WorldWideScience

Sample records for multinuclear diffusion-ordered nmr

  1. A multinuclear static NMR study of geopolymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Favier, Aurélie, E-mail: aurelie.favier@epfl.ch [Univ Paris-Est, IFSTTAR, Materials Department, 14-20 bd Newton, F-77447 Marne la Vallée Cedex 2 (France); Habert, Guillaume [Institute for Construction and Infrastructure Management, ETH Zurich, CH-8093 Zurich (Switzerland); Roussel, Nicolas [Univ Paris-Est, IFSTTAR, Materials Department, 14-20 bd Newton, F-77447 Marne la Vallée Cedex 2 (France); D' Espinose de Lacaillerie, Jean-Baptiste [Ecole Supérieure de Physique et de Chimie Indusrtrielles de la Ville de Paris (ESPCI), ParisTech, PSL Research University, Soft Matter Sciences and Engineering Laboratory SIMM, CNRS UMR 7615, 10 rue Vauquelin, F-75005 Paris (France)

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  2. Recent Advances in Multinuclear NMR Spectroscopy for Chiral Recognition of Organic Compounds

    Directory of Open Access Journals (Sweden)

    Márcio S. Silva

    2017-02-01

    Full Text Available Nuclear magnetic resonance (NMR is a powerful tool for the elucidation of chemical structure and chiral recognition. In the last decade, the number of probes, media, and experiments to analyze chiral environments has rapidly increased. The evaluation of chiral molecules and systems has become a routine task in almost all NMR laboratories, allowing for the determination of molecular connectivities and the construction of spatial relationships. Among the features that improve the chiral recognition abilities by NMR is the application of different nuclei. The simplicity of the multinuclear NMR spectra relative to 1H, the minimal influence of the experimental conditions, and the larger shift dispersion make these nuclei especially suitable for NMR analysis. Herein, the recent advances in multinuclear (19F, 31P, 13C, and 77Se NMR spectroscopy for chiral recognition of organic compounds are presented. The review describes new chiral derivatizing agents and chiral solvating agents used for stereodiscrimination and the assignment of the absolute configuration of small organic compounds.

  3. Solid state multinuclear NMR. A versatile tool for studying the reactivity of solid systems

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Kenneth J.D. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand)

    2004-08-31

    Traditionally, X-ray powder diffraction has been a favoured method for studying chemical reactions in the solid state, but the increasing importance of energy-efficient synthesis methods for solids (e.g. sol-gel synthesis, mechanochemical synthesis) has led to the need for an analytical method not dependent on long-range structural periodicity. Multinuclear solid state nuclear magnetic resonance (NMR) represents a technique which is equally applicable to amorphous or crystalline solids, and is now used in increasing numbers of solid state studies.This paper briefly outlines the principles and practical details of this powerful technique and gives examples of its use in solid-state chemistry, particularly in very recent studies of mechanochemical synthesis of advanced sialon ceramics. The temperature at which these technically important silicon aluminium oxynitride compounds are formed can be significantly lowered by high-energy grinding of their components to produce X-ray amorphous precursors. Solid-state NMR has been used to provide detailed information which could not have been obtained by any other means about the chemical environment of the Si and Al atoms in these amorphous precursors, and the various atomic movements undergone as they crystallise to the final product.

  4. Analysis of Polycyclic Aromatic Hydrocarbon (PAH Mixtures Using Diffusion-Ordered NMR Spectroscopy and Adsorption by Powdered Activated Carbon and Biochar

    Directory of Open Access Journals (Sweden)

    Dong An

    2018-03-01

    Full Text Available Analysis of polycyclic aromatic hydrocarbons (PAHs in air and water sources is a key part of environmental chemistry research, since most PAHs are well known to be associated with negative health impacts on humans. This study explores an approach for analyzing PAH mixtures with advanced nuclear magnetic resonance (NMR spectroscopic techniques including high-resolution one-dimensional (1D NMR spectroscopy and diffusion-ordered NMR spectroscopy (DOSY NMR. With this method, different kinds of PAHs can be detected and differentiated from a mixture with high resolution. The adsorption process of PAH mixtures by PAC and biochar was studied to understand the mechanism and assess the method.

  5. Probing molecular dynamics of metal borohydrides on the surface of mesoporous scaffolds by multinuclear high resolution solid state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Son-Jong, E-mail: Sonjong@cheme.caltech.edu [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Hyun-Sook [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); To, Magnus [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Young-Su; Cho, Young Whan [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, Hyungkeun; Kim, Chul [Department of Chemistry, Hannam University, Daejeon 305-811 (Korea, Republic of)

    2015-10-05

    Graphical abstract: In situ variable temperature multinuclear solid state NMR allows to probe surface wetting, diffusivity, and confinement of metal borohydrides into nanopores. - Abstract: Understanding of surface interactions between borohydride molecules and the surfaces of porous supports have gained growing attention for successful development of nano-confinement engineering. By use of in situ variable temperature (VT) magic angle spinning (MAS) NMR, molecular mobility changes of LiBH{sub 4} crystalline solid has been investigated in the presence of silica based and carbonaceous surfaces. Spin–spin J-coupling of {sup 1}H–{sup 11}B in LiBH{sub 4} was monitored in series of VT NMR spectra to probe translational mobility of LiBH{sub 4} that appeared to be greatly enhanced upon surface contact. Such enhanced diffusivity was found to be effective in the formation of solid solution and co-confinement with other metal borohydrides. Co-confinement of LiBH{sub 4}–Ca(BH{sub 4}){sub 2} mixture was demonstrated at temperature as low as 100 °C, much lower than the reported bulk eutectic melting temperature. The discovery adds a novel property of LiBH{sub 4} that has been proven to be highly versatile in many energy related applications.

  6. Multinuclear (27Al, 29Si, 47,49Ti) solid-state NMR of titanium substituted zeolite USY.

    Science.gov (United States)

    Ganapathy, S; Gore, K U; Kumar, Rajiv; Amoureux, Jean-Paul

    2003-01-01

    Multinuclear solid-state NMR spectroscopy, employing 29Si MAS,27Al MAS/3Q-MAS and (47,49)Ti wide-line experiments, has been used for the structural characterization of titanium substituted ultra-stable zeolite Y (Ti-USY). 27Al MAS experiments show the presence of aluminum in four (Al(IV)), five (Al(V)), and six (Al(VI)) coordination, whereas the multiplicity within Al(IV) and Al(VI) is revealed by 27Al 3Q-MAS experiments. Two different tetrahedral and octahedral Al environments are resolved and their isotropic chemical shifts (delta(CS)) and second-order quadrupole interaction parameters (P(Q)) have been determined by a graphical analysis of the 3Q-MAS spectra. The emergence of signal with higher intensity at -101 ppm in the 29Si MAS spectrum of Ti-USY samples indicates the possible occurrence of Q4(3Si,1Ti) type silicon environments due to titanium substitution in the faujasite framework. High-field (11.74T) operation, using a probehead specially designed to handle a large sample volume, has enabled the acquisition of 47,49Ti static spectra and identification of the titanium environment in the zeolite. The chemical shielding and electric field gradient tensors for the titanium environment in the zeolite have been determined by a computer simulation of the quadrupolar broadened static 47,49Ti NMR spectra.

  7. Multinuclear NMR of CaSiO(3) glass: simulation from first-principles.

    Science.gov (United States)

    Pedone, Alfonso; Charpentier, Thibault; Menziani, Maria Cristina

    2010-06-21

    An integrated computational method which couples classical molecular dynamics simulations with density functional theory calculations is used to simulate the solid-state NMR spectra of amorphous CaSiO(3). Two CaSiO(3) glass models are obtained by shell-model molecular dynamics simulations, successively relaxed at the GGA-PBE level of theory. The calculation of the NMR parameters (chemical shielding and quadrupolar parameters), which are then used to simulate solid-state 1D and 2D-NMR spectra of silicon-29, oxygen-17 and calcium-43, is achieved by the gauge including projector augmented-wave (GIPAW) and the projector augmented-wave (PAW) methods. It is shown that the limitations due to the finite size of the MD models can be overcome using a Kernel Estimation Density (KDE) approach to simulate the spectra since it better accounts for the disorder effects on the NMR parameter distribution. KDE allows reconstructing a smoothed NMR parameter distribution from the MD/GIPAW data. Simulated NMR spectra calculated with the present approach are found to be in excellent agreement with the experimental data. This further validates the CaSiO(3) structural model obtained by MD simulations allowing the inference of relationships between structural data and NMR response. The methods used to simulate 1D and 2D-NMR spectra from MD GIPAW data have been integrated in a package (called fpNMR) freely available on request.

  8. Multinuclear MAS NMR studies on coked zeolites H-ZSM-5

    International Nuclear Information System (INIS)

    Ernst, H.; Freude, D.; Hunger, M.; Pfeifer, H.

    1991-01-01

    During the cracking process carbonaceous materials are deposited on the outer or inner surface of the catalyst. These deposits are in many cases the main cause of catalyst deactivation. Magic angle spinning (MAS) NMR investigations and catalytic n-hexane cracking were carried out on H-ZSM-5 zeolites after a mild hydrothermal de-alumination. By 13 C CP MAS NMR it could be shown that the enhanced catalytic activity does not enhance the coke formation and that the chemical nature of these deposits is essentially aromatic. From 1 H MAS NMR studies performed on shallow-bed activated sealed samples and 27 Al and 29 Si MAS NMR on rehydrated samples it follows that for high coke concentrations the catalyst deactivation is caused mainly by blocking of Broensted acid sites. (author). 27 refs.; 3 figs.; 2 tabs

  9. Regioselectivity in lithiation of 1-methylpyrazole: experimental, density functional theory and multinuclear NMR study

    DEFF Research Database (Denmark)

    Balle, Thomas; Begtrup, Mikael; Jaroszewski, Jerzy W.

    2006-01-01

    -position. The observed regioselectivity can be correctly predicted, at least qualitatively, using density functional B3LYP/6-31+G(d,p) calculations only when solvation effects (IEFPCM) are taken into account. The 1H,6Li HOESY and NOESY NMR spectra of the thermodynamic product 5-lithio-1-methylpyrazole (5...

  10. Multinuclear NMR studies of single lipid bilayers supported in cylindrical aluminum oxide nanopores.

    Science.gov (United States)

    Gaede, Holly C; Luckett, Keith M; Polozov, Ivan V; Gawrisch, Klaus

    2004-08-31

    Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.

  11. Structure and equilibria of Ca 2+-complexes of glucose and sorbitol from multinuclear ( 1H, 13C and 43Ca) NMR measurements supplemented with molecular modelling calculations

    Science.gov (United States)

    Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.

    2011-05-01

    Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.

  12. Chromium liquid waste inertization in an inorganic alkali activated matrix: Leaching and NMR multinuclear approach

    International Nuclear Information System (INIS)

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-01-01

    Highlights: • Inertization of chromium liquid waste in aluminosilicate matrix. • Water less inertization technique exploiting the waste water content. • Liquid waste inertization without drying step. • Long term stabilization study through leaching test. • SEM analysis and 29 Si and 27 Al MAS NMR in relation with long curing time. - Abstract: A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process - from the precursor dissolution to the final geopolymer matrix hardening - of different geopolymers containing a waste amount ranging from 3 to 20% wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of T−O−T bonds (where T is Al or Si) by 29 Si and 27 Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers

  13. Chromium liquid waste inertization in an inorganic alkali activated matrix: Leaching and NMR multinuclear approach

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni, Chiara, E-mail: chiara.ponzoni@unimore.it [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy); Lancellotti, Isabella; Barbieri, Luisa [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy); Spinella, Alberto; Saladino, Maria Luisa [University of Palermo CGA-UniNetLab, Palermo (Italy); Martino, Delia Chillura [University of Palermo, Department STEBICEF, Palermo (Italy); Caponetti, Eugenio [University of Palermo CGA-UniNetLab, Palermo (Italy); University of Palermo, Department STEBICEF, Palermo (Italy); Armetta, Francesco [University of Palermo, Department STEBICEF, Palermo (Italy); Leonelli, Cristina [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy)

    2015-04-09

    Highlights: • Inertization of chromium liquid waste in aluminosilicate matrix. • Water less inertization technique exploiting the waste water content. • Liquid waste inertization without drying step. • Long term stabilization study through leaching test. • SEM analysis and {sup 29}Si and {sup 27}Al MAS NMR in relation with long curing time. - Abstract: A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process - from the precursor dissolution to the final geopolymer matrix hardening - of different geopolymers containing a waste amount ranging from 3 to 20% wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of T−O−T bonds (where T is Al or Si) by {sup 29}Si and {sup 27}Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for

  14. Multinuclear NMR study of the structure of the Fv fragment of anti-dansyl mouse IgG2a antibody

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hideo; Odaka, Asano; Matsunaga, Chigusa; Kato, Koichi; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan)); Kawaminami, Shunro (Kao Corp., Tochigi (Japan))

    1991-07-02

    A multinuclear NMR study is reported of Fv, which is a minimum antigen-binding unit of immunoglobulin. Fv has been prepared by clostripain digestion of a mouse anti-dansyl IgG2a monoclonal antibody that lacks the entire C{sub H}1 domain. A variety of Fv analogues labeled with {sup 2}H in the aromatic rings and with {sup 13}C and/or {sup 15}N in the peptide bonds have been prepared and used for multinuclear NMR analyses of Fv spectra of Fv sensitively reflect the antigen binding and can be used along with {sup 1}H and {sup 13}C spectral data for the structural analyses of antigen-antibody interactions. Hydrogen-deuterium exchange of the amide protons has been folowed in the absence and presence of DNS-Lys by using the {sup 1}H-{sup 15}N shift correlation spectra. Use of the {beta}-shift observed for the carbonyl carbon resonances has also been helpful in following the hydrogen-deuterium exchange. On the basis of the NMR data obtained, the static and dynamic structure of the Fv fragment in the absence and presence of DNS-Lys has been discussed.

  15. Multinuclear NMR study of the structure of the Fv fragment of anti-dansyl mouse IgG2a antibody

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Odaka, Asano; Matsunaga, Chigusa; Kato, Koichi; Shimada, Ichio; Arata, Yoji; Kawaminami, Shunro

    1991-01-01

    A multinuclear NMR study is reported of Fv, which is a minimum antigen-binding unit of immunoglobulin. Fv has been prepared by clostripain digestion of a mouse anti-dansyl IgG2a monoclonal antibody that lacks the entire C H 1 domain. A variety of Fv analogues labeled with 2 H in the aromatic rings and with 13 C and/or 15 N in the peptide bonds have been prepared and used for multinuclear NMR analyses of Fv spectra of Fv sensitively reflect the antigen binding and can be used along with 1 H and 13 C spectral data for the structural analyses of antigen-antibody interactions. Hydrogen-deuterium exchange of the amide protons has been folowed in the absence and presence of DNS-Lys by using the 1 H- 15 N shift correlation spectra. Use of the β-shift observed for the carbonyl carbon resonances has also been helpful in following the hydrogen-deuterium exchange. On the basis of the NMR data obtained, the static and dynamic structure of the Fv fragment in the absence and presence of DNS-Lys has been discussed

  16. Heteronuclear cross-polarization in multinuclear multidimensional NMR: Prospects for triple-resonance CP

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, A.; Zuiderweg, E.R.P. [Univ. of Michigan, Ann Arbor, MI (United States)

    1994-12-01

    Heteronuclear multiple-pulse-based Cross Polarization (HECP) between scalar coupled spins is gaining an important role in high-resolution multidimensional NMR of isotopically labeled biomolecules, especially in experiments involving net magnetization transfer. It has generally been observed that in these situations, the performance of HECP is superior to that of INEPT-based sequences. In particular, HECP-based three-dimensional HCCH spectroscopy is more efficient than the INEPT version of the same experiment. Differences in sensitivity have been intuitively attributed to relaxation effects and technical factors such as radiofrequency (rf) inhomogeneity We present theoretical analyses and computer simulations to probe the effects of these factors. Relaxation effects were treated phenomenologically; we found that relaxation differences are relatively small (up to 25%) between pulsed-free-precession (INEPT) and HECP-although always in favor of HECP. We explored the rf effects by employing a Gaussian distribution of rf amplitude over sample volume. We found that inhomogeneity effects significantly favor HECP over INEPT, especially under conditions of {open_quotes}matched {close_quotes} inhomogeneity in the two rf coils. The differences in favor of HECP indicate that an extension of HECP to triple resonance experiments (TRCP) in I -> S -> Q net transfers might yield better results relative to analogous INEPT-based net transfers. We theoretically analyze the possibilities of TRCP and find that transfer functions are critically dependent on the ratio J{sub IS}/J{sub SQ}. When J{sub IS} equals J{sub SQ}, we find that 100% transfer is possible for truly simultaneous TRCP and this transfer is obtained in a time 1.41 /J. The TRCP time requirement compares favorably with optimally concatenated INEPT-transfers, where net transfer I -> S -> Q is complete at 1.5 /J.

  17. Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy.

    Science.gov (United States)

    Iqbal, Samina; Marchetti, Roberta; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio

    2017-10-01

    Low molecular weight fractions were derived from native high molecular weight dextran produced by Leuconostoc mesenteroides KIBGE-IB26. Structural characterization of native and low molecular weight fractions obtained after acidic and enzymatic hydrolysis was done using FTIR and NMR spectroscopy. The molecular weight was estimated using Diffusion Ordered NMR spectroscopy. Native dextran (892kDa) is composed of α-(1→6) glycosidic linkage along with α-(1→3) branching. Major proportion of 528kDa dextran was obtained after prolong enzymatic hydrolysis however, an effective acidic treatment at pH-1.4 up to 02 and 04h of exposure resulted in the formation of 77kDa and 57kDa, respectively. The increment in pH from 1.4 to 1.8 lowered the hydrolysis efficiency and resulted in the formation of 270kDa dextran fraction. The results suggest that derived low molecular weight water soluble fractions can be utilized as a drug delivery carrier along with multiple application relating pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Use of diffusion-ordered NMR spectroscopy and HPLC-UV-SPE-NMR to identify undeclared synthetic drugs in medicines illegally sold as phytotherapies.

    Science.gov (United States)

    Silva, Lorena M A; Filho, Elenilson G A; Thomasi, Sérgio S; Silva, Bianca F; Ferreira, Antonio G; Venâncio, Tiago

    2013-09-01

    The informal (and/or illegal) e-commerce of pharmaceutical formulations causes problems that governmental health agencies find hard to control, one of which concerns formulas sold as natural products. The purpose of this work was to explore the advantages and limitations of DOSY and HPLC-UV-SPE-NMR. These techniques were used to identify the components of a formula illegally marketed in Brazil as an herbal medicine possessing anti-inflammatory and analgesic properties. DOSY was able to detect the major components present at higher concentrations. Complete characterization was achieved using HPLC-UV-SPE-NMR, and 1D and 2D NMR analyses enabled the identification of known synthetic drugs. These were ranitidine and a mixture of orphenadrine citrate, piroxicam, and dexamethasone, which are co-formulated in a remedy called Rheumazim that is used to relieve severe pain, but it is prohibited in Brazil because of a lack of sufficient pharmacokinetic and pharmacodynamic information. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Multinuclear NMR characterization of CTAB-hexanol-water, sodium oleate-butanol-water and triton X-100-decanol-water microemulsions

    International Nuclear Information System (INIS)

    Nagy, J.B.; Bodart-Ravet, I.; Derouane, E.G.; Gourgue, A.; Verfaillie, J.P.

    1989-01-01

    Multinuclear NMR is a very valuable tool to characterize micellar systems or microemulsions. It allows one to determine c.m.c. values, to study the dissolution of organic molecules, the solvation of cations and anions, the structural changes occurring in a ternary diagram, the mobility of the molecules, etc. This review paper essentially deals with the characterization of cationic (CTAB-hexanol-water), anionic (sodium oleate-butanol-water) and neutral (Triton X-100-decanol-water) reversed micelles. The use of paramagnetic ions [Ni(II), CO(II), Fe(III), etc.] is particularly emphasized to characterize the site of solubilization and their interaction with surfactant and cosurfactant molecules 13 C-NMR). It is concluded, that the metallic ions are basically solvated in the inner water cores and one or more hexanol molecules are included in their first coordination shells in the CTAB-hexanol-water microemulsions. In the Triton X-100-decanol-water microemulsions, both decanol and Triton X-100 molecules enter the first coordination shell of Co(II) ions which are dissolved in both aqeous water cores and the organic medium. 19 F-NMR of a fluorinated probe molecule is particularly useful to study the size of the inner water cores. The method is based on the partition of the molecules between the interface and the organic medium. However, this method has to be applied with great care, and the computed data have to be compared to other physico-chemical results. Both 19 F- and 23 Na-NMR results show a great variation of the behaviour of the sodium oleate-butanol-water system in the so-called bicontinuous region. The Na + ions are oriented independently on a hypothetical inverse micellar droplet. (author). 43 refs.; 18 figs.; 7 tabs

  20. Contribution of extracellular glutamine as an anaplerotic substrate to neuronal metabolism: a re-evaluation by multinuclear NMR spectroscopy in primary cultured neurons.

    Science.gov (United States)

    Shokati, Touraj; Zwingmann, Claudia; Leibfritz, Dieter

    2005-10-01

    Multinuclear NMR spectroscopy is used to investigate the effect of glutamine on neuronal glucose metabolism. Primary neurons were incubated with [1-(13C)]glucose in the absence or presence of glutamine (2 mM) and/or NH4Cl (5 mM). After ammonia-treatment, the concentrations of high-energy phosphates decreased up to 84% of control, which was aggravated in glutamine-containing medium (up to 42% of control). These effects could not be attributed to changes in mitochondrial glucose oxidation. Withdrawal of glutamine decreased amino acid concentrations, e.g. of glutamate to 53%, but also considerably lessened the 13C enrichment in [4-(13C)]glutamate to 8.3% of control, and decreased the 13C-enrichment in acetyl-CoA entering the Krebs cycle (P neuronal glutamate stores, glutamate formation is mainly attributed to its de novo synthesis from glucose. Furthermore, mitochondrial glucose metabolism strongly depends on the supply of carbons from glutamine, indicating that exogenous glutamine is a well-suited substrate to replenish neuronal Krebs cycle intermediates.

  1. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis.

    Science.gov (United States)

    Zwingmann, Claudia; Leibfritz, Dieter; Hazell, Alan S

    2003-06-01

    A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1-13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-micro mol/L MnCl(2) led to 50% and 70% decreases of ATP/ADP and phosphocreatine-creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4-13C]glutamate, [2-13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3-13C]lactate and fourfold elevated [4-13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.

  2. Monitoring the functionalization of single-walled carbon nanotubes with chitosan and folic acid by two-dimensional diffusion-ordered nmr spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Torres, Mary H.; Molina, Daniel R.

    2012-01-01

    A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate that was......A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate...... that was generated by the linkage between the carboxyl moiety of the folic acid and the amino group of the chitosan, which in turn was non-covalently bound to the single-walled carbon nanotubes. The obtained diffusion coefficient values demonstrated that free folic acid diffused more rapidly than the folic acid...... conjugated to single-walled carbon nanotubes-chitosan. The values of the proton signal of hydrogen-1 nuclear magnetic resonance spectroscopy and two-dimensional hydrogen-1 nuclear magnetic resonance spectroscopy further confirmed that the folic acid was conjugated to the chitosan, wrapping the single...

  3. Binuclear Pt-Tl bonded complex with square pyramidal coordination around Pt: a combined multinuclear NMR, EXAFS, UV-Vis, and DFT/TDDFT study in dimethylsulfoxide solution.

    Science.gov (United States)

    Purgel, Mihály; Maliarik, Mikhail; Glaser, Julius; Platas-Iglesias, Carlos; Persson, Ingmar; Tóth, Imre

    2011-07-04

    The structure and bonding of a new Pt-Tl bonded complex formed in dimethylsulfoxide (dmso), (CN)(4)Pt-Tl(dmso)(5)(+), have been studied by multinuclear NMR and UV-vis spectroscopies, and EXAFS measurements in combination with density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. This complex is formed following the equilibrium reaction Pt(CN)(4)(2-) + Tl(dmso)(6)(3+) ⇆ (CN)(4)Pt-Tl(dmso)(5)(+) + dmso. The stability constant of the Pt-Tl bonded species, as determined using (13)C NMR spectroscopy, amounts to log K = 2.9 ± 0.2. The (NC)(4)Pt-Tl(dmso)(5)(+) species constitutes the first example of a Pt-Tl bonded cyanide complex in which the sixth coordination position around Pt (in trans with respect to the Tl atom) is not occupied. The spectral parameters confirm the formation of the metal-metal bond, but differ substantially from those measured earlier in aqueous solution for complexes (CN)(5)Pt-Tl(CN)(n)(H(2)O)(x)(n-) (n = 0-3). The (205) Tl NMR chemical shift, δ = 75 ppm, is at extraordinary high field, while spin-spin coupling constant, (1)J(Pt-Tl) = 93 kHz, is the largest measured to date for a Pt-Tl bond in the absence of supporting bridging ligands. The absorption spectrum is dominated by two strong absorption bands in the UV region that are assigned to MMCT (Pt → Tl) and LMCT (dmso → Tl) bands, respectively, on the basis of MO and TDDFT calculations. The solution of the complex has a bright yellow color as a result of a shoulder present on the low energy side of the band at 355 nm. The geometry of the (CN)(4)Pt-Tl core can be elucidated from NMR data, but the particular stoichiometry and structure involving the dmso ligands are established by using Tl and Pt L(III)-edge EXAFS measurements. The Pt-Tl bond distance is 2.67(1) Å, the Tl-O bond distance is 2.282(6) Å, and the Pt-C-N entity is linear with Pt-C and Pt···N distances amounting to 1.969(6) and 3.096(6) Å, respectively. Geometry optimizations on

  4. Multinuclear NMR spectroscopy of the tetrahedral uranium(IV) complex U(BH3CH3)4

    International Nuclear Information System (INIS)

    Gamp, E.; Shinomoto, R.; Edelstein, N.; McGarvey, B.R.

    1987-01-01

    The temperature dependence of the 1 H, 11 B, and 13 C NMR spectra of T/sub d/ U(BH 3 CH 3 ) 4 in solution is reported. The paramagnetic shifts are interpreted as originating purely from spin delocalization mechanisms with no contribution from the metal-orbital dipolar interaction. It is shown that the temperature dependence of both 1 H shifts (bridging and terminal protons) is identical with that calculated from a polarization theory which assumes the shift is proportional to the average value of electron spin in the inner 5f orbitals. The proportionality constant is -5.64 MHz for the bridging protons and -0.59 MHz for the terminal protons. The temperature dependences of 11 B and 13 shifts are found to depart significantly from that predicted by the polarization theory with the largest deviations shown by the 11 B shifts. It is shown how those deviations can be accounted for by postulating a second spin delocalization through direct covalency involving molecular orbitals formed from the uranium 5f orbitals and ligand s and p orbitals. 29 references, 4 figures, 3 tables

  5. 31P-edited diffusion-ordered 1H NMR spectroscopy for the spectral isolation and identification of organophosphorus compounds related to chemical weapons agents and their degradation products.

    Science.gov (United States)

    Mayer, Brian P; Valdez, Carlos A; Hok, Saphon; Chinn, Sarah C; Hart, Bradley R

    2012-12-04

    Organophosphorus compounds represent a large class of molecules that include pesticides, flame-retardants, biologically relevant molecules, and chemical weapons agents (CWAs). The detection and identification of organophosphorus molecules, particularly in the cases of pesticides and CWAs, are paramount to the verification of international treaties by various organizations. To that end, novel analytical methodologies that can provide additional support to traditional analyses are important for unambiguous identification of these compounds. We have developed an NMR method that selectively edits for organophosphorus compounds via (31)P-(1)H heteronuclear single quantum correlation (HSQC) and provides an additional chromatographic-like separation based on self-diffusivities of the individual species via (1)H diffusion-ordered spectroscopy (DOSY): (1)H-(31)P HSQC-DOSY. The technique is first validated using the CWA VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) by traditional two-dimensional DOSY spectra. We then extend this technique to a complex mixture of VX degradation products and identify all the main phosphorus-containing byproducts generated after exposure to a zinc-cyclen organometallic homogeneous catalyst.

  6. Multinuclear solid-state high-resolution and C-13 -{Al-27} double-resonance magic-angle spinning NMR studies on aluminum alkoxides

    NARCIS (Netherlands)

    Abraham, A.; Prins, R.; Bokhoven, J.A. van; Eck, E.R.H. van; Kentgens, A.P.M.

    2006-01-01

    A combination of Al-27 magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, C-13-H-1 CPMAS, and C-13-{Al-27} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum

  7. Diffusion and the dynamics of displacive phase transitions in cryolite (Na3AlF6) and chiolite (Na5Al3F14): Multi-nuclear NMR studies

    Science.gov (United States)

    Spearing, Dane R.; Stebbins, Jonathan F.; Farnan, Ian

    1994-10-01

    Cryolite is a mixed-cation perovskite (Na2(NaAl)F6) which undergoes a monoclinic to orthorhombic displacive phase transition at ˜550° C. Chiolite (Na5Al3F14) is associated with cryolite in natural deposits, and consists of sheets of corner sharing [AlF6] octahedra interlayered with edge-sharing [NaF6] octahedra. Multi-nuclear NMR line shape and relaxation time (T1) studies were performed on cryolite and chiolite in order to gain a better understanding of the atomic motions associated with the phase transition in cryolite, and Na diffusion in cryolite and chiolite. 27Al, 23Na, and 19F static NMR spectra and T1's in cryolite suggest that oscillatory motions of the [AlF6] octahedra among four micro-twin and anti-phase domains in α-cryolite begin at least 150° C below the transition temperature and persist above it. Variable temperature 23Na MAS NMR further indicates diffusional exchange at a rate of at least 13 kHz between the Na sites by the time the transition temperature is reached. 27Al and 23Na T1's show the same behavior with increasing temperature, indicating the same relaxation mechanisms are responsible for both. The first order nature of the cryolite transition is apparent as a jump in the 23Na and 27Al T1's. Above the transition temperature, the T1's decrease slightly indicating that the motions responsible for the drop in T1, are still present above the transition, further supporting the dynamic nature of the high temperature phase of cryolite. Chiolite 23Na static spectra decrease in linewidth with increasing temperature, indicating increased Na diffusion, which is interpreted as occurring within the [NaF6] sheets in the chiolite structure, but not between the two different Na sites. 27Al and 23Na T1's show similar behavior as in cryolite, but there is no discontinuity due to a phase transition. 19F T1's are constant from room temperature to 150° C indicating no oscillatory motion of the [AlF6] octahedra in chiolite.

  8. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene Diamine

    Directory of Open Access Journals (Sweden)

    Hsien-Ming Kao

    2012-06-01

    Full Text Available Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol-block-poly(ethylene glycol-block-poly(propylene glycol bis(2-aminopropyl ether complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS and 3-(triethoxysilylpropyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC, Fourier transform infrared (FTIR spectroscopy, alternating current (AC impedance and solid-state nuclear magnetic resonance (NMR spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains.

  9. Chemical characterization of a chelator-treated soil humate by solution-state multinuclear two-dimensional NMR and FTIR and pyrolysis-GCMS

    Energy Technology Data Exchange (ETDEWEB)

    Fan, T.W.M.; Higashi, R.M.; Lane, A.N.

    2000-05-01

    A California forest soil used for contaminant bioavailability studies was extracted for humic substances (HS) and then treated with 4,5-dihydroxy-1,3-benzene disulfonate (Tiron) to remove exchangeable metal ions. This yielded HS that was readily water-soluble at neutral pH without residual Tiron contamination, and the gel electrophoretic pattern was very similar to an international reference HS. The improved solubility facilitated analysis of HS by solution-state 1-D and 2-D {sup 1}H, {sup 13}C, {sup 31}P, and {sup 13}C-{sup 1}H NMR. The amino acids Gly, Ala, Leu, lle, Val, Asp, Ser, Thr, Glu, and Pro were identified in intact HS as peptidic from scalar coupling in TOCSY and dipolar interactions in NOESY and then confirmed by acid digestion of HS with 2-D {sup 1}H NMR and GCMS analysis. The presence of peptides was also corroborated by FT-IR and pyrolysis-GCMS results. Carbohydrates containing {alpha}- and {beta}-pyranoses, methoxy-phenylpropanyl structures, phosphate mono/diesters, polyphosphates, plus phosphatidic acid esters were also evident. Furthermore, the {sup 1}H NOESY, TOCSY, and HSQC together indicated that the peptidic side chains were mobile, whereas aromatic groups were relatively rigid. Thus the peptidic moieties may be more readily accessible to aqueous contaminants than aromatic groups.

  10. Multinuclear NMR resonance assignments and the secondary structure of Escherichia coli thioesterase/protease I: A member of a new subclass of lipolytic enzymes

    International Nuclear Information System (INIS)

    Lin Tahsien; Chen Chinpan; Huang Rongfong; Lee Yalin; Shaw Jeifu; Huang Taihuang

    1998-01-01

    Escherichia coli thioesterase/protease I is a 183 amino acid protein with a molecular mass of 20500. This protein belongs to a new subclass of lipolytic enzymes of the serine protease superfamily, but with a new GDSLS consensus motif, of which no structure has yet been determined. The protein forms a tetramer at pH values above 6.5 and exists as a monomer at lower pH values. Both monomer and tetramer are catalytically active. From analysis of a set of heteronuclear multidimensional NMR spectra with uniform and specific amino acid labeled protein samples, we have obtained near-complete resonance assignments of the backbone 1 H, 13 C and 15 N nuclei (BMRB databank accession number 4060). The secondary structure of E. coli thioesterase/protease I was further deduced from the consensus chemical shift indices, backbone short- and medium-range NOEs, and amide proton exchange rates. The protein was found to consist of four β-strands and seven α-helices, arranged in alternate order. The four β-strands were shown to form a parallel β-sheet. The topological arrangement of the β-strands of -1x, +2x, +1x appears to resemble that of the core region of the αβ hydrolase superfamily, typically found in common lipases and esterases. However, substantial differences, such as the number of β-strands and the location of the catalytic triad residues, make it difficult to give a definitive classification of the structure of E. coli thioesterase/protease I at present

  11. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  12. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    Science.gov (United States)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  13. Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages.

    Science.gov (United States)

    Cao, Ruge; Nonaka, Airi; Komura, Fusae; Matsui, Toshiro

    2015-03-15

    This work focuses on a quantitative analysis of sucrose using diffusion ordered-quantitative (1)H-nuclear magnetic resonance spectroscopy (DOSY-qNMR), where an analyte can be isolated from interference based on its characteristic diffusion coefficient (D) in gradient magnetic fields. The D value of sucrose in deuterium oxide at 30°C was 4.9 × 10(-10)m(2)/s at field gradient pulse from 5.0 × 10(-2) to 3.0 × 10(-1)T/m, separated from other carbohydrates (glucose and fructose). Good linearity (r(2)=0.9999) was obtained between sucrose (0.5-20.0 g/L) and the resonance area of target glucopyranosyl-α-C1 proton normalised to that of cellobiose C1 proton (100.0 g/L, as an internal standard) in 1D sliced DOSY spectrum. The DOSY-qNMR method was successfully applied to quantify sucrose in orange juice (36.1 ± 0.5 g/L), pineapple juice (53.5 ± 1.1g/L) and a sports drink (24.7 ± 0.6g/L), in good agreement with the results obtained by an F-kit method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  15. 40 CFR 180.1149 - Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Inclusion bodies of the multi-nuclear... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. The microbial pest control agent inclusion bodies of the multi-nuclear...

  16. Tritiation methods and tritium NMR spectroscopy

    International Nuclear Information System (INIS)

    Jaiswal, D.K.; Morimoto, H.; Salijoughian, M.; Williams, P.G.

    1991-09-01

    We have used a simple process for the production of highly tritiated water and characterized the product species by 1 H and 3 H NMR spectroscopy. The water is readily manipulated and used in subsequent reactions either as T 2 O, CH 3 COOT or CF 3 COOT. Development of tritiated diimide has progressed to the point where cis-hydrogenated products at 1-20 Ci/mmole S.A. are possible. Tri-n-butyl tin tritide has been produced at >95% tritium content and well characterized by multinuclear NMR techniques. 27 refs., 3 figs

  17. Multinuclear solid-state nuclear magnetic resonance of inorganic materials

    CERN Document Server

    MacKenzie, Kenneth J D

    2002-01-01

    Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

  18. Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Grey, Clare P.; Sideris, Paul J.

    2008-01-01

    The anion- exchange ability of layered double hydroxides ( LDHs) has been exploited to create materials for use in catalysis, drug delivery, and environmental remediation. The specific cation arrangements in the hydroxide layers of hydrotalcite- like LDHs, of general formula Mg1-x2+Alx3+OH2(Anion...

  19. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  20. Synthesis of Fe–Li–Cr Multinuclear Complexes as Molecular Magnet Materials

    Directory of Open Access Journals (Sweden)

    Iis Siti Jahro

    2008-03-01

    Full Text Available Multinuclear complexes have received considerable interest as molecular magnet materials. Up to now, several complex compounds based on bidentate ligand 2,2’ bipyridine have been synthesized. In this research, the Fe-Li-Cr multinuclear complexes with derivative 2’2- bipyridine ligands: 2-(2’-pyridylquinoline(pq, 2,2’-Pyridil(pdl have been synthesized. The oxalate (ox ligand has also been used as a bridging ligand in these multinuclear complexes. The chemical formula of Li[FeCr(ox2(pq(BF42(H2O2] and [Fe(pdln][LiCr(ox3] complexes have been verified using metal and C, H, N elemental analysis data. The IR spectra in 350 – 4000 cm-1 range exhibit characteristic absorptions, which support the proposed structure of complex. The plausible structure of the compounds has been drawn based on complex formation mechanism. The magnetic susceptibility at room temperature of the pq-complex is about 5.7 BM and of the pdl- complexes are 4.8 and 5.5 BM. These indicated that both spin states of iron(II exist in the multinuclear complexes.

  1. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    Science.gov (United States)

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Crystal structure and tautomerism of Pigment Yellow 138 determined by X-ray powder diffraction and solid-state NMR

    DEFF Research Database (Denmark)

    Gumbert, Silke D.; Körbitzer, Meike; Alig, Edith

    2016-01-01

    The crystal structure of C.I. Pigment Yellow 138 was determined from X-ray powder diffraction data using real-space methods with subsequent Rietveld refinements. The tautomeric state was investigated by solid-state 1D and 2D multinuclear NMR experiments. In the crystals, the compound exhibits...... the NH-tautomer with a hydrogen atom situated at the nitrogen of the quinoline moiety. Direct evidence of the presence of the NH-tautomer is provided by 1H–14N HMQC solid-state NMR at very fast MAS. Solid-state dispersion-corrected density functional theory calculations with BLYP-D3 confirm...

