavement conditions, the cement, the car, the roof is stored. In order to pixel-based classification and selection of optimal features of classification was GASVM pixel basis. In order to achieve the classification results with higher accuracy and spectral composition informations, texture, and shape conceptual image featureOrthophoto area was fencing. The segmentation of multi-scale segmentation method was used.it belonged class. Search results using the proposed classification of urban feature, suggests the suitability of this method of classification complications UAV is a city using images. The overall accuracy and kappa coefficient method proposed in this study, respectively, 47/93% and 84/91% was.

  4. High Resolution Urban Land Cover Mapping Using NAIP Aerial Photography and Image Processing for the USEPA National Atlas of Sustainability and Ecosystem Services

    Science.gov (United States)

    Pilant, A. N.; Baynes, J.; Dannenberg, M.

    2012-12-01

    The US EPA National Atlas for Sustainability is a web-based, easy-to-use, mapping application that allows users to view and analyze multiple ecosystem services in a specific region. The Atlas provides users with a visual method for interpreting ecosystem services and understanding how they can be conserved and enhanced for a sustainable future. The Urban Atlas component of the National Atlas will provide fine-scale information linking human health and well-being to environmental conditions such as urban heat islands, near-road pollution, resource use, access to recreation, drinking water quality and other quality of life indicators. The National Land Cover Data (NLCD) derived from 30 m scale 2006 Landsat imagery provides the land cover base for the Atlas. However, urban features and phenomena occur at finer spatial scales, so higher spatial resolution and more current LC maps are required. We used 4 band USDA NAIP imagery (1 m pixel size) and various classification approaches to produce urban land cover maps with these classes: impervious surface, grass and herbaceous, trees and forest, soil and barren, and water. Here we present the remote sensing methods used and results from four pilot cities in this effort, highlighting the pros and cons of the approach, and the benefits to sustainability and ecosystem services analysis. Example of high resolution land cover map derived from USDA NAIP aerial photo. Compare 30 m and 1 m resolution land cover maps of downtown Durham, NC.

  5. Segmentation of multiple sclerosis lesions in MR images: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, Daryoush; Kouzani, Abbas Z. [Deakin University, School of Engineering, Geelong, Victoria (Australia); Soltanian-Zadeh, Hamid [Henry Ford Health System, Image Analysis Laboratory, Radiology Department, Detroit, MI (United States); University of Tehran, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, Tehran (Iran, Islamic Republic of); School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2012-04-15

    Multiple sclerosis (MS) is an inflammatory demyelinating disease that the parts of the nervous system through the lesions generated in the white matter of the brain. It brings about disabilities in different organs of the body such as eyes and muscles. Early detection of MS and estimation of its progression are critical for optimal treatment of the disease. For diagnosis and treatment evaluation of MS lesions, they may be detected and segmented in Magnetic Resonance Imaging (MRI) scans of the brain. However, due to the large amount of MRI data to be analyzed, manual segmentation of the lesions by clinical experts translates into a very cumbersome and time consuming task. In addition, manual segmentation is subjective and prone to human errors. Several groups have developed computerized methods to detect and segment MS lesions. These methods are not categorized and compared in the past. This paper reviews and compares various MS lesion segmentation methods proposed in recent years. It covers conventional methods like multilevel thresholding and region growing, as well as more recent Bayesian methods that require parameter estimation algorithms. It also covers parameter estimation methods like expectation maximization and adaptive mixture model which are among unsupervised techniques as well as kNN and Parzen window methods that are among supervised techniques. Integration of knowledge-based methods such as atlas-based approaches with Bayesian methods increases segmentation accuracy. In addition, employing intelligent classifiers like Fuzzy C-Means, Fuzzy Inference Systems, and Artificial Neural Networks reduces misclassified voxels. (orig.)

  6. Segmentation of multiple sclerosis lesions in MR images: a review

    International Nuclear Information System (INIS)

    Mortazavi, Daryoush; Kouzani, Abbas Z.; Soltanian-Zadeh, Hamid

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease that the parts of the nervous system through the lesions generated in the white matter of the brain. It brings about disabilities in different organs of the body such as eyes and muscles. Early detection of MS and estimation of its progression are critical for optimal treatment of the disease. For diagnosis and treatment evaluation of MS lesions, they may be detected and segmented in Magnetic Resonance Imaging (MRI) scans of the brain. However, due to the large amount of MRI data to be analyzed, manual segmentation of the lesions by clinical experts translates into a very cumbersome and time consuming task. In addition, manual segmentation is subjective and prone to human errors. Several groups have developed computerized methods to detect and segment MS lesions. These methods are not categorized and compared in the past. This paper reviews and compares various MS lesion segmentation methods proposed in recent years. It covers conventional methods like multilevel thresholding and region growing, as well as more recent Bayesian methods that require parameter estimation algorithms. It also covers parameter estimation methods like expectation maximization and adaptive mixture model which are among unsupervised techniques as well as kNN and Parzen window methods that are among supervised techniques. Integration of knowledge-based methods such as atlas-based approaches with Bayesian methods increases segmentation accuracy. In addition, employing intelligent classifiers like Fuzzy C-Means, Fuzzy Inference Systems, and Artificial Neural Networks reduces misclassified voxels. (orig.)

  7. High intensity region segmentation in MR imaging of multiple sclerosis

    International Nuclear Information System (INIS)

    Rodrigo, F; Filipuzzi, M; Graffigna, J P; Isoardi, R; Noceti, M

    2013-01-01

    Numerous pathologies are often manifest in Magnetic Resonance Imaging (MRI) as hyperintense or bright regions as compared to normal tissue. It is of particular interest to develop an algorithm to detect, identify and define those Regions of Interest (ROI) when analyzing MRI studies, particularly for lesions of Multiple Sclerosis (MS). The objective of this study is to analyze those parameters which optimize segmentation of the areas of interest. To establish which areas should be considered as hyperintense regions, we developed a database (DB), with studies of patients diagnosed with MS. This disease causes axonal demyelination and it is expressed as bright regions in PD, T2 and FLAIR MRI sequences. Thus, with more than 4300 hyperintense regions validated by an expert physician, an algorithm was developed to detect such spots, approximating the results the expert obtained. Alongside these hyperintense lesion regions, it also detected bone regions with high intensity levels, similar to the intensity of the lesions, but with other features that allow a good differentiation.The algorithm will then detect ROIs with similar intensity levels and performs classification through data mining techniques

  8. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Jakob Geipel

    2014-10-01

    Full Text Available Precision Farming (PF management strategies are commonly based on estimations of within-field yield potential, often derived from remotely-sensed products, e.g., Vegetation Index (VI maps. These well-established means, however, lack important information, like crop height. Combinations of VI-maps and detailed 3D Crop Surface Models (CSMs enable advanced methods for crop yield prediction. This work utilizes an Unmanned Aircraft System (UAS to capture standard RGB imagery datasets for corn grain yield prediction at three early- to mid-season growth stages. The imagery is processed into simple VI-orthoimages for crop/non-crop classification and 3D CSMs for crop height determination at different spatial resolutions. Three linear regression models are tested on their prediction ability using site-specific (i unclassified mean heights, (ii crop-classified mean heights and (iii a combination of crop-classified mean heights with according crop coverages. The models show determination coefficients \\({R}^{2}\\ of up to 0.74, whereas model (iii performs best with imagery captured at the end of stem elongation and intermediate spatial resolution (0.04m\\(\\cdot\\px\\(^{-1}\\.Following these results, combined spectral and spatial modeling, based on aerial images and CSMs, proves to be a suitable method for mid-season corn yield prediction.

  9. High throughput phenotyping of tomato spotted wilt disease in peanuts using unmanned aerial systems and multispectral imaging

    Science.gov (United States)

    The amount of visible and near infrared light reflected by plants varies depending on their health. In this study, multispectral images were acquired by quadcopter for detecting tomato spot wilt virus amongst twenty genetic varieties of peanuts. The plants were visually assessed to acquire ground ...

  10. Vectorial aerial-image computations of three-dimensional objects based on the extended Nijboer-Zernike theory

    NARCIS (Netherlands)

    Haver, van S.; Braat, J.J.M.; Janssen, A.J.E.M.; Janssen, O.T.A.; Pereira, S.F.

    2009-01-01

    We present details of a novel imaging algorithm based on the extended Nijboer-Zernike (ENZ) theory of diffraction. We derive integral expressions relating the electric field distribution in the entrance pupil of an optical system to the electric field in its focal region. The evaluation of these

  11. Development of an image intensifier-TV digital imaging system with a multiple-slit scanning x-ray beam

    International Nuclear Information System (INIS)

    Kume, Y.; Doi, K.

    1986-01-01

    The authors are developing a new digital x-ray imaging system employing a multiple-slit assembly (MSA) and an image intensifier (II)-TV digital system. The final image consisting of primary radiation is digitally reconstructed from multiple slit images obtained with the MSA. This system can significantly reduce the scattered radiation from an object and the veiling glare from II-TV system. The quality of the reconstructed image is related to many parameters, such as slit width, the number of image frames, and the image reconstruction algorithm. They present the effect of these various parameters on basic imaging properties and the practicability of the method in comparison with conventional wide beam imaging

  12. Persistent Aerial Tracking system for UAVs

    KAUST Repository

    Mueller, Matthias

    2016-12-19

    In this paper, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by ‘handing over the camera’ from one UAV to another. We evaluate several state-of-the-art trackers on the VIVID aerial video dataset and additional sequences that are specifically tailored to low altitude UAV target tracking. Based on the evaluation, we select the leading tracker and improve upon it by optimizing for both speed and performance, integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  13. Persistent Aerial Tracking system for UAVs

    KAUST Repository

    Mueller, Matthias; Sharma, Gopal; Smith, Neil; Ghanem, Bernard

    2016-01-01

    In this paper, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by ‘handing over the camera’ from one UAV to another. We evaluate several state-of-the-art trackers on the VIVID aerial video dataset and additional sequences that are specifically tailored to low altitude UAV target tracking. Based on the evaluation, we select the leading tracker and improve upon it by optimizing for both speed and performance, integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  14. Multiple Voices, Multiple Realities: Self-Defined Images of Self among Adolescent Hispanic English Language Learners

    Science.gov (United States)

    Ajayi, Lasisi J.

    2006-01-01

    Acquisition of multiple identities to negotiate new forms of social participation and the concomitant attendant multiple languages and multiple cultures is "sine qua non" to success in English language learning classrooms. This study therefore, investigates how middle school Hispanic students reconceptualize their identities to negotiate…

  15. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines

    Directory of Open Access Journals (Sweden)

    Andries B. Potgieter

    2017-09-01

    Full Text Available Genetic improvement in sorghum breeding programs requires the assessment of adaptation traits in small-plot breeding trials across multiple environments. Many of these phenotypic assessments are made by manual measurement or visual scoring, both of which are time consuming and expensive. This limits trial size and the potential for genetic gain. In addition, these methods are typically restricted to point estimates of particular traits, such as leaf senescence or flowering and do not capture the dynamic nature of crop growth. In water-limited environments in particular, information on leaf area development over time would provide valuable insight into water use and adaptation to water scarcity during specific phenological stages of crop development. Current methods to estimate plant leaf area index (LAI involve destructive sampling and are not practical in breeding. Unmanned aerial vehicles (UAV and proximal-sensing technologies open new opportunities to assess these traits multiple times in large small-plot trials. We analyzed vegetation-specific crop indices obtained from a narrowband multi-spectral camera on board a UAV platform flown over a small pilot trial with 30 plots (10 genotypes randomized within 3 blocks. Due to variable emergence we were able to assess the utility of these vegetation indices to estimate canopy cover and LAI over a large range of plant densities. We found good correlations between the Normalized Difference Vegetation Index (NDVI and the Enhanced Vegetation Index (EVI with plant number per plot, canopy cover and LAI both during the vegetative growth phase (pre-anthesis and at maximum canopy cover shortly after anthesis. We also analyzed the utility of time-sequence data to assess the senescence pattern of sorghum genotypes known as fast (senescent or slow senescing (stay-green types. The Normalized Difference Red Edge (NDRE index which estimates leaf chlorophyll content was most useful in characterizing the leaf area

  16. Looking for an old aerial photograph

    Science.gov (United States)

    ,

    1997-01-01

    Attempts to photograph the surface of the Earth date from the 1800's, when photographers attached cameras to balloons, kites, and even pigeons. Today, aerial photographs and satellite images are commonplace. The rate of acquiring aerial photographs and satellite images has increased rapidly in recent years. Views of the Earth obtained from aircraft or satellites have become valuable tools to Government resource planners and managers, land-use experts, environmentalists, engineers, scientists, and a wide variety of other users. Many people want historical aerial photographs for business or personal reasons. They may want to locate the boundaries of an old farm or a piece of family property. Or they may want a photograph as a record of changes in their neighborhood, or as a gift. The U.S. Geological Survey (USGS) maintains the Earth Science Information Centers (ESIC?s) to sell aerial photographs, remotely sensed images from satellites, a wide array of digital geographic and cartographic data, as well as the Bureau?s wellknown maps. Declassified photographs from early spy satellites were recently added to the ESIC offerings of historical images. Using the Aerial Photography Summary Record System database, ESIC researchers can help customers find imagery in the collections of other Federal agencies and, in some cases, those of private companies that specialize in esoteric products.

  17. Quantitative extraction of the bedrock exposure rate based on unmanned aerial vehicle data and Landsat-8 OLI image in a karst environment

    Science.gov (United States)

    Wang, Hongyan; Li, Qiangzi; Du, Xin; Zhao, Longcai

    2017-12-01

    In the karst regions of southwest China, rocky desertification is one of the most serious problems in land degradation. The bedrock exposure rate is an important index to assess the degree of rocky desertification in karst regions. Because of the inherent merits of macro-scale, frequency, efficiency, and synthesis, remote sensing is a promising method to monitor and assess karst rocky desertification on a large scale. However, actual measurement of the bedrock exposure rate is difficult and existing remote-sensing methods cannot directly be exploited to extract the bedrock exposure rate owing to the high complexity and heterogeneity of karst environments. Therefore, using unmanned aerial vehicle (UAV) and Landsat-8 Operational Land Imager (OLI) data for Xingren County, Guizhou Province, quantitative extraction of the bedrock exposure rate based on multi-scale remote-sensing data was developed. Firstly, we used an object-oriented method to carry out accurate classification of UAVimages. From the results of rock extraction, the bedrock exposure rate was calculated at the 30 m grid scale. Parts of the calculated samples were used as training data; other data were used for model validation. Secondly, in each grid the band reflectivity of Landsat-8 OLI data was extracted and a variety of rock and vegetation indexes (e.g., NDVI and SAVI) were calculated. Finally, a network model was established to extract the bedrock exposure rate. The correlation coefficient of the network model was 0.855, that of the validation model was 0.677 and the root mean square error of the validation model was 0.073. This method is valuable for wide-scale estimation of bedrock exposure rate in karst environments. Using the quantitative inversion model, a distribution map of the bedrock exposure rate in Xingren County was obtained.

  18. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    Science.gov (United States)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  19. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  20. Positron annihilation imaging device using multiple offset rings of detectors

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    This patent application relates to a positron annihilation imaging device comprising two or more coaxial circular arrays of detectors (2,2'), with the detectors in one array angularly offset with respect to the detectors in the adjacent array to detect more than one tomographic image simultaneously through different cross-sections of a patient. (author)

  1. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme

    Science.gov (United States)

    Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-03-01

    A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.

  2. Simultaneous ECG-gated PET imaging of multiple mice

    International Nuclear Information System (INIS)

    Seidel, Jurgen; Bernardo, Marcelino L.; Wong, Karen J.; Xu, Biying; Williams, Mark R.; Kuo, Frank; Jagoda, Elaine M.; Basuli, Falguni; Li, Changhui; Griffiths, Gary L.

    2014-01-01

    Introduction: We describe and illustrate a method for creating ECG-gated PET images of the heart for each of several mice imaged at the same time. The method is intended to increase “throughput” in PET research studies of cardiac dynamics or to obtain information derived from such studies, e.g. tracer concentration in end-diastolic left ventricular blood. Methods: An imaging bed with provisions for warming, anesthetic delivery, etc., was fabricated by 3D printing to allow simultaneous PET imaging of two side-by-side mice. After electrode attachment, tracer injection and placement of the animals in the scanner field of view, ECG signals from each animal were continuously analyzed and independent trigger markers generated whenever an R-wave was detected in each signal. PET image data were acquired in “list” mode and these trigger markers were inserted into this list along with the image data. Since each mouse is in a different spatial location in the FOV, sorting of these data using trigger markers first from one animal and then the other yields two independent and correctly formed ECG-gated image sequences that reflect the dynamical properties of the heart during an “average” cardiac cycle. Results: The described method yields two independent ECG-gated image sequences that exhibit the expected properties in each animal, e.g. variation of the ventricular cavity volumes from maximum to minimum and back during the cardiac cycle in the processed animal with little or no variation in these volumes during the cardiac cycle in the unprocessed animal. Conclusion: ECG-gated image sequences for each of several animals can be created from a single list mode data collection using the described method. In principle, this method can be extended to more than two mice (or other animals) and to other forms of physiological gating, e.g. respiratory gating, when several subjects are imaged at the same time

  3. Magnetic resonance imaging correlates of bee sting induced multiple organ dysfunction syndrome: A case report.

    Science.gov (United States)

    Das, Sushant K; Zeng, Li-Chuan; Li, Bing; Niu, Xiang-Ke; Wang, Jing-Liang; Bhetuwal, Anup; Yang, Han-Feng

    2014-09-28

    Occasionally systemic complications with high risk of death, such as multiple organ dysfunction syndrome (MODS), can occur following multiple bee stings. This case study reports a patient who presented with MODS, i.e., acute kidney injury, hepatic and cardiac dysfunction, after multiple bee stings. The standard clinical findings were then correlated with magnetic resonance imaging (MRI) findings, which demonstrates that MRI may be utilized as a simpler tool to use than other multiple diagnostics.

  4. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) and its operations from an unmanned aerial vehicle (UAV) during the AROMAT campaign

    Science.gov (United States)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Georgescu, Lucian; Maes, Jeroen; Fayt, Caroline; Mingireanu, Florin; Schuettemeyer, Dirk; Meier, Andreas Carlos; Schönardt, Anja; Ruhtz, Thomas; Bellegante, Livio; Nicolae, Doina; Den Hoed, Mirjam; Allaart, Marc; Van Roozendael, Michel

    2018-01-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV). SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm × 12 cm × 8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h-1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E; 116 m a. s. l. ). These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP), and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs) up to 13±0.6×1016 molec cm-2. These NO2 DSCDs are converted to vertical column densities (VCDs) by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm-2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm-2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol-1. These geophysical quantities are validated with the coincident measurements.

  5. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING and its operations from an unmanned aerial vehicle (UAV during the AROMAT campaign

    Directory of Open Access Journals (Sweden)

    A. Merlaud

    2018-01-01

    Full Text Available The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV. SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm  ×  12 cm  ×  8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h−1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E; 116 m a. s. l. . These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS instrument for Measurements of Atmospheric Pollution (AirMAP, and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs up to 13±0.6×1016 molec cm−2. These NO2 DSCDs are converted to vertical column densities (VCDs by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm−2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm−2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol−1. These geophysical quantities are validated with the coincident measurements.

  6. Using an Unmanned Aerial Vehicle-Based Digital Imaging System to Derive a 3D Point Cloud for Landslide Scarp Recognition

    Directory of Open Access Journals (Sweden)

    Abdulla Al-Rawabdeh

    2016-01-01

    Full Text Available Landslides often cause economic losses, property damage, and loss of lives. Monitoring landslides using high spatial and temporal resolution imagery and the ability to quickly identify landslide regions are the basis for emergency disaster management. This study presents a comprehensive system that uses unmanned aerial vehicles (UAVs and Semi-Global dense Matching (SGM techniques to identify and extract landslide scarp data. The selected study area is located along a major highway in a mountainous region in Jordan, and contains creeping landslides induced by heavy rainfall. Field observations across the slope body and a deformation analysis along the highway and existing gabions indicate that the slope is active and that scarp features across the slope will continue to open and develop new tension crack features, leading to the downward movement of rocks. The identification of landslide scarps in this study was performed via a dense 3D point cloud of topographic information generated from high-resolution images captured using a low-cost UAV and a target-based camera calibration procedure for a low-cost large-field-of-view camera. An automated approach was used to accurately detect and extract the landslide head scarps based on geomorphological factors: the ratio of normalized Eigenvalues (i.e., λ1/λ2 ≥ λ3 derived using principal component analysis, topographic surface roughness index values, and local-neighborhood slope measurements from the 3D image-based point cloud. Validation of the results was performed using root mean square error analysis and a confusion (error matrix between manually digitized landslide scarps and the automated approaches. The experimental results using the fully automated 3D point-based analysis algorithms show that these approaches can effectively distinguish landslide scarps. The proposed algorithms can accurately identify and extract landslide scarps with centimeter-scale accuracy. In addition, the combination

  7. MR imaging of multiple fibroadenoma in breast: comparison with color doppler images and histologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Soo Young; Yang, Ik; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Ahn, Hye Kyung [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-10-01

    To understand the different signal intensities seen on contrast enhanced magnetic resonance imaging (MRI) in multiple fibroadenoma of the breast, and to compare these with color Doppler ultrasonographic (CDUS) and histologic findings. MRI (1.0 Tesla, TIWI, T2WI, 3D-gradient echo dynamic contrast enhancement study) findings of 24 histologically proven cases of fibroadenoma in five patients were evaluated and compared with the histologic components (myxoid, adenomatous, fibrous). In addition, vascular flow, as seen on CDUS and histologic section, was compared. The observed degree of signal intensity waw classified into three groups, as follows: negative, 8.3%, mild to moderate, 54.2%; marked, 37.5%. On histologic section, the greater the fibrotic component, the higher the intensity of MRI enhancement, the greater the glandular component, and the intensity. CDUS showed vascular flow in only one tumor larger than 3cm in diameter. Vascular patterns of tumors on CDUS were dots in mass and detouring pattern, but in this case and in strongly enhanced cases, tumor vascularity-as seen on histologic section-showed no significant increase. Different signal intensities seen on contrast enhanced MRI in multiple fibroadenoma of the breast may be related more to the amount of glandular and fibrotic component than to increased tumor vascularity.

  8. MR imaging of multiple fibroadenoma in breast: comparison with color doppler images and histologic findings

    International Nuclear Information System (INIS)

    Chung, Soo Young; Yang, Ik; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Ahn, Hye Kyung

    1997-01-01

    To understand the different signal intensities seen on contrast enhanced magnetic resonance imaging (MRI) in multiple fibroadenoma of the breast, and to compare these with color Doppler ultrasonographic (CDUS) and histologic findings. MRI (1.0 Tesla, TIWI, T2WI, 3D-gradient echo dynamic contrast enhancement study) findings of 24 histologically proven cases of fibroadenoma in five patients were evaluated and compared with the histologic components (myxoid, adenomatous, fibrous). In addition, vascular flow, as seen on CDUS and histologic section, was compared. The observed degree of signal intensity waw classified into three groups, as follows: negative, 8.3%, mild to moderate, 54.2%; marked, 37.5%. On histologic section, the greater the fibrotic component, the higher the intensity of MRI enhancement, the greater the glandular component, and the intensity. CDUS showed vascular flow in only one tumor larger than 3cm in diameter. Vascular patterns of tumors on CDUS were dots in mass and detouring pattern, but in this case and in strongly enhanced cases, tumor vascularity-as seen on histologic section-showed no significant increase. Different signal intensities seen on contrast enhanced MRI in multiple fibroadenoma of the breast may be related more to the amount of glandular and fibrotic component than to increased tumor vascularity

  9. Multiple-image hiding using super resolution reconstruction in high-frequency domains

    Science.gov (United States)

    Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua

    2017-12-01

    In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.

  10. Image analysis of multiple moving wood pieces in real time

    Science.gov (United States)

    Wang, Weixing

    2006-02-01

    This paper presents algorithms for image processing and image analysis of wood piece materials. The algorithms were designed for auto-detection of wood piece materials on a moving conveyor belt or a truck. When wood objects on moving, the hard task is to trace the contours of the objects in n optimal way. To make the algorithms work efficiently in the plant, a flexible online system was designed and developed, which mainly consists of image acquisition, image processing, object delineation and analysis. A number of newly-developed algorithms can delineate wood objects with high accuracy and high speed, and in the wood piece analysis part, each wood piece can be characterized by a number of visual parameters which can also be used for constructing experimental models directly in the system.

  11. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging.

    Science.gov (United States)

    Genova, Helen M; Rajagopalan, Venkateswaran; Deluca, John; Das, Abhijit; Binder, Allison; Arjunan, Aparna; Chiaravalloti, Nancy; Wylie, Glenn

    2013-01-01

    The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS), looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI) was used to examine where in the brain BOLD activity covaried with "state" fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI) was used to examine where in the brain white matter damage correlated with increased "trait" fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS) completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a "fatigue-network" in MS.

  12. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Helen M Genova

    Full Text Available The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS, looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI was used to examine where in the brain BOLD activity covaried with "state" fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI was used to examine where in the brain white matter damage correlated with increased "trait" fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a "fatigue-network" in MS.

