WorldWideScience

Sample records for multicomponent liquid mixtures

  1. Observations of mass transport phenomena in multicomponent liquid mixtures

    International Nuclear Information System (INIS)

    Mruzek, M.T.; Musinski, D.L.; Jacobs, R.B.

    1985-01-01

    Examples of surface tension effects on liquid behavior are common, such as liquid rising in a capillary tube or the beading of rain drops on a freshly waxed car. Usually through, the surface tension forces are small compared to other forces such as gravity. Situations exist, however, where the simple statement attributed to Marangoni can explain striking and unexpected observations. ''If for any reason difference of surface tension exist along a free liquid surface, liquid will flow toward the region of higher surface tension''. Such flows are called Marangoni flows. Observations of isotopic hydrogen fuel mixtures in cryogenic Inertial Confinement Fusion (ICF) targets can be explained on the basis of Marangoni flows. Additional experiments at KMS with common room temperature mixtures have produced similar results

  2. Experimental and theoretical studies on subcooled flow boiling of pure liquids and multicomponent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Jamialahmadi, M.; Abdollahi, H.; Shariati, A. [The University of Petroleum Industry, Ahwaz (Iran); Mueller-Steinhagen, H. [Institute of Technical Thermodynamics, German Aerospace Center (Germany); Institute of Thermodynamics and Thermal Engineering, University of Stuttgart (Germany)

    2008-05-15

    To improve the design of modern industrial reboilers, accurate knowledge of boiling heat transfer coefficients is essential. In this study flow boiling heat transfer coefficients for binary and ternary mixtures of acetone, isopropanol and water were measured over a wide range of heat flux, subcooling, flow velocity and composition. The measurements cover the regimes of convective heat transfer, transitional boiling and fully developed subcooled flow boiling. Two models are presented for the prediction of flow boiling heat transfer coefficients. The first model is the combination of the Chen model with the Gorenflo correlation and the Schluender model for single and multicomponent boiling, respectively. This model predicts flow boiling heat transfer coefficients with acceptable accuracy, but fails to predict the nucleate boiling fraction NBF reasonably well. The second model is based on the asymptotic addition of forced convective and nucleate boiling heat transfer coefficients. The benefit of this model is a further improvement in the accuracy of flow boiling heat transfer coefficient over the Chen type model, simplicity and the more realistic prediction of the nucleate boiling fraction NBF. (author)

  3. Design of advanced multicomponent ferroelectric liquid crystalline mixtures with submicrometre helical pitch

    Czech Academy of Sciences Publication Activity Database

    Kurp, K.; Czerwiński, M.; Tykarska, M.; Bubnov, Alexej

    2017-01-01

    Roč. 44, č. 4 (2017), s. 748-756 ISSN 0267-8292 R&D Projects: GA MŠk 7AMB13PL041; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:COST Association EU(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : ferroelectric liquid crystal * self-assembling materials * submicrometre helical pitch * room temperature mixture * switching time Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 2.661, year: 2016

  4. Thermodiffusion in multicomponent n-alkane mixtures.

    Science.gov (United States)

    Galliero, Guillaume; Bataller, Henri; Bazile, Jean-Patrick; Diaz, Joseph; Croccolo, Fabrizio; Hoang, Hai; Vermorel, Romain; Artola, Pierre-Arnaud; Rousseau, Bernard; Vesovic, Velisa; Bou-Ali, M Mounir; Ortiz de Zárate, José M; Xu, Shenghua; Zhang, Ke; Montel, François; Verga, Antonio; Minster, Olivier

    2017-01-01

    Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n -alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution.

  5. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  6. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO_2 transport applications

    International Nuclear Information System (INIS)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2016-01-01

    Highlights: • CPA EoS was applied to predict the phase behaviour of multicomponent mixtures containing CO_2, glycols, water and alkanes. • Mixtures relevant to oil and gas, CO_2 capture and liquid or supercritical CO_2 transport applications were investigated. • Results are presented using various modelling approaches/association schemes. • The predicting ability of the model was evaluated against experimental data. • Conclusions for the best modelling approach are drawn. - Abstract: In this work the Cubic Plus Association (CPA) equation of state is applied to multicomponent mixtures containing CO_2 with alkanes, water, and glycols. Various modelling approaches are used i.e. different association schemes for pure CO_2 (assuming that it is a non-associating compound, or that it is a self-associating fluid with two, three or four association sites) and different possibilities for modelling mixtures of CO_2 with other hydrogen bonding fluids (only use of one interaction parameter k_i_j or assuming cross association interactions and obtaining the relevant parameters either via a combining rule or using an experimental value for the cross association energy). Initially, new binary interaction parameters were estimated for (CO_2 + glycol) binary mixtures. Having the binary parameters from the binary systems, the model was applied in a predictive way (i.e. no parameters were adjusted to data on ternary and multicomponent mixtures) to model the phase behaviour of ternary and quaternary systems with CO_2 and glycols. It is concluded that CPA performs satisfactorily for most multicomponent systems considered. Some differences between the various modelling approaches are observed. This work is the last part of a series of studies, which aim to arrive in a single “engineering approach” for applying CPA to acid gas mixtures, without introducing significant changes to the model. An overall assessment, based also on the obtained results of this series (Tsivintzelis

  7. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO2 transport applications

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2016-01-01

    to data on ternary and multicomponent mixtures) to model the phase behaviour of ternary and quaternary systems with CO2 and glycols. It is concluded that CPA performs satisfactorily for most multicomponent systems considered. Some differences between the various modelling approaches are observed....... This work is the last part of a series of studies, which aim to arrive in a single "engineering approach" for applying CPA to acid gas mixtures, without introducing significant changes to the model. An overall assessment, based also on the obtained results of this series (Tsivintzelis et al., 2010, 2011...

  8. Fluctuation theory for transport properties in multicomponent mixtures: thermodiffusion and heat conductivity

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    2004-01-01

    The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general statis...... of the heat conductivity coefficient for ideal gas. (C) 2003 Elsevier B.V. All rights reserved.......The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general...

  9. Modeling of Multicomponent Mixture Separation Processes Using Hollow fiber Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

  10. Kelvin Equation for a Non-Ideal Multicomponent Mixture

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1997-01-01

    The Kelvin equation is generalized by application to a case of a multicomponent non-ideal mixture. Such a generalization is necessary in order to describe the two-phase equilibrium in a capillary medium with respect to both normal and retrograde condensation. The equation obtained is applied...... to the equilibrium state of a hydrocarbon mixture ina gas-condensate reservoir....

  11. Multicomponent liquid ion exchange with chabazite zeolites

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent

  12. Performance of an organic Rankine cycle with multicomponent mixtures

    International Nuclear Information System (INIS)

    Chaitanya Prasad, G.S.; Suresh Kumar, C.; Srinivasa Murthy, S.; Venkatarathnam, G.

    2015-01-01

    There is a renewed interest in ORC (organic Rankine cycle) systems for power generation using solar thermal energy. Many authors have studied the performance of ORC with different pure fluids as well as binary zeotropic mixtures in order to improve the thermal efficiency. It has not been well appreciated that zeotropic mixtures can also be used to reduce the size and cost of an ORC system. The main objective of this paper is to present mixtures that help reduce the cost while maintaining high thermal efficiency. The proposed method also allows us to design an optimum mixture for a given expander. This new approach is particularly beneficial for designing mixtures for small ORC systems operating with solar thermal energy. A number of examples are presented to demonstrate this concept. - Highlights: • The performance of an ORC operating with different zeotropic multicomponent mixtures is presented. • A thermodynamic method is proposed for the design of multicomponent mixtures for ORC power plants. • High exergy efficiency as well as high volumetric expander work can be achieved with appropriate mixtures. • The method allows design of mixtures that can be used with off-the-shelf positive displacement expanders

  13. Evaluation of diffusion coefficients in multicomponent mixtures by means of the fluctuation theory

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    2003-01-01

    We derive general expressions for diffusion coefficients in multicomponent non-ideal gas or liquid mixtures. The derivation is based on the general statistical theory of fluctuations around an equilibrium state. The matrix of diffusion coefficients is expressed in terms of the equilibrium...... characteristics. We demonstrate on several examples that the developed theory is in agreement with the established experimental facts and dependencies for the diffusion coefficients. (C) 2002 Elsevier Science B.V. All rights reserved....

  14. Volatilization of multicomponent mixtures in soil vapor extraction applications

    International Nuclear Information System (INIS)

    Bass, D.H.

    1995-01-01

    In soil vapor extraction (SVE) applications involving multicomponent mixtures, prediction of mass removal by volatilization as a function remediation extent is required to estimate remediation time and to size offgas treatment equipment. SVE is a commonly used remediation technology which volatilizes and enhances aerobic biodegradation of contamination adsorbed to vadose zone soils. SVE is often applied at sites contaminated with petroleum products, which are usually mixtures of many different compounds with vapor pressures spanning several orders of magnitude. The most volatile components are removed first, so the vapor pressure of the remaining contaminant continually decreases over the course of the remediation. A method for assessing how vapor pressure, and hence the rate of volatilization, of a multicomponent mixture changes over the course of a vapor extraction remedy has been developed. Each component is listed, alone, with its mass fraction in the mixture, in decreasing order of pure component vapor pressure (where component analyses are unavailable, model compounds can be used), For most petroleum distillates, the vapor pressure for each component plotted against the cumulative mass fraction of the component in the mixture on semilog coordinates will produce a straight line with a high correlation coefficient. This regression can be integrated to produce an expression for vapor pressure of the overall mixture as a function of extent or remediation

  15. Continuous electrophoretic purification of individual analytes from multicomponent mixtures.

    Science.gov (United States)

    McLaren, David G; Chen, David D Y

    2004-04-15

    Individual analytes can be isolated from multicomponent mixtures and collected in the outlet vial by carrying out electrophoretic purification through a capillary column. Desired analytes are allowed to migrate continuously through the column under the electric field while undesired analytes are confined to the inlet vial by application of a hydrodynamic counter pressure. Using pressure ramping and buffer replenishment techniques, 18% of the total amount present in a bulk sample can be purified when the resolution to the adjacent peak is approximately 3. With a higher resolution, the yield could be further improved. Additionally, by periodically introducing fresh buffer into the sample, changes in pH and conductivity can be mediated, allowing higher purity (>or=99.5%) to be preserved in the collected fractions. With an additional reversed cycle of flow counterbalanced capillary electrophoresis, any individual component in a sample mixture can be purified providing it can be separated in an electrophoresis system.

  16. Water activity changes of multicomponent food mixture during processing

    Directory of Open Access Journals (Sweden)

    Jiří Štencl

    2004-01-01

    Full Text Available Water activity of multicomponent food mixture was analysed and measured. Samples of dry fermented sausages with two different starter cultures (Pediococcus pentosaceus + Staphylococcus carnosus and Staphylococcus carnosus + Staphylococcus xylosus + Lactobacillus farciminis were tested during ripening (21 days and storing (91 days. The basic raw materials were the same for all samples: lean beef meat, lean pork and pork fat in equal parts, nitrite salt mixture (2.5 %, and sugars (1.0 %. The method used for water activity tests was indirect manometric in a static environment. Moisture content of samples was measured using halogen dryer. The course of water activity and moisture content of sausages was variable during ripening and steady during storage. Diagrams showed gradual decrease of both parameters. Mathematical models of water activity and moisture content for storage of dry fermented sausages were developed and statistically verified. The influence of starter cultures was not significant.

  17. Absorption from multicomponent gas mixtures comparing with Elemir gasoline plant

    Energy Technology Data Exchange (ETDEWEB)

    Miscevic, D

    1970-10-01

    A short description and explanation are outlined of all factors which have influence on hydrocarbon absorption from multicomponent gas mixtures. A short review of these different methods for absorption efficiency calculation is given. On the basis of the explained methods, the absorption from one natural gas at the Elemir plant is calculated and the results are given in tabular data. The number of the theoretical plate and L/V ratio for a given recovery of the key component is fixed by the calculation and by a graphical solution. Special attention is given for absorption oil depending on gas flow, pressure, and temperature. A series of diagrams is presented showing required absorption oil at the Elemir plant for given propane recovery, depending on the variables which are mentioned.

  18. Drying of liquid food droplets : enzyme inactivation and multicomponent diffusion

    NARCIS (Netherlands)

    Meerdink, G.

    1993-01-01

    In this thesis the drying of liquid food droplets is studied from three different points of view: drying kinetics, enzyme inactivation and multicomponent diffusion. Mathematical models are developed and validated experimentally.

    Drying experiments are performed with suspended

  19. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    Directory of Open Access Journals (Sweden)

    Orlov Alexey

    2016-01-01

    Full Text Available This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  20. Thermodiffusion in Multicomponent Mixtures Thermodynamic, Algebraic, and Neuro-Computing Models

    CERN Document Server

    Srinivasan, Seshasai

    2013-01-01

    Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.

  1. Spinodal decomposition in multicomponent fluid mixtures: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.; Toxvaerd, Søren

    1996-01-01

    parameter, leading to large growth-exponent values, the dynamics in multicomponent fluids (p = 3, 4) is found to follow a t(1/3) growth law, where t is time, which we relate to a long-wavelength evaporation-condensation process. These findings, which are proposed to be consequences of the compact domain...

  2. Prediction of adsorption from liquid mixtures in microporous media by the potential theory

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2007-01-01

    Despite its industrial importance, adsorption from the liquid phase has been studied much less extensively than adsorption from the gas phase. In this paper, we study the adsorption of liquid mixtures on the basis of the multicomponent potential theory of adsorption (MPTA). The MPTA is based on t...

  3. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry

    NARCIS (Netherlands)

    Rafiee Fanood, M.M.; Ram, N.B.; Lehmann, C.S.; Powis, I.; Janssen, M.H.M.

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how

  4. Bubble and Dew Point Calculations in Multicomponent and Multireactive Mixtures

    OpenAIRE

    Bonilla-Petriciolet, A.; Acosta-Martínez, A.; Bravo-Sánchez, U. I.; Segovia-Hernández, J. G.

    2006-01-01

    Bubble and dew point calculations are useful in chemical engineering and play an important role in the study of separation equipments for non-reactive and reactive mixtures. To the best of the authors’s knowledge, few methods have been proposed for these calculations in systems with several chemical reactions. The objective of this paper is to introduce new conditions for performing bubble and dew point calculations in reactive mixtures. We have developed these conditions based on the a...

  5. Second law of thermodynamics in volume diffusion hydrodynamics in multicomponent gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dadzie, S. Kokou, E-mail: k.dadzie@glyndwr.ac.uk [Department of Engineering and Applied Physics, Glyndŵr University, Mold Road, Wrexham LL11 2AW (United Kingdom)

    2012-10-01

    We presented the thermodynamic structure of a new continuum flow model for multicomponent gas mixtures. The continuum model is based on a volume diffusion concept involving specific species. It is independent of the observer's reference frame and enables a straightforward tracking of a selected species within a mixture composed of a large number of constituents. A method to derive the second law and constitutive equations accompanying the model is presented. Using the configuration of a rotating fluid we illustrated an example of non-classical flow physics predicted by new contributions in the entropy and constitutive equations. -- Highlights: ► A thermodynamic structure is presented for a new continuum flow model in multicomponent gas mixtures. ► A derivation method to obtain constitutive equations is presented. ► A configuration of a rotating gas is used to illustrate the role of new contributions in the structure of the entropy equation.