  3. NMR imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.

    1983-01-01

    Since hydrogen is the most abundant element in all living organisms, proton NMR lends itself well as a method of investigation in biology and medicine. NMR imaging has some special advantages as a diagnostic tool: no ionizing radiation is used, it is noninvasive; it provides a safer means of imaging than the use of x-rays, gamma rays, positrons, or heavy ions. In contrast with ultrasound, the radiation penetrates the bony structures without attenuation. In additional to morphological information, NMR imaging provides additional diagnostic insights through relaxation parameters, which are not available from other imaging methods. In the decade since the first primitive NMR images were obtained, the quality of images now obtained approaches those from CT x-ray scanners. Prototype instruments are being constructed for clinical evaluation and the first whole-body scanners are beginning to appear on the market at costs comparable to CT scanners. Primary differences in equipment for conventional NMR and NMR imaging are the much larger aperture magnets that are required for the examination of human subjects and the addition of coils to generate field gradients and facilities for manipulating the gradients. Early results from clinical trials in many parts of the world are encouraging, and in a few years, the usefuleness of this modality of medical imaging to the medical profession in diagnosis and treatment of disease will be defined. 10 figures

  4. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  5. NMR imaging

    International Nuclear Information System (INIS)

    Ouchi, Toshihiro; Steiner, R.E.

    1984-01-01

    Three epidermoid and two dermoid tumours, pathologically proven, were examined by NMR and CT scans. Although most brain tumours have a low signal with a long T 1 , a dermoid cyst and one of the two components of the other dermoid tumour had a high signal and therefore a short T 1 . All three epidermoid tumours had a low signal and a long T 1 . Because of the high level contrast between some of the tumours and cerebrospinal fluid, NMR is helpful to detect the lesion. Neither of the liquid fluid levels in the tumour cysts or floating fat in the subarachnoid space was recognized in one patients, but the fine leakage of the content from the epidermoid cyst into the lateral ventricle was detected on a saturation recovery 1000 image in one case. (author)

  6. Design and implementation of a simple multinuclear MRI system for ultra high-field imaging of animals

    Science.gov (United States)

    Choi, Chang-Hoon; Ha, YongHyun; Veeraiah, Pandichelvam; Felder, Jörg; Möllenhoff, Klaus; Shah, N. Jon

    2016-12-01

    Non-proton MRI has recently garnered gathering interest with the increased availability of ultra high-field MRI system. Assuming the availability of a broadband RF amplifier, performing multinuclear MR experiments essentially requires additional hardware, such as an RF resonator and a T/R switch for each nucleus. A double- or triple-resonant RF probe is typically constructed using traps or PIN-diode circuits, but this approach degrades the signal-to-noise ratio (SNR) and image quality compared to a single-resonant coil and this is a limiting factor. In this work, we have designed the required hardware for multinuclear MR imaging experiments employing six single-resonant coil sets and a purpose-built animal bed; these have been implemented into a home-integrated 9.4 T preclinical MRI scanner. System capabilities are demonstrated by distinguishing concentration differences and sensitivity of X-nuclei imaging and spectroscopy without SNR penalty for any nuclei, no subject interruption and no degradation of the static shim conditions.

  7. NMR spectroscopy

    International Nuclear Information System (INIS)

    Gruenert, J.

    1989-01-01

    The book reviews the applications of NMR-spectroscopy in medicine and biology. The first chapter of about 40 pages summarizes the history of development and explains the chemical and physical fundamentals of this new and non-invasive method in an easily comprehensible manner. The other chapters summarize diagnostic results obtained with this method in organs and tissues, so that the reader will find a systematic overview of the available findings obtained in the various organ systems. It must be noted, however, that ongoing research work and new insight quite naturally will necessitate corrections to be done, as is the case here with some biochemical interpretations which would need adjustment to latest research results. NMR-spectroscopy is able to measure very fine energy differences on the molecular level, and thus offers insight into metabolic processes, with the advantage that there is no need of applying ionizing radiation in order to qualitatively or quantitatively analyse the metabolic processes in the various organ systems. (orig./DG) With 40 figs., 4 tabs [de

  8. Mobility of drugs in lipid membranes by NMR

    International Nuclear Information System (INIS)

    Yoshii, Noriyuki; Okamura, Emiko

    2011-01-01

    Mobility of drugs and biomembrane constituents is a key to elucidate the membrane transport mechanism in the cell. Lipid bilayer membrane is a dynamic structure where molecules are always fluctuating under physiological conditions. The mechanism of drug transport is related to the molecular dynamics in such soft, fluid membrane interface. To gain insight into molecular movements in membranes, we develop a noninvasive method to monitor dynamics properties of drugs and lipid components in membranes by applying multinuclear high-resolution solution NMR in combination with the pulsed-field-gradient (PFG) technique. We have quantified the diffusivity, the kinetics of membrane binding, and the bound fraction of the drug in situ by using large unilamellar vesicles of egg phosphatidylcholine as model cell membranes. The combination of 1D and PFG NMR serves to quantify the kinetics of membrane binding where the bound and the free components are unable to distinguish because of the rapid exchange on the NMR timescale. A small-sized 5-fluorouracil and fluorinated bisphenol A are used as model drug. (author)

  9. A multinuclear solid-state magnetic resonance study of silver nitrate triphenylphosphine

    International Nuclear Information System (INIS)

    Oh, S.-W.; Bernard, G.M.; Wasylishen, R.E.; McDonald, R.; Ferguson, M.J.

    2005-01-01

    Variable-temperature solid-state 31 P, 15 N, and 2 H NMR spectroscopy, X-ray diffraction, and differential scanning calorimetry studies of the 1:1 adduct of silver nitrate and triphenylphosphine (AgNO 3 ·PPh 3 ) reveal a solid-solid phase transition at 300 K. The principal components of the phosphorus and nitrogen chemical shift tensors for both phases are determined from NMR spectra of MAS and stationary samples. In addition, the indirect spin-spin coupling between phosphorus and the naturally occurring isotopes of silver ( 107 Ag and 109 Ag) are resolved. Experimental 2 H NMR line shapes for silver nitrate perdeuterated triphenylphosphine are those characteristic of rigid phenyl groups at temperatures above and below the phase-transition temperature. Powder and single-crystal X-ray diffraction data for AgNO 3 ·PPh 3 obtained at 193, 295, and 313 K are reported; data obtained at 193 and 295 K are almost identical, but are significantly different from those obtained at 313 K and from an earlier single-crystal X-ray diffraction investigation performed at 298 K. All X-ray studies found that AgNO 3 ·PPh 3 crystallizes in the monoclinic form, space group P2 1 lc. (author)

  10. A multinuclear solid-state magnetic resonance study of silver nitrate triphenylphosphine

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S.-W.; Bernard, G.M.; Wasylishen, R.E. [Univ. of Alberta, Dept. of Chemistry, Gunning/Lemieux Chemistry Centre, Edmonton, Alberta (Canada)]. E-mail: roderick.wasylishen@ualberta.ca; McDonald, R.; Ferguson, M.J. [Univ. of Alberta, Dept. of Chemistry, X-Ray Crystallography Lab., Edmonton, Alberta (Canada)

    2005-10-15

    Variable-temperature solid-state {sup 31}P, {sup 15}N, and {sup 2}H NMR spectroscopy, X-ray diffraction, and differential scanning calorimetry studies of the 1:1 adduct of silver nitrate and triphenylphosphine (AgNO{sub 3}{center_dot}PPh{sub 3}) reveal a solid-solid phase transition at 300 K. The principal components of the phosphorus and nitrogen chemical shift tensors for both phases are determined from NMR spectra of MAS and stationary samples. In addition, the indirect spin-spin coupling between phosphorus and the naturally occurring isotopes of silver ({sup 107}Ag and {sup 109}Ag) are resolved. Experimental {sup 2}H NMR line shapes for silver nitrate perdeuterated triphenylphosphine are those characteristic of rigid phenyl groups at temperatures above and below the phase-transition temperature. Powder and single-crystal X-ray diffraction data for AgNO{sub 3}{center_dot}PPh{sub 3} obtained at 193, 295, and 313 K are reported; data obtained at 193 and 295 K are almost identical, but are significantly different from those obtained at 313 K and from an earlier single-crystal X-ray diffraction investigation performed at 298 K. All X-ray studies found that AgNO{sub 3}{center_dot}PPh{sub 3} crystallizes in the monoclinic form, space group P2{sub 1}lc. (author)

  11. 13C and 17O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351

    International Nuclear Information System (INIS)

    Clark, D.L.; Newton, T.W.; Palmer, P.D.; Zwick, B.D.

    1995-01-01

    Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U0 2 (CO 3 ) 3 4- and (UO 2 ) 3 (CO 3 ) 6 6- in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = -log(a H + ) versus p[H] = -log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA

  12. Defects in doped LaGaO3 anionic conductors: linking NMR spectral features, local environments, and defect thermodynamics.

    Science.gov (United States)

    Blanc, Frédéric; Middlemiss, Derek S; Gan, Zhehong; Grey, Clare P

    2011-11-09

    Doped lanthanum gallate perovskites (LaGaO(3)) constitute some of the most promising electrolyte materials for solid oxide fuel cells operating in the intermediate temperature regime. Here, an approach combining experimental multinuclear NMR spectroscopy with density functional theory total energy and GIPAW NMR calculations yields a comprehensive understanding of the structural and defect chemistries of Sr- and Mg-doped LaGaO(3) anionic conductors. The DFT energetics demonstrate that Ga-V(O)-Ga (V(O) = oxygen vacancy) environments are favored (vs Ga-V(O)-Mg, Mg-V(O)-Mg and Mg-O-Mg-V(O)-Ga) across a range y = 0.0625, 0.125, and 0.25 of fractional Mg contents in LaGa(1-y)Mg(y)O(3-y/2). The results are interpreted in terms of doping and mean phase formation energies (relative to binary oxides) and are compared with previous calculations and experimental calorimetry data. Experimental multinuclear NMR data reveal that while Mg sites remain six-fold coordinated across the range of phase stoichiometries, albeit with significant structural disorder, a stoichiometry-dependent minority of the Ga sites resonate at a shift consistent with Ga(V) coordination, demonstrating that O vacancies preferentially locate in the first anion coordination shell of Ga. The strong Mg-V(O) binding inferred by previous studies is not observed here. The (17)O NMR spectra reveal distinct resonances that can be assigned by using the GIPAW NMR calculations to anions occupying equatorial and axial positions with respect to the Ga(V)-V(O) axis. The disparate shifts displayed by these sites are due to the nature and extent of the structural distortions caused by the O vacancies.

  13. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  14. Imaging Prostate Cancer Invasion with Multi-Nuclear Magnetic Resonance Methods: The Metabolic Boyden Chamber

    Directory of Open Access Journals (Sweden)

    Ulrich Pilatus

    2000-05-01

    Full Text Available The physiological milieu within solid tumors can influence invasion and metastasis. To determine the impact of the physiological environment and cellular metabolism on cancer cell invasion, it is necessary to measure invasion during well-controlled modulation of the physiological environment. Recently, we demonstrated that magnetic resonance imaging can be used to monitor cancer cell invasion into a Matrigel layer [Artemov D, Pilatus U, Chou S, Mori N, Nelson JB, and Bhujwalla ZM. (1999. Dynamics of prostate cancer cell invasion studied in vitro by NMR microscopy. Mag Res Med 42, 277–282.]. Here we have developed an invasion assay (“Metabolic Boyden Chamber” that combines this capability with the properties of our isolated cell perfusion system. Long-term experiments can be performed to determine invasion as well as cellular metabolism under controlled environmental conditions. To characterize the assay, we performed experiments with prostate cancer cell lines preselected for different invasive characteristics. The results showed invasion into, and degradation of the Matrigel layer, by the highly invasive/metastatic line (MatLyLu, whereas no significant changes were observed for the less invasive/metastatic cell line (DU-145. With this assay, invasion and metabolism was measured dynamically, together with oxygen tensions within the cellular environment and within the Matrigel layer. Such a system can be used to identify physiological and metabolic characteristics that promote invasion, and evaluate therapeutic interventions to inhibit invasion.

  15. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    International Nuclear Information System (INIS)

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho

    2005-01-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear β-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear β-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3β activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death

  16. NMR-CT scanner

    International Nuclear Information System (INIS)

    Kose, Katsumi; Sato, Kozo; Sugimoto, Hiroshi; Sato, Masataka.

    1983-01-01

    A brief explanation is made on the imaging methods for a practical diagnostic NMR-CT scanner : A whole-body NMR-CT scanner utilizing a resistive magnet has been developed by Toshiba in cooperation with the Institute for Solid State Physics, the University of Tokyo. Typical NMR-CT images of volunteers and patients obtained in the clinical experiments using this device are presented. Detailed specifications are also shown about the practical NMR-CTs which are to be put on the market after obtaining the government approval. (author)

  17. NMR imaging and pharmaceutical sciences

    International Nuclear Information System (INIS)

    Beall, P.T.; Good, W.R.

    1986-01-01

    Described is the technique of NMR-imaging in diagnostic medicine. Proton and phosphorus NMR in diagnosis of abnormal tissue pathology. Discussed is the value of NMR to the pharmaceutical sciences. NMR may play an important role in monitoring the response of tissues to drugs, determining the localization of drugs, performing real time pharmacokinetics and testing the use of NMR contrast pharmaceuticals

  18. Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O

    2010-01-01

    to anaerobic metabolism due to inhibition of the aerobic pathway in the mitochondria. Conversely, lower levels of unlabeled ((12)C) lactate were apparent at increasing severity of stress, which indicate that lactate is released from the myotubes to the medium. In conclusion, the metabolites identified......In the present study, the metabolic effects of heat and anoxic stress in myotubes from the mouse cell line C2C12 were investigated by using a combination of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy and enrichment with [(13)C]-glucose. Both the (13)C and the (1)H NMR...... spectra showed reduced levels of the amino acids alanine, glutamate, and aspartate after heat or anoxic stress. The decreases were smallest at 42 degrees C, larger at 45 degrees C, and most pronounced after anoxic conditions. In addition, in both the (1)H and the (31)P NMR spectra, decreases in the high...

  19. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs

  20. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs

  1. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Misiewicz, Julia [Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (Germany); Afonin, Sergii; Grage, Stephan L.; Berg, Jonas van den; Strandberg, Erik; Wadhwani, Parvesh [Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2) (Germany); Ulrich, Anne S., E-mail: anne.ulrich@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (Germany)

    2015-04-15

    Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. {sup 19}F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively {sup 19}F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. {sup 31}P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, {sup 2}H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization.

  2. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  3. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  4. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  5. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... covering all the systems, so far discovered.5,7,8,12. With the increasing ... Structural investigations on proteins by NMR are, currently ... rapid analysis of unfolded proteins. ...... and hence help in design of drugs against them.

  6. Theory of NMR probe design

    International Nuclear Information System (INIS)

    Schnall, M.D.

    1988-01-01

    The NMR probe is the intrinsic part of the NMR system which allows transmission of a stimulus to a sample and the reception of a resulting signal from a sample. NMR probes are used in both imaging and spectroscopy. Optimal probe design is important to the production of adequate signal/moise. It is important for anyone using NMR techniques to understand how NMR probes work and how to optimize probe design

  7. NMR-based metabolomics of water-buffalo milk after conventional or biological feeding

    Directory of Open Access Journals (Sweden)

    Pierluigi Mazzei

    2018-02-01

    Full Text Available Abstract Background Biological farming in dairy production is often advocated as one of the most virtuous solutions to the environmental problems of conventional farming while improving the sustainability of production and cattle welfare. However, it is still under debate whether the conversion from conventional to biological farming has an influence on milk composition. In addition, the possible frauds related to biological dairy products call for analytical tools enabling the authentication of products quality and consumers protection. The aim of this work was to determine the composition of milk produced by water-buffaloes and to identify the specific metabolic profiles discriminating a biological from a conventional feeding diet. Methods Liquid-state 1H, 13C, and 31P nuclear magnetic resonance (NMR spectroscopies were used to study milk samples which were supplied during a 2-year-long experimentation by a single dairy farm and sampled from conventionally and biologically fed buffaloes (CFM and BFM, respectively. For each milk sample, we obtained NMR spectra of both raw milk and milk cream fractions comprising neutral lipids and phospholipids. Results The elaboration of multinuclear spectroscopic NMR results by the principal component analysis (PCA enabled the identification of diagnostic differences in the milk composition between CFM and BFM samples. In particular, BFM were characterized by larger content of unsaturated lipids and phosphatidylcholine. Our findings confirmed that the conversion from a conventional to biological feeding regime influenced the buffalo milk composition, with possible implications for sensorial and nutritional properties of dairy products. Finally, the analytical methodology of NMR spectroscopy shown here may be considered as a useful tool to assess the quality and the authenticity of biological milk.

  8. NMR studies of the fate of adenine nucleotides in glucose-starved erythrocytes

    International Nuclear Information System (INIS)

    Bubb, W.A.; Mulquiney, P.J.; Kuchel, P.W.; Rohwer, J.; De Atauri, P.

    2002-01-01

    Full text: As a consequence of many refinements during the past 30 years, we now have a detailed understanding of the glycolytic pathway in human erythrocytes. By comparison, and notwithstanding their central importance to four key steps in erythrocyte glycolysis, our knowledge of the catabolism of adenine nucleotides remains relatively limited. In particular, the mechanism for the degradation of AMP, whose concentration rises under conditions of oxidative stress or glucose deprivation, remains poorly understood, AMP degradation may proceed via two possible pathways which converge in the production of inosine. Analysis of the key intermediates for the respective pathways, adenosine and AMP, as well as determination of end products is not straightforward. High-resolution NMR spectroscopy affords a potentially simple analytical solution to this problem but is complicated by spectral overlap and the sensitivity of key resonances to variations in pH and the concentrations of cations such as Mg 2+ . We describe a multinuclear NMR approach towards characterising the intermediates and end-products of adenine nucleotide metabolism in glucose-starved human erythrocytes. Assignments based on homo- and heteronuclear correlation experiments for both 13 C and 31 P are presented

  9. Microprocessorized NMR measurement

    International Nuclear Information System (INIS)

    Rijllart, A.

    1984-01-01

    An MC68000 CAMAC microprocessor system for fast and accurate NMR signal measurement will be presented. A stand-alone CAMAC microprocessor system (MC68000 STAC) with a special purpose interface sweeps a digital frequency synthesizer and digitizes the NMR signal with a 16-bit ADC of 17 μs conversion time. It averages the NMR signal data over many sweeps and then transfers it through CAMAC to a computer for calculation of the signal parameters. The computer has full software control over the timing and sweep settings of this signal averager, and thus allows optimization of noise suppression. Several of these processor systems can be installed in the same crate for parallel processing, and the flexibility of the STAC also allows easy adaptation to other applications such as transient recording or phase-sensitive detection. (orig.)

  10. A solid state NMR study of layered double hydroxides intercalated with para-amino salicylate, a tuberculosis drug

    DEFF Research Database (Denmark)

    Jensen, Nicholai Daugaard; Bjerring, Morten; Nielsen, Ulla Gro

    2016-01-01

    Para-amino salicylate (PAS), a tubercolosis drug, was intercalated in three different layered double hydroxides (MgAl, ZnAl, and CaAl-LDH) and the samples were studied by multi-nuclear (1H, 13C, and 27Al) solid state NMR (SSNMR) spectroscopy in combination with powder X-ray diffraction (PXRD....... Moreover, 13C MAS NMR and infra-red spectroscopy show that PAS did not decompose during synthesis. Large amounts (20-41%) of amorphous aluminum impurities were detected in the structure using 27Al single pulse and 3QMAS NMR spectra, which in combination with 1H single and double quantum experiments also...... showed that the M(II):Al ratio was higher than predicted from the bulk metal composition of MgAl-PAS and ZnAl-PAS. Moreover, the first high-resolution 1H SSNMR spectra of a CaAl LDH is reported and assigned using 1H single and double quantum experiments in combination with 27Al{1H} HETCOR....

  11. Fourier transform NMR

    International Nuclear Information System (INIS)

    Hallenga, K.

    1991-01-01

    This paper discusses the concept of Fourier transformation one of the many precious legacies of the French mathematician Jean Baptiste Joseph Fourier, essential for understanding the link between continuous-wave (CW) and Fourier transform (FT) NMR. Although in modern FT NMR the methods used to obtain a frequency spectrum from the time-domain signal may vary greatly, from the efficient Cooley-Tukey algorithm to very elaborate iterative least-square methods based other maximum entropy method or on linear prediction, the principles for Fourier transformation are unchanged and give invaluable insight into the interconnection of many pairs of physical entities called Fourier pairs

  12. A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy† †Electronic supplementary information (ESI) available: Details about the methodology, LabView scripts, experimental set-ups, additional spectra and self-optimization can be found in the SI. See DOI: 10.1039/c4sc03075c Click here for additional data file.

    Science.gov (United States)

    Sans, Victor; Porwol, Luzian; Dragone, Vincenza

    2015-01-01

    A configurable platform for synthetic chemistry incorporating an in-line benchtop NMR that is capable of monitoring and controlling organic reactions in real-time is presented. The platform is controlled via a modular LabView software control system for the hardware, NMR, data analysis and feedback optimization. Using this platform we report the real-time advanced structural characterization of reaction mixtures, including 19F, 13C, DEPT, 2D NMR spectroscopy (COSY, HSQC and 19F-COSY) for the first time. Finally, the potential of this technique is demonstrated through the optimization of a catalytic organic reaction in real-time, showing its applicability to self-optimizing systems using criteria such as stereoselectivity, multi-nuclear measurements or 2D correlations. PMID:29560211

  13. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy

    Science.gov (United States)

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  14. De novo design of chiral organotin cancer drug candidates: validation of enantiopreferential binding to molecular target DNA and 5'-GMP by UV-visible, fluorescence, (1)H and (31)P NMR.

    Science.gov (United States)

    Arjmand, Farukh; Sharma, Girish Chandra; Sayeed, Fatima; Muddassir, Mohd; Tabassum, Sartaj

    2011-12-02

    N,N-bis[(R-/S-)-1-benzyl-2-ethoxyethane] tin (IV) complexes were synthesized by applying de novo design strategy by the condensation reaction of (R-/S-)2-amino-2-phenylethanol and dibromoethane in presence of dimethyltin dichloride and thoroughly characterized by elemental analysis, conductivity measurements, IR, ESI-MS, (1)H, (13)C and (119)Sn, multinuclear NMR spectroscopy and XRD study. Enantioselective and specific binding profile of R-enantiomer 1 in comparison to S-enantiomer 2 with ultimate molecular target CT-DNA was validated by UV-visible, fluorescence, circular dichroism, (1)H and (31)P NMR techniques. This was further corroborated well by interaction of 1 and 2 with 5'-GMP. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  16. NMR Study on the Inclusion Complexes of β-Cyclodextrin with Isoflavones

    Directory of Open Access Journals (Sweden)

    Rui Zhao

    2016-03-01

    Full Text Available The structure of the inclusion complexes of β-cyclodextrin (β-CD with daidzein and daidzin in D2O were investigated using NMR spectroscopy. For the β-CD and daidzein system, two types of 1:1 complexes were formed with the daidzein deeply inserted into the CD cavity with different orientations. For the β-CD/daidzin system, a 1:1 complex was formed with the flavonoid part of daidzin entering the CD cavity from the wide rim. The inclusion complexes determined by NMR were constructed using molecular docking. Furthermore, the mixture of puerarin, daidzein and daidzin, which are the major isoflavonoid components present in Radix puerariae, was analyzed by diffusion-ordered spectroscopy (DOSY alone and upon addition of β-CD in order to mimic chromatographic conditions and compare their binding affinities.

  17. Single-sided NMR

    CERN Document Server

    Casanova, Federico; Blümich, Bernhard

    2011-01-01

    Single-Sided NMR describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications. One of the key advantages to this method is the speed at which the images are obtained.

  18. Autonomous driving in NMR.

    Science.gov (United States)

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. NMR for chemists and biologists

    CERN Document Server

    Carbajo, Rodrigo J

    2013-01-01

    This book offers a concise introduction to the field of nuclear magnetic resonance or NMR. It presents the basic foundations of NMR in a non-mathematical way and provides an overview of both recent and important biological applications of NMR.

  20. NMR, water and plants

    International Nuclear Information System (INIS)

    As, H. van.

    1982-01-01

    This thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and other body fluids in human and animals. The method is based on a pulse sequence of equidistant π pulses in combination with a linear magnetic field gradient. (Auth.)

  1. Surface characterization of hydrophobic core-shell QDs using NMR techniques

    Science.gov (United States)

    Zhang, Chengqi; Zeng, Birong; Palui, Goutam; Mattoussi, Hedi

    2018-02-01

    Using a few solution phase NMR spectroscopy techniques, including 1H NMR and 31P NMR, we have characterized the organic shell on CdSe-ZnS core-shell quantum dots and tracked changes in its composition when the QD dispersions are subjected to varying degrees of purification. Combining solution phase NMR with diffusion ordered spectroscopy (DOSY), we were able to distinguish between freely diffusing ligands in the sample from those bound on the surfaces. Additionally, matrix assisted laser desorption ionization (MALDI) and FTIR measurements were used to provide complementary and supporting information on the organic ligand coating for these nanocrystals. We found that the organic shell is dominated by monomeric or oligomeric n-hexylphosphonic acid (HPA), along with small portion of 1-hexadecyl amine (HDA). The presence of TOP/TOPO (tri-n-octylphosphine / tri-noctylphosphine oxide) molecules is much smaller, even though large excess of TOP/TOPO were used during the QD growth. These results indicate that HPA (alkyl phosphonate) exhibits the strongest coordination affinity to ZnS-rich QD surfaces grown using the high temperature injection route.

  2. Magic Angle Spinning NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  3. NMR in clinical practice

    International Nuclear Information System (INIS)

    Smith, F.W.

    1987-01-01

    The development of NMR for clinical use has been complicated by a number of controversies, the largest of these being the question of what is the optimum field strength for proton imaging. Many workers believe that diagnostically useful images can only be produced at high field strength (i.e. 0.5 - 2.0 T), where in fact diagnostically useful images are made using field strengths of as low as 0.02 T. Because the method is more complex than X-ray CT, which relies on the measurement of only one parameter, tissue density, many new users have difficulty in selecting the correct imaging pulse sequence to provide the most useful image for diagnosis. NMR imaging pulse sequence may be selected to produce images of the proton density, T/sub 1/ or T/sub 2/ signals, or combinations of them. When this facility is used, images which are T/sub 1/ or T/sub 2/ weighted can be selected. Inversion-recovery sequences are more appropriate for imaging the abdomen where by selecting a short TR interval the signal from subcutaneous fat, which is the major cause of image artefact in abdominal imaging, is suppressed thereby improving image quality. The use of surface receiver coils, which are applied closely to the area of the body being examined is becoming more widespread and is of particular value when examining the orbits, facial structures, neck, breast, spine and limbs. The use of these coils together with a discussion of patient selection for NMR imaging, image interpretation and data storage follow

  4. NMR spectroscopy and drug development

    International Nuclear Information System (INIS)

    Craik, D.; Munro, S.

    1990-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy for structural and conformational studies on drug molecules, the three-dimensional investigation of proteins structure and their interactions with ligands are discussed. In-vivo NMR studies of the effects of drugs on metabolism in perfused organs and whole animals are also briefly presented. 5 refs., ills

  5. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  6. NMR imaging of osteoarticular pathology

    International Nuclear Information System (INIS)

    Frocrain, L.; Duvauferrier, R.; Gagey, N.

    1987-01-01

    NMR imaging is assuming an increasingly important role in the diagnosis of osteo-articular disorders. Semiological descriptions of the mean pathological disorders of the locomotor system are presented. Some investigation strategies are proposed to compare NMR imaging with other imaging techniques in various pathological states [fr

  7. Nuclear magnetic resonance (NMR) tomography

    International Nuclear Information System (INIS)

    Skalpe, I.O.

    1984-01-01

    A brief survey of the working principle of the NMR technique in diagnostical medicine is given. Its clinical usefulness for locating tumors, diagnosing various other diseases, such as some mental illnesses and multiple sclerosis, and its possibilities for studying biochemical processes in vivo are mentioned. The price of NMR image scanners and the problems of the strong magnetic field around the machines are mentioned

  8. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  9. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  10. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  11. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  12. nmr spectroscopic study and dft calculations of giao nmr shieldings

    African Journals Online (AJOL)

    Preferred Customer

    3Department of Physics, Arts and Science Faculty, Dumlupinar University, Kütahya, ... 1H, 13C NMR chemical shifts and 1JCH coupling constants of .... then estimated using the corresponding TMS shieldings calculated in advance at the same.

  13. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  14. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  15. NMR spectroscopic and quantum mechanical analyses of enhanced solubilization of hesperidin by theasinensin a.

    Science.gov (United States)

    Cao, Ruge; Kobayashi, Yutaro; Nonaka, Airi; Miyata, Yuji; Tanaka, Kazunari; Tanaka, Takashi; Matsui, Toshiro

    2015-07-01

    The use of hesperidin in the pharmaceutical field is limited by its aqueous insolubility. The effects of natural compounds in tea on the solubility of hesperidin were evaluated and the underlying mechanism was investigated by nuclear-magnetic resonance (NMR) and quantum mechanical calculations. The solubility of hesperidin was measured by liquid chromatography time-of-flight mass spectrometry; the structure of the hesperidin/theasinensin A complex was characterized by (1)H-NMR, diffusion-ordered NMR spectroscopy, and rotating frame NOE spectroscopy, as well as theoretically by quantum mechanical calculations. Among the natural compounds in tea, theasinensin A was the most effective in improving hesperidin solubility. The complexation of hesperidin with theasinensin A led to changes in the chemical shift of protons in hesperidin (Δδ: 0.01-0.27 ppm) and diffusion coefficient (ΔD: 0.66-1.32 × 10(-10) m(2)/s) of hesperidin. ROE correlation signals between hesperidin and theasinensin A and quantum mechanical calculations revealed that two hesperidin molecules formed a stable complex with theasinensin A (2:1 complex) with a ΔG energy of -23.5 kJ/mol. This is the first study that provides insight into the enhanced solubility of hesperidin through interactions with theasinensin A via a 2:1 complex formation between hesperidin and theasinensin A.

  16. β-NMR sample optimization

    CERN Document Server

    Zakoucka, Eva

    2013-01-01

    During my summer student programme I was working on sample optimization for a new β-NMR project at the ISOLDE facility. The β-NMR technique is well-established in solid-state physics and just recently it is being introduced for applications in biochemistry and life sciences. The β-NMR collaboration will be applying for beam time to the INTC committee in September for three nuclei: Cu, Zn and Mg. Sample optimization for Mg was already performed last year during the summer student programme. Therefore sample optimization for Cu and Zn had to be completed as well for the project proposal. My part in the project was to perform thorough literature research on techniques studying Cu and Zn complexes in native conditions, search for relevant binding candidates for Cu and Zn applicable for ß-NMR and eventually evaluate selected binding candidates using UV-VIS spectrometry.

  17. NMR Studies of Polymer Nanocomposites

    National Research Council Canada - National Science Library

    Greenbaum, Steve

    2001-01-01

    .... The primary tool is pulsed field gradient NMR. A static field gradient method was developed which makes possible variable pressure diffusion measurement, and the application to the important fuel cell membrane NAFION constitute the first results...

  18. Integrative NMR for biomolecular research

    International Nuclear Information System (INIS)

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L.

    2016-01-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  19. Integrative NMR for biomolecular research

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States)

    2016-04-15

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download{sub p}ackages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  20. Interpretations of NMR images

    International Nuclear Information System (INIS)

    Shi, J.Z.; McFarland, W.D.; Chen, S.S.; Sadhu, V.K.

    1986-01-01

    Two color display schemes are generally considered in medical images: pseudo-color and color composite. Psuedo-color technique maps the intensity means of a single monochrome image into a three dimensional color space, the gray level is thus replaced by the assigned color. Such a psuedo-color assignment is somewhat arbitrary but may be advantageous if the monochrome image is composed of simple intensity patterns. A good example of psuedo-color application is in nuclear medicine: The change of gray levels can be simply determined and the isocounts from two regions with different surroundings can be readily recognized. However, the use of psuedo-color in CT or MR imaging is controversial because it does not give additional information and may exaggerate insignificant gray scale differences. The color composite technique maps three parametric image data into a three dimensional color space, and thus three monochrome images are merged to form a single color image. The color composite technique increases the number of ways information can be displayed and provides both quantitative and qualitative data about the object or event represented. This paper describes the application of color composite in NMR images

  1. NMR characterization of thin films

    Science.gov (United States)

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  2. NMR imaging of cerebral infarction

    International Nuclear Information System (INIS)

    Takusagawa, Yoshihiko; Yamaoka, Naoki; Doi, Kazuaki; Okada, Keisei

    1987-01-01

    One hundred and five patients with cerebral infarction were studied by nuclear magnetic resonance (NMR) CT (resistive type of magnet with strength of 0.1 tesla) and X-ray CT. Pulse sequences used saturation recovery (Tr = 600 mSec), Inversion recovery (Tr = 500 mSec, Td = 300 mSec) and spin echo (Tr = 1500 mSec, Te = 40, 80, 120, 160 mSec). Fifteen cases were examined by NMR-CT within 24 hours from onset. Proton NMR imaging could not detect cerebral ischemia as early as 2 hours after onset, but except could detect the lesions in Se image the area of cerebral infarct 3 hours after onset. After 5 hours from onset image changes in SE were evident and corresponded to the area of cerebral infarct, but image changes in IR could not fully delineate the infarcted area. NMR images of 41 year-old woman with cerebral embolism by MCA trunck occlusion associated with mitral stenosis were presented, and NMR-CT was examined 10 hours, 9th and 43th days after episode of MCA occlusion. Sixty patents (64 times) with lacunar infarction were studied by NMR-CT and X-ray CT. The inversion recovery images were used mainly for detection of lesions and comparison with X-ray CT. In 160 lesions which were detected by NMR-CT or X-ray CT, could 156 lesions be detected by NMR-CT and 78 lesions by X-ray CT. Inversion recovery images were more useful for detection of lacunes than X-ray CT. Calculated T1 and T2 values prolonged with time course from onset. (author)

  3. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  4. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  5. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  6. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs

  7. Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR.

    Science.gov (United States)

    Aihara, Yuichi; Sonai, Atsuo; Hattori, Mineyuki; Hayamizu, Kikuko

    2006-12-14

    To understand the behaviors of phosphoric acids in fuel cells, the ion conduction mechanisms of phosphoric acids in condensed states without free water and in a monomer state with water were studied by measuring the ionic conductivity (sigma) using AC impedance, thermal properties, and self-diffusion coefficients (D) and spin-lattice relaxation times (T1) with multinuclear NMR. The self-diffusion coefficient of the protons (H+ or H3O+), H2O, and H located around the phosphate were always larger than the diffusion coefficients of the phosphates and the disparity increased with increasing phosphate concentration. The diffusion coefficients of the samples containing D2O paralleled those in the protonated samples. Since the 1H NMR T1 values exhibited a minimum with temperature, it was possible to determine the correlation times and they were found to be of nanosecond order for a distance of nanometer order for a flip. The agreement of the ionic conductivities measured directly and those calculated from the diffusion coefficients indicates that the ion conduction obeys the Nernst-Einstein equation in the condensed phosphoric acids. The proton diffusion plays a dominant role in the ion conduction, especially in the condensed phosphoric acids.

  8. Carbon-13 NMR of flavinoids

    International Nuclear Information System (INIS)

    Agrawal, P.K.

    1989-01-01

    The present book has been written with the objective of introducing the organic chemists with the conceptual and experimental basis required for interpretation of 13 C NMR spectra of a flavonoid and to a discussion of general usefulness of the technique in solving flavonoid structural problem. After a brief general introduction to the essential aspects of flavonoids and 13 C NMR spectroscopy, considerable emphasis has been placed in chapter 2 on the various experimental methods and the interpretation of spectral details which enable individual resonance lines to be associated with the appropriate carbons in a molecule. The whole bulk of the literature, published on 13 C NMR of flavonoids in the major journals upto 1986 alongwith some recent references of 1987 has been classified in several categories such as: flavonoids, isflavonoids, other flavonoids, flavonoid glycosides, chalconoids and flavanoids. Each category constitutes a chapter. Finally the last chapter is devoted largely to a discussion for the differentiation of various categories and subcategories of flavonoids and for the establishment of aromatic substitution pattern in these compounds. It should be emphasized that the book is a data book and only concerned with the actual analysis of 13 C NMR spectra, thus a reasonable familiarity with basic instrumentation of 13 C NMR and general pattern of nuclear chemical shifts has been assumed. (author). refs.; figs.; tabs

  9. NMR investigation of coal extracts

    Energy Technology Data Exchange (ETDEWEB)

    Lang, I; Sebor, G [Ceskoslovenska Akademie Ved, Prague. Hornicky Ustav; Sebor, G Jr; Hajek, M; Mostecky, J [Vysoka Skola Chemicko-Technologicka, Prague (Czechoslovakia)

    1978-07-01

    Proton NMR spectroscopy was used for the evaluation of 10% coal extract solutions in deuterated pyridine. Four types of Czechoslovak coal were analyzed. Agreement was found between the aromaticity of coal extracts calculated from /sup 1/H NMR data using Brown's method and Ladner's and Williams' method and the characterization of an average molecule of the coal extract by the number of non-bridge carbon atoms of aromatic rings, by the overall number of aromatic ring carbon atoms and the number of aromatic rings, determined by the Williams and Ferris methods. The methods for calculating carbon distribution from /sup 1/H NMR data, however, contain some constants theoretically estimated or experimentally found using the method which still remain to be verified.

  10. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  11. Solid state NMR of materials

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Sharon A; Ferguson, David B; Haw, James F [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1994-12-31

    In situ NMR experiments are studied, including probe of several structures such as the structures of the organic adsorbates, Broensted acid sites, other nuclei associated with active sites, and other framework sites. The authors report that in the absence of high concentrations of paramagnetic sites or metal particles, high resolution MAS spectra are relatively easy to obtain and interpret. It is also concluded that NMR can measure spatial distributions and rates of diffusion; and are able to characterize equilibrium structures and the frequencies and amplitudes of molecular motion

  12. Push-through Direction Injectin NMR Automation

    Science.gov (United States)

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  13. Fourier transform n.m.r. spectroscopy

    International Nuclear Information System (INIS)

    Shaw, D.

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

  14. NMR investigations of molecular dynamics

    Science.gov (United States)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  15. PSYCHE Pure Shift NMR Spectroscopy.