  13. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    Science.gov (United States)

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  14. Kite aerial photography (KAP) as a tool for field teaching

    DEFF Research Database (Denmark)

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneousl...... a new vantage point to the fieldwork experience....

  15. Optical multiple-image encryption based on multiplane phase retrieval and interference

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we propose a new method for optical multiple-image encryption based on multiplane phase retrieval and interference. An optical encoding system is developed in the Fresnel domain. A phase-only map is iteratively extracted based on a multiplane phase retrieval algorithm, and multiple plaintexts are simultaneously encrypted. Subsequently, the extracted phase-only map is further encrypted into two phase-only masks based on a non-iterative interference algorithm. During image decryption, the advantages and security of the proposed optical cryptosystem are analyzed. Numerical results are presented to demonstrate the validity of the proposed optical multiple-image encryption method

  16. Passive Aerial Grasping of Ferrous Objects

    KAUST Repository

    Fiaz, Usman Amin

    2017-10-19

    Aerial transportation is probably the most efficient way to supply quick and effective aid especially in cases of emergency like search and rescue operations. Thus the ability to grasp and deliver objects is of vital importance in all sorts of unmanned and autonomous aerial operations. We detail a simple yet novel approach for aerial grasping of ferrous objects using a passive magnetic pickup and an impulse based drop mechanism. The design enables our gripper to grasp ferrous objects using single as well as multiple gripping pads, with visual as well as pickup and drop feedback. We describe the various components of the gripper with emphasis on its low mass and high lift capability since weight is a matter of high consideration in all aerial applications. In addition, we investigate and address the issues that may cause our design to fail. We demonstrate by experiments that the proposed design is robust and effective, based on its high payload capability, its sturdiness against possible slide during aggressive aerial maneuvers, and optimum performance of the drop mechanism for the designed range of payloads. We also show that the gripper is able to pick up and drop a single as well as multiple ferrous objects of different shapes, curvature, and inclination, which also involves picking up an object and then grasping the next, while keeping hold of the previous one.

  17. Passive Aerial Grasping of Ferrous Objects

    KAUST Repository

    Fiaz, Usman; Toumi, Noureddine; Shamma, Jeff S.

    2017-01-01

    Aerial transportation is probably the most efficient way to supply quick and effective aid especially in cases of emergency like search and rescue operations. Thus the ability to grasp and deliver objects is of vital importance in all sorts of unmanned and autonomous aerial operations. We detail a simple yet novel approach for aerial grasping of ferrous objects using a passive magnetic pickup and an impulse based drop mechanism. The design enables our gripper to grasp ferrous objects using single as well as multiple gripping pads, with visual as well as pickup and drop feedback. We describe the various components of the gripper with emphasis on its low mass and high lift capability since weight is a matter of high consideration in all aerial applications. In addition, we investigate and address the issues that may cause our design to fail. We demonstrate by experiments that the proposed design is robust and effective, based on its high payload capability, its sturdiness against possible slide during aggressive aerial maneuvers, and optimum performance of the drop mechanism for the designed range of payloads. We also show that the gripper is able to pick up and drop a single as well as multiple ferrous objects of different shapes, curvature, and inclination, which also involves picking up an object and then grasping the next, while keeping hold of the previous one.

  18. Community patterns of tropical tree phenology derived from Unmanned Aerial Vehicle images: intra- and interspecific variation, association with species plant traits, and response to interannual climate variation

    Science.gov (United States)

    Bohlman, Stephanie; Rifai, Sami; Park, John; Dandois, Jonathan; Muller-Landau, Helene

    2017-04-01

    Phenology is a key life history trait of plant species and critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical forest phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns, which makes it difficult to collect sufficient ground-based field data to characterize individual tropical tree species phenologies. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. The objective of this study is to quantify inter- and intra-specific responses of tropical tree leaf phenology to environmental variation over large spatial scales and identify key environmental variables and physiological mechanisms underpinning phenological variation. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. UAV imagery was corrected for exposure, orthorectified, and then processed to extract spectral, texture, and image information for individual tree crowns, which was then used as inputs for a machine learning algorithm that successfully predicted the percentages of leaf, branch, and flower cover for each tree crown (r2=0.76 between observed and predicted percent branch cover for individual tree crowns). We then quantified cumulative annual deciduousness for each crown by fitting a non-parametric curve of flexible shape to its predicted percent branch time series and calculated the area under the curve. We obtained the species

  19. Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit.

    Science.gov (United States)

    Yi, Faliu; Lee, Jieun; Moon, Inkyu

    2014-05-01

    The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.

  20. Imaging Finding of Multiple Endocrine Neoplasia Type 1: Case Report

    International Nuclear Information System (INIS)

    Yum, Tae Jun; Cho, Hee Woo

    2012-01-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant inherited syndrome with characteristic clinical and radiological manifestations. Many reports on MEN1 have been published; however, no cases of radiologically diagnosed MEN1 have been reported. Therefore, we report on a radiologically diagnosed case of MEN1 with clinical symptoms of gastroduodenal ulcer.

  1. MR-based conductivity imaging using multiple receiver coils.

    Science.gov (United States)

    Lee, Joonsung; Shin, Jaewook; Kim, Dong-Hyun

    2016-08-01

    To propose a signal combination method for MR-based tissue conductivity mapping using a standard clinical scanner with multiple receiver coils. The theory of the proposed method is presented with two practical approaches, a coil-specific approach and a subject-specific approach. Conductivity maps were reconstructed using the transceive phase of the combined signal. The sensitivities of the coefficients used for signal combination were analyzed and the method was compared with other signal combination methods. For validation, multiple receiver brain coils and multiple receiver breast coils were used in phantom, in vivo brain, and in vivo breast studies. The variation among the conductivity estimates was conductivity estimates. MR-based tissue conductivity mapping is feasible when using a standard clinical MR scanner with multiple receiver coils. The proposed method reduces systematic errors in phase-based conductivity mapping that can occur due to the inhomogeneous magnitude of the combined receive profile. Magn Reson Med 76:530-539, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Multiple interpretations of a pair of images of a surface

    Science.gov (United States)

    Longuet-Higgins, H. C.

    1988-07-01

    It is known that, if two optical images of a visually textured surface, projected from finitely separated viewpoints, allow more than one three-dimensional interpretation, then the surface must be part of a quadric passing through the two viewpoints. It is here shown that this quadric is either a plane or a ruled surface of a type first considered by Maybank (1985) in a study of ambiguous optic flow fields. In the latter case, three is the maximum number of distinct interpretations that the two images can sustain.

  3. Positron annihilation imaging device using multiple offset rings of detectors

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1982-01-01

    A means is provided for recording more than one tomographic image simultaneously through different cross-sections of a patient, using positron emission tomography. Separate rings of detectors are used to construct every odd-numbered slice, and coincident events that occur between adjacent rings of detectors provide a center or even-numbered slice. Detector rings are offset with respect to one another by half the angular separation of the detectors, allowing an image to be reconstructed from the central slice without the necessity of physically rotating the detector array while accumulating data

  4. Mapping hardwood mortality for the early detection of P. ramorum: an assessment of aerial surveys and object-oriented image analysis

    Science.gov (United States)

    Erik Haunreiter; Zhanfeng Liu; Jeff Mai; Zachary Heath; Lisa Fischer

    2008-01-01

    Effective monitoring and identification of areas of hardwood mortality is a critical component in the management of sudden oak death (SOD). From 2001 to 2005, aerial surveys covering 13.5 million acres in California were conducted to map and monitor hardwood mortality for the early detection of Phytophthora ramorum, the pathogen responsible for SOD....

  5. Full wavefield migration: Seismic imaging using multiple scattering effects

    NARCIS (Netherlands)

    Davydenko, M.

    2016-01-01

    Seismic imaging aims at revealing the structural information of the subsurface using the reflected wavefields captured by sensors usually located at the surface. Wave propagation is a complex phenomenon and the measured data contain a set of backscattered events including not only primary

  6. Accounting for free-surface multiples in Marchenko imaging

    NARCIS (Netherlands)

    Singh, S.; Snieder, R; van der Neut, J.R.; Thorbecke, J.W.; Slob, E.C.; Wapenaar, C.P.A.

    2017-01-01

    Imagine placing a receiver at any location in the earth and recording the response at that location to sources on the surface. In such a world, we could place receivers around our reservoir to better image the reservoir and understand its properties. Realistically, this is not a feasible approach

  7. Light chain deposition disease in multiple myeloma: MR imaging features correlated with histopathological findings

    International Nuclear Information System (INIS)

    Baur, A.; Staebler, A.; Reiser, M.; Lamerz, R.; Bartl, R.

    1998-01-01

    The clinical, histopathological, and imaging findings on MRI of a 56-year-old woman with light chain deposition disease occurring in multiple myeloma are presented. Light chain deposition disease is a variant of multiple myeloma with distinct clinical and histological characteristics. MRI of this patient also revealed an infiltration pattern in the bone marrow distinct from that of typical multiple myeloma. Multiple small foci of low signal intensity were present on T1- and T2-weighted spin echo and STIR images, corresponding to conglomerates of light chains in bone marrow biopsy. Contrast-enhanced T1-weighted spin echo images show diffuse enhancement of 51% over all vertebral bodies, with a minor enhancement of the focal conglomerates of light chains. Light chain deposition disease in multiple myeloma should be added to the list of those few entities with normal radiographs and discrete low-signal marrow lesions on T1- and T2-weighted spin echo pulse sequences. (orig.)

  8. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-04-01

    Full Text Available With the development of synthetic aperture radar (SAR technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO. However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  9. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    Science.gov (United States)

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-04-07

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  10. Imaging a Large Sample with Selective Plane Illumination Microscopy Based on Multiple Fluorescent Microsphere Tracking

    Science.gov (United States)

    Ryu, Inkeon; Kim, Daekeun

    2018-04-01

    A typical selective plane illumination microscopy (SPIM) image size is basically limited by the field of view, which is a characteristic of the objective lens. If an image larger than the imaging area of the sample is to be obtained, image stitching, which combines step-scanned images into a single panoramic image, is required. However, accurately registering the step-scanned images is very difficult because the SPIM system uses a customized sample mount where uncertainties for the translational and the rotational motions exist. In this paper, an image registration technique based on multiple fluorescent microsphere tracking is proposed in the view of quantifying the constellations and measuring the distances between at least two fluorescent microspheres embedded in the sample. Image stitching results are demonstrated for optically cleared large tissue with various staining methods. Compensation for the effect of the sample rotation that occurs during the translational motion in the sample mount is also discussed.

  11. Diffusion tensor imaging using multiple coils for mouse brain connectomics.

    Science.gov (United States)

    Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G

    2018-04-19

    The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity

  12. Correction of over and under exposure images using multiple lighting system

    International Nuclear Information System (INIS)

    Im, Jonghoon; Fujii, Hiromitsu; Yamashita, Atsushi; Asama, Hajime

    2015-01-01

    When images are acquired in bright condition, it can cause a loss of highlight details (over exposure) in bright area and a loss of shadow details (under exposure) in dark area. Over and under exposure causes a big problem when people investigate dangerous place like Fukushima nuclear power plant through the camera attached remote control robot. In this paper, we propose a method to correct the over and under exposure image to solve the problem. The image processing consists of four steps. Firstly, multiple images are acquired by alternately turning on and off each illumination which set in different positions. Then the image obtained first is defined as input image 1, the image obtained second is defined as input image 2 and the image obtained N-th is defined as input image N. Secondly, luminance of the images is corrected. Thirdly, over and under exposure regions in the image are extracted from the input image 1. Finally, the over and under exposure regions in the input image 1 are compensated by other images. The results show that the over and under exposure regions in the input image are recovered by our proposed method. (author)

  13. Aerial Photography and Imagery, Ortho-Corrected, Historic 1958 black and white aerial photography for Wicomico County, Maryland. Imagery was scanned from historic hard copy images and georeferenced to current imagery. This data is available via map service., Published in 2010, 1:12000 (1in=1000ft) scale, Eastern Shore Regional GIS Cooperative.

    Data.gov (United States)

    NSGIC Regional | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2010. Historic 1958 black and white aerial photography for Wicomico County, Maryland. Imagery...

  14. Spinal focal lesion detection in multiple myeloma using multimodal image features

    Science.gov (United States)

    Fränzle, Andrea; Hillengass, Jens; Bendl, Rolf

    2015-03-01

    Multiple myeloma is a tumor disease in the bone marrow that affects the skeleton systemically, i.e. multiple lesions can occur in different sites in the skeleton. To quantify overall tumor mass for determining degree of disease and for analysis of therapy response, volumetry of all lesions is needed. Since the large amount of lesions in one patient impedes manual segmentation of all lesions, quantification of overall tumor volume is not possible until now. Therefore development of automatic lesion detection and segmentation methods is necessary. Since focal tumors in multiple myeloma show different characteristics in different modalities (changes in bone structure in CT images, hypointensity in T1 weighted MR images and hyperintensity in T2 weighted MR images), multimodal image analysis is necessary for the detection of focal tumors. In this paper a pattern recognition approach is presented that identifies focal lesions in lumbar vertebrae based on features from T1 and T2 weighted MR images. Image voxels within bone are classified using random forests based on plain intensities and intensity value derived features (maximum, minimum, mean, median) in a 5 x 5 neighborhood around a voxel from both T1 and T2 weighted MR images. A test data sample of lesions in 8 lumbar vertebrae from 4 multiple myeloma patients can be classified at an accuracy of 95% (using a leave-one-patient-out test). The approach provides a reasonable delineation of the example lesions. This is an important step towards automatic tumor volume quantification in multiple myeloma.

  15. Accommodating multiple illumination sources in an imaging colorimetry environment

    Science.gov (United States)

    Tobin, Kenneth W., Jr.; Goddard, James S., Jr.; Hunt, Martin A.; Hylton, Kathy W.; Karnowski, Thomas P.; Simpson, Marc L.; Richards, Roger K.; Treece, Dale A.

    2000-03-01

    Researchers at the Oak Ridge National Laboratory have been developing a method for measuring color quality in textile products using a tri-stimulus color camera system. Initial results of the Imaging Tristimulus Colorimeter (ITC) were reported during 1999. These results showed that the projection onto convex sets (POCS) approach to color estimation could be applied to complex printed patterns on textile products with high accuracy and repeatability. Image-based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. Our earlier work reports these results for a broad-band, smoothly varying D65 standard illuminant. To move the measurement to the on-line environment with continuously manufactured textile webs, the illumination source becomes problematic. The spectral content of these light sources varies substantially from the D65 standard illuminant and can greatly impact the measurement performance of the POCS system. Although absolute color measurements are difficult to make under different illumination, referential measurements to monitor color drift provide a useful indication of product quality. Modifications to the ITC system have been implemented to enable the study of different light sources. These results and the subsequent analysis of relative color measurements will be reported for textile products.

  16. Influences of multiple memory systems on auditory mental image acuity.

    Science.gov (United States)

    Navarro Cebrian, Ana; Janata, Petr

    2010-05-01

    The influence of different memory systems and associated attentional processes on the acuity of auditory images, formed for the purpose of making intonation judgments, was examined across three experiments using three different task types (cued-attention, imagery, and two-tone discrimination). In experiment 1 the influence of implicit long-term memory for musical scale structure was manipulated by varying the scale degree (leading tone versus tonic) of the probe note about which a judgment had to be made. In experiments 2 and 3 the ability of short-term absolute pitch knowledge to develop was manipulated by presenting blocks of trials in the same key or in seven different keys. The acuity of auditory images depended on all of these manipulations. Within individual listeners, thresholds in the two-tone discrimination and cued-attention conditions were closely related. In many listeners, cued-attention thresholds were similar to thresholds in the imagery condition, and depended on the amount of training individual listeners had in playing a musical instrument. The results indicate that mental images formed at a sensory/cognitive interface for the purpose of making perceptual decisions are highly malleable.

  17. Conventional MRI and magnetisation transfer imaging of tumour-like multiple sclerosis in a child

    International Nuclear Information System (INIS)

    Metafratzi, Z.; Argyropoulou, M.I.; Efremidis, S.C.; Tzoufi, M.; Papadopoulou, Z.

    2002-01-01

    Tumefactive multiple sclerosis is a rare entity in children. Differential diagnosis includes other mass lesions such as neoplasm and abscess. A case of tumefactive multiple sclerosis in a child is presented. The open-ring pattern of enhancement on conventional MRI and magnetisation transfer imaging was important for the initial diagnosis and the evaluation of the course of the disease. (orig.)

  18. New Hybrid Variational Recovery Model for Blurred Images with Multiplicative Noise

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Zeng, Tieyong

    2013-01-01

    A new hybrid variational model for recovering blurred images in the presence of multiplicative noise is proposed. Inspired by previous work on multiplicative noise removal, an I-divergence technique is used to build a strictly convex model under a condition that ensures the uniqueness...

  19. Modeling Multiple-Core Updraft Plume Rise for an Aerial Ignition Prescribed Burn by Coupling Daysmoke with a Cellular Automata Fire Model

    Science.gov (United States)

    G. L Achtemeier; S. L. Goodrick; Y. Liu

    2012-01-01

    Smoke plume rise is critically dependent on plume updraft structure. Smoke plumes from landscape burns (forest and agricultural burns) are typically structured into “sub-plumes” or multiple-core updrafts with the number of updraft cores depending on characteristics of the landscape, fire, fuels, and weather. The number of updraft cores determines the efficiency of...

  20. Robust image registration for multiple exposure high dynamic range image synthesis

    Science.gov (United States)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  1. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    Directory of Open Access Journals (Sweden)

    Tadhg S. O’Donovan

    2010-12-01

    Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  2. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.

    Science.gov (United States)

    Persoons, Tim; O'Donovan, Tadhg S

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  3. Clinical diagnostic criteria of multiple sclerosis: the role of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Belair, M.; Girard, M.

    2004-01-01

    The objective of this article is to summarize the diagnostic criteria recommended by the International Panel on the Diagnosis of Multiple Sclerosis in 2001. The recommendations of another working group, the Consortium of Multiple Sclerosis Centers Consensus Meeting, which met in Vancouver in 2001, concerning the diagnosis and follow-up of patients with multiple sclerosis are also presented in an effort to standardize the protocols for magnetic resonance imaging of these patients. (author)

  4. Enriching Student Concept Images: Teaching and Learning Fractions through a Multiple-Embodiment Approach

    Science.gov (United States)

    Zhang, Xiaofen; Clements, M. A.; Ellerton, Nerida F.

    2015-01-01

    This study investigated how fifth-grade children's concept images of the unit fractions represented by the symbols 1/2, 1/3/ and 1/4 changed as a result of their participation in an instructional intervention based on multiple embodiments of fraction concepts. The participants' concept images were examined through pre- and post-teaching written…

  5. Cooperative path planning of unmanned aerial vehicles

    CERN Document Server

    Tsourdos, Antonios; Shanmugavel, Madhavan

    2010-01-01

    An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in...

  6. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    Science.gov (United States)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  7. Magnetic resonance imaging in monitoring of treatment of multiple sclerosis

    International Nuclear Information System (INIS)

    Bekiesinska-Figatowska, M.; Walecki, J.; Stelmasiak, Z.

    1996-01-01

    The purpose of the study was to establish the value of MR in monitoring of treatment of multiple sclerosis with new drug 2-CDA and placebo. 83 patients (51 women, 32 men) were examined - 81 of them twice, 66 - three times: before and after 6 and 12 courses of treatment. Toshiba MRT50A machine was used. After the first 6 courses of treatment the number of new plaques was twice as big in placebo group than in 2-CDA group. After 12 courses it turned out that a certain inhibitory influence of 2-CDA on new plaques' appearance was more evident after 15 than 3 months after the end of its administration. This may indicate the delayed action of 2-CDA but requires further investigation. (author)

  8. Autosomal recessive osteopetrosis with a unique imaging finding: multiple encephaloceles

    International Nuclear Information System (INIS)

    Saglam, Dilek; Bilgici, Meltem Ceyhan; Bekci, Tuemay; Albayrak, Canan; Albayrak, Davut

    2017-01-01

    Osteopetrosis is a hereditary form of sclerosing bone dysplasia with various radiological and clinical presentations. The autosomal recessive type, also known as malignant osteopetrosis, is the most severe type, with the early onset of manifestations. A 5-month-old infant was admitted to our hospital with recurrent respiratory tract infections. Chest X-ray and skeletal survey revealed the classic findings of osteopetrosis, including diffuse osteosclerosis and bone within a bone appearance. At follow-up, the patient presented with, thickened calvarium, multiple prominent encephaloceles, and dural calcifications leading to the intracranial clinical manifestations with bilateral hearing and sight loss. Autosomal recessive osteopetrosis is one of the causes of encephaloceles and this finding may become dramatic if untreated. (orig.)

  9. Autosomal recessive osteopetrosis with a unique imaging finding: multiple encephaloceles

    Energy Technology Data Exchange (ETDEWEB)

    Saglam, Dilek; Bilgici, Meltem Ceyhan; Bekci, Tuemay [Ondokuz Mayis University, Department of Radiology, School of Medicine, Kurupelit, Samsun (Turkey); Albayrak, Canan; Albayrak, Davut [Ondokuz Mayis University, Department of Pediatrics, School of Medicine, Kurupelit, Samsun (Turkey)

    2017-05-15

    Osteopetrosis is a hereditary form of sclerosing bone dysplasia with various radiological and clinical presentations. The autosomal recessive type, also known as malignant osteopetrosis, is the most severe type, with the early onset of manifestations. A 5-month-old infant was admitted to our hospital with recurrent respiratory tract infections. Chest X-ray and skeletal survey revealed the classic findings of osteopetrosis, including diffuse osteosclerosis and bone within a bone appearance. At follow-up, the patient presented with, thickened calvarium, multiple prominent encephaloceles, and dural calcifications leading to the intracranial clinical manifestations with bilateral hearing and sight loss. Autosomal recessive osteopetrosis is one of the causes of encephaloceles and this finding may become dramatic if untreated. (orig.)

  10. Real-Time, Multiple, Pan/Tilt/Zoom, Computer Vision Tracking, and 3D Position Estimating System for Unmanned Aerial System Metrology

    Science.gov (United States)

    2013-10-18

    area of 3D point estimation of flapping- wing UASs. The benefits of designing and developing such a system is instrumental in researching various...series of successive states until a given name is reached such as: Object Animate Animal Mammal Dog Labrador Chocolate (Brown) Male Name...are many benefits to us- ing SIFT in tracking. It detects features that are invariant to image scale and rotation, and are shown to provide robust

  11. Focal dynamics of multiple filaments: Microscopic imaging and reconstruction

    International Nuclear Information System (INIS)

    Kiran, P. Prem; Bagchi, Suman; Kumar, G. Ravindra; Krishnan, Siva Rama; Arnold, C. L.; Couairon, A.

    2010-01-01

    We observe the complete dynamics of the propagation of very intense, femtosecond laser pulses in air under tight focusing conditions via direct imaging of the entire interaction zone. The whole life history of the focused pulses is then reconstructed by means of numerical simulations. We show that beam breakup leads to a dual-rate increase in filament numbers with laser power. Linearly and circularly polarized pulses give rise to beam breakup and fusion governed by external focusing conditions. For tight focusing conditions, intensity saturation due to plasma generation and nonlinear losses does not limit the intensity growth, thereby giving access to a new propagation regime featured by an efficient laser energy deposition in fully ionized air and intense 10 15 W/cm 2 pulses at the focus.

  12. Noninvasive imaging of multiple myeloma using near infrared fluorescent molecular probe

    Science.gov (United States)

    Hathi, Deep; Zhou, Haiying; Bollerman-Nowlis, Alex; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Multiple myeloma is a plasma cell malignancy characterized by monoclonal gammopathy and osteolytic bone lesions. Multiple myeloma is most commonly diagnosed in late disease stages, presenting with pathologic fracture. Early diagnosis and monitoring of disease status may improve quality of life and long-term survival for multiple myeloma patients from what is now a devastating and fatal disease. We have developed a near-infrared targeted fluorescent molecular probe with high affinity to the α4β1 integrin receptor (VLA-4)overexpressed by a majority of multiple myeloma cells as a non-radioactive analog to PET/CT tracer currently being developed for human diagnostics. A near-infrared dye that emits about 700 nm was conjugated to a high affinity peptidomimmetic. Binding affinity and specificity for multiple myeloma cells was investigated in vitro by tissue staining and flow cytometry. After demonstration of sensitivity and specificity, preclinical optical imaging studies were performed to evaluate tumor specificity in murine subcutaneous and metastatic multiple myeloma models. The VLA-4-targeted molecular probe showed high affinity for subcutaneous MM tumor xenografts. Importantly, tumor cells specific accumulation in the bone marrow of metastatic multiple myeloma correlated with GFP signal from transfected cells. Ex vivo flow cytometry of tumor tissue and bone marrow further corroborated in vivo imaging data, demonstrating the specificity of the novel agent and potential for quantitative imaging of multiple myeloma burden in these models.