  6. Verifying reciprocal relations for experimental diffusion coefficients in multicomponent mixtures

    DEFF Research Database (Denmark)

    Medvedev, Oleg; Shapiro, Alexander

    2003-01-01

    The goal of the present study is to verify the agreement of the available data on diffusion in ternary mixtures with the theoretical requirement of linear non-equilibrium thermodynamics consisting in symmetry of the matrix of the phenomenological coefficients. A common set of measured diffusion...... coefficients for a three-component mixture consists of four Fickian diffusion coefficients, each being reported separately. However, the Onsager theory predicts the existence of only three independent coefficients, as one of them disappears due to the symmetry requirement. Re-calculation of the Fickian...... extended sets of experimental data and reliable thermodynamic models were available. The sensitivity of the symmetry property to different thermodynamic parameters of the models was also checked. (C) 2003 Elsevier Science B.V. All rights reserved....

  7. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    OpenAIRE

    Orlov Alexey; Ushakov Anton; Sovach Victor

    2016-01-01

    This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge casca...

  8. Mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures

    OpenAIRE

    Orlov, Aleksey Alekseevich; Ushakov, Anton; Sovach, Victor

    2017-01-01

    The article presents results of development of a mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of silicon isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary hydraulic processes in gas centrifuge cascades for separation...

  9. Bonding and structure in dense multi-component molecular mixtures.

    Science.gov (United States)

    Meyer, Edmund R; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D; Collins, Lee A

    2015-10-28

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. A basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  10. Mass exchange during rectification of multicomponent mixtures of aromatic C/sub 9/ hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kutsarov, R; Palichev, T; Tasev, Zh

    1978-01-01

    The effectiveness is determined of separating a multicomponent aromatic hydrocarbon (ArU) mixture into binary ones relative to the composition of the initial mixture. The study is conducted in mixtures of ArU which contain: C/sub 8/ ArU, isopropylbenzene, n-propylbenzene, ethyloluene, 1,3,5-trimetylbenzene, 1,2,4-trimethylbenzene, 1,2,3-trimethylbenzene and C/sub 10/ ArU. The total content of the C/sub 8/ and C/sub 10/ ArU is less than 2%. The constants of the phase equilibrium of the components are obtained through experiments or are calculated through the Chao-Sider method. The separation of the multicomponent mixture was conducted in periodic, automated rectification column 30 mm in diameter, filled with a steel spiral with a free volume of 0.818 m/sup 3//m/sup 3/ and a specific surface of 0.785 m/sup 2//m/sup 3/ and an effective headpiece height of 1.5 m. The temperature of the housing was maintained with a precision of 0.5/sup 0/, the speed of vapors was maintained constant (0.231 m/sec) through regulating the pressure differential between the top and bottom with a precision of 0.5 mm of mercury. After reaching a stationary mode, samples of the distillate and the sediment were taken and were analyzed chromatographically with a precision of 0.25%. Five distillations of the multicomponent mixtures of various make up were conducted and the distillates and sediments were analyzed. The obtained data are graphically presented.

  11. Density and Compressibility of Multicomponent n-Alkane Mixtures up to 463 K and 140 MPa

    DEFF Research Database (Denmark)

    Regueira, Teresa; Glykioti, Maria-Lito; Stenby, Erling Halfdan

    2017-01-01

    Density measurements of two ternary alkane mixtures (methane/n-butane/n-decane and methane/n-butane/n-dodecane) and two multicomponent mixtures composed of methane/n-butane/n-octane/n-dodecane/n-hexadecane/n-eicosane were performed in the temperature range from (278.15 to 463.15) K and pressures ......–Redlich–Kwong (SRK), Peng–Robinson (PR), Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), and Soave-Benedict-Webb-Rubin (Soave-BWR) were used for predicting the experimental density values as well as the excess volumes....... to 140 MPa. The isothermal compressibility values of these mixtures were obtained by differentiation from a Tait-type fitting of experimental densities as a function of temperature and pressure. Excess volume of the studied mixtures was also determined. Four different equations of state, that is, Soave...

  12. Multicomponent diffusivities from the free volume theory

    NARCIS (Netherlands)

    Wesselingh, J.A; Bollen, A.M

    In this paper the free volume theory of diffusion is extended to multicomponent mixtures. The free volume is taken to be accessible for any component according to its surface. fraction. The resulting equations predict multicomponent (Maxwell-Stefan) diffusivities in simple liquid mixtures from pure

  13. Dissolution and biodegradation of a mixture of immiscible liquids

    International Nuclear Information System (INIS)

    Gandhi, P.; Erickson, L.E.; Fan, L.T.

    1994-01-01

    Subsurface contaminants are frequently encountered as mixtures of nonaqueous phase liquids (NAPLs) at sites contaminated by gasoline or coal tar comprising organic mixtures. The leaching of these organic mixtures from the aquifer has been examined with and without biodegradation. The results obtained have been compared with the limiting case of a single component NAPL. Various physical processes involved have been quantified based on the assumptions that liquid-liquid and sorption equilibria are established at the beginning of each flushing; oxygen required for biochemical oxidation is completely consumed by the end of each flushing; and the rate of biochemical oxidation obeys the Monod kinetics for a multi-substrate system, characterized by an oxygen utilization factor. This has given rise to an equilibrium model expressing the mass fraction of any component remaining in the aquifer, its aqueous concentration, and the composition of the NAPL as functions of the number of flushings. The results of the simulation with the model demonstrate that bioremediation can significantly reduce the time necessary for removing the components of intermediate solubility such as xylene. Highly soluble components of the NAPL are mainly removed by the pump-and-treat mechanism while the components of extremely low solubility are unavailable to the microbes as substrates in a multi-component system

  14. The elimination of singularities in pair correlation functions of a multicomponent liquid system

    International Nuclear Information System (INIS)

    Vasil'jev, O.M.; Chalij, O.V.

    2004-01-01

    In this paper we propose a method that allows to find nonsingular expressions for pair correlation functions of a multicomponent liquid system. The nature of the method deals with using integral and differential Ornstein-Zernike equations for finding asymptotic expressions for pair correlation functions and their subsequent precision. The obtained results are analyzed taking into account their possible applicability for studying the correlative behaviour of multicomponent liquid systems

  15. Predicting liquid immiscibility in multicomponent nuclear waste glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Hrma, P.R.

    1994-01-01

    Taylor's model for predicting amorphous phase separation in complex, multicomponent systems has been applied to high-level (simulated) radioactive waste glasses at the U.S. Department of Energy's Hanford site. Taylor's model is primarily based on additions of modifying cations to a Na 2 O-B 2 O 3 -SiO 2 (NBS) submixture of the multicomponent glass. The position of the submixture relative to the immiscibility dome defines the development probability of amorphous phase separation. Although prediction of amorphous phase separation in Hanford glasses (via experimental SEM/TEM analysis) is the primary thrust of this work; reported durability data is also provides limited insight into the composition/durability relationship. Using a modified model similar to Taylor's, the results indicate that immiscibility may be predicted for multicomponent waste glasses by the addition of Li 2 O to the open-quotes alkaliclose quotes corner of the NBS submixture

  16. Predicting liquid immiscibility in multicomponent nuclear waste glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Hrma, P.R.

    1994-04-01

    Taylor's model for predicting amorphous phase separation in complex, multicomponent systems has been applied to high-level (simulated) radioactive waste glasses at the US Department of Energy's Hanford site. Taylor's model is primarily based on additions of modifying cations to a Na 2 O-B 2 O 3 -SiO 2 (NBS) submixture of the multicomponent glass. The position of the submixture relative to the miscibility dome defines the development probability of amorphous phase separation. Although prediction of amorphous phase separation in Hanford glasses (via experimental SEM/TEM analysis) is the primary thrust of this work; reported durability data is also provides limited insight into the composition/durability relationship. Using a modified model similar to Taylor's, the results indicate that immiscibility may be predicted for multicomponent waste glasses by the addition of Li 2 O to the ''alkali'' corner of the NBS submixture

  17. Experimental (solid + liquid) or (liquid + liquid) phase equilibria of (amine + nitrile) binary mixtures

    International Nuclear Information System (INIS)

    Domanska, Urszula; Marciniak, Malgorzata

    2007-01-01

    (Solid + liquid) phase diagrams have been determined for (hexylamine, or octylamine, or 1,3-diaminopropane + acetonitrile) mixtures. Simple eutectic systems have been observed in these mixtures. (Liquid + liquid) phase diagrams have been determined for (octylamine, or decylamine + propanenitrile, or + butanenitrile) mixtures. Mixtures with propanenitrile and butanenitrile show immiscibility in the liquid phase with an upper critical solution temperature, UCST. (Solid + liquid) phase diagrams have been correlated using NRTL, NRTL 1, Wilson and UNIQUAC equations. (Liquid + liquid) phase diagrams have been correlated using NRTL equation

  18. Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles

    International Nuclear Information System (INIS)

    Spruijt, E; Biesheuvel, P M

    2014-01-01

    In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation–diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik–Mansoori–Carnahan–Starling–Leland (BMCSL

  19. Liquid mixtures for scintillation counters

    International Nuclear Information System (INIS)

    Kauffmann, J.M.

    1975-01-01

    Liquid scintillators contain emulsifiers or combinations of these which can be used over a wide temperature range for a multitude of aqueous samples. These emulsifiers are block-polymerides with a nonhygroscopic center part of the chain of oxypropylene combinations recieved by addition of propylene oxide to both hydroxyl groups of a propylene-glycol nucleus and both ends of the center part of the chain terminating in hygroscopic poly(oxyethylene) groups. The length of the nonhygroscopic center part of the chain varies from about 800 to 3,000 or 4,000 in molecular weight. The hygroscopic poly(oxyethylene) end groups have a controlled length constituting about 10 to 80wt.% of the finished molecule. The most useful members of this group of co-polymerides possess a length of their poly(oxypropylene) chains corresponding to a value of y of about 15 to 56 and a length of their poly(oxyethylene)chains corresponding to values of x and z between 1 and 35 . All known fluorines can be used. With the scintillators the radioimmunoassay can also be carried through. (DG/PB) [de

  20. CO2 Removal from Multi-component Gas Mixtures Utilizing Spiral-Wound Asymmetric Membranes

    International Nuclear Information System (INIS)

    Said, W.B.; Fahmy, M.F.M.; Gad, F.K.; EI-Aleem, G.A.

    2004-01-01

    A systematic procedure and a computer program have been developed for simulating the performance of a spiral-wound gas permeate for the CO 2 removal from natural gas and other hydrocarbon streams. The simulation program is based on the approximate multi-component model derived by Qi and Henson(l), in addition to the membrane parameters achieved from the binary simulation program(2) (permeability and selectivity). Applying the multi-component program on the same data used by Qi and Henson to evaluate the deviation of the approximate model from the basic transport model, showing results more accurate than those of the approximate model, and are very close to those of the basic transport model, while requiring significantly less than 1 % of the computation time. The program was successfully applied on the data of Salam gas plant membrane unit at Khalda Petroleum Company, Egypt, for the separation of CO 2 from hydrocarbons in an eight-component mixture to estimate the stage cut, residue, and permeate compositions, and gave results matched with the actual Gas Chromatography Analysis measured by the lab

  1. Emergence of life from multicomponent mixtures of chemicals: the case for experiments with cycling physicochemical gradients.

    Science.gov (United States)

    Spitzer, Jan

    2013-04-01

    The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.

  2. Efficient and robust relaxation procedures for multi-component mixtures including phase transition

    International Nuclear Information System (INIS)

    Han, Ee; Hantke, Maren; Müller, Siegfried

    2017-01-01

    We consider a thermodynamic consistent multi-component model in multi-dimensions that is a generalization of the classical two-phase flow model of Baer and Nunziato. The exchange of mass, momentum and energy between the phases is described by additional source terms. Typically these terms are handled by relaxation procedures. Available relaxation procedures suffer from efficiency and robustness resulting in very costly computations that in general only allow for one-dimensional computations. Therefore we focus on the development of new efficient and robust numerical methods for relaxation processes. We derive exact procedures to determine mechanical and thermal equilibrium states. Further we introduce a novel iterative method to treat the mass transfer for a three component mixture. All new procedures can be extended to an arbitrary number of inert ideal gases. We prove existence, uniqueness and physical admissibility of the resulting states and convergence of our new procedures. Efficiency and robustness of the procedures are verified by means of numerical computations in one and two space dimensions. - Highlights: • We develop novel relaxation procedures for a generalized, thermodynamically consistent Baer–Nunziato type model. • Exact procedures for mechanical and thermal relaxation procedures avoid artificial parameters. • Existence, uniqueness and physical admissibility of the equilibrium states are proven for special mixtures. • A novel iterative method for mass transfer is introduced for a three component mixture providing a unique and admissible equilibrium state.

  3. Separation of a multicomponent mixture by gaseous diffusion: modelization of the enrichment in a capillary - application to a pilot cascade

    International Nuclear Information System (INIS)

    Doneddu, F.

    1982-01-01

    Starting from the modelization of gaseous flow in a porous medium (flow in a capillary), we generalize the law of enrichment in an infinite cylindrical capillary, established for an isotropic linear mixture, to a multicomponent mixture. A generalization is given of the notion of separation yields and characteristic pressure classically used for separations of isotropic linear mixtures. We present formulas for diagonalizing the diffusion operator, modelization of a multistage, gaseous diffusion cascade and comparison with the experimental results of a drain cascade (N 2 -SF 6 -UF 6 mixture). [fr

  4. Comparative Study of Gas Reconstruction Robust Methods for Multicomponent Gas Mixtures

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2015-01-01

    Full Text Available When using laser methods of gas analysis, one of the arising problems is instability in results of defining a quantitative composition of gases under control of multicomponent mixes in the conditions of real noise of measurements. It leads to demand for using the special algorithms to process results of laser measurements.For multicomponent gaseous mixes, when solving a problem of quantitative gas analysis based on the results of multispectral laser measurements, use of methods for solving incorrect mathematical tasks is efficient.If mix is stationary (i.e. there is a possibility for a series of measurements it is possible to use a much simpler method to determine concentration of gases, i.e. the least-squares method based on the minimization of residual function.However, the estimates obtained by the least-squares method are effective if distribution of measurement errors is according to the normal law. In practice, the law of errors distribution is often non-normal, and loss of estimate efficiency achieved by the least-squares method occurs even at a small share of bursts.With bursts available in the measuring signal, it is necessary to use the stationary estimation methods allowing the significantly reduced impact on the estimate of considerable bursts.To estimate an efficiency of the robust methods for defining a quantitative composition of the multicomponent stationary gas mixes from multispectral laser measurements a mathematical simulation was performed. A gas mixture was considered to be stationary, and n measurements (at each wavelength were taken ( n were specified from 2 to 6 to define a quantitative composition of gases in the mixture. Simulation was implemented for gas mixes with the number of components from 4 to 6.Results of mathematical simulation show that the robust estimate based on the residual function ( x  arctg x , allows us, in conditions of the bursts of a variable signal, to reduce significantly the error of

  5. Flow boiling heat transfer coefficients at cryogenic temperatures for multi-component refrigerant mixtures of nitrogen-hydrocarbons

    Science.gov (United States)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule-Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen-hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.