    Science.gov (United States)

    Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias

    2018-03-13

    Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. NMR Study on the Interaction of Trehalose with Lactose and Its Effect on the Hydrogen Bond Interaction in Lactose

    Directory of Open Access Journals (Sweden)

    Eric Morssing Vilén

    2013-08-01

    Full Text Available Trehalose, a well-known stress-protector of biomolecules, has been investigated for its effect on the mobility, hydration and hydrogen bond interaction of lactose using diffusion-ordered NMR spectroscopy and NMR of hydroxy protons. In ternary mixtures of trehalose, lactose and water, the two sugars have the same rate of diffusion. The chemical shifts, temperature coefficients, vicinal coupling constants and ROE of the hydroxy protons in trehalose, lactose and sucrose were measured for the disaccharides alone in water/acetone-d6 solutions as well as in mixtures. The data indicated that addition of trehalose did not change significantly the strength of the hydrogen bond interaction between GlcOH3 and GalO5' in lactose. Small upfield shifts were however measured for all hydroxy protons when the sugar concentration was increased. The chemical shift of the GlcOH3 signal in lactose showed less change, attributed to the spatial proximity to GalO5'. Chemical exchange between hydroxy protons of lactose and trehalose was observed in the ROESY NMR spectra. Similar effects were observed with sucrose indicating no specific effect of trehalose at the concentrations investigated (73 to 763 mg/mL and suggesting that it is the concentration of hydroxy groups more than the type of sugars which is guiding intermolecular interactions.

  17. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  18. PVT Degradation Studies: NMR Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-06

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. Nuclear magnetic resonance spectroscopy has been used to elucidate the state of water inside the PVT. The deuterium NMR results show that water absorbed by PVT under warm, humid conditions enters several distinct environments, and when the PVT is transferred from incubation to ambient temperature and humidity the water is lost on a time scale of a few hours from these samples. Most of the deuterium NMR peaks can be assigned to bulk liquid water, but almost 35% of the detected signal intensity is contained in a resonance that resembles spectra of water contained in nanometer-scale pores in mesoporous carbon.

  19. NMR imaging of human atherosclerosis

    International Nuclear Information System (INIS)

    Toussaint, J.F.

    1995-01-01

    Diagnosis and prognosis of atherosclerosis can no longer be evaluated with morphological parameters only. A description of atherosclerotic plaque composition is necessary to study the mechanisms of plaque rupture, which depends on collagenous cap and lipid core thicknesses. NMR, as a biochemical imaging technique, allows visualization of these components using T1 contrast (mobile lipids), T2 contrast (cap vs. core), spin density (calcifications), diffusion imaging, 1H and 13C spectroscopy. Today, these imaging sequences allow to study in vitro the effects of interventional techniques such as angioplasty or atherectomy. Clinical investigations begin, which will attempt to develop in vivo microscopy and test the ability of NMR to predict plaque rupture. (author). 13 refs., 7 figs

  20. High resolution NMR in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Anix [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela). Dept. de Analisis y Evalucion

    1992-12-31

    In this work {sup 29} Si and {sup 27} Al NMR spectroscopy was used to study various types of zeolites. The corresponding spectra were used to measure the Si/Al ratios, to follow chemical modifications induced by acid and hydrothermal treatments, to determine non-equivalent crystallographic sites in highly dealuminated mordenites, and to detect modifications of faujasites due to the insertion of titanium atoms in the lattice. (author) 7 refs., 7 figs., 2 tabs.

  1. High resolution NMR in zeolites

    International Nuclear Information System (INIS)

    Diaz, Anix

    1991-01-01

    In this work 29 Si and 27 Al NMR spectroscopy was used to study various types of zeolites. The corresponding spectra were used to measure the Si/Al ratios, to follow chemical modifications induced by acid and hydrothermal treatments, to determine non-equivalent crystallographic sites in highly dealuminated mordenites, and to detect modifications of faujasites due to the insertion of titanium atoms in the lattice. (author)

  2. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yanyan [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm)2, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of ~3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites

  3. Advanced NMR technology for bioscience and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J. [Los Alamos National Lab., NM (US); Boumenthal, D.K. [Univ. of Utah, Salt Lake City, UT (US); Kennedy, M.A. [Pacific Northwest National Lab., Richland, WA (US); Moore, G.J. [Wayne State Univ., Detroit, MI (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  4. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  5. Teaching NMR spectra analysis with nmr.cheminfo.org.

    Science.gov (United States)

    Patiny, Luc; Bolaños, Alejandro; Castillo, Andrés M; Bernal, Andrés; Wist, Julien

    2018-06-01

    Teaching spectra analysis and structure elucidation requires students to get trained on real problems. This involves solving exercises of increasing complexity and when necessary using computational tools. Although desktop software packages exist for this purpose, nmr.cheminfo.org platform offers students an online alternative. It provides a set of exercises and tools to help solving them. Only a small number of exercises are currently available, but contributors are invited to submit new ones and suggest new types of problems. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  7. An Inversion Recovery NMR Kinetics Experiment

    OpenAIRE

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a conveni...

  8. NMR in structure-based drug design.

    Science.gov (United States)

    Carneiro, Marta G; Ab, Eiso; Theisgen, Stephan; Siegal, Gregg

    2017-11-08

    NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  10. Solution NMR structure determination of proteins revisited

    International Nuclear Information System (INIS)

    Billeter, Martin; Wagner, Gerhard; Wuethrich, Kurt

    2008-01-01

    This 'Perspective' bears on the present state of protein structure determination by NMR in solution. The focus is on a comparison of the infrastructure available for NMR structure determination when compared to protein crystal structure determination by X-ray diffraction. The main conclusion emerges that the unique potential of NMR to generate high resolution data also on dynamics, interactions and conformational equilibria has contributed to a lack of standard procedures for structure determination which would be readily amenable to improved efficiency by automation. To spark renewed discussion on the topic of NMR structure determination of proteins, procedural steps with high potential for improvement are identified

  11. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  12. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  13. NMR characterization of pituitary tumors

    International Nuclear Information System (INIS)

    Osbakken, M.; Gonzales, J.; Page, R.

    1984-01-01

    Twelve patients (5 male, 7 female, mean age 37.9 +- 20) with pituitary tumors were extensively evaluated with NMR imaging using a 1.5K gauss resistive magnet. Saturation recovery (SR), inversion recovery (IR) and spin echo (SE) pulse sequences were used for qualitative characterization of the lesions. T/sub 1/ calculations were also performed for brain and pituitary. Tumor histology and endocrine status were correlated with NMR data. All tumors were large with suprasellar extension (6 with prolactin secretion, 6 without). Pituitary T/sub 1/'s ranged from .2 to .64, the mean T/sub 1/ being longer than that of brain (Brain = .4 +- .04; Pit = .48 +- .14). 3 patients with histological evidence of homogeneous adenomas had long T/sub 1/'s (0.58 +- .05). 3 patients with evidence of recent or old hemorhage into the pituitary had much shorter T/sub 1/'s (0.29 +- .12). There was no relationship between prolactin secretion and T/sub 1/. Qualitative T/sub 1/ and T/sub 2/ information can be obtained by using a combination of SR, IR, and SE images. Using this method in the patients, homogeneous adenomas had similar T/sub 1/'s and longer T/sub 2/'s compared to the brain, while patients with bleeds had shorter T/sub 1/'s and T/sub 2/'s. Image T/sub 1/ characteristics correlated well with the calculated T/sub 1/ values. The range of T/sub 1/ (and potentially T/sub 2/) values which occur in apparently similar lesions are most likely due to anatomical and pathophysiological variations in these lesions. It may be ultimately possible to separate different types of pathological processes based on NMR image T/sub 1/ and T/sub 2/ characteristics after careful comparative studies of NMR and histological data are completed. The combination of calculated T/sub 1/ and T/sub 2/ with image T/sub 1/ and T/sub 2/ information may also be useful in further characterization of lesions

  14. Short recovery time NMR probe

    International Nuclear Information System (INIS)

    Ramia, M.E.; Martin, C.A.; Jeandrevin, S.

    2011-01-01

    A NMR probe for low frequency and short recovery time is presented in this work. The probe contains the tuning circuit, diode expanders and quarter wavelength networks to protect the receiver from both the amplifier noise and the coil ringing following the transmitter power pulse. It also possesses a coil damper which is activated by of non active components. The probe performance shows a recovery time of about of 15μs a sensitive Q factor reduction and an increase of the signal to noise ratio of about 68% during the reception at a work frequency of 2 MHz. (author)

  15. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    NARCIS (Netherlands)

    Van Der Schot, Gijs; Bonvin, Alexandre M J J

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on

  16. Analysis of a nanocrystalline polymer dispersion of ebselen using solid-state NMR, Raman microscopy, and powder X-ray diffraction.

    Science.gov (United States)

    Vogt, Frederick G; Williams, Glenn R

    2012-07-01

    Nanocrystalline drug-polymer dispersions are of significant interest in pharmaceutical delivery. The purpose of this work is to demonstrate the applicability of methods based on two-dimensional (2D) and multinuclear solid-state NMR (SSNMR) to a novel nanocrystalline pharmaceutical dispersion of ebselen with polyvinylpyrrolidone-vinyl acetate (PVP-VA), after initial characterization with other techniques. A nanocrystalline dispersion of ebselen with PVP-VA was prepared and characterized by powder X-ray diffraction (PXRD), confocal Raman microscopy and mapping, and differential scanning calorimetry (DSC), and then subjected to detailed 1D and 2D SSNMR analysis involving ¹H, ¹³C, and ⁷⁷Se isotopes and ¹H spin diffusion. PXRD was used to show that dispersion contains nanocrystalline ebselen in the 35-60 nm size range. Confocal Raman microscopy and spectral mapping were able to detect regions where short-range interactions may occur between ebselen and PVP-VA. Spin diffusion effects were analyzed using 2D SSNMR experiments and are able to directly detect interactions between ebselen and the surrounding PVP-VA. The methods used here, particularly the 2D SSNMR methods based on spin diffusion, provided detailed structural information about a nanocrystalline polymer dispersion of ebselen, and should be useful in other studies of these types of materials.

  17. 1H-NMR urinalysis

    International Nuclear Information System (INIS)

    Yamamoto, Hideaki; Yamaguchi, Shuichi

    1988-01-01

    In an effort to examine the usefulness of 1 H-nuclear magnetic resonance (NMR) urinalysis in the diagnosis of congenital metabolic disorders, 70 kinds of urinary metabolites were analysed in relation to the diagnosis of inborn errors of amino acid and organic acid disorders. Homogated decoupling (HMG) method failed to analyze six metabolites within the undetectable range. When non-decoupling method (NON), in which the materials are dissolved in dimethyl sulfoxide, was used, the identification of signals became possible. The combination of HMG and NON methods was, therefore, considered to identify all of the metabolites. When the urine samples, which were obtained from patients with hyperglycerolemia, hyperornithinemia, glutaric acidemia type II, or glycerol kinase deficiency, were analysed by using both HMG and NON methods, abnormally increased urinary metabolites were detected. 1 H-NMR urinalysis, if used in the combination of HMG and NON methods, may allow simultanenous screening of inborn errors of metabolism of amino acid and organic acid disorders. (Namekawa, K.)

  18. Early history of NMR at Los Alamos

    International Nuclear Information System (INIS)

    Jackson, J.A.

    1985-11-01

    Nuclear magnetic resonance (NMR) spectroscopy has developed into an important research tool in chemistry. More recently, NMR imaging and in vivo spectroscopy promise to produce a revolution in medicine and biochemistry. Early experiments at Los Alamos led to DOE programs involving stable isotopes of importance to biology and to medicine. These events are briefly recounted. 2 refs

  19. Characterization of natural bentonite by NMR

    International Nuclear Information System (INIS)

    Leite, Sidnei Q.M.; Dieguez, Lidia C.; Menezes, Sonia M.C.; San Gil, Rosane A.S.

    1993-01-01

    Solid state NMR as well as several other instrumental chemical analysis techniques were used in order to characterize two natural occurring bentonite. The methodology is described. The NMR spectra, together with the other used techniques suggest that the observed differences are due to iron inclusions in tetrahedral and octahedral sites

  20. Using Cloud Storage for NMR Data Distribution

    Science.gov (United States)

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  1. Quartz Crystal Temperature Sensor for MAS NMR

    Science.gov (United States)

    Simon, Gerald

    1997-10-01

    Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.

  2. NMR studies of the structure of glasses

    International Nuclear Information System (INIS)

    Bray, P.J.; Gravina, S.J.; Stallworth, P.E.; Szu, S.P.; Jianhui Zhong

    1988-01-01

    Earlier continuous wave (CW) NMR studies of chemical bonding and structure in glasses are summarized. Examples are given of this use of the quadrupolar interaction and chemical shift to obtain structural information. New NMR data and analyses are presented for alkali borate and gallate glasses. Extensions to other elements (e.g. molybdenum, lanthanum) are suggested. 44 refs. (author)

  3. An Inversion Recovery NMR Kinetics Experiment

    Science.gov (United States)

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  4. Selective sensitivity enhancement in FT-NMR

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    In this article the basic two-spin nuclear magnetic resonance (NMR) experiment and the new sensitivity enhancement experiments are reviewed. In part two of this two-part series an overview of two-dimensional NMR experiments will be presented. Part two will appear in the June 1 issue of Analytical Chemistry

  5. 2D NMR studies of biomolecules

    International Nuclear Information System (INIS)

    Lamerichs, R.M.J.N.

    1989-01-01

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  6. Synthesis and NMR Elucidation of Novel Pentacycloundecane ...

    African Journals Online (AJOL)

    Herein we report the synthesis and NMR elucidation of five novel pentacycloundecane (PCU)-derived short peptides as potential HIV protease inhibitors. 1H and 13C spectral analysis show major overlapping of methine resonance of the PCU 'cage' thereby making it extremely difficult to assign the NMR signals. Attachment ...

  7. Development and applications of quantitative NMR spectroscopy

    International Nuclear Information System (INIS)

    Yamazaki, Taichi

    2016-01-01

    Recently, quantitative NMR spectroscopy has attracted attention as an analytical method which can easily secure traceability to SI unit system, and discussions about its accuracy and inaccuracy are also started. This paper focuses on the literatures on the advancement of quantitative NMR spectroscopy reported between 2009 and 2016, and introduces both NMR measurement conditions and actual analysis cases in quantitative NMR. The quantitative NMR spectroscopy using an internal reference method enables accurate quantitative analysis with a quick and versatile way in general, and it is possible to obtain the precision sufficiently applicable to the evaluation of pure substances and standard solutions. Since the external reference method can easily prevent contamination to samples and the collection of samples, there are many reported cases related to the quantitative analysis of biologically related samples and highly scarce natural products in which NMR spectra are complicated. In the precision of quantitative NMR spectroscopy, the internal reference method is superior. As the quantitative NMR spectroscopy widely spreads, discussions are also progressing on how to utilize this analytical method as the official methods in various countries around the world. In Japan, this method is listed in the Pharmacopoeia and Japanese Standard of Food Additives, and it is also used as the official method for purity evaluation. In the future, this method will be expected to spread as the general-purpose analysis method that can ensure traceability to SI unit system. (A.O.)

  8. NMR imaging of soft tissue tumors

    International Nuclear Information System (INIS)

    Laval-Jeantet, M.; Tobolsk, F.; Delepine, N.; Delepine, G.; Roger, B.; Cabanis, E.A.

    1986-01-01

    Preliminary findings on NMR imaging of 30 soft tissue tumors demonstrated the indispensable value of this examination (particularly when a surface antenna is used) for preoperative investigation and diagnosis of tumoral recurrence when compared with other radiologic techniques. The possible potential of NMR imaging for characterization of tissues, apart from lipoma or liposarcoma, cannot be evaluated at the present time [fr

  9. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  10. Monitoring and understanding the paraelectric-ferroelectric phase transition in the metal-organic framework [NH4 ][M(HCOO)3 ] by solid-state NMR spectroscopy.

    Science.gov (United States)

    Xu, Jun; Lucier, Bryan E G; Sinelnikov, Regina; Terskikh, Victor V; Staroverov, Viktor N; Huang, Yining

    2015-10-05

    The paraelectric-ferroelectric phase transition in two isostructural metal-organic frameworks (MOFs) [NH4 ][M(HCOO)3 ] (M=Mg, Zn) was investigated by in situ variable-temperature (25) Mg, (67) Zn, (14) N, and (13) C solid-state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder-order transition of NH4 (+) cations causes a change in dielectric properties. It is thought that [NH4 ][Mg(HCOO)3 ] exhibits a higher transition temperature than [NH4 ][Zn(HCOO)3 ] due to stronger hydrogen-bonding interactions between NH4 (+) ions and framework oxygen atoms. (25) Mg and (67) Zn NMR parameters are very sensitive to temperature-induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric-ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although (25) Mg and (67) Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal-atom environments in [NH4 ][M(HCOO)3 ] give rise to relatively narrow spectra that can be acquired in 30-60 min at a low magnetic field of 9.4 T. Complementary (14) N and (13) C SSNMR experiments were performed to probe the role of NH4 (+) -framework hydrogen bonding in the paraelectric-ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4 ][M(HCOO)3 ] system and shows great potential for molecular-level studies on electric phenomena in a wide variety of MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An introduction to biological NMR spectroscopy

    International Nuclear Information System (INIS)

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). (authors)

  12. NMR imaging of the brain: initial impressions

    International Nuclear Information System (INIS)

    Spencer, D.H.; Bydder, G.M.

    1983-01-01

    An NMR imaging system designed and built by Thorn-EMI Ltd was installed at Hammersmith Hospital in March 1981. In the first year of operation 180 patients and 40 volunteers have had cranial examinations and initial impressions bases on this experience are presented. Patients with a wide variety of neurological diseases have been studied to provide a basis for diagnostic interpretation, to define distinctive features, and to evaluate different types of scanning sequences. NMR imaging appears to be of considerable value in neurological diagnosis and has a number of advantages over CT. The detailed evaluation of NMR imaging will require much more work but the initial results are very promising

  13. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  14. NMR reaction monitoring in flow synthesis

    Directory of Open Access Journals (Sweden)

    M. Victoria Gomez

    2017-02-01

    Full Text Available Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  15. NMR reaction monitoring in flow synthesis.

    Science.gov (United States)

    Gomez, M Victoria; de la Hoz, Antonio

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  16. Introduction to some basic aspects of NMR

    International Nuclear Information System (INIS)

    Goldman, M.

    1992-01-01

    The principal interactions are reviewed that are experienced by nuclear spins making magnetic resonance feasible and which disturb it in a way that gives access to the properties of bulk matter. The interactions leading to NMR include Zeeman interaction, dipole-dipole interactions, and exchange interactions. Spin-lattice relaxation relevant to NMR is revisited next. It is followed by an overview of spin temperature. Finally, the care of periodic Hamiltonian is discussed in detail as another contribution to NMR. (R.P.) 48 refs., 12 figs

  17. NMR study of LaPb2

    International Nuclear Information System (INIS)

    Ueda, K.; Kohara, T.; Yamada, Y.

    1995-01-01

    La and Pb NMR signals were observed in LaPb 2 with a superconducting transition temperature of about 7 K. The width of the Pb NMR spectrum with an asymmetric line shape was rather narrower than those of Er-, Gd- and Ho-Pb 2 . The spin-lattice relaxation time of Pb nuclei was twice longer than that of Pb metal. La NMR spectrum had satellites due to the electric quadrupole interaction. These results show that each local environment at La or Pb site in LaPb 2 compound is uniquely determined, compared with those in randomly substituted alloys. ((orig.))

  18. Graphical programming for pulse automated NMR experiments

    International Nuclear Information System (INIS)

    Belmonte, S.B.; Oliveira, I.S.; Guimaraes, A.P.

    1999-01-01

    We describe a software program designed to control a broadband pulse Nuclear Magnetic Resonance (NMR) spectrometer used in zero-field NMR studies of magnetic metals. The software is written in the graphical language LabVIEW. This type of programming allows modifications and the inclusion of new routines to be easily made by the non-specialist, without changing the basic structure of the program. The program corrects for differences in the gain of the two acquisition channels [U (phase) and V (quadrature)], and automatic baseline subtraction. We present examples of measurements of NMR spectra, spin-echo decay (T 2 ), and quadrupolar oscillations, performed in magnetic intermetallic compounds. (author)

  19. The characterisation of polymers using pulsed NMR

    International Nuclear Information System (INIS)

    Charlesby, A.

    1983-01-01

    Broad line pulsed NMR is applied to obtain information on radiation-induced polymer changes and other aspects of polymer science based on the interpretation of spin-spin relaxation curves. Calculations are made to determine the molecular weight, the crosslink density of simple, low molecular weight, flexible polymers. For higher molecular weight polymers, a conclusion can be drawn on the concentrations of entangled and crosslinked units by means of pulsed NMR. Some typical applications of the technique are illustrated by the examples of polyethylenes, rubbers, filled polymeric systems and aqueous polyethylene oxide solutions. The morphology of polymers can be followed by pulsed NMR. (V.N.)

  20. MAS NMR of HIV-1 protein assemblies

    Science.gov (United States)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  1. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Richard [Huazhong University of Science and Technology, School of Software Engineering (China); Wang, Yan [Huazhong University of Science and Technology, School of Life Science and Technology (China); Xue, Zhidong, E-mail: zdxue@hust.edu.cn [Huazhong University of Science and Technology, School of Software Engineering (China); Zhang, Yang, E-mail: zhng@umich.edu [University of Michigan, Department of Computational Medicine and Bioinformatics (United States)

    2015-08-15

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

  2. NMR mechanisms in gel dosimetry

    International Nuclear Information System (INIS)

    Schreiner, L J

    2009-01-01

    Nuclear magnetic resonance was critical to the development of gel dosimetry, as it established the potential for three dimensional dosimetry with chemical dosimeter systems through magnetic resonance imaging [1]. In the last two decades MRI has served as the gold standard for imaging, while NMR relaxometry has played an important role in the development and understanding of the behaviour of new gel dosimetry systems. Therefore, an appreciation of the relaxation mechanisms determining the NMR behaviour of irradiated gel dosimeters is important for a full comprehension of a considerable component of the literature on gel dosimetry. A number of excellent papers have presented this important theory, this brief review will highlight some of the salient points made previously [1-5]. The spin relaxation of gel dosimeters (which determines the dose dependence in most conventional MR imaging) is determined principally by the protons on water molecules in the system. These water protons exist in different environments, or groups (see Figure 1): on bulk water, on water hydrating the chemical species that are being modified under irradiation, and on water hydrating the gel matrix used to spatially stabilize the dosimeter (e.g., gelatin, agarose, etc). The spin relaxation depends on the inherent relaxation rate of each spin group, that is, on the relaxation rate which would be observed for the specific group if it were isolated. Also, the different water environments are not isolated from each other, and the observed relaxation rate also depends on the rate of exchange of magnetization between the groups, and on the fraction of protons in each group. In fact, the water exchanges quickly between the environments, so that relaxation is in what is usually termed the fast exchange regime. In the limit of fast exchange, the relaxation of the water protons is well characterized by a single exponential and hence by a single apparent relaxation rate. In irradiated gel dosimeters this

  3. Structural investigations of substituted indolizine derivatives by NMR studies

    International Nuclear Information System (INIS)

    Furdui, Bianca; Dinica, Rodica; Demeunynck, Martine; Druta, Ioan

    2008-01-01

    Owing to the increasing importance of indolizine heterocycles in the field of biology and pharmacology we have synthesized and investigated the obtained heterocycles by NMR techniques. In order to investigate the substituent effects on the spectroscopic properties, a series of indolizine derivatives were studied by 1 H-NMR, 13 C-NMR and 2D NMR (GCOSY, GHMBC and GHMQC spectra). (authors)

  4. NMR in the SPINE Structural Proteomics project.

    Science.gov (United States)

    Ab, E; Atkinson, A R; Banci, L; Bertini, I; Ciofi-Baffoni, S; Brunner, K; Diercks, T; Dötsch, V; Engelke, F; Folkers, G E; Griesinger, C; Gronwald, W; Günther, U; Habeck, M; de Jong, R N; Kalbitzer, H R; Kieffer, B; Leeflang, B R; Loss, S; Luchinat, C; Marquardsen, T; Moskau, D; Neidig, K P; Nilges, M; Piccioli, M; Pierattelli, R; Rieping, W; Schippmann, T; Schwalbe, H; Travé, G; Trenner, J; Wöhnert, J; Zweckstetter, M; Kaptein, R

    2006-10-01

    This paper describes the developments, role and contributions of the NMR spectroscopy groups in the Structural Proteomics In Europe (SPINE) consortium. Focusing on the development of high-throughput (HTP) pipelines for NMR structure determinations of proteins, all aspects from sample preparation, data acquisition, data processing, data analysis to structure determination have been improved with respect to sensitivity, automation, speed, robustness and validation. Specific highlights are protonless (13)C-direct detection methods and inferential structure determinations (ISD). In addition to technological improvements, these methods have been applied to deliver over 60 NMR structures of proteins, among which are five that failed to crystallize. The inclusion of NMR spectroscopy in structural proteomics pipelines improves the success rate for protein structure determinations.

  5. NMR study of Albemoschus esculentus characterization

    International Nuclear Information System (INIS)

    Bathista, A.L.B.S; Silva, E.O.; Nogueira, Jose de S.; Tavares, M.I.B.

    2001-01-01

    The investigation of the main compounds presented in the Albemoschus esculentus has been carried out employing nuclear magnetic resonance spectroscopy (NMR), using solution and solid state NMR when it one was necessary. The evaluation of NMR data allowed us to characterize the main type of components presented in this kind of sample. It was necessary to use a total information from solid state NMR and also the solution response. From these information we could get that four main components were presented in this sample. One in the shell, that is cellulose, another one between the shell and seeds that is a polysaccharide and in the seed two components were found one is a starch and the second one is an oil, a triacylglycerol. These components are responsible by its physical chemistry properties. (author)

  6. Bayesian Peak Picking for NMR Spectra

    KAUST Repository

    Cheng, Yichen

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  7. NMR and optical studies of piezoelectric polymers

    International Nuclear Information System (INIS)

    Schmidt, V.H.; Tuthill, G.F.

    1993-01-01

    Progress is reported in several areas dealing with piezoelectric (electroactive) polymers (mostly vinylidene fluoride, trifluoroethylene, copolymers, PVF 2 ) and liquid crystals. Optical studies, neutron scattering, NMR, thermal, theory and modeling were done

  8. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    2012-01-01

    High Resolution NMR: Theory and Chemical Applications discusses the principles and theory of nuclear magnetic resonance and how this concept is used in the chemical sciences. This book is written at an intermediate level, with mathematics used to augment verbal descriptions of the phenomena. This text pays attention to developing and interrelating four approaches - the steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The style of this book is based on the assumption that the reader has an acquaintance with the general principles of quantum mechanics, but no extensive background in quantum theory or proficiency in mathematics is required. This book begins with a description of the basic physics, together with a brief account of the historical development of the field. It looks at the study of NMR in liquids, including high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. This book is intended to assis...

  9. NMR studies of cerebral metabolism in vivo

    International Nuclear Information System (INIS)

    Prichard, J.W.

    1986-01-01

    The nature and extent of the potential synergism between PET and NMR methods is not yet well appreciated in the biomedical community. The long-range interest of medical neurobiology will be well served by efforts of PET and NMR scientists to follow each others' work so that opportunities for productive interchange can be efficiently exploited. Appreciation of the synergism by the rest of the biomedical community will follow naturally. PET is said by the people doing it to be still in its infancy, for they are more concerned with advancing their discipline than with admiring its already impressive achievements. On the scale of the same developmental metaphor, many NMR methods for studying the living human brain are still in utero. The best way to provide the reader a sense of the current status and future course of NMR research in medical neurobiology is by discussion of published in vivo studies. Such a discussion, adapted from another article is what follows

  10. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  11. NMR spectroscopy of coal pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Shevchenko, G.G.

    1985-12-01

    The authors consider the scope for using H 1 and C 13 NMR spectroscopy to describe the products from coal pyrolysis and hydrogenization. The accuracy of the structural information provided by the best NMR methods is also considered. The stuctural parameters derived from H 1 and C 13 NMR spectra are presented. Results demonstrate the high accuracy and sensitivity of the structural information provided by H 1 AND C 13 NMR spectra for coal products. There are substantial structural differences between the soluble products from medium-temperature coking of Cheremkhov coal and high-speed pyrolysis of Kan-Acha coal, and also differences in behavior during hydrogenation. These differences are related to the structure of the organic matter in the initial coal and to differences in the pyrolysis mechanisms.

  12. NMR study of hydride systems

    International Nuclear Information System (INIS)

    Peretz, M.

    1980-02-01

    The hydrides of thorium (ThH 2 , Th 4 H 15 and Th 4 D 15 ) and the intermetallic compound system (Zr(Vsub(1-x)Cosub(x)) 2 and its hydrides were investigated using the nuclear magnetic resonance (NMR) technique. From the results for the thorium hydride samples it was concluded that the density of states at the Fermi level n(Esub(f)) is higher in Th 4 H 15 than in ThH 2 ; there is an indirect reaction between the protons and the d electrons belonging to the Th atoms in Th 4 H 15 ; n(E) has a sharp structure near Esub(f). It was also found that the hydrogen diffusion mechanism changes with temperature. From the results for the intermetallic compound system conclusions were drawn concerning variations in the electronic structure, which explain the behavior of the system. In hydrogen diffusion studies in several samples it was found that Co atoms slow the diffusion rate. Quadrupole spectra obtained at low temperatures show that the H atoms preferably occupy tetrahedral sites formed by three V atoms and one Z atom. (H.K.)

  13. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  14. NMR studies of multiphase flows II

    Energy Technology Data Exchange (ETDEWEB)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E. [Lovelace Institutes, Albuquerque, NM (United States)] [and others

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  15. observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    Akogun, Hyogo 678-1297, Japan. ∗. Email: kohara@sci.himeji tech.ac.jp. Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si. NMR signals arising from the antiferromagnetic ...

  16. NMRbox: A Resource for Biomolecular NMR Computation.

    Science.gov (United States)

    Maciejewski, Mark W; Schuyler, Adam D; Gryk, Michael R; Moraru, Ion I; Romero, Pedro R; Ulrich, Eldon L; Eghbalnia, Hamid R; Livny, Miron; Delaglio, Frank; Hoch, Jeffrey C

    2017-04-25

    Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users. Copyright © 2017 Biophysical Society. All rights reserved.

  17. A microscale protein NMR sample screening pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo; Swapna, G. V. T.; Huang, Yuanpeng J.; Aramini, James M. [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States); Anklin, Clemens [Bruker Biospin Corporation (United States); Conover, Kenith; Hamilton, Keith; Xiao, Rong; Acton, Thomas B.; Ertekin, Asli; Everett, John K.; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.ed [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States)

    2010-01-15

    As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30-200 {mu}g in 8-35 {mu}l volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure.

  18. O-17 NMR measurement of water

    International Nuclear Information System (INIS)

    Fukazawa, Nobuyuki

    1990-01-01

    Recently, attention has been paid to the various treatment of water and the utilization of water by magnetic treatment, electric field treatment and so on. It has been said that by these treatments, the change in the properties of water arises. The state of this treated water cannot be explained by the properties of water from conventional physical and chemical standpoints. In addition, the method of measurement of whether the change arose or not is not yet determined. It is necessary to establish the method of measurement for the basic state of water. In this study, O-17 NMR which observes the state of water directly at molecular or atomic level was investigated as the method of measuring water. The measurement of O-17 NMR was carried out with a JNR 90Q FT NMR of Fourier transformation type of JEOL Ltd. The experimental method and the results are reported. The result of measurement of the O-17 NMR spectrum for distilled ion exchange water is shown. It is know that it has very wide line width as compared with the NMR spectra of protons and C-13. The relative sensitivity of O-17 observation is about 1/100,000 of that of protons. As to the information on the state of water obtained by O-17 NMR, there are chemical shift and line width. As temperature rose, the line width showed decrease, which seemed to be related to the decrease of hydrogen combination. (K.I.)

  19. Basics of spectroscopic instruments. Hardware of NMR spectrometer

    International Nuclear Information System (INIS)

    Sato, Hajime

    2009-01-01

    NMR is a powerful tool for structure analysis of small molecules, natural products, biological macromolecules, synthesized polymers, samples from material science and so on. Magnetic Resonance Imaging (MRI) is applicable to plants and animals Because most of NMR experiments can be done by an automation mode, one can forget hardware of NMR spectrometers. It would be good to understand features and performance of NMR spectrometers. Here I present hardware of a modern NMR spectrometer which is fully equipped with digital technology. (author)

  20. 33S NMR cryogenic probe for taurine detection

    Science.gov (United States)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  1. Petrophysical properties of greensand as predicted from NMR measurements

    DEFF Research Database (Denmark)

    Hossain, Zakir; Grattoni, Carlos A.; Solymar, Mikael

    2011-01-01

    ABSTRACT: Nuclear magnetic resonance (NMR) is a useful tool in reservoir evaluation. The objective of this study is to predict petrophysical properties from NMR T2 distributions. A series of laboratory experiments including core analysis, capillary pressure measurements, NMR T2 measurements...... with macro-pores. Permeability may be predicted from NMR by using Kozeny's equation when surface relaxivity is known. Capillary pressure drainage curves may be predicted from NMR T2 distribution when pore size distribution within a sample is homogeneous....

  2. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    NARCIS (Netherlands)

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M.; Janssen, Johannes W.G.; van Bentum, Jan (P.J.M.); Gardeniers, Han J.G.E.; Kentgens, Arno P.M.

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of

  3. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    Science.gov (United States)

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  4. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    Science.gov (United States)

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  5. New methods for the correction of 31P NMR spectra in in vivo NMR spectroscopy

    International Nuclear Information System (INIS)

    Starcuk, Z.; Bartusek, K.; Starcuk, Z. jr.

    1994-01-01

    The new methods for the correction of 31 P NMR spectra in vivo NMR spectroscopy have been performed. A method for the baseline correction of the spectra which represents a combination of time-domain and frequency-domain has been discussed.The method is very fast and efficient for minimization of base line artifacts of biological tissues impact

  6. HPLC-NMR revisited: Using time-slice HPLC-SPE-NMR with database assisted dereplication

    DEFF Research Database (Denmark)

    Johansen, Kenneth; Wubshet, Sileshi Gizachew; Nyberg, Nils

    2013-01-01

    Time based trapping of chromatographically separated compounds on to solid-phase extraction cartridges (SPE) and subsequent elution to NMR-tubes was done to emulate the function of HPLC–NMR for dereplication purposes. Sufficient mass sensitivity was obtained by the use of a state-of-the-art HPLC......–SPE–NMR-system with a cryogenically cooled probe head, designed for 1.7 mm NMR-tubes. The resulting 1H NMR spectra (600 MHz) were evaluated against a database of previously acquired and prepared spectra. The in-house developed matching algorithm, based on partitioning of the spectra and allowing for changes in the chemical shifts......, is described and the code included as Supplementary Information. Two mixtures of natural products was used to test the approach; one extract of Carthamus oxyacantha (wild safflower) containing an array of spiro compounds and one extract of the endophytic fungus Penicillum namyslowski containing griseofulvin...

  7. NMR techniques in the study of cardiovascular structure and functions

    International Nuclear Information System (INIS)

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy? NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance

  8. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  9. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  10. NMR Phase Noise in Bitter Magnets

    Science.gov (United States)

    Sigmund, E. E.; Calder, E. S.; Thomas, G. W.; Mitrović, V. F.; Bachman, H. N.; Halperin, W. P.; Kuhns, P. L.; Reyes, A. P.

    2001-02-01

    We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin-spin relaxation even in the presence of magnetic field temporal instability.

  11. Remote tuning of NMR probe circuits.

    Science.gov (United States)

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. Copyright 2000 Academic Press.

  12. Deuterium NMR, induced and intrinsic cholesteric lyomesophases

    International Nuclear Information System (INIS)

    Alcantara, M.R.

    1982-01-01

    Induced and intrinsic cholesteric lyotropic mesophases were studied. Induced cholesteric lyomesophases based on potassium laurate (KL) system, with small amounts of cholesterol added, were studied by deuterium NMR and by polarizing microscopy. Order profiles obtained from deuterium NMR of KL perdenderated chains in both induced cholesteric and normal mesophases were compared. The intrinsic cholesteric lyotropic mesophases were based on the amphiphile potassium N-lauroyl serinate (KLNS) in the resolved levo form. The study of the type I intrinsic cholesteric mesophase was made by optical microscopy under polarized light and the type II intrinsic cholesteric lyomesophase was characterized by deuterium NMR. The new texture was explained by the use of the theory of disclinations developed for thermotropic liquid crystals, specially for cholesteric type. (M.J.C.) [pt

  13. Determination of solid fat content by NMR

    International Nuclear Information System (INIS)

    Kawada, Tsukasa; Kato, Chihiro; Suzuki, Kazuaki

    1984-01-01

    To establish a standard method for determing solid fat content, the NMR method was tested at six laboratories and the results were examined for collaboration. Two types of instruments, pulse NMR and wide-line NMR were used. Standard deviation in results at six laboratories was less than 1.5 for the step wise method, but more than 1.5 for the rapid method. The standard deviation in results at a single laboratory was much less than either of these cases. No significant difference could be observed in the values obtained using both instruments. Solid fat content values measured for a mixture of fully hydrogenated rapeseed and rapeseed oil agreed well with the percentage of solid by weight. (author)

  14. Muscular pathology: echographic and NMR imaging aspects

    International Nuclear Information System (INIS)

    Pascal-Suisse, P.; Beaurain, P.; Mougniot, C.

    1995-01-01

    A comparison of echographic techniques and NMR imaging has been done for the diagnosis of muscular trauma and tumor pathologies. In traumatic pathology, the echographic analysis allows to determine the complete assessment of recent muscular injuries. NMR imaging can be used in granuloma or fibrous callosity appreciation and for the analysis of deep injury (muscles and muscles-tendon junctions) and of muscular aponeurosis. Echography must be used together with color coding Doppler technique in the diagnosis of tumor pathology and for the study of slow fluxes. The recently available energy Doppler technique seems to be powerful in the study of vascularization of small expansive formations, but their extension to adjacent bone or tissue can only be appreciated using NMR imaging. (J.S.)