  13. LOW COST SURVEYING USING AN UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    M. Pérez

    2013-08-01

    Full Text Available Traditional manned airborne surveys are usually expensive and the resolution of the acquired images is often limited. The main advantage of Unmanned Aerial Vehicle (UAV system acting as a photogrammetric sensor platform over more traditional manned airborne system is the high flexibility that allows image acquisition from unconventional viewpoints, the low cost in comparison with classical aerial photogrammetry and the high resolution images obtained. Nowadays there is a necessity for surveying small areas and in these cases, it is not economical the use of normal large format aerial or metric cameras to acquire aerial photos, therefore, the use of UAV platforms can be very suitable. Also the large availability of digital cameras has strongly enhanced the capabilities of UAVs. The use of digital non metric cameras together with the UAV could be used for multiple applications such as aerial surveys, GIS, wildfire mapping, stability of landslides, crop monitoring, etc. The aim of this work was to develop a low cost and accurate methodology in the production of orthophotos and Digital Elevation Models (DEM. The study was conducted in the province of Almeria, south of Spain. The photogrammetric flight had an altitude of 50 m over ground, covering an area of 5.000 m2 approximately. The UAV used in this work was the md4-200, which is an electronic battery powered quadrocopter UAV developed by Microdrones GmbH, Germany. It had on-board a Pextax Optio A40 digital non metric camera with 12 Megapixels. It features a 3x optical zoom lens with a focal range covering angles of view equivalent to those of 37–111 mm lens in 35 mm format. The quadrocopter can be programmed to follow a route defined by several waypoints and actions and it has the ability for vertical take off and landing. Proper flight geometry during image acquisition is essential in order to minimize the number of photographs, avoid areas without a good coverage and make the overlaps

  14. Control of multiple robots using vision sensors

    CERN Document Server

    Aranda, Miguel; Sagüés, Carlos

    2017-01-01

    This monograph introduces novel methods for the control and navigation of mobile robots using multiple-1-d-view models obtained from omni-directional cameras. This approach overcomes field-of-view and robustness limitations, simultaneously enhancing accuracy and simplifying application on real platforms. The authors also address coordinated motion tasks for multiple robots, exploring different system architectures, particularly the use of multiple aerial cameras in driving robot formations on the ground. Again, this has benefits of simplicity, scalability and flexibility. Coverage includes details of: a method for visual robot homing based on a memory of omni-directional images a novel vision-based pose stabilization methodology for non-holonomic ground robots based on sinusoidal-varying control inputs an algorithm to recover a generic motion between two 1-d views and which does not require a third view a novel multi-robot setup where multiple camera-carrying unmanned aerial vehicles are used to observe and c...

  15. AERIAL TERRAIN MAPPING USING UNMANNED AERIAL VEHICLE APPROACH

    Directory of Open Access Journals (Sweden)

    K. N. Tahar

    2012-08-01

    Full Text Available This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior orientation process and to determine the accuracy of the photogrammetric products by using UAV images. Recently, UAV technology has been used in several applications such as mapping, agriculture and surveillance. The aim of this study is to scrutinize the usage of UAV to map the semi-development areas. The performance of the low cost UAV mapping study was established on a study area with two image processing methods so that the results could be comparable. A non-metric camera was attached at the bottom of UAV and it was used to capture images at both sites after it went through several calibration steps. Calibration processes were carried out to determine focal length, principal distance, radial lens distortion, tangential lens distortion and affinity. A new method in image registration for a non-metric camera is discussed in this paper as a part of new methodology of this study. This method used the UAV Global Positioning System (GPS onboard to register the UAV image for interior orientation process. Check points were established randomly at both sites using rapid static Global Positioning System. Ground control points are used for exterior orientation process, and check point is used for accuracy assessment of photogrammetric product. All acquired images were processed in a photogrammetric software. Two methods of image registration were applied in this study, namely, GPS onboard registration and ground control point registration. Both registrations were processed by using photogrammetric software and the result is discussed. Two results were produced in this study, which are the digital orthophoto and the digital terrain model. These results were analyzed by using the root

  16. NMR multiple-echo phase-contrast blood flow imaging

    International Nuclear Information System (INIS)

    O'Donnell, M.

    1986-01-01

    A method is described for magnetic resonance imaging of fluid flow in a sample, comprising the steps of: (a) immersing the sample in a static magnetic field disposed in a first direction; (b) applying a first sequence of magnetic field gradients and radio-frequency signals to the sample to both define a slab, of the sample to be imaged, in a plane substantially orthogonal to a selected direction for which flow velocity is to be measured, and to obtain a plurality N of spin-echo response signals form that slab; (c) processing the plurality of first sequence spin-echo signals to obtain a complex value A/sub 1/(X,Y,Z) relating both the spin density rho'(X,Y,Z),... and the phase rotation phi(X,Y,Z), induced by the first sequence, for each of a selected number of sequential locations (X,Y,Z) in the sample slab; (d) applying a second sequence of magnetic field gradient and radio-frequency signals to both define the same sample slab as in step (b) and to obtain another plurality N of spin-echo response signals from that slab; (e) including a waveform in at least one of the magnetic field gradient and radio-frequency signals applied in step (d) for imparting to each of the spin-echo signal components from each slab location having a flowing material therein a phase rotation dependent upon the magnitude of the flow velocity therein in the selected direction; (f) processing the plurality of second sequence spin-echo signals to obtain a complex value A/sub 2/(X,Y,Z) relating the spin density rho'(X,Y,Z) and the imparted phase rotation of the sample material along the selected flow measurement direction for each of the sequential locations (X,Y,Z) in the sample slab; and (g) processing the complex values A/sub 1/(X,Y,Z) and A/sub 2/(X,Y,Z) for each sample location to obtain a differential phase-contrast value related to the velocity of the flowing material therein in the selected measurement direction

  17. PARAGON-IPS: A Portable Imaging Software System For Multiple Generations Of Image Processing Hardware

    Science.gov (United States)

    Montelione, John

    1989-07-01

    Paragon-IPS is a comprehensive software system which is available on virtually all generations of image processing hardware. It is designed for an image processing department or a scientist and engineer who is doing image processing full-time. It is being used by leading R&D labs in government agencies and Fortune 500 companies. Applications include reconnaissance, non-destructive testing, remote sensing, medical imaging, etc.

  18. Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic

    Directory of Open Access Journals (Sweden)

    Daniel Žížala

    2017-01-01

    Full Text Available The assessment of the soil redistribution and real long-term soil degradation due to erosion on agriculture land is still insufficient in spite of being essential for soil conservation policy. Imaging spectroscopy has been recognized as a suitable tool for soil erosion assessment in recent years. In our study, we bring an approach for assessment of soil degradation by erosion by means of determining soil erosion classes representing soils differently influenced by erosion impact. The adopted methods include extensive field sampling, laboratory analysis, predictive modelling of selected soil surface properties using aerial hyperspectral data and the digital elevation model and fuzzy classification. Different multivariate regression techniques (Partial Least Square, Support Vector Machine, Random forest and Artificial neural network were applied in the predictive modelling of soil properties. The properties with satisfying performance (R2 > 0.5 were used as input data in erosion classes determination by fuzzy C-means classification method. The study was performed at four study sites about 1 km2 large representing the most extensive soil units of the agricultural land in the Czech Republic (Chernozems and Luvisols on loess and Cambisols and Stagnosols on crystalline rocks. The influence of site-specific conditions on prediction of soil properties and classification of erosion classes was assessed. The prediction accuracy (R2 of the best performing models predicting the soil properties varies in range 0.8–0.91 for soil organic carbon content, 0.21–0.67 for sand content, 0.4–0.92 for silt content, 0.38–0.89 for clay content, 0.73–089 for Feox, 0.59–0.78 for Fed and 0.82 for CaCO3. The performance and suitability of different properties for erosion classes’ classification are highly variable at the study sites. Soil organic carbon was the most frequently used as the erosion classes’ predictor, while the textural classes showed lower

  19. Issues in bridge deck damage evaluation using aerial photos

    Science.gov (United States)

    Natarajan, M.; Chen, S. E.; Boyle, C.; Martin, E.; Hauser, E.

    2012-04-01

    Small format aerial photography (SFAP) with low flying technique is proposed for damage evaluation of bridge decks. High resolution images obtained using under-belly photography can be used to quantify the various bridge deck problems. The conventional truck-mount or vehicle-mount deck imaging technologies require a large number of image samples. Hence the physical scanning is time consuming and it is also challenging consider the size and location of a bridge. Aerial imaging overcomes these issues, but they face different kinds of challenges that are posed by obstacles such as shadow from trees, power lines and vehicles, signs and luminaries structures. The image resolution uncertainty, which is a function of the pilot skills and flying conditions, may also add additional challenges to aerial imaging technique. Hence different image processing tools have to be integrated into a single package to achieve the desired task. This paper summarizes the challenges faced and the preliminary results are presented and discussed.

  20. Face Image Retrieval of Efficient Sparse Code words and Multiple Attribute in Binning Image

    Directory of Open Access Journals (Sweden)

    Suchitra S

    2017-08-01

    Full Text Available ABSTRACT In photography, face recognition and face retrieval play an important role in many applications such as security, criminology and image forensics. Advancements in face recognition make easier for identity matching of an individual with attributes. Latest development in computer vision technologies enables us to extract facial attributes from the input image and provide similar image results. In this paper, we propose a novel LOP and sparse codewords method to provide similar matching results with respect to input query image. To improve accuracy in image results with input image and dynamic facial attributes, Local octal pattern algorithm [LOP] and Sparse codeword applied in offline and online. The offline and online procedures in face image binning techniques apply with sparse code. Experimental results with Pubfig dataset shows that the proposed LOP along with sparse codewords able to provide matching results with increased accuracy of 90%.

  1. Aerial radiation survey

    International Nuclear Information System (INIS)

    Pradeep Kumar, K.S.

    1998-01-01

    Aerial gamma spectrometry surveys are the most effective, comprehensive and preferred tool to delimit the large area surface contamination in a radiological emergency either due to a nuclear accident or following a nuclear strike. The airborne survey apart from providing rapid and economical evaluation of ground contamination over large areas due to larger ground clearance and higher speed, is the only technique to overcome difficulties posed by ground surveys of inaccessible region. The aerial survey technique can also be used for searching of lost radioactive sources, tracking of radioactive plume and generation of background data on the Emergency Planning Zone (EPZ) of nuclear installations

  2. Imaging of first-order surface-related multiples by reverse-time migration

    Science.gov (United States)

    Liu, Xuejian; Liu, Yike; Hu, Hao; Li, Peng; Khan, Majid

    2017-02-01

    Surface-related multiples have been utilized in the reverse-time migration (RTM) procedures, and additional illumination for subsurface can be provided. Meanwhile, many cross-talks are generated from undesired interactions between forward- and backward-propagated seismic waves. In this paper, subsequent to analysing and categorizing these cross-talks, we propose RTM of first-order multiples to avoid most undesired interactions in RTM of all-order multiples, where only primaries are forward-propagated and crosscorrelated with the backward-propagated first-order multiples. With primaries and multiples separated during regular seismic data processing as the input data, first-order multiples can be obtained by a two-step scheme: (1) the dual-prediction of higher-order multiples; and (2) the adaptive subtraction of predicted higher-order multiples from all-order multiples within local offset-time windows. In numerical experiments, two synthetic and a marine field data sets are used, where different cross-talks generated by RTM of all-order multiples can be identified and the proposed RTM of first-order multiples can provide a very interpretable image with a few cross-talks.

  3. An Improved Image Encryption Algorithm Based on Cyclic Rotations and Multiple Chaotic Sequences: Application to Satellite Images

    Directory of Open Access Journals (Sweden)

    MADANI Mohammed

    2017-10-01

    Full Text Available In this paper, a new satellite image encryption algorithm based on the combination of multiple chaotic systems and a random cyclic rotation technique is proposed. Our contribution consists in implementing three different chaotic maps (logistic, sine, and standard combined to improve the security of satellite images. Besides enhancing the encryption, the proposed algorithm also focuses on advanced efficiency of the ciphered images. Compared with classical encryption schemes based on multiple chaotic maps and the Rubik's cube rotation, our approach has not only the same merits of chaos systems like high sensitivity to initial values, unpredictability, and pseudo-randomness, but also other advantages like a higher number of permutations, better performances in Peak Signal to Noise Ratio (PSNR and a Maximum Deviation (MD.

  4. An Aerial Video Stabilization Method Based on SURF Feature

    Directory of Open Access Journals (Sweden)

    Wu Hao

    2016-01-01

    Full Text Available The video captured by Micro Aerial Vehicle is often degraded due to unexpected random trembling and jitter caused by wind and the shake of the aerial platform. An approach for stabilizing the aerial video based on SURF feature and Kalman filter is proposed. SURF feature points are extracted in each frame, and the feature points between adjacent frames are matched using Fast Library for Approximate Nearest Neighbors search method. Then Random Sampling Consensus matching algorithm and Least Squares Method are used to remove mismatching points pairs, and estimate the transformation between the adjacent images. Finally, Kalman filter is applied to smooth the motion parameters and separate Intentional Motion from Unwanted Motion to stabilize the aerial video. Experiments results show that the approach can stabilize aerial video efficiently with high accuracy, and it is robust to the translation, rotation and zooming motion of camera.

  5. On-line task scheduling and trajectory planning techniques for reconnaissance missions with multiple unmanned aerial vehicles supervised by a single human operator

    Science.gov (United States)

    Ortiz Rubiano, Andres Eduardo

    The problem of a single human operator monitoring multiple UAVs in reconnaissance missions is addressed in this work. In such missions, the operator inspects and classifies targets as they appear on video feeds from the various UAVs. In parallel, the aircraft autonomously execute a flight plan and transmit real-time video of an unknown terrain. The main contribution of this work is the development of a system that autonomously schedules the display of video feeds such that the human operator is able to inspect each target in real time (i.e., no video data is recorded and queued for later inspection). The construction of this non-overlapping schedule is made possible by commanding changes to the flight plan of the UAVs. These changes are constructed such that the impact on the mission time is minimized. The development of this system is addressed in the context of both fixed and arbitrary target inspection times. Under the assumption that the inspection time is constant, a Linear Program (LP) formulation is used to optimally solve the display scheduling problem in the time domain. The LP solution is implemented in the space domain via velocity and trajectory modifications to the flight plan of the UAVs. An online algorithm is proposed to resolve scheduling conflicts between multiple video feeds as targets are discovered by the UAVs. Properties of this algorithm are studied to develop conflict resolution strategies that ensure correctness regardless of the target placement. The effect of such strategies on the mission time is evaluated via numerical simulations. In the context of arbitrary inspection time, the human operator indicates the end of target inspection in real time. A set of maneuvers is devised that enable the operator to inspect each target uninterruptedly and indefinitely. In addition, a cuing mechanism is proposed to increase the situational awareness of the operator and potentially reduce the inspection times. The benefits of operator cuing on mission

  6. Event recognition in personal photo collections via multiple instance learning-based classification of multiple images

    Science.gov (United States)

    Ahmad, Kashif; Conci, Nicola; Boato, Giulia; De Natale, Francesco G. B.

    2017-11-01

    Over the last few years, a rapid growth has been witnessed in the number of digital photos produced per year. This rapid process poses challenges in the organization and management of multimedia collections, and one viable solution consists of arranging the media on the basis of the underlying events. However, album-level annotation and the presence of irrelevant pictures in photo collections make event-based organization of personal photo albums a more challenging task. To tackle these challenges, in contrast to conventional approaches relying on supervised learning, we propose a pipeline for event recognition in personal photo collections relying on a multiple instance-learning (MIL) strategy. MIL is a modified form of supervised learning and fits well for such applications with weakly labeled data. The experimental evaluation of the proposed approach is carried out on two large-scale datasets including a self-collected and a benchmark dataset. On both, our approach significantly outperforms the existing state-of-the-art.

  7. Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis

    KAUST Repository

    Guo, Bowen

    2017-08-28

    Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the

  8. Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Huang Zhifeng; Chen Zhiqiang; Zhang Li; Jiang Xiaolei; Kang Kejun; Yin Hongxia; Wang Zhenchang; Stampanoni, Marco

    2011-01-01

    The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.

  9. Design of a web portal for interdisciplinary image retrieval from multiple online image resources.

    Science.gov (United States)

    Kammerer, F J; Frankewitsch, T; Prokosch, H-U

    2009-01-01

    Images play an important role in medicine. Finding the desired images within the multitude of online image databases is a time-consuming and frustrating process. Existing websites do not meet all the requirements for an ideal learning environment for medical students. This work intends to establish a new web portal providing a centralized access point to a selected number of online image databases. A back-end system locates images on given websites and extracts relevant metadata. The images are indexed using UMLS and the MetaMap system provided by the US National Library of Medicine. Specially developed functions allow to create individual navigation structures. The front-end system suits the specific needs of medical students. A navigation structure consisting of several medical fields, university curricula and the ICD-10 was created. The images may be accessed via the given navigation structure or using different search functions. Cross-references are provided by the semantic relations of the UMLS. Over 25,000 images were identified and indexed. A pilot evaluation among medical students showed good first results concerning the acceptance of the developed navigation structures and search features. The integration of the images from different sources into the UMLS semantic network offers a quick and an easy-to-use learning environment.

  10. Retrieving clinically relevant diabetic retinopathy images using a multi-class multiple-instance framework

    Science.gov (United States)

    Chandakkar, Parag S.; Venkatesan, Ragav; Li, Baoxin

    2013-02-01

    Diabetic retinopathy (DR) is a vision-threatening complication from diabetes mellitus, a medical condition that is rising globally. Unfortunately, many patients are unaware of this complication because of absence of symptoms. Regular screening of DR is necessary to detect the condition for timely treatment. Content-based image retrieval, using archived and diagnosed fundus (retinal) camera DR images can improve screening efficiency of DR. This content-based image retrieval study focuses on two DR clinical findings, microaneurysm and neovascularization, which are clinical signs of non-proliferative and proliferative diabetic retinopathy. The authors propose a multi-class multiple-instance image retrieval framework which deploys a modified color correlogram and statistics of steerable Gaussian Filter responses, for retrieving clinically relevant images from a database of DR fundus image database.

  11. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    Science.gov (United States)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  12. MR imaging of multiple sclerosis in patients with negative cerebrospinal fluid

    International Nuclear Information System (INIS)

    Dooms, G.C.; Mathurin, P.; Cornelis, G.; Laterre, E.C.; Demeure, R.

    1986-01-01

    A prospective study was performed to assess the value of MR imaging for detecting demyelinating disease of the brain in 50 patients with clinically suspected multiple sclerosis but negative cerebrospinal fluid (CSF). The MR imaging examinations were performed with a superconducting magnet (Philips Gyroscan S15) operating at 0.5T. A multisection, double spin-echo technique was used in all cases (TR = 2,100 msec, TE = 50 and 100 msec). No abnormality was demonstrated in eight patients. In the others, lesions were usually located in the periventricular white matter (rounded masses and/or high signal intensity bands along the lateral ventricles), the brain stem and thalami (12 patients), and the cerebellum (6 patients). In conclusion, MR imaging appears to be an exquisite imaging modality for confirmation of clinically suspected multiple sclerosis in patients with negative CSF. However, it must include examination of the spinal cord when the brain examination is negative

  13. COLOR IMAGE RETRIEVAL BASED ON FEATURE FUSION THROUGH MULTIPLE LINEAR REGRESSION ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. Seetharaman

    2015-08-01

    Full Text Available This paper proposes a novel technique based on feature fusion using multiple linear regression analysis, and the least-square estimation method is employed to estimate the parameters. The given input query image is segmented into various regions according to the structure of the image. The color and texture features are extracted on each region of the query image, and the features are fused together using the multiple linear regression model. The estimated parameters of the model, which is modeled based on the features, are formed as a vector called a feature vector. The Canberra distance measure is adopted to compare the feature vectors of the query and target images. The F-measure is applied to evaluate the performance of the proposed technique. The obtained results expose that the proposed technique is comparable to the other existing techniques.

  14. Multiple-Targeted Graphene-based Nanocarrier for Intracellular Imaging of mRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Li, Zhaohui; Liu, Misha; Hu, Dehong; Lin, Yuehe; Li, Jinghong

    2017-08-29

    Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labeled single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis.

  15. Development of 99mTc imaging method using multiple imaging plates for reduction of patient's dose

    International Nuclear Information System (INIS)

    Ito, Shigeki; Nishizawa, Kunihide; Ariga, Eiji; Saze, Takuya

    2008-01-01

    A system for taking static thyroid 99m Tc images was devised by using multiple imaging plates (IPs) and a low energy high resolution collimator. Sensitivity was represented by using lower detection limits (LDL). The sensitivity and resolution of IP systems using a collimator and 9 IPs were determined by using a 20 ml thyroid phantom, and compared with the sensitivity of gamma cameras. The sensitivity of the IP systems increased in proportion to the number of IPs. The sensitivity and resolution of a probe using 9 IPs and a high resolution collimator were equivalent to or superior to the gamma camera for taking static thyroid 99m Tc images. IP systems can be applied clinically as static nuclear imaging devices as same as a gamma camera. (author)

  16. Single-shot echo-planar imaging of multiple sclerosis: effects of varying echo time

    International Nuclear Information System (INIS)

    Wolansky, L.J.; Chong, S.; Liu, W.C.; Kang, E.; Simpson, S.W.; Karimi, S.; Akbari, H.

    1999-01-01

    Our aim was to determine the relative merits of short and long echo times (TE) with single-shot echo-planar imaging for imaging cerebral lesions such as multiple sclerosis. We examined seven patients with clinically definite multiple sclerosis were imaged at 1.5 T. Patients were scanned with spin-echo, single-shot echo-planar imaging, using TEs of 45, 75, 105, and 135 ms. Region of interest (ROI) measurements were performed on 36 lesions at or above the level of the corona radiata. The mean image contrast (IC) was highest (231.1) for a TE of 45 ms, followed by 75 ms (218.9), 105 ms (217.9), and 135 ms (191.6). When mean contrast-to-noise ratios (C/N) were compared, the value was again highest (29.7) for TE 45 ms, followed by 75 ms (28.9), 105 ms (28.5), and 135 ms (26.3). In a lesion-by-lesion comparison, TE 45 ms had the highest IC and C/N in the largest number of cases (50 % and 47.2 %, respectively). IC and C/N for TE 45 ms were superior to those of 75 ms in 64 % and 58 %, respectively. These results support the use of relatively short TEs for single-shot echo-planar imaging in the setting of cerebral lesions such as multiple sclerosis. (orig.) (orig.)

  17. Some results on the investigation of earth resources by aerial and polygon methods

    Energy Technology Data Exchange (ETDEWEB)

    Vinnichenko, N K; Tishchenko, A P

    1980-01-01

    Papers are presented on integrated aerial-satellite remote sensing systems, the resolution of TV scanning systems, the transfer of spectral contrasts in multispectral photography, and pseudocolor representation of multispectral aerial images. Consideration is also given to the use of spectral and physical-geographic characteristics of natural objects on the earth's surface for the interpretation of multispectral satellite photographs, the determination of the types and state of crops from multispectral aerial images, and the automated classification of agricultural objects from their multispectral aerial images.

  18. Multiple classifier systems in texton-based approach for the classification of CT images of Lung

    DEFF Research Database (Denmark)

    Gangeh, Mehrdad J.; Sørensen, Lauge; Shaker, Saher B.

    2010-01-01

    In this paper, we propose using texton signatures based on raw pixel representation along with a parallel multiple classifier system for the classification of emphysema in computed tomography images of the lung. The multiple classifier system is composed of support vector machines on the texton.......e., texton size and k value in k-means. Our results show that while aggregation of single decisions by SVMs over various k values using multiple classifier systems helps to improve the results compared to single SVMs, combining over different texton sizes is not beneficial. The performance of the proposed...

  19. Seven-Tesla Magnetization Transfer Imaging to Detect Multiple Sclerosis White Matter Lesions.

    Science.gov (United States)

    Chou, I-Jun; Lim, Su-Yin; Tanasescu, Radu; Al-Radaideh, Ali; Mougin, Olivier E; Tench, Christopher R; Whitehouse, William P; Gowland, Penny A; Constantinescu, Cris S

    2018-03-01

    Fluid-attenuated inversion recovery (FLAIR) imaging at 3 Tesla (T) field strength is the most sensitive modality for detecting white matter lesions in multiple sclerosis. While 7T FLAIR is effective in detecting cortical lesions, it has not been fully optimized for visualization of white matter lesions and thus has not been used for delineating lesions in quantitative magnetic resonance imaging (MRI) studies of the normal appearing white matter in multiple sclerosis. Therefore, we aimed to evaluate the sensitivity of 7T magnetization-transfer-weighted (MT w ) images in the detection of white matter lesions compared with 3T-FLAIR. Fifteen patients with clinically isolated syndrome, 6 with multiple sclerosis, and 10 healthy participants were scanned with 7T 3-dimensional (D) MT w and 3T-2D-FLAIR sequences on the same day. White matter lesions visible on either sequence were delineated. Of 662 lesions identified on 3T-2D-FLAIR images, 652 were detected on 7T-3D-MT w images (sensitivity, 98%; 95% confidence interval, 97% to 99%). The Spearman correlation coefficient between lesion loads estimated by the two sequences was .910. The intrarater and interrater reliability for 7T-3D-MT w images was good with an intraclass correlation coefficient (ICC) of 98.4% and 81.8%, which is similar to that for 3T-2D-FLAIR images (ICC 96.1% and 96.7%). Seven-Tesla MT w sequences detected most of the white matter lesions identified by FLAIR at 3T. This suggests that 7T-MT w imaging is a robust alternative for detecting demyelinating lesions in addition to 3T-FLAIR. Future studies need to compare the roles of optimized 7T-FLAIR and of 7T-MT w imaging. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  20. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology

    Directory of Open Access Journals (Sweden)

    Shuo Chen

    2018-01-01

    Full Text Available As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D TCAI architecture based on single input multiple output (SIMO technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  1. MR Imaging in Monitoring and Predicting Treatment Response in Multiple Sclerosis.