  6. Efficient Discovery of Novel Multicomponent Mixtures for Hydrogen Storage: A Combined Computational/Experimental Approach

    Energy Technology Data Exchange (ETDEWEB)

    Wolverton, Christopher [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering; Kung, Harold H. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemical and Biological Engineering; Yang, Jun [Ford Scientific Research Lab., Dearborn, MI (United States); Hwang, Sonjong [California Inst. of Technology (CalTech), Pasadena, CA (United States). Dept. of Chemistry and Chemical Engineering; Shore, Sheldon [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemistry and Biochemistry

    2016-11-28

    The objective of the proposed program is to discover novel mixed hydrides for hydrogen storage, which enable the DOE 2010 system-level goals. Our goal is to find a material that desorbs 8.5 wt.% H2 or more at temperatures below 85°C. The research program will combine first-principles calculations of reaction thermodynamics and kinetics with material and catalyst synthesis, testing, and characterization. We will combine materials from distinct categories (e.g., chemical and complex hydrides) to form novel multicomponent reactions. Systems to be studied include mixtures of complex hydrides and chemical hydrides [e.g. LiNH2+NH3BH3] and nitrogen-hydrogen based borohydrides [e.g. Al(BH4)3(NH3)3]. The 2010 and 2015 FreedomCAR/DOE targets for hydrogen storage systems are very challenging, and cannot be met with existing materials. The vast majority of the work to date has delineated materials into various classes, e.g., complex and metal hydrides, chemical hydrides, and sorbents. However, very recent studies indicate that mixtures of storage materials, particularly mixtures between various classes, hold promise to achieve technological attributes that materials within an individual class cannot reach. Our project involves a systematic, rational approach to designing novel multicomponent mixtures of materials with fast hydrogenation/dehydrogenation kinetics and favorable thermodynamics using a combination of state-of-the-art scientific computing and experimentation. We will use the accurate predictive power of first-principles modeling to understand the thermodynamic and microscopic kinetic processes involved in hydrogen release and uptake and to design new material/catalyst systems with improved properties. Detailed characterization and atomic-scale catalysis experiments will elucidate the effect of dopants and nanoscale catalysts in achieving fast kinetics and reversibility. And

  7. The Viscosity of Organic Liquid Mixtures

    Science.gov (United States)

    Len, C. W.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A.

    2006-01-01

    The paper reports measurements of the viscosity and density of two heavy hydrocarbon mixtures, Dutrex and Arab Light Flashed Distillate (ALFD), and of their mixtures with hydrogen. The measurements have been carried out with a vibrating-wire device over a range of temperatures from 399 to 547 K and at pressures up to 20 MPa. Measurements have also been carried out on systems in which hydrogen at different concentrations has been dissolved in the liquids. The measurements have an estimated uncertainty of ±5% for viscosity and ±2% for density and represent the first results on these prototypical heavy hydrocarbons. The results reveal that the addition of hydrogen reduces both the density and viscosity of the original hydrocarbon mixture at a particular temperature and pressure.

  8. Separation of alcohols from organic liquid mixtures by pervaporation

    NARCIS (Netherlands)

    Park, Hyun-Chae

    1993-01-01

    In the chemical industry, distillation is generally the preferred technique to separate a liquid mixture. However some liquid mixtures such as azeotropic mixtures, close-boiling hydrocarbons, and various isomers are difficult to separate by simple distillation. For the separation of these mixtures

  9. Thermodynamics of the multicomponent vapor-liquid equilibrium under capillary pressure difference

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2001-01-01

    We discuss the two-phase multicomponent equilibrium, provided that the phase pressures are different due to the action of capillary forces. We prove the two general properties of such an equilibrium, which have previously been known for a single-component case, however, to the best of our knowledge......, not for the multicomponent mixtures. The importance is emphasized on the space of the intensive variables P, T and mu (i), where the laws of capillary equilibrium have a simple geometrical interpretation. We formulate thermodynamic problems specific to such an equilibrium, and outline changes to be introduced to common...... algorithms of flash calculations in order to solve these problems. Sample calculations show large variation of the capillary properties of the mixture in the very neighborhood of the phase envelope and the restrictive role of the spinodal surface as a boundary for possible equilibrium states with different...

  10. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim

    2012-05-04

    RATIONALE To enhance the ionization efficiencies in atmospheric pressure photoionization mass spectrometry a dopant with favorable ionization energy such as chlorobenzene is typically used. These dopants are typically toxic and difficult to mix with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs) was developed and optimized using ultra high performance liquid chromatography (UPLC) coupled to atmospheric pressure photoionization high-resolution mass spectrometry. Various single and multicomponent mixed dopants consisting of ethanol, chlorobenzene, bromobenzene, anisole and toluene were evaluated. RESULTS Fourteen out of eighteen PAHs were successfully separated and detected at low pg/μL levels within 5 min with high mass accuracy ≤4 ppm. The optimal mixed multicomponent dopant consisted of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v %) and it improved the limit of detection (LOD) by 2- to 10-fold for the tested PAHs compared to those obtained with pure chlorobenzene. CONCLUSIONS A novel multicomponent dopant that contains 99% ethanol and 1% mixture of chlorobenzene, bromobenzene and anisole was found to be an effective dopant mixture to ionize PAHs. The developed UPLC multicomponent dopant assisted atmospheric pressure photoionization high-resolution mass spectrometry offered a rapid non targeted screening method for detecting the PAHs at low pg/;μL levels within a 5 min run time with high mass accuracy a;circ4 ppm. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Relationship between the partial molar and molar quantity of a thermodynamic state function in a multicomponent mixture – revisited

    International Nuclear Information System (INIS)

    Näfe, H.

    2013-01-01

    As far as a multicomponent mixture is concerned, different versions exist in the literature for the relationship between the partial molar and molar quantity of a thermodynamic state function with the most prominent example of the two quantities being the activity coefficient of an arbitrary component and the excess Gibbs free energy of a mixture comprising this component. Since the relationships published so far have to a large degree been derived independently of each other and result from apparently conflicting approaches, they are still considered as separate subjects in the literature. It is demonstrated that despite this curious situation all relationships are equivalent to each other from a mathematical point of view

  12. Ternary liquid-liquid equilibria for mixtures of toluene + n-heptane + an ionic liquid

    NARCIS (Netherlands)

    Meindersma, G.W.; Podt, J.G.; de Haan, A.B.

    2006-01-01

    This research has been focused on a study of sulfolane and four ionic liquids as solvents in liquid–liquid extraction. Liquid–liquid equilibria data were obtained for mixtures of (sulfolane or 4-methyl-N-butylpyridinium tetrafluoroborate ([mebupy]BF4) or 1-ethyl-3-methylimidazolium ethylsulfate

  13. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2015-01-01

    of CPA for ternary and multicomponent CO2 mixtures containing alcohols (methanol, ethanol or propanol) water and hydrocarbons. This work belongs to a series of studies aiming to arrive in a single "engineering approach" for applying CPA to acid gas mixtures, without introducing significant changes...... to the model. In this direction, CPA results were obtained using various approaches, i.e. different association schemes for pure CO2 (assuming that it is a non-associating compound, or that it is a self-associating fluid with two, three or four association sites) and different possibilities for modelling...... mixtures of CO2 with water and alcohols (only use of one interaction parameter kij or assuming cross-association interactions and obtaining the relevant parameters either via a combining rule or using an experimental value for the cross-association energy). It is concluded that CPA is a powerful model...

  14. Temperature dependence on mutual solubility of binary (methanol + limonene) mixture and (liquid + liquid) equilibria of ternary (methanol + ethanol + limonene) mixture

    International Nuclear Information System (INIS)

    Tamura, Kazuhiro; Li Xiaoli; Li Hengde

    2009-01-01

    Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model

  15. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... are implemented, leading to an entirely predictive method for densities of mixed compressed ionic liquids. Quantitative agreement with experimental data is obtained over wide ranges of conditions. Previously, the method has been applied to solubilities of sparingly soluble gases in ionic liquids and in organic...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  16. The separation of solid and liquid components of mixtures

    International Nuclear Information System (INIS)

    Hunter, W.M.

    1980-01-01

    An improved method of separating solid and liquid components of mixtures is described which is particularly suited for use in automated radioimmunoassay systems in the analysis of bound and free fractions. A second liquid, having a density intermediate between those of the solid and liquid components, is delivered to the solid/ liquid mixture to form a discrete layer below the mixture and the solid separates into this lower liquid layer assisted by centrifugal force. The second liquid of intermediate density is an aqueous solution of a highly hydrophilic and electrically non-polar solute, such as an aqueous sucrose solution. Further liquids of intermediate density and progressively higher density may be delivered to form further discrete layers below the initial layer of the second dense liquid. After separation of the solid and liquid components of the mixture, the supernatant liquid component of the original mixture is removed in a controlled and non-turbulent manner. The method is illustrated in radioimmunoassays for platelet β-thromboglobulin and human follicle stimulating hormone. (U.K.)

  17. A Variational Statistical-Field Theory for Polar Liquid Mixtures

    Science.gov (United States)

    Zhuang, Bilin; Wang, Zhen-Gang

    Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.

  18. Shear viscosity of liquid mixtures: Mass dependence

    International Nuclear Information System (INIS)

    Kaushal, Rohan; Tankeshwar, K.

    2002-06-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)

  19. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R

    2002-01-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.

  20. Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Jacobsen, Anne Marie; Halling-Sørensen, Bent

    2006-03-01

    A multi-component method focussing on thorough sample preparation has been developed for simultaneous analysis of swine manure for three classes of antibiotic-tetracyclines, sulfonamides, and tylosin. Liquid manure was initially freeze-dried and homogenised by pulverization before extraction by pressurised liquid extraction. The extraction was performed at 75 degrees C and 2,500 psig in three steps using two cycles with 0.2 mol L(-1) citric acid buffer (pH 4.7) and one cycle with a mixture of 80% methanol with 0.2 mol L(-1) citric acid (pH 3). After liquid-liquid extraction with heptane to remove lipids, the pH of the manure was adjusted to 3 with formic acid and the sample was vacuum-filtered through 0.6 mum glass-fibre filters. Finally the samples were pre-concentrated by tandem SPE (SAX-HLB). Recoveries were determined for manure samples spiked at three concentrations (50-5,000 microg kg(-1) dry matter); quantification was achieved by matrix-matched calibration. Recoveries were >70% except for oxytetracycline (42-54%), sulfadiazine (59-73%), and tylosin (9-35%) and did not vary with concentration or from day-to-day. Limits of quantification (LOQ) for all compounds, determined as a signal-to-noise ratio of 10, were in the range 10-100 microg kg(-1) dry matter. The suitability of the method was assessed by analysis of swine manure samples from six different pig-production sites, e.g. finishing pigs, sows, or mixed production. Residues of antibiotics were detected in all samples. The largest amounts were found for tetracyclines (up to 30 mg kg(-1) dry matter for the sum of CTC and ECTC). Sulfonamides were detected at concentrations up to 2 mg kg(-1) dry matter (SDZ); tylosin was not detected in any samples.

  1. Formulation of electroclinic, ferroelectric and antiferroelectric liquid crystal mixtures suitable for display devices

    Science.gov (United States)

    Debnath, Asim; Goswami, Debarghya; Mandal, Pradip Kumar

    2018-04-01

    Most of the liquid crystal display (LCD) devices starting from simplest wrist watches or calculators to complex laptops or flat TV sets are based on nematics. Although a tremendous improvement in the quality of display as well as reduction of manufacturing cost has taken place over the years, there are many issues which the LC industry is trying hard to address. Ferroelectric liquid crystals (FLC) are of current interest in the LCD industry since among various other advantages FLC based displays have micro-second order switching compared to milli-second order switching in nematic based displays. To meet the market demand much effort has been made to optimize the physical parameters of FLCs, such as temperature range, spontaneous polarization (PS), helical pitch (p), switching time (τ), tilt angle (θ) and rotational viscosity (γ). Multicomponent mixtures are, therefore, formulated to optimize all the required properties for practical applications since no single FLC compound can satisfy the above requirements. To the best of our knowledge electroclinic, ferroelectric and antiferroelectric liquid crystal mixtures have been formulated first time by any Indian group which have properties suitable for FLC based display devices and at par with mixtures used in the industry.

  2. Phase-field modeling of isothermal quasi-incompressible multicomponent liquids

    Science.gov (United States)

    Tóth, Gyula I.

    2016-09-01

    In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental equations of continuum mechanics, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. Next the general definition of incompressibility is given, which is taken into account in the derivation by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional) and (ii) can influence nonequilibrium pattern formation significantly.

  3. Pore and surface diffusion in multicomponent adsorption and liquid chromatography systems

    International Nuclear Information System (INIS)

    Ma, Z.; Whitley, R.D.; Wang, N.H.L.

    1996-01-01

    A generalized parallel pore and surface diffusion model for multicomponent adsorption and liquid chromatography is formulated and solved numerically. Analytical solution for first- and second-order central moments for a pulse on a plateau input is used as benchmarks for the numerical solutions. Theoretical predictions are compared with experimental data for two systems: ion-exchange of strontium, sodium, and calcium in a zeolite and competitive adsorption of two organics on activated carbon. In a linear isotherm region of single-component systems, both surface and pore diffusion cause symmetric spreading in breakthrough curves. In a highly nonlinear isotherm region, however, surface diffusion causes pronounced tailing in breakthrough curves; the larger the step change in concentration, the more pronounced tailing, in contrast to relatively symmetric breakthroughs due to pore diffusion. If only a single diffusion mechanism is assumed in analyzing the data of parallel diffusion systems, a concentration-dependent apparent surface diffusivity or pore diffusivity results; for a convex isotherm, the apparent surface diffusivity increases, whereas the apparent pore diffusivity decreases with increasing concentration. For a multicomponent nonlinear system, elution order can change if pore diffusion dominates for a low-affinity solute, whereas surface diffusion dominates for a high-affinity solute

  4. in Binary Liquid Mixtures of Ethyl benzoate

    Directory of Open Access Journals (Sweden)

    Shaik Babu

    2012-01-01

    Full Text Available Ultrasonic velocity is measured at 2MHz frequency in the binary mixtures of Ethyl Benzoate with 1-Propanol, 1-Butanol, 1-Pentanol and theoretical values of ultrasonic velocity have been evaluated at 303K using Nomoto's relation, Impedance relation, Ideal mixture relation, Junjie's method and free length theory. Theoretical values are compared with the experimental values and the validity of the theories is checked by applying the chi-square test for goodness of fit and by calculating the average percentage error (APE. A good agreement has been found between experimental and Nomoto’s ultrasonic velocity.

  5. Phase Equilibrium Calculations for Multi-Component Polar Fluid Mixtures with tPC-PSAFT

    DEFF Research Database (Denmark)

    Karakatsani, Eirini; Economou, Ioannis

    2007-01-01

    The truncated Perturbed-Chain Polar Statistical Associating Fluid Theory (tPC-PSAFT) is applied to a number of different mixtures, including binary, ternary and quaternary mixtures of components that differ substantially in terms of intermolecular interactions and molecular size. In contrast to m...

  6. SIMULTANEOUS DETERMINATION OF PARACETAMOL AND IBUPROFENE MIXTURES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    Sophi Damayanti

    2010-06-01

    Full Text Available Analytical method for the determination of paracetamol and ibuprofene mixtures has been developed by High Performance Liquid Chromatography using C-18 column and acetinitrile - phosphate buffer pH = 4.5 (75:25 containing 0.075% sodium hexanesulfunate as a mobile phase. The detector was set at 215 nm. Using such conditions, retention time for paracetamol and ibuprofen was 4.89 and 7.11 min, respectively. The recovery for paracetamol and ibuprofen was found to be 101.07± 0.73% and 102.02 ± 1.58%, respectively. The detector limits of the method was 1.30 and 1.60 μg/mL with the relative standard deviation (RSD 0.74 and 1.52% for paracetamol and ibuprofen, respectively.   Keywords: paracetamol, ibuprofen, multi-component, validation, HPLC.

  7. Challenge of coal-liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Peirce, T

    1985-09-01

    The near-term prospect for coal-water (CWMs) mixtures as a convenient replacement fuel for UK oil-fired plant is discussed. Specific use of CWMs in industrial water-tube boilers is presented. The article shows how such developments complement the introduction of new, modern coal-designed industrial combustion equipment in the form of fully automatic stokers and fluidized bed combustion systems. Topics presented include properties and preparation of CWM, combustion characteristics of CWM, and boiler conversion. 9 references, 4 figures.

  8. Thermodynamic properties of mixtures of liquids

    International Nuclear Information System (INIS)

    Benedetti, A.V.; Cilense, M.; Vollet, D.