  15. Contact replacement for NMR resonance assignment.

    Science.gov (United States)

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-07-01

    Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions. Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  16. Prediction of peak overlap in NMR spectra

    International Nuclear Information System (INIS)

    Hefke, Frederik; Schmucki, Roland; Güntert, Peter

    2013-01-01

    Peak overlap is one of the major factors complicating the analysis of biomolecular NMR spectra. We present a general method for predicting the extent of peak overlap in multidimensional NMR spectra and its validation using both, experimental data sets and Monte Carlo simulation. The method is based on knowledge of the magnetization transfer pathways of the NMR experiments and chemical shift statistics from the Biological Magnetic Resonance Data Bank. Assuming a normal distribution with characteristic mean value and standard deviation for the chemical shift of each observable atom, an analytic expression was derived for the expected overlap probability of the cross peaks. The analytical approach was verified to agree with the average peak overlap in a large number of individual peak lists simulated using the same chemical shift statistics. The method was applied to eight proteins, including an intrinsically disordered one, for which the prediction results could be compared with the actual overlap based on the experimentally measured chemical shifts. The extent of overlap predicted using only statistical chemical shift information was in good agreement with the overlap that was observed when the measured shifts were used in the virtual spectrum, except for the intrinsically disordered protein. Since the spectral complexity of a protein NMR spectrum is a crucial factor for protein structure determination, analytical overlap prediction can be used to identify potentially difficult proteins before conducting NMR experiments. Overlap predictions can be tailored to particular classes of proteins by preparing statistics from corresponding protein databases. The method is also suitable for optimizing recording parameters and labeling schemes for NMR experiments and improving the reliability of automated spectra analysis and protein structure determination.

  17. Applications of NMR spectroscopy to xenobiotic metabolism

    International Nuclear Information System (INIS)

    Harris, T.M.

    1989-01-01

    Recent years have seen high field NMR spectrometers become commonplace in research laboratories. At the same time, major advances in methodology for structural analysis have occurred, particularly notable among these being the development of two-dimensional spectroscopic techniques. Many applications have been made of NMR spectroscopy in the study of xenobiotic metabolic processes. This deals with two specific applications which have been made in the author's laboratory and involve mechanistic studies of the reactions of the carcinogens ethylene dibromide and aflatoxin with DNA

  18. Applications of NMR in biological metabolic research

    International Nuclear Information System (INIS)

    Nie Jiarui; Li Xiuqin; He Chunjian

    1989-01-01

    The nuclear magnetic resonance has become a powerful means of studying biological metabolism in non-invasive and non-destructive way. Being used to study the metabolic processes of living system in normal physiological conditions as well as in molecular level, the method is better than other conventional approaches. Using important parameters such as NMR-chemical shifts, longitudinal relaxation time and transverse relaxation time, it is possible to probe the metabolic processes as well as conformation, concentration, transportation and distribution of reacting and resulting substances. The NMR spectroscopy of 1 H, 31 P and 13 C nuclei has already been widely used in metabolic researches

  19. Deuteron NMR and modelling in solid polymers

    International Nuclear Information System (INIS)

    Hirschinger, J.

    1992-01-01

    Deuteron NMR techniques are described and some recent applications to the study of rotational motions in solid polymers are reviewed. The information content and the domain of applicability of each technique are presented. Ultra-slow motions are studied in real time without any motional model consideration. For very fast motions, computer molecular dynamics simulations are shown to complement the NMR results. Experimental examples deal with the chain motion in the crystalline α-phase of poly(vinylidenefluoride) and nylon 6,6

  20. Programmable pulse series generator for NMR relaxometer

    International Nuclear Information System (INIS)

    Stolbunov, R.N.; Chichikov, S.A.; Lundin, A.G.

    2005-01-01

    Paper describes a pulse series generator for NMR relaxometer. The operation mode is set on the basis of the PC program by the PCI bus in the internal memory. The design is based on two Altera Company MAX7000S and Cyclone family microcircuits using the Qartus II 4.0 software. The basic parameters are as follows: pulse minimum length - 50 ns, time resolution - 10 ns, pulse maximum number - 1024, number of controlled output channels - 8. The designed device as a part of the NMR hardware-software system enables to record, to process and to store the experiment results in the form of electronic document [ru

  1. NMR relaxation times of natural rubber latex

    International Nuclear Information System (INIS)

    Harun, S.; Aziz, H.; Basir, Z.

    1994-01-01

    NMR relaxation times T sub 1 and T sub 2 of natural rubber latex have been measured at 25 degree C on a pulsed NMR spectrometer. The work focuses on the variation of the relaxation times with the amount of water content from 0% to 50%. The water content was adjusted by centrifuging and removing a certain amount of water from the sample. The data were analysed using a biexponential fitting procedure which yields simultaneously either T sub 1a and T sub 1b or T sub 2a and T sub 2b. The amount of solid was compared with the known amount of dry rubber content

  2. Recommendations of the wwPDB NMR Validation Task Force

    Science.gov (United States)

    Montelione, Gaetano T.; Nilges, Michael; Bax, Ad; Güntert, Peter; Herrmann, Torsten; Richardson, Jane S.; Schwieters, Charles; Vranken, Wim F.; Vuister, Geerten W.; Wishart, David S.; Berman, Helen M.; Kleywegt, Gerard J.; Markley, John L.

    2013-01-01

    As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with the wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment. PMID:24010715

  3. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.; Babaa, M.-R.; Bouhrara, M.; Kim, Y.; Saih, Y.; Dennler, S.; Mauri, F.; Basset, Jean-Marie; Goze-Bac, C.; Wå gberg, T.

    2011-01-01

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled

  4. nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data.

    Science.gov (United States)

    Schober, Daniel; Jacob, Daniel; Wilson, Michael; Cruz, Joseph A; Marcu, Ana; Grant, Jason R; Moing, Annick; Deborde, Catherine; de Figueiredo, Luis F; Haug, Kenneth; Rocca-Serra, Philippe; Easton, John; Ebbels, Timothy M D; Hao, Jie; Ludwig, Christian; Günther, Ulrich L; Rosato, Antonio; Klein, Matthias S; Lewis, Ian A; Luchinat, Claudio; Jones, Andrew R; Grauslys, Arturas; Larralde, Martin; Yokochi, Masashi; Kobayashi, Naohiro; Porzel, Andrea; Griffin, Julian L; Viant, Mark R; Wishart, David S; Steinbeck, Christoph; Salek, Reza M; Neumann, Steffen

    2018-01-02

    NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.

  5. Software Library for Bruker TopSpin NMR Data Files

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-14

    A software library for parsing and manipulating frequency-domain data files that have been processed using the Bruker TopSpin NMR software package. In the context of NMR, the term "processed" indicates that the end-user of the Bruker TopSpin NMR software package has (a) Fourier transformed the raw, time-domain data (the Free Induction Decay) into the frequency-domain and (b) has extracted the list of NMR peaks.

  6. NMR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Canby, R.C.; Evanochko, W.T.; Pohost, G.M.

    1986-01-01

    Proton nuclear magnetic resonance (NMR) imaging permits high-resolution tomographic and three-dimensional images of the human body to be obtained without exposure to ionizing radiation. Such imaging not only yields anatomic resolution comparable to X-ray examinations but also provides a potential means to discriminate between healthy tissue and diseased tissue. This potential is based on certain NMR properties known as relaxation times, which determine, in part, the signal intensity in an image. These properties are related to such factors as the sizes and concentrations of proteins and mobile lipids and the compartmentalization of the protons of water. Although NMR imaging (also called magnetic resonance imaging, MRI) is becoming widely available for clinical use, application to the cardiovascular system, though promising, remains primarily a research tool. Gated proton NMR imaging can generate cardiac images with excellent morphologic detail and contrast; however, its ultimate importance as a cardiovascular diagnostic modality will depend on the development of several unique applications. These applications are discussed in this paper

  7. NMR imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Naegele, M.; Lienemann, A.; Hahn, D.

    1988-01-01

    NMR imaging now allows in vivo imaging of soft tissue hitherto undetectable by non-invasive means. This opens up excellent perspectives with regard to the diagnosis and therapy of various diseases in the field of traumatology and oncology, of which examples are discussed in this paper. (orig.) [de

  8. Fourier transform zero field NMR and NQR

    International Nuclear Information System (INIS)

    Zax, D.B.

    1985-01-01

    In many systems the chemical shifts measured by traditional high resolution solid state NMR methods are insufficiently sensitive, or the information contained in the dipole-dipole couplings is more important. In these cases, Fourier transform zero field magnetic resonance may make an important contribution. Zero field NMR and NQR is the subject of this thesis. Chapter I presents the quantum mechanical background and notational formalism for what follows. Chapter II gives a brief review of high resolution magnetic resonance methods, with particular emphasis on techniques applicable to dipole-dipole and quadrupolar couplings. Level crossings between spin-1/2 and quadrupolar spins during demagnetization transfer polarization from high to low λ nuclei. This is the basis of very high sensitivity zero field NQR measurements by field cycling. Chapter III provides a formal presentation of the high resolution Fourier transform zero field NMR method. Theoretical signal functions are calculated for common spin systems, and examples of typical spectra are presented. Chapters IV and V review the experimental progress in zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for quadrupolar spin systems. Variations of the simple experiment describe in earlier chapters that use pulsed dc fields are presented in Chapter VI

  9. NMR analog of Bell's inequalities violation test

    International Nuclear Information System (INIS)

    Souza, A M; Oliveira, I S; Sarthour, R S; Magalhaes, A; Teles, J; Azevedo, E R de; Bonagamba, T J

    2008-01-01

    In this paper, we present an analog of Bell's inequalities violation test for N qubits to be performed in a nuclear magnetic resonance (NMR) quantum computer. This can be used to simulate or predict the results for different Bell's inequality tests, with distinct configurations and a larger number of qubits. To demonstrate our scheme, we implemented a simulation of the violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality using a two-qubit NMR system and compared the results to those of a photon experiment. The experimental results are well described by the quantum mechanics theory and a local realistic hidden variables model (LRHVM) that was specifically developed for NMR. That is why we refer to this experiment as a simulation of Bell's inequality violation. Our result shows explicitly how the two theories can be compatible with each other due to the detection loophole. In the last part of this work, we discuss the possibility of testing some fundamental features of quantum mechanics using NMR with highly polarized spins, where a strong discrepancy between quantum mechanics and hidden variables models can be expected

  10. NMR Analysis of Some Pentacycloundecanedione Derivatives

    African Journals Online (AJOL)

    NJD

    Although many authors have commented on the difficulty of ... coming these former difficulties. Cookson's dione 19,10 .... and 2.58 ppm) is the common factor and the positions of H-2. (2.94 ppm) .... Owing to advances in NMR technology, the.

  11. Proton NMR imaging in experimental ischemic infarction

    International Nuclear Information System (INIS)

    Buonanno, F.S.; Pykett, I.L.; Brady, T.J.; Vielma, J.; Burt, C.T.; Goldman, M.R.; Hinshaw, W.S.; Pohost, G.M.; Kistler, J.P.

    1983-01-01

    Proton nuclear magnetic resonance (NMR) images depict the distribution and concentration of mobile protons modified by the relaxation times T1 and T2. Using the steady-state-free-precession (SSFP) technique, serial coronal images were obtained sequentially over time in laboratory animals with experimental ischemic infarction. Image changes were evident as early as 2 hours after carotid artery ligation, and corresponded to areas of ischemic infarction noted pathologically. Resulting SSFP images in experimental stroke are contrasted to inversion-recovery NMR images in an illustrative patient with established cerebral infarction. Bulk T1 and T2 measurements were made in vitro in three groups of gerbils: normal, those with clinical evidence of infarction, and those clinically normal after carotid ligature. Infarcted hemispheres had significantly prolonged T1 and T2 (1.47 +/- .12 sec, 76.0 +/- 9.0 msec, respectively) when compared to the contralateral hemisphere (T1 . 1.28 +/- .05 sec, T2 . 58.7 +/- 3.9 msec) or to the other two groups. These data suggest that changes in NMR parameters occur and can be detected by NMR imaging as early as two hours after carotid artery ligation

  12. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  13. Structural Studies of Biological Solids Using NMR

    Science.gov (United States)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  14. Synthesis and NMR elucidation of novel pentacycloundecane ...

    African Journals Online (AJOL)

    NICO

    SYNTHESIS AND NMR ELUCIDATION OF NOVEL. PENTACYCLOUNDECANE DERIVED PEPTIDES. Rajshekhar Karpoormath, a. Oluseye K. Onajole, a. Thavendran Govender, b. Glenn E. M. Maguire, a and Hendrik G. Kruger a* a. School of Chemistry, University of KwaZulu-Natal, Durban 4001, South Africa b. School of ...

  15. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  16. NMR characterization of polymers: Review and update

    Science.gov (United States)

    NMR spectroscopy is a major technique for the characterization and analysis of polymers. A large number of methodologies have been developed in both the liquid and the solid state, and the literature has grown considerably (1-5). The field now covers a broad spectrum of activities, including polym...

  17. Some exercises in quantitative NMR imaging

    International Nuclear Information System (INIS)

    Bakker, C.J.G.

    1985-01-01

    The articles represented in this thesis result from a series of investigations that evaluate the potential of NMR imaging as a quantitative research tool. In the first article the possible use of proton spin-lattice relaxation time T 1 in tissue characterization, tumor recognition and monitoring tissue response to radiotherapy is explored. The next article addresses the question whether water proton spin-lattice relaxation curves of biological tissues are adequately described by a single time constant T 1 , and analyzes the implications of multi-exponentiality for quantitative NMR imaging. In the third article the use of NMR imaging as a quantitative research tool is discussed on the basis of phantom experiments. The fourth article describes a method which enables unambiguous retrieval of sign information in a set of magnetic resonance images of the inversion recovery type. The next article shows how this method can be adapted to allow accurate calculation of T 1 pictures on a pixel-by-pixel basis. The sixth article, finally, describes a simulation procedure which enables a straightforward determination of NMR imaging pulse sequence parameters for optimal tissue contrast. (orig.)

  18. Structures of Biomolecules by NMR Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    an edge over the X-ray method as it can be used to study biomolecules ... currently as an Associate. Professor. ... Such a wealth of data is made available to the NMR ... important step towards structural characterization of a biomolecule. Box 1.

  19. NMR blood vessel imaging method and apparatus

    International Nuclear Information System (INIS)

    Riederer, S.J.

    1988-01-01

    A high speed method of forming computed images of blood vessels based on measurements of characteristics of a body is described comprising the steps of: subjecting a predetermined body area containing blood vessels of interest to, successively, applications of a short repetition time (TR) NMR pulse sequence during the period of high blood velocity and then to corresponding applications during the period of low blood velocity for successive heart beat cycles; weighting the collected imaging data from each application of the NMR pulse sequence according to whether the data was acquired during the period of high blood velocity or a period of low blood velocity of the corresponding heart beat cycle; accumulating weighted imaging data from a plurality of NMR pulse sequences corresponding to high blood velocity periods and from a plurality of NMR pulse sequences corresponding to low blood velocity periods; subtracting the weighted imaging data corresponding to each specific phase encoding acquired during the high blood velocity periods from the weighted imaging data for the same phase encoding corresponding to low blood velocity periods in order to compute blood vessel imaging data; and forming an image of the blood vessels of interest from the blood vessel imaging data

  20. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Kerem

    2018-04-18

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMR and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.

  1. Solid-state NMR spectroscopy on complex biomolecules

    NARCIS (Netherlands)

    Renault, M.A.M.; Cukkemane, A.A.; Baldus, M.

    2010-01-01

    Biomolecular applications of NMR spectroscopy are often merely associated with soluble molecules or magnetic resonance imaging. However, since the late 1970s, solid-state NMR (ssNMR) spectroscopy has demonstrated its ability to provide atomic-level insight into complex biomolecular systems ranging

  2. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Science.gov (United States)

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  3. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Uppsala University, Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology (Sweden); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Faculty of Science – Chemistry, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-08-15

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  4. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    International Nuclear Information System (INIS)

    Schot, Gijs van der; Bonvin, Alexandre M. J. J.

    2015-01-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution

  5. First NMR Experiments in the Hybrid, 40T and beyond: A challenge to traditional NMR instrumentation

    Science.gov (United States)

    Reyes, Arneil P.

    2001-03-01

    The recent commissioning of the continuous 45T hybrid magnet at NHMFL has opened new horizon for science but carried with it new challenges that forced NMR spectroscopists to reevaluate the traditional approach to NMR instrumentation. Very recently, a world record frequency at 1.5GHz has been achieved, signaling the new era of NMR probe designs that may someday blur the distinction between the classic NMR and millimeter-wave spectroscopies. No longer can we ignore stray capacitances and exposed leads in the terrain where every millimeter of cable counts. The challenge brought about by ever increasing fields and consequently, frequency, requirements has stimulated ingenuity among scientists. This is eased by accelerated growth in RF communications and computing technologies that made available advanced devices with more speed, power, bandwidth, noise immunity, flexibility, and complexity in small space at very low costs. Utilization of these devices have been paramount consideration in cutting-edge designs at NHMFL for Condensed Matter NMR and will be described in this talk. I will also discuss a number of first >33T NMR experiments to date utilizing the strength of the field to expose, as well as to induce occurrence of, new physical phenomena in condensed matter and which resulted in better understanding of the physics of materials. This work has been a result of continuing collaboration with P. L Kuhns, W. G. Moulton, W. P. Halperin (NU), and W. G. Clark (UCLA). The NHMFL is supported through the National Science Foundation and the State of Florida.

  6. NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels

    Science.gov (United States)

    Smith, Chip J.; Gehrke, Sascha; Hollóczki, Oldamur; Wagle, Durgesh V.; Heitz, Mark P.; Baker, Gary A.

    2018-05-01

    Bacterial cellulose ionogels (BCIGs) represent a new class of material comprising a significant content of entrapped ionic liquid (IL) within a porous network formed from crystalline cellulose microfibrils. BCIGs suggest unique opportunities in separations, optically active materials, solid electrolytes, and drug delivery due to the fact that they can contain as much as 99% of an IL phase by weight, coupled with an inherent flexibility, high optical transparency, and the ability to control ionogel cross-sectional shape and size. To allow for the tailoring of BCIGs for a multitude of applications, it is necessary to better understand the underlying principles of the mesoscopic confinement within these ionogels. Toward this, we present a study of the structural, relaxation, and diffusional properties of the ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([bmpy][Tf2N]), using 1H and 19F NMR T1 relaxation times, rotational correlation times, and diffusion ordered spectroscopy (DOSY) diffusion coefficients, accompanied by molecular dynamics (MD) simulations. We observed that the cation methyl groups in both ILs were primary points of interaction with the cellulose chains and, while the pore size in cellulose is rather large, [emim]+ diffusion was slowed by ˜2-fold, whereas [Tf2N]- diffusion was unencumbered by incorporation in the ionogel. While MD simulations of [bmpy][Tf2N] confinement at the interface showed a diffusion coefficient decrease roughly 3-fold compared to the bulk liquid, DOSY measurements did not reveal any significant changes in diffusion. This suggests that the [bmpy][Tf2N] alkyl chains dominate diffusion through formation of apolar domains. This is in contrast to [emim][Tf2N] where delocalized charge appears to preclude apolar domain formation, allowing interfacial effects to be manifested at a longer range in [emim][Tf2N].

  7. Direct 13C NMR Detection in HPLC Hyphenation Mode

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Johansen, Kenneth; Nyberg, Nils

    2012-01-01

    Solid phase extraction (SPE) was introduced as a crucial step in the HPLC-SPE-NMR technique to enable online analyte enrichment from which proton-detected NMR experiments on submicrogram amounts from complex mixtures were possible. However, the significance of direct-detected (13)C NMR experiments...... application of HPLC-SPE-NMR analysis using direct-detected (13)C NMR spectra. HPLC column loading, accumulative SPE trappings, and the effect of different elution solvents were evaluated and optimized. A column loading of approximately 600 mug of a prefractionated triterpenoid mixture, six trappings...

  8. Use of NMR as an online sensor in industrial processes

    International Nuclear Information System (INIS)

    Andrade, Fabiana Diuk de

    2012-01-01

    Nuclear magnetic resonance (NMR) is one of the most versatile analytical techniques for chemical, biochemical and medical applications. Despite this great success, NMR is seldom used as a tool in industrial applications. The first application of NMR in flowing samples was published in 1951. However, only in the last ten years Flow NMR has gained momentum and new and potential applications have been proposed. In this review we present the historical evolution of flow or online NMR spectroscopy and imaging, and current developments for use in the automation of industrial processes. (author)

  9. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.

    Science.gov (United States)

    Cala, Olivier; Pinaud, Noël; Simon, Cécile; Fouquet, Eric; Laguerre, Michel; Dufourc, Erick J; Pianet, Isabelle

    2010-11-01

    In organoleptic science, the association of tannins to saliva proteins leads to the poorly understood phenomenon of astringency. To decipher this interaction at molecular and colloidal levels, the binding of 4 procyanidin dimers (B1-4) and 1 trimer (C2) to a human saliva proline-rich peptide, IB7(14), was studied. Interactions have been characterized by measuring dissociation constants, sizes of complexes, number, and nature of binding sites using NMR (chemical shift variations, diffusion-ordered spectroscopy, and saturation transfer diffusion). The binding sites were identified using molecular mechanics, and the hydrophilic/hydrophobic nature of the interactions was resolved by calculating the molecular lipophilicity potential within the complexes. The following comprehensive scheme can be proposed: 1) below the tannin critical micelle concentration (CMC), interaction is specific, and the procyanidin anchorage always occurs on the same three IB7(14) sites. The tannin 3-dimensional structure plays a key role in the binding force and in the tannin's ability to act as a bidentate ligand: tannins adopting an extended conformation exhibit higher affinity toward protein and initiate the formation of a network. 2) Above the CMC, after the first specific hydrophilic interaction has taken place, a random hydrophobic stacking occurs between tannins and proteins. The whole process is discussed in the general frame of wine tannins eliciting astringency.

  10. Sources of personnel for multinuclear companies

    International Nuclear Information System (INIS)

    Guppy, W.H.

    1975-01-01

    Included are comments and statistics on current employment levels, projected requirements for future stations, sources of personnel for current and projected stations, and methods of employee selection

  11. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  12. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    Science.gov (United States)

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  13. DNA oligonucleotide conformations: high resolution NMR studies

    International Nuclear Information System (INIS)

    Mellema, J.-R.

    1984-01-01

    The present work describes a DNA double-helix model, which is well comparable with the models derived from fibre-diffraction studies. The model has a mononucleotide repeat with torsion angles in accordance with average geometries as derived from 1 H NMR studies. Special attention was paid to reduce the number of short H-H nonbonding contacts, which are abundantly present in the 'classical' fibre-diffraction models. Chapter 3 describes the first complete assignment of a 1 H NMR spectrum of a DNA tetramer, d(TAAT). Preliminary conformational data derived from the spectral parameters recorded at 27 0 C are given. A more detailed analysis employing temperature-dependence studies is given in Chapter 4. (Auth.)

  14. Some nitrogen-14 NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  15. Fully automated system for pulsed NMR measurements

    International Nuclear Information System (INIS)

    Cantor, D.M.

    1977-01-01

    A system is described which places many of the complex, tedious operations for pulsed NMR experiments under computer control. It automatically optimizes the experiment parameters of pulse length and phase, and precision, accuracy, and measurement speed are improved. The hardware interface between the computer and the NMR instrument is described. Design features, justification of the choices made between alternative design strategies, and details of the implementation of design goals are presented. Software features common to all the available experiments are discussed. Optimization of pulse lengths and phases is performed via a sequential search technique called Uniplex. Measurements of the spin-lattice and spin-spin relaxation times and of diffusion constants are automatic. Options for expansion of the system are explored along with some of the limitations of the system

  16. Exploring the limits to spatially resolved NMR

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim; Nestle, Nikolaus [TU Darmstadt, Institute of Condensed Matter Physics (Germany)

    2010-07-01

    Recent advances in MRI have demonstrated resolutions down to 1 {mu}m. Magnetic resonance force microscopy has the potential to reach sensitivity for single nuclear spins. Given these numbers, in vivo imaging of single cells or even biomacromolecules may seem possible. However, for in vivo applications, there are fundamental differences in the contrast mechanisms compared to MRI at macroscopic scales as the length scale of of molecular self-diffusion exceeds that of the spatial resolution on the NMR time scale. Those effects - which are fundamentally different from the echo attenuation in field gradient NMR - even may lead to general limitations on the spatial resolution achievable in aqueous systems with high water content. In our contribution, we explore those effects on a model system in a high-resolution stray-field imaging setup. In addition to experimental results, simulations based on the Bloch-Torrey equation are presented.

  17. Recent topics in NMR imaging and MRI

    International Nuclear Information System (INIS)

    Watanabe, Tokuko

    2002-01-01

    NMR and NMR imaging (MRI) are finding increasing use not only in the clinical and medical fields, but also in material, physicochemical, biological, geological, industrial and environmental applications. This short review is limited to two topics: new techniques and pulse sequences and their application to non-clinical fields that may have clinical application; and new trends in MR contrast agents. The former topic addresses pulse sequence and data analysis; dynamics such as diffusion, flow, velocity and velocimetry; chemometrics; pharmacological agents; and chemotherapy; the latter topic addresses contrast agents (CA) sensitive to biochemical activity; CA based on water exchange; molecular interactions and stability of CA; characteristics of emerging CA; superparamagnetic CA; and macromolecular CA. (author)

  18. Some nitrogen-14 NMR studies in solids

    International Nuclear Information System (INIS)

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the 14 N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long 14 N longitudinal relaxation times (T 1 ) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between 14 N and 1 H. Using quadrupolar echo and CP techniques, the 14 N quadrupolar coupling constants (e 2 qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the 14 N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects

  19. NMR dispersion measurement of dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Davies, K.; Cox, S.F.J.

    1978-01-01

    The feasibility of monitoring dynamic nuclear polarization from the NMR dispersive susceptibility is examined. Two prototype instruments are tested in a polarized proton target using organic target material. The more promising employs a tunnel diode oscillator, inside the target cavity, and should provide a precise polarization measurement working at a frequency far enough from the main resonance for the disturbance of the measured polarization to be negligible. Other existing methods for measuring target polarization are briefly reviewed. (author)

  20. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  1. NMR of 1,2-dioxiquinolines

    International Nuclear Information System (INIS)

    Figueroa Villar, Jose Daniel; Santos, N.L. dos

    1993-01-01

    Several derivates of quinoline are known for presenting pharmacological activity as antibiotics and anti-parasites, from which an important group are the antibiotics for the treatment of malaria and infections of the urinary tract. This work presents the structures and the NMR spectra of three new derivates of quinoline. These compounds are being tested as possible antibiotics for the treatment of urinary infections caused by Escherichia coli which are extremely resistant to other types of antibiotics

  2. 31-P NMR spectroscopy in radiotherapy

    International Nuclear Information System (INIS)

    Kiricuta, I.C.; Schmitt, W.G.H.; Beyer, H.K.

    1987-01-01

    Results suggest 31-P NMR spectroscopy to allow a discrimination between good and bad blood supply to the tumour owing to different metabolic behaviour and to furnish important information on tumour response to radiotherapy just a few hours after the application of a relatively low dose. Spectroscopy showed the radiation-sensitive tumour cells to behave relatively uniformly after radiotherapy suggesting this behaviour to be interpreted as therapeutical effectiveness. (orig./SHA) [de

  3. 3D Reconstruction of NMR Images

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  4. Characterization of functional polymers by NMR

    International Nuclear Information System (INIS)

    Neto, Oscar H.S. A.S.; San Gil, Rosane A.S.; Nakayama, T.; Costa Neto, Claudio

    1993-01-01

    Several synthetic polymers are used in the chemical analysis of complexes mixtures aiming to extract certain specific functional groups for further identification. This work describes the utilization of NMR in the characterization of one of the above mentioned compounds which will be used as reagent for the synthesis of another compound of the same type, which will be further used in the chemical analysis of alcohols and phenols. The methodology is described. The results are described and discussed

  5. NMR characteristics of rat mammary tumors

    International Nuclear Information System (INIS)

    Osbakken, M.; Kreider, J.; Taczanowsky, P.

    1984-01-01

    12 rats were injected intradermally with 13762A rat mammary adenocarcinoma (1 x 10/sup 6/ cells). 3 rats died before completion of the study and 2 rat had tumor regression; the first 3 were excluded from data analysis. NMR imaging with a 1.5K gauss resistive magnet at 2, 3, 4, and 5 weeks after injection demonstrated increasing tumor mass. Saturation recovery (SR), inversion recovery (IR), and spin echo (SE) pulse sequence images and T/sub 1/ calculation were done for tumor characterization. (Tumor size was too small to identify at 2 weeks.) 3 rats were sacrificed after the last 3 imaging periods for histological studies, done to distinguish solid tumor mass from necrosis. Planimetry of tumor areas showed that as tumors grew in size, the ratio of necrotic area to area of solid tumor increased (week 3 = .3 +- .11; week 4 = .45 +- .07; week 5 = .51 +- 05); simultaneous calculated T/sub 1/ values also increased (week 3 = .35 +- .15; week 4 = .45 +- .06; week 5 = .42 +- 03). Qualitative NMR image T/sub 1/ values also increased as evidenced by progression of SR and IR tumor image intensity from very bright compared to the rest of the body at week 3 to less intense than other structures at week 5. These findings indicate that change in T/sub 1/ may be secondary to the pathophysiological change in the tumor (the increasing in necrosis, associated with increased free water). Thus, the range of T/sub 1/ values obtained in tumors in this study (and in previous studies) may be due to change in tumor physiology and anatomy. Careful correlation of histological with NMR data may allow ultimate use of NMR relaxation characteristics for determination of the physiological state of tumors

  6. 43Ca NMR in solid state

    Science.gov (United States)

    Bellot, P.-V.; Trokiner, A.; Zhdanov, Yu.; Yakubovskii, A.

    1998-02-01

    In this paper we show that 43Ca is a suitable NMR probe to study the properties of high-Tc superconducting oxides. In the normal state, we report the temperature and doping dependencies of the spin susceptibility measured by 43Ca NMR. In the superconducting state and more exactly in the mixed state, by analysing 43Ca NMR linewidth, we have studied the magnetic induction distribution due to the presence of vortices and deduced λ, the penetration depth. Dans cet article, on montre que l'isotope 43 du calcium est une bonne sonde RMN pour l'étude des propriétés des oxydes supraconducteurs à haute température. Dans l'état normal, par la détermination du déplacement de la raie, en fonction de la température, on accède à la variation thermique de la susceptibilité de spin. Dans l'état supraconducteur et plus particulièrement dans l'état mixte, la largeur de raie RMN permet d'étudier la distribution d'induction magnétique due à la présence des vortex et de déterminer λ, la longueur de pénétration.

  7. Automatic maximum entropy spectral reconstruction in NMR

    International Nuclear Information System (INIS)

    Mobli, Mehdi; Maciejewski, Mark W.; Gryk, Michael R.; Hoch, Jeffrey C.

    2007-01-01

    Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system

  8. Phosphorus NMR of isolated perfused morris hepatomas

    International Nuclear Information System (INIS)

    Graham, R.A.; Meyer, R.A.; Brown, T.R.; Sauer, L.A.

    1986-01-01

    The authors are developing techniques for the study of perfused solid tumors by NMR. Tissue-isolated solid hepatomas were grown to 1-2 cm diameter as described previously. The arterial supply was isolated and the tumors perfused (0.5 - 1.0 ml/min) in vitro at 25 C with a 15% suspension of red blood cells in Krebs-Henseliet solution. 31 P-NMR spectra were acquired at 162 MHz in a specially-designed NMR probe using a solenoidal coil. Intracellular pH (monitored from the chemical shift of inorganic phosphate) and ATP levels were stable for up to 6 hrs during perfusion. During 30 min of global ischemia, ATP decreased by 75% and pH fell from 7.0 to 6.7. These changes were reversed by 1 hr reperfusion. In addition to ATP and phosphate, the spectra included a large resonance due to phosphomonoesters, as well as peaks consistent with glycerylphosphocholine, glyceryl-phosphoethanolamine, phosphocreatine, NAD, and UDPG. However, the most novel feature of the spectra was the presence of an unidentified peak in the phosphonate region (+ 16.9 ppm). The peak was not present in spectra of muscle, liver, brain, kidney, or fat tissues excised from the same animals. They are presently attempting to identify the compound that gives rise to this peak and to establish its metabolic origin

  9. Solid state NMR study of cumbaru flour

    International Nuclear Information System (INIS)

    Nogueira, Jose S.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Tavares, Maria I.B.

    2001-01-01

    The polysaccharide obtained by seed of Dipteryx alata Vog, has been characterised by 13 C solid state, using the basic routine techniques, like MAS and CPMAS and by the proton spin-lattice relaxation time in the rotating frame parameter (T 1 H ρ). Knowing that the chemical structure and molecular dynamic are extremely necessary route to obtain information on the polysaccharides, this work contributes to the classification of the seed containing in the cumbaru fruit to get response on its application. To obtain the initial responses for our purposes some solid state NMR techniques were chosen. The CPMAS 13 C NMR spectrum of the polysaccharide was investigated to know if it has some crystallinity. The MAS 13 C NMR spectrum showed the presence of domains with distinct molecular mobility, because these domains will differ basically in the distribution size and chain packing. The variable contact time experiment was used to analyse the distribution form of 13 C decays, which give us more information about sample heterogeneity. The T 1 H ρHr values were obtained from the variable contact time and by delayed contact time experiment, because these parameter indicate the order of polysaccharides. From the values of this parameter, we found that this polysaccharide is completely non-ordered. (author)

  10. NMR measurement of bitumen at different temperatures.

    Science.gov (United States)

    Yang, Zheng; Hirasaki, George J

    2008-06-01

    Heavy oil (bitumen) is characterized by its high viscosity and density, which is a major obstacle to both well logging and recovery. Due to the lost information of T2 relaxation time shorter than echo spacing (TE) and interference of water signal, estimation of heavy oil properties from NMR T2 measurements is usually problematic. In this work, a new method has been developed to overcome the echo spacing restriction of NMR spectrometer during the application to heavy oil (bitumen). A FID measurement supplemented the start of CPMG. Constrained by its initial magnetization (M0) estimated from the FID and assuming log normal distribution for bitumen, the corrected T2 relaxation time of bitumen sample can be obtained from the interpretation of CPMG data. This new method successfully overcomes the TE restriction of the NMR spectrometer and is nearly independent on the TE applied in the measurement. This method was applied to the measurement at elevated temperatures (8-90 degrees C). Due to the significant signal-loss within the dead time of FID, the directly extrapolated M0 of bitumen at relatively lower temperatures (viscosity, the extrapolated M0 of bitumen at over 60 degrees C can be reasonably assumed to be the real value. In this manner, based on the extrapolation at higher temperatures (> or = 60 degrees C), the M0 value of bitumen at lower temperatures (index (HI), fluid content and viscosity were evaluated by using corrected T2.

  11. Rhodopsin-lipid interactions studied by NMR.

    Science.gov (United States)

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  13. Nuclear magnetic resonance apparatus having semitoroidal RF coil for use in topical NMR and NMR imaging

    International Nuclear Information System (INIS)

    Fukushima, E.; Assink, R.A.; Roeder, S.B.W.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, to enable NMR measurements to be taken from selected regions inside an object, particularly human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other electric field interactions. The coil may be combined with a like orthogonal coil and suitably driven to provide a circularly polarised field; or it may be used in conjunction with a concentrically nested smaller semitoroidal coil to move the maximum field further from the coil assembly. (author)

  14. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Simon P.; Fogh, Rasmus H. [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom); Boucher, Wayne [University of Cambridge, Department of Biochemistry (United Kingdom); Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom)

    2016-10-15

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  15. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    International Nuclear Information System (INIS)

    Skinner, Simon P.; Fogh, Rasmus H.; Boucher, Wayne; Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W.

    2016-01-01

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  16. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuanpeng Janet, E-mail: yphuang@cabm.rutgers.edu; Mao, Binchen; Xu, Fei; Montelione, Gaetano T., E-mail: gtm@rutgers.edu [Rutgers, The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium (United States)

    2015-08-15

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD–NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases {sup 15}N–{sup 1}H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD–NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta.

  17. Aggregation Number in Water/n-Hexanol Molecular Clusters Formed in Cyclohexane at Different Water/n-Hexanol/Cyclohexane Compositions Calculated by Titration 1H NMR.

    Science.gov (United States)

    Flores, Mario E; Shibue, Toshimichi; Sugimura, Natsuhiko; Nishide, Hiroyuki; Moreno-Villoslada, Ignacio

    2017-11-09

    Upon titration of n-hexanol/cyclohexane mixtures of different molar compositions with water, water/n-hexanol clusters are formed in cyclohexane. Here, we develop a new method to estimate the water and n-hexanol aggregation numbers in the clusters that combines integration analysis in one-dimensional 1 H NMR spectra, diffusion coefficients calculated by diffusion-ordered NMR spectroscopy, and further application of the Stokes-Einstein equation to calculate the hydrodynamic volume of the clusters. Aggregation numbers of 5-15 molecules of n-hexanol per cluster in the absence of water were observed in the whole range of n-hexanol/cyclohexane molar fractions studied. After saturation with water, aggregation numbers of 6-13 n-hexanol and 0.5-5 water molecules per cluster were found. O-H and O-O atom distances related to hydrogen bonds between donor/acceptor molecules were theoretically calculated using density functional theory. The results show that at low n-hexanol molar fractions, where a robust hydrogen-bond network is held between n-hexanol molecules, addition of water makes the intermolecular O-O atom distance shorter, reinforcing molecular association in the clusters, whereas at high n-hexanol molar fractions, where dipole-dipole interactions dominate, addition of water makes the intermolecular O-O atom distance longer, weakening the cluster structure. This correlates with experimental NMR results, which show an increase in the size and aggregation number in the clusters upon addition of water at low n-hexanol molar fractions, and a decrease of these magnitudes at high n-hexanol molar fractions. In addition, water produces an increase in the proton exchange rate between donor/acceptor molecules at all n-hexanol molar fractions.

  18. Knowns and unknowns in metabolomics identified by multidimensional NMR and hybrid MS/NMR methods

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Kerem; Brüschweiler, Rafael

    2017-02-01

    Metabolomics continues to make rapid progress through the development of new and better methods and their applications to gain insight into the metabolism of a wide range of different biological systems from a systems biology perspective. Customization of NMR databases and search tools allows the faster and more accurate identification of known metabolites, whereas the identification of unknowns, without a need for extensive purification, requires new strategies to integrate NMR with mass spectrometry, cheminformatics, and computational methods. For some applications, the use of covalent and non-covalent attachments in the form of labeled tags or nanoparticles can significantly reduce the complexity of these tasks.

  19. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Quantitative nuclear magnetic resonance (qNMR is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR and only a few fluorine qNMR (19F qNMR were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes.

  20. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  1. 13C-NMR assignment, structure, and dynamics of deoxyoligonucleotides

    International Nuclear Information System (INIS)

    Zanatta, N.; Borer, P.N.; Levy, G.C.