    Science.gov (United States)

    Río, Jordi; Auger, Cristina; Rovira, Àlex

    2017-05-01

    MR imaging is the most sensitive tool for identifying lesions in patients with multiple sclerosis (MS). MR imaging has also acquired an essential role in the detection of complications arising from these treatments and in the assessment and prediction of efficacy. In the future, other radiological measures that have shown prognostic value may be incorporated within the models for predicting treatment response. This article examines the role of MR imaging as a prognostic tool in patients with MS and the recommendations that have been proposed in recent years to monitor patients who are treated with disease-modifying drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Design of e-Science platform for biomedical imaging research cross multiple academic institutions and hospitals

    Science.gov (United States)

    Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin

    2012-02-01

    More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.

  3. Magnetic resonance imaging of multiple sclerosis brain lesions: A semeiologic study by multiple spin-echo sequences

    International Nuclear Information System (INIS)

    Caires, M.C.; Scheiber, C.; Rumbach, L.; Gounot, D.; Dumitresco, B.; Warter, J.M.; Collard, M.; Chambron, J.

    1986-01-01

    Nuclear magnetic resonance imaging (MRI) if the brain is now known as a very sensitive tool for clearly revealing lesions in white matter, and has thus become important in the study of multiple sclerosis (MS). Since 1981, others have shown the best of MRI: we can see 6 x more lesions than CT. MRI contrast bases mainly on the spatial heterogeneity of the relaxation time of different tissues. The sensitivity depends on the longer T1 and/or T2 of the pathological tissues compared to those of normal tissues. In our series, the authors use mainly T2 weighted MR images and they evaluate their interest for the diagnosis of MS. They study the frequency of the abnormalities and their semeiology in a small number of transversal sections imaged at the level of the lateral ventricles. The authors' aim is to describe the NMR-derived morphological signs of MS and to prospect its interest in the physiopathological studies of this disease

  4. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  5. A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Tieyong Zeng

    2013-01-01

    In this paper, a new variational model for restoring blurred images with multiplicative noise is proposed. Based on the statistical property of the noise, a quadratic penalty function technique is utilized in order to obtain a strictly convex model under a mild condition, which guarantees...

  6. Seismic reflector imaging using internal multiples with Marchenko-type equations

    NARCIS (Netherlands)

    Slob, E.C.; Wapenaar, C.P.A.; Broggini, F.; Snieder, R.

    2014-01-01

    We present an imaging method that creates a map of reflection coefficients in correct one-way time with no contamination from internal multiples using purely a filtering approach. The filter is computed from the measured reflection response and does not require a background model. We demonstrate

  7. Encephalic magnetic resonance imaging in spinal clinical forms of multiple sclerosis

    International Nuclear Information System (INIS)

    Lubetzki, C.; Lyon-Caen, O.; Lhermitte, F.; Iba-Zizen, M.T.

    1988-01-01

    The diagnosis of multiple sclerosis (MS) in patients presenting with signs and symptoms of pure spinal cord involvement is always difficult. Previous studies have shown the usefulness of encephalic magnetic resonance imaging (MRI) of the brain in those cases. The aim was to evaluate the diagnosis value of brain MRI in medullar forms of MS. 3 refs

  8. A new apparatus for electron-ion multiple coincidence momentum imaging spectroscopy

    International Nuclear Information System (INIS)

    Morishita, Y.; Kato, M.; Pruemper, G.; Liu, X.-J.; Lischke, T.; Ueda, K.; Tamenori, Y.; Oura, M.; Yamaoka, H.; Suzuki, I.H.; Saito, N.

    2006-01-01

    We have developed a new experimental apparatus for the electron-ion multiple coincidence momentum imaging spectroscopy in order to obtain the angular distributions of vibration-resolved photoelectrons from molecules fixed in space. The apparatus consists of a four-stage molecular supersonic jet and a spectrometer analyzing three-dimensional momenta of fragment ions and electrons in coincidence

  9. Tracking Iron in Multiple Sclerosis: A Combined Imaging and Histopathological Study at 7 Tesla

    Science.gov (United States)

    Bagnato, Francesca; Hametner, Simon; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Cantor, Fredric K.; Lassmann, Hans; Duyn, Jeff H.

    2011-01-01

    Previous authors have shown that the transverse relaxivity R[subscript 2][superscript *] and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a…

  10. Episodic aphasia associated with tumor active multiple sclerosis: a correlative SPECT study utilising image fusion

    International Nuclear Information System (INIS)

    Roff, G.; Campbell, A.; Lawn, N.; Henderson, A.; McCarthy, M.; Lenzo, N.

    2003-01-01

    Full text: Cerebral perfusion imaging is a common technique to assess cerebral perfusion and metabolism. It can complement anatomical imaging in assessing a number of neurological conditions. At times it can better define the clinical manifestations of a disease process than anatomical imaging alone. We present a clinical case whereby cerebral SPECT imaging helped define the physiological reason for intermittent aphasia in a patient with tumor active multiple sclerotic white matter plaques. Cerebral SPECT studies were performed during a period of aphasia and when the patient had recovered. We utilised subtraction analyses and image fusion techniques to better define the changes seen on SPECT. We discuss the neuroanatomical relationship of aphasia and the automatic fusion technique that allows accurate co-registration of the MRI and SPECT data. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  11. Multiple image encryption scheme based on pixel exchange operation and vector decomposition

    Science.gov (United States)

    Xiong, Y.; Quan, C.; Tay, C. J.

    2018-02-01

    We propose a new multiple image encryption scheme based on a pixel exchange operation and a basic vector decomposition in Fourier domain. In this algorithm, original images are imported via a pixel exchange operator, from which scrambled images and pixel position matrices are obtained. Scrambled images encrypted into phase information are imported using the proposed algorithm and phase keys are obtained from the difference between scrambled images and synthesized vectors in a charge-coupled device (CCD) plane. The final synthesized vector is used as an input in a random phase encoding (DRPE) scheme. In the proposed encryption scheme, pixel position matrices and phase keys serve as additional private keys to enhance the security of the cryptosystem which is based on a 4-f system. Numerical simulations are presented to demonstrate the feasibility and robustness of the proposed encryption scheme.

  12. Modeling multiple visual words assignment for bag-of-features based medical image retrieval

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-01-01

    In this paper, we investigate the bag-of-features based medical image retrieval methods, which represent an image as a collection of local features, such as image patch and key points with SIFT descriptor. To improve the bag-of-features method, we first model the assignment of local descriptor as contribution functions, and then propose a new multiple assignment strategy. By assuming the local feature can be reconstructed by its neighboring visual words in vocabulary, we solve the reconstruction weights as a QP problem and then use the solved weights as contribution functions, which results in a new assignment method called the QP assignment. We carry our experiments on ImageCLEFmed datasets. Experiments\\' results show that our proposed method exceeds the performances of traditional solutions and works well for the bag-of-features based medical image retrieval tasks.

  13. Modeling multiple visual words assignment for bag-of-features based medical image retrieval

    KAUST Repository

    Wang, Jim Jing-Yan; Almasri, Islam

    2012-01-01

    In this paper, we investigate the bag-of-features based medical image retrieval methods, which represent an image as a collection of local features, such as image patch and key points with SIFT descriptor. To improve the bag-of-features method, we first model the assignment of local descriptor as contribution functions, and then propose a new multiple assignment strategy. By assuming the local feature can be reconstructed by its neighboring visual words in vocabulary, we solve the reconstruction weights as a QP problem and then use the solved weights as contribution functions, which results in a new assignment method called the QP assignment. We carry our experiments on ImageCLEFmed datasets. Experiments' results show that our proposed method exceeds the performances of traditional solutions and works well for the bag-of-features based medical image retrieval tasks.

  14. Relationship between timed 25-foot walk and diffusion tensor imaging in multiple sclerosis.

    Science.gov (United States)

    Klineova, Sylvia; Farber, Rebecca; Saiote, Catarina; Farrell, Colleen; Delman, Bradley N; Tanenbaum, Lawrence N; Friedman, Joshua; Inglese, Matilde; Lublin, Fred D; Krieger, Stephen

    2016-01-01

    The majority of multiple sclerosis patients experience impaired walking ability, which impacts quality of life. Timed 25-foot walk is commonly used to gauge gait impairment but results can be broadly variable. Objective biological markers that correlate closely with patients' disability are needed. Diffusion tensor imaging, quantifying fiber tract integrity, might provide such information. In this project we analyzed relationships between timed 25-foot walk, conventional and diffusion tensor imaging magnetic resonance imaging markers. A cohort of gait impaired multiple sclerosis patients underwent brain and cervical spinal cord magnetic resonance imaging. Diffusion tensor imaging mean diffusivity and fractional anisotropy were measured on the brain corticospinal tracts and spinal restricted field of vision at C2/3. We analyzed relationships between baseline timed 25-foot walk, conventional and diffusion tensor imaging magnetic resonance imaging markers. Multivariate linear regression analysis showed a statistically significant association between several magnetic resonance imaging and diffusion tensor imaging metrics and timed 25-foot walk: brain mean diffusivity corticospinal tracts (p = 0.004), brain corticospinal tracts axial and radial diffusivity (P = 0.004 and 0.02), grey matter volume (p = 0.05), white matter volume (p = 0.03) and normalized brain volume (P = 0.01). The linear regression model containing mean diffusivity corticospinal tracts and controlled for gait assistance was the best fit model (p = 0.004). Our results suggest an association between diffusion tensor imaging metrics and gait impairment, evidenced by brain mean diffusivity corticospinal tracts and timed 25-foot walk.

  15. Confocal scanning microscopy with multiple optical probes for high speed measurements and better imaging

    Science.gov (United States)

    Chun, Wanhee; Lee, SeungWoo; Gweon, Dae-Gab

    2008-02-01

    Confocal scanning microscopy (CSM) needs a scanning mechanism because only one point information of specimen can be obtained. Therefore the speed of the confocal scanning microscopy is limited by the speed of the scanning tool. To overcome this limitation from scanning tool we propose another scanning mechanism. We make three optical probes in the specimen under confocal condition of each point. Three optical probes are moved by beam scanning mechanism with shared resonant scanning mirror (RM) and galvanometer driven mirror (GM). As each optical probe scan allocated region of the specimen, information from three points is obtained simultaneously and image acquisition time is reduced. Therefore confocal scanning microscopy with multiple optical probes is expected to have three times faster speed of the image acquisition than conventional one. And as another use, multiple optical probes to which different light wavelength is applied can scan whole same region respectively. It helps to obtain better contrast image in case of specimens having different optical characteristics for specific light wavelength. In conclusion confocal scanning microscopy with multiple optical probes is useful technique for views of image acquisition speed and image quality.

  16. A decision tree for differentiating multiple system atrophy from Parkinson's disease using 3-T MR imaging.

    Science.gov (United States)

    Nair, Shalini Rajandran; Tan, Li Kuo; Mohd Ramli, Norlisah; Lim, Shen Yang; Rahmat, Kartini; Mohd Nor, Hazman

    2013-06-01

    To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD). 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3. Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified. Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD. • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.

  17. Image transmission in multicore-fiber code-division multiple access network

    Science.gov (United States)

    Yang, Guu-Chang; Kwong, Wing C.

    1997-01-01

    Recently, two-dimensional (2-D) signature patterns were proposed to encode binary digitized image pixels in optical code-division multiple-access (CDMA) networks with 'multicore' fiber. The new technology enables parallel transmission and simultaneous access of 2-D images in multiple-access environment, where these signature patterns are defined as optical orthogonal signature pattern codes (OOSPCs). However, previous work on OOSPCs assumed that the weight of each signature pattern was the same. In this paper, we construct a new family of OOSPCs with the removal of this assumption. Since varying the weight of a user's signature pattern affects that user's performance, this approach is useful for CDMA optical systems with multiple performance requirements.

  18. Diagnosis of Alzheimer's disease and multiple infarct dementia by tomographic imaging of iodine-123 IMP

    International Nuclear Information System (INIS)

    Cohen, M.B.; Graham, L.S.; Lake, R.

    1986-01-01

    Tomographic imaging of the brain was performed using a rotating slant hole collimator and [ 123 I]N-isopropyl p-iodoamphetamine (IMP) in normal subjects (n = 6) and patients with either Alzheimer's disease (n = 5) or multiple infarct dementia (n = 3). Four blinded observers were asked to make a diagnosis from the images. Normal subjects and patients with multiple infarct dementia were correctly identified. Alzheimer's disease was diagnosed in three of the five patients with this disease. One patient with early Alzheimer's disease was classified as normal by two of the four observers. Another patient with Alzheimer's disease had an asymmetric distribution of IMP and was incorrectly diagnosed as multiple infarct dementia by all four observers. Limited angle tomography of the cerebral distribution of 123 I appears to be a useful technique for the evaluation of demented patients

  19. Aerial photogrammetry procedure optimized for micro uav

    Directory of Open Access Journals (Sweden)

    T. Anai

    2014-06-01

    Full Text Available This paper proposes the automatic aerial photogrammetry procedure optimized for Micro UAV that has ability of autonomous flight. The most important goal of our proposed method is the reducing the processing cost for fully automatic reconstruction of DSM from a large amount of image obtained from Micro UAV. For this goal, we have developed automatic corresponding point generation procedure using feature point tracking algorithm considering position and attitude information, which obtained from onboard GPS-IMU integrated on Micro UAV. In addition, we have developed the automatic exterior orientation and registration procedure from the automatic generated corresponding points on each image and position and attitude information from Micro UAV. Moreover, in order to reconstruct precise DSM, we have developed the area base matching process which considering edge information. In this paper, we describe processing flow of our automatic aerial photogrammetry. Moreover, the accuracy assessment is also described. Furthermore, some application of automatic reconstruction of DSM will be desired.

  20. Multivertebral and epidural involvement of the multiple myeloma, as confirmed by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasuhiro; Tamaki, Norihiko; Hosoda, Koukichi; Ehara, Kazumasa; Matsumoto, Satoshi

    1987-08-01

    A case is reported of a multiple myeloma exhibiting symptoms of paraparesis as an initial manifestation following tetraparesis, but with no particular common symptoms of multiple myeloma. Laboratory findings, however, strongly suggested multiple myeloma, and this was confirmed by a biopsy. Radiological investigations could not show all the features of this tumor invasion, but revealed only the osteosclerotic and destructive changes in the cervical and thoracic spine, plus a complete block at the C2 level. Magnetic resonance imaging, however, disclosed entire lesions. There existed multiple vertebral involvements and an epidural invasion of the tumor, continuing to an extraspinal mass. Multiple myeloma is a disorder with varied manifestations; it is rarely present as a primary neuropathological entity. Among these manifestations, initial neurological manifestations in the form of peripheral neuropathy have been reported most commonly. Unusual clinical presentations such as in our case may result in an erroneous and delayed diagnosis unless an early and correct identification of the lesion is made. Magnetic resonance imaging is thought to be the most useful technique to detect such a multiple lesion in the spinal canal with no invasive manipulation.

  1. Electromagnetic wave scattering by aerial and ground radar objects

    CERN Document Server

    Sukharevsky, Oleg I

    2014-01-01

    Electromagnetic Wave Scattering by Aerial and Ground Radar Objects presents the theory, original calculation methods, and computational results of the scattering characteristics of different aerial and ground radar objects. This must-have book provides essential background for computing electromagnetic wave scattering in the presence of different kinds of irregularities, as well as Summarizes fundamental electromagnetic statements such as the Lorentz reciprocity theorem and the image principleContains integral field representations enabling the study of scattering from various layered structur

  2. AERIAL RADIOLOGICAL SURVEYS

    International Nuclear Information System (INIS)

    Proctor, A.E.

    1997-01-01

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described

  3. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99 – Part 1: Determination of length, area, and volume changes

    Directory of Open Access Journals (Sweden)

    W. Haeberli

    2010-09-01

    Full Text Available Storglaciären, located in the Kebnekaise massif in northern Sweden, has a long history of glaciological research. Early photo documentations date back to the late 19th century. Measurements of front position variations and distributed mass balance have been carried out since 1910 and 1945/46, respectively. In addition to these in-situ measurements, aerial photographs have been taken at decadal intervals since the beginning of the mass balance monitoring program and were used to produce topographic glacier maps. Inaccuracies in the maps were a challenge to early attempts to derive glacier volume changes and resulted in major differences when compared to the direct glaciological mass balances. In this study, we reanalyzed dia-positives of the original aerial photographs of 1959, -69, -80, -90 and -99 based on consistent photogrammetric processing. From the resulting digital elevation models and orthophotos, changes in length, area, and volume of Storglaciären were computed between the survey years, including an assessment of related errors. Between 1959 and 1999, Storglaciären lost an ice volume of 19×106 m3, which corresponds to a cumulative ice thickness loss of 5.69 m and a mean annual loss of 0.14 m. This ice loss resulted largely from a strong volume loss during the period 1959–80 and was partly compensated during the period 1980–99. As a consequence, the glacier shows a strong retreat in the 1960s, a slowing in the 1970s, and pseudo-stationary conditions in the 1980s and 1990s.

  4. Signal Normalization Reduces Image Appearance Disparity Among Multiple Optical Coherence Tomography Devices.

    Science.gov (United States)

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Schuman, Joel S

    2017-02-01

    To assess the effect of the previously reported optical coherence tomography (OCT) signal normalization method on reducing the discrepancies in image appearance among spectral-domain OCT (SD-OCT) devices. Healthy eyes and eyes with various retinal pathologies were scanned at the macular region using similar volumetric scan patterns with at least two out of three SD-OCT devices at the same visit (Cirrus HD-OCT, Zeiss, Dublin, CA; RTVue, Optovue, Fremont, CA; and Spectralis, Heidelberg Engineering, Heidelberg, Germany). All the images were processed with the signal normalization. A set of images formed a questionnaire with 24 pairs of cross-sectional images from each eye with any combination of the three SD-OCT devices either both pre- or postsignal normalization. Observers were asked to evaluate the similarity of the two displayed images based on the image appearance. The effects on reducing the differences in image appearance before and after processing were analyzed. Twenty-nine researchers familiar with OCT images participated in the survey. Image similarity was significantly improved after signal normalization for all three combinations ( P ≤ 0.009) as Cirrus and RTVue combination became the most similar pair, followed by Cirrus and Spectralis, and RTVue and Spectralis. The signal normalization successfully minimized the disparities in the image appearance among multiple SD-OCT devices, allowing clinical interpretation and comparison of OCT images regardless of the device differences. The signal normalization would enable direct OCT images comparisons without concerning about device differences and broaden OCT usage by enabling long-term follow-ups and data sharing.

  5. The One to Multiple Automatic High Accuracy Registration of Terrestrial LIDAR and Optical Images

    Science.gov (United States)

    Wang, Y.; Hu, C.; Xia, G.; Xue, H.

    2018-04-01

    The registration of ground laser point cloud and close-range image is the key content of high-precision 3D reconstruction of cultural relic object. In view of the requirement of high texture resolution in the field of cultural relic at present, The registration of point cloud and image data in object reconstruction will result in the problem of point cloud to multiple images. In the current commercial software, the two pairs of registration of the two kinds of data are realized by manually dividing point cloud data, manual matching point cloud and image data, manually selecting a two - dimensional point of the same name of the image and the point cloud, and the process not only greatly reduces the working efficiency, but also affects the precision of the registration of the two, and causes the problem of the color point cloud texture joint. In order to solve the above problems, this paper takes the whole object image as the intermediate data, and uses the matching technology to realize the automatic one-to-one correspondence between the point cloud and multiple images. The matching of point cloud center projection reflection intensity image and optical image is applied to realize the automatic matching of the same name feature points, and the Rodrigo matrix spatial similarity transformation model and weight selection iteration are used to realize the automatic registration of the two kinds of data with high accuracy. This method is expected to serve for the high precision and high efficiency automatic 3D reconstruction of cultural relic objects, which has certain scientific research value and practical significance.

  6. CERN: an aerial view

    CERN Multimedia

    2004-01-01

    On 30th January, when CERN still resembled a winter wonderland, a helicopter with a photographer on board took off on an aerial tour. One sunny morning at the end of January, when the area was waking up to an overnight snowfall, a helicopter took off from the Meyrin site with a CERN photographer on board. CERN has been the subject of aerial photographs ever since its creation. Although its appearance has changed over the years, the Laboratory has aged well. The aerial photographs taken during its fifty-year history bear witness to its expansion, showing how a handful of buildings and a first accelerator have blossomed into an entire machine complex. Let's take to the skies and have a look at some of the photos taken on this crisp January morning: a sight for sore eyes! In the foreground, Building 40 on the Meyrin site is recognisable from its magnet shape.On the right of the Route de Meyrin (crossing the photo diagonally), next to Point 1, the work on the Globe of Innovation, which got underway at the beg...

  7. Applicability of McDonald 2010 and Magnetic Resonance Imaging in Multiple Sclerosis (MAGNIMS) 2016 Magnetic Resonance Imaging Criteria for the Diagnosis of Multiple Sclerosis in Sri Lanka.

    Science.gov (United States)

    Gamage, Sujani Madhurika Kodagoda; Wijeweera, Indunil; Wijesinghe, Priyangi; Adikari, Sanjaya Bandara; Fink, Katharina; Sominanda, Herath Mudiyanselage Ajith

    2018-05-31

    The magnetic resonance imaging in multiple sclerosis (MAGNIMS) group recently proposed guidelines to replace the existing dissemination-in-space criteria in McDonald 2010 magnetic resonance imaging (MRI) criteria for diagnosing multiple sclerosis. There has been insufficient research regarding their applicability in Asians. Objective of this study was to determine the sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of McDonald 2010 and MAGNIMS 2016 MRI criteria with the aim of verifying their applicability in Sri Lankan patients. Patients with clinically isolated syndrome diagnosed by consultant neurologists were recruited from five major neurology centers. Baseline and follow-up MRI scans were performed within 3 months from the initial presentation and at one year after baseline MRI, respectively. McDonald 2010 and MAGNIMS 2016 MRI criteria were applied to all MRI scans. Patients were followed-up for 2 years to assess the conversion to clinically definite multiple sclerosis (CDMS). The sensitivity, specificity, accuracy, PPV, and NPV for predicting the conversion to CDMS were calculated. Forty-two of 66 patients converted to CDMS. Thirty-seven fulfilled the McDonald 2010 MRI criteria, and 33 converted to CDMS. MAGNIMS 2016 MRI criteria were fulfilled by 29, with 28 converting to CDMS. The sensitivity, specificity, accuracy, PPV, and NPV were 78%, 83%, 64%, 89%, and 69%, respectively, for the McDonald 2010 criteria, and 67%, 96%, 77%, 96%, and 62% for the MAGNIMS 2016 MRI criteria. MAGNIMS 2016 MRI criteria were superior to McDonald 2010 MRI criteria in specificity, accuracy, and PPV, but inferior in sensitivity and NPV. Copyright © 2018 Korean Neurological Association.

  8. The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging

    Science.gov (United States)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2014-12-01

    The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.

  9. A study of the decoding of multiple pinhole coded aperture RI tomographic images

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Kobayashi, Akitoshi; Nishiyama, Yutaka

    1980-01-01

    The authors constructed a Multiple Pinhole Coded Aperture (MPCA) and developed related decoding software. When simple coordinate transformation was performed, omission of points and shifting of counts occurred. By selecting various tomographic planes and collecting count for each tomographic depth from the shadowgram, a solution to these problems was found. The counts from the central portion of the tomographic image from the MPCA were incorrectly high, this was rectified by a correction function to improve the uniformity correction program of the γ-camera. Depth resolution of the tomographic image improved in proportion to the area encompassed by the pinhole configuration. An MPCA with a uniform arrangement of pinholes (e, g, pinholes in an arrangement parallel to the X-axis or the Y-axis) yielded decoded tomographic images of inferior quality. Optimum results were obtained with a ring-shaped arrangement yielding clinically applicable tomographic images even for large objects. (author)

  10. Optical multiple-image hiding based on interference and grating modulation

    International Nuclear Information System (INIS)

    He, Wenqi; Peng, Xiang; Meng, Xiangfeng

    2012-01-01

    We present a method for multiple-image hiding on the basis of interference-based encryption architecture and grating modulation. By using a modified phase retrieval algorithm, we can separately hide a number of secret images into one arbitrarily preselected host image associated with a set of phase-only masks (POMs), which are regarded as secret keys. Thereafter, a grating modulation operation is introduced to multiplex and store the different POMs into a single key mask, which is then assigned to the authorized users in privacy. For recovery, after an appropriate demultiplexing process, one can reconstruct the distributions of all the secret keys and then recover the corresponding hidden images with suppressed crosstalk. Computer simulation results are presented to validate the feasibility of our approach. (paper)

  11. Compton scatter correction in case of multiple crosstalks in SPECT imaging.

    Science.gov (United States)

    Sychra, J J; Blend, M J; Jobe, T H

    1996-02-01

    A strategy for Compton scatter correction in brain SPECT images was proposed recently. It assumes that two radioisotopes are used and that a significant portion of photons of one radioisotope (for example, Tc99m) spills over into the low energy acquisition window of the other radioisotope (for example, Tl201). We are extending this approach to cases of several radioisotopes with mutual, multiple and significant photon spillover. In the example above, one may correct not only the Tl201 image but also the Tc99m image corrupted by the Compton scatter originating from the small component of high energy Tl201 photons. The proposed extension is applicable to other anatomical domains (cardiac imaging).