    1982-01-01

    The molar excess enthalpy (H sup(-E)) of water-ethanol has been measured at 298.15, 306.85, 313.95 and 319.75 K. The mixtures are exothermics at studied temperatures with minimum values of -785, -655, -555 and -490 J. mol -1 respectively, at value of X 2 about 0.16. The other thermodynamics properties have been obtained from experimental data and data from literature. The results are interpreted qualitatively by considering molecular interactions in solution. (Author) [pt

  9. The stability and stratification of a quantum liquid mixture

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    1980-01-01

    A mixture of quantum liquids was investigated microscopically. The spectrum of collective excitations at finite temperature was determined. The form of the spectrum demonstrates whether there is a stability or stratification of the mixture. The influence of a relative motion of liquids on the spectrum was considered. It was demonstrated that beginning with some finite momentun, the spectrum of each component of the solution splits into two branches, one of which continues the spectrum into the single-particle region. The dynamic susceptibility, the dynamic form-factor, the coefficients of compressibility and the structure factor for the mixture of two Bose liquids were obtained. The integral relations that generalize some rules concerning the binary Bose solution was established. (author)

  10. Innovative aspects of protein stability in ionic liquid mixtures.

    Science.gov (United States)

    Kumar, Awanish; Venkatesu, Pannuru

    2018-06-01

    Mixtures of ionic liquids (ILs) have attracted our attention because of their extraordinary performances in extraction technologies and in absorbing large amount of CO 2 gas. It has been observed that when two or more ILs are mixed in different proportions, a new solvent is obtained which is much better than that of each component of ILs from which the mixture is obtained. Within a mixture of ILs, several unidentified interactions occur among several ions which give rise to unique solvent properties to the mixture. Herein, in this review, we have highlighted the utilization of the advantageous properties of the IL mixtures in protein stability studies. This approach is exceptional and opens new directions to the use of ILs in biotechnology.

  11. Evaporation of multicomponent chemical spills: When is liquid phase resistance significant?

    International Nuclear Information System (INIS)

    Berger, D.; Mackay, D.

    1993-01-01

    When chemicals are spilled on land or water, it is important to be able to estimate evaporation rates accurately. Conventional models used to predict evaporation rates of multicomponent spills assume that the entire resistance to evaporation lies in the vapor phase. Under certain conditions, an additional liquid phase resistance may be introduced, resulting in retarded evaporation rates. Existing models may thus fail to predict spill behavior accurately. A study is described whose objective is to elucidate the significance of the liquid phase resistance. Evaporation experiments were conducted in which a thin layer of synthetic oil (mineral oil enriched with compounds such as pentane, hexane, toluene, octane, and p-xylene) was exposed to prolonged evaporation in a metal tray at controlled wind speeds. Bulk samples of the spill layer were taken at specific time intervals and their composition was determined by gas chromatographic analysis. The results are compared to those from a theoretical model and to gas stripping experiments. The model is based on the evaporative flux equation incorporating Raoult's law; inputs are the air-oil partition coefficient for each component and the composition of the synthetic oil on a volume and mole fraction basis. The study has enabled the formation of vertical concentration profiles to be examined and liquid phase mass transfer coefficients to be estimated. The results imply that liquid-phase resistance effects are likely to be important for the most volatile components. Contaminated areas may thus continue to be hazardous, even though model predictions indicate otherwise. 7 refs., 3 figs., 2 tabs

  12. Thermodynamics of liquid mixtures of methane and ethene

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J C.G.; Soares, V A.M.

    1977-08-01

    Experiments conducted by Portugal's Instituto Superior Tecnico provide liquid and vapor equilibrium compositions and pressures for the methane-ethene system at 103.94 and -115.77 K as well as the molar volumes of the mixtures at the lower temperature. From the results, researchers estimated the excess Gibbs energies at these tempertures and the molar enthalpy of mixing.

  13. Studies on Molecular Interaction in Ternary Liquid Mixtures

    Directory of Open Access Journals (Sweden)

    R. Uvarani

    2010-01-01

    Full Text Available Ultrasonic velocity, density and viscosity for the ternary liquid mixtures of cyclohexanone with 1-propanol and 1-butanol in carbon tetrachloride were measured at 303 K. The acoustical parameters and their excess values were calculated. The trends in the variation of these excess parameters were used to discuss the nature and strength of the interactions present between the component molecules.

  14. Thermodynamics of liquid mixtures of methane and ethene

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Soares, V.A.M.

    1977-08-01

    Experiments conducted by Portugal's Instituto Superior Tecnico provide liquid and vapor equilibrium compositions and pressures for the methane-ethene system at 103.94 and -115.77 K as well as the molar volumes of the mixtures at the lower temperature. From the results, researchers estimated the excess Gibbs energies at these tempertures and the molar enthalpy of mixing.

  15. Surface Structures of Binary Mixture of Ionic Liquids.

    Czech Academy of Sciences Publication Activity Database

    Nakajima, K.; Nakanishi, S.; Lísal, Martin; Kimura, K.

    2017-01-01

    Roč. 230, MARCH (2017), s. 542-549 ISSN 0167-7322 R&D Projects: GA ČR(CZ) GA16-12291S Institutional support: RVO:67985858 Keywords : ionic liquids * mixture * surface structure Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.648, year: 2016

  16. The Huber’s Method-based Gas Concentration Reconstruction in Multicomponent Gas Mixtures from Multispectral Laser Measurements under Noise Overshoot Conditions

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2016-01-01

    Full Text Available Laser gas analysers are the most promising for the rapid quantitative analysis of gaseous air pollution. A laser gas analysis problem is that there are instable results in reconstruction of gas mixture components concentration under real noise in the recorded laser signal. This necessitates using the special processing algorithms. When reconstructing the quantitative composition of multi-component gas mixtures from the multispectral laser measurements are efficiently used methods such as Tikhonov regularization, quasi-solution search, and finding of Bayesian estimators. These methods enable using the single measurement results to determine the quantitative composition of gas mixtures under measurement noise. In remote sensing the stationary gas formations or in laboratory analysis of the previously selected (when the gas mixture is stationary air samples the reconstruction procedures under measurement noise of gas concentrations in multicomponent mixtures can be much simpler. The paper considers a problem of multispectral laser analysis of stationary gas mixtures for which it is possible to conduct a series of measurements. With noise overshoots in the recorded laser signal (and, consequently, overshoots of gas concentrations determined by a single measurement must be used stable (robust estimation techniques for substantial reducing an impact of the overshoots on the estimate of required parameters. The paper proposes the Huber method to determine gas concentrations in multicomponent mixtures under signal overshoot. To estimate the value of Huber parameter and the efficiency of Huber's method to find the stable estimates of gas concentrations in multicomponent stationary mixtures from the laser measurements the mathematical modelling was conducted. Science & Education of the Bauman MSTU 108 The mathematical modelling results show that despite the considerable difference among the errors of the mixture gas components themselves a character of

  17. The Phase Envelope of Multicomponent Mixtures in the Presence of a Capillary Pressure Difference

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando; Yan, Wei; Michelsen, Michael Locht

    2016-01-01

    for test mixtures with wide ranges of compositions at different capillary radii and vapor fractions. The calculation results show that the phase envelope changes everywhere except at the critical point. The bubble point and the lower branch of the dew point show a decrease in the saturation pressure......, whereas the upper branch of the dew point shows an increase. The cricondentherm is shifted to a higher temperature. We also presented a mathematical analysis of the phase envelope shift due to capillary pressure based on linear approximations. The resulting linear approximation equations can predict...... the magnitude of shift, and the approximation is close for the change in the bubble point pressure....

  18. Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2015-08-01

    Surface tension significantly impacts subsurface flow and transport, and it is the main cause of capillary effect, a major immiscible two-phase flow mechanism for systems with a strong wettability preference. In this paper, we consider the numerical simulation of the surface tension of multi-component mixtures with the gradient theory of fluid interfaces. Major numerical challenges include that the system of the Euler-Lagrange equations is solved on the infinite interval and the coefficient matrix is not positive definite. We construct a linear transformation to reduce the Euler-Lagrange equations, and naturally introduce a path function, which is proven to be a monotonic function of the spatial coordinate variable. By using the linear transformation and the path function, we overcome the above difficulties and develop the efficient methods for calculating the interface and its interior compositions. Moreover, the computation of the surface tension is also simplified. The proposed methods do not need to solve the differential equation system, and they are easy to be implemented in practical applications. Numerical examples are tested to verify the efficiency of the proposed methods. © 2014 Elsevier B.V.

  19. Mixture modeling of multi-component data sets with application to ion-probe zircon ages

    Science.gov (United States)

    Sambridge, M. S.; Compston, W.

    1994-12-01

    A method is presented for detecting multiple components in a population of analytical observations for zircon and other ages. The procedure uses an approach known as mixture modeling, in order to estimate the most likely ages, proportions and number of distinct components in a given data set. Particular attention is paid to estimating errors in the estimated ages and proportions. At each stage of the procedure several alternative numerical approaches are suggested, each having their own advantages in terms of efficency and accuracy. The methodology is tested on synthetic data sets simulating two or more mixed populations of zircon ages. In this case true ages and proportions of each population are known and compare well with the results of the new procedure. Two examples are presented of its use with sets of SHRIMP U-238 - Pb-206 zircon ages from Palaeozoic rocks. A published data set for altered zircons from bentonite at Meishucun, South China, previously treated as a single-component population after screening for gross alteration effects, can be resolved into two components by the new procedure and their ages, proportions and standard errors estimated. The older component, at 530 +/- 5 Ma (2 sigma), is our best current estimate for the age of the bentonite. Mixture modeling of a data set for unaltered zircons from a tonalite elsewhere defines the magmatic U-238 - Pb-206 age at high precision (2 sigma +/- 1.5 Ma), but one-quarter of the 41 analyses detect hidden and significantly older cores.

  20. Testing the accuracy of correlations for multicomponent mass transport of adsorbed gases in metal-organic frameworks: diffusion of H2/CH4 mixtures in CuBTC.

    Science.gov (United States)

    Keskin, Seda; Liu, Jinchen; Johnson, J Karl; Sholl, David S

    2008-08-05

    Mass transport of chemical mixtures in nanoporous materials is important in applications such as membrane separations, but measuring diffusion of mixtures experimentally is challenging. Methods that can predict multicomponent diffusion coefficients from single-component data can be extremely useful if these methods are known to be accurate. We present the first test of a method of this kind for molecules adsorbed in a metal-organic framework (MOF). Specifically, we examine the method proposed by Skoulidas, Sholl, and Krishna (SSK) ( Langmuir, 2003, 19, 7977) by comparing predictions made with this method to molecular simulations of mixture transport of H 2/CH 4 mixtures in CuBTC. These calculations provide the first direct information on mixture transport of any species in a MOF. The predictions of the SSK approach are in good agreement with our direct simulations of binary diffusion, suggesting that this approach may be a powerful one for examining multicomponent diffusion in MOFs. We also use our molecular simulation data to test the ideal adsorbed solution theory method for predicting binary adsorption isotherms and a method for predicting mixture self-diffusion coefficients.

  1. Modelling the phase equilibria of multicomponent mixtures containing CO2, alkanes, water, and/or alcohols using the quadrupolar CPA equation of state

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel; Kontogeorgis, Georgios

    2016-01-01

    In this work, a quadrupolar cubic plus association (qCPA) equation of state is evaluated for its ability to predict the phase equilibria of multicomponent mixtures containing CO2 and alkanes, alcohols, and/or water. A single binary interaction parameter is employed in qCPA for all binary combinat...... CPA yields the best results of all the models for the prediction of dew point pressures....

  2. Analysis of Multicomponent Adsorption Close to a Dew Point

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We develop the potential theory of multicomponent adsorption close to a dew point. The approach is based on an asymptotic adsorption equation (AAE) which is valid in a vicinity of the dew point. By this equation the thickness of the liquid film is expressed through thermodynamic characteristics...... and the direct calculations, even if the mixture is not close to a dew point.Key Words: adsorption; potential theory; multicomponent; dew point....

  3. Quantum statistics and liquid helium 3 - helum 4 mixtures

    International Nuclear Information System (INIS)

    Cohen, E.G.D.

    1979-01-01

    The behaviour of liquid helium 3-helium 4 mixtures is considered from the point of view of manifestation of quantum statistics effects in macrophysics. The Boze=Einstein statistics is shown to be of great importance for understanding superfluid helium-4 properties whereas the Fermi-Dirac statistics is of importance for understanding helium-3 properties. Without taking into consideration the interaction between the helium atoms it is impossible to understand the basic properties of liquid helium 33 - helium 4 mixtures at constant pressure. Proposed is a simple model of the liquid helium 3-helium 4 mixture, namely the binary mixture consisting of solid spheres of two types subjecting to the Fermi-Dirac and Bose-Einstein statistics relatively. This model predicts correctly the most surprising peculiarities of phase diagrams of concentration dependence on temperature for helium solutions. In particular, the helium 4 Bose-Einstein statistics is responsible for the phase lamination of helium solutions at low temperatures. It starts in the peculiar critical point. The helium 4 Fermi-Dirac statistics results in incomplete phase lamination close to the absolute zero temperatures, that permits operation of a powerful cooling facility, namely refrigerating machine on helium solution

  4. Gas--liquid equilibria in mixtures of hydrogen and thianaphthene

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, H M; Simnick, J J; Lin, H M; Chao, K C

    1978-12-01

    Gas--liquid equilibrium conditions in binary mixtures of hydrogen and thianaphthene were experimentally determined at temperature of 190 to 430/sup 0/C and pressures to 250 atm in a flow apparatus. The same apparatus was also employed to measure the vapor pressure of thianaphthene. Comparisons of the new mixture data with Chao--Seader and Grayson--Streed correlations show that both correlations predict the thianaphthene equilibrium ratios well but are in error by up to about 45 and 35% respectively for K-values of hydrogen. 4 figures, 2 tables.

  5. Riemann solvers for multi-component gas mixtures with temperature dependent heat capacities

    International Nuclear Information System (INIS)

    Beccantini, A.

    2001-01-01

    This thesis represents a contribution to the development of upwind splitting schemes for the Euler equations for ideal gaseous mixtures and their investigation in computing multidimensional flows in irregular geometries. In the preliminary part we develop and investigate the parameterization of the shock and rarefaction curves in the phase space. Then, we apply them to perform some field-by-field decompositions of the Riemann problem: the entropy-respecting one, the one which supposes that genuinely-non-linear (GNL) waves are both shocks (shock-shock one) and the one which supposes that GNL waves are both rarefactions (rarefaction-rarefaction one). We emphasize that their analysis is fundamental in Riemann solvers developing: the simpler the field-by-field decomposition, the simpler the Riemann solver based on it. As the specific heat capacities of the gases depend on the temperature, the shock-shock field-by-field decomposition is the easiest to perform. Then, in the second part of the thesis, we develop an upwind splitting scheme based on such decomposition. Afterwards, we investigate its robustness, precision and CPU-time consumption, with respect to some of the most popular upwind splitting schemes for polytropic/non-polytropic ideal gases. 1-D test-cases show that this scheme is both precise (exact capturing of stationary shock and stationary contact) and robust in dealing with strong shock and rarefaction waves. Multidimensional test-cases show that it suffers from some of the typical deficiencies which affect the upwind splitting schemes capable of exact capturing stationary contact discontinuities i.e the developing of non-physical instabilities in computing strong shock waves. In the final part, we use the high-order multidimensional solver here developed to compute fully-developed detonation flows. (author)

  6. Thermodynamic properties of liquid mixtures of carbon monoxide and methane

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Guedes, H.J.R.; Nunes da Ponte, M.; Streett, W.B.