    1986-01-01

    The unique spectral properties of 13 C-NMR for studying nucleic acids and some of the important features of 13 C-NMR in oligonucleotide studies are demostrated. The main difficulty in studying oligonucleotides by 13 C-NMR and recent improvements in NMR instrumentation and advances in oligonucleotide synthesis are presented. The high resolution 13 C-NMR spectra, T 1 relaxation times and NOEs were measured for duplex of the self-complementary oligo-DNAs: d(CG) 3 and d(GGTATACC) are studied. The target of this study is to developed a systematic 13 C-NMR spectral assignment and to investigate the structure and dynamics of these two sequences by this techniques. (M.J.C.) [pt

  2. A primer to nutritional metabolomics by NMR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Savorani, Francesco; Rasmussen, Morten Arendt; Mikkelsen, Mette Skau

    2013-01-01

    This paper outlines the advantages and disadvantages of using high throughput NMR metabolomics for nutritional studies with emphasis on the workflow and data analytical methods for generation of new knowledge. The paper describes one-by-one the major research activities in the interdisciplinary...... metabolomics platform and highlights the opportunities that NMR spectra can provide in future nutrition studies. Three areas are emphasized: (1) NMR as an unbiased and non-destructive platform for providing an overview of the metabolome under investigation, (2) NMR for providing versatile information and data...... structures for multivariate pattern recognition methods and (3) NMR for providing a unique fingerprint of the lipoprotein status of the subject. For the first time in history, by combining NMR spectroscopy and chemometrics we are able to perform inductive nutritional research as a complement to the deductive...

  3. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  4. NMR examinations of the facial skeleton. Pt. 1

    International Nuclear Information System (INIS)

    Grodd, W.; Lenz, M.; Baumann, R.; Schroth, G.

    1984-01-01

    The resolution of NMR and CT was compared using axial sections of the normal anatomic structures of the facial skeleton. Is was shown that NMR was superior in differentiating muscles, tonsils, mucosa, lymph nodes and blood vessels. The demonstration of bone and its differentiation from air-containing spaces is often difficult. Metallic, non-ferromagnetic dental fillings, which cause serious artefacts on CT, do not after NMR. (orig.) [de

  5. NMR as a probe metabolic disorders in disease and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yushmanov, Victor E [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Chemical Physics

    1994-12-31

    The effects of malignant tumors, chemical and physical factors (toxic agents, ionizing radiation) as well as of their treatment on tissue metabolism were studied by NMR imaging. The importance of NMR is highlighted since it enables to a better understanding of molecular mechanisms of diseases and therapeutic interventions, in addition to the analysis of metabolic disorders in human beings. Combined with the studies of experimental animal pathologies, may constitute a base for new types of NMR-diagnosis in vivo 10 refs.

  6. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  7. NMR-Fragment Based Virtual Screening: A Brief Overview.

    Science.gov (United States)

    Singh, Meenakshi; Tam, Benjamin; Akabayov, Barak

    2018-01-25

    Fragment-based drug discovery (FBDD) using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.

  8. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  9. Straightforward and complete deposition of NMR data to the PDBe

    International Nuclear Information System (INIS)

    Penkett, Christopher J.; Ginkel, Glen van; Velankar, Sameer; Swaminathan, Jawahar; Ulrich, Eldon L.; Mading, Steve; Stevens, Tim J.; Fogh, Rasmus H.; Gutmanas, Aleksandras; Kleywegt, Gerard J.; Henrick, Kim; Vranken, Wim F.

    2010-01-01

    We present a suite of software for the complete and easy deposition of NMR data to the PDB and BMRB. This suite uses the CCPN framework and introduces a freely downloadable, graphical desktop application called CcpNmr Entry Completion Interface (ECI) for the secure editing of experimental information and associated datasets through the lifetime of an NMR project. CCPN projects can be created within the CcpNmr Analysis software or by importing existing NMR data files using the CcpNmr FormatConverter. After further data entry and checking with the ECI, the project can then be rapidly deposited to the PDBe using AutoDep, or exported as a complete deposition NMR-STAR file. In full CCPN projects created with ECI, it is straightforward to select chemical shift lists, restraint data sets, structural ensembles and all relevant associated experimental collection details, which all are or will become mandatory when depositing to the PDB. Instructions and download information for the ECI are available from the PDBe web site at http://www.ebi.ac.uk/pdbe/nmr/deposition/eci.htmlhttp://www.ebi.ac.uk/pdbe/nmr/deposition/eci.html.

  10. NMR-Fragment Based Virtual Screening: A Brief Overview

    Directory of Open Access Journals (Sweden)

    Meenakshi Singh

    2018-01-01

    Full Text Available Fragment-based drug discovery (FBDD using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.

  11. NMR characteristics of low-grade glioma. Comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Asato, Reinin; Tokuriki, Yasuhiko; Nakano, Yoshihisa; Itoh, Harumi; Torizuka, Kanji; Ueda, Tohru; Yamashita, Junkoh; Handa, Hajime

    1985-08-01

    Sixteen low-grade gliomas were evaluated both with nuclear magnetic resonance (NMR) imaging and with computed tomography (CT). In 13 cases (81%), the NMR images were much better in tissue contrast than the contrast-enhanced CT images. The tumors were shown as well-circumscribed oval lesions in the NMR, though they appeared as ill-defined, irregular, low-attenuation areas in the CT. The extent of the lesion, which was supposed to represent the active tumor tissue, was greater in the NMR than in the CT, because NMR tissue parameters (T/sub 1/, T/sub 2/) are more sensitive to pathological changes in brain tissue than is the X-ray attenuation coefficient. Though, in an optic glioma and a brain-stem astrocytoma, the CT with contrast enhancement displayed the contour of the mass as well as did NMR, it was inferior to the NMR in showing the cephalocaudal extension of the tumors. Calcification does not give a proton NMR signal under the present measuring conditions; thus the calcified cystic wall of a hypothalamic astrocytoma was displayed only in the CT images. In conclusion, the NMR imaging was apparently superior to contrast-enhanced CT in demonstrating the lesions due to low-grade glioma.

  12. NMR studies of spin dynamics in cuprates

    International Nuclear Information System (INIS)

    Takigawa, M.; Mitzi, D.B.

    1994-01-01

    The authors report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi 2.1 Sr 1.94 Ca 0.88 Cu 2.07 O 8+σ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa 2 Cu 3 O 6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector

  13. NMR studies of spin dynamics in cuprates

    Science.gov (United States)

    Takigawa, M.; Mitzi, D. B.

    1994-04-01

    We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.

  14. NMR-tomography of the heart

    International Nuclear Information System (INIS)

    Weikl, A.; Bachmann, K.

    1987-01-01

    The NMR-tomography as a non-invasive imaging process is examined regarding to the value to answer clinical issues. This method allows an evaluation of qualitative, quantitative, morphological and functional parameters. The diagnostic use on the heart shows early myocardial changes, thrombosis, changes in the dynamics of the left ventricle (EDV, ESV, EF), the quantitative wall movement and the blood flow in a shunt defect. The placed value of echocardiography, myocardial scintigraphy and coronary angiography in the diagnosis of acquired valvular heart disease, myocardial perfusion and coronary heart disease is not lowered by the above mentioned method. (orig.) [de

  15. NMR-tomography of the heart

    Energy Technology Data Exchange (ETDEWEB)

    Weikl, A.; Bachmann, K.

    1987-04-03

    The NMR-tomography as a non-invasive imaging process is examined regarding to the value to answer clinical issues. This method allows an evaluation of qualitative, quantitative, morphological and functional parameters. The diagnostic use on the heart shows early myocardial changes, thrombosis, changes in the dynamics of the left ventricle (EDV, ESV, EF), the quantitative wall movement and the blood flow in a shunt defect. The placed value of echocardiography, myocardial scintigraphy and coronary angiography in the diagnosis of acquired valvular heart disease, myocardial perfusion and coronary heart disease is not lowered by the above mentioned method.

  16. Structural study of pyrones by NMR

    International Nuclear Information System (INIS)

    Mandarino, D.G.

    1985-01-01

    Extracts of two species of Aniba, designed Aniba-SA (light petroleum extract) and Aniba-SB (benzene extract), afforded by chromatographic fraccionation some compounds. The isolated compounds were identified using spectrometric data and C 13 -NMR coupled and decompled spectra of pyrones were registered. Measurement of the heteronuclear residual coupling by irradiation proton frequency off-resonance was used for distinguish C-5, C-7 and C-8 carbons of the pyrones SB-1, SB-3, SB-4 and SB-5. (M.J.C.) [pt

  17. Touch NMR: An NMR Data Processing Application for the iPad

    Science.gov (United States)

    Li, Qiyue; Chen, Zhiwei; Yan, Zhiping; Wang, Cheng; Chen, Zhong

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has become one of the most powerful technologies to aid research in numerous scientific disciplines. With the development of consumer electronics, mobile devices have played increasingly important roles in our daily life. However, there is currently no application available for mobile devices able to…

  18. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    Science.gov (United States)

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  19. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konuma, Tsuyoshi [Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology (United States); Harada, Erisa [Suntory Foundation for Life Sciences, Bioorganic Research Institute (Japan); Sugase, Kenji, E-mail: sugase@sunbor.or.jp, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2015-12-15

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  20. Proton NMR studies on Megaphaera elsdenii flavodoxin : structure elucidation by 2D-NMR and implications

    NARCIS (Netherlands)

    Mierlo, van C.

    1990-01-01

    1H NMR techniques have been applied for a thorough study of the uncrystallizable Megasphaera elsdenii flavodoxin in its three redox states. The aim of the research project described in this thesis was to obtain answers regarding questions

  1. Crystallographic and dynamic aspects of solid-state NMR calibration compounds: towards ab initio NMR crystallography

    DEFF Research Database (Denmark)

    Li, Xiaozhou; Tapmeyer, Lukas; Bolte, Michael

    2016-01-01

    The excellent results of dispersion-corrected density functional theory (DFT-D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT-D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss...

  2. Ternary silicides ScIr{sub 4}Si{sub 2} and RERh{sub 4}Si{sub 2} (RE = Sc, Y, Tb-Lu) and quaternary derivatives RERh{sub 4}Si{sub 2-x}Sn{sub x} (RE = Y, Nd, Sm, Gd-Lu) - structure, chemical bonding, and solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vosswinkel, Daniel; Benndorf, Christopher; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Sao Paulo Univ., Sao Carlos (Brazil). Inst. of Physics; Matar, Samir F. [Bordeaux Univ., CNRS, ICMCB, UPR 9048, Pessac (France)

    2016-11-01

    The silicides ScIr{sub 4}Si{sub 2} and RERh{sub 4}Si{sub 2} (RE = Sc, Y, Tb-Lu) and silicide stannides RERh{sub 4}Si{sub 2-x}Sn{sub x}(RE = Y, Nd, Sm, Gd-Lu) were synthesized from the elements by arc-melting and subsequent annealing. The new compounds crystallize with the orthorhombic YRh{sub 4}Ge{sub 2} type structure, space group Pnma. They were characterized by X-ray powder patterns and several structures were refined from single crystal X-ray diffractometer data. The main structural motifs of this series of silicides are tricapped trigonal prisms formed by the transition metal and rare earth atoms. One of the two crystallographically independent silicon sites allows for formation of solid solutions with tin, exemplarily studied for ErRh{sub 4}Si{sub 2-x}Sn{sub x}. Electronic structure calculations reveal strong covalent Rh-Si bonding as the main stability factor. Multinuclear ({sup 29}Si, {sup 45}Sc, and {sup 89}Y) magic-angle spinning (MAS) NMR spectra of the structure representatives with diamagnetic rare-earth elements (Sc, Y, Lu) are found to be consistent with the crystallographic data and specifically confirm the selective substitution of Sn in the Si2 sites in the quaternary compounds YRh{sub 4}SiSn and LuRh{sub 4}SiSn.

  3. In vivo NMR spectroscopy of ripening avocado

    International Nuclear Information System (INIS)

    Bennett, A.B.; Smith, G.M.; Nichols, B.

    1987-01-01

    Ripening of avocado fruit is associated with a dramatic increase in respiration. Previous studies have indicated that the increase in respiration is brought about by activation of the glycolytic reaction catalyzing the conversion of fructose-6-phosphate to fructose 1,6-bisphosphate. The authors reinvestigated the proposed role of glycolytic regulation in the respiratory increase using in vivo 31 P nuclear magnetic resonance (NMR) spectroscopy using an external surface coil and analysis of phosphofructokinase (PFK), phosphofructophosphotransferase (PFP), and fructose 2,6-bisphosphate (fru 2,6-P 2 ) levels in ripening avocado fruit. In vivo 31 P NMR spectroscopy revealed large increases in ATP levels accompanying the increase in respiration. Both glycolytic enzymes, PFK and PFP, were present in avocado fruit, with the latter activity being highly stimulated by fru 2,6-P 2 . Fructose 2,6-bisphosphate levels increased approximately 90% at the onset of ripening, indicating that the respiratory increase in ripening avocado may be regulated by the activation of PFP brought about by an increase in fru 2,6-P 2

  4. The D0 solenoid NMR magnetometer

    International Nuclear Information System (INIS)

    Sten Uldall Hansen; Terry Kiper; Tom Regan; John Lofgren

    2002-01-01

    A field monitoring system for the 2 Tesla Solenoid of the D0 detector is described. It is comprised of a very small NMR probe cabled to a DSP based signal processing board. The design magnetic field range is from 1.0 to 2.2 Tesla, corresponding to an RF frequency range of 42.57 to 93.67 MHz. The desired an accuracy is one part in 10 5 . To minimize material in the interaction region of the D0 detector, the overall thickness of the NMR probe is 4 mm, including its mounting plate, and its width is 10 mm. To minimize cable mass, 4mm diameter IMR-100A cables are used for transmitting the RF signals from a nearby patch panel 25 meters to each of four probes mounted within the bore of the solenoid. RG213U cables 45 meters long are used to send the RF from the movable counting house to the patch panel. With this setup, the detector signal voltage at the moving counting room is in the range of 250-400 mV

  5. System of liquid thermostatic control for jet experiments on NMR

    International Nuclear Information System (INIS)

    Selivanov, S.I.; Bogatkin, R.A.; Ershov, B.A.

    1983-01-01

    The system of liquid thermostating of a sensor of NMR spectrometer, used as a registering device in the method of continuous and interrupting stream, is described. Such method of thermostating permits to make kinetic measurements in the temperature range from -40 to +60 deg C with the accuracy +-0.1 deg C and removes the necessity for applying secondary temperature NMR standards

  6. NMR-Metabolic Methodology in the Study of GM Foods

    Science.gov (United States)

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...

  7. Rapid prediction of multi-dimensional NMR data sets

    International Nuclear Information System (INIS)

    Gradmann, Sabine; Ader, Christian; Heinrich, Ines; Nand, Deepak; Dittmann, Marc; Cukkemane, Abhishek; Dijk, Marc van; Bonvin, Alexandre M. J. J.; Engelhard, Martin; Baldus, Marc

    2012-01-01

    We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such “in silico” data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR (http://www.wenmr.eu/services/FANDAShttp://www.wenmr.eu/services/FANDAS).

  8. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    International Nuclear Information System (INIS)

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear

  9. Rapid prediction of multi-dimensional NMR data sets

    Energy Technology Data Exchange (ETDEWEB)

    Gradmann, Sabine; Ader, Christian [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Heinrich, Ines [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Nand, Deepak [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Dittmann, Marc [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Cukkemane, Abhishek; Dijk, Marc van; Bonvin, Alexandre M. J. J. [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Engelhard, Martin [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2012-12-15

    We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such 'in silico' data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR (http://www.wenmr.eu/services/FANDAShttp://www.wenmr.eu/services/FANDAS).

  10. Improved Baseline in 29Si NMR Spectra of Water Glasses

    Czech Academy of Sciences Publication Activity Database

    Schraml, Jan; Sandor, P.; Korec, S.; Krump, M.; Foller, B.

    2013-01-01

    Roč. 51, č. 7 (2013), s. 403-406 ISSN 0749-1581 Grant - others:GA MPO(CZ) FR-TI1/335; GA MŠk(CZ) LM2011020 Institutional support: RVO:67985858 Keywords : NMR * 29Si NMR * acoustic ringing Subject RIV: JI - Composite Materials Impact factor: 1.559, year: 2013

  11. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  12. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    Science.gov (United States)

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  13. SPE-NMR metabolite sub-profiling of urine

    NARCIS (Netherlands)

    Jacobs, D.M.; Spiesser, L.; Garnier, M.; Roo, de N.; Dorsten, van F.; Hollebrands, B.; Velzen, van E.; Draijer, R.; Duynhoven, van J.P.M.

    2012-01-01

    NMR-based metabolite profiling of urine is a fast and reproducible method for detection of numerous metabolites with diverse chemical properties. However, signal overlap in the (1)H NMR profiles of human urine may hamper quantification and identification of metabolites. Therefore, a new method has

  14. Crystallographically-based analysis of the NMR spectra of maghemite

    International Nuclear Information System (INIS)

    Spiers, K.M.; Cashion, J.D.

    2012-01-01

    All possible iron environments with respect to nearest neighbour vacancies in vacancy-ordered and vacancy-disordered maghemite have been evaluated and used as the foundation for a crystallographically-based analysis of the published NMR spectra of maghemite. The spectral components have been assigned to particular configurations and excellent agreement obtained in comparing predicted spectra with published spectra taken in applied magnetic fields. The broadness of the published NMR lines has been explained by calculations of the magnetic dipole fields at the various iron sites and consideration of the supertransferred hyperfine fields. - Highlights: ► Analysis of 57 Fe NMR of maghemite based on vacancy ordering and nearest neighbour vacancies. ► Assignment of NMR spectral components based on crystallographic analysis of unique iron sites. ► Strong agreement between predicted spectra and published spectra taken in applied magnetic fields. ► Maghemite NMR spectral broadening due to various iron sites and supertransferred hyperfine field.

  15. NMR and the surgery of tumours at the craniocervical junction

    International Nuclear Information System (INIS)

    Ahyai, A.; Matsumara, A.; Rittmeyer, K.

    1987-01-01

    The diagnosis of tumors in the posterior fossa and at the craniocervical junction has always been problematic. In this region of the brain a clear visualization of the exact extent and relations of a space-occupying lesion is indispensable in assessing whether it is operable. Even though a tumor with its perifocal edema can be detected by CT, NMR opens new perspectives for the neurosurgeon. The authors present these cases in 3 groups. Group 1 comprises patients for whom NMR results contra-indicated operation. Group II consists of patients who would probably not have been operated on prior to the use of NMR. Group III includes patients who would probably not have been operated on prior to the use of NMR (e.g arachnoid cysts, Dandy-Walker malformations, etc); the excellent multi-dimensional imaging by NMR rendered the advisability of operation questionable, so that improved diagnostics may have spared the patients unnecessary operations

  16. $\\beta$-NMR of copper isotopes in ionic liquids

    CERN Multimedia

    We propose to test the feasibility of spin-polarization and $\\beta$-NMR studies on several short-lived copper isotopes, $^{58}$ Cu, $^{74}$Cu and $^{75}$Cu in crystals and liquids. The motivation is given by biological studies of Cu with $\\beta$-NMR in liquid samples, since Cu is present in a large number of enzymes involved in electron transfer and activation of oxygen. The technique is based on spin-polarization via optical pumping in the new VITO beamline. We will use the existing lasers, NMR magnet and NMR chambers and we will prepare a new optical pumping system. The studies will be devoted to tests of achieved $\\beta$-asymmetry in solid hosts, the behaviour of asymmetry when increasing vacuum, and finally NMR scans in ionic liquids. The achieved spin polarization will be also relevant for the plans to measure with high precision the magnetic moments of neutron-rich Cu isotopes.

  17. Dynamics of solutions and fluid mixtures by NMR

    International Nuclear Information System (INIS)

    Delpuech, J.J.

    1994-01-01

    After a short introduction to NMR spectroscopy, with a special emphasis on dynamical aspects, an overview on two fundamental aspects of molecular dynamics, NMR relaxation and its relationship with molecular reorientation, and magnetization transfer phenomena induced by molecular rate processes (dynamic NMR) is presented, followed by specific mechanisms of relaxation encountered in paramagnetic systems or with quadrupolar nuclei. Application fields are then reviewed: solvent exchange on metal ions with a variable pressure NMR approach, applications of field gradients in NMR, aggregation phenomena and micro-heterogeneity in surfactant solutions, polymers and biopolymers in the liquid state, liquid-like molecules in rigid matrices and in soft matter (swollen polymers and gels, fluids in and on inorganic materials, food)

  18. Value of NMR logging for heavy oil characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Chen, J.; Georgi, D. [Baker Hughes, Calgary, AB (Canada); Sun, B. [Chevron Energy Technology Co., Calgary, AB (Canada)

    2008-07-01

    Non-conventional, heavy oil fields are becoming increasingly important to the security of energy supplies and are becoming economically profitable to produce. Heavy oil reservoirs are difficult to evaluate since they are typically shallow and the connate waters are very fresh. Other heavy oil reservoirs are oil-wet where the resistivities are not indicative of saturation. Nuclear magnetic resonance (NMR) detects molecular level interactions. As such, it responds distinctively to different hydrocarbon molecules, thereby opening a new avenue for constituent analysis. This feature makes NMR a more powerful technique than bulk oil density or viscosity measurements for characterizing oils, and is the basis for detecting gas in heavy oil fields. NMR logging, which measures fluid in pore space directly, is capable of separating oil from water. It is possible to discern movable from bound water by analyzing NMR logs. The oil viscosity can be also quantified from NMR logs, NMR relaxation time and diffusivity estimates. The unique challenges for heavy oil reservoir characterization for the NMR technique were discussed with reference to the extra-fast decay of the NMR signal in response to extra-heavy oil/tars, and the lack of sensitivity in measuring very slow diffusion of heavy oil molecules. This paper presented various methods for analyzing heavy oil reservoirs in different viscosity ranges. Heavy oil fields in Venezuela, Kazakhstan, Canada, Alaska and the Middle East were analyzed using different data interpretation approaches based on the reservoir formation characteristics and the heavy oil type. NMR direct fluid typing was adequate for clean sands and carbonate reservoirs while integrated approaches were used to interpret extra heavy oils and tars. It was concluded that NMR logs can provide quantitative measures for heavy oil saturation, identify sweet spots or tar streaks, and quantify heavy oil viscosity within reasonable accuracy. 14 refs., 16 figs.

  19. Investigation of zeolites by solid state quadrapole NMR

    International Nuclear Information System (INIS)

    Janssen, R.

    1990-01-01

    The subject of this thesis is the NMR investigation of zeolites. The nature and properties of zeolites are discussed. Some of the basic priniples of NMR techniques on quadrupole nuclei are presented. A special technique, namely a two-dimensional nutation experiment is discussed in detail. The theory of the nutation experiment for quadrupole spin species with spin quantum number 3/2 as well as 5/2 is presented. For both spin spcies the theoretical spectra are compared with experimental results. It is also shown that the nutation expeirment can be performed with several pulse schemes. It is shown how phase-sensitive pure-absorption nutation spectra can be obtained and an NMR-probe is presented that is capable of performing NMR experiments at high (up to 500 degree C) temperatures. The two-dimensional nutation NMR technique has been applied to sodium cations in zeolite NaA. For this purpose a numbre of zeolite samples were prepared that contained different amounts of water. With the aid of nutation NMR the hydration of the zeolite can be studied and conclusions can be drawn about the symmetry of the surrounding of the sodium cations. With the aid of an extension of the nutation NMR experiment: Rotary Echo Nutation NMR, it is shown that in zeolite NaA, in various stages of hydration, the sodium cations or water molecules are mobile. Proof is given by means of high-temperature 23 Na-NMR that dehydrates zeolite NaA undergoes a phase transition at ca. 120 degree C. In a high-temperature NMR investigation of zeolite ZSM-5 it is shown that the sodium ions start to execute motions when the temperature is increased. (author). 198 refs.; 72 figs.; 6 tabs

  20. Variations of NMR signals by hyperpolarization and ultrasound; Variation von NMR-Signalen durch Hyperpolarisation und Ultraschall

    Energy Technology Data Exchange (ETDEWEB)

    Engelbertz, A.

    2006-07-01

    In this thesis it is described how p-NMR can be applied to metals with verlo low hydrogen concentrations and how a combination of ultrasound and NMR can lead to an improvement of the measureing method. As examples measurements on H{sub 2}O and ethanol are described. (HSI)

  1. Automated protein structure calculation from NMR data

    International Nuclear Information System (INIS)

    Williamson, Mike P.; Craven, C. Jeremy

    2009-01-01

    Current software is almost at the stage to permit completely automatic structure determination of small proteins of <15 kDa, from NMR spectra to structure validation with minimal user interaction. This goal is welcome, as it makes structure calculation more objective and therefore more easily validated, without any loss in the quality of the structures generated. Moreover, it releases expert spectroscopists to carry out research that cannot be automated. It should not take much further effort to extend automation to ca 20 kDa. However, there are technological barriers to further automation, of which the biggest are identified as: routines for peak picking; adoption and sharing of a common framework for structure calculation, including the assembly of an automated and trusted package for structure validation; and sample preparation, particularly for larger proteins. These barriers should be the main target for development of methodology for protein structure determination, particularly by structural genomics consortia

  2. High Magnetic Field Vortex Microscopy by NMR

    Science.gov (United States)

    Mitrović, V. F.; Sigmund, E. E.; Bachman, H. N.; Halperin, W. P.; Reyes, A. P.; Kuhns, P.; Moulton, W. G.

    2001-03-01

    At low temperatures the ^17O NMR spectrum of HTS exhibits a characteristic vortex lattice line shape. Measurements of spin-lattice relaxation rate, T_1-1, across the vortex spectrum represent a probe of low-energy quasiparticle excitations as a function of distance from the vortex core. We report ^17O(2,3) T_1-1 measurements of YBa_2Cu_3O7 at low temperatures in magnetic fields up to 37 T. We find that the rate increases on approaching the vortex core. In the vortex core region at 37 T we observe an additional increase in the relaxation rate. The temperature dependence of the rate will also be discussed. Work at Northwestern University is supported by the NSF (DMR 91-20000) through the Science and Technology Center for Superconductivity.

  3. INFOS: spectrum fitting software for NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A., E-mail: alsi@nmr.phys.chem.ethz.ch [ETH Zürich, Physical Chemistry (Switzerland)

    2017-02-15

    Software for fitting of NMR spectra in MATLAB is presented. Spectra are fitted in the frequency domain, using Fourier transformed lineshapes, which are derived using the experimental acquisition and processing parameters. This yields more accurate fits compared to common fitting methods that use Lorentzian or Gaussian functions. Furthermore, a very time-efficient algorithm for calculating and fitting spectra has been developed. The software also performs initial peak picking, followed by subsequent fitting and refinement of the peak list, by iteratively adding and removing peaks to improve the overall fit. Estimation of error on fitting parameters is performed using a Monte-Carlo approach. Many fitting options allow the software to be flexible enough for a wide array of applications, while still being straightforward to set up with minimal user input.

  4. NMR Measurements of Granular Flow and Compaction

    Science.gov (United States)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  5. NMR spectroscopy: a tool for conformational analysis

    International Nuclear Information System (INIS)

    Tormena, Claudio F.; Cormanich, Rodrigo A.; Rittner, Roberto; Freitas, Matheus P.

    2011-01-01

    The present review deals with the application of NMR data to the conformational analysis of simple organic compounds, together with other experimental methods like infrared spectroscopy and with theoretical calculations. Each sub-section describes the results for a group of compounds which belong to a given organic function like ketones, esters, etc. Studies of a single compound, even of special relevance, were excluded since the main goal of this review is to compare the results for a given function, where different substituents were used or small structural changes were introduced in the substrate, in an attempt to disclose their effects in the conformational equilibrium. Moreover, the huge amount of data available in the literature, on this research field, imposed some limitations which will be detailed in the Introduction, but it can be reminded in advance that these limitations include mostly the period when these results were published. (author)

  6. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    Science.gov (United States)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  7. NMR study of hyper-polarized 129Xe and applications to liquid-phase NMR experiments

    International Nuclear Information System (INIS)

    Marion, D.

    2008-07-01

    In liquid samples where both nuclear polarization and spin density are strong, the magnetization dynamics, which can be analysed by NMR (nuclear magnetic resonance) methods, is deeply influenced by the internal couplings induced by local dipolar fields. The present thesis describes some of the many consequences associated to the presence in the sample of concentrated xenon hyper-polarized by an optical pumping process. First, we deal with the induced modifications in frequency and line width of the proton and xenon spectra, then we present the results of SPIDER, a coherent polarization transfer experiment designed to enhance the polarization of protons, in order to increase their NMR signal level. A third part is dedicated to the description of the apparition of repeated chaotic maser emissions by un unstable xenon magnetization coupled to the detection coil tuned at the xenon Larmor frequency (here 138 MHz). In the last part, we present a new method allowing a better tuning of any NMR detection probe and resulting in sensible gains in terms of sensitivity and signal shaping. Finally, we conclude with a partial questioning of the classical relaxation theory in the specific field of highly polarized and concentrated spin systems in a liquid phase. (author)

  8. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Gowda, G.A. Nagana; Raftery, Daniel

    2015-01-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact biospecimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. PMID:26476597

  9. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  10. Molecular dynamics simulations on PGLa using NMR orientational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, Ulrich, E-mail: ulrich.sternberg@partner.kit.edu; Witter, Raiker [Tallinn University of Technology, Technomedicum (Estonia)

    2015-11-15

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.

  11. Effect of pressure on the short-range structure and speciation of carbon in alkali silicate and aluminosilicate glasses and melts at high pressure up to 8 GPa: 13C, 27Al, 17O and 29Si solid-state NMR study

    Science.gov (United States)

    Kim, Eun Jeong; Fei, Yingwei; Lee, Sung Keun

    2018-03-01

    Despite the pioneering efforts to explore the nature of carbon in carbon-bearing silicate melts under compression, experimental data for the speciation and the solubility of carbon in silicate melts above 4 GPa have not been reported. Here, we explore the speciation of carbon and pressure-induced changes in network structures of carbon-bearing silicate (Na2O-3SiO2, NS3) and sodium aluminosilicate (NaAlSi3O8, albite) glasses quenched from melts at high pressure up to 8 GPa using multi-nuclear solid-state NMR. The 27Al triple quantum (3Q) MAS NMR spectra for carbon-bearing albite melts revealed the pressure-induced increase in the topological disorder around 4 coordinated Al ([4]Al) without forming [5,6]Al. These structural changes are similar to those in volatile-free albite melts at high pressure, indicating that the addition of CO2 in silicate melts may not induce any additional increase in the topological disorder around Al at high pressure. 13C MAS NMR spectra for carbon-bearing albite melts show multiple carbonate species, including [4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, [4]Al(CO3)[4]Al, and free CO32-. The fraction of [4]Si(CO3)[4]Al increases with increasing pressure, while those of other bridging carbonate species decrease, indicating that the addition of CO2 may enhance mixing of Si and Al at high pressure. A noticeable change is not observed for 29Si NMR spectra for the carbon-bearing albite glasses with varying pressure at 1.5-6 GPa. These NMR results confirm that the densification mechanisms established for fluid-free, polymerized aluminosilicate melts can be applied to the carbon-bearing albite melts at high pressure. In contrast, the 29Si MAS NMR spectra for partially depolymerized, carbon-bearing NS3 glasses show that the fraction of [5,6]Si increases with increasing pressure at the expense of Q3 species ([4]Si species with one non-bridging oxygen as the nearest neighbor). The pressure-induced increase in topological disorder around Si is evident from an

  12. Molecular dynamics computer simulations based on NMR data

    International Nuclear Information System (INIS)

    Vlieg, J. de.

    1989-01-01

    In the work described in this thesis atom-atom distance information obtained from two-dimensional cuclear magnetic resonance is combined with molecular dynamics simulaitons. The simulation is used to improve the accuracy of a structure model constructed on the basis of NMR data. During the MD refinement the crude NMR structure is simultaneously optimized with respect to the atomic interaction function and to the set of atom-atom distances or other NMR information. This means that insufficient experimental data is completed with theoretical knowledge and the combination will lead to more reliable structures than would be obtained from one technique alone. (author). 191 refs.; 17 figs.; 12 schemes; 22 tabs

  13. Moessbauer and NMR study of novel Tin(IV)-lactames

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, Erno; Szalay, Roland; Homonnay, Zoltan, E-mail: homonnay@ludens.elte.hu; Nagy, Sandor [Eoetvoes Lorand University, Institute of Chemistry (Hungary)

    2012-03-15

    N-tributylstannylated 2-pyrrolidinone was reacted with tributyltin triflate in different molar ratios and the complex formation monitored using {sup 1}H-NMR, {sup 13}C-NMR and {sup 119}Sn Moessbauer spectroscopy. Comparing the carbon NMR and tin Moessbauer results, a reaction scheme is suggested for the complexation which assumes the formation of a simultaneously O- and N-tributylstannylated pyrrolidinone cation. The formation of the only O-stannylated pyrrolidinone is also assumed to account for the non-constant Moessbauer parameters of the two tin environments in the distannylated pyrrolidinone cation when the ratio of tributyltin triflate is increased in the reaction.

  14. NMR imaging of bladder tumors in males. Preliminary clinical experience

    International Nuclear Information System (INIS)

    Sigal, R.; Rein, A.J.J.T.; Atlan, H.; Lanir, A.; Kedar, S.; Segal, S.

    1985-01-01

    Nuclear magnetic resonance (NMR) of the normal and pathologic bladder was performed in 10 male subjects: 5 normal volunteers, 4 with bladder primary carcinoma, 1 with bladder metastasis. All scanning was done using a superconductive magnet operating at 0.5 T. Spin echo was used as pulse sequence. The diagnosis was confirmed in all cases by NMR imaging. The ability of the technique to provide images in axial, sagital and coronal planes allowed a precise assessment of the morphology and the size of the tumors. The lack of hazards and the quality of images may promote NMR imaging to a prominent role in the diagnosis of human bladder cancer [fr

  15. NMR and domain wall mobility in intermetallic compounds

    International Nuclear Information System (INIS)

    Guimaraes, A.P.; Sampaio, L.C.; Cunha, S.F.; Alves, K.M.B.

    1991-01-01

    The technique of pulsed NMR can be used to study the distribution of hyperfine fields in a magnetic matrix. The dynamics of the domain walls are relevant to the generation of NMR signals. In the present study on the (R x Y 1-x ) Fe 2 intermetallic compounds, the reduction in the signals is associated to increased propagation fields. This indicates that a smaller domain wall mobility is at the origin of these effects. NMR spectra in this system show the importance of direct and indirect (i.e., mediated by Fe atoms) terms in the transferred hyperfine field. (author)

  16. NMR studies of metallic tin confined within porous matrices

    International Nuclear Information System (INIS)

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-01-01

    119 Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown

  17. Study on the Effects of Oligo chitosan and Bioliquifert on Two Rice Mutants, NMR 151 and NMR 152

    International Nuclear Information System (INIS)

    Shakinah Salleh; Faiz Ahmad; Sobri Hussein

    2016-01-01

    Nuclear Malaysia has successfully developed two new rice mutants namely NMR 151 and NMR 152. In addition, Nuclear Malaysia has also successfully developed Oligo chitosan and liquid bio fertilizer (Bioliquifert). Oligo chitosan acts as elicitor that has been proven to be very effective in controlling disease infections and improving yield productivity. Bioliquifert on the other hand is a mixture of microbes containing major nutrient-providing microorganisms. The objective of this study is to observe the effects of Oligo chitosan and Bioliquifert on rice mutants, NMR 151 and NMR 152. The treatment was applied on 14 day old seedlings of MR 219, NMR 151 and NMR 152 sowed in 20 cm pots containing silty clay from the paddy soil of Tanjung Karang, Selangor. The seedlings were then placed in the greenhouse at Nuclear Malaysia until it reaches 110 days old. Study was conducted in a Complete Randomized Design (CRD) with 3 replications was used and each replication consisted of three plants. All treatments received compound and single dressing fertilizer as recommended by National Rice Production Package except for Treatment 2 and 3, in which Treatment 2 received Oligo chitosan and Bioliquifert while Treatment 3 only received Bioliquifert. Results on plant height, number of tiller and plant fresh weight are not significantly different for all cultivar except for seed dry weight of NMR 152 and MR 219. (author)

  18. Force field refinement from NMR scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jing [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland); Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2012-03-02

    Graphical abstract: We show that two classes of H-bonds are sufficient to quantitatively describe scalar NMR coupling constants in small proteins. Highlights: Black-Right-Pointing-Pointer We present force field refinements based on explicit MD simulations using scalar couplings across hydrogen bonds. Black-Right-Pointing-Pointer This leads to {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.03 Hz at best compared to experiment. Black-Right-Pointing-Pointer A classification of H-bonds according to secondary structure is not sufficiently robust. Black-Right-Pointing-Pointer Grouping H-bonds into two classes and reparametrization yields an RMSD of 0.07 Hz. Black-Right-Pointing-Pointer This is an improvement of 50. - Abstract: NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  19. 13C-NMR of diterpenes with pimarane skeleton

    International Nuclear Information System (INIS)

    Garcez, W.S.; Pereira, A.L.; Silva Queiroz, P.P. da; Silva, R.S. da; Valente, L.M.M.; Peixoto, E.M.; Cunha Pinto, A. da

    1981-01-01

    The effect of substituent groups on the chemical shift of carbons using nuclear magnetic resonance spectra of carbon 13 ( 13 C-NMR) is discussed. Diterpenes having pimarane skeleton, isolated from plants of Velloziaceae family are analysed. (ARHC) [pt

  20. Isotope labeling strategies for NMR studies of RNA

    International Nuclear Information System (INIS)

    Lu, Kun; Miyazaki, Yasuyuki; Summers, Michael F.

    2010-01-01

    The known biological functions of RNA have expanded in recent years and now include gene regulation, maintenance of sub-cellular structure, and catalysis, in addition to propagation of genetic information. As for proteins, RNA function is tightly correlated with structure. Unlike proteins, structural information for larger, biologically functional RNAs is relatively limited. NMR signal degeneracy, relaxation problems, and a paucity of long-range 1 H- 1 H dipolar contacts have limited the utility of traditional NMR approaches. Selective isotope labeling, including nucleotide-specific and segmental labeling strategies, may provide the best opportunities for obtaining structural information by NMR. Here we review methods that have been developed for preparing and purifying isotopically labeled RNAs, as well as NMR strategies that have been employed for signal assignment and structure determination.