  12. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    Science.gov (United States)

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  13. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation.

  14. Multiple Active Contours Driven by Particle Swarm Optimization for Cardiac Medical Image Segmentation

    Science.gov (United States)

    Cruz-Aceves, I.; Aviña-Cervantes, J. G.; López-Hernández, J. M.; González-Reyna, S. E.

    2013-01-01

    This paper presents a novel image segmentation method based on multiple active contours driven by particle swarm optimization (MACPSO). The proposed method uses particle swarm optimization over a polar coordinate system to increase the energy-minimizing capability with respect to the traditional active contour model. In the first stage, to evaluate the robustness of the proposed method, a set of synthetic images containing objects with several concavities and Gaussian noise is presented. Subsequently, MACPSO is used to segment the human heart and the human left ventricle from datasets of sequential computed tomography and magnetic resonance images, respectively. Finally, to assess the performance of the medical image segmentations with respect to regions outlined by experts and by the graph cut method objectively and quantifiably, a set of distance and similarity metrics has been adopted. The experimental results demonstrate that MACPSO outperforms the traditional active contour model in terms of segmentation accuracy and stability. PMID:23762177

  15. Photogrammetric mapping using unmanned aerial vehicle

    Science.gov (United States)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  16. Imaging method of minute injured area at achilles tendon from multiple MR Images

    International Nuclear Information System (INIS)

    Tokui, Takahiro; Imura, Masataka; Kuroda, Yoshihiro; Oshiro, Osamu; Oguchi, Makoto; Fujiwara, Kazuhisa; Tabata, Yoshito; Ishigaki, Rikuta

    2011-01-01

    Ruptures of Achilles tendon frequently occur while doing sports. Since two-thirds of the people who suffered from the rupture of Achilles tendon feel the pain at Achilles tendon before rupture, to detect the predictor of the rupture is possible. Achilles tendon is soft tissue consisting of unidirectionally-aligned collagen fibers. Therefore, ordinary MRI scanner, ultrasonic instrument or X-ray scanner cannot acquire medical images of Achilles tendon. However, because MR signal intensity changes according to the angle between static magnetic field direction and fiber orientation, MR device can detect strong signal when the angle is 55 deg. In this research, the authors propose the imaging method to detect injured area at Achilles tendon. The method calculates and visualizes the value representing fiber tropism from the matching between MR signal intensity and the model of signal intensity of angle dependence. (author)

  17. Imaging of multiple myeloma and related monoclonal plasma cell diseases. An update

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Delorme, Stefan; Hillengass, Jens

    2014-01-01

    Multiple myeloma is a hematologic disorder characterized by the infiltration and proliferation of monoclonal plasma cells mainly in the bone marrow. The main symptoms are hypercalcemia, renal impairment, cytopenia/anemia and bone disease - summarized as CRAB-criteria. Symptomatic multiple myeloma is consistently preceded by asymptomatic premalignant stages called monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Staging of multiple myeloma is based on the measurement of the monoclonal protein in serum and urine as well as the assessment of impairment of hematopoiesis, renal function and mineralized bone. In the last decade the development of novel therapeutic agents has led to an increase in response rates and survival time of patients with multiple myeloma, which further stresses the value of response assessment by imaging. Cross sectional imaging like MRI and CT is currently replacing conventional radiological surveys in the initial work-up and follow-up of patients with monoclonal plasma cell diseases. The added value of MRI is to improve initial staging by unraveling a diffuse infiltration of bone marrow by plasma cells, a focal pattern or a combination of both. Furthermore, a complete remission of myeloma confirmed by MRI and CT goes along with a better prognosis compared to a complete response based only on serological parameters.

  18. Multiple-targeted graphene-based nanocarrier for intracellular imaging of mRNAs

    International Nuclear Information System (INIS)

    Wang, Ying; Li, Zhaohui; Liu, Misha; Xu, Jinjin; Hu, Dehong; Lin, Yuehe; Li, Jinghong

    2017-01-01

    Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labelled single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis. - Graphical abstract: Schematic illustration of simultaneously multiple mRNAs monitoring inside single living breast cancer cell based on GO nanocarrier. In particular, the fluorescent signals could be monitored when Mn-SOD probe (red) and β-actin probe (green) hybridizes with their mRNA targets inside the living cells. Random probe (orange) was regarded as control probe for the sensing strategy. - Highlights: • A multiple-targeted GO nanocarrier was used for mRNAs imaging and expression changes after drug treatment can be monitored successfully. • Sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) m

  19. Multiplicative mixing of object identity and image attributes in single inferior temporal neurons.

    Science.gov (United States)

    Ratan Murty, N Apurva; Arun, S P

    2018-04-03

    Object recognition is challenging because the same object can produce vastly different images, mixing signals related to its identity with signals due to its image attributes, such as size, position, rotation, etc. Previous studies have shown that both signals are present in high-level visual areas, but precisely how they are combined has remained unclear. One possibility is that neurons might encode identity and attribute signals multiplicatively so that each can be efficiently decoded without interference from the other. Here, we show that, in high-level visual cortex, responses of single neurons can be explained better as a product rather than a sum of tuning for object identity and tuning for image attributes. This subtle effect in single neurons produced substantially better population decoding of object identity and image attributes in the neural population as a whole. This property was absent both in low-level vision models and in deep neural networks. It was also unique to invariances: when tested with two-part objects, neural responses were explained better as a sum than as a product of part tuning. Taken together, our results indicate that signals requiring separate decoding, such as object identity and image attributes, are combined multiplicatively in IT neurons, whereas signals that require integration (such as parts in an object) are combined additively. Copyright © 2018 the Author(s). Published by PNAS.

  20. UV imaging of Multiple Unit Pellet System (MUPS) tablets: A case study of acetylsalicylic acid stability

    DEFF Research Database (Denmark)

    Novikova, Anna; Carstensen, Jens Michael; Rades, Thomas

    2017-01-01

    for estimation of the salicylic acid (SA) concentration as degradation product of ASA in the tablets were compared to the SA concentration measured by high performance liquid chromatography with a partial least squares regression resulting in an RMSEP of 4.86% and an R2 of 0.9812. The estimation of the SA......The applicability of multispectral ultraviolet (UV) imaging in combination with multivariate image analysis was investigated to monitor API degradation within multiple unit pellet system (MUPS) tablets during storage. For this purpose, acetylsalicylic acid (ASA) layered pellets were coated...

  1. Schedule Optimization of Imaging Missions for Multiple Satellites and Ground Stations Using Genetic Algorithm

    Science.gov (United States)

    Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    2018-04-01

    In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.

  2. MO-FG-204-02: Reference Image Selection in the Presence of Multiple Scan Realizations

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, D; Dou, T; Thomas, D; Low, D [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Fusing information from multiple correlated realizations (e.g., 4DCT) can improve image quality. This process often involves ill-conditioned and asymmetric nonlinear registration and the proper selection of a reference image is important. This work proposes to examine post-registration variation indirectly for such selection, and develops further insights to reduce the number of cross-registrations needed. Methods: We consider each individual scan as a noisy point in the vicinity of an image manifold, related by motion. Nonrigid registration “transports” a scan along the manifold to the reference neighborhood, and the residual is a surrogate for local variation. To test this conjecture, 10 thoracic scans from the same session were reconstructed from a recently developed low-dose helical 4DCT protocol. Pairwise registration was repeated bi-directionally (81 times) and fusion was performed with each candidate reference. The fused image quality was assessed with SNR and CNR. Registration residuals in SSD, harmonic energy, and deformation Jacobian behavior were examined. The semi-symmetry is further utilized to reduce the number of registration needed. Results: The comparison of image quality between single image and fused ones identified reduction of local intensity variance as the major contributor of image quality, boosting SNR and CNR by 5 to 7 folds. This observation further suggests the criticality of good agreement across post-registration images. Triangle inequality on the SSD metric provides a proficient upper-bound and surrogate on such disagreement. Empirical observation also confirms that fused images with high residual SSD have lower SNR and CNR than the ones with low or intermediate SSDs. Registration SSD is structurally close enough to symmetry for reduced computation. Conclusion: Registration residual is shown to be a good predictor of post-fusion image quality and can be used to identify good reference centers. Semi-symmetry of the

  3. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    Science.gov (United States)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  4. HLA typing in acute optic neuritis. Relation to multiple sclerosis and magnetic resonance imaging findings

    DEFF Research Database (Denmark)

    Frederiksen, J.L.; Madsen, H.O.; Ryder, L.P.

    1997-01-01

    OBJECTIVE: To study the association of brain magnetic resonance imaging (MRI) findings and HLA findings to clarify the relationship between monosymptomatic optic neuritis (ON) and ON as part of clinically definite multiple sclerosis (CDMS). DESIGN: Population-based cohort of patients with ON refe......OBJECTIVE: To study the association of brain magnetic resonance imaging (MRI) findings and HLA findings to clarify the relationship between monosymptomatic optic neuritis (ON) and ON as part of clinically definite multiple sclerosis (CDMS). DESIGN: Population-based cohort of patients......: The frequency of HLA-DR15 was significantly increased in patients with ON + CDMS (52%) and ON (47%) compared with control subjects (31%). The frequency of HLA-DR17 was almost equal in the ON + CDMS (18%), ON (23%), and control (23%) groups. The frequencies of HLA-DQA-1B (55% in ON + CDMS, 58% in ON) and HLA...

  5. Single image super-resolution using locally adaptive multiple linear regression.

    Science.gov (United States)

    Yu, Soohwan; Kang, Wonseok; Ko, Seungyong; Paik, Joonki

    2015-12-01

    This paper presents a regularized superresolution (SR) reconstruction method using locally adaptive multiple linear regression to overcome the limitation of spatial resolution of digital images. In order to make the SR problem better-posed, the proposed method incorporates the locally adaptive multiple linear regression into the regularization process as a local prior. The local regularization prior assumes that the target high-resolution (HR) pixel is generated by a linear combination of similar pixels in differently scaled patches and optimum weight parameters. In addition, we adapt a modified version of the nonlocal means filter as a smoothness prior to utilize the patch redundancy. Experimental results show that the proposed algorithm better restores HR images than existing state-of-the-art methods in the sense of the most objective measures in the literature.

  6. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation

    Science.gov (United States)

    Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa

    2011-08-01

    In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.

  7. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting

    KAUST Repository

    Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin

    2011-01-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights. © 2011 IEEE.

  8. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting

    KAUST Repository

    Wang, Jingyan

    2011-11-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights. © 2011 IEEE.

  9. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry

    OpenAIRE

    Shariatgorji, Mohammadreza; Strittmatter, Nicole; Nilsson, Anna; Kallbäck, Patrik; Alvarsson, Alexandra; Zhang, Xiaoqun; Vallianatou, Theodosia; Svenningsson, Per; Goodwin, Richard J. A.; Andrén, Per E.

    2016-01-01

    With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyr...

  10. Structured diagnostic imaging in patients with multiple trauma; Strukturierte radiologische Diagnostik beim Polytrauma

    Energy Technology Data Exchange (ETDEWEB)

    Linsenmaier, U.; Rieger, J.; Rock, C.; Pfeifer, K.J.; Reiser, M. [Institut fuer Klinische Radiologie, Klinikum der Universitaet Muenchen, Innenstadt (Germany); Kanz, K.G. [Chirurgische Klinik, Klinikum der Universitaet Muenchen, Innenstadt (Germany)

    2002-07-01

    Purpose. Development of a concept for structured diagnostic imaging in patients with multiple trauma.Material and methods. Evaluation of data from a prospective trial with over 2400 documented patients with multiple trauma. All diagnostic and therapeutic steps, primary and secondary death and the 90 days lethality were documented.Structured diagnostic imaging of multiple injured patients requires the integration of an experienced radiologist in an interdisciplinary trauma team consisting of anesthesia, radiology and trauma surgery. Radiology itself deserves standardized concepts for equipment, personnel and logistics to perform diagnostic imaging for a 24-h-coverage with constant quality.Results. This paper describes criteria for initiation of a shock room or emergency room treatment, strategies for documentation and interdisciplinary algorithms for the early clinical care coordinating diagnostic imaging and therapeutic procedures following standardized guidelines. Diagnostic imaging consists of basic diagnosis, radiological ABC-rule, radiological follow-up and structured organ diagnosis using CT. Radiological trauma scoring allows improved quality control of diagnosis and therapy of multiple injured patients.Conclusion. Structured diagnostic imaging of multiple injured patients leads to a standardization of diagnosis and therapy and ensures constant process quality. (orig.) [German] Fragestellung. Entwicklung eines strukturierten Konzeptes zur radiologischen Diagnostik polytraumatisierter Patienten.Methodik. Die Datenevaluation erfolgte auf Basis einer prospektiven interdisziplinaere Polytraumastudie mit ueber 2400 Patienten. Alle diagnostischen und therapeutischen Schritte werden jeweils unter Angabe von Zeitpunkt und auftretenden Komplikationen erfasst, ein primaeres oder sekundaeres Versterben und die 90-Tage-Letalitaet werden dokumentiert.Die strukturierte radiologische Diagnostik von Mehrfachverletzen verlangt die Integration eines erfahrenen Radiologen in

  11. Using Unmanned Aerial Vehicles (UAVs) to Modeling Tornado Impacts

    Science.gov (United States)

    Wagner, M.; Doe, R. K.

    2017-12-01

    Using Unmanned Aerial Vehicles (UAVs) to assess storm damage is a useful research tool. Benefits include their ability to access remote or impassable areas post-storm, identify unknown damages and assist with more detailed site investigations and rescue efforts. Technological advancement of UAVs mean that they can capture high resolution images often at an affordable price. These images can be used to create 3D environments to better interpret and delineate damages from large areas that would have been difficult in ground surveys. This research presents the results of a rapid response site investigation of the 29 April 2017 Canton, Texas, USA, tornado using low cost UAVs. This was a multiple, high impact tornado event measuring EF4 at maximum. Rural farmland was chosen as a challenging location to test both equipment and methodology. Such locations provide multiple impacts at a variety of scales including structural and vegetation damage and even animal fatalities. The 3D impact models allow for a more comprehensive study prior to clean-up. The results show previously unseen damages and better quantify damage impacts at the local level. 3D digital track swaths were created allowing for a more accurate track width determination. These results demonstrate how effective the use of low cost UAVs can be for rapid response storm damage assessments, the high quality of data they can achieve, and how they can help us better visualize tornado site investigations.

  12. Online Aerial Terrain Mapping for Ground Robot Navigation

    Directory of Open Access Journals (Sweden)

    John Peterson

    2018-02-01

    Full Text Available This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.

  13. Aerial vehicles collision avoidance using monocular vision

    Science.gov (United States)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  14. Aerial in situ survey

    International Nuclear Information System (INIS)

    Cespirova, I.

    2004-01-01

    In 2001 a detailed exploration of soil contamination took place in the mountainous region Hruby Jesenik located in northeastern part of the Czech Republic. This region was selected for the higher contamination of 137 Cs after Chernobyl accident. For monitoring of an area about 100km 2 aerial monitoring system IRIS (located on board of helicopter MI-17) was used. The parameters of measurement were: flight height above ground 80 m, speed 100 km/h, distance of flight lines 250 m, intervals of spectra recording 1s. For more detailed exploration of ground contamination in this area complementary ground-based mobile group measurements were performed. (author)

  15. Fat-saturated post gadolinium T1 imaging of the brain in multiple sclerosis

    International Nuclear Information System (INIS)

    Al-Saeed, Osama; Sheikh, Mehraj; Ismail, Mohammed; Athyal, Reji

    2011-01-01

    Background Magnetic resonance imaging (MRI) is of vital importance in the diagnosis and follow-up of patients with multiple sclerosis (MS). Imaging sequences better demonstrating enhancing lesions can help in detecting active MS plaques. Purpose To evaluate the role of fat-saturated gadolinium-enhanced T1-weighted (T1W) images of the brain in MS and to assess the benefit of performing this additional sequence in the detection of enhancing lesions. Material and Methods In a prospective study over a six-month period, 70 consecutive patients with clinically diagnosed MS were enrolled. These constituted 14 male and 56 female patients between the ages of 21 and 44 years. All the patients underwent brain MRIs on a 1.5 Tesla Magnet. Gadolinium-enhanced T1 images with and without fat saturation were compared and results were recorded and analyzed using a conspicuity score and McNemar test. Results There were a total of 157 lesions detected in 70 patients on post-contrast T1W fat-saturated images compared with 139 lesions seen on the post-contrast T1W fast spin-echo (FSE) images. This was because 18 of the lesions (11.5%) were only seen on the fat-saturated images. In addition, 15 lesions were more conspicuous on the fat saturation sequence (9.5%). The total conspicuity score obtained, including all the lesions, was 2.24 +/-0.60 (SD). Using the two-tailed McNemar test for quantitative analysis, the P value obtained was <0.0001. Conclusion T1W fat-saturated gadolinium-enhanced images show better lesion enhancement than T1W images without fat saturation

  16. Mapping snow depth in complex alpine terrain with close range aerial imagery - estimating the spatial uncertainties of repeat autonomous aerial surveys over an active rock glacier

    Science.gov (United States)

    Goetz, Jason; Marcer, Marco; Bodin, Xavier; Brenning, Alexander

    2017-04-01

    Snow depth mapping in open areas using close range aerial imagery is just one of the many cases where developments in structure-from-motion and multi-view-stereo (SfM-MVS) 3D reconstruction techniques have been applied for geosciences - and with good reason. Our ability to increase the spatial resolution and frequency of observations may allow us to improve our understanding of how snow depth distribution varies through space and time. However, to ensure accurate snow depth observations from close range sensing we must adequately characterize the uncertainty related to our measurement techniques. In this study, we explore the spatial uncertainties of snow elevation models for estimation of snow depth in a complex alpine terrain from close range aerial imagery. We accomplish this by conducting repeat autonomous aerial surveys over a snow-covered active-rock glacier located in the French Alps. The imagery obtained from each flight of an unmanned aerial vehicle (UAV) is used to create an individual digital elevation model (DEM) of the snow surface. As result, we obtain multiple DEMs of the snow surface for the same site. These DEMs are obtained from processing the imagery with the photogrammetry software Agisoft Photoscan. The elevation models are also georeferenced within Photoscan using the geotagged imagery from an onboard GNSS in combination with ground targets placed around the rock glacier, which have been surveyed with highly accurate RTK-GNSS equipment. The random error associated with multi-temporal DEMs of the snow surface is estimated from the repeat aerial survey data. The multiple flights are designed to follow the same flight path and altitude above the ground to simulate the optimal conditions of repeat survey of the site, and thus try to estimate the maximum precision associated with our snow-elevation measurement technique. The bias of the DEMs is assessed with RTK-GNSS survey observations of the snow surface elevation of the area on and surrounding

  17. A study of the decoding of multiple pinhole coded aperture RI tomographic images

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Kobayashi, Akitoshi; Nishiyama, Yutaka; Akagi, Kiyoshi; Uehata, Hiroshi

    1981-01-01

    In order to obtain a radioisotope (RI) tomographic image, there are various, methods, including the RCT method, Time Modulate method, and Multiple Pinhole Coded Aperture (MPCA) method and others. The MPCA method has several advantages. Using the MPCA method, there is no need to move either the detector or the patient, Furthermore, the generally used γ-camera may be used without any alterations. Due to certain problems in reconstructing the tomographic image, the use of the MPCA method in clinical practice is limited to representation of small organs (e.g. heart) using the 7-Pinhole collimator. This research presents an experimental approach to overcome the problems in reconstruction of tomographic images of large organs (organs other than the heart, such as the brain, liver, lung etc.) by introducing a reconstruction algorithm and correction software into the MPCA method. There are 2 main problems in MPCA image reconstruction: (1) Due to the rounding-off procedure, there is both point omission and shifting of point coordinates. (2) The central portion is characterized by high-counts. Both of these problems were solved by incorporating a reconstruction algorithm and a correction function. The resultant corrected tomographic image was processed using a filter derived from subjecting a PSF to a Fourier transform. Thus, it has become possible to obtain a high-quality tomographic image of large organs for clinical use. (author)

  18. Examination of the role of magnetic resonance imaging in multiple sclerosis: A problem-orientated approach

    Directory of Open Access Journals (Sweden)

    McFarland Henry

    2009-01-01

    Full Text Available Magnetic Resonance Imaging (MRI has brought in several benefits to the study of Multiple Sclerosis (MS. It provides accurate measurement of disease activity, facilitates precise diagnosis, and aid in the assessment of newer therapies. The imaging guidelines for MS are broadly divided in to approaches for imaging patients with suspected MS or clinically isolated syndromes (CIS or for monitoring patients with established MS. In this review, the technical aspects of MR imaging for MS are briefly discussed. The imaging process need to capture the twin aspects of acute MS viz. the autoimmune acute inflammatory process and the neurodegenerative process. Gadolinium enhanced MRI can identify acute inflammatory lesions precisely. The commonly applied MRI marker of disease progression is brain atrophy. Whole brain magnetization Transfer Ratio (MTR and Magnetic Resonance Spectroscopy (MRS are two other techniques use to monitor disease progression. A variety of imaging techniques such as Double Inversion Recovery (DIR, Spoiled Gradient Recalled (SPGR acquisition, and Fluid Attenuated Inversion Recovery (FLAIR have been utilized to study the cortical changes in MS. MRI is now extensively used in the Phase I, II and III clinical trials of new therapies. As the technical aspects of MRI advance rapidly, and higher field strengths become available, it is hoped that the impact of MRI on our understanding of MS will be even more profound in the next decade.

  19. A System for Acquisition, Processing and Visualization of Image Time Series from Multiple Camera Networks

    Directory of Open Access Journals (Sweden)

    Cemal Melih Tanis

    2018-06-01

    Full Text Available A system for multiple camera networks is proposed for continuous monitoring of ecosystems by processing image time series. The system is built around the Finnish Meteorological Image PROcessing Toolbox (FMIPROT, which includes data acquisition, processing and visualization from multiple camera networks. The toolbox has a user-friendly graphical user interface (GUI for which only minimal computer knowledge and skills are required to use it. Images from camera networks are acquired and handled automatically according to the common communication protocols, e.g., File Transfer Protocol (FTP. Processing features include GUI based selection of the region of interest (ROI, automatic analysis chain, extraction of ROI based indices such as the green fraction index (GF, red fraction index (RF, blue fraction index (BF, green-red vegetation index (GRVI, and green excess (GEI index, as well as a custom index defined by a user-provided mathematical formula. Analysis results are visualized on interactive plots both on the GUI and hypertext markup language (HTML reports. The users can implement their own developed algorithms to extract information from digital image series for any purpose. The toolbox can also be run in non-GUI mode, which allows running series of analyses in servers unattended and scheduled. The system is demonstrated using an environmental camera network in Finland.

  20. Contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Seidl, Z.; Obenberger, J.; Vitak, T.

    1996-01-01

    The potential of magnetic resonance imaging in the diagnosis of multiple sclerosis (MS) was confirmed on 52 patients. In 25 patients, MS was diagnosed as highly probable, in additional 8 patients this diagnosis was suspected. MR imaging supported the diagnosis in 21 (95%) patients where this disease had been diagnosed as highly probable, and in 3 (38%) suspect patients. Lesions were found most frequently paraventricularly in the white matter of the brain, but also in the deep structures of the white matter of the temporal lobe and below the tentorium (in the cerebellum, pons and mesencephalon). No lesions were found in the optic nerve despite the frequent diagnosis of retrobulbar neuritis. Computerized tomography (CT) was performed in 14 patients; this technique only supported the diagnosis of MS in 3 patients, in all of whom this diagnosis had also been suggested by MR imaging. It is concluded that MR imaging can fully supersede CT as a tool for diagnosing multiple sclerosis. 3 figs., 10 refs

  1. A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering.

    Science.gov (United States)

    Yang, Shangming; Yi, Zhang; He, Xiaofei; Li, Xuelong

    2015-12-01

    Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering.

  2. Automated otolith image classification with multiple views: an evaluation on Sciaenidae.

    Science.gov (United States)

    Wong, J Y; Chu, C; Chong, V C; Dhillon, S K; Loh, K H

    2016-08-01

    Combined multiple 2D views (proximal, anterior and ventral aspects) of the sagittal otolith are proposed here as a method to capture shape information for fish classification. Classification performance of single view compared with combined 2D views show improved classification accuracy of the latter, for nine species of Sciaenidae. The effects of shape description methods (shape indices, Procrustes analysis and elliptical Fourier analysis) on classification performance were evaluated. Procrustes analysis and elliptical Fourier analysis perform better than shape indices when single view is considered, but all perform equally well with combined views. A generic content-based image retrieval (CBIR) system that ranks dissimilarity (Procrustes distance) of otolith images was built to search query images without the need for detailed information of side (left or right), aspect (proximal or distal) and direction (positive or negative) of the otolith. Methods for the development of this automated classification system are discussed. © 2016 The Fisheries Society of the British Isles.