    1984-04-01

    Researchers conducted pressure-volume-temperature measurements of liquid methane at -230/sup 0/F and of six liquid mixtures of carbon monoxide and methane at -250/sup 0/, -240/sup 0/, and -230/sup 0/F from just above the saturation vapor pressure to the freezing pressure of methane. The excess volume proved to be large and negative at low pressures but less negative as the pressure increased, being almost zero at the highest pressure. Of the thermodynamic functions, excess enthalpy and excess entropy were much more sensitive to pressure than excess Gibbs energy. Conformal solution theory in the van der Waals one-fluid form reproduced the experimental results very successfully.

  7. Ionic liquids for separation of olefin-paraffin mixtures

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  8. New models for predicting thermophysical properties of ionic liquid mixtures.

    Science.gov (United States)

    Huang, Ying; Zhang, Xiangping; Zhao, Yongsheng; Zeng, Shaojuan; Dong, Haifeng; Zhang, Suojiang

    2015-10-28

    Potential applications of ILs require the knowledge of the physicochemical properties of ionic liquid (IL) mixtures. In this work, a series of semi-empirical models were developed to predict the density, surface tension, heat capacity and thermal conductivity of IL mixtures. Each semi-empirical model only contains one new characteristic parameter, which can be determined using one experimental data point. In addition, as another effective tool, artificial neural network (ANN) models were also established. The two kinds of models were verified by a total of 2304 experimental data points for binary mixtures of ILs and molecular compounds. The overall average absolute deviations (AARDs) of both the semi-empirical and ANN models are less than 2%. Compared to previously reported models, these new semi-empirical models require fewer adjustable parameters and can be applied in a wider range of applications.

  9. Phase equilibrium and physical properties of biobased ionic liquid mixtures.

    Science.gov (United States)

    Toledo Hijo, Ariel A C; Maximo, Guilherme J; Cunha, Rosiane L; Fonseca, Felipe H S; Cardoso, Lisandro P; Pereira, Jorge F B; Costa, Mariana C; Batista, Eduardo A C; Meirelles, Antonio J A

    2018-02-28

    Protic ionic liquid crystals (PILCs) obtained from natural sources are promising compounds due to their peculiar properties and sustainable appeal. However, obtaining PILCs with higher thermal and mechanical stabilities for product and process design is in demand and studies on such approaches using this new IL generation are still scarce. In this context, this work discloses an alternative way for tuning the physicochemical properties of ILCs by mixing PILs. New binary mixtures of PILs derived from fatty acids and 2-hydroxy ethylamines have been synthesized here and investigated through the characterization of the solid-solid-[liquid crystal]-liquid thermodynamic equilibrium and their rheological and critical micellar concentration profiles. The mixtures presented a marked nonideal melting profile with the formation of solid solutions. This work revealed an improvement of the PILCs' properties based on a significant increase in the ILC temperature domain and the obtainment of more stable mesophases at high temperatures when compared to pure PILs. In addition, mixtures of PILs also showed significant changes in their non-Newtonian and viscosity profile up to 100 s -1 , as well as mechanical stability over a wide temperature range. The enhancement of the physicochemical properties of PILs here disclosed by such an approach leads to more new possibilities of their industrial application at high temperatures.

  10. Ionic-Liquid Based Separation of Azeotropic Mixtures

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2014-01-01

    methodology for the screening of ionic liquids (ILs) as entrainers for ILs-based separation processes in binary aqueous azeotropic systems (e.g., water + ethanol and water + isopropanol) is presented. Ionic liquids as entrainers were first screened based on a combination of criteria such as stabi......methodology for the screening of ionic liquids (ILs) as entrainers for ILs-based separation processes in binary aqueous azeotropic systems (e.g., water + ethanol and water + isopropanol) is presented. Ionic liquids as entrainers were first screened based on a combination of criteria...... [C1MIM][DMP]. For the final evaluation, the best candidates for aqueous systems were used as entrainers, and then the vapor-liquid equilibrium (VLE) of the ternary systems containing ILs was predicted by the Non Random Two Liquids (NRTL) model to confirm the breaking of the azeotrope. Based...... on minimum concentration of the ILs required to break the given azeotrope, the best ILs as entrainers for water + ethanol and water + isopropanol azeotropic mixtures were [C1MIM][DMP] and [C2MIM][N(CN)2], respectively....

  11. Improved Oral Bioavailability Using a Solid Self-Microemulsifying Drug Delivery System Containing a Multicomponent Mixture Extracted from Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Xiaolin Bi

    2016-04-01

    Full Text Available The active ingredients of salvia (dried root of Salvia miltiorrhiza include both lipophilic (e.g., tanshinone IIA, tanshinone I, cryptotanshinone and dihydrotanshinone I and hydrophilic (e.g., danshensu and salvianolic acid B constituents. The low oral bioavailability of these constituents may limit their efficacy. A solid self-microemulsifying drug delivery system (S-SMEDDS was developed to load the various active constituents of salvia into a single drug delivery system and improve their oral bioavailability. A prototype SMEDDS was designed using solubility studies and phase diagram construction, and characterized by self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. Furthermore, the S-SMEDDS was prepared by dispersing liquid SMEDDS containing liposoluble extract into a solution containing aqueous extract and hydrophilic polymer, and then freeze-drying. In vitro release of tanshinone IIA, salvianolic acid B, cryptotanshinone and danshensu from the S-SMEDDS was examined, showing approximately 60%–80% of each active component was released from the S-SMEDDS in vitro within 20 min. In vivo bioavailability of these four constituents indicated that the S-SMEDDS showed superior in vivo oral absorption to a drug suspension after oral administration in rats. It can be concluded that the novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of both lipophilic and hydrophilic constituents of salvia. Thus, the S-SMEDDS can be regarded as a promising new method by which to deliver salvia extract, and potentially other multicomponent drugs, by the oral route.

  12. Development of an atomic mobility database for liquid phase in multicomponent Al alloys. Focusing on binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoqing; Du, Yong; Zhang, Lijun [Central South Univ., Changsha, Hunan (China). State Key Laboratory of Powder Metallurgy; Liu, Dandan [Central South Univ., Changsha, Hunan (China). State Key Laboratory of Powder Metallurgy; Central South Univ., Changsha, Hunan (China). School of Materials Science and Engineering; Chen, Qing; Engstroem, Anders [Thermo-Calc Software AB, Stockholm (Sweden)

    2013-08-15

    An atomic mobility database for binary liquid phase in multicomponent Al-Cu-Fe-Mg-Mn-Ni-Si-Zn alloys was established based on critically reviewed experimental and theoretical diffusion data by using DICTRA (Diffusion Controlled TRAnsformation) software. The impurity diffusivities of the elements with limited experimental data are obtained by means of the least-squares method and semi-empirical correlations. Comprehensive comparisons between the calculated and measured diffusivities indicate that most of the reported diffusivities can be well reproduced by the currently obtained atomic mobilities. The reliability of this diffusivity database is further validated by comparing the simulated concentration profiles with the measured ones, as well as the measured main inter-diffusion coefficients of liquid Al-Cu-Zn alloys with the extrapolated ones from the present binary atomic mobility database. The approach is of general validity and applicable to establish mobility databases of other liquid alloys. (orig.)

  13. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    International Nuclear Information System (INIS)

    Stout, R B

    2001-01-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  14. Mathematical modeling of planar and spherical vapor–liquid phase interfaces for multicomponent fluids

    Directory of Open Access Journals (Sweden)

    Celný David

    2016-01-01

    Full Text Available Development of methods for accurate modeling of phase interfaces is important for understanding various natural processes and for applications in technology such as power production and carbon dioxide separation and storage. In particular, prediction of the course of the non-equilibrium phase transition processes requires knowledge of the properties of the strongly curved phase interfaces of microscopic droplets. In our work, we focus on the spherical vapor–liquid phase interfaces for binary mixtures. We developed a robust computational method to determine the density and concentration profiles. The fundamentals of our approach lie in the Cahn-Hilliard gradient theory, allowing to transcribe the functional formulation into a system of ordinary Euler-Langrange equations. This system is then split and modified into a shape suitable for iterative computation. For this task, we combine the Newton-Raphson and the shooting methods providing a good convergence speed. For the thermodynamic roperties, the PC–SAFT equation of state is used. We determine the density and concentration profiles for spherical phase interfaces at various saturation factors for the binary mixture of CO2 and C9H20. The computed concentration profiles allow to the determine the work of formation and other characteristics of the microscopic droplets.

  15. Numerical analysis of mass transfer with graphite oxidation in a laminar flow of multi-component gas mixture through a circular tube

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    1992-10-01

    In the present paper, mass transfer has been numerically studied in a laminar flow through a circular graphite tube to evaluate graphite corrosion rate and generation rate of carbon monoxide during a pipe rupture accident in a high temperature gas cooled reactor. In the analysis, heterogeneous (graphite oxidation and graphite/carbon dioxide reaction) and homogeneous (carbon monoxide combustion) chemical reactions were dealt in the multi-component gas mixture; helium, oxygen, carbon monoxide and carbon dioxide. Multi-component diffusion coefficients were used in a diffusion term. Mass conservation equations of each gas component, mass conservation equation and momentum conservation equations of the gas mixture were solved by using SIMPLE algorism. Chemical reactions between graphite and oxygen, graphite and carbon dioxide, and carbon monoxide combustion were taken into account in the present numerical analysis. An energy equation for the gas mixture was not solved and temperature was held to be constant in order to understand basic mass transfer characteristics without heat transfer. But, an energy conservation equation for single component gas was added to know heat transfer characteristics without mass transfer. The effects of these chemical reactions on the mass transfer coefficients were quantitatively and qualitatively clarified in the range of 50 to 1000 of inlet Reynolds numbers, 0 to 0.5 of inlet oxygen mass fraction and 800 to 1600degC of temperature. (author)

  16. Multicomponent droplet vaporization in a convecting environment

    International Nuclear Information System (INIS)

    Megaridis, C.M.; Sirignano, W.A.

    1990-01-01

    In this paper a parametric study of the fundamental exchange processes for energy, mass and momentum between the liquid and gas phases of multicomponent liquid vaporizing droplets is presented. The model, which examines an isolated, vaporizing, multicomponent droplet in an axisymmetric, convecting environment, considers the different volatilities of the liquid components, the alteration of the liquid-phase properties due to the spatial/temporal variations of the species concentrations and also the effects of multicomponent diffusion. In addition, the model accounts for variable thermophysical properties, surface blowing and droplet surface regression due to vaporization, transient droplet heating with internal liquid circulation, and finally droplet deceleration with respect to the free flow due to drag. The numerical calculation employs finite-difference techniques and an iterative solution procedure that provides time-varying spatially-resolved data for both phases. The effects of initial droplet composition, ambient temperature, initial Reynolds number (based on droplet diameter), and volatility differential between the two liquid components are investigated for a liquid droplet consisting of two components with very different volatilities. It is found that mixtures with higher concentration of the less volatile substance actually vaporize faster on account of intrinsically higher liquid heating rates

  17. Improvement in device performance from a mixture of a liquid crystal and photosensitive acrylic prepolymer with the photoinduced vertical alignment method

    Directory of Open Access Journals (Sweden)

    Czung-Yu Ho, Fa-Hsin Lin, Yu-Tai Tao and Jiunn-Yih Lee

    2011-01-01

    Full Text Available In a multicomponent nematic liquid crystal (NLC mixture of a liquid crystal (negative-type NLC and a photosensitive acrylic prepolymer, photopolymerization upon UV irradiation induces the separation of the LC and photosensitive acrylic prepolymer layers, thereby leading to a vertical arrangement of LC molecules. In this study, we propose a simple vertical alignment method for LC molecules, by adding a chiral smectic A (SmA* liquid crystal having homeotropic texture characteristics to an NLC mixture solution. Measurements of electro-optical properties revealed that the addition of the SmA* LC not only strengthened the anchoring force of the copolymer alignment film surface, but also significantly enhanced the contrast ratio (~73%, response time and grayscale switching performance of the device.

  18. Structure and lifetimes in ionic liquids and their mixtures.

    Science.gov (United States)

    Gehrke, Sascha; von Domaros, Michael; Clark, Ryan; Hollóczki, Oldamur; Brehm, Martin; Welton, Tom; Luzar, Alenka; Kirchner, Barbara

    2018-01-01

    With the aid of molecular dynamics simulations, we study the structure and dynamics of different ionic liquid systems, with focus on hydrogen bond, ion pair and ion cage formation. To do so, we report radial distribution functions, their number integrals, and various time-correlation functions, from which we extract well-defined lifetimes by means of the reactive flux formalism. We explore the influence of polarizable force fields vs. non-polarizable ones with downscaled charges (±0.8) for the example of 1-butyl-3-methylimidazolium bromide. Furthermore, we use 1-butyl-3-methylimidazolium trifluoromethanesulfonate to investigate the impact of temperature and mixing with water as well as with the chloride ionic liquid. Smaller coordination numbers, larger distances, and tremendously accelerated dynamics are observed when the polarizable force field is applied. The same trends are found with increasing temperature. Adding water decreases the ion-ion coordination numbers whereas the water-ion and water-water coordination is enhanced. A domain analysis reveals that the nonpolar parts of the ions are dispersed and when more water is added the water clusters increase in size. The dynamics accelerate in general upon addition of water. In the ionic liquid mixture, the coordination number around the cation changes between the two anions, but the number integrals of the cation around the anions remain constant and the dynamics slow down with increasing content of the chloride ionic liquid.

  19. Simulating multi-component liquid phase adsorption systems: ethanol and residual sugar

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.; Tezel, F.H.; Thibault, J. [Department of Chemical and Biological Engineering, University of Ottawa (Canada)], email: Jules.Thibault@uottawa.ca

    2011-07-01

    A series of multi-component adsorption studies was performed to determine the relative advantages of producing ethanol which is to be blended with gasoline. These studies developed a model to describe the competition for adsorption sites between ethanol and sugar molecules on the surface of the adsorbent. Three competitive adsorption models established by batch systems were examined to evaluate the suitability of the experiment data across different ethanol and sugar concentrations and determine their isotherm parameters. Multi-component packed bed adsorption experiments were then performed. The results show that ethanol capacity was decreased only slightly from that obtained in single component adsorption studies. There is significant evidence to indicate that sugar displacement from adsorption sites occurs because adsorption of ethanol is preferred. So the capacity of sugars will be greatly reduced if there are appreciable ethanol concentrations.

  20. Application of some geometrical and empirical models to excess molar volume for the multi-component mixtures at T = 298.15 K

    International Nuclear Information System (INIS)

    Iloukhani, H.; Khanlarzadeh, K.

    2012-01-01

    Highlights: ► Excess molar volume of quartenary mixtures of 1-chlorobutane, 2-chlorobutane, butylamine, and butylacetate was determined. ► The experimental data were correlated by some empirical and semi empirical models. ► A comparison with PFP theory has been successfully applied from binary data. - Abstract: Densities of the quaternary mixture consisting of {1-chlorobutane (1) + 2-chlorobutane (2) + butylamine (3) + butylacetate (4)} and related ternary mixtures of {1-chlorobutane (1) + 2-chlorobutane (2) + butylamine (3)}, {1-chlorobutane (1) + 2-chlorobutane (2) + butylacetate (4)}, {2-chlorobutane (2) + butylamine (3) + butylacetate (4)}, and binary systems of {1-chlorobutane (1) + 2-chlorobutane (2)}, {2-chlorobutane (2) + butylamine (3)}, were measured over the whole range of composition at T = 298.15 K and ambient pressure. Excess molar volumes, V m E , for the mixtures were derived and correlated as a function of mole fraction by using the Redlich–Kister and the Cibulka equations for binary and ternary mixtures, respectively. From the experimental data, partial molar volumes, V m,i and excess partial molar volumes, V m,i E were also calculated for binary systems. The experimental results of the constituted binary mixtures have been used to test the applicability of the Prigogine–Flory–Paterson (PFP) theory. A number of geometrical and empirical equations were also used to verify their ability to predict ternary and quaternary properties from their lower order mixtures. The experimental data were used to evaluate the nature and type of intermolecular interactions in multi-component mixtures.