  1. NMR - from basic physics to images of the human body

    International Nuclear Information System (INIS)

    Richards, Rex.

    1985-01-01

    Nuclear magnetic resonance (NMR) is a remarkable phenomenon which involves the exchange of very weak radio frequency radiation between atomic nuclei and a sensitive detecting apparatus. It was originally regarded as a rather esoteric effect of great theoretical interest, but has since proved to have an amazing range of applications over many scientific disciplines, including nuclear physics, solid state physics, all branches of chemistry, biochemistry, physiology and most recently in medical diagnosis. In this Discourse the principles of NMR and trace briefly the history of its applications are examined and illustrated. Headings are: early history; nuclear resonance; relaxation time; the chemical shift; spin-spin coupling (NMR spectra); chemical shifts in biological tissue; NMR imaging; conclusions. (author)

  2. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  3. EPR and NMR detection of transient radicals and reaction products

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Magnetic resonance methods in radiation chemistry are illustrated. The most recent developments in pulsed EPR and NMR studies in pulse radiolysis are outlined with emphasis on the study of transient radicals and their reaction products. 12 figures

  4. Applications of NMR to studies of tissue metabolism

    International Nuclear Information System (INIS)

    Avison, M.J.; Hetherington, H.P.; Shulman, R.G.

    1986-01-01

    From its beginnings as a tool for the elucidation of biochemical pathways and bioenergetic status in unicellular organisms, the field of NMR studie in vivo has grown to encompass not only the study of isolated perfused organs, but also the study of various aspects of the biochemistry, physiology, and pathophysiology of these same organs in the intact animal. In recent years several groups have begun to extend the techniques developed in animals to the study of clinically relevant conditions in humans. A comprehensive review of all areas of NMR studies in vivo would be either unacceptably long or very superficial. For this reason the authors have restricted this review to studies published since 1980, except where an earlier study is particularly relevant to the topic under discussion. Furthermore, they have concentrated on areas that have been extending the scope of NMR in vivo. One specific omission is review of NMR studies of tumors, since a comprehensive review has recently appeared

  5. International NMR-based Environmental Metabolomics Intercomparison Exercise

    Science.gov (United States)

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  6. NMR methods for the investigation of structure and transport

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Edme H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Mechanische Verfahrenstechnik und Mechanik

    2012-07-01

    Extensive derivations of required fundamental relations for readers with engineering background New applications based on MRI, PGSE-NMR, and low-field NMR New concepts in quantitative data evaluation and image analysis Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating, emulsions). Magnetic Resonance Imaging (MRI) as well as low-field NMR are covered with notes on hardware. Emphasis is placed on quantitative data analysis and image processing. (orig.)

  7. NMR methods for the investigation of structure and transport

    International Nuclear Information System (INIS)

    Hardy, Edme H.

    2012-01-01

    Extensive derivations of required fundamental relations for readers with engineering background New applications based on MRI, PGSE-NMR, and low-field NMR New concepts in quantitative data evaluation and image analysis Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating, emulsions). Magnetic Resonance Imaging (MRI) as well as low-field NMR are covered with notes on hardware. Emphasis is placed on quantitative data analysis and image processing. (orig.)

  8. Structure of Coordination Complexes: The Synergy between NMR ...

    African Journals Online (AJOL)

    NICO

    determined by density functional theory (DFT) methods and the application of the Boltzmann equation, are in ... single crystals suitable for crystallography can be obtained, ...... NMR analysis of bonding in transition metal olefin complexes.

  9. Simultaneous acquisition of three NMR spectra in a single ...

    Indian Academy of Sciences (India)

    Simultaneous acquisition of three NMR spectra in a single experiment ... set, which is based on a combination of different fast data acquisition techniques such as G-matrix ..... The sign and intensity of the CHn resonance depends on the delay.

  10. Applications of high resolution 3H NMR spectroscopy

    International Nuclear Information System (INIS)

    Williams, P.G.

    1987-10-01

    The advantages of tritium as an NMR nucleus are pointed out. Examples of its use are given, including labelled toluene, hydrogenation of β-methylstyrene, and maltose and its binding proteins. 7 refs., 2 figs

  11. Studies on supramolecular gel formation using DOSY NMR

    Czech Academy of Sciences Publication Activity Database

    Nonappa, N.; Šaman, David; Kolehmainen, E.

    2015-01-01

    Roč. 53, č. 4 (2015), s. 256-260 ISSN 0749-1581 Institutional support: RVO:61388963 Keywords : DOSY * VT NMR * gel * diffusion coefficients Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.226, year: 2015

  12. [Rapid analysis of suppositories by quantitative 1H NMR spectroscopy].

    Science.gov (United States)

    Abramovich, R A; Kovaleva, S A; Goriainov, S V; Vorob'ev, A N; Kalabin, G A

    2012-01-01

    Rapid analysis of suppositories with ibuprofen and arbidol by quantitative 1H NMR spectroscopy was performed. Optimal conditions for the analysis were developed. The results are useful for design of rapid methods for quality control of suppositories with different components

  13. Determination of moisture in fiber reinforced composites using pulsed NMR

    International Nuclear Information System (INIS)

    Matzkanin, G.A.

    1982-01-01

    Nuclear magnetic resonance (NMR) signals from hydrogen atoms in two organic matrix composite systems subjected to environmental conditioning at 51.6 C (125 F) and 95% relative humidity were examined. The composites were 8 ply, + or - 45 deg laminates fabricated from SP 250 resin/S2 glass fiber and Reliabond 9350 resin/Kevlar 49 fiber. Free induction decay NMR signals from the composite specimens consisted of a large amplitude, fast decaying component associated with hydrogen in rigid polymer molecules and a lower amplitude, slower decaying component associated with hydrogen in the mobile absorbed moisture molecules. The absorbed moisture NMR signals consists of distinct multiple components which were attributed to moisture in various states of molecular binding. Particularly complex free induction decay signals were observed from Kevlar composite as well as from Kevlar fiber. Good correlation was obtained between the NMR signal amplitude and the dry weight moisture percentage for both composite systems. Results of destructive tensile tests were examined

  14. 1H NMR visibility of mammalian glycogen in solution

    International Nuclear Information System (INIS)

    Zang, L.H.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    High-resolution 1 H NMR spectra of rabbit liver glycogen in 2 H 2 O were obtained at 500 MHz, and several resonances were assigned by comparison with the chemical shifts of α-linked diglucose molecules. The NMR relaxation times T 1 and T 2 of glycogen in 2 H 2 O were determined to be 1.1 and 0.029 s, respectively. The measured natural linewidth of the carbon-1 proton is in excellent agreement with that calculated from T 2 . The visibility measurements made by digesting glycogen and comparing glucose and glycogen signal intensities demonstrate that in spite of the very high molecular weight, all of the proton nuclei in glycogen contribute to the NMR spectrum. The result is not unexpected, since 100% NMR visibility was previously observed from the carbon nuclei of glycogen, due to the rapid intramolecular motions

  15. Artificial intelligence in NMR imaging and image processing

    International Nuclear Information System (INIS)

    Kuhn, M.H.

    1988-01-01

    NMR tomography offers a wealth of information and data acquisition variants. Artificial intelligence is able to efficiently support the selection of measuring parameters and the evaluation of results. (orig.) [de

  16. Structural biology by NMR: structure, dynamics, and interactions.

    Directory of Open Access Journals (Sweden)

    Phineus R L Markwick

    2008-09-01

    Full Text Available The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data.

  17. (S)Pinning down protein interactions by NMR

    DEFF Research Database (Denmark)

    Teilum, Kaare; Kunze, Micha Ben Achim; Erlendsson, Simon

    2017-01-01

    Protein molecules are highly diverse communication platforms and their interaction repertoire stretches from atoms over small molecules such as sugars and lipids to macromolecules. An important route to understanding molecular communication is to quantitatively describe their interactions...... all types of protein reactions, which can span orders of magnitudes in affinities, reaction rates and lifetimes of states. As the more versatile technique, solution NMR spectroscopy offers a remarkable catalogue of methods that can be successfully applied to the quantitative as well as qualitative...... descriptions of protein interactions. In this review we provide an easy-access approach to NMR for the non-NMR specialist and describe how and when solution state NMR spectroscopy is the method of choice for addressing protein ligand interaction. We describe very briefly the theoretical background...

  18. Quantification of aluminium-27 NMR spectra of high-surface-area oxides

    International Nuclear Information System (INIS)

    Pearson, R.M.; Schramm, C.M.

    1990-01-01

    This paper discusses the quantitation of 27 Al NMR spectra. It is showns that the so called 'invisible' aluminium atoms seen by recent workers are completely consistent with known continuous wave NMR studies of the 27 Al NMR spectra of high surface area aluminium oxides. The use of pulsed NMR techniques further complicate the quantitative measurement of 27 Al NMR spectra, especially when high resolution NMR spectrometers are used for this purpose. Methods are described which allow both the estimation of aluminium not seen by continuous wave techniques and the amounts of the NMR spectra lost in pulsed work. (author). 24 refs.; 6 figs.; 1 tab

  19. NMR and MS Methods for Metabolomics.

    Science.gov (United States)

    Amberg, Alexander; Riefke, Björn; Schlotterbeck, Götz; Ross, Alfred; Senn, Hans; Dieterle, Frank; Keck, Matthias

    2017-01-01

    Metabolomics, also often referred as "metabolic profiling," is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis.

  20. NMR and MS methods for metabonomics.

    Science.gov (United States)

    Dieterle, Frank; Riefke, Björn; Schlotterbeck, Götz; Ross, Alfred; Senn, Hans; Amberg, Alexander

    2011-01-01

    Metabonomics, also often referred to as "metabolomics" or "metabolic profiling," is the systematic profiling of metabolites in bio-fluids or tissues of organisms and their temporal changes. In the last decade, metabonomics has become increasingly popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabonomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabonomics, i.e., NMR, LC-MS, UPLC-MS, and GC-MS have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabonomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation, to determining the measurement details of all analytical platforms, and finally, to discussing the corresponding specific steps of data analysis.

  1. Quantitative NMR measurements on core samples

    International Nuclear Information System (INIS)

    Olsen, Dan

    1997-01-01

    Within the frame of an EFP-95 project NMR methods for porosity determination in 2D, and for fluid saturation determination in 1D and 2D have been developed. The three methods have been developed and tested on cleaned core samples of chalk from the Danish North Sea. The main restriction for the use of the methods is the inherently short T2 relaxation constants of rock samples. Referring to measurements conducted at 200 MHz, the 2D porosity determination method is applicable to sample material with T2 relaxation constants down to 5 ms. The 1D fluid saturation determination method is applicable to sample material with T2 relaxation constants down to 3 ms, while the 2D fluid saturation determination method is applicable to material with T2 relaxation constants down to 8 ms. In the case of the 2D methods these constraints as a minimum enables work on the majority of chalk samples of Maastrichtian age. The 1D fluid saturation determination method in addition is applicable to at least some chalk samples of Danian and pre-Maastrichtian age. The spatial resolution of the 2D porosity determination method, the 1D fluid saturation methods, and the 2D fluid saturation method is respectively 0.8 mm, 0.8 mm and 2 mm. Reproducibility of pixel values is for all three methods 2%- points. (au)

  2. NMR-CT image and symbol phantoms

    International Nuclear Information System (INIS)

    Hongo, Syozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures. One is described as a mathematical expression. Another is 'symbol phantoms' in 3 dimensional picture-elements, each of which symbolize an organ name. The concept and the algorithm of the symbol phantom enables us to make a phantom for a individual in terms of all his transversal section images. We got 85 transversal section images of head and trunk parts, and those of 40 legs parts by using NMR-CT. We have made the individual phantom for computation of organ doses. The transversal section images were not so clear to identify all organs needed to dose estimation that we had to do hand-editing the shapes of organs with viewing a typical section images: we could not yet make symbol phantom in a automatic editing. Symbols were coded to be visual cords as ASCII characters. After we got the symbol phantom of the first stage, we can edit it easily using a word-processor. Symbol phantom could describe more freely the shape of organs than mathematical phantom. Symbol phantom has several advantages to be an individual phantom, but the only difficult point is how to determine its end-point as a reference man when we apply the method to build the reference man. (author)

  3. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  4. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  5. Chemical shifts of oxygen-17 NMR in polyoxotungstates

    International Nuclear Information System (INIS)

    Kazanskij, L.P.; Fedotov, M.A.; Spitsyn, V.I.

    1977-01-01

    17 O NMR spectra of aqueous solutions containing paratungstate BH 2 W 12 O 42 10- and metatungstate H 2 W 12 O 40 6- anions have been measured. On the basis of the obtained data a scale of chemical shifts for oxygen atoms connected by various bonds with tungsten atoms is suggested. The obtained data are compared with the Raman spectra of crystalline salts and their aqueous solutions. Chemical shifts of 17 O NMR spectra have been also measured in other heteropolyanions

  6. Flow units from integrated WFT and NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Kasap, E.; Altunbay, M.; Georgi, D.

    1997-08-01

    Reliable and continuous permeability profiles are vital as both hard and soft data required for delineating reservoir architecture. They can improve the vertical resolution of seismic data, well-to-well stratigraphic correlations, and kriging between the well locations. In conditional simulations, permeability profiles are imposed as the conditioning data. Variograms, covariance functions and other geostatistical indicators are more reliable when based on good quality permeability data. Nuclear Magnetic Resonance (NMR) logging and Wireline Formation Tests (WFT) separately generate a wealth of information, and their synthesis extends the value of this information further by providing continuous and accurate permeability profiles without increasing the cost. NMR and WFT data present a unique combination because WFTs provide discrete, in situ permeability based on fluid-flow, whilst NMR responds to the fluids in the pore space and yields effective porosity, pore-size distribution, bound and moveable fluid saturations, and permeability. The NMR permeability is derived from the T{sub 2}-distribution data. Several equations have been proposed to transform T{sub 2} data to permeability. Regardless of the transform model used, the NMR-derived permeabilities depend on interpretation parameters that may be rock specific. The objective of this study is to integrate WFT permeabilities with NMR-derived, T{sub 2} distribution-based permeabilities and thereby arrive at core quality, continuously measured permeability profiles. We outlined the procedures to integrate NMR and WFT data and applied the procedure to a field case. Finally, this study advocates the use of hydraulic unit concepts to extend the WFT-NMR derived, core quality permeabilities to uncored intervals or uncored wells.

  7. Modeling Ne-21 NMR parameters for carbon nanosystems

    Czech Academy of Sciences Publication Activity Database

    Kupka, T.; Nieradka, M.; Kaminský, Jakub; Stobinski, L.

    2013-01-01

    Roč. 51, č. 10 (2013), s. 676-681 ISSN 0749-1581 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : Ne-21 NMR * GIAO NMR * molecular modeling * carbon nanostructures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.559, year: 2013

  8. Solid-state NMR studies of nucleic acid components

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Hodgkinson, P.

    2015-01-01

    Roč. 5, č. 16 (2015), s. 12300-12310 ISSN 2046-2069 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * nucleic acid s * solid-state NMR Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/ra/c4ra14404j

  9. Fast mapping of global protein folding states by multivariate NMR:

    DEFF Research Database (Denmark)

    Malmendal, Anders; Underhaug, Jarl; Otzen, Daniel

    2010-01-01

    To obtain insight into the functions of proteins and their specific roles, it is important to establish efficient procedures for exploring the states that encapsulate their conformational space. Global Protein folding State mapping by multivariate NMR (GPS NMR) is a powerful high-throughput method......-lactalbumin in the presence of the anionic surfactant sodium dodecyl sulfate, SDS, and compare these with other surfactants, acid, denaturants and heat....

  10. Solid state NMR of spin-1/2 nuclei

    International Nuclear Information System (INIS)

    Wind, R.A.

    1991-01-01

    The detection of nuclear magnetic resonance by Bloch et al. and Purcell and co-workers in 1946 has led to the development of one of the most powerful spectroscopic techniques known today. The reason is that, besides the applied external magnetic field, a nuclear spin also experiences extra local magnetic fields, which are due to surrounding electron clouds (the chemical shift) and other spins. These local fields differ for nuclei located at chemically different positions in a molecule. The result is that an NMR spectrum often consists of several lines, which can be considered to be a fingerprint of the material under investigation an can assist the clarifying its molecular structure. NMR has been especially successful in liquids and liquid like materials, where fast molecular tumblings average out the anisotropies in the local fields, resulting in well-resolved NMR spectra. This paper reports that initially the development of solid-state NMR was less dramatic. Originally, for reasons of sensitivity, attention was focused mainly on 1 H NMR. The result is that the NMR spectrum usually consists of single, broad, featureless line, which, except for special cases such as more or less isolated spin pairs or methyl groups, does not provide much information

  11. ECG gated NMR-CT for cardiovascular diseases

    International Nuclear Information System (INIS)

    Nishikawa, J.; Machida, K.; Iio, M.; Yoshimoto, N.; Sugimoto, T.; Kawaguchi, H.; Mano, H.

    1984-01-01

    The authors applied NMR-CT to cardiac study with ECG gated technique to evaluate the left ventricular (LV) function and compared it with cardiovascular nuclear medicine study (NM). The NMR-CT machine has resistive air-core magnet with 0.15 Tesla. The saturation recovery image or inversion recovery image were obtained as 256 x 256 matrix and 15 mm in thickness. The study population was ten patients who were evaluated both by NMR image and by NM performed within one week interval. The heart muscle was able to be visualized without any contrast material nor radioisotopes in inversion recovery images, whereas saturation recovery images failed to separate heart muscle from blood pool. The wall motions of LV in both methods were well correlated except for inferior wall. The values of ejection fraction in NMR image were moderately low, but two modalities showed satisfactory correlation (r=0.85). The region of myocardial infarction was revealed as wall thinning and/or wall motion abnormality. It is still preliminary to draw a conclusion, however, it can be said that in the evaluation of LV function, method by NMR might be of equal value to those of NM. It can be certain that eventually gated NMR-CT will become more effective method for various aspects of cardiovascular evaluation

  12. Protein folding on the ribosome studied using NMR spectroscopy

    Science.gov (United States)

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  13. Development of 19F-NMR chemical shift detection of DNA B-Z equilibrium using 19F-NMR.

    Science.gov (United States)

    Nakamura, S; Yang, H; Hirata, C; Kersaudy, F; Fujimoto, K

    2017-06-28

    Various DNA conformational changes are in correlation with biological events. In particular, DNA B-Z equilibrium showed a high correlation with translation and transcription. In this study, we developed a DNA probe containing 5-trifluoromethylcytidine or 5-trifluoromethylthymidine to detect DNA B-Z equilibrium using 19 F-NMR. Its probe enabled the quantitative detection of B-, Z-, and ss-DNA based on 19 F-NMR chemical shift change.

  14. Catalyst surface characterized by high magnetic field NMR; Kojiba NMR ni yoru shokubai hyomen no kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S. [Chiba University, Chiba (Japan). Faculty of Engineering

    1997-08-01

    This paper introduces studies performed by the authors on observation of surface of solid catalysts by means of solid NMR measurement using the high-speed MAS technology which uses a high magnetic field device. In the studies, a device with 14.1T (resonant frequency of proton at 600 MHz) was used to conduct CP-MAS NMR measurement on {sup 29}Si to identify bonding of silica carrier in a fixed aluminum chloride catalyst. As a result, it was verified that the surface structure of aluminum chloride species deposited on the silica carrier turns to a structure in which AlCl2 species of a monomeric substance is bonded with a surface hydroxyl group and fixed in four- or five-orientation. When adjusted at low temperatures, an Al2Cl5 structure is formed, which is fixed as a dimeric substance with AlCl3 oriented in the AlCl2 species. It is conceived that the Al2Cl5 species has higher electrophilicity than the AlCl2 species as a result of AlCl3 oriented in AlCl2, whereas the hydroxyl group on the silica surface oriented with the Al2Cl5 species dissociates, discharging protons, thus showing strong acidity. 18 refs., 8 figs., 2 tabs.

  15. Whole-core analysis by 13C NMR

    International Nuclear Information System (INIS)

    Vinegar, H.J.; Tutunjian, P.N.; Edelstein, W.A.; Roemer, P.B.

    1991-01-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance 13 C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. 13 C NMR can be used in cores where the 1 H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. 13 C/ 1 H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good 13 C signal/noise ratio (SNR) is obtained within minutes, while 1 H spectra are obtained in seconds. NMR measurements have been made of the 13 C and 1 H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the 13 C and 1 H signal per unit volume is constant within about 3.5%. For heavy crudes, the 13 C and 1 H density measured by NMR is reduced by the shortening of spin-spin relaxation time. 13 C and 1 H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60 degrees API), and alkanes (C 5 through C 16 ) with viscosities at 77 degrees F ranging from 0.5 cp to 2.5 x 10 7 cp. The 13 C and 1 H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The 13 C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled 13 C NMR is shown to be insensitive to kerogen; thus, 13 C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the 13 C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon

  16. NMR-CT in muscular disorders

    International Nuclear Information System (INIS)

    Matsumura, Kiichiro; Nakano, Imaharu; Fukuda, Nobuo; Ikehira, Hiroo; Tateno, Yukio.

    1987-01-01

    Proton NMR-CT (magnetic field strength 0.1 Tesla, resonant frequency 4.5 MHz) was performed in 10 normal females and 19 Duchenne muscular dystrophy (DMD) carriers. The mean age was 39 ± 12 years for the normal females and 42 ± 6 years for the DMD carriers. In DMD carriers, there were 4 definite, 4 probable, and 11 possible carriers. T 1 (spin-lattice relaxation time) image was obtained for a slice at the buttock, mid-thigh and calf levels respectively. T 1 values were measured for the medial portion of the gluteus maximus, the vastus lateralis of the quadriceps femoris, and the gastrocnemius. The bound water fraction (BWF) was calculated from Fullerton's equation based on the fast proton diffusion model. The following results were obtained: (1) In normal females, muscle T 1 value was highest in the gastrocnemius and lowest in the gluteus maximus. (2) In DMD carriers, T 1 values of the gluteus maximus and quadriceps femoris were significantly higher than those of the normal females. There was, however, no significant difference in T 1 value of the gastrocnemius between DMD carriers and normal females. (3) In DMD carriers, BWFs of the gluteus maximus and quadriceps femoris were significantly lower than those of the normal females. (4) In DMD carriers, no significant correlation was observed between the muscle T 1 values and the serum creatine phosphokinase values. Increased tissue water content in the lower parts of the body due to gravity is considered to be the primary cause of the high T 1 value in the gastrocnemius of normal females. The presence of the degenerating muscle fibers are presumed responsible for the high T 1 value and low BWF in the proximal muscles of DMD carriers. (author)

  17. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  18. NMR-CT in muscular disorders

    International Nuclear Information System (INIS)

    Matsumura, Kiichiro; Nakano, Imaharu; Ikehira, Hiroo; Fukuda, Nobuo; Tateno, Yukio.

    1986-01-01

    Proton NMR-CT (magnetic field strength 0.1 Tesla, resonant frequency 4.5 MHz) was performed in 15 normal (NC) and 20 Duchenne muscular dystrophy (DMD) males. The age ranged from 3 to 47 years for the NC males, and 1 to 14 years for the DMD males. In the DMD group there were one subclinical stage, 4 stage 1, 6 stage 2, 4 stage 3, and 5 stage 5 or higher patients. T 1 (longitudinal relaxation) images were obtained for three slices at the buttock, midthigh, and calf levels. The T 1 values were measured for the medial portion of the gluteus maximus, the vastus lateralis of the quadriceps femoris, the adductors, the sartorius, the gracilis, and the gastrocnemius muscles. Bound water fraction (BWF) was calculated from Fullerton's equation based on the fast diffusion model. The following results were obtained: (1) In the NC group, muscle T 1 values declined gradually with maturation under the age of 10, and became constant beyond that. The average T 1 value was 280 ms for the age group between 3 and 6 years, 270 ms for 7 and 10 years, and 260 ms for those older than 10 years. (2) Muscle BWF increased with maturation in the NC group. (3) In the DMD group, T 1 values were initially higher than normal (300 ms), declined rapidly with the progress of the disease, and reached the same low level as the subcutaneous fat (190 ms). (4) This decrease of T 1 value in DMD was not uniform for all muscles, being most prominent in the gluteus maximus and least so in the sartorius and gracilis. (5) In the early stages of DMD, the BWF was lower than normal. (J.P.N.)

  19. Timing and related artifacts in multidimensional NMR

    International Nuclear Information System (INIS)

    Marion, Dominique

    2012-01-01

    The information content of multidimensional NMR spectra is limited by the presence of several kinds of artifacts that originate from incorrect timing of evolution periods. The objective of this review is to provide tools for successful implementation of published pulse sequences, in which timing and pulse compensations are often implicit. We will analyze the constraints set by the use of Fourier transformation, the spin precession during rectangular or shaped pulses, the Bloch-Siegert effects due to pulse on other spins and the delay introduced by the filters for the acquisition dimension. A frequency dependent phase correction or an incorrect scaling of the first data point leads to baseline offsets or curvature due to the properties of the Fourier transform. Because any r.f. pulse has a finite length, chemical shift is always active during excitation, flip-back, inversion, and refocusing pulses. Rectangular or selective shaped pulses can be split into three periods: an ideal rotation surrounded by two chemical shift evolution periods, which should be subtracted from the adjacent delays to avoid linear phase correction. Bloch-Siegert effects originate from irradiation at frequencies near those observed in the spectrum and can lead to phase or frequency shifts. They can be minimized by simultaneous irradiation on both sides of the observed spins. In terms of timing, the very end of the pulse sequence the acquisition behaves differently since the data are filtered by either analog or digital means. This additional delay is filter and spectrometer specific and should be tuned to minimize the required phase correction. Combined together, all these adjustments lead to perfectly phased spectra with flat baseline and no peak shifts or distortion. (author)

  20. Accurate, fully-automated NMR spectral profiling for metabolomics.

    Directory of Open Access Journals (Sweden)

    Siamak Ravanbakhsh

    Full Text Available Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid, BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF, defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error, in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of

  1. Comparing pharmacophore models derived from crystallography and NMR ensembles

    Science.gov (United States)

    Ghanakota, Phani; Carlson, Heather A.

    2017-11-01

    NMR and X-ray crystallography are the two most widely used methods for determining protein structures. Our previous study examining NMR versus X-Ray sources of protein conformations showed improved performance with NMR structures when used in our Multiple Protein Structures (MPS) method for receptor-based pharmacophores (Damm, Carlson, J Am Chem Soc 129:8225-8235, 2007). However, that work was based on a single test case, HIV-1 protease, because of the rich data available for that system. New data for more systems are available now, which calls for further examination of the effect of different sources of protein conformations. The MPS technique was applied to Growth factor receptor bound protein 2 (Grb2), Src SH2 homology domain (Src-SH2), FK506-binding protein 1A (FKBP12), and Peroxisome proliferator-activated receptor-γ (PPAR-γ). Pharmacophore models from both crystal and NMR ensembles were able to discriminate between high-affinity, low-affinity, and decoy molecules. As we found in our original study, NMR models showed optimal performance when all elements were used. The crystal models had more pharmacophore elements compared to their NMR counterparts. The crystal-based models exhibited optimum performance only when pharmacophore elements were dropped. This supports our assertion that the higher flexibility in NMR ensembles helps focus the models on the most essential interactions with the protein. Our studies suggest that the "extra" pharmacophore elements seen at the periphery in X-ray models arise as a result of decreased protein flexibility and make very little contribution to model performance.

  2. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G A; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    Science.gov (United States)

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  4. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  5. NMR Characterization of Flavanone Naringenin 7-O-Glycoside Diastereomer

    Directory of Open Access Journals (Sweden)

    SUN Li-juan

    2017-12-01

    Full Text Available To discriminate R and S flavanone glycoside using NMR, the mixture of R and S naringenin 7-O-glycoside was first isolated from Gleditsia sinensis. 1H and 13C NMR data of the mixture were recorded with 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HSQC and 1H-13C HMBC in DMSO-d6 solution. The two diastereomers were then separated with chiral chromatographic isolation, with their absolute configurations determined by circular dichroism. To avoid the disturbance of protons from glucose residues to dihydroflavonoid, 1H NMR spectra were acquired for pure R and S naringenin 7-O-glycoside and their mixture in CD3CN. The two diastereomers showed the largest proton chemical shift differences at the end group of glucose residue (H-1" with a chemical shift difference of 9.4 Hz. The OH-5 proton showed a chemical shift difference of 5.8 Hz. The chemical shift of the three protons on ring C were all influenced by configuration.

  6. Chirp echo Fourier transform EPR-detected NMR.

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Selected topics in solution-phase biomolecular NMR spectroscopy

    Science.gov (United States)

    Kay, Lewis E.; Frydman, Lucio

    2017-05-01

    Solution bio-NMR spectroscopy continues to enjoy a preeminent role as an important tool in elucidating the structure and dynamics of a range of important biomolecules and in relating these to function. Equally impressive is how NMR continues to 'reinvent' itself through the efforts of many brilliant practitioners who ask increasingly demanding and increasingly biologically relevant questions. The ability to manipulate spin Hamiltonians - almost at will - to dissect the information of interest contributes to the success of the endeavor and ensures that the NMR technology will be well poised to contribute to as yet unknown frontiers in the future. As a tribute to the versatility of solution NMR in biomolecular studies and to the continued rapid advances in the field we present a Virtual Special Issue (VSI) that includes over 40 articles on various aspects of solution-state biomolecular NMR that have been published in the Journal of Magnetic Resonance in the past 7 years. These, in total, help celebrate the achievements of this vibrant field.

  8. Development of a superconducting bulk magnet for NMR and MRI.

    Science.gov (United States)

    Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi

    2015-10-01

    A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)(3) voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  10. Condensed Matter NMR under Extreme Conditions: Challenges and Opportunities

    Science.gov (United States)

    Reyes, Arneil

    2006-11-01

    Advances in resistive magnet and power supply technology have made available extremely high magnetic fields suitable for condensed matter broadline NMR experiments. This capability expands the available phase space for investigating a wide variety of materials using magnetic resonance; utilizing the strength of the field to expose or induce new physical phenomena resulting in better understanding of the physics. Continuous fields up to 45T in NHMFL Hybrid magnet have brought new challenges in designing NMR instrumentation. Field strengths and sample space limitations put constraints on RF pulse power, tuning range, bandwidth, and temperature control. The inclusion of other capabilities, including high pressure, optics, and sample rotation requires intricate probe design and construction, while extremely low milliKelvin temperatures are desired in order to explore energy scales where thermal fluctuations are suppressed. Optimization of these devices has been of paramount consideration in NHMFL Condensed Matter NMR user program. Science achieved at high fields, the new initiatives to develop resistively-detected NMR in 2D electron gas and similar systems, and the current new generation Series-Connected Hybrid magnets for NMR work will be discussed. The NHMFL is supported by the National Science Foundation and the State of Florida.

  11. In situ viscosity of oil sands using low field NMR

    International Nuclear Information System (INIS)

    Bryan, J.; Moon, D.; Kantzas, A.

    2005-01-01

    In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)

  12. The NMR Probe of High-T$_{c}$ Materials

    CERN Document Server

    Walstedt, Russell E

    2008-01-01

    The NMR probe has yielded a vast array of data for the high-Tc materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. Over the twenty years, since the discovery of superconducting cuprates, ongoing analysis and discussion of cuprate NMR data have resulted in a wealth of important insights into the physics of these exotic systems. The aims of this monograph are threefold. First, it reviews NMR methodology as it has been applied to the cuprate studies. This is addressed to NMR practitioners and to physics laypersons alike. Next, it presents a review of cuprate NMR measurements and the wide variety of phenomena which they represent. The third phase is to recount the theoretical model calculations and other proposals which have been put forward to account for these data. Parts two and three are presented in parallel, as there are many aspects to both topics, each with its own interesting history. There is, even twenty years on, a...

  13. Chirp echo Fourier transform EPR-detected NMR

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  14. Application of Solution NMR Spectroscopy to Study Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Christoph Göbl

    2012-03-01

    Full Text Available Recent advances in spectroscopic methods allow the identification of minute fluctuations in a protein structure. These dynamic properties have been identified as keys to some biological processes. The consequences of this structural flexibility can be far‑reaching and they add a new dimension to the structure-function relationship of biomolecules. Nuclear Magnetic Resonance (NMR spectroscopy allows the study of structure as well as dynamics of biomolecules in a very broad range of timescales at atomic level. A number of new NMR methods have been developed recently to allow the measurements of time scales and spatial fluctuations, which in turn provide the thermodynamics associated with the biological processes. Since NMR parameters reflect ensemble measurements, structural ensemble approaches in analyzing NMR data have also been developed. These new methods in some instances can even highlight previously hidden conformational features of the biomolecules. In this review we describe several solution NMR methods to study protein dynamics and discuss their impact on important biological processes.

  15. Time domain NMR evaluation of poly(vinyl alcohol) xerogels

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elton Jorge da Rocha; Cavalcante, Maxwell de Paula; Tavares, Maria Ines Bruno, E-mail: mibt@ima.ufrj.br [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Centro de Tecnologia. Instituto de Macromoleculas Professora Eloisa Mano

    2016-05-15

    Poly(vinyl alcohol) (PVA)-based chemically cross-linked xerogels, both neat and loaded with nanoparticulate hydrophilic silica (SiO{sub 2}), were obtained and characterized mainly through time domain NMR experiments (TD-NMR). Fourier-transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD) analyses were employed as secondary methods. TD-NMR, through the interpretation of the spin-lattice relaxation constant values and related information, showed both cross-linking and nanoparticle influences on PVA matrix. SiO{sub 2} does not interact chemically with the PVA chains, but has effect on its molecular mobility, as investigated via TD-NMR. Apparent energy of activation, spin-lattice time constant and size of spin domains in the sample have almost linear dependence with the degree of cross-linking of the PVA and are affected by the addition of SiO{sub 2}. These three parameters were derived from a single set of TD-NMR experiments, which demonstrates the versatility of the technique for characterization of inorganic-organic hybrid xerogels, an important class of materials. (author)

  16. The GNAT: A new tool for processing NMR data.

    Science.gov (United States)

    Castañar, Laura; Poggetto, Guilherme Dal; Colbourne, Adam A; Morris, Gareth A; Nilsson, Mathias

    2018-06-01

    The GNAT (General NMR Analysis Toolbox) is a free and open-source software package for processing, visualising, and analysing NMR data. It supersedes the popular DOSY Toolbox, which has a narrower focus on diffusion NMR. Data import of most common formats from the major NMR platforms is supported, as well as a GNAT generic format. Key basic processing of NMR data (e.g., Fourier transformation, baseline correction, and phasing) is catered for within the program, as well as more advanced techniques (e.g., reference deconvolution and pure shift FID reconstruction). Analysis tools include DOSY and SCORE for diffusion data, ROSY T 1 /T 2 estimation for relaxation data, and PARAFAC for multilinear analysis. The GNAT is written for the MATLAB® language and comes with a user-friendly graphical user interface. The standard version is intended to run with a MATLAB installation, but completely free-standing compiled versions for Windows, Mac, and Linux are also freely available. © 2018 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.

  17. Novel NMR tools to study structure and dynamics of biomembranes.

    Science.gov (United States)

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  18. High resolution deuterium NMR studies of bacterial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  19. High resolution deuterium NMR studies of bacterial metabolism

    International Nuclear Information System (INIS)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-01-01

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed

  20. Unified integration intervals for the structural characterization of oil, coal or fractions there of by 1h NMR and 13c NMR

    International Nuclear Information System (INIS)

    Avella, Eliseo; Fierro, Ricardo

    2010-01-01

    Based on an analysis of publications reported between 1972 and 2006, it became clear that there are inaccuracies in the limits of the ranges of integration that the authors assigned to signals in nuclear magnetic resonance (NMR) to the structural characterization of petroleum, coals and their derived fractions, from their hydrogen (1H NMR) and carbon (13C NMR) spectra. Consequently, consolidated limits were determined for the integration of 1H NMR spectra and 13C NMR of these samples using a statistical treatment applied to the limits of integration intervals already published. With these unified limits, correlation NMR charts were developed that are useful for the allocation of the integral at such intervals, and at smaller intervals defined in terms of the intersection between different assignments. Also raised equations needed to establish the integral attributable to specific fragments in an attempt to make a more accurate structural characterization from NMR spectra of oil, coal or fractions derived.

  1. Experimental demonstration of quantum contextuality on an NMR qutrit

    Energy Technology Data Exchange (ETDEWEB)

    Dogra, Shruti; Dorai, Kavita, E-mail: kavita@iisermohali.ac.in; Arvind

    2016-05-20

    We experimentally test quantum contextuality of a single qutrit using NMR. The contextuality inequalities based on nine observables developed by Kurzynski et al. are first reformulated in terms of traceless observables which can be measured in an NMR experiment. These inequalities reveal the contextuality of almost all single-qutrit states. We demonstrate the violation of the inequality on four different initial states of a spin-1 deuterium nucleus oriented in a liquid crystal matrix, and follow the violation as the states evolve in time. We also describe and experimentally perform a single-shot test of contextuality for a subclass of qutrit states whose density matrix is diagonal in the energy basis. - Highlights: • A contextuality inequality for a single qutrit was designed using traceless observables. • The violation of the inequality was experimentally demonstrated using NMR. • A single-shot test was experimentally performed for a subclass of diagonal qutrit states.

  2. 129 Xe-NMR of carbon black filled elastomers

    International Nuclear Information System (INIS)

    Sperling-Ischinsky, K.; Veeman, W.S.