  3. D Surface Generation from Aerial Thermal Imagery

    Science.gov (United States)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  4. Generalised model-independent characterisation of strong gravitational lenses. II. Transformation matrix between multiple images

    Science.gov (United States)

    Wagner, J.; Tessore, N.

    2018-05-01

    We determine the transformation matrix that maps multiple images with identifiable resolved features onto one another and that is based on a Taylor-expanded lensing potential in the vicinity of a point on the critical curve within our model-independent lens characterisation approach. From the transformation matrix, the same information about the properties of the critical curve at fold and cusp points can be derived as we previously found when using the quadrupole moment of the individual images as observables. In addition, we read off the relative parities between the images, so that the parity of all images is determined when one is known. We compare all retrievable ratios of potential derivatives to the actual values and to those obtained by using the quadrupole moment as observable for two- and three-image configurations generated by a galaxy-cluster scale singular isothermal ellipse. We conclude that using the quadrupole moments as observables, the properties of the critical curve are retrieved to a higher accuracy at the cusp points and to a lower accuracy at the fold points; the ratios of second-order potential derivatives are retrieved to comparable accuracy. We also show that the approach using ratios of convergences and reduced shear components is equivalent to ours in the vicinity of the critical curve, but yields more accurate results and is more robust because it does not require a special coordinate system as the approach using potential derivatives does. The transformation matrix is determined by mapping manually assigned reference points in the multiple images onto one another. If the assignment of the reference points is subject to measurement uncertainties under the influence of noise, we find that the confidence intervals of the lens parameters can be as large as the values themselves when the uncertainties are larger than one pixel. In addition, observed multiple images with resolved features are more extended than unresolved ones, so that

  5. Method and Apparatus for Virtual Interactive Medical Imaging by Multiple Remotely-Located Users

    Science.gov (United States)

    Ross, Muriel D. (Inventor); Twombly, Ian Alexander (Inventor); Senger, Steven O. (Inventor)

    2003-01-01

    A virtual interactive imaging system allows the displaying of high-resolution, three-dimensional images of medical data to a user and allows the user to manipulate the images, including rotation of images in any of various axes. The system includes a mesh component that generates a mesh to represent a surface of an anatomical object, based on a set of data of the object, such as from a CT or MRI scan or the like. The mesh is generated so as to avoid tears, or holes, in the mesh, providing very high-quality representations of topographical features of the object, particularly at high- resolution. The system further includes a virtual surgical cutting tool that enables the user to simulate the removal of a piece or layer of a displayed object, such as a piece of skin or bone, view the interior of the object, manipulate the removed piece, and reattach the removed piece if desired. The system further includes a virtual collaborative clinic component, which allows the users of multiple, remotely-located computer systems to collaboratively and simultaneously view and manipulate the high-resolution, three-dimensional images of the object in real-time.

  6. ARM Aerial Facility ArcticShark Unmanned Aerial System

    Science.gov (United States)

    Schmid, B.; Hubbell, M.; Mei, F.; Carroll, P.; Mendoza, A.; Ireland, C.; Lewko, K.

    2017-12-01

    The TigerShark Block 3 XP-AR "ArcticShark" Unmanned Aerial System (UAS), developed and manufactured by Navmar Applied Sciences Corporation (NASC), is a single-prop, 60 hp rotary-engine platform with a wingspan of 6.5 m and Maximum Gross Takeoff Weight of 295 Kg. The ArcticShark is owned by the U.S. Department of Energy (DOE) and has been operated by Pacific Northwest National Laboratory (PNNL) since March 2017. The UAS will serve as an airborne atmospheric research observatory for DOE ARM, and, once fully operational, can be requested through ARM's annual call for proposals. The Arctic Shark is anticipated to measure a wide range of radiative, aerosol, and cloud properties using a variable instrument payload weighing up to 46 Kg. SATCOM-equipped, it is capable of taking measurements up to altitudes of 5.5 Km over ranges of up to 500 Km. The ArcticShark operates at airspeeds of 30 to 40 m/s, making it capable of slow sampling. With a full fuel load, its endurance exceeds 8 hours. The aircraft and its Mobile Operations Center (MOC) have been hardened specifically for operations in colder temperatures.ArcticShark's design facilitates rapid integration of various types of payloads. 2500 W of its 4000 W electrical systems is dedicated to payload servicing. It has an interior payload volume of almost 85 L and four wing-mounted pylons capable of carrying external probes. Its payload bay volume, electrical power, payload capacity, and flight characteristics enable the ArcticShark to accommodate multiple combinations of payloads in numerous configurations. Many instruments will be provided by the ARM Aerial Facility (AAF), but other organizations may eventually propose instrumentation for specific campaigns. AAF-provided measurement capabilities will include the following atmospheric state and thermodynamics: temperature, pressure, winds; gases: H2O and CO2; up- and down-welling broadband infrared and visible radiation; surface temperature; aerosol number concentration

  7. Efficacy of a brief image-based multiple-behavior intervention for college students.

    Science.gov (United States)

    Werch, Chudley E; Moore, Michele J; Bian, Hui; DiClemente, Carlo C; Ames, Steven C; Weiler, Robert M; Thombs, Dennis; Pokorny, Steven B; Huang, I-Chan

    2008-10-01

    Epidemiologic data indicate most adolescents and adults experience multiple, simultaneous risk behaviors. The purpose of this study is to examine the efficacy of a brief image-based multiple-behavior intervention (MBI) for college students. A total of 303 college students were randomly assigned to: (1) a brief MBI or (2) a standard care control, with a 3-month postintervention follow-up. Omnibus treatment by time multivariate analysis of variance interactions were significant for three of six behavior groupings, with improvements for college students receiving the brief MBI on alcohol consumption behaviors, F(6, 261) = 2.73, p = 0.01, marijuana-use behaviors, F(4, 278) = 3.18, p = 0.01, and health-related quality of life, F(5, 277) = 2.80, p = 0.02, but not cigarette use, exercise, and nutrition behaviors. Participants receiving the brief MBI also got more sleep, F(1, 281) = 9.49, p = 0.00, than those in the standard care control. A brief image-based multiple-behavior intervention may be useful in influencing a number of critical health habits and health-related quality-of-life indicators of college students.

  8. Comparison between cerebral ischemia disease and multiple sclerosis by using MR diffusion tensor imaging

    International Nuclear Information System (INIS)

    Lou Xin; Cai Youquan; Ma Lin; Cai Jianming

    2007-01-01

    Objective: To assess the value of MR diffusion tensor imaging (DTI) in the differentiation between the patients with cerebral ischemia disease and multiple sclerosis. Methods: MR diffusion tensor imaging was performed in thirty-two patients with internal carotid artery stenosis ≥70% and eighteen patients with clinical diagnosed multiple sclerosis. Fractional anisotropy (FA) value of the germ, splenium, body of the corpus callosum, and the white matter of the frontal and occipital lobe were measured respectively, and independent-sample t-test statistical analysis was performed. Results: The FA value was decreased obviously in the anterior and posterior body and splenium of the corpus callosumin the MS patients compared with the ICA severe stenosis patients (0.67 ± 0.12 vs. 0.75 ± 0.05, t=3.443, P 0.05; 0.34 ± 0.08 vs. 0.34 ± 0.05, t=0.137, P> 0.05; 0.29 ± 0.06 vs. 0.40 ± 0.06, t=5.449, P>0.05). Conclusion: DTI can noninvasive detect the potential disorder of corpus callosum in vivo, thus providing useful information to differentiate the cerebral ischemia disease from multiple sclerosis. (authors)

  9. NMR imaging of solids with multiple-pulse line narrowing and radiofrequency gradients

    International Nuclear Information System (INIS)

    Werner, M.H.

    1993-01-01

    The usual methods of magnetic resonance imaging fail in rigid solids due to the line-shape contributions of dipolar coupling, chemical shift dispersion and anisotropy, and bulk magnetic susceptibility. This dissertation presents a new method of solid-stage imaging by nuclear magnetic resonance which averages away these contributions with multiple-pulse line-narrowing and encodes spatial information with pulsed radiofrequency field gradients. This method is closely related to simultaneously developed methods utilizing pulsed DC gradients, and offers similar improvements in sensitivity and resolution. The advantage of rf gradients is that they can be rapidly switched without inducing eddy currents in the probe or the magnet. In addition, the phases and amplitudes of the rf gradients can be switched by equipment which is already part of an NMR spectrometer capable of solid-state spectroscopy. The line-narrowing and gradient pulses originate in separate rf circuits tuned to the same frequency. Interactions between the circuits have been minimized by a method of active Q-switching which employs PIN diodes in the matching networks of these circuits. Both one- and two-dimensional images are presented. The latter are obtained by a novel method in which the two dimensions of imaging transverse to the static magnetic field are encoded by two orthogonal components of a single rf gradient. A π/2 phase shift of the rf phase relative to that of the line-narrowing pulses selects one component or the other. This arrangement allows the solid-state analogs of versatile imaging sequences based on Fourier imaging and eliminates the need for sample rotation and back-projection methods. Coherent averaging theory is used to analyze this imaging technique and exact numerical simulations on several coupled spins are discussed. These lend insight to the residual linewidth and its dependence on pixel position as well as to the range of applicability of this technique

  10. Quantum dot imaging in the second near-infrared optical window: studies on reflectance fluorescence imaging depths by effective fluence rate and multiple image acquisition

    Science.gov (United States)

    Jung, Yebin; Jeong, Sanghwa; Nayoun, Won; Ahn, Boeun; Kwag, Jungheon; Geol Kim, Sang; Kim, Sungjee

    2015-04-01

    Quantum dot (QD) imaging capability was investigated by the imaging depth at a near-infrared second optical window (SOW; 1000 to 1400 nm) using time-modulated pulsed laser excitations to control the effective fluence rate. Various media, such as liquid phantoms, tissues, and in vivo small animals, were used and the imaging depths were compared with our predicted values. The QD imaging depth under excitation of continuous 20 mW/cm2 laser was determined to be 10.3 mm for 2 wt% hemoglobin phantom medium and 5.85 mm for 1 wt% intralipid phantom, which were extended by more than two times on increasing the effective fluence rate to 2000 mW/cm2. Bovine liver and porcine skin tissues also showed similar enhancement in the contrast-to-noise ratio (CNR) values. A QD sample was inserted into the abdomen of a mouse. With a higher effective fluence rate, the CNR increased more than twofold and the QD sample became clearly visualized, which was completely undetectable under continuous excitation. Multiple acquisitions of QD images and averaging process pixel by pixel were performed to overcome the thermal noise issue of the detector in SOW, which yielded significant enhancement in the imaging capability, showing up to a 1.5 times increase in the CNR.

  11. Positron emission tomography with additional γ-ray detectors for multiple-tracer imaging.

    Science.gov (United States)

    Fukuchi, Tomonori; Okauchi, Takashi; Shigeta, Mika; Yamamoto, Seiichi; Watanabe, Yasuyoshi; Enomoto, Shuichi

    2017-06-01

    Positron emission tomography (PET) is a useful imaging modality that quantifies the physiological distributions of radiolabeled tracers in vivo in humans and animals. However, this technique is unsuitable for multiple-tracer imaging because the annihilation photons used for PET imaging have a fixed energy regardless of the selection of the radionuclide tracer. This study developed a multi-isotope PET (MI-PET) system and evaluated its imaging performance. Our MI-PET system is composed of a PET system and additional γ-ray detectors. The PET system consists of pixelized gadolinium orthosilicate (GSO) scintillation detectors and has a ring geometry that is 95 mm in diameter with an axial field of view of 37.5 mm. The additional detectors are eight bismuth germanium oxide (BGO) scintillation detectors, each of which is 50 × 50 × 30 mm 3 , arranged into two rings mounted on each side of the PET ring with a 92-mm-inner diameter. This system can distinguish between different tracers using the additional γ-ray detectors to observe prompt γ-rays, which are emitted after positron emission and have an energy intrinsic to each radionuclide. Our system can simultaneously acquire double- (two annihilation photons) and triple- (two annihilation photons and a prompt γ-ray) coincidence events. The system's efficiency for detecting prompt de-excitation γ-rays was measured using a positron-γ emitter, 22 Na. Dual-radionuclide ( 18 F and 22 Na) imaging of a rod phantom and a mouse was performed to demonstrate the performance of the developed system. Our system's basic performance was evaluated by reconstructing two images, one containing both tracers and the other containing just the second tracer, from list-mode data sets that were categorized by the presence or absence of the prompt γ-ray. The maximum detection efficiency for 1275 keV γ-rays emitted from 22 Na was approximately 7% at the scanner's center, and the minimum detection efficiency was 5.1% at the edge of

  12. Retrospective 70 y-spatial analysis of repeated vine mortality patterns using ancient aerial time series, Pléiades images and multi-source spatial and field data

    Science.gov (United States)

    Vaudour, E.; Leclercq, L.; Gilliot, J. M.; Chaignon, B.

    2017-06-01

    For any wine estate, there is a need to demarcate homogeneous within-vineyard zones ('terroirs') so as to manage grape production, which depends on vine biological condition. Until now, the studies performing digital zoning of terroirs have relied on recent spatial data and scant attention has been paid to ancient geoinformation likely to retrace past biological condition of vines and especially occurrence of vine mortality. Is vine mortality characterized by recurrent and specific patterns and if so, are these patterns related to terroir units and/or past landuse? This study aimed at performing a historical and spatial tracing of vine mortality patterns using a long time-series of aerial survey images (1947-2010), in combination with recent data: soil apparent electrical conductivity EM38 measurements, very high resolution Pléiades satellite images, and a detailed field survey. Within a 6 ha-estate in the Southern Rhone Valley, landuse and planting history were retraced and the map of missing vines frequency was constructed from the whole time series including a 2015-Pléiades panchromatic band. Within-field terroir units were obtained from a support vector machine classifier computed on the spectral bands and NDVI of Pléiades images, EM38 data and morphometric data. Repeated spatial patterns of missing vines were highlighted throughout several plantings, uprootings, and vine replacements, and appeared to match some within-field terroir units, being explained by their specific soil characteristics, vine/soil management choices and the past landuse of the 1940s. Missing vines frequency was spatially correlated with topsoil CaCO3 content, and negatively correlated with topsoil iron, clay, total N, organic C contents and NDVI. A retrospective spatio-temporal assessment of terroir therefore brings a renewed focus on some key parameters for maintaining a sustainable grape production.

  13. 1:500 Scale Aerial Triangulation Test with Unmanned Airship in Hubei Province

    International Nuclear Information System (INIS)

    Feifei, Xie; Zongjian, Lin; Dezhu, Gui

    2014-01-01

    A new UAVS (Unmanned Aerial Vehicle System) for low altitude aerial photogrammetry is introduced for fine surveying and mapping, including the platform airship, sensor system four-combined wide-angle camera and photogrammetry software MAP-AT. It is demonstrated that this low-altitude aerial photogrammetric system meets the precision requirements of 1:500 scale aerial triangulation based on the test of this system in Hubei province, including the working condition of the airship, the quality of image data and the data processing report. This work provides a possibility for fine surveying and mapping

  14. Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis

    DEFF Research Database (Denmark)

    Vrenken, H; Jenkinson, M; Horsfield, M A

    2013-01-01

    resonance image analysis methods for assessing brain lesion load and atrophy, this paper makes recommendations to improve these measures for longitudinal studies of MS. Briefly, they are (1) images should be acquired using 3D pulse sequences, with near-isotropic spatial resolution and multiple image......Focal lesions and brain atrophy are the most extensively studied aspects of multiple sclerosis (MS), but the image acquisition and analysis techniques used can be further improved, especially those for studying within-patient changes of lesion load and atrophy longitudinally. Improved accuracy...

  15. Morphing unmanned aerial vehicles

    International Nuclear Information System (INIS)

    Gomez, Juan Carlos; Garcia, Ephrahim

    2011-01-01

    Research on aircraft morphing has exploded in recent years. The motivation and driving force behind this has been to find new and novel ways to increase the capabilities of aircraft. Materials advancements have helped to increase possibilities with respect to actuation and, hence, a diversity of concepts and unimagined capabilities. The expanded role of unmanned aerial vehicles (UAVs) has provided an ideal platform for exploring these emergent morphing concepts since at this scale a greater amount of risk can be taken, as well as having more manageable fabrication and cost requirements. This review focuses on presenting the role UAVs have in morphing research by giving an overview of the UAV morphing concepts, designs, and technologies described in the literature. A presentation of quantitative information as well as a discussion of technical issues is given where possible to begin gaining some insight into the overall assessment and performance of these technologies. (topical review)

  16. Compliant Aerial Manipulators

    DEFF Research Database (Denmark)

    Bartelds, T.; Capra, A.; Hamaza, S.

    2016-01-01

    joints. The approach aims at limiting the influence of impacts on the controlled attitude dynamics in order to allow the aerial manipulator to remain stable during and after impact. The developed concept is intended to convert kinetic energy into potential energy, which is permanently stored into elastic...... elements by means of directional locking mechanisms. The proposed approach has been tested on a 2 d.o.f. manipulator mounted on a quadrotor UAV. The manipulation system has one active rotational d.o.f. compensating for pitch movements of the UAV and one passive linear joint which is in charge of absorbing...... the impact energy. The device has been used to validate the method through experiments, in comparison with a rigid manipulator. The results show that the proposed approach and the developed mechanical system achieve stable impact absorption without bouncing away from the interacting environment. Our work has...

  17. FogBank: a single cell segmentation across multiple cell lines and image modalities.

    Science.gov (United States)

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary

    2014-12-30

    sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.

  18. Study on the clinical usefulness of magnetic resonance imaging in cases of multiple cerebral infarction

    International Nuclear Information System (INIS)

    Miyashita, Kotaro

    1991-01-01

    The clinical significance of MRI in thrombotic multiple cerebral infarction was examined in 9 patients having recent lacunar stroke. Recent infarct was identified on Gd-enhanced MRI in 4 patients. For patients multiple small infarction, Gd-enhanced MRI made it possible to differentiate recent from other lesions. To clarify the significance of periventricular high intensity lesion (PVH) on T2-weighted MRI, hemodynamic and neuropsychologic examinations were carried out in 41 patients with multiple cerebral infarction. All the patients had PVH, which was classified into three grades as follows: grade I (n=16) showing only a thin high intensity band along the body of lateral ventricles; grade 2 (n=15) showing a definite high intensity area around the lateral ventricles; grade 3 (n=10) showing diffuse thick and irregular foci around the whole ventricle. In these patients, rCBF was measured by 133 Xe inhalation methods. Initial slope index was significantly higher in patients with grade 3 than those with grade I. Mini-mental state test score was significantly higher in patients with grade l than those with grade 2 and 3. Progression of PVH may be related with the reduction of the cerebral circulation and mental function in cases of multiple cerebral infarction. Ischemic and hemorrhagic lesions can be distinguished by MRI, because old intracerebral hemorrhage appear as hypointensity areas with or without hyperintensity area on T2w images. In 92 patients with multiple infarction, MRI was used to evaluate the incidence and distribution of coexisting old intracerebral hemorrhage. Old hemorrhage were found in 15 patients (16.3%). locating the site where hypertensive hemorrhage commonly occurred. High-field MRI is useful for assessing the coexistence of hemorrhage in hypertensive patients with multiple cerebral infarction. (N.K.)

  19. The headache to subjects with multiple sclerosis: clinical and imaging study

    International Nuclear Information System (INIS)

    Moldovanu, Ion; Voiticovschi-Iosob, Cristina

    2011-01-01

    The present study showed clinical and imaging particularities of primary headache to subjects with multiple sclerosis. From the total number of 28 patients included in this study 22 (78,57%) had headache accuses (3 men and 19 women). Was observed a high prevalence of tension type headache, present to 10 of the 22 patients (45.45%). Migraine was diagnosed to 8 respondents (36.36 %). In 4 cases was found a combination of migraine and tension type headache (8.1%). Headache was more common to women with multiple sclerosis (MS) than to men. Neuroimaging of MS patients indicates the fact that the presence of demyelinating disease in the brainstem, midbrain, periaqueductal gray substance is associated with an increased risk of headache, migraine characteristics (migraine-like). Psychometric test have revealed a high level of depression and anxiety in patients with MS and chronic headache. (authors)

  20. Magnetic resonance imaging compared with trimodal evoked potentials in possible multiple sclerosis

    International Nuclear Information System (INIS)

    Roullet, E.; Leger-Ravet, M.B.; Amarenco, P.; Marteau, R.; Lavallard-Rousseau, M.-C.; Dupuch, K.; Iba-Zizen, M.T.; Tamraz, J.; Cabanis, E.A.

    1988-01-01

    Magnetic Resonance Imaging (MRI) of the brain and Evoked Potentials (EP) can both demonstrate the presence of clinically unsuspected demyelinating lesions and have proven to be sensitive (but not specific) in the diagnosis of multiple sclerosis (MS). MRI and EP are positive in 90 to 100% of patients with a definite diagnosis of MS. However, few studies have been conducted in patients with a lesser diagnostic certainty. In possible or suspected MS they gave conflicting results, possibly because of technical discrepancies and different clinical inclusion criteria. Since a number of putative new treatments can be evaluated in patients who have a definite diagnosis of MS, but nevertheless a short duration of disease and a low disability, it was decided to compare the sensitivity of MRI and EP as diagnostic tools in possible MS patients. MRI is shown to be more sensitive, shows more multiple lesions and gives a clearer appreciation of their size and exact location than EP. 10 refs.; 3 tabs

  1. Electromagnetic imaging of multiple-scattering small objects: non-iterative analytical approach

    International Nuclear Information System (INIS)

    Chen, X; Zhong, Y

    2008-01-01

    Multiple signal classification (MUSIC) imaging method and the least squares method are applied to solve the electromagnetic inverse scattering problem of determining the locations and polarization tensors of a collection of small objects embedded in a known background medium. Based on the analysis of induced electric and magnetic dipoles, the proposed MUSIC method is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply. After the locations of objects are obtained, the nonlinear inverse problem of determining the polarization tensors of objects accounting for multiple scattering between objects is solved by a non-iterative analytical approach based on the least squares method

  2. Imaging Surrogates of Disease Activity in Neuromyelitis Optica Allow Distinction from Multiple Sclerosis.

    Science.gov (United States)

    Matthews, Lucy; Kolind, Shannon; Brazier, Alix; Leite, Maria Isabel; Brooks, Jonathan; Traboulsee, Anthony; Jenkinson, Mark; Johansen-Berg, Heidi; Palace, Jacqueline

    2015-01-01

    Inflammatory demyelinating lesions of the central nervous system are a common feature of both neuromyelitis optica and multiple sclerosis. Despite this similarity, it is evident clinically that the accumulation of disability in patients with neuromyelitis optica is relapse related and that a progressive phase is very uncommon. This poses the question whether there is any pathological evidence of disease activity or neurodegeneration in neuromyelitis optica between relapses. To investigate this we conducted a longitudinal advanced MRI study of the brain and spinal cord in neuromyelitis optica patients, comparing to patients with multiple sclerosis and controls. We found both cross-sectional and longitudinal evidence of diffusely distributed neurodegenerative surrogates in the multiple sclerosis group (including thalamic atrophy, cervical cord atrophy and progressive widespread diffusion and myelin water imaging abnormalities in the normal appearing white matter) but not in those with neuromyelitis optica, where localised abnormalities in the optic radiations of those with severe visual impairment were noted. In addition, between relapses, there were no new silent brain lesions in the neuromyelitis optica group. These findings indicate that global central nervous system neurodegeneration is not a feature of neuromyelitis optica. The work also questions the theory that neurodegeneration in multiple sclerosis is a chronic sequela to prior inflammatory and demyelinating pathology, as this has not been found to be the case in neuromyelitis optica where the lesions are often more destructive.

  3. Imaging Surrogates of Disease Activity in Neuromyelitis Optica Allow Distinction from Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Lucy Matthews

    Full Text Available Inflammatory demyelinating lesions of the central nervous system are a common feature of both neuromyelitis optica and multiple sclerosis. Despite this similarity, it is evident clinically that the accumulation of disability in patients with neuromyelitis optica is relapse related and that a progressive phase is very uncommon. This poses the question whether there is any pathological evidence of disease activity or neurodegeneration in neuromyelitis optica between relapses. To investigate this we conducted a longitudinal advanced MRI study of the brain and spinal cord in neuromyelitis optica patients, comparing to patients with multiple sclerosis and controls. We found both cross-sectional and longitudinal evidence of diffusely distributed neurodegenerative surrogates in the multiple sclerosis group (including thalamic atrophy, cervical cord atrophy and progressive widespread diffusion and myelin water imaging abnormalities in the normal appearing white matter but not in those with neuromyelitis optica, where localised abnormalities in the optic radiations of those with severe visual impairment were noted. In addition, between relapses, there were no new silent brain lesions in the neuromyelitis optica group. These findings indicate that global central nervous system neurodegeneration is not a feature of neuromyelitis optica. The work also questions the theory that neurodegeneration in multiple sclerosis is a chronic sequela to prior inflammatory and demyelinating pathology, as this has not been found to be the case in neuromyelitis optica where the lesions are often more destructive.