  1. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Física Aplicada, Universidad de Huelva, 21007 Huelva (Spain); Moreno-Ventas Bravo, A. I. [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Geología, Universidad de Huelva, 21007 Huelva (Spain)

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ{sub 11} = σ{sub 22}, with the same dispersive energy between like species, ϵ{sub 11} = ϵ{sub 22}, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r{sub c} and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r{sub c} is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related

  2. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    International Nuclear Information System (INIS)

    Martínez-Ruiz, F. J.; Blas, F. J.; Moreno-Ventas Bravo, A. I.

    2015-01-01

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ 11 = σ 22 , with the same dispersive energy between like species, ϵ 11 = ϵ 22 , but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r c and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r c is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the

  3. Modeling Phase Equilibria for Acid Gas Mixtures using the Cubic-Plus-Association Equation of State. 3. Applications Relevant to Liquid or Supercritical CO2 Transport

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Ali, Shahid; Kontogeorgis, Georgios

    2014-01-01

    density data for both CO2 and CO2–water and for vapor–liquid equilibrium for mixtures of CO2 with various compounds present in transport systems. In all of these cases we consider various possibilities for modeling CO2 (inert, self-associating using two-, three-, and four sites) and the possibility......The CPA (cubic-plus-association) equation of state is applied in this work to a wide range of systems of relevance to CO2 transport. Both phase equilibria and densities over extensive temperature and pressure ranges are considered. More specifically in this study we first evaluate CPA against......” for applying CPA to acid gas mixtures. The overall conclusion is that CPA performs satisfactorily; the model in most cases correlates well binary data and predicts with good accuracy multicomponent vapor–liquid equilibria. Among the various approaches investigated, the best ones are when cross association...

  4. Non-linearity parameter of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    . Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid ...

  5. Thermodynamics of mixtures containing alkoxyethanols. XXVIII: Liquid-liquid equilibria for 2-phenoxyethanol + selected alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Victor; Garcia, Mario [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Gonzalez, Juan Antonio, E-mail: jagl@termo.uva.es [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Garcia De La Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain)

    2011-07-10

    Highlights: {yields} LLE coexistence curves were determined for mixtures of 2PhEE with alkanes. {yields} UCST values are higher for n-alkane systems than for solutions with cyclic alkanes. {yields} For the latter mixtures, UCST increases with the size of the alkyl group attached. {yields} Alkoxyethanol-alkoxyethanol interactions are enhanced by aromatic group in cellosolve. - Abstract: The coexistence curves of the liquid-liquid equilibria (LLE) for systems of 2-phenoxyethanol (2PhEE) with heptane, octane, cyclohexane, methylcyclohexane or ethylcyclohexane have been determined by the method of the critical opalescence using a laser scattering technique. All the curves show an upper critical solution temperature (UCST), have a rather horizontal top and their symmetry depends on the relative size of the mixture compounds. UCST values are higher for systems with linear alkanes than for solutions including cyclic alkanes. For these mixtures, the UCST increases with the size of the alkyl group attached to the cyclic part of the molecule. It is shown that interactions between alkoxyethanol molecules are stronger when the hydroxyether contains an aromatic group. Data are used to determine the critical exponent for the order parameter mole fraction. Values obtained are consistent with those provided by the Ising model or by the renormalization group theory.

  6. Thermodynamics of mixtures containing alkoxyethanols. XXVIII: Liquid-liquid equilibria for 2-phenoxyethanol + selected alkanes

    International Nuclear Information System (INIS)

    Alonso, Victor; Garcia, Mario; Gonzalez, Juan Antonio; Garcia De La Fuente, Isaias; Cobos, Jose Carlos

    2011-01-01

    Highlights: → LLE coexistence curves were determined for mixtures of 2PhEE with alkanes. → UCST values are higher for n-alkane systems than for solutions with cyclic alkanes. → For the latter mixtures, UCST increases with the size of the alkyl group attached. → Alkoxyethanol-alkoxyethanol interactions are enhanced by aromatic group in cellosolve. - Abstract: The coexistence curves of the liquid-liquid equilibria (LLE) for systems of 2-phenoxyethanol (2PhEE) with heptane, octane, cyclohexane, methylcyclohexane or ethylcyclohexane have been determined by the method of the critical opalescence using a laser scattering technique. All the curves show an upper critical solution temperature (UCST), have a rather horizontal top and their symmetry depends on the relative size of the mixture compounds. UCST values are higher for systems with linear alkanes than for solutions including cyclic alkanes. For these mixtures, the UCST increases with the size of the alkyl group attached to the cyclic part of the molecule. It is shown that interactions between alkoxyethanol molecules are stronger when the hydroxyether contains an aromatic group. Data are used to determine the critical exponent for the order parameter mole fraction. Values obtained are consistent with those provided by the Ising model or by the renormalization group theory.

  7. Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, J.L.; Yetter, R.A. [The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16801 (United States); Risha, G.A. [The Pennsylvania State University, Division of Business and Engineering, Altoona, PA 16601 (United States); Son, S.F. [Purdue University, School of Mechanical Engineering, West Lafayette, IN 47907 (United States); Tappan, B.C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2008-08-15

    An experimental investigation of the combustion characteristics of nanoaluminum (nAl), liquid water (H{sub 2}O{sub (l)}), and hydrogen peroxide (H{sub 2}O{sub 2}) mixtures has been conducted. Linear and mass-burning rates as functions of pressure, equivalence ratio ({phi}), and concentration of H{sub 2}O{sub 2} in H{sub 2}O{sub (l)} oxidizing solution are reported. Steady-state burning rates were obtained at room temperature using a windowed pressure vessel over an initial pressure range of 0.24 to 12.4 MPa in argon, using average nAl particle diameters of 38 nm, {phi} from 0.5 to 1.3, and H{sub 2}O{sub 2} concentrations between 0 and 32% by mass. At a nominal pressure of 3.65 MPa, under stoichiometric conditions, mass-burning rates per unit area ranged between 6.93 g/cm{sup 2} s (0% H{sub 2}O{sub 2}) and 37.04 g/cm{sup 2} s (32% H{sub 2}O{sub 2}), which corresponded to linear burning rates of 9.58 and 58.2 cm/s, respectively. Burning rate pressure exponents of 0.44 and 0.38 were found for stoichiometric mixtures at room temperature containing 10 and 25% H{sub 2}O{sub 2}, respectively, up to 5 MPa. Burning rates are reduced above {proportional_to}5 MPa due to the pressurization of interstitial spaces of the packed reactant mixture with argon gas, diluting the fuel and oxidizer mixture. Mass burning rates were not measured above {proportional_to}32% H{sub 2}O{sub 2} due to an anomalous burning phenomena, which caused overpressurization within the quartz sample holder, leading to tube rupture. High-speed imaging displayed fingering or jetting ahead of the normal flame front. Localized pressure measurements were taken along the sample length, determining that the combustion process proceeded as a normal deflagration prior to tube rupture, without significant pressure buildup within the tube. In addition to burning rates, chemical efficiencies of the combustion reaction were determined to be within approximately 10% of the theoretical maximum under all conditions

  8. Multi-component determination and chemometric analysis of Paris polyphylla by ultra high performance liquid chromatography with photodiode array detection.

    Science.gov (United States)

    Chen, Pei; Jin, Hong-Yu; Sun, Lei; Ma, Shuang-Cheng

    2016-09-01

    Multi-source analysis of traditional Chinese medicine is key to ensuring its safety and efficacy. Compared with traditional experimental differentiation, chemometric analysis is a simpler strategy to identify traditional Chinese medicines. Multi-component analysis plays an increasingly vital role in the quality control of traditional Chinese medicines. A novel strategy, based on chemometric analysis and quantitative analysis of multiple components, was proposed to easily and effectively control the quality of traditional Chinese medicines such as Chonglou. Ultra high performance liquid chromatography was more convenient and efficient. Five species of Chonglou were distinguished by chemometric analysis and nine saponins, including Chonglou saponins I, II, V, VI, VII, D, and H, as well as dioscin and gracillin, were determined in 18 min. The method is feasible and credible, and enables to improve quality control of traditional Chinese medicines and natural products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Headspace versus direct immersion solid phase microextraction in complex matrixes: investigation of analyte behavior in multicomponent mixtures.

    Science.gov (United States)

    Gionfriddo, Emanuela; Souza-Silva, Érica A; Pawliszyn, Janusz

    2015-08-18

    This work aims to investigate the behavior of analytes in complex mixtures and matrixes with the use of solid-phase microextraction (SPME). Various factors that influence analyte uptake such as coating chemistry, extraction mode, the physicochemical properties of analytes, and matrix complexity were considered. At first, an aqueous system containing analytes bearing different hydrophobicities, molecular weights, and chemical functionalities was investigated by using commercially available liquid and solid porous coatings. The differences in the mass transfer mechanisms resulted in a more pronounced occurrence of coating saturation in headspace mode. Contrariwise, direct immersion extraction minimizes the occurrence of artifacts related to coating saturation and provides enhanced extraction of polar compounds. In addition, matrix-compatible PDMS-modified solid coatings, characterized by a new morphology that avoids coating fouling, were compared to their nonmodified analogues. The obtained results indicate that PDMS-modified coatings reduce artifacts associated with coating saturation, even in headspace mode. This factor, coupled to their matrix compatibility, make the use of direct SPME very practical as a quantification approach and the best choice for metabolomics studies where wide coverage is intended. To further understand the influence on analyte uptake on a system where additional interactions occur due to matrix components, ex vivo and in vivo sampling conditions were simulated using a starch matrix model, with the aim of mimicking plant-derived materials. Our results corroborate the fact that matrix handling can affect analyte/matrix equilibria, with consequent release of high concentrations of previously bound hydrophobic compounds, potentially leading to coating saturation. Direct immersion SPME limited the occurrence of the artifacts, which confirms the suitability of SPME for in vivo applications. These findings shed light into the implementation of in

  10. Determination of mixture valence plutonium and multicomponent by computer resolution analysis of absorption spectrum (UV/VIS/NIR) (CRAAS)

    International Nuclear Information System (INIS)

    Zhuang Weixin; Ye Guoan; Huang Lifeng; Sun Hongfang; Zhao Yanju

    1996-09-01

    A spectrophotometry has been developed which can directly determine a multi-component sample by spectrophotometry without any chemical separation. CRAAS (Computer Resolution Analysis of Absorption Spectrum) has been reported. It is different from the previous spectrophotometry depending on only one or several special absorption peak. The CRAAS deals with the whole region of absorption spectrum by mathematical statistics. So CRAAS has higher accuracy, stronger power and very high resolution. The trouble comes from overlap of different spectrum in each other has been solved because CRAAS depends on the whole spectrum. As long as two spectra have different shape, their concentrations can be determined even their special absorption peaks are seriously overlapped. The accuracy is about +-5%. (2 refs., 7 figs., 8 tabs.)

  11. Liquid-liquid extraction of plutonium(IV) in monoamide - ammonium ionic liquid mixture

    International Nuclear Information System (INIS)

    Rout, Alok; Venkatesan, K.A.; Antony, M.P.

    2016-01-01

    Room temperature ionic liquid (RTIL) can be regarded as a sustainable alternative to the conventional molecular diluent, n-dodecane (n-DD), in solvent extraction process. Replacement of volatile organic solvents by RTILs in solvent extraction could lead to inherently safer processes. As far as the cation is concerned, most of the studies reported in literature are focused on imidazolium-based ionic liquids. In contrast to imiadazolium ionic liquids, quarternary ammonium ionic liquids like trioctylmethylammonium chloride (Aliquat 336), trioctylmethylammonium nitrate etc., do not exhibit any cation exchange with the metal ions from aqueous phase during extraction. However, there is no report available in literature that emphasizes the application of trioctylmethylammonium bis(trifluoromethane-sulfonyl)imide ((N_1_8_8_8)(NTf_2)) ionic liquid, for the extraction of Pu(IV). In this paper, we report the advantages of using the ionic liquid, trioctylmethylammonium bis(trifluoromethanesulfonyl)imide ((N_1_8_8_8)(NTf_2)), as diluent, for the extraction of plutonium(IV) in DHOA/(N_1_8_8_8)(NTf_2)

  12. From Trioleoyl glycerol to extra virgin olive oil through multicomponent triacylglycerol mixtures: Crystallization and polymorphic transformation examined with differential scanning calorimetry and X-ray diffration techniques.

    Science.gov (United States)

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2017-09-01

    The polymorphic crystallization and transformation behavior of extra virgin olive oil (EVOO) was examined by using differential scanning calorimetry (DSC) and X-ray diffraction with both laboratory-scale (XRD) and synchrotron radiation source (SR-XRD). The complex behavior observed was studied by previously analyzing mixtures composed by its main 2 to 6 triacylglycerol (TAG) components. Thus, component TAGs were successively added to simulate EVOO composition, until reaching a 6 TAGs mixture, composed by trioleoyl glycerol (OOO), 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1,2-dioleoyl-3-linoleoyl glycerol (OOL), 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), 1,2-dipalmitoyl-3-oleoyl glycerol (PPO) and 1-stearoyl-2,3-dioleoyl glycerol (SOO). Molten samples were cooled from 25°C to -80°C at a controlled rate of 2°C/min and subsequently heated at the same rate. The polymorphic behavior observed in multicomponent TAG mixtures was interpreted by considering three main groups of TAGs with different molecular structures: triunsaturated OOO and OOL, saturated-unsaturated-unsaturated POO, POL and SOO, and saturated-saturated-unsaturated PPO. As confirmed by our previous work, TAGs belonging to the same structural group displayed a highly similar polymorphic behavior. EVOO exhibited two different β'-2L polymorphic forms (β' 2 -2L and β' 1 -2L), which transformed into β'-3L when heated. Equivalent polymorphic pathways were detected when the same experimental conditions were applied to the 6 TAG components mixture. Hence, minor components may not exert a strong influence in this case. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ultrafast and ultrasensitive dielectric liquids/mixtures: Basic measurements and applications

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Faidas, H.; McCorkle, D.L.; Tennessee Univ., Knoxville, TN

    1989-01-01

    Basic properties of cryogenic and room temperature dielectric liquids/mixtures with high electron yields (under irradiation by ionizing particles) and high excess electron drift velocities are discussed. A number of ultrafast and ultrasensitive liquid media -- appropriate for possible use in liquid-filled radiation detectors and other applications -- are identified. 44 refs., 12 figs

  14. Kinetics of liquid lithium reaction with oxygen-nitrogen mixtures

    International Nuclear Information System (INIS)

    Gil, T.K.; Kazimi, M.S.