    1999-01-01

    It is shown that 129 Xe-NMR is a powerful tool to investigate carbon black and carbon black filled elastomers. For the carbon black material itself the 129 Xe chemical shift of xenon adsorbed at the surface of carbon black aggregates yields information about the relative average pore size of the carbon black aggregates. The experimental 129 Xe-NMR results of carbon black filled ethylene-propylene-diene (EPDM) can be explained when it is assumed that the xenon atoms in the bound EPDM fraction exchange rapidly on the NMR time scale between a state where they are adsorbed on the carbon black surface and a state in which they are absorbed in the EPDM layer. This would imply that the carbon black aggregates are not completely covered with EPDM chains. (author)

  3. A fragment separator at LBL for beta-NMR experiment

    International Nuclear Information System (INIS)

    Matsuta, K.; Ozawa, A.; Nojiri, Y.; Minamisono, T.; Fukuda, M.; Kitagawa, A.; Ohtsubo, T.; Momota, S.; Fukuda, S.; Matsuo, Y.; Takechi, H.; Minami, I.; Sugimoto, K.; Tanihata, I.; Omata, K.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    1992-03-01

    The Beam 44 fragment separator was built at the Bevalac of LBL for NMR studies of beta emitting nuclei. 37 K, 39 Ca, and 43 Ti fragments originating from 40 Ca and 46 Ti primary beams were separated by the separator for NMR studies on these nuclei. Nuclear spin polarization was created in 39 Ca and 43 Ti using the tilted foil technique (TFT), and the magnetic moment of 43 Ti was deduced. Fragment polarization was measured for 37 K and 39 Ca emitted to finite deflection angles. The Beam 44 fragment separator in combination with a proper polarization technique, such as TFT or fragment polarization, has been very effective for such NMR studies

  4. Experimental demonstration of quantum contextuality on an NMR qutrit

    International Nuclear Information System (INIS)

    Dogra, Shruti; Dorai, Kavita; Arvind

    2016-01-01

    We experimentally test quantum contextuality of a single qutrit using NMR. The contextuality inequalities based on nine observables developed by Kurzynski et al. are first reformulated in terms of traceless observables which can be measured in an NMR experiment. These inequalities reveal the contextuality of almost all single-qutrit states. We demonstrate the violation of the inequality on four different initial states of a spin-1 deuterium nucleus oriented in a liquid crystal matrix, and follow the violation as the states evolve in time. We also describe and experimentally perform a single-shot test of contextuality for a subclass of qutrit states whose density matrix is diagonal in the energy basis. - Highlights: • A contextuality inequality for a single qutrit was designed using traceless observables. • The violation of the inequality was experimentally demonstrated using NMR. • A single-shot test was experimentally performed for a subclass of diagonal qutrit states.

  5. NMRFx Processor: a cross-platform NMR data processing program

    International Nuclear Information System (INIS)

    Norris, Michael; Fetler, Bayard; Marchant, Jan; Johnson, Bruce A.

    2016-01-01

    NMRFx Processor is a new program for the processing of NMR data. Written in the Java programming language, NMRFx Processor is a cross-platform application and runs on Linux, Mac OS X and Windows operating systems. The application can be run in both a graphical user interface (GUI) mode and from the command line. Processing scripts are written in the Python programming language and executed so that the low-level Java commands are automatically run in parallel on computers with multiple cores or CPUs. Processing scripts can be generated automatically from the parameters of NMR experiments or interactively constructed in the GUI. A wide variety of processing operations are provided, including methods for processing of non-uniformly sampled datasets using iterative soft thresholding. The interactive GUI also enables the use of the program as an educational tool for teaching basic and advanced techniques in NMR data analysis.

  6. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  7. 11B nutation NMR study of powdered borosilicates

    International Nuclear Information System (INIS)

    Woo, Ae Ja; Yang, Kyung Hwa; Han, Duk Young

    1998-01-01

    In this work, we applied the 1D 11 B nutation NMR method for the analysis of the local structural environments in powdered borosilicates (SiO 2 -B 2 O 3 ). Spin dynamics during a rf irradiation for spin I=3/2 was analytically calculated with a density matrix formalism. Spectral simulation programs were written in MATLAB on a PC. Two borosilicates prepared by the sol-gel process at different stabilization temperature were used for the 1D 11 B nutation NMR experiment. The 11 B NMR parameters, quadrupole coupling constants (e 2 qQ/h) and asymmetry parameters (η), for each borosilicate were extracted from the nonlinear least-squares fitting. The effects of heat treatments on the local structures of boron sites in borosilicates were discussed

  8. Automated high-resolution NMR with a sample changer

    International Nuclear Information System (INIS)

    Wade, C.G.; Johnson, R.D.; Philson, S.B.; Strouse, J.; McEnroe, F.J.

    1989-01-01

    Within the past two years, it has become possible to obtain high-resolution NMR spectra using automated commercial instrumentation. Software control of all spectrometer functions has reduced most of the tedious manual operations to typing a few computer commands or even making selections from a menu. Addition of an automatic sample changer is the next natural step in improving efficiency and sample throughput; it has a significant (and even unexpected) impact on how NMR laboratories are run and how it is taught. Such an instrument makes even sophisticated experiments routine, so that people with no previous exposure to NMR can run these experiments after a training session of an hour or less. This A/C Interface examines the impact of such instrumentation on both the academic and the industrial laboratory

  9. Variable-temperature NMR and conformational analysis of Oenothein B

    International Nuclear Information System (INIS)

    Santos, Suzana C.; Carvalho, Ariadne G.; Fortes, Gilmara A.C.; Ferri, Pedro H.; Oliveira, Anselmo E. de

    2014-01-01

    Oenothein B is a dimeric hydrolyzable tannin with a wide range of biological activities, such as antitumour, anti-inflammatory and antiviral. Its nuclear magnetic resonance (NMR) at room temperature show duplications and broadening of signals. Experiments of 1D and 2D NMR at lower temperatures were useful for the complete NMR assignments of all hydrogens and carbons. The 3D structure of the most stable conformer was determined for the first time by nuclear Overhauser effect spectroscopy (NOESY) experiment (-20 deg C) and density functional theory (DFT)(B3LYP/6-31G)/ polarizable continuum model (PCM) quantum chemical calculations. The favoured conformation showed a highly compacted geometry and a lack of symmetry, in which the two valoneoyl groups showed distinct conformational parameters and stabilities. (author)

  10. Variable-temperature NMR and conformational analysis of Oenothein B

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Suzana C.; Carvalho, Ariadne G.; Fortes, Gilmara A.C.; Ferri, Pedro H.; Oliveira, Anselmo E. de, [Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Instituto de Quimica

    2014-02-15

    Oenothein B is a dimeric hydrolyzable tannin with a wide range of biological activities, such as antitumour, anti-inflammatory and antiviral. Its nuclear magnetic resonance (NMR) at room temperature show duplications and broadening of signals. Experiments of 1D and 2D NMR at lower temperatures were useful for the complete NMR assignments of all hydrogens and carbons. The 3D structure of the most stable conformer was determined for the first time by nuclear Overhauser effect spectroscopy (NOESY) experiment (-20 deg C) and density functional theory (DFT)(B3LYP/6-31G)/ polarizable continuum model (PCM) quantum chemical calculations. The favoured conformation showed a highly compacted geometry and a lack of symmetry, in which the two valoneoyl groups showed distinct conformational parameters and stabilities. (author)

  11. Canopy Dynamics in Nanoscale Ionic Materials Probed by NMR

    Science.gov (United States)

    Mirau, Peter

    2013-03-01

    Nanoscale ionic materials (NIMs) are hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counter-ions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used NMR relaxation and pulse-field gradient NMR to probe local and collective canopy dynamics in NIMs based on silica nanoparticles (NP), fullerols and proteins in order to understand the relationship between the core and canopy structure and the bulk properties. The NMR studies show that the canopy dynamics depend on the degree of neutralization, the canopy radius of gyration and molecular crowding at the ionically modified NP surface. The viscosity in NIMs can be directly controlled with the addition of ions that enhance the exchange rate for polymers at the NP surface. These results show that NIMs for many applications can be prepared by controlling the dynamics of the NP interface.

  12. NMRFx Processor: a cross-platform NMR data processing program

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Michael; Fetler, Bayard [One Moon Scientific, Inc. (United States); Marchant, Jan [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [One Moon Scientific, Inc. (United States)

    2016-08-15

    NMRFx Processor is a new program for the processing of NMR data. Written in the Java programming language, NMRFx Processor is a cross-platform application and runs on Linux, Mac OS X and Windows operating systems. The application can be run in both a graphical user interface (GUI) mode and from the command line. Processing scripts are written in the Python programming language and executed so that the low-level Java commands are automatically run in parallel on computers with multiple cores or CPUs. Processing scripts can be generated automatically from the parameters of NMR experiments or interactively constructed in the GUI. A wide variety of processing operations are provided, including methods for processing of non-uniformly sampled datasets using iterative soft thresholding. The interactive GUI also enables the use of the program as an educational tool for teaching basic and advanced techniques in NMR data analysis.

  13. Achieving High Accuracy in Calculations of NMR Parameters

    DEFF Research Database (Denmark)

    Faber, Rasmus

    quantum chemical methods have been developed, the calculation of NMR parameters with quantitative accuracy is far from trivial. In this thesis I address some of the issues that makes accurate calculation of NMR parameters so challenging, with the main focus on SSCCs. High accuracy quantum chemical......, but no programs were available to perform such calculations. As part of this thesis the CFOUR program has therefore been extended to allow the calculation of SSCCs using the CC3 method. CC3 calculations of SSCCs have then been performed for several molecules, including some difficult cases. These results show...... vibrations must be included. The calculation of vibrational corrections to NMR parameters has been reviewed as part of this thesis. A study of the basis set convergence of vibrational corrections to nuclear shielding constants has also been performed. The basis set error in vibrational correction...

  14. NMR imaging of cell phone radiation absorption in brain tissue

    Science.gov (United States)

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  15. The installation of a commercial resistive NMR imager

    International Nuclear Information System (INIS)

    Smith, M.A.; Best, J.J.K.; Douglas, R.H.B.; Kean, D.M.

    1984-01-01

    It has been demonstrated that a relatively low-cost resistive NMR imager can be installed in a normal hospital environment without many major or expensive modifications. The magnet can be adjusted to give adequate uniformity and there is sufficient RF shielding to give good quality clinical images. The fringe field of the magnet of this system, which operates at the lowest field strength of any commercial NMR imager, does not present a problem to imaging unit staff. The long term reliability and detailed specifications with regard to image quality have yet to be determined. These will be determined whilst the imager is being used for clinical studies as part of the national clinical evaluation of NMR imaging supported by the Medical Research Council. (author)

  16. Advances in solid-state NMR of cellulose.

    Science.gov (United States)

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Optimization and automation of quantitative NMR data extraction.

    Science.gov (United States)

    Bernstein, Michael A; Sýkora, Stan; Peng, Chen; Barba, Agustín; Cobas, Carlos

    2013-06-18

    NMR is routinely used to quantitate chemical species. The necessary experimental procedures to acquire quantitative data are well-known, but relatively little attention has been applied to data processing and analysis. We describe here a robust expert system that can be used to automatically choose the best signals in a sample for overall concentration determination and determine analyte concentration using all accepted methods. The algorithm is based on the complete deconvolution of the spectrum which makes it tolerant of cases where signals are very close to one another and includes robust methods for the automatic classification of NMR resonances and molecule-to-spectrum multiplets assignments. With the functionality in place and optimized, it is then a relatively simple matter to apply the same workflow to data in a fully automatic way. The procedure is desirable for both its inherent performance and applicability to NMR data acquired for very large sample sets.

  18. Introduction to quantum calculation methods in high resolution NMR

    International Nuclear Information System (INIS)

    Goldman, M.

    1996-01-01

    New techniques as for instance the polarization transfer, the coherence with several quanta and the double Fourier transformation have appeared fifteen years ago. These techniques constitute a considerable advance in NMR. Indeed, they allow to study more complex molecules than it was before possible. But with these advances, the classical description of the NMR is not enough to understand precisely the physical phenomena induced by these methods. It is then necessary to resort to quantum calculation methods. The aim of this work is to present these calculation methods. After some recalls of quantum mechanics, the author describes the NMR with the density matrix, reviews the main methods of double Fourier transformation and then gives the principle of the relaxation times calculation. (O.M.)

  19. De novo protein structure determination using sparse NMR data

    International Nuclear Information System (INIS)

    Bowers, Peter M.; Strauss, Charlie E.M.; Baker, David

    2000-01-01

    We describe a method for generating moderate to high-resolution protein structures using limited NMR data combined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models are built from these fragments by minimizing an energy function that favors hydrophobic burial, strand pairing, and satisfaction of NOE constraints. Models generated using this procedure with ∼1 NOE constraint per residue are in some cases closer to the corresponding X-ray structures than the published NMR solution structures. The method requires only the sparse constraints available during initial stages of NMR structure determination, and thus holds promise for increasing the speed with which protein solution structures can be determined

  20. NMR-Metabolic Methodology in the Study of GM Foods

    Directory of Open Access Journals (Sweden)

    Irene D’Amico

    2010-01-01

    Full Text Available The 1H-NMR methodology used in the study of genetically modified (GM foods is discussed. Transgenic lettuce (Lactuca sativa cv "Luxor" over-expressing the Arabidopsis KNAT1 gene is presented as a case study. Twenty-two water-soluble metabolites (amino acids, organic acids, sugars present in leaves of conventional and GM lettuce were monitored by NMR and quantified at two developmental stages. The NMR spectra did not reveal any difference in metabolite composition between the GM lettuce and the wild type counterpart. Statistical analyses of metabolite variables highlighted metabolism variation as a function of leaf development as well as the transgene. A main effect of the transgene was in altering sugar metabolism.

  1. Thermometry of hot spot using NMR for hyperthermia

    International Nuclear Information System (INIS)

    Amemiya, Yoshifumi; Kamimura, Yoshitsugu

    1983-01-01

    Lately noticed hyperthermia in cancer therapy requires non-invasive measurement of the temperature at the warmed site in the deep portion of human body. Nuclear magnetic relaxation time of NMR is also usable for cancer diagnosis. For coordination of these two techniques, it was judged suitable to measure temperature by NMR so that cancer diagnosis and treatment and evaluation of therapeutic effect might be incorporated into one system. This report dealt with concrete procedures of measuring the temperature of deep portions by NMR. Computations revealed that the coefficient of temperature of the thermal equilibrium magnetization was useful, that magnetic field focusing was the most effective imaging technique and that temperature rise in areas about 2 cm in radius could be measured without large errors. (Chiba, N.)

  2. Combined chemometric analysis of (1)H NMR, (13)C NMR and stable isotope data to differentiate organic and conventional milk.

    Science.gov (United States)

    Erich, Sarah; Schill, Sandra; Annweiler, Eva; Waiblinger, Hans-Ulrich; Kuballa, Thomas; Lachenmeier, Dirk W; Monakhova, Yulia B

    2015-12-01

    The increased sales of organically produced food create a strong need for analytical methods, which could authenticate organic and conventional products. Combined chemometric analysis of (1)H NMR-, (13)C NMR-spectroscopy data, stable-isotope data (IRMS) and α-linolenic acid content (gas chromatography) was used to differentiate organic and conventional milk. In total 85 raw, pasteurized and ultra-heat treated (UHT) milk samples (52 organic and 33 conventional) were collected between August 2013 and May 2014. The carbon isotope ratios of milk protein and milk fat as well as the α-linolenic acid content of these samples were determined. Additionally, the milk fat was analyzed by (1)H and (13)C NMR spectroscopy. The chemometric analysis of combined data (IRMS, GC, NMR) resulted in more precise authentication of German raw and retail milk with a considerably increased classification rate of 95% compared to 81% for NMR and 90% for IRMS using linear discriminate analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Quantum theory of NMR adiabatic pulses and their applications

    International Nuclear Information System (INIS)

    Ke, Y.

    1993-01-01

    Recently explosive developments of in vivo NMR spectroscopy (NMRS) and imaging (NMRI) in biological and medical sciences have resulted in the establishment of NMR as one of the most advanced major technique in life sciences. These developments have created huge demands for a variety of NMR adiabatic pulses with play a very important role in NMR experiments in vivo. In order to develop new NMR adiabatic pulses, a rigorous systematical quantum theory for this kind of pulses is greatly needed. Providing such a theory is one of the important goals of this dissertation. Quantum density matrix theory and product operator method have been used throughout this dissertation. Another goal, which is the major goal of this thesis research, is to use the quantum theory as a guide to develop new NMR adiabatic pulses and their applications. To fill this goal, a technique to construct a new type of adiabatic pulses, narrow band selective adiabatic pulses, has been invented, which is described through the example of constructing an adiabatic DANTE inversion pulse. This new adiabatic pulse is the first narrow band selective adiabatic pulses: Adiabatic homonuclear and heteronuclear spectral editing sequences. Unique to the first pulse sequence is a B 1 -field filter which is built by using two non-refocusing adiabatic full passage pulses to refocus the wanted signal and dephase unwanted signals. This extra filter greatly enhance the editing efficiency. Unlike commonly used heteronuclear spectral editing sequences which depend on the polarization transfer or spectral subtraction by phase cycling techniques, the second pulse sequences accomplishes the editing of heteronuclear J-coupled signals based on the fact that this sequence is transparent to the uncoupled spins and is equivalent a 90 degrees excitation pulse to the heteronuclear J-coupled spins. Experimental results have confirmed the ability of spectral editing with these two new sequences

  4. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  5. MetAssimulo:Simulation of Realistic NMR Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2010-10-01

    Full Text Available Abstract Background Probing the complex fusion of genetic and environmental interactions, metabolic profiling (or metabolomics/metabonomics, the study of small molecules involved in metabolic reactions, is a rapidly expanding 'omics' field. A major technique for capturing metabolite data is 1H-NMR spectroscopy and this yields highly complex profiles that require sophisticated statistical analysis methods. However, experimental data is difficult to control and expensive to obtain. Thus data simulation is a productive route to aid algorithm development. Results MetAssimulo is a MATLAB-based package that has been developed to simulate 1H-NMR spectra of complex mixtures such as metabolic profiles. Drawing data from a metabolite standard spectral database in conjunction with concentration information input by the user or constructed automatically from the Human Metabolome Database, MetAssimulo is able to create realistic metabolic profiles containing large numbers of metabolites with a range of user-defined properties. Current features include the simulation of two groups ('case' and 'control' specified by means and standard deviations of concentrations for each metabolite. The software enables addition of spectral noise with a realistic autocorrelation structure at user controllable levels. A crucial feature of the algorithm is its ability to simulate both intra- and inter-metabolite correlations, the analysis of which is fundamental to many techniques in the field. Further, MetAssimulo is able to simulate shifts in NMR peak positions that result from matrix effects such as pH differences which are often observed in metabolic NMR spectra and pose serious challenges for statistical algorithms. Conclusions No other software is currently able to simulate NMR metabolic profiles with such complexity and flexibility. This paper describes the algorithm behind MetAssimulo and demonstrates how it can be used to simulate realistic NMR metabolic profiles with

  6. NMR of geophysical drill cores with a mobile Halbach scanner

    International Nuclear Information System (INIS)

    Talnishnikh, E.

    2007-01-01

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  7. NMR of geophysical drill cores with a mobile Halbach scanner

    Energy Technology Data Exchange (ETDEWEB)

    Talnishnikh, E.

    2007-08-21

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  8. Open H-shaped permanent magnet structure for NMR imaging

    International Nuclear Information System (INIS)

    Nguyen, V.; Delamare, J.; Yonnet, J.P.

    1996-01-01

    Since NMR imaging at low field is now technically possible, permanent magnets can replace resistive coils or superconducting magnets. This paper reviews most of NMR structures that provide an uniform field using only permanent magnets. We propose a new open H-shaped structure that is simple to manufacture. This structure has been calculated thanks to an optimization program and a calculation method we presente here. It enables to determine with a good accuracy the field created by passive systems composed by permanent magnets and ferromagnetic materials. (author)

  9. Biosynthetic origin of acetic acid using SNIF-NMR

    International Nuclear Information System (INIS)

    Boffo, Elisangela Fabiana; Ferreira, Antonio Gilberto

    2006-01-01

    The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using 2 H and 1 H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C 3 , C 4 , and CAM biosynthetic mechanisms, blends of C 3 and C 4 (agrins) and synthetic acetic acid. (author)

  10. Selected topics from recent NMR studies of organolithium compounds

    Directory of Open Access Journals (Sweden)

    Günther Harald

    1999-01-01

    Full Text Available After a short introduction to NMR spectroscopy of alkali and alkaline earth metals the review concentrates on NMR investigations of organolithium compounds. The isotopic fingerprint method, which rests on deuterium-induced isotope shifts for 6Li resonances, is introduced and exemplified with applications from the aggregation behavior of cyclopropyllithium systems and mixed aggregate formation between methyllithium and lithium salts. In the following chapter, one- and two-dimensional pulse experiments, both for homo- and for heteronuclear spin systems are discussed. Finally, the structural aspects associated with benzyllithium are outlined and the formation of polylithium systems by lithium reduction of biphenylenes is described.

  11. Handbook of proton-NMR spectra and data index

    CERN Document Server

    Asahi Research Center Co, Ltd

    2013-01-01

    Handbook of Proton-NMR Spectra and Data: Index to Volumes 1-10 compiles four types of indexes used in charting the proton-NMR spectral database -Chemical Name Index, Molecular Formula Index, Substructure Index, and Chemical Shift Index. The Chemical Name Index compiles all chemical names in alphabetical order, followed by a spectrum number. When the desired organic compound cannot be found in the Chemical Name Index or its nomenclature is unclear, it becomes necessary to look for a compound by means of its molecular formula, hence the Molecular Formula Index. A unique notation system for repre

  12. Signal restoration for NMR imaging using time-dependent gradients

    International Nuclear Information System (INIS)

    Frahm, J.; Haenicke, W.

    1984-01-01

    NMR imaging experiments that employ linear but time-dependent gradients for encoding spatial information in the time-domain signals result in distorted images when treated with conventional image reconstruction techniques. It is shown here that the phase and amplitude distortions can be entirely removed if the timeshape of the gradient is known. The method proposed is of great theoretical and experimental simplicity. It consists of a retransformation of the measured time-domain signal and corresponds to synchronisation of the signal sampling with the time-development of the gradient field strength. The procedure complements other treatments of periodically oscillating gradients in NMR imaging. (author)

  13. NMR of mercury in porous coal and silica gel

    International Nuclear Information System (INIS)

    Kasperovich, V.S.; Charnaya, E.V.; Tien, C.; Wur, C.S.

    2003-01-01

    Temperature dependences of the integral intensity and NMR signals Knight shift in 199 Hg nuclei are measured for liquid and solid mercury introduced into the porous coal and silica gel. The decrease in the crystallization completion temperature and small temperature hysteresis (from 4 up to 9 K) between melting and crystallization are identified. Mercury melting temperature in pores coincided with melting temperature of the bulk mercury. NMR signal from crystalline mercury under conditions of limited geometry was observed for the first time. It is ascertained that Knight shift for mercury in the pores both in liquid and crystalline phases is lesser than for the bulk mercury [ru

  14. NMR structural studies of peptides and proteins in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Opella, S J [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1994-12-31

    The use of NMR methodology in structural studies is described as applicable to larger proteins, considering that the majority of membrane proteins is constructed from a limited repertoire of structural and dynamic elements. The membrane associated domains of these proteins are made up of long hydrophobic membrane spanning helices, shorter amphipathic bridging helices in the plane of the bilayer, connecting loops with varying degrees of mobility, and mobile N- and C- terminal sections. NMR studies have been successful in identifying all of these elements and their orientations relative to each other and the membrane bilayer 19 refs., 9 figs.

  15. Probing Spin Crossover in a Solution by Paramagnetic NMR Spectroscopy.

    Science.gov (United States)

    Pavlov, Alexander A; Denisov, Gleb L; Kiskin, Mikhail A; Nelyubina, Yulia V; Novikov, Valentin V

    2017-12-18

    Spin transitions in spin-crossover compounds are now routinely studied in the solid state by magnetometry; however, only a few methods exist for studies in solution. The currently used Evans method, which relies on NMR spectroscopy to measure the magnetic susceptibility, requires the availability of a very pure sample of the paramagnetic compound and its exact concentration. To overcome these limitations, we propose an alternative NMR-based technique for evaluating spin-state populations by only using the chemical shifts of a spin-crossover compound; those can be routinely obtained for a solution that contains unknown impurities and paramagnetic admixtures or is contaminated otherwise.

  16. NMR analysis of silk for the interpretation of ancient history

    International Nuclear Information System (INIS)

    Chujo, Riichiro

    1998-01-01

    The aim of this paper is the characterization of archaeological silk with the aid of nuclear magnetic resonance (NMR). In this paper the nucleus is confined to 13C as a stable isotope carbon which is the most basic element in organic compounds. Among the stable carbon isotopes 12C is the most abundant but it has no magnetic moment and the natural abundance of 13C is only 1.108% and this isotope is frequently used in NMR due to its non-zero magnetic moment

  17. Computer compensation for NMR quantitative analysis of trace components

    International Nuclear Information System (INIS)

    Nakayama, T.; Fujiwara, Y.

    1981-01-01

    A computer program has been written that determines trace components and separates overlapping components in multicomponent NMR spectra. This program uses the Lorentzian curve as a theoretical curve of NMR spectra. The coefficients of the Lorentzian are determined by the method of least squares. Systematic errors such as baseline/phase distortion are compensated and random errors are smoothed by taking moving averages, so that there processes contribute substantially to decreasing the accumulation time of spectral data. The accuracy of quantitative analysis of trace components has been improved by two significant figures. This program was applied to determining the abundance of 13C and the saponification degree of PVA

  18. 31P Solid-state MAS NMR spectra

    International Nuclear Information System (INIS)

    Grobet, P.J.; Geerts, H.; Martens, J.A.; Jacobs, P.A.

    1989-01-01

    The structures of the silicoaluminiophosphates MCM-1 and MCM9 were characterized by 27 Al and 31 P MAS NMR. The structural identity of MCM-1 and its silicon-free homologue AlPO 4 -H 3 is demonstrated. The presence of a structural mixture in MCM-9 is confirmed. 31 P MAS NMR spectra of MCM-9 could be interpreted as a superposition of spectra of VPI-5, AlPO 4 -H 3 and SAPO-11 phases. (author). 12 refs.; 3 figs.; 1 tab

  19. Hyperpolarized Xenon Nuclear Magnetic Resonance (NMR of Building Stone Materials

    Directory of Open Access Journals (Sweden)

    Michele Mauri

    2012-09-01

    Full Text Available We have investigated several building stone materials, including minerals and rocks, using continuous flow hyperpolarized xenon (CF-HP NMR spectroscopy to probe the surface composition and porosity. Chemical shift and line width values are consistent with petrographic information. Rare upfield shifts were measured and attributed to the presence of transition metal cations on the surface. The evolution of freshly cleaved rocks exposed to the atmosphere was also characterized. The CF-HP 129Xe NMR technique is non-destructive and it could complement currently used techniques, like porosimetry and microscopy, providing additional information on the chemical nature of the rock surface and its evolution.

  20. Study of molecular movements in some organic crystals by NMR

    International Nuclear Information System (INIS)

    Alexandre, M.

    1971-01-01

    After a discussion on molecular crystals (generalities, movements within molecular solids, study of movements, complexes by charge transfer) and some specific ones (molecular complexes of trinitrobenzene or TNB), this research thesis reports the use of nuclear magnetic resonance (NMR) to study molecular movements: generalities on broadband NMR, spin relaxation and strong field network, observation of the absorption signal and measurement of the second moment. The last part reports and discusses experimental results obtained on TNB-naphthalene, on TNB-azulene, on TNB-benzothiophene, and on TNB-indole

  1. 1H-NMR/13C-NMR studies of branched structures in PVC obtained at atmospheric pressure

    International Nuclear Information System (INIS)

    Braun, D.; Holzer, G.; Hjertberg, T.

    1981-01-01

    The 1 H-NMR-spectra of raw poly (vinyl cloride) obtained at atmospheric pressure (U-PVC) have revealed the presence of high concentrations of branches. The content of labile chlorine was determined by reaction with phenole in order to estimate the branch points with tertiary chlorine. The branch length of reductively dehalogenated U-PVC by 13 C-NMR analysis have provided evidence for both short chain branches including chloromethyl groups and 2.4-dichloro-n-butyl groups and long chain branching. For a number of U-polymers the total amount of branching ranges from 7.5 to 13.5/1000 C. The 13 C-NMR measurements point to a ratio of methyl/butyl branches of 1:1 and short chains/long chains of 6:1. (orig.)

  2. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Oddbjoern

    2005-07-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  3. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    International Nuclear Information System (INIS)

    Saether, Oddbjoern

    2005-01-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  4. Adiabatic Low-Pass J Filters for Artifact Suppression in Heteronuclear NMR

    DEFF Research Database (Denmark)

    Meier, Sebastian; Benie, Andrew J; Duus, Jens Øllgaard

    2009-01-01

    NMR artifact purging: Modern NMR experiments depend on efficient coherence transfer pathways for their sensitivity and on suppression of undesired pathways leading to artifacts for their spectral clarity. A novel robust adiabatic element suppresses hard-to-get-at artifacts....

  5. WaVPeak: Picking NMR peaks through wavelet-based smoothing and volume-based filtering

    KAUST Repository

    Liu, Zhi; Abbas, Ahmed; Jing, Bing-Yi; Gao, Xin

    2012-01-01

    Motivation: Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount

  6. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil

    KAUST Repository

    Elbaz, Ayman M.; Abdul Jameel, Abdul Gani; Hourani, Nadim; Emwas, Abdul-Hamid M.; Sarathy, Mani; Roberts, William L.

    2015-01-01

    infusion atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (APCI-FTICR MS), high resolution 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear multiple bond correlation (HMBC

  7. Relative Configuration of Natural Products Using NMR Chemical Shifts

    Science.gov (United States)

    By comparing calculated with experimental NMR chemical shifts, we were able to determine the relative configurations of three monoterpene diastereomers produced by the walkingstick Anisomorpha buprestoides. The combined RMSDs of both 1H and 13C quantum chemically calculated shifts were able to predi...

  8. Conventions and nomenclature for double diffusion encoding NMR and MRI

    DEFF Research Database (Denmark)

    Shemesh, Noam; Jespersen, Sune N; Alexander, Daniel C

    2015-01-01

    , such as double diffusion encoding (DDE) NMR and MRI, may provide novel quantifiable metrics that are less easily inferred from conventional diffusion acquisitions. Despite the growing interest on the topic, the terminology for the pulse sequences, their parameters, and the metrics that can be derived from them...

  9. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    Science.gov (United States)

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  10. NMR spectroscopy of muscle proteins; Spektroskopia MRJ bialek miesniowych

    Energy Technology Data Exchange (ETDEWEB)

    Slosarek, G. [Inst. Fizyki, Univ. A. Mickiewicza, Poznan (Poland)

    1995-12-31

    Author reviews various experimental techniques used for study of the structure of muscle proteins. Difficulties of application of NMR are described. Studies of the influence of Ca{sup 2+} on flexibility of actin polymer are presented. 11 refs, 3 figs.

  11. Tritium NMR in the analysis of tritiated compounds

    International Nuclear Information System (INIS)

    Kaspersen, F.M.; Funke, C.W.; Vader, Jan; Wagenaars, G.N.

    1993-01-01

    An overview is given of the possibilities of 3 H NMR in the characterisation of 3 H-labelled compounds. This technique gives information on the identity of the tritiated compounds, the position of the tritium, the distribution of the label and even the radiochemical purity of the labelled products. (author)

  12. Extraction of alkaloids for NMR-based profiling

    DEFF Research Database (Denmark)

    Yilmaz, Ali; Nyberg, Nils; Jaroszewski, Jerzy W.

    2012-01-01

    A museum collection of Cinchona cortex samples (n = 117), from the period 1850–1950, were extracted with a mixture of chloroform-d1, methanol-d4, water-d2, and perchloric acid in the ratios 5:5:1:1. The extracts were directly analyzed using 1H NMR spectroscopy (600 MHz) and the spectra evaluated...

  13. NMR investigation of boron impurities in refined metallurgical grade silicon

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Loeser, Wolfgang; Schmitz, Steffen; Sakaliyska, Miroslava [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Institute for Solid State Physics, Technische Universitaet Dresden (Germany); Eisert, Stefan; Reichenbach, Birk; Mueller, Tim [Adensis GmbH, Dresden (Germany); Acker, Joerg; Rietig, Anja; Ducke, Jana [Department of Chemistry, Faculty for Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg, Senftenberg (Germany)

    2015-09-15

    The nuclear magnetic resonance (NMR) method was applied for tracking boron impurities in the refining process of metallurgical grade (MG) silicon. From the NMR signal of the {sup 11}B isotope at an operating temperature 4.2 K, the boron concentration can be estimated down to the order of 1-10 wppm B. After melting and resolidification of MG-Si alloyed with Ca and Ti, a major fraction of B impurities remains in the Si solid solution as inferred from the characteristic NMR frequency. The alloying element Ti does not form substantial fractions of TiB{sub 2}. Acid leaching of crushed powders of MG-Si alloyed with Ca and Ti can diminish the initial impurity content of B suggesting its accumulation in the grain boundary phases. NMR signals of TiB{sub 2} at 4.2 K and room temperature (RT), and of poly-Si with different B doping at 4.2 K. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. NMR studies concerning base-base interactions in oligonucleotides

    International Nuclear Information System (INIS)

    Hoogen, Y.T. van den.

    1988-01-01

    Two main subjects are treated in the present thesis. The firsst part principally deals with the base-base interactions in single-stranded oligoribonucleotides. The second part presents NMR and model-building studies of DNA and RNA duplexes containing an unpaired base. (author). 242 refs.; 26 figs.; 24 tabs

  15. 1H NMR spectroscopy-based interventional metabolic phenotyping

    DEFF Research Database (Denmark)

    Lauridsen, Michael B; Bliddal, Henning; Christensen, Robin

    2010-01-01

    1H NMR spectroscopy-based metabolic phenotyping was used to identify biomarkers in the plasma of patients with rheumatoid arthritis (RA). Forty-seven patients with RA (23 with active disease at baseline and 24 in remission) and 51 healthy subjects were evaluated during a one-year follow-up with a......1H NMR spectroscopy-based metabolic phenotyping was used to identify biomarkers in the plasma of patients with rheumatoid arthritis (RA). Forty-seven patients with RA (23 with active disease at baseline and 24 in remission) and 51 healthy subjects were evaluated during a one-year follow......-up with assessments of disease activity (DAS-28) and 1H NMR spectroscopy of plasma samples. Discriminant analysis provided evidence that the metabolic profiles predicted disease severity. Cholesterol, lactate, acetylated glycoprotein, and lipid signatures were found to be candidate biomarkers for disease severity.......0007). However, after 31 days of optimized therapy, the two patient groups were not significantly different (P=0.91). The metabolic profiles of both groups of RA patients were different from the healthy subjects. 1H NMR-based metabolic phenotyping of plasma samples in patients with RA is well suited...

  16. 13C-NMR spectra and bonding situation in ketenimines

    International Nuclear Information System (INIS)

    Firl, J.; Runge, W.; Hartmann, W.; Utikal, H.P.

    1975-01-01

    13 C-NMR spectra of a series of substituted ketenimines are reported. The terminal carbon resonances are found at unusual high fields between delta 37 and 78, while the central carbon signals appear around delta 189 - 196. On the basis of these results, the bonding situation in ketenimines has been discussed. (auth.)

  17. Quantitative 1D saturation profiles on chalk by NMR

    DEFF Research Database (Denmark)

    Olsen, Dan; Topp, Simon; Stensgaard, Anders

    1996-01-01

    Quantitative one-dimensional saturation profiles showing the distribution of water and oil in chalk core samples are calculated from NMR measurements utilizing a 1D CSI spectroscopy pulse sequence. Saturation profiles may be acquired under conditions of fluid flow through the sample. Results reveal...

  18. Statistical models and NMR analysis of polymer microstructure

    Science.gov (United States)

    Statistical models can be used in conjunction with NMR spectroscopy to study polymer microstructure and polymerization mechanisms. Thus, Bernoullian, Markovian, and enantiomorphic-site models are well known. Many additional models have been formulated over the years for additional situations. Typica...

  19. MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA

    Science.gov (United States)

    Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...

  20. Nondestructive NMR technique for moisture determination in radioactive materials

    International Nuclear Information System (INIS)

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-01-01

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ( 3 H, 3 He, 239 Pu, 241 Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO 2 and UO 2 systems. The total moisture was quantified by means of 1 H NMR detection of H 2 O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96

  1. (Cicer arietinum L.) seeds during germination by NMR spectroscopy

    African Journals Online (AJOL)

    Experiments were conducted to characterize the changes in water status during imbibition by nuclear magnetic resonance (NMR) spectroscopy in chickpea seeds exposed to static magnetic fields of 100 mT for 1 h. Water uptake during seed germination showed three phases with rapid initial hydration phase I, followed by ...

  2. Stable polyfluorinated cycloalkenyl cations and their NMR spectra

    International Nuclear Information System (INIS)

    Snegirev, V.F.; Galakhov, M.V.; Makarov, K.N.; Bakhmutov, V.I.

    1986-01-01

    New stable 1-methoxyperfluoro-2-ethylcyclobutenyl, 1-methoxyperfluoro-2-methylcyclo-pentenyl, and 1-methoxyperfluoro-2-ethylcyclohexenyl cations were obtained by the action of antimony pentafluoride on the corresponding olefins. The distribution of the charges in the investigated polyfluorinated cycloalkenyl cations was investigated by 13 C NMR method

  3. Techniques and approaches to proton NMR imaging of the head

    International Nuclear Information System (INIS)

    Pykett, I.L.; Buonanno, F.S.; Brady, T.J.; Kistler, J.P.

    1983-01-01

    The next few years will undoubtedly see a refinement of proton imaging technology and a broader data base will indicate to what extent proton relaxation parameters are able to detect and characterize disease. In addition, it is likely that imaging of other nuclei (e.g. 31 P, 23 Na, 19 F) will become a reality, although it must be stated that due to their inherently lower sensitivity to NMR detection and/or lower physiological concentration, clinical images of nuclei other than 1 H will undoubtedly have a low spatial resolution and may require relatively long imaging times. Nonetheless, herein lies the exciting possibility of non-invasive metabolic or functional imaging. The realm of NMR contrast agents is just beginning to be explored, and developments in high-speed imaging indicate useful applications in cardiology. So whilst improvements in image quality can be expected, as was the case with X-ray CT, the application of NMR in medicine will diversify to yield information of a more specifically functional nature. This, together with the very low attendant biological risk, heralds a bright future for NMR in clinical diagnosis

  4. Use of NMR in profiling of cocaine seizures

    DEFF Research Database (Denmark)

    Pagano, Bruno; Lauri, Ilaria; De Tito, Stefano

    2013-01-01

    Cocaine is the most widely used illicit drug, and its origin is always the focus of intense investigation aimed at identifying the trafficking routes. Since NMR represents a unique methodology for performing chemical identification and quantification, here it is proposed a strategy based on (1)H...... adding significant information in the process toward identification of the trafficking routes for this drug....

  5. Recent trends on NMR imaging in UK and USA

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Masahiro [National Inst. of Radiological Sciences, Chiba (Japan)

    1981-12-01

    The development of nuclear magnetic resonance (NMR) by major research centers and manufacturers is reviewed. The spin warp method is used at Aberdeen University, and the T1 images of esophageal cancer and hepatic metastasis obtained by this method are shown. The Moore group at Nottingham University developed an instrument to scan the head region, and it produces spatial resolution comparable to x-ray computed tomography. The transverse image of the thorax obtained by the QED-80 developed by FONAR (U.S.A.) is shown. It uses field focusing NMR, and can measure spin density, T1, T2 and NMR spectrum, but its precision is slightly lowered because fewer proton spins are activated. These methods all measure the proton distribution in vivo, but with the TMR developed by Oxford Research Co. (U.K.) high resolution spectra of phosphorus 31 compounds can be obtained. The NMR spectra obtained for the phosphorus compounds in the muscle is shown. The rate of the phosphorus compounds such as ATP, ADP creatine phosphate and inorganic phosphate are markedly changed by exercise or depending on the blood flow.