  4. Element-specific spectral imaging of multiple contrast agents: a phantom study

    Science.gov (United States)

    Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.

    2018-02-01

    This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.

  5. Automated vessel shadow segmentation of fovea-centered spectral-domain images from multiple OCT devices

    Science.gov (United States)

    Wu, Jing; Gerendas, Bianca S.; Waldstein, Sebastian M.; Simader, Christian; Schmidt-Erfurth, Ursula

    2014-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high reso- lution, three-dimensional (3D) cross sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD) and glaucoma.1 Disease diagnosis, assessment, and treatment requires a patient to undergo multiple OCT scans, possibly using different scanning devices, to accurately and precisely gauge disease activity, progression and treatment success. However, the use of OCT imaging devices from different vendors, combined with patient movement may result in poor scan spatial correlation, potentially leading to incorrect patient diagnosis or treatment analysis. Image registration can be used to precisely compare disease states by registering differing 3D scans to one another. In order to align 3D scans from different time- points and vendors using registration, landmarks are required, the most obvious being the retinal vasculature. Presented here is a fully automated cross-vendor method to acquire retina vessel locations for OCT registration from fovea centred 3D SD-OCT scans based on vessel shadows. Noise filtered OCT scans are flattened based on vendor retinal layer segmentation, to extract the retinal pigment epithelium (RPE) layer of the retina. Voxel based layer profile analysis and k-means clustering is used to extract candidate vessel shadow regions from the RPE layer. In conjunction, the extracted RPE layers are combined to generate a projection image featuring all candidate vessel shadows. Image processing methods for vessel segmentation of the OCT constructed projection image are then applied to optimize the accuracy of OCT vessel shadow segmentation through the removal of false positive shadow regions such as those caused by exudates and cysts. Validation of segmented vessel shadows uses

  6. Super-Resolution Enhancement From Multiple Overlapping Images: A Fractional Area Technique

    Science.gov (United States)

    Michaels, Joshua A.

    With the availability of large quantities of relatively low-resolution data from several decades of space borne imaging, methods of creating an accurate, higher-resolution image from the multiple lower-resolution images (i.e. super-resolution), have been developed almost since such imagery has been around. The fractional-area super-resolution technique developed in this thesis has never before been documented. Satellite orbits, like Landsat, have a quantifiable variation, which means each image is not centered on the exact same spot more than once and the overlapping information from these multiple images may be used for super-resolution enhancement. By splitting a single initial pixel into many smaller, desired pixels, a relationship can be created between them using the ratio of the area within the initial pixel. The ideal goal for this technique is to obtain smaller pixels with exact values and no error, yielding a better potential result than those methods that yield interpolated pixel values with consequential loss of spatial resolution. A Fortran 95 program was developed to perform all calculations associated with the fractional-area super-resolution technique. The fractional areas are calculated using traditional trigonometry and coordinate geometry and Linear Algebra Package (LAPACK; Anderson et al., 1999) is used to solve for the higher-resolution pixel values. In order to demonstrate proof-of-concept, a synthetic dataset was created using the intrinsic Fortran random number generator and Adobe Illustrator CS4 (for geometry). To test the real-life application, digital pictures from a Sony DSC-S600 digital point-and-shoot camera with a tripod were taken of a large US geological map under fluorescent lighting. While the fractional-area super-resolution technique works in perfect synthetic conditions, it did not successfully produce a reasonable or consistent solution in the digital photograph enhancement test. The prohibitive amount of processing time (up to

  7. The methods for detecting multiple small nodules from 3D chest X-ray CT images

    International Nuclear Information System (INIS)

    Hayase, Yosuke; Mekada, Yoshito; Mori, Kensaku; Toriwaki, Jun-ichiro; Natori, Hiroshi

    2004-01-01

    This paper describes a method for detecting small nodules, whose CT values and diameters are more than -600 Hounsfield unit (H.U.) and 2 mm, from three-dimensional chest X-ray CT images. The proposed method roughly consists of two submodules: initial detection of nodule candidates by discriminating between nodule regions and other regions such as blood vessels or bronchi using a shape feature computed from distance values inside the regions and reduction of false positive (FP) regions by using a minimum directional difference filter called minimum directional difference filter (Min-DD) changing its radius suit to the size of the initial candidates. The performance of the proposed method was evaluated by using seven cases of chest X-ray CT images including six abnormal cases where multiple lung cancers are observed. The experimental results for nodules (361 regions in total) showed that sensitivity and FP regions are 71% and 7.4 regions in average per case. (author)

  8. The linear attenuation coefficients as features of multiple energy CT image classification

    International Nuclear Information System (INIS)

    Homem, M.R.P.; Mascarenhas, N.D.A.; Cruvinel, P.E.

    2000-01-01

    We present in this paper an analysis of the linear attenuation coefficients as useful features of single and multiple energy CT images with the use of statistical pattern classification tools. We analyzed four CT images through two pointwise classifiers (the first classifier is based on the maximum-likelihood criterion and the second classifier is based on the k-means clustering algorithm) and one contextual Bayesian classifier (ICM algorithm - Iterated Conditional Modes) using an a priori Potts-Strauss model. A feature extraction procedure using the Jeffries-Matusita (J-M) distance and the Karhunen-Loeve transformation was also performed. Both the classification and the feature selection procedures were found to be in agreement with the predicted discrimination given by the separation of the linear attenuation coefficient curves for different materials

  9. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Sun Xun

    2016-12-01

    Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

  10. Magnetic resonance imaging in the evaluation of treatment in multiple sclerosis

    International Nuclear Information System (INIS)

    Kappos, L.; Staedt, D.; Schneiderbanger-Grygier, S.; Heitzer, T.; Ratzka, M.; Nadjmi, M.; Poser, S.; Keil, W.

    1988-01-01

    Magnetic resonance scans of 74 patients with multiple sclerosis participating in a controlled trial were compared 6 months before and at the end of a 24-32 months-treatment period with either Cyclosporin A (n=31) or Azathioprine (n=43). Both qualitative rating and computation of lesion volume showed deterioration in more than 40% of the patients, while by clinical criteria only 10-30% were worse. No significant difference was noted when the two treatment groups were compared. If careful repositioning and standardized image parameters are used, MRI is an indispensable tool for the objective determination of disease progression in MS although it cannot replace clinical examination. (orig.)

  11. Magnetic resonance imaging in the evaluation of treatment in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Kappos, L.; Staedt, D.; Schneiderbanger-Grygier, S.; Heitzer, T.; Ratzka, M.; Nadjmi, M.; Poser, S.; Keil, W.

    1988-08-01

    Magnetic resonance scans of 74 patients with multiple sclerosis participating in a controlled trial were compared 6 months before and at the end of a 24-32 months-treatment period with either Cyclosporin A (n=31) or Azathioprine (n=43). Both qualitative rating and computation of lesion volume showed deterioration in more than 40% of the patients, while by clinical criteria only 10-30% were worse. No significant difference was noted when the two treatment groups were compared. If careful repositioning and standardized image parameters are used, MRI is an indispensable tool for the objective determination of disease progression in MS although it cannot replace clinical examination.

  12. Rhabdomyosarcoma of the tongue base, its recurrence, and multiple lymph node metastases with imaging evidence

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ho; Choi, Bo Ram; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun [Department of Oral and Maxillofacial Radiology, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2008-12-15

    Rhabdomyosarcoma (RMS) is an aggressive and fast-growing malignant tumor. RMS predominantly arises in the head and neck of infancy and children. Metastasis is usually via the blood vessel. We report a case of a recurred RMS of the tongue base with the metastasis to multiple lymph nodes in a 37-year-old female. On the follow-up examination using advanced imaging modalities after surgical treatment of RMS, the lymph nodes should be carefully evaluated like in other malignancies, such as a carcinoma, showing frequent lymph node metastasis.

  13. The display of multiple images derived from emission computed assisted tomography (ECAT)

    International Nuclear Information System (INIS)

    Jackson, P.C.; Davies, E.R.; Goddard, P.R.; Wilde, R.P.H.

    1983-01-01

    In emission computed assisted tomography, a technique has been developed to display the multiple sections of an organ within a single image, such that three dimensional appreciation of the organ can be obtained, whilst also preserving functional information. The technique when tested on phantoms showed no obvious deterioration in resolution and when used clinically gave satisfactory visual results. Such a method should allow easier appreciation of the extent of a lesion through an organ and thus allow dimensions to be obtained by direct measurement. (U.K.)

  14. Comparison of sensitivity of magnetic resonance imaging and evoked potentials in the detection of brainstem involvement in multiple sclerosis

    International Nuclear Information System (INIS)

    Comi, G.; Martinelli, V.; Medaglini, S.; Locatelli, T.; Magnani, G.; Poggi, A.; Triulzi, F.

    1988-01-01

    A comparison was made of the sensitivity of magnetic resonance imaging and the combined use of Brainstem Auditory Evoked Potential and Median Somatosensory Evoked Potential in the detection of brainstem dysfunction in 54 multiple sclerosis patients. 10 refs.; 2 tabs

  15. Reconstruction of an input function from a dynamic PET water image using multiple tissue curves

    Science.gov (United States)

    Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro

    2016-08-01

    Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. When CBF is assessed using PET with {{\\text{H}}2} 15O or C15O2, its calculation requires an arterial input function, which generally requires invasive arterial blood sampling. The aim of the present study was to develop a new technique to reconstruct an image derived input function (IDIF) from a dynamic {{\\text{H}}2} 15O PET image as a completely non-invasive approach. Our technique consisted of using a formula to express the input using tissue curve with rate constant parameter. For multiple tissue curves extracted from the dynamic image, the rate constants were estimated so as to minimize the sum of the differences of the reproduced inputs expressed by the extracted tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects (n  =  29) and was compared to the blood sampling method. Simulation studies were performed to examine the magnitude of potential biases in CBF and to optimize the number of multiple tissue curves used for the input reconstruction. In the PET study, the estimated IDIFs were well reproduced against the measured ones. The difference between the calculated CBF values obtained using the two methods was small as around  PET imaging. This suggests the possibility of using a completely non-invasive technique to assess CBF in patho-physiological studies.

  16. Diffusion tensor imaging of occult injury of optic radiation following optic neuritis in multiple sclerosis.

    Science.gov (United States)

    Chen, Jiafeng; Zhu, Lijun; Li, He; Lu, Ziwen; Chen, Xin; Fang, Shaokuan

    2016-10-01

    Multiple sclerosis (MS) is easily detected by routine magnetic resonance imaging (MRI). However, it is not possible to detect early or occult lesions in MS by routine MRI, and this may explain the inconsistency between the severity of the lesions found by MRI and the degree of clinical disability of patients with MS. The present study included 10 patients with relapsing-remitting MS and 10 healthy volunteers. Each patient underwent routine 3.0 T MRI, diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT). Optic nerve and optic radiation were analyzed by DTI and DTT. The fractional anisotropy (FA), mean diffusivity (MD), λ // , and λ ┴ values were measured. In the 10 patients with MS, 7 optic nerves were affected, and 13 optic nerves were not affected. Cranial MRI showed that optic nerve thickening and hyperintensity occurred in 2 patients with MS. In the directionally encoded color maps, a hypointensive green signal in the optic nerve was observed in 3 patients with MS. The FA values were significantly lower and the MD, λ // , and λ ┴ values were significantly higher in the affected and unaffected optic nerves and optic radiations in patients with MS in comparison with controls (P0.05). Diffusion tensor imaging is sensitive in the detection of occult injury of the optic nerve and optic radiation following optic neuritis. Diffusion tensor imaging may be a useful tool for the early diagnosis, treatment and management of MS.

  17. Nuclear medicine imaging of multiple myeloma, particularly in the relapsed setting

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Esther G.M. de; Vellenga, Edo [University of Groningen, University Medical Center Groningen, Department of Hematology, PO Box 30001, Groningen (Netherlands); Glaudemans, Andor W.J.M. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Schroeder, Carolien P. [University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen (Netherlands); Slart, Riemer H.J.A. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Twente, Department of Biomedical Photonic Imaging, Enschede (Netherlands)

    2017-02-15

    Multiple myeloma (MM) is characterized by a monoclonal plasma cell population in the bone marrow. Lytic lesions occur in up to 90 % of patients. For many years, whole-body X-ray (WBX) was the method of choice for detecting skeleton abnormalities. However, the value of WBX in relapsing disease is limited because lesions persist post-treatment, which restricts the capacity to distinguish between old, inactive skeletal lesions and new, active ones. Therefore, alternative techniques are necessary to visualize disease activity. Modern imaging techniques such as magnetic resonance imaging, positron emission tomography and computed tomography offer superior detection of myeloma bone disease and extramedullary manifestations. In particular, the properties of nuclear imaging enable the identification of disease activity by directly targeting the specific cellular properties of malignant plasma cells. In this review, an overview is provided of the effectiveness of radiopharmaceuticals that target metabolism, surface receptors and angiogenesis. The available literature data for commonly used nuclear imaging tracers, the promising first results of new tracers, and our pilot work indicate that a number of these radiopharmaceutical applications can be used effectively for staging and response monitoring of relapsing MM patients. Moreover, some tracers can potentially be used for radio immunotherapy. (orig.)

  18. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    Science.gov (United States)

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils

    Energy Technology Data Exchange (ETDEWEB)

    Sasayama, Teruyoshi, E-mail: sasayama@sc.kyushu-u.ac.jp; Tsujita, Yuya; Morishita, Manabu; Muta, Masahiro; Yoshida, Takashi; Enpuku, Keiji

    2017-04-01

    We propose a magnetic particle imaging (MPI) method based on third harmonic signal detection using a small field gradient and multiple pickup coils. First, we developed a system using two pickup coils and performed three-dimensional detection of two magnetic nanoparticle (MNP) samples, which were spaced 15 mm apart. In the experiments, an excitation field strength of 1.6 mT was used at an operating frequency of 3 kHz. A DC gradient field with a typical value of 0.2 T/m was also used to produce the so-called field-free line. A third harmonic signal generated by the MNP samples was detected using the two pickup coils, and the samples were then mechanically scanned to obtain field maps. The field maps were subsequently analyzed using the nonnegative least squares method to obtain three-dimensional position information for the MNP samples. The results show that the positions of the two MNP samples were estimated with good accuracy, despite the small field gradient used. Further improvement in MPI performance will be achieved by increasing the number of pickup coils used. - Highlights: • 3D magnetic particle imaging system combining field-free line and two pickup coils. • Imaging method based on third harmonic signal detection and small field gradient. • Nonnegative least squares method for 3D magnetic nanoparticle image reconstruction. • High spatial resolution despite use of small field gradient.

  20. Techniques necessary for multiple tracer quantitative small-animal imaging studies

    International Nuclear Information System (INIS)

    Sharp, Terry L.; Dence, Carmen S.; Engelbach, John A.; Herrero, Pilar; Gropler, Robert J.; Welch, Michael J.

    2005-01-01

    Introduction: An increasing number and variety of studies on rodent models are being conducted using small-animal positron emission tomography scanners. We aimed to determine if animal handling techniques could be developed to perform routine animal imaging in a timely and efficient manner and with minimal effect on animal physiology. These techniques need to be reproducible in the same animal while maintaining hemodynamic and physiological stability. Methods: The necessary techniques include (a) the use of inhalant anesthesia, (b) arterial and venous cannulation for multiple tracer administrations and blood sampling, (c) development of small-volume analytic columns and techniques and (d) measurement of the physiological environment during the imaging session. Results: We provide an example of a cardiac imaging study using four radiotracers ( 15 O-water, 1-[ 11 C]-acetate, 1-[ 11 C]-palmitate and 1-[ 11 C]-glucose) injected into normal rats. Plasma substrates, CO 2 production and total metabolites were measured. The animals remained anesthetized over the entire imaging session, and their physiological state was maintained. Conclusion: The intrastudy stability of the physiological measurements and substrate levels and interstudy reproducibility of the measurements are reported

  1. Superresolution radar imaging based on fast inverse-free sparse Bayesian learning for multiple measurement vectors

    Science.gov (United States)

    He, Xingyu; Tong, Ningning; Hu, Xiaowei

    2018-01-01

    Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.

  2. Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska

    International Nuclear Information System (INIS)

    Necsoiu, Marius; Dinwiddie, Cynthia L; Walter, Gary R; Stothoff, Stuart A; Larsen, Amy

    2013-01-01

    Multi-temporal image analysis of very-high-resolution historical aerial and recent satellite imagery of the Ahnewetut Wetlands in Kobuk Valley National Park, Alaska, revealed the nature of thaw lake and polygonal terrain evolution over a 54-year period of record comprising two 27-year intervals (1951–1978, 1978–2005). Using active-contouring-based change detection, high-precision orthorectification and co-registration and the normalized difference index, surface area expansion and contraction of 22 shallow water bodies, ranging in size from 0.09 to 179 ha, and the transition of ice-wedge polygons from a low- to a high-centered morphology were quantified. Total surface area decreased by only 0.4% during the first time interval, but decreased by 5.5% during the second time interval. Twelve water bodies (ten lakes and two ponds) were relatively stable with net surface area decreases of ≤10%, including four lakes that gained area during both time intervals, whereas ten water bodies (five lakes and five ponds) had surface area losses in excess of 10%, including two ponds that drained completely. Polygonal terrain remained relatively stable during the first time interval, but transformation of polygons from low- to high-centered was significant during the second time interval. (letter)

  3. Comprehensive comparison of two image-based point clouds from aerial photos with airborne lidar for large-scale mapping : Door detection to envelope reconstruction

    NARCIS (Netherlands)

    Widyaningrum, E.; Gorte, B.G.H.

    2017-01-01

    The integration of computer vision and photogrammetry to generate three-dimensional (3D) information from images has contributed to a wider use of point clouds, for mapping purposes. Large-scale topographic map production requires 3D data with high precision and

  4. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat and Correlation of Optical (Spot5 and Aerial Images

    Directory of Open Access Journals (Sweden)

    Christophe Delacourt

    2009-01-01

    Full Text Available Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C–band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr-1 was measured.

  5. The development of damage identification methods for buildings with image recognition and machine learning techniques utilizing aerial photographs of the 2016 Kumamoto earthquake

    Science.gov (United States)

    Shohei, N.; Nakamura, H.; Fujiwara, H.; Naoichi, M.; Hiromitsu, T.

    2017-12-01

    It is important to get schematic information of the damage situation immediately after the earthquake utilizing photographs shot from an airplane in terms of the investigation and the decision-making for authorities. In case of the 2016 Kumamoto earthquake, we have acquired more than 1,800 orthographic projection photographs adjacent to damaged areas. These photos have taken between April 16th and 19th by airplanes, then we have distinguished damages of all buildings with 4 levels, and organized as approximately 296,000 GIS data corresponding to the fundamental Geospatial data published by Geospatial Information Authority of Japan. These data have organized by effort of hundreds of engineers. However, it is not considered practical for more extensive disasters like the Nankai Trough earthquake by only human powers. So, we have been developing the automatic damage identification method utilizing image recognition and machine learning techniques. First, we have extracted training data of more than 10,000 buildings which have equally damage levels divided in 4 grades. With these training data, we have been raster scanning in each scanning ranges of entire images, then clipping patch images which represents damage levels each. By utilizing these patch images, we have been developing discriminant models by two ways. One is a model using the Support Vector Machine (SVM). First, extract a feature quantity of each patch images. Then, with these vector values, calculate the histogram density as a method of Bag of Visual Words (BoVW), then classify borders with each damage grades by SVM. The other one is a model using the multi-layered Neural Network. First, design a multi-layered Neural Network. Second, input patch images and damage levels based on a visual judgement, and then, optimize learning parameters with error backpropagation method. By use of both discriminant models, we are going to discriminate damage levels in each patches, then create the image that shows

  6. STRUCTURE FROM MOTION (SfM) PROCESSING FOR UNMANNED AERIAL VEHICLE (UAV)

    KAUST Repository

    Smith, Neil G.

    2016-04-07

    A method of imaging an area using an unmanned aerial vehicle (UAV) collects a plurality of images from a sensor mounted to the UAV. The plurality of images are processed to detect regions that require additional imaging and an updated flight plan and sensor gimbal position plan is created to capture portions of the area identified as requiring additional imaging.

  7. STRUCTURE FROM MOTION (SfM) PROCESSING FOR UNMANNED AERIAL VEHICLE (UAV)

    KAUST Repository

    Smith, Neil G.; Shalaby, Mohamed; Passone, Luca

    2016-01-01

    A method of imaging an area using an unmanned aerial vehicle (UAV) collects a plurality of images from a sensor mounted to the UAV. The plurality of images are processed to detect regions that require additional imaging and an updated flight plan and sensor gimbal position plan is created to capture portions of the area identified as requiring additional imaging.

  8. Automatic digital surface model (DSM) generation from aerial imagery data

    Science.gov (United States)

    Zhou, Nan; Cao, Shixiang; He, Hongyan; Xing, Kun; Yue, Chunyu

    2018-04-01

    Aerial sensors are widely used to acquire imagery for photogrammetric and remote sensing application. In general, the images have large overlapped region, which provide a lot of redundant geometry and radiation information for matching. This paper presents a POS supported dense matching procedure for automatic DSM generation from aerial imagery data. The method uses a coarse-to-fine hierarchical strategy with an effective combination of several image matching algorithms: image radiation pre-processing, image pyramid generation, feature point extraction and grid point generation, multi-image geometrically constraint cross-correlation (MIG3C), global relaxation optimization, multi-image geometrically constrained least squares matching (MIGCLSM), TIN generation and point cloud filtering. The image radiation pre-processing is used in order to reduce the effects of the inherent radiometric problems and optimize the images. The presented approach essentially consists of 3 components: feature point extraction and matching procedure, grid point matching procedure and relational matching procedure. The MIGCLSM method is used to achieve potentially sub-pixel accuracy matches and identify some inaccurate and possibly false matches. The feasibility of the method has been tested on different aerial scale images with different landcover types. The accuracy evaluation is based on the comparison between the automatic extracted DSMs derived from the precise exterior orientation parameters (EOPs) and the POS.

  9. A Low Cost Rokkaku Kite Setup for Aerial Photogrammetric System

    Science.gov (United States)

    Khan, A. F.; Khurshid, K.; Saleh, N.; Yousuf, A. A.

    2015-03-01

    Orthogonally Projected Area (OPA) of a geographical feature has primarily been studied utilizing rather time consuming field based sampling techniques. Remote sensing on the contrary provides the ability to acquire large scale data at a snapshot of time and lets the OPA to be calculated conveniently and with reasonable accuracy. Unfortunately satellite based remote sensing provides data at high cost and limited spatial resolution for scientific studies focused at small areas such as micro lakes micro ecosystems, etc. More importantly, recent satellite data may not be readily available for a particular location. This paper describes a low cost photogrammetric system to measure the OPA of a small scale geographic feature such as a plot of land, micro lake or an archaeological site, etc. Fitted with a consumer grade digital imaging system, a Rokkaku kite aerial platform with stable flight characteristics is designed and fabricated for image acquisition. The data processing procedure involves automatic Ground Control Point (GCP) detection, intelligent target area shape determination with minimal human input. A Graphical User Interface (GUI) is built from scratch in MATLAB to allow the user to conveniently process the acquired data, archive and retrieve the results. Extensive on-field experimentation consists of multiple geographic features including flat land surfaces, buildings, undulating rural areas, and an irregular shaped micro lake, etc. Our results show that the proposed system is not only low cost, but provides a framework that is easy and fast to setup while maintaining the required constraints on the accuracy.

  10. State of the art imaging of multiple myeloma: Comparative review of FDG PET/CT imaging in various clinical settings

    Energy Technology Data Exchange (ETDEWEB)

    Mesguich, Charles, E-mail: charles.mesguich@chu-bordeaux.fr [Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Fardanesh, Reza; Tanenbaum, Lawrence [Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Chari, Ajai; Jagannath, Sundar [Department of Medicine Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Kostakoglu, Lale, E-mail: lale.kostakoglu@mssm.edu [Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States)

    2014-12-15

    Highlights: • Metabolic changes on FDG PET/CT offer an earlier response evaluation than MRI. • PET/CT is less sensitive than MRI for diffuse bone marrow involvement. • PET/CT is a highly sensitive modality to determine extra-medullary disease. • Red marrow expansion: false positive findings on both FDG PET/CT and MRI. • Compression fractures are best characterized with MRI. - Abstract: 18-Flurodeoxyglucose Positron Emission Tomography with computed tomography (FDG PET/CT) and Magnetic Resonance Imaging (MRI) have higher sensitivity and specificity than whole-body X-ray (WBXR) survey in evaluating disease extent in patients with multiple myeloma (MM). Both modalities are now recommended by the Durie–Salmon Plus classification although the emphasis is more on MRI than PET/CT. The presence of extra-medullary disease (EMD) as evaluated by PET/CT imaging, initial SUV{sub max} and number of focal lesions (FL) are deemed to be strong prognostic parameters at staging. MRI remains the most sensitive technique for the detection of diffuse bone marrow involvement in both the pre and post-therapy setting. Compression fractures are best characterized with MRI signal changes, for determining vertebroplasty candidates. While PET/CT allows for earlier and more specific evaluation of therapeutic efficacy compared to MRI, when signal abnormalities persist years after treatment. PET/CT interpretation, however, can be challenging in the vertebral column and pelvis as well as in cases with post-therapy changes. Hence, a reading approach combining the high sensitivity of MRI and superior specificity of FDG PET/CT would be preferred to increase the diagnostic accuracy. In summary, the established management methods in MM, mainly relying on biological tumor parameters should be complemented with functional imaging data, both at staging and restaging for optimal management of MM.