    1986-01-01

    A series of experiments have been conducted in order to characterize the kinetics of lithium chemical reaction with a mixture of oxygen and nitrogen. Three mixed gas compositions were used; 80% N 2 and 20% O 2 , 90% N 2 and 10% O 2 , and 95% N 2 and 5% O 2 . The reaction rate was obtained as a function of lithium temperature and the oxygen fraction. Liquid lithium temperature varied from 400 to 1100 0 C. By varying the composition, the degree of inhibition of the lithium-nitrogen reaction rate due to the presence of oxygen was observed. The results indicate that the lithium-nitrogen reaction rate depended on both the fraction of oxygen present and lithium temperature. The lithium nitride layer formed from the reaction also had a significant inhibition effect on the lithium-nitrogen reaction rate while the lithium-oxygen reaction rate was not as greatly hindered. LITFIRE, a computer code which simulates temperature and pressure history in a containment building following lithium spills, was modified by including (1) an improved model for the lithium-nitrogen reaction rate and (2) a model for the lithium-CO 2 reaction. LITFIRE was used to simulate HEDL's LC-2 and LA-5 experiments, and the predicted temperatures and pressures were in a reasonable agreement. Furthermore, LITFIRE was applied to a prototypical fusion reactor containment in order to simulate the consequences of a lithium spill accident. The result indicated that if nitrogen was used as containment building gas during the accident, the consequences of the accident would be less severe than those with air. The pressure rise in the building was found to be reduced by 50% and the maximum temperature of the combustion zone was limited to 900 0 C instead of 1200 0 C in the case of air

  15. Mixing Rules Formulation for a Kinetic Model of the Langmuir-Hinshelwood Semipredictive Type Applied to the Heterogeneous Photocatalytic Degradation of Multicomponent Mixtures

    Directory of Open Access Journals (Sweden)

    John Wilman Rodriguez-Acosta

    2014-01-01

    Full Text Available Mixing rules coupled to a semipredictive kinetic model of the Langmuir-Hinshelwood type were proposed to determine the behavior of the heterogeneous solar photodegradation with TiO2-P25 of multicomponent mixtures at pilot scale. The kinetic expressions were expressed in terms of the effective concentration of total organic carbon (xTOC. An expression was obtained in a generalized form which is a function of the mixing rules as a product of a global contribution of the reaction rate constant k′ and a mixing function fC. Kinetic parameters of the model were obtained using the Nelder and Mead (N-M algorithm. The kinetic model was validated with experimental data obtained from the degradation of binary mixtures of chlorinated compounds (DCA: dichloroacetic acid and 4-CP: 4-chlorophenol at different initial global concentration, using a CPC reactor at pilot scale. A simplex-lattice {2,3} design experiment was adopted to perform the runs.

  16. Simulation on a proposed large-scale liquid hydrogen plant using a multi-component refrigerant refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Krasae-in, Songwut [Norwegian University of Science and Technology, Kolbjorn Hejes vei 1d, NO-7491 Trondheim (Norway); Stang, Jacob H.; Neksa, Petter [SINTEF Energy Research AS, Kolbjorn Hejes vei 1d, NO-7465 Trondheim (Norway)

    2010-11-15

    A proposed liquid hydrogen plant using a multi-component refrigerant (MR) refrigeration system is explained in this paper. A cycle that is capable of producing 100 tons of liquid hydrogen per day is simulated. The MR system can be used to cool feed normal hydrogen gas from 25 C to the equilibrium temperature of -193 C with a high efficiency. In addition, for the transition from the equilibrium temperature of the hydrogen gas from -193 C to -253 C, the new proposed four H{sub 2} Joule-Brayton cascade refrigeration system is recommended. The overall power consumption of the proposed plant is 5.35 kWh/kg{sub LH2}, with an ideal minimum of 2.89 kWh/kg{sub LH2}. The current plant in Ingolstadt is used as a reference, which has an energy consumption of 13.58 kWh/kg{sub LH2} and an efficiency of 21.28%: the efficiency of the proposed system is 54.02% or more, where this depends on the assumed efficiency values for the compressors and expanders. Moreover, the proposed system has some smaller-size heat exchangers, much smaller compressor motors, and smaller crankcase compressors. Thus, it could represent a plant with the lowest construction cost with respect to the amount of liquid hydrogen produced in comparison to today's plants, e.g., in Ingolstadt and Leuna. Therefore, the proposed system has many improvements that serve as an example for future hydrogen liquefaction plants. (author)

  17. Online combination of reversed-phase/reversed-phase and porous graphitic carbon liquid chromatography for multicomponent separation of proteomics and glycoproteomics samples.

    Science.gov (United States)

    Lam, Maggie P Y; Lau, Edward; Siu, S O; Ng, Dominic C M; Kong, Ricky P W; Chiu, Philip C N; Yeung, William S B; Lo, Clive; Chu, Ivan K

    2011-11-01

    In this paper, we describe an online combination of reversed-phase/reversed-phase (RP-RP) and porous graphitic carbon (PGC) liquid chromatography (LC) for multicomponent analysis of proteomics and glycoproteomics samples. The online RP-RP portion of this system provides comprehensive 2-D peptide separation based on sequence hydrophobicity at pH 2 and 10. Hydrophilic components (e.g. glycans, glycopeptides) that are not retained by RP are automatically diverted downstream to a PGC column for further trapping and separation. Furthermore, the RP-RP/PGC system can provide simultaneous extension of the hydropathy range and peak capacity for analysis. Using an 11-protein mixture, we found that the system could efficiently separate native peptides and released N-glycans from a single sample. We evaluated the applicability of the system to the analysis of complex biological samples using 25 μg of the lysate of a human choriocarcinoma cell line (BeWo), confidently identifying a total of 1449 proteins from a single experiment and up to 1909 distinct proteins from technical triplicates. The PGC fraction increased the sequence coverage through the inclusion of additional hydrophilic sequences that accounted for up to 6.9% of the total identified peptides from the BeWo lysate, with apparent preference for the detection of hydrophilic motifs and proteins. In addition, RP-RP/PGC is applicable to the analysis of complex glycomics samples, as demonstrated by our analysis of a concanavalin A-extracted glycoproteome from human serum; in total, 134 potentially N-glycosylated serum proteins, 151 possible N-glycosylation sites, and more than 40 possible N-glycan structures recognized by concanavalin A were simultaneously detected. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Combined physical and chemical absorption of carbon dioxide in a mixture of ionic liquids

    International Nuclear Information System (INIS)

    Pinto, Alicia M.; Rodríguez, Héctor; Arce, Alberto; Soto, Ana

    2014-01-01

    Highlights: • Carbon dioxide can be absorbed in mixtures of two ionic liquids: [C 2 mim][EtSO 4 ] and [C 2 mim][OAc]. • A combination of physical and chemical absorption mechanisms is observed. • The CO 2 absorption capacity of the mixture of ionic liquids decreases with increasing temperature. • [C 2 mim][EtSO 4 ] in the mixture prevents solidification of the product resulting from reaction of [C 2 mim][OAc] and CO 2 . • Density and viscosity studies of the mixture of ionic liquids also lead to synergies, in particular at low temperatures. - Abstract: Ionic liquids have attracted great interest recently as the basis of a potential alternative technology for the capture of carbon dioxide. Beyond the inherent tunability of properties of individual ionic liquids, a further strategy in optimising the ionic liquid sorbent for this application is the use of mixtures of ‘pure’ ionic liquids. Some ionic liquids absorb CO 2 physically, whereas others do so chemically. Both mechanisms of absorption present advantages and disadvantages for a CO 2 capture process operating in a continuous regime. In this work, a mixture of 1-ethyl-3-methylimidazolium acetate (an ionic liquid that reacts chemically with CO 2 ) and 1-ethyl-3-methylimidazolium ethylsulfate (an ionic liquid that absorbs CO 2 only through a physical mechanism) was investigated for the absorption of CO 2 as a function of temperature and at pressures up to 17 bar. The absorption/desorption studies were complemented by the characterisation of thermal and physical properties of the mixture of ionic liquids, which provide extra information on the interactions at a molecular level, and are also critical for the assessment of its suitability for a proposed process and for the subsequent process design

  19. Ultrasonic study of molecular interaction in binary liquid mixtures at ...

    Indian Academy of Sciences (India)

    The variation of these parameters with composition of the mixture helps us in understanding the nature and extent of interaction between unlike molecules in the mixtures. Further, theoretical values of ultrasonic speed were evaluated using theories and empirical relations. The relative merits of these theories and relations ...

  20. Multicomponent Reaction in Ionic Liquid: A Novel and Green Synthesis of 1, 4-Dihydropyridine Derivatives

    Institute of Scientific and Technical Information of China (English)

    Xin Ying ZHANG; Yan Zhen LI; Xue Sen FAN; Gui Rong QU; Xue Yuan HU; Jian Ji WANG

    2006-01-01

    An efficient and green method for the synthesis of 1, 4-dihydropyridine derivatives mediated in an ionic liquid, [bmim][BF4], through a four-component condensation process of aldehydes, 1, 3-dione, Meldrum's acid and ammonium acetate is disclosed in this paper.

  1. Amphiphile Meets Amphiphile: Beyond the Polar-Apolar Dualism in Ionic Liquid/Alcohol Mixtures.

    Science.gov (United States)

    Russina, Olga; Sferrazza, Alessio; Caminiti, Ruggero; Triolo, Alessandro

    2014-05-15

    The mesoscopic morphology of binary mixtures of ethylammonium nitrate (EAN), the protic ionic liquid par excellence, and methanol is explored using neutron/X-ray diffraction and computational techniques. Both compounds are amphiphilic and characterized by an extended hydrogen bonding network: surprisingly, though macroscopically homogeneous, these mixtures turn out to be mesoscopically highly heterogeneous. Our study reveals that even in methanol-rich mixtures, a wide distribution of clusters exists where EAN preserves its bulk, sponge-like morphology. Accordingly methanol does not succeed in fully dissociating the ionic liquid that keeps on organizing in a bulk-like fashion. This behavior represents the premises to the more dramatic phenomenology observed with longer alcohols that eventually phase separate from EAN. These results challenge the commonly accepted polar and apolar moieties segregation in ionic liquids/molecular liquids mixtures and the current understanding of technologically relevant solvation processes.

  2. Prediction of vapour-liquid and vapour-liquid-liquid equilibria of nitrogen-hydrocarbon mixtures used in J-T refrigerators

    Science.gov (United States)

    Narayanan, Vineed; Venkatarathnam, G.

    2018-03-01

    Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.

  3. Chemical kinetics of detonation in some liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Raikova, Vlada M.; Likholatov, Evgeny A. [Mendeleev University of Chemical Technology, Moscow (Russian Federation)

    2005-09-01

    The main objective of this work is to study the chemical kinetics of detonation reactions in some nitroester mixtures and solutions of nitrocompounds in concentrated nitric acid. The main source of information on chemical kinetics in the detonation wave was the experimental dependence of failure diameter on composition of mixtures. Calculations were carried out in terms of classic theory of Dremin using the SGKR computer code. Effective values for the activation energies and pre-exponential factors for detonation reactions in the mixtures under investigation have been defined. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  4. On the Crystallization of Compacted and Chunky Graphite from Liquid Multicomponent Iron-Carbon-Silicon-Based Melts

    Science.gov (United States)

    Stefanescu, D. M.; Huff, R.; Alonso, G.; Larrañaga, P.; De la Fuente, E.; Suarez, R.

    2016-08-01

    Extensive SEM work was carried out on deep-etched specimens to reveal the evolution of compacted and chunky graphite in magnesium-modified multicomponent Fe-C-Si alloys during early solidification and at room temperature. The findings of this research were then integrated in the current body of knowledge to produce an understanding of the crystallization of compacted and chunky graphite. It was confirmed that growth from the liquid for both compacted and chunky graphite occurs radially from a nucleus, as foliated crystals and dendrites. The basic building blocks of the graphite aggregates are hexagonal faceted graphite platelets with nanometer height and micrometer width. Thickening of the platelets occurs through growth of additional graphene layers nucleated at the ledges of the graphite prism. Additional thickening resulting in complete joining of the platelets may occur from the recrystallization of the amorphous carbon that has diffused from the liquid through the austenite, once the graphite aggregate is enveloped in austenite. With increasing magnesium levels, the foliated graphite platelets progressively aggregate along the c-axis forming clusters. The clusters that have random orientation, eventually produce blocky graphite, as the spaces between the parallel platelets disappear. This is typical for compacted graphite irons and tadpole graphite. The chunky graphite aggregates investigated are conical sectors of graphite platelets stacked along the c-axis. The foliated dendrites that originally develop radially from a common nucleus may aggregate along the c-axis forming blocky graphite that sometimes exhibits helical growth. The large number of defects (cavities) observed in all graphite aggregates supports the mechanism of graphite growth as foliated crystals and dendrites.

  5. Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.

    Science.gov (United States)

    Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu

    2017-08-03

    In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.

  6. APPLICATION OF A GENERALIZED MAXIMUM LIKELIHOOD METHOD IN THE REDUCTION OF MULTICOMPONENT LIQUID-LIQUID EQUILIBRIUM DATA

    Directory of Open Access Journals (Sweden)

    L. STRAGEVITCH

    1997-03-01

    Full Text Available The equations of the method based on the maximum likelihood principle have been rewritten in a suitable generalized form to allow the use of any number of implicit constraints in the determination of model parameters from experimental data and from the associated experimental uncertainties. In addition to the use of any number of constraints, this method also allows data, with different numbers of constraints, to be reduced simultaneously. Application of the method is illustrated in the reduction of liquid-liquid equilibrium data of binary, ternary and quaternary systems simultaneously

  7. Current state in adsorption from multicomponent solutions of nonelectrolytes on solids

    International Nuclear Information System (INIS)

    Borowko, M.; Jaroniec, M.

    1983-01-01

    This paper surveys the research carried out on the adsorption from multicomponent liquid mixtures of nonelectrolytes on solids with emphasis on the work performed by the authors. The consistent theoretical treatment of adsorption from concentrated and dilute multicomponent solutions and its application to the liquid adsorption chromatography with the mixed mobile phase are presented. This treatment involved nonideality of the bulk and surface phases, energetic heterogeneity of the adsorbent surface and it may be extended to multilayer adsorption from solutions. The multicomponent liquid/solid adsorption systems, studied experimentally, are reviewed. Many of them have been examined by means of the equations derived for liquid adsorption on heterogeneous surfaces. These studies are summarized in this paper. Moreover, the model studies illustrating the influence of solution nonideality and adsorbent heterogeneity on the excess adsorption isotherms and the distribution coefficient are discussed. (orig.)

  8. Simultaneous determination of 2 aconitum alkaloids and 12 ginsenosides in Shenfu injection by ultraperformance liquid chromatography coupled with a photodiode array detector with few markers to determine multicomponents

    Directory of Open Access Journals (Sweden)

    Ai-Hua Ge

    2015-06-01

    Full Text Available A method with few markers to determine multicomponents was established and validated to evaluate the quality of Shenfu injection by ultraperformance liquid chromatography coupled with a photodiode array detector. The separations were performed on an ACQUITY UPLC BEH C18 (2.1 × 50 mm2, 1.7 μm column. Methanol and 0.1% formic acid aqueous solution were used as the mobile phase. The flow rate was 0.3 mL/min. 2 aconitum alkaloids and 12 ginsenosides could be perfectly separated within 15 minutes. Ginsenoside Rg1 and benzoylmesaconine, the easily available active components, were employed as the maker components to calculate the relative correction factors of other components in Shenfu injection, Panax ginseng and Aconitum carmichaeli. The external standard method was also established to validate the feasibility of the method with few markers to determine multicomponents. Parameter p and the principal component analysis method were employed to investigate the disparities among batches for the effective quality control of Shenfu injection. The results demonstrated that the ultraperformance liquid chromatography coupled with a photodiode array detector method with few markers to determine multicomponents could be used as a powerful tool for the quality evaluation of traditional Chinese medicines and their preparations.