  6. NMR determinations of molecular geometries in liquid crystal media

    International Nuclear Information System (INIS)

    Long, R.C.; Goldstein, J.H.

    1983-01-01

    The application of NMR spectroscopy in oriented media to the determination of molecular geometries is illustrated by results for three distinctly different molecules: naphthalene, ethylene oxide and spiropentane. The need for systematic application of vibrational corrections is emphasized and some of the effects associated with the different choices of solvent media are considered

  7. New design on air-core resistive NMR imaging magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Mingwu, Fan; Yixin, Miao

    1984-08-01

    A new type of NMR imaging air-core resistive magnet is designed. Based on the BIM Magnetostatic calculation the resultant four equiradial coils structure with optimized shapes of cross section possesses a larger spherical working volume obviously, comparing with the common four-coils imaging magnet. The manufacturing tolerance is also calculated.

  8. Two-dimensional NMR studies of allyl palladium complexes of ...

    Indian Academy of Sciences (India)

    Administrator

    h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.

  9. NMR - finding in a case of Morquio's syndrome with syncope

    International Nuclear Information System (INIS)

    Treig, T.; Huk, W.; Nusslein, B.

    1987-01-01

    Acute or chronic cervical myelopathies are well known neurological complications of mucopolysaccharidoses This paper deals with a case of a mild form of Morquio's disease which appeared with syncope. NMR-imaging of the cranio-spinal region demonstrated a high intensity echo in the medulla oblongata before and after spinal decompression

  10. NMR study of thermoresponsive block copolymer in aqueous solution

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Konefal, Rafal; Čadová, Eva

    2016-01-01

    Roč. 217, č. 12 (2016), s. 1370-1375 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA15-13853S Institutional support: RVO:61389013 Keywords : aqueous solutions * NMR * NOESY Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.500, year: 2016

  11. An NMR Protonation Study of Metal Diethylenetriaminepentaacetic Acid Complexes.

    Science.gov (United States)

    Letkeman, Peter

    1979-01-01

    This experiment is suitable for an integrated laboratory course for senior chemistry majors. It introduces the student to a study of the relative basicity of different proton accepting sites. It serves as an opportunity to learn about nmr techniques and could extend to infrared, as well. (BB)

  12. Advances in 27Al MAS NMR studies of geopolymers

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Abbrent, Sabina; Kobera, Libor; Urbanová, Martina; Cuba, P.

    2016-01-01

    Roč. 88, č. 2016 (2016), s. 79-147 ISSN 0066-4103 R&D Projects: GA ČR(CZ) GA13-24155S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : geopolymers * aluminosilicates * solid-state NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.600, year: 2016

  13. Unraveling the meaning of chemical shifts in protein NMR.

    Science.gov (United States)

    Berjanskii, Mark V; Wishart, David S

    2017-11-01

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Neuroimaging (NMR) in the assessment of multiple sclerosis (MS)

    International Nuclear Information System (INIS)

    Gambi, D.; Uncini, A.

    1990-01-01

    Clinical well defined patients with MS have been submitted to series of controls of NMR investigations after an attack of the disease and during 12 months in order to organize a methodology useful to analyze patients in different periods or stages of the disease, when new lesions can develop. (author). 11 refs.; 2 figs.; 5 tabs

  15. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  16. Numerical simulation of NQR/NMR: Applications in quantum computing.

    Science.gov (United States)

    Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C

    2011-04-01

    A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. 235U NMR study of the itinerant antiferromagnet USb2

    International Nuclear Information System (INIS)

    Kato, Harukazu; Sakai, Hironori; Ikushima, Kenji; Kambe, Shinsaku; Tokunaga, Yo; Aoki, Dai; Haga, Yoshinori; O-bar nuki, Yoshichika; Yasuoka, Hiroshi; Walstedt, Russell E.

    2005-01-01

    We have succeeded in resolving a 235 U antiferromagnetic nuclear magnetic resonance (AFNMR) signal using 235 U-enriched samples of USb 2 . The uranium hyperfine field and coupling constant estimated for this compound are consistent with those from other experiments. This is the first reported observation of 235 U NMR in conducting host material

  18. NMR spectroscopy in the optimization and evaluation of RAFT agents

    NARCIS (Netherlands)

    Klumperman, B.; McLeary, J.B.; van den Dungen, E.; Pound, G.

    2007-01-01

    The selection of a suitable mediating agent in Reversible Addition-Fragmentation Chain Transfer (RAFT) mediated polymerization is crucial to the degree of control that can be achieved. An overview of work from the Stellenbosch group is presented in which the use of NMR spectroscopy as a tool for

  19. NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids.

    Science.gov (United States)

    Leiss, Kirsten A; Choi, Young H; Abdel-Farid, Ibrahim B; Verpoorte, Robert; Klinkhamer, Peter G L

    2009-02-01

    Western flower thrips (Frankliniella occidentalis) has become a key insect pest of agricultural and horticultural crops worldwide. Little is known about host plant resistance to thrips. In this study, we investigated thrips resistance in F (2) hybrids of Senecio jacobaea and Senecio aquaticus. We identified thrips-resistant hybrids applying three different bioassays. Subsequently, we compared the metabolomic profiles of these hybrids applying nuclear magnetic resonance spectroscopy (NMR). The new developments of NMR facilitate a wide range coverage of the metabolome. This makes NMR especially suitable if there is no a priori knowledge of the compounds related to herbivore resistance and allows a holistic approach analyzing different chemical compounds simultaneously. We show that the metabolomes of thrips-resistant and -susceptible hybrids differed considerably. Thrips-resistant hybrids contained higher amounts of the pyrrolizidine alkaloids (PA), jacobine, and jaconine, especially in younger leaves. Also, a flavanoid, kaempferol glucoside, accumulated in the resistant plants. Both PAs and kaempferol are known for their inhibitory effect on herbivores. In resistant and susceptible F (2) hybrids, young leaves showed less thrips damage than old leaves. Consistent with the optimal plant defense theory, young leaves contained increased levels of primary metabolites such as sucrose, raffinose, and stachyose, but also accumulated jacaranone as a secondary plant defense compound. Our results prove NMR as a promising tool to identify different metabolites involved in herbivore resistance. It constitutes a significant advance in the study of plant-insect relationships, providing key information on the implementation of herbivore resistance breeding strategies in plants.

  20. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    Science.gov (United States)

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  1. Analysis of organophosphorus pesticides using FT-NMR

    International Nuclear Information System (INIS)

    Miyata, Yoshihiko; Takahashi, Yoshikazu; Ando, Hiroaki

    1988-01-01

    A rapid and highly selective method of the identification of 23 kinds of organophosphorus pesticides was develop by using 31 P FT-NMR with 1 H complete decoupling method. Chemical shifts referenced by 85 % H 3 PO 4 were within -4 to 100 ppm, and there was no overlapping among the organophosphorus pesticides used in this experiment. (author)

  2. FT-IR, NMR SPECTROSCOPIC and QUANTUM MECHANICAL ...

    African Journals Online (AJOL)

    frequencies, potential energy distribution (PED) data, 1H and 13C NMR chemical shifts of Fc- .... Due to electronegative oxygen atom, C11 appears at the highest frequency field region. The most intense singlet appearing at 69.73 ppm arises.

  3. Quantitative produced water analysis using mobile 1H NMR

    International Nuclear Information System (INIS)

    Wagner, Lisabeth; Fridjonsson, Einar O; May, Eric F; Stanwix, Paul L; Graham, Brendan F; Carroll, Matthew R J; Johns, Michael L; Kalli, Chris

    2016-01-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1 H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1 H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1 H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1–30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography. (paper)

  4. Identification of Spinel Iron Oxide Nanoparticles by 57Fe NMR

    Directory of Open Access Journals (Sweden)

    SangGap Lee

    2011-12-01

    Full Text Available We have synthesized and studied monodisperse iron oxide nanoparticles of smaller than 10 nm to identify between the two spinel phases, magnetite and maghemite. It is shown that 57Fe NMR spectroscopy is a promising tool for distinguishing between the two phases.

  5. Covariance NMR Processing and Analysis for Protein Assignment.

    Science.gov (United States)

    Harden, Bradley J; Frueh, Dominique P

    2018-01-01

    During NMR resonance assignment it is often necessary to relate nuclei to one another indirectly, through their common correlations to other nuclei. Covariance NMR has emerged as a powerful technique to correlate such nuclei without relying on error-prone peak peaking. However, false-positive artifacts in covariance spectra have impeded a general application to proteins. We recently introduced pre- and postprocessing steps to reduce the prevalence of artifacts in covariance spectra, allowing for the calculation of a variety of 4D covariance maps obtained from diverse combinations of pairs of 3D spectra, and we have employed them to assign backbone and sidechain resonances in two large and challenging proteins. In this chapter, we present a detailed protocol describing how to (1) properly prepare existing 3D spectra for covariance, (2) understand and apply our processing script, and (3) navigate and interpret the resulting 4D spectra. We also provide solutions to a number of errors that may occur when using our script, and we offer practical advice when assigning difficult signals. We believe such 4D spectra, and covariance NMR in general, can play an integral role in the assignment of NMR signals.

  6. Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Scanu, Sandra

    2013-01-01

    This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational

  7. NMR study of structure of lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The diagnostic value PMR studies of diamagnetic lanthanide complexes to define the nature of the species in the lanthanide-pyruvate system is discussed. The use of NMR spectra of both diamagnetic and paramagnetic lanthanide complexes to obtain detailed structural information is reviewed

  8. Hyperpolarized 129Xe as an NMR probe for functional studies

    International Nuclear Information System (INIS)

    Wolber, J.

    2000-01-01

    The nuclear spin polarization of 129 Xe can be enhanced by several orders of magnitude using optical pumping techniques, resulting in a dramatic enhancement of the 129 Xe Nuclear Magnetic Resonance (NMR) signal. The 'hyperpolarized' gas can be used for Magnetic Resonance Imaging (MRI) of the void spaces of the lungs after introduction of the gas into the respiratory system. Furthermore, the high solubility of xenon in blood and lipids suggests the use of 129 Xe NMR for studying blood flow, permeability, perfusion and blood volume. Hyperpolarized 129 Xe MRI has the potential of combining the high sensitivity and functional information of radioactive tracer studies with the high spatial and temporal resolution of MRI. The spin-lattice relaxation time T 1 of 129 Xe in blood determines the loss of polarization during transit from the lungs to the tissue of interest. A difference in the relaxation times of xenon in oxygenated and deoxygenated blood could be used as a contrast mechanism in functional Magnetic Resonance Imaging (fMRI). In this thesis, the hyperpolarized 129 Xe T 1 in human blood is measured in vitro as a function of blood oxygenation, and the relevant relaxation mechanisms are discussed. A new and unexpected finding is that the hyperpolarized 129 Xe NMR spectrum in blood is highly sensitive to blood oxygenation. Therefore, hyperpolarized 129 Xe NMR provides a powerful means of measuring blood oxygenation quantitatively and non-invasively. The interaction of xenon with hemoglobin is responsible for an oxygen-dependent shift of the 129 Xe NMR resonance of xenon in red blood cells. Injection delivery of hyperpolarized 129 Xe in solution could be a more efficient method of administrating the gas for functional NMR studies. For this purpose, suitable biocompatible carrier media have been studied. In particular, the use of perfluorocarbon emulsions, which are already in use as blood substitutes, as delivery media for hyperpolarized 129 Xe has been investigates

  9. Solid-state NMR on complex biomolecules: novel methods and applications

    NARCIS (Netherlands)

    Nand, D.

    2011-01-01

    Solid-state NMR (ssNMR) represents a versatile technique in providing atomic-resolution information without the need for crystals or fast molecular motion required for X-ray crystallography and solution-state NMR, respectively. Recent past has witnessed the ability of this technique in providing

  10. LC-NMR coupling technology: recent advancements and applications in natural products analysis

    NARCIS (Netherlands)

    Exarchou, V.; Krucker, M.; Beek, van T.A.; Vervoort, J.J.M.; Gerothanassis, I.P.; Albert, K.

    2005-01-01

    An overview of recent advances in nuclear magnetic resonance (NMR) coupled with separation technologies and their application in natural product analysis is given and discussed. The different modes of LC-NMR operation are described, as well as how technical improvements assist in establishing LC-NMR

  11. 'In vivo' and high resolution spectroscopy in solids by NMR: an instrument for transgenic plants study

    International Nuclear Information System (INIS)

    Colnago, L.A.; Herrmann, P.S.P.; Bernardes Filho, R.

    1995-01-01

    This work has developed a study on transgenic plants using two different techniques of nuclear magnetic resonance, in vivo NMR and high resolution NMR. In order to understand the gene mutations and characterize the plants constituents, NMR spectral data were analysed and discussed, then the results were presented

  12. Fourier transform and its application to 1D and 2D NMR

    International Nuclear Information System (INIS)

    Canet, D.

    1988-01-01

    In this review article, the following points are developed: Pulsed NMR and Fourier transform; Fourier transform and two-dimensional spectroscopy; Mathematical properties of Fourier transform; Fourier transform of a sine function- one dimensional NMR; Fourier transform of a product of sine functions - two-dimensional NMR; Data manipulations in the time domain; Numerical Fourier transform [fr

  13. An NMR database for simulations of membrane dynamics.

    Science.gov (United States)

    Leftin, Avigdor; Brown, Michael F

    2011-03-01

    Computational methods are powerful in capturing the results of experimental studies in terms of force fields that both explain and predict biological structures. Validation of molecular simulations requires comparison with experimental data to test and confirm computational predictions. Here we report a comprehensive database of NMR results for membrane phospholipids with interpretations intended to be accessible by non-NMR specialists. Experimental ¹³C-¹H and ²H NMR segmental order parameters (S(CH) or S(CD)) and spin-lattice (Zeeman) relaxation times (T(1Z)) are summarized in convenient tabular form for various saturated, unsaturated, and biological membrane phospholipids. Segmental order parameters give direct information about bilayer structural properties, including the area per lipid and volumetric hydrocarbon thickness. In addition, relaxation rates provide complementary information about molecular dynamics. Particular attention is paid to the magnetic field dependence (frequency dispersion) of the NMR relaxation rates in terms of various simplified power laws. Model-free reduction of the T(1Z) studies in terms of a power-law formalism shows that the relaxation rates for saturated phosphatidylcholines follow a single frequency-dispersive trend within the MHz regime. We show how analytical models can guide the continued development of atomistic and coarse-grained force fields. Our interpretation suggests that lipid diffusion and collective order fluctuations are implicitly governed by the viscoelastic nature of the liquid-crystalline ensemble. Collective bilayer excitations are emergent over mesoscopic length scales that fall between the molecular and bilayer dimensions, and are important for lipid organization and lipid-protein interactions. Future conceptual advances and theoretical reductions will foster understanding of biomembrane structural dynamics through a synergy of NMR measurements and molecular simulations. Copyright © 2010 Elsevier B.V. All

  14. NMR metabolomics for assessment of exercise effects with mouse biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Le Moyec, Laurence; Mille-Hamard, Laurence; Breuneval, Carole; Petot, Helene; Billat, Veronique L. [Universite Evry Val d' Essonne, UBIAE INSERM U902, Evry Cedex (France); Triba, Mohamed N. [Universite Paris 13, CSPBAT UMR 7244, Bobigny (France)

    2012-08-15

    Exercise modulates the metabolome in urine or blood as demonstrated previously for humans and animal models. Using nuclear magnetic resonance (NMR) metabolomics, the present study compares the metabolic consequences of an exhaustive exercise at peak velocity (Vp) and at critical velocity (Vc) on mice. Since small-volume samples (blood and urine) were collected, dilution was necessary to acquire NMR spectra. Consequently, specific processing methods were applied before statistical analysis. According to the type of exercise (control group, Vp group and Vc group), 26 male mice were divided into three groups. Mice were sacrificed 2 h after the end of exercise, and urine and blood samples were drawn from each mouse. Proton NMR spectra were acquired with urine and deproteinized blood. The NMR data were aligned with the icoshift method and normalised using the probabilistic quotient method. Finally, data were analysed with the orthogonal projection of latent-structure analysis. The spectra obtained with deproteinized blood can neither discriminate the control mice from exercised mice nor discriminate according to the duration of the exercise. With urine samples, a significant statistical model can be estimated when comparing the control mice to both groups, Vc and Vp. The best model is obtained according to the exercise duration with all mice. Taking into account the spectral regions having the highest correlations, the discriminant metabolites are allantoin, inosine and branched-chain amino acids. In conclusion, metabolomic profiles assessed with NMR are highly dependent on the exercise. These results show that urine samples are more informative than blood samples and that the duration of the exercise is a more important parameter to influence the metabolomic status than the exercise velocity. (orig.)

  15. NMR studies of macroscopic and microscopic properties of liquid crystals

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1998-03-01

    The work presented is concerned with studies of orientational order in liquid crystals and the behaviour of certain mesophases. The experimental technique used in common with all the work is deuterium NMR spectroscopy. Much of the work involves studies of the orientational order of deuteriated solute molecules dissolved in liquid crystal solvents. Chapter 1 gives an introduction to liquid crystals followed by a quantitative description of orientational order. Deuterium NMR in liquid crystals is described and an outline of the molecular field theory behind the orientational order of a rigid, biaxial solute in a uniaxial mesophase is given. In Chapter 2 a novel type of mesophase induction is studied using NMR, where a solute induces up to two extra phases in a discotic mesogen depending on its concentration. The purpose of this work is to try to gain an understanding into the mechanism of the phase induction involved. Chapter 3 is concerned primarily with the macroscopic behaviour of the nematic phase formed by a semi-rigid main-chain polymer in solution. Of particular interest is the study of the reorientation of the monodomain, once the director has been rotated with respect to the magnetic field of the NMR spectrometer. A mesogen which has been claimed to exhibit a biaxial nematic phase is studied in Chapter 4, in order to determine the symmetry of the phase using NMR. Finally, Chapter 5 deals with the differing behaviour of a liquid crystal monomer and its dimer dissolved in common nematic solvents in order to determine whether this agrees with molecular field theory. (author)

  16. A global analysis of NMR distance constraints from the PDB

    International Nuclear Information System (INIS)

    Vranken, Wim

    2007-01-01

    Information obtained from Nuclear Magnetic Resonance (NMR) experiments is encoded as a set of constraint lists when calculating three-dimensional structures for a protein. With the amount of constraint data from the world wide Protein Data Bank (wwPDB) that is now available, it is possible to do a global, large-scale analysis using only information from the constraints, without taking the coordinate information into account. This article describes such an analysis of distance constraints from NOE data based on a set of 1834 NMR PDB entries containing 1909 protein chains. In order to best represent the quality and extent of the data that is currently deposited at the wwPDB, only the original data as deposited by the authors was used, and no attempt was made to 'clean up' and further interpret this information. Because the constraint lists provide a single set of data, and not an ensemble of structural solutions, they are easier to analyse and provide a reduced form of structural information that is relevant for NMR analysis only. The online resource resulting from this analysis makes it possible to check, for example, how often a particular contact occurs when assigning NOESY spectra, or to find out whether a particular sequence fragment is likely to be difficult to assign. In this respect it formalises information that scientists with experience in spectrum analysis are aware of but cannot necessarily quantify. The analysis described here illustrates the importance of depositing constraints (and all other possible NMR derived information) along with the structure coordinates, as this type of information can greatly assist the NMR community

  17. C-13 NMR spectroscopy of plasma reduces interference of hypertriglyceridemia in the H-1 NMR detection of malignancy

    International Nuclear Information System (INIS)

    Fossell, E.T.; Hall, F.M.; McDonagh, J.

    1991-01-01

    The authors have previously described the application of water-suppressed proton nuclear magnetic resonance (H-1 NMR) spectroscopy of plasma for detection of malignancy. Subsequently, hypertriglyceridemia has been identified as a source of false positive results. Here is described a confirmatory, adjunctive technique -analysis of the carbon-13 (C-13) NMR spectrum of plasma- which also identifies the presence of malignancy but is not sensitive to the plasma triglyceride level. Blinded plasma samples from 480 normal donors and 208 patients scheduled for breast biopsy were analyzed by water-suppressed H-1 and C-13 NMR spectroscopy. Triglyceride levels were also measured. Among the normal donors, there were 38 individuals with hypertriglyceridemia of whom 18 had results consistent with malignancy by H-1 NMR spectroscopy. However, the C-13 technique reduced the apparent H-1 false positive rate from 7.0 to 0.6 percent. Similarly, in the breast biopsy cohort, C-13 reduced the false positive rate from 2.8 to 0.9 percent. Furthermore, the accuracy of the combined H-1/C-13 test in this blinded study was greater than 96 percent in 208 patients studied. (author). 27 refs.; 5 figs.; 4 tabs

  18. A First Laboratory Utilizing NMR for Undergraduate Education: Characterization of Edible Fats and Oils by Quantitative [superscript 13]C NMR

    Science.gov (United States)

    Fry, Charles G.; Hofstetter, Heike; Bowman, Matthew D.

    2017-01-01

    Quantitative [superscript 13]C NMR provides a straightforward method of analyzing edible oils in undergraduate chemistry laboratories. [superscript 13]C spectra are relatively easy to understand, and are much simpler to analyze and workup than corresponding [superscript 1]H spectra. Average chain length, degree of saturation, and average…

  19. 1H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata)

    DEFF Research Database (Denmark)

    Alves Filho, Elenilson G.; Silva, Lorena M. A.; Teofilo, Elizita M.

    2017-01-01

    In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In a...

  20. Proton NMR studies of functionalized nanoparticles in aqueous environments

    Science.gov (United States)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  1. 19F labelled dextrans and antibodies as NMR imaging and spectroscopy agents

    International Nuclear Information System (INIS)

    Antich, P.P.; Kulkarni, P.V.

    1993-01-01

    A method is described of NMR imaging or spectroscopy, comprising the steps of administering to a living subject a 19 F labelled NMR agent, the NMR agent comprising (a) a transport polymer selected from the group consisting of dextran polymers and amino dextrans, having a molecular weight between approximately 100 d and 500 kd, and antibodies and fragments thereof, and (b) a 19F-containing sensor moiety selected from the group consisting of fluorinated alkyls, fluorinated acetates, fluoroaniline, and fluoroalkyl phosphonates, in an amount effective to provide a detectable NMR signal; and then detecting the 19 F NMR signal produced

  2. From ring-in-ring to sphere-in-sphere: self-assembly of discrete 2D and 3D architectures with increasing stability.

    Science.gov (United States)

    Sun, Bin; Wang, Ming; Lou, Zhichao; Huang, Mingjun; Xu, Chenglong; Li, Xiaohong; Chen, Li-Jun; Yu, Yihua; Davis, Grant L; Xu, Bingqian; Yang, Hai-Bo; Li, Xiaopeng

    2015-02-04

    Directed by increasing the density of coordination sites (DOCS) to increase the stability of assemblies, discrete 2D ring-in-rings and 3D sphere-in-sphere were designed and self-assembled by one tetratopic pyridyl-based ligand with 180° diplatinum(II) acceptors and naked Pd(II), respectively. The high DOCS resulted by multitopic ligand provided more geometric constraints to form discrete structures with high stability. Compared to reported supramolecular hexagons and polyhedra by ditotpic ligands, the self-assembly of such giant architectures using multitopic ligands with all rigid backbone emphasized the structural integrity with precise preorganization of entire architecture, and required elaborate synthetic operations for ligand preparation. In-depth structural characterization was conducted to support desired structures, including multinuclear NMR ((1)H, (31)P, and (13)C) analysis, 2D NMR spectroscopy (COSY and NOESY), diffusion-ordered NMR spectroscopy (DOSY), multidimensional mass spectrometry, TEM and AFM. Furthermore, a quantitative definition of DOCS was proposed to compare 2D and 3D structures and correlate the DOCS and stability of assemblies in a quantitative manner. Finally, ring-in-rings in DMSO or DMF could undergo hierarchical self-assembly into the ordered nanostructures and generated translucent supramolecular metallogels.

  3. Recent advances in solid state NMR and its application to ceramics

    International Nuclear Information System (INIS)

    Maekawa, Hideki

    2006-01-01

    The basic principles of solid state NMR are explained. Four application examples contained amorphous glass, determination of defects of oxide crystal, nano particle and ionic materials. The structure of inorganic glass is measured by 29 Si, 11 B, 31 P and 23 Na NMR and Magic Angle Spinning NMR (MAS-NMR), chemical species near hydrogen by Cross-Polarization Magic Angle Spinning (CP/MAS) method, and hydrogen by Combined Rotation And Multiple Pulse Spectroscopy (CRAMPS) and MAS-NMR. Hydrous and anhydrous silicate glass with condensed 17 O was measured by 17 O Multi Quantum Magic Angle Spinning (MQ/MAS). 27 Al in slags was analyzed by 27 Al 5Q-MAS. 89 Y NMR spectrum of YSZ (Yttria Stabilization Zirconia, Y 2 O 3 -ZrO 2 ) was explained. The ion transfer phenomena in the electrolyte are observed directly by the solid state NMR. (S.Y.)

  4. Development of a micro flow-through cell for high field NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  5. Synthesis and Characterization of Tert-Butylgallium-Antimony Compounds; X-Ray Crystal Structures of t-Bu3Ga. Sb(SiMe3)3, T-Bu2GaSb(SiMe3)2, and t-Bu2GaSb(SiMe3)Ga(t-Bu)2Cl, The first Example of a Gallium-Antimony Mixed-Bridge Compound

    National Research Council Canada - National Science Library

    Wells, Richard

    1997-01-01

    ...:1 equilibration of t-Bu2GaCl with 2. These new gallium-antimony compounds have been characterized through multinuclear solution NMR spectroscopy, partial elemental analysis, and single-crystal X-ray structural analysis...

  6. Classical and quantum molecular dynamics in NMR spectra

    CERN Document Server

    Szymański, Sławomir

    2018-01-01

    The book provides a detailed account of how condensed-phase molecular dynamics are reflected in the line shapes of NMR spectra. The theories establishing connections between random, time-dependent molecular processes and lineshape effects are exposed in depth. Special emphasis is placed on the theoretical aspects, involving in particular intermolecular processes in solution, and molecular symmetry issues. The Liouville super-operator formalism is briefly introduced and used wherever it is beneficial for the transparency of presentation. The proposed formal descriptions of the discussed problems are sufficiently detailed to be implemented on a computer. Practical applications of the theory in solid- and liquid-phase studies are illustrated with appropriate experimental examples, exposing the potential of the lineshape method in elucidating molecular dynamics NMR-observable molecular phenomena where quantization of the spatial nuclear degrees of freedom is crucial are addressed in the last part of the book. As ...

  7. NMR imaging: A 'chemical' microscope for coal analysis

    International Nuclear Information System (INIS)

    French, D.C.; Dieckman, S.L.; Gopalsami, N.; Botto, R.E.

    1991-01-01

    This paper presents a new three-dimensional (3-D) nuclear magnetic resonance (NMR) imaging technique for spatially mapping proton distributions in whole coals and solvent-swollen coal samples. The technique is based on a 3-D back-projection protocol for data acquisition, and a reconstruction technique based on 3-D Radon transform inversion. In principle, the 3-D methodology provides higher spatial resolution of solid materials than is possible with conventional slice-selection protocols. The applicability of 3-D NMR imaging has been demonstrated by mapping the maceral phases in Utah Blind Canyon (APCS number-sign 6) coal and the distribution of mobile phases in Utah coal swollen with deuterated and protic pyridine. 7 refs., 5 figs

  8. Structure and Dynamic Properties of Membrane Proteins using NMR

    DEFF Research Database (Denmark)

    Rösner, Heike; Kragelund, Birthe

    2012-01-01

    conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein...... structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches......-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012....

  9. Some new insights into biology and medicine through NMR spectroscopy

    International Nuclear Information System (INIS)

    Radda, G.K.

    1990-01-01

    The contributions to biology and medicine by NMR spectroscopy in vivo require careful definition of the problems that are studied. Temporal and spatial resolution of the biochemical information obtained are the key to success, although the latter is limited owing to low sensitivity and small concentrations of the metabolites studied. Using 31 P NMR investigations in four areas are described. Control of energetics by ADP in normal and diseased muscle is shown to be important. Enzyme catalysed fluxes are obtained for creatine kinase and ATP synthase in muscle and in the human brain enzyme activity maps are derived. The measurements on the ionic environment and fluxes for H + , Na + and K + (Rb + ) give us new information about the role of ions in cell proliferation (e.g. in cancer) and hypertension. Molecular architecture of phospholipids in vivo is readily observed and is perturbed in the brain in chronic head injury and demyelination. (author)

  10. Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy.

    Science.gov (United States)

    Han, Byeonggu; Ahn, Hee-Chul

    2016-01-01

    During the past decade fragment-based drug discovery (FBDD) has rapidly evolved and several drugs or drug candidates developed by FBDD approach are clinically in use or in clinical trials. For example, vemurafenib, a V600E mutated BRAF inhibitor, was developed by utilizing FBDD approach and approved by FDA in 2011. In FBDD, screening of fragments is the starting step for identification of hits and lead generation. Fragment screening usually relies on biophysical techniques by which the protein-bound small molecules can be detected. NMR spectroscopy has been extensively used to study the molecular interaction between the protein and the ligand, and has many advantages in fragment screening over other biophysical techniques. This chapter describes the practical aspects of fragment screening by saturation transfer difference NMR.

  11. $^{31}$Mg $\\beta$-NMR applied in chemistry and biochemistry

    CERN Multimedia

    Magnesium ions, Mg$^{2+}$, are essential in biological systems, taking part in practically all phosphate chemistry, in photosynthesis as an integral component of chlorophyll, and they are regulated via transport through selective membrane proteins. Nonetheless, the function of magnesium ions in biochemistry is difficult to characterize, as it is practically invisible to current experimental techniques. With this proposal we aim to advance the use of $^{31}$Mg $\\beta$-NMR to liquid samples, building on the experience from the successful Letter of Intent INTC-I-088 “$\\beta$-NMR as a novel technique for biological applications”. Initially a series of experiments will be conducted aiming to characterize the coordination chemistry of Mg$^{2+}$ in ionic liquids (ILs), demonstrating that it is possible within the lifetime of the radioisotope to achieve binding of Mg$^{2+}$ to a molecule dissolved in the IL. ILs are chosen as they display a very low vapor pressure, and are thus straightforwardly compatible with t...

  12. Development and Investigation of NMR tools for chiral compound identification

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electronic, Optical and Nano Materials; Lansdon, Rick [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2014-09-01

    The goal behind the assigned summer project was to investigate the ability of nuclear magnetic resonance spectroscopy (NMR) to identify enantiomers of select chiral organo-fluorophosphates (OFPs) compounds which are analogs of chemical warfare agents (CWAs, e.g. Sarin). This involved investigations utilizing chiral solvating agents (CSAs) and characterizing the binding phenomena with cyclodextrins. The resolution of OFPs enantiomers using NMR would be useful for research into toxicodynamics and toxicokinetics in biological systems due to the widely differing properties of the CWA enantiomers [1]. The optimization of decontamination abilities in the case of a CWA events, with this method’s potential rapidity and robustness, as well as the development of models correlating chiral compounds with CSAs for optimal resolution are all rational benefits of this research.

  13. NMR and rotational angles in solution conformation of polypeptides

    Science.gov (United States)

    Bystrov, V. F.

    1985-01-01

    Professor San-Ichiro Mizushima and Professor Yonezo Morino's classical contributions provided unique means and firm basis for understanding of conformational states and internal rotation in polypeptide molecules. Now the NMR spectroscopy is the best choice to study molecular conformation, mechanism of action and structure-functional relationships of peptide and proteins in solution under conditions approaching those of their physiological environments. Crucial details of spatial structure and interactions of these molecules in solution are revealed by using proton-proton and carbon-proton vicinal coupling constants, proton nuclear Overhauser effect and spectral perturbation techniques. The results of NMR conformational analysis are presented for valinomycin "bracelet", gramicidin A double helices, honey-bee neurotoxin apamin, scorpion insectotoxins and snake neurotoxins of long and short types.

  14. Peakr: simulating solid-state NMR spectra of proteins

    International Nuclear Information System (INIS)

    Schneider, Robert; Odronitz, Florian; Hammesfahr, Bjorn; Hellkamp, Marcel; Kollmar, Martin

    2013-01-01

    When analyzing solid-state nuclear magnetic resonance (NMR) spectra of proteins, assignment of resonances to nuclei and derivation of restraints for 3D structure calculations are challenging and time-consuming processes. Simulated spectra that have been calculated based on, for example, chemical shift predictions and structural models can be of considerable help. Existing solutions are typically limited in the type of experiment they can consider and difficult to adapt to different settings. Here, we present Peakr, a software to simulate solid-state NMR spectra of proteins. It can generate simulated spectra based on numerous common types of internuclear correlations relevant for assignment and structure elucidation, can compare simulated and experimental spectra and produces lists and visualizations useful for analyzing measured spectra. Compared with other solutions, it is fast, versatile and user friendly. (authors)

  15. Quali- and quantitative analysis of commercial coffee by NMR

    International Nuclear Information System (INIS)

    Tavares, Leila Aley; Ferreira, Antonio Gilberto

    2006-01-01

    Coffee is one of the beverages most widely consumed in the world and the 'cafezinho' is normally prepared from a blend of roasted powder of two species, Coffea arabica and Coffea canephora. Each one exhibits differences in their taste and in the chemical composition, especially in the caffeine percentage. There are several procedures proposed in the literature for caffeine determination in different samples like soft drinks, coffee, medicines, etc but most of them need a sample workup which involves at least one step of purification. This work describes the quantitative analysis of caffeine using 1 H NMR and the identification of the major components in commercial coffee samples using 1D and 2D NMR techniques without any sample pre-treatment. (author)

  16. Broad line NMR study of modified polypropylene fibres

    International Nuclear Information System (INIS)

    Olcak, D.; Sevcovic, L.; Mucha, L.

    1999-01-01

    Study of drawn fibres prepared from an isostatic polypropylene modified by an ethylene aminoalkylacrylate copolymer has been done using the broad line of 1 H NMR. NMR spectra were measured on the set of fibres prepared with a draw ratio λ from 1 to 5.5 at two temperatures, one of them corresponding to the onset of segmental motion and the other one is the minddle of the temperature interval as determined by decrease of the second moment M 2 . Decomposition of the spectra into elementary components related to the amorphous, intermediate and crystalline regions of partially crystalline polymers has been made. The drawing of the fibres was found to enhance the chain mobility in the amorphous region and to restrain the molecular motion in the intermediate region. Such behaviour well supports conclusions predicted in the earlier study based on the spin-lattice relaxation time T 1 and dynamic mechanical data treated using the WLF theory. (Authors)

  17. NMR structural studies of oligosaccharides and other natural products

    DEFF Research Database (Denmark)

    Kjærulff, Louise

    produce secondary metabolites for signaling and competing against other organisms, and these molecules are important in drug discovery due to their inherent biological activities. From a marine Photobacterium (P. halotolerans) we isolated the solonamides and the ngercheumicins, two families of cyclic...... through the nJCH correlation, this experiment has exciting applications for configurational assignment of e.g. carbohydrates and for residual dipolar couplings. Identification of known molecules and discovery of novel molecules are other important applications of NMR spectroscopy. Bacteria and fungi....... fijiensis, was also investigated for production of novel secondary metabolites, and a new pyranonigrin (E) was isolated and structure elucidated by NMR spectroscopy along with JBIR-74 and decumbenone A, two known metabolites previously isolated from Aspergillus and Penicillium species. Oligosaccharides...

  18. NMR of water in biological systems. I.-theoretical considerations

    International Nuclear Information System (INIS)

    Villa, M.; Borghi, L.; De Ambrosis, A.; Aldrovandi, S.

    1983-01-01

    A simple relationship has been thought to exist between the dynamics of water in heterogeneous (liquid-solid) systems and NMR response. This relationship is usually expressed by the Bloembergen-Purcell-Puond (BPP) equations for relaxation and the phase model. However, a requirement for the use of the BPP theory is that motions take place in an isotropic, infinite and three-dimensional space. It is shown that the mere presence of solid surfaces causes the appearance of solid-like features in the NMR response of the liquid even if its dynamics is directly affected by the surfaces. Some of these ''topological'' or ''indirect'' surface effects are of the same kind as the low-dimensionality effects. Their order of magnitude is estimated for simple geometries and by treating the liquid motion in a hydrodynamic approximation. Comparison with the experiment is carried on in a companion paper

  19. The fluorescence properties and NMR analysis of protopine and allocryptopine

    International Nuclear Information System (INIS)

    Kubala, Martin; Vacek, Jan; Popa, Igor; Janovska, Marika; Kosina, Pavel; Ulrichova, Jitka; Travnicek, Zdenek; Simanek, Vilim

    2011-01-01

    The fluorescence properties of protopine and allocryptopine in aqueous and organic environments are described for the first time. The fluorescence of alkaloids and their pH-dependent interconversion to cationic forms (transannular interaction) were studied using steady-state and time-resolved fluorescence techniques. For the analysis of tricyclic base and cis/trans tetracyclic cations of the alkaloids, NMR and X-ray crystallography were used. - Highlights: → We describe fundamental fluorescence characteristics of alkaloids protopine and allocryptopine. → We analyzed the pH-dependent transitions and cis/trans isomerization. → These two alkaloids can be better distinguished by their fluorescence decay characteristics. → The fluorescence parameters are related to the NMR and crystallographic structural data.

  20. Protein structure estimation from NMR data by matrix completion.

    Science.gov (United States)

    Li, Zhicheng; Li, Yang; Lei, Qiang; Zhao, Qing

    2017-09-01

    Knowledge of protein structures is very important to understand their corresponding physical and chemical properties. Nuclear Magnetic Resonance (NMR) spectroscopy is one of the main methods to measure protein structure. In this paper, we propose a two-stage approach to calculate the structure of a protein from a highly incomplete distance matrix, where most data are obtained from NMR. We first randomly "guess" a small part of unobservable distances by utilizing the triangle inequality, which is crucial for the second stage. Then we use matrix completion to calculate the protein structure from the obtained incomplete distance matrix. We apply the accelerated proximal gradient algorithm to solve the corresponding optimization problem. Furthermore, the recovery error of our method is analyzed, and its efficiency is demonstrated by several practical examples.