  11. “Hot cross bun” sign in multiple system atrophy with predominant cerebellar ataxia: A comparison between proton density-weighted imaging and T2-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Seiko, E-mail: nuun077@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Miki, Yukio, E-mail: yukio.miki@med.osaka-cu.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Department of Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545–8585 (Japan); Kanagaki, Mitsunori, E-mail: mitsuk@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Kondo, Takayuki, E-mail: kondotak@kuhp.kyoto-u.ac.jp [Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Yamamoto, Akira, E-mail: yakira@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Morimoto, Emiko, E-mail: foresta@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Okada, Tomohisa, E-mail: tomokada@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Ito, Hidefumi, E-mail: itohid@kuhp.kyoto-u.ac.jp [Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Takahashi, Ryosuke, E-mail: ryosuket@kuhp.kyoto-u.ac.jp [Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); and others

    2012-10-15

    Objective: To investigate whether proton density-weighted imaging can detect the “hot cross bun” sign in the pons in multiple system atrophy with predominant cerebellar ataxia significantly better than T2-weighted imaging at 3 T. Methods: Sixteen consecutive patients with multiple system atrophy with predominant cerebellar ataxia according to the Consensus Criteria were reviewed. Axial unenhanced proton density-weighted imaging and T2-weighted imaging were obtained using a dual-echo fast spin-echo sequence at 3 T. Two neuroradiologists independently evaluated visualisation of the abnormal pontine signal using a 4-point visual grade from Grade 0 (no “hot cross bun” sign) to Grade 3 (prominent “hot cross bun” sign on two or more sequential slices). Differences in grade between proton density-weighted imaging and T2-weighted imaging were statistically analysed using the Wilcoxon signed-rank test. Results: In 11 patients (69%), a higher grade was given for proton density-weighted imaging than T2-weighted imaging. In 1 patient (6%), grades were the same (Grade 3) on both images. In the remaining 4 patients (25%), signal abnormalities were not detected on either image (Grade 0). The “hot cross bun” sign was thus observed significantly better on proton density-weighted imaging than on T2-weighted imaging (P = 0.001). Conclusions: The “hot cross bun” sign considered diagnostic for multiple system atrophy with predominant cerebellar ataxia is significantly better visualised on proton density-weighted imaging than on T2-weighted imaging at 3 T.

  12. Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images

    Science.gov (United States)

    Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.

    2018-04-01

    A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.

  13. Nuclear magnetic resonance imaging in a case of facial myokymia with multiple sclerosis

    International Nuclear Information System (INIS)

    Kojima, Shigeyuki; Yagishita, Toshiyuki; Kita, Kohei; Hirayama, Keizo; Ikehira, Hiroo; Fukuda, Nobuo; Tateno, Yukio.

    1985-01-01

    A 59-year-old female of facial myokymia with multiple sclerosis was reported. In this case, facial myokymia appeared at the same time as the first attack of multiple sclerosis, in association with paroxysmal pain and desesthesia of the neck, painful tonic seizures of the right upper and lower extremities and cervical transverse myelopathy. The facial myokymia consisted of grossly visible, continuous, fine and worm-like movement, which often began in the area of the left orbicularis oculi and spread to the other facial muscles on one side. Electromyographic studies revealed grouping of motor units and continuous spontaneous rhythmic discharges in the left orbicularis oris suggesting facial myokymia, but there were no abnormalities on voluntary contraction. Sometimes doublet or multiplet patterns occurred while at other times the bursts were of single motor potential. The respective frequencies were 3-4/sec and 40-50/sec. There was no evidence of fibrillation. The facial myokymia disappeared after 4-8 weeks of administration of prednisolone and did not recur. In the remission stage after disappearance of the facial myokymia, nuclear magnetic resonance (NMR) imaging by the inversion recovery method demonstrated low intensity demyelinated plaque in the left lateral tegmentum of the inferior pons, which was responsible for the facial myokymia, but X-ray computed tomography revealed no pathological findings. The demyelinated plaque demonstrated by NMR imaging seemed to be located in the infranuclear area of the facial nerve nucleus and to involve the intramedurally root. (J.P.N.)

  14. Imaging and diagnostic criteria for multiple sclerosis: are we there yet?

    International Nuclear Information System (INIS)

    Josey, Lawrence; Curley, Michael; Mousavi, Foroogh Jafari; Taylor, Bruce V.; Lucas, Robyn; Coulthard, Alan

    2012-01-01

    Excluding post traumatic injury, Multiple Sclerosis (MS) is the most common disabling neurological disorder of young adults. Although the effect on mortality is limited, the association of a young demographic and significant morbidity combine to make MS a devastating disease. Since MS was given its first detailed description in 1868, diagnostic criteria continue to evolve. Recently, there has been an international commitment to combine both clinical and paraclinical tests to arrive at an earlier diagnosis. Widespread acceptance of the use of MRI in diagnosis, monitoring and research has made the role of the radiologist more critical than ever in this disease. The primary diagnostic criteria for MS are the International Panel criteria, commonly referred to as the McDonald criteria and it is essential that the radiology community is aware of the work preceding these criteria, so that they are understood in the correct context and the importance acknowledged. Literature review utilising key word search to obtain the historical and current context of magnetic resonance imaging in the diagnosis of MS. A succinct description of the evolution of criteria for the diagnosis of MS. Radiologists must recognise that there are specific diagnostic criteria for MS that continue to evolve as a result of new research, improved technology and clinical experience and it is crucial that these criteria be applied in daily practice. It should be evident that diagnostic imaging criteria for MS will be most effective when combined with standardised MRI protocols such as those published by the international Consortium of Multiple Sclerosis Centres.

  15. Color, Scale, and Rotation Independent Multiple License Plates Detection in Videos and Still Images

    Directory of Open Access Journals (Sweden)

    Narasimha Reddy Soora

    2016-01-01

    Full Text Available Most of the existing license plate (LP detection systems have shown significant development in the processing of the images, with restrictions related to environmental conditions and plate variations. With increased mobility and internationalization, there is a need to develop a universal LP detection system, which can handle multiple LPs of many countries and any vehicle, in an open environment and all weather conditions, having different plate variations. This paper presents a novel LP detection method using different clustering techniques based on geometrical properties of the LP characters and proposed a new character extraction method, for noisy/missed character components of the LP due to the presence of noise between LP characters and LP border. The proposed method detects multiple LPs from an input image or video, having different plate variations, under different environmental and weather conditions because of the geometrical properties of the set of characters in the LP. The proposed method is tested using standard media-lab and Application Oriented License Plate (AOLP benchmark LP recognition databases and achieved the success rates of 97.3% and 93.7%, respectively. Results clearly indicate that the proposed approach is comparable to the previously published papers, which evaluated their performance on publicly available benchmark LP databases.

  16. Detection of fast oscillating magnetic fields using dynamic multiple TR imaging and Fourier analysis.

    Directory of Open Access Journals (Sweden)

    Ki Hwan Kim

    Full Text Available Neuronal oscillations produce oscillating magnetic fields. There have been trials to detect neuronal oscillations using MRI, but the detectability in in vivo is still in debate. Major obstacles to detecting neuronal oscillations are (i weak amplitudes, (ii fast oscillations, which are faster than MRI temporal resolution, and (iii random frequencies and on/off intervals. In this study, we proposed a new approach for direct detection of weak and fast oscillating magnetic fields. The approach consists of (i dynamic acquisitions using multiple times to repeats (TRs and (ii an expanded frequency spectral analysis. Gradient echo echo-planar imaging was used to test the feasibility of the proposed approach with a phantom generating oscillating magnetic fields with various frequencies and amplitudes and random on/off intervals. The results showed that the proposed approach could precisely detect the weak and fast oscillating magnetic fields with random frequencies and on/off intervals. Complex and phase spectra showed reliable signals, while no meaningful signals were observed in magnitude spectra. A two-TR approach provided an absolute frequency spectrum above Nyquist sampling frequency pixel by pixel with no a priori target frequency information. The proposed dynamic multiple-TR imaging and Fourier analysis are promising for direct detection of neuronal oscillations and potentially applicable to any pulse sequences.

  17. Nuclear magnetic resonance imaging in a case of facial myokymia with multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Shigeyuki; Yagishita, Toshiyuki; Kita, Kohei; Hirayama, Keizo; Ikehira, Hiroo; Fukuda, Nobuo; Tateno, Yukio

    1985-06-01

    A 59-year-old female of facial myokymia with multiple sclerosis was reported. In this case, facial myokymia appeared at the same time as the first attack of multiple sclerosis, in association with paroxysmal pain and desesthesia of the neck, painful tonic seizures of the right upper and lower extremities and cervical transverse myelopathy. The facial myokymia consisted of grossly visible, continuous, fine and worm-like movement, which often began in the area of the left orbicularis oculi and spread to the other facial muscles on one side. Electromyographic studies revealed grouping of motor units and continuous spontaneous rhythmic discharges in the left orbicularis oris suggesting facial myokymia, but there were no abnormalities on voluntary contraction. Sometimes doublet or multiplet patterns occurred while at other times the bursts were of single motor potential. The respective frequencies were 3-4/sec and 40-50/sec. There was no evidence of fibrillation. The facial myokymia disappeared after 4-8 weeks of administration of prednisolone and did not recur. In the remission stage after disappearance of the facial myokymia, nuclear magnetic resonance (NMR) imaging by the inversion recovery method demonstrated low intensity demyelinated plaque in the left lateral segmentum of the inferior pons, which was responsible for the facial myokymia, but X-ray computed tomography revealed no pathological findings. The demyelinated plaque demonstrated by NMR imaging seemed to be located in the infranuclear area of the facial nerve nucleus and to involve the intramedurally root.

  18. Scanning multiple mice in a small-animal PET scanner: Influence on image quality

    International Nuclear Information System (INIS)

    Siepel, Francoise J.; Lier, Monique G.J.T.B. van; Chen Mu; Disselhorst, Jonathan A.; Meeuwis, Antoi P.W.; Oyen, Wim J.G.; Boerman, Otto C.; Visser, Eric P.

    2010-01-01

    To achieve high throughput in small-animal positron emission tomography (PET), it may be advantageous to scan more than one animal in the scanner's field of view (FOV) at the same time. However, due to the additional activity and increase of Poisson noise, additional attenuating mass, extra photon scattering, and radial or axial displacement of the animals, a deterioration of image quality can be expected. In this study, the NEMA NU 4-2008 image quality (NU4IQ) phantom and up to three FDG-filled cylindrical 'mouse phantoms' were positioned in the FOV of the Siemens Inveon small-animal PET scanner to simulate scans with multiple mice. Five geometrical configurations were examined. In one configuration, the NU4IQ phantom was scanned separately and placed in the center of the FOV (1C). In two configurations, a mouse phantom was added with both phantoms displaced radially (2R) or axially (2A). In two other configurations, the NU4IQ phantom was scanned along with three mouse phantoms with all phantoms displaced radially (4R), or in a combination of radial and axial displacement (2R2A). Images were reconstructed using ordered subset expectation maximization in 2 dimensions (OSEM2D) and maximum a posteriori (MAP) reconstruction. Image quality parameters were obtained according to the NEMA NU 4-2008 guidelines. Optimum image quality was obtained for the 1C geometry. Image noise increased by the addition of phantoms and was the largest for the 4R configuration. Spatial resolution, reflected in the recovery coefficients for the FDG-filled rods, deteriorated by radial displacement of the NU4IQ phantom (2R, 2R2A, and 4R), most strongly for OSEM2D, and to a smaller extent for MAP reconstructions. Photon scatter, as indicated by the spill-over ratios in the non-radioactive water- and air-filled compartments, increased by the addition of phantoms, most strongly for the 4R configuration. Application of scatter correction substantially lowered the spill-over ratios, but caused an

  19. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies

    Science.gov (United States)

    Høyer, Anne-Sophie; Vignoli, Giulio; Mejer Hansen, Thomas; Thanh Vu, Le; Keefer, Donald A.; Jørgensen, Flemming

    2017-12-01

    Most studies on the application of geostatistical simulations based on multiple-point statistics (MPS) to hydrogeological modelling focus on relatively fine-scale models and concentrate on the estimation of facies-level structural uncertainty. Much less attention is paid to the use of input data and optimal construction of training images. For instance, even though the training image should capture a set of spatial geological characteristics to guide the simulations, the majority of the research still relies on 2-D or quasi-3-D training images. In the present study, we demonstrate a novel strategy for 3-D MPS modelling characterized by (i) realistic 3-D training images and (ii) an effective workflow for incorporating a diverse group of geological and geophysical data sets. The study covers an area of 2810 km2 in the southern part of Denmark. MPS simulations are performed on a subset of the geological succession (the lower to middle Miocene sediments) which is characterized by relatively uniform structures and dominated by sand and clay. The simulated domain is large and each of the geostatistical realizations contains approximately 45 million voxels with size 100 m × 100 m × 5 m. Data used for the modelling include water well logs, high-resolution seismic data, and a previously published 3-D geological model. We apply a series of different strategies for the simulations based on data quality, and develop a novel method to effectively create observed spatial trends. The training image is constructed as a relatively small 3-D voxel model covering an area of 90 km2. We use an iterative training image development strategy and find that even slight modifications in the training image create significant changes in simulations. Thus, this study shows how to include both the geological environment and the type and quality of input information in order to achieve optimal results from MPS modelling. We present a practical workflow to build the training image and

  20. Statistical Methods for Magnetic Resonance Image Analysis with Applications to Multiple Sclerosis

    Science.gov (United States)

    Pomann, Gina-Maria

    Multiple sclerosis (MS) is an immune-mediated neurological disease that causes disability and morbidity. In patients with MS, the accumulation of lesions in the white matter of the brain is associated with disease progression and worse clinical outcomes. In the first part of the dissertation, we present methodology to study to compare the brain anatomy between patients with MS and controls. A nonparametric testing procedure is proposed for testing the null hypothesis that two samples of curves observed at discrete grids and with noise have the same underlying distribution. We propose to decompose the curves using functional principal component analysis of an appropriate mixture process, which we refer to as marginal functional principal component analysis. This approach reduces the dimension of the testing problem in a way that enables the use of traditional nonparametric univariate testing procedures. The procedure is computationally efficient and accommodates different sampling designs. Numerical studies are presented to validate the size and power properties of the test in many realistic scenarios. In these cases, the proposed test is more powerful than its primary competitor. The proposed methodology is illustrated on a state-of-the art diffusion tensor imaging study, where the objective is to compare white matter tract profiles in healthy individuals and MS patients. In the second part of the thesis, we present methods to study the behavior of MS in the white matter of the brain. Breakdown of the blood-brain barrier in newer lesions is indicative of more active disease-related processes and is a primary outcome considered in clinical trials of treatments for MS. Such abnormalities in active MS lesions are evaluated in vivo using contrast-enhanced structural magnetic resonance imaging (MRI), during which patients receive an intravenous infusion of a costly magnetic contrast agent. In some instances, the contrast agents can have toxic effects. Recently, local

  1. Utilização de um veículo aéreo não-tripulado em atividades de imageamento georeferenciado On the use of unmanned aerial vehicle for acquisition of georrefecend image data

    Directory of Open Access Journals (Sweden)

    Fabrício Ardais Medeiros

    2008-11-01

    Full Text Available Este trabalho teve por objetivo desenvolver subsídios para propor um procedimento alternativo para aquisição de dados, telemetria, monitoramento e georeferenciamento das atividades agrícolas, por meio da acoplagem de equipamentos eletrônicos a um Veículo Aéreo Não-Tripulado (VANT. Para tal, foi desenvolvido um VANT na Universidade Federal de Santa Maria, no qual foram acoplados equipamentos para a coleta de imagens e a aquisição de pontos de referência. O equipamento desenvolvido mostrou imenso potencial para ser utilizado como ferramenta auxiliar na localização de áreas com falhas de germinação, na infestação de invasoras e no mapeamento de área. O maior entrave a um melhor emprego deste equipamento refere-se à baixa qualidade das imagens geradas, mostrando a necessidade de reavaliações do aparato utilizado.The aim of this study consisted in developing and testing an alternative procedure for data acquisition, telemetry, monitoring and geo-referencing in agricultural fields. The proposed approach was implemented by placing dedicated electronic gear onboard Unmanned Aerial Vehicles (UAV. For this purpose an UAV was assembled at the Federal University in Santa Maria, Brazil and equipped with the required hardware for image and control points acquisition. Tests have shown that the proposed approach can be regarded as a valuable tool to detect areas affected by faulty germination, weed infestation and mapping in general. The tests have also shown that poor quality of the acquired image data was the main drawback in the equipment onboard the UAV, pointing to the need to reevaluate the system with regard to this particular aspect.

  2. Agreement between different input image types in brain atrophy measurement in multiple sclerosis using SIENAX and SIENA

    NARCIS (Netherlands)

    Neacsu, V.; Jasperse, B.; Korteweg, T.; Knol, D.L.; Valsasina, P.; Filippi, M.; Barkhof, F.; Rovaris, M.; Vrenken, H.

    2008-01-01

    Purpose: To investigate whether multiple sclerosis (MS) atrophy can be assessed by SIENA and SIENAX software using other image types from MS research protocols than T1-weighted images without contrast agent, which are not always available. Materials and Methods: We selected 46 MS patients with

  3. Aerial measurements in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, I.; Thomas, M.; Buchroeder, H.; Brummer, C. [Federal Office for Radiation Protection, Berlin (Germany); Carloff, G. [German Federal Border Police, Grenzschutz-Fliegergruppe, Sankt Augustin (Germany)

    1997-12-31

    Aerial measurements were performed to determine the {sup 137}Cs soil contamination in a given region to detect unknown radiation sources and to assess their activity. For these measurements a computerized gamma ray spectrometer, equipped with a high purity Ge-semiconductor detector and a 12 l volume Nal(Tl)-detector was used. HPGe-detector measurements from different altitudes over area I were done to test and re-calibrate the aerial measuring system. The known {sup 137}Cs contamination of (50.7 {+-} 5.2) kBq m{sup -2} could be confirmed by the measured value of (57 {+-} 10) kBq m{sup -2}. the Nal(Tl)-detector was re-calibrated at that site for further {sup 137}Cs measurements over area II. The area II was surveyed from an altitude of about 70 m and at a parallel line distance of 150 m at an flying speed of 100 km h{sup -1} to determine the {sup 137}Cs soil contamination. The measuring time was two seconds for the Nal(Tl)-detector. For the spectra measured with the HPGe-detector, a measuring time of 30 s each was chosen. From the Nal(Tl)-measurements, a mean {sup 137}Cs value of (60 {+-} 20) kBq m{sup -2} was determined with a maximum value of 90 kBq m{sup -2}. The corresponding values measured by HPGe-detector were (70 {+-} 20) kBq m{sup -2} and 120 kBq m{sup -2}, respectively. For the evaluation of the HPGe-spectra a depth distribution parameter {alpha}/{rho} = (0.44 {+-} 0.21) cm{sup 2} g{sup -1} for {sup 137}Cs was used measured from soil samples. From data measured with the Nal(Tl)-detector during flights over area III, three{sup 60}Co-sources and one {sup 137}Cs source could be detected, localized and their activity assessed. By HPGe-detector measurements, only scattered {sup 192}lr radiation was registered. (au).

  4. Aerial measurements in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, I; Thomas, M; Buchroeder, H; Brummer, C [Federal Office for Radiation Protection, Berlin (Germany); Carloff, G [German Federal Border Police, Grenzschutz-Fliegergruppe, Sankt Augustin (Germany)

    1998-12-31

    Aerial measurements were performed to determine the {sup 137}Cs soil contamination in a given region to detect unknown radiation sources and to assess their activity. For these measurements a computerized gamma ray spectrometer, equipped with a high purity Ge-semiconductor detector and a 12 l volume Nal(Tl)-detector was used. HPGe-detector measurements from different altitudes over area I were done to test and re-calibrate the aerial measuring system. The known {sup 137}Cs contamination of (50.7 {+-} 5.2) kBq m{sup -2} could be confirmed by the measured value of (57 {+-} 10) kBq m{sup -2}. the Nal(Tl)-detector was re-calibrated at that site for further {sup 137}Cs measurements over area II. The area II was surveyed from an altitude of about 70 m and at a parallel line distance of 150 m at an flying speed of 100 km h{sup -1} to determine the {sup 137}Cs soil contamination. The measuring time was two seconds for the Nal(Tl)-detector. For the spectra measured with the HPGe-detector, a measuring time of 30 s each was chosen. From the Nal(Tl)-measurements, a mean {sup 137}Cs value of (60 {+-} 20) kBq m{sup -2} was determined with a maximum value of 90 kBq m{sup -2}. The corresponding values measured by HPGe-detector were (70 {+-} 20) kBq m{sup -2} and 120 kBq m{sup -2}, respectively. For the evaluation of the HPGe-spectra a depth distribution parameter {alpha}/{rho} = (0.44 {+-} 0.21) cm{sup 2} g{sup -1} for {sup 137}Cs was used measured from soil samples. From data measured with the Nal(Tl)-detector during flights over area III, three{sup 60}Co-sources and one {sup 137}Cs source could be detected, localized and their activity assessed. By HPGe-detector measurements, only scattered {sup 192}lr radiation was registered. (au).

  5. Simulation of a method to directly image exoplanets around multiple stars systems

    Science.gov (United States)

    Thomas, Sandrine J.; Bendek, Eduardo; Belikov, Ruslan

    2014-08-01

    Direct imaging of extra-solar planets has now become a reality, especially with the deployment and commissioning of the first generation of specialized ground-based instruments such as the GPI, SPHERE, P1640 and SCExAO. These systems will allow detection of planets 107 times fainter than their host star. For space- based missions, such as EXCEDE, EXO-C, EXO-S, WFIRST/AFTA, different teams have shown in laboratories contrasts reaching 10-10 within a few diffraction limits from the star using a combination of a coronagraph to suppress light coming from the host star and a wavefront control system. These demonstrations use a de- formable mirror (DM) to remove residual starlight (speckles) created by the imperfections of telescope. However, all these current and future systems focus on detecting faint planets around a single host star or unresolved bi- naries/multiples, while several targets or planet candidates are located around nearby binary stars such as our neighbor star Alpha Centauri. Until now, it has been thought that removing the light of a companion star is impossible with current technology, excluding binary star systems from target lists of direct imaging missions. Direct imaging around binaries/multiple systems at a level of contrast allowing Earth-like planet detection is challenging because the region of interest, where a dark zone is essential, is contaminated by the light coming from the hosts star companion. We propose a method to simultaneously correct aberrations and diffraction of light coming from the target star as well as its companion star in order to reveal planets orbiting the target star. This method works even if the companion star is outside the control region of the DM (beyond its half-Nyquist frequency), by taking advantage of aliasing effects.

  6. Research on improving image recognition robustness by combining multiple features with associative memory

    Science.gov (United States)

    Guo, Dongwei; Wang, Zhe

    2018-05-01

    Convolutional neural networks (CNN) achieve great success in computer vision, it can learn hierarchical representation from raw pixels and has outstanding performance in various image recognition tasks [1]. However, CNN is easy to be fraudulent in terms of it is possible to produce images totally unrecognizable to human eyes that CNNs believe with near certainty are familiar objects. [2]. In this paper, an associative memory model based on multiple features is proposed. Within this model, feature extraction and classification are carried out by CNN, T-SNE and exponential bidirectional associative memory neural network (EBAM). The geometric features extracted from CNN and the digital features extracted from T-SNE are associated by EBAM. Thus we ensure the recognition of robustness by a comprehensive assessment of the two features. In our model, we can get only 8% error rate with fraudulent data. In systems that require a high safety factor or some key areas, strong robustness is extremely important, if we can ensure the image recognition robustness, network security will be greatly improved and the social production efficiency will be extremely enhanced.

  7. Design of an image encryption scheme based on a multiple chaotic map

    Science.gov (United States)

    Tong, Xiao-Jun

    2013-07-01

    In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.

  8. Rehabilitation-triggered cortical plasticity after stroke: in vivo imaging at multiple scales (Conference Presentation)

    Science.gov (United States)

    Allegra Mascaro, Anna Letizia; Conti, Emilia; Lai, Stefano; Spalletti, Cristina; Di Giovanna, Antonino Paolo; Alia, Claudia; Panarese, Alessandro; Sacconi, Leonardo; Micera, Silvestro; Caleo, Matteo; Pavone, Francesco S.

    2017-02-01

    Neurorehabilitation protocols based on the use of robotic devices provide a highly repeatable therapy and have recently shown promising clinical results. Little is known about how rehabilitation molds the brain to promote motor recovery of the affected limb. We used a custom-made robotic platform that provides quantitative assessment of forelimb function in a retraction test. Complementary imaging techniques allowed us to access to the multiple facets of robotic rehabilitation-induced cortical plasticity after unilateral photothrombotic stroke in mice Primary Motor Cortex (Caudal Forelimb Area - CFA). First, we analyzed structural features of vasculature and dendritic reshaping in the peri-infarct area with two-photon fluorescence microscopy. Longitudinal analysis of dendritic