  9. Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, A.; Al-Kassir, A.; Cuadros, F.; Lopez-Rodriguez, F. [School of Engineering, University of Extremadura, Avda. De Elva, s/n, 06071, Badajoz (Spain); Mohamad, A.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta (Canada)

    2010-05-15

    This work is devoted to determine the optimal operational conditions on the methane production as well as on the biodegradation obtained from the anaerobic codigestion of solid (fat, intestines, rumen, bowels, whiskers, etc.) and liquid (blood, washing water, manure, etc.) wastes of meat industry, particularly the ones rising from the municipal slaughterhouse of Badajoz (Spain). The experiments were performed using a 2 l capacity discontinuous digester at 38 C. The loading rate were 0.5, 1, 2, 3, and 4.5 g COD for wastewater (washing water and blood; Mixture 1), and 0.5, 1, 2, 3, and 4 g COD for the co-digestion of a mixture of 97% liquid effluent and 3% solid wastes v/v (Mixture 2) which represents the annual mean composition of the waste generated by the slaughterhouse. The maximal biodegradation rates obtained were: Mixture 1, 56.9% for a COD load of 1 g; and Mixture 2, 19.1% for a COD load of 2 g. For both mixtures, the greatest methane production was for the maximum COD load (4.5 g for Mixture 1, and 4 g for Mixture 2), at which values the amounts of methane obtained during and at the end of the co-digestion were practically indistinguishable between the two mixtures. The results will be used to design, construct, and establish the optimal operating conditions of a continuous complete-mixture biodigester. (author)

  10. Densities of Pure Ionic Liquids and Mixtures: Modeling and Data Analysis

    DEFF Research Database (Denmark)

    Abildskov, Jens; O’Connell, John P.

    2015-01-01

    Our two-parameter corresponding states model for liquid densities and compressibilities has been extended to more pure ionic liquids and to their mixtures with one or two solvents. A total of 19 new group contributions (5 new cations and 14 new anions) have been obtained for predicting pressure...

  11. Exposure of Mammalian Cells to Air-Pollutant Mixtures at the Air-Liquid Interface

    Science.gov (United States)

    It has been widely accepted that exposure of mammalian cells to air-pollutant mixtures at the air-liquid interface is a more realistic approach than exposing cell under submerged conditions. The VITROCELL systems, are commercially available systems for air-liquid interface expo...

  12. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    Science.gov (United States)

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  13. Maximum discharge rate of liquid-vapor mixtures from vessels

    International Nuclear Information System (INIS)

    Moody, F.J.

    1975-09-01

    A discrepancy exists in theoretical predictions of the two-phase equilibrium discharge rate from pipes attached to vessels. Theory which predicts critical flow data in terms of pipe exit pressure and quality severely overpredicts flow rates in terms of vessel fluid properties. This study shows that the discrepancy is explained by the flow pattern. Due to decompression and flashing as fluid accelerates into the pipe entrance, the maximum discharge rate from a vessel is limited by choking of a homogeneous bubbly mixture. The mixture tends toward a slip flow pattern as it travels through the pipe, finally reaching a different choked condition at the pipe exit

  14. Change of hydrogen bonding structure in ionic liquid mixtures by anion type

    Science.gov (United States)

    Cha, Seoncheol; Kim, Doseok

    2018-05-01

    Ionic liquid mixtures have gained attention as a way of tuning material properties continuously with composition changes. For some mixture systems, physicochemical properties such as excess molar volume have been found to be significantly different from the value expected by linear interpolation, but the origin of this deviation is not well understood yet. The microstructure of the mixture, which can range from an ideal mixture of two initial consisting ionic liquids to a different structure from those of pure materials, has been suggested as the origin of the observed deviation. The structures of several different ionic liquid mixtures are studied by IR spectroscopy to confirm this suggestion, as a particular IR absorption band (νC(2)-D) for the moiety participating in the hydrogen bonding changes sensitively with the change of the anion in the ionic liquid. The absorbance of νC(2)-D changes proportionally with the composition, and a relatively small excess molar volume is observed for the mixtures containing an electronegative halide anion. By contrast, the absorbance changes nonlinearly, and the excess molar volumes are larger for the mixtures of which one of the anions has multiple interaction sites.

  15. Experimental measurements and prediction of liquid densities for n-alkane mixtures

    International Nuclear Information System (INIS)

    Ramos-Estrada, Mariana; Iglesias-Silva, Gustavo A.; Hall, Kenneth R.

    2006-01-01

    We present experimental liquid densities for n-pentane, n-hexane and n-heptane and their binary mixtures from (273.15 to 363.15) K over the entire composition range (for the mixtures) at atmospheric pressure. A vibrating tube densimeter produces the experimental densities. Also, we present a generalized correlation to predict the liquid densities of n-alkanes and their mixtures. We have combined the principle of congruence with the Tait equation to obtain an equation that uses as variables: temperature, pressure and the equivalent carbon number of the mixture. Also, we present a generalized correlation for the atmospheric liquid densities of n-alkanes. The average absolute percentage deviation of this equation from the literature experimental density values is 0.26%. The Tait equation has an average percentage deviation of 0.15% from experimental density measurements

  16. Algorithms for GPU-based molecular dynamics simulations of complex fluids: Applications to water, mixtures, and liquid crystals.

    Science.gov (United States)

    Kazachenko, Sergey; Giovinazzo, Mark; Hall, Kyle Wm; Cann, Natalie M

    2015-09-15

    A custom code for molecular dynamics simulations has been designed to run on CUDA-enabled NVIDIA graphics processing units (GPUs). The double-precision code simulates multicomponent fluids, with intramolecular and intermolecular forces, coarse-grained and atomistic models, holonomic constraints, Nosé-Hoover thermostats, and the generation of distribution functions. Algorithms to compute Lennard-Jones and Gay-Berne interactions, and the electrostatic force using Ewald summations, are discussed. A neighbor list is introduced to improve scaling with respect to system size. Three test systems are examined: SPC/E water; an n-hexane/2-propanol mixture; and a liquid crystal mesogen, 2-(4-butyloxyphenyl)-5-octyloxypyrimidine. Code performance is analyzed for each system. With one GPU, a 33-119 fold increase in performance is achieved compared with the serial code while the use of two GPUs leads to a 69-287 fold improvement and three GPUs yield a 101-377 fold speedup. © 2015 Wiley Periodicals, Inc.

  17. High pressure phase equilibrium of ternary and multicomponent alkane mixtures in the temperature range from (283–473) K

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Liu, Yiqun; Wibowo, Ahmad A.

    2017-01-01

    /n-butane/n-octane/n-dodecane/n-hexadecane/n-eicosane as model reservoir fluids and measured their phase equilibrium in the temperature range from (283–473) K by using a variable volume cell with full visibility. Their phase envelopes and liquid volume fractions below the saturation pressure have been measured. Four equations of state, including Soave......-Redlich-Kwong (SRK), Peng-Robinson (PR), Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), and Soave-Benedict-Webb-Rubin (Soave-BWR), have been used to predict phase equilibrium of the measured systems. PR and PC-SAFT give better results than others and Soave-BWR gives poor phase envelope predictions...

  18. Ultrasonic Studies of Molecular Interactions in Organic Binary Liquid Mixtures

    Directory of Open Access Journals (Sweden)

    S. Thirumaran

    2010-01-01

    Full Text Available The ultrasonic velocity, density and viscosity have been measured for the mixtures of 1-alkanols such as 1-propanol and 1-butanol with N-N dimethylformamide (DMF at 303 K. The experimental data have been used to calculate the acoustical parameters namely adiabatic compressibility (β, free length (Lf, free volume (Vf and internal pressure (πi. The excess values of the above parameters are also evaluated and discussed in the light of molecular interaction existing in the mixtures. It is obvious that there is a formation of hydrogen bonding between DMF and 1-alkanols. Further, the addition of DMF causes dissociation of hydrogen bonded structure of 1-alkanols. The evaluated excess values confirm that the molecular association is more pronounced in system-II comparing to the system-I.

  19. Mass transport thermodynamics in nonisothermal molecular liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Semen N [Institute for Biochemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Schimpf, M E [Department of Chemistry and Biochemistry, Boise State University, Boise, ID (United States)

    2009-10-31

    Mass transport in a nonisothermal binary molecular mixture is systematically discussed in terms of nonequilibrium thermodynamics, which for the first time allows a consistent and unambiguous description of the process. The thermodynamic and hydrodynamic approaches are compared, revealing that nonequilibrium thermodynamics and physicochemical hydrodynamics yield essentially the same results for molecular systems. The applicability limits for the proposed version of the thermodynamic approach are determined for large particles. (methodological notes)

  20. Investigation on the structure of liquid N-methylformamide-dimethylsulfoxide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, Joao M.M., E-mail: cordeiro@dfq.feis.unesp.br [ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom); Soper, Alan K. [ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom)

    2011-03-18

    Graphical abstract: Structure of liquid NMF and DMSO mixtures investigated using a combination of neutron diffraction techniques augmented with isotopic substitution and empirical potential structure refinement simulations. Research highlights: {yields} NMF-DMSO mixture is a well-structured liquid. {yields} The liquid structure is driven by strong hydrogen bonds. {yields} There is a preference for NMF-DMSO hydrogen bonding compared to the NMF-NMF. {yields} There are very stable NMF-DMSO dimers dispersed through the liquid. {yields} The peptide structure is very well solvated in DMSO. - Abstract: The structures of liquid mixtures of N-methylformamide (NMF) and dimethyl sulfoxide (DMSO) at two concentrations (80% and 50% NMF) are investigated using a combination of neutron diffraction augmented with isotopic substitution and empirical potential structure refinement simulations. The results indicate that the NMF and DMSO molecules are hydrogen-bonded to one another with a preference for NMF-DMSO hydrogen bonding, compared to the NMF-NMF ones. The liquid is orientationally structured as a consequence of these hydrogen bonds between molecules. NMF-DMSO dimers are very stable species in the bulk of the mixture. The structure of the dimers is such that the angle between the molecular dipole moments is around 60{sup o}. The NMF molecules are well solvated in DMSO with potential implications for peptides solvation in this solvent.

  1. Investigation on the structure of liquid N-methylformamide-dimethylsulfoxide mixtures

    International Nuclear Information System (INIS)

    Cordeiro, Joao M.M.; Soper, Alan K.

    2011-01-01

    Graphical abstract: Structure of liquid NMF and DMSO mixtures investigated using a combination of neutron diffraction techniques augmented with isotopic substitution and empirical potential structure refinement simulations. Research highlights: → NMF-DMSO mixture is a well-structured liquid. → The liquid structure is driven by strong hydrogen bonds. → There is a preference for NMF-DMSO hydrogen bonding compared to the NMF-NMF. → There are very stable NMF-DMSO dimers dispersed through the liquid. → The peptide structure is very well solvated in DMSO. - Abstract: The structures of liquid mixtures of N-methylformamide (NMF) and dimethyl sulfoxide (DMSO) at two concentrations (80% and 50% NMF) are investigated using a combination of neutron diffraction augmented with isotopic substitution and empirical potential structure refinement simulations. The results indicate that the NMF and DMSO molecules are hydrogen-bonded to one another with a preference for NMF-DMSO hydrogen bonding, compared to the NMF-NMF ones. The liquid is orientationally structured as a consequence of these hydrogen bonds between molecules. NMF-DMSO dimers are very stable species in the bulk of the mixture. The structure of the dimers is such that the angle between the molecular dipole moments is around 60 o . The NMF molecules are well solvated in DMSO with potential implications for peptides solvation in this solvent.

  2. Experimental determination of critical data of multi-component mixtures containing potential gasoline additives 2-butanol by a flow-type apparatus

    International Nuclear Information System (INIS)

    He, Maogang; Xin, Nan; Wang, Chengjie; Liu, Yang; Zhang, Ying; Liu, Xiangyang

    2016-01-01

    Graphical abstract: Experimental critical pressures of 2-butanol + hexane + heptane system. - Highlights: • Critical properties of six binary systems and two ternary systems were measured. • Six binary systems containing 2-butanol show non-ideal behavior in their T c –x 1 curves. • Non-ideal behavior of mixtures with 2-butanol relies on azeotropy. • Experimental data for binary systems were fitted well with Redlich–Kister equation. • Critical surfaces of ternary systems were plotted using the Cibulka’s expressions. - Abstract: In this work, we used a flow method for measurement of critical properties of six binary mixtures (2-butanol + cyclohexane, 2-butanol + hexane, 2-butanol + heptane, 2-butanol + octane, 2-butanol + nonane and 2-butanol + decane) and two ternary mixtures (2-butanol + hexane + heptane and 2-butanol + octane + decane). The critical properties were determined by observing the disappearance and reappearance of the gas–liquid phase meniscus in a quartz glass tube. The standard uncertainties of temperatures and pressures for both binary and ternary mixtures were estimated to be less than 0.2 K and 5.2 kPa, respectively. These critical data provide the boundaries of the two-phase regions of the related mixture systems. Six binary systems show non-ideal behaviors in the loci of critical temperatures. We used the Redlich–Kister equations to correlate the critical temperatures and pressures of these systems and listed the binary interaction parameters. The maximum average absolute deviation (AAD) of each binary system between experimental data and calculated results from Redlich–Kister equations is 0.038% for critical temperatures, and 0.244% for critical pressures. Moreover, the two ternary systems were newly reported and correlated by Cibulka’s and Singh’s expressions. The maximum AAD of critical temperatures and critical pressures are 0.103% and 0.433%, respectively.

  3. Diffusion measurements in binary liquid mixtures by Raman spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Hansen, Susanne Brunsgaard; Shapiro, Alexander

    2007-01-01

    It is shown that Raman spectroscopy allows determination of the molar fractions in mixtures subjected to molecular diffusion. Spectra of three binary systems, benzene/n-hexane, benzene/cyclohexane, and benzene/ acetone, were obtained during vertical (exchange) diffusion at several different heights...... in the literature were found, even in a thermostatically controlled diffusion cell, recording spectra through circulating water. For the system benzene/acetone, the determined diffusion coefficients were in good agreement with the literature data. The limitations of the Raman method are discussed...

  4. Modeling of nanoscale liquid mixture transport by density functional hydrodynamics

    Science.gov (United States)

    Dinariev, Oleg Yu.; Evseev, Nikolay V.

    2017-06-01

    Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.

  5. The study on process of recycling uranium in mixture of residue and liquid

    International Nuclear Information System (INIS)

    Zhang Jie; Shen Weiwei; Hao Jidong; Wu Jiangming

    2014-01-01

    The treat method of mixture of residue and liquid produced from HWR nuclear fuel chemical process using some kind of U_3O_8 powder was studied in this experiment. For recycling the uranium in mixture of residue and liquid, chemical dissolving method, washing and centrifuging method and dilute nitric acid leaching uranium method was contrasted in this test. The merit of dilute nitric acid leaching uranium method is simpler, more effective and higher uranium recycling ratio. Next, dilute nitric acid leaching uranium method was studied systematically. As a result, the main influence factors of uranium recycling ratio is dip sour degree and dip sour temperature. The influence law of factors to uranium recycling ratio and filtering effect was found out also. Along with increasing of dip sour degree and dip sour temperature, uranium recycling ratio increases and speed of filtrate increases also. At last, the process of batch treating mixture of residue and liquid was build and abundant uranium was recycled. (authors)

  6. Representation and Validation of Liquid Densities for Pure Compounds and Mixtures

    DEFF Research Database (Denmark)

    O'Connell, J.; V. Dicky, V.; Abildskov, Jens

    Reliable correlation and prediction of liquid densities are important for designing chemical processes at normal and elevated pressures. We have extended a corresponding states model from molecular theory to yield a robust method for quality testing of experimental data that also provides predicted...... values at unmeasured conditions. The model has been shown to successfully validate and represent the pressure and temperature dependence of liquid densities greater than 1.5 of the critical density for pure compounds, binary mixtures, and ternary mixtures from the triple to critical temperatures...... at pressures up to 1000 MPa. The systems include the full range of organic compounds, including complex mixtures, and ionic liquids. Minimal data are required for making predictions.The presentation will show the implementation of the method, criteria for its deployment, examples of its application to a wide...

  7. Electron drift velocity measurements in liquid krypton-methane mixtures

    CERN Document Server

    Folegani, M; Magri, M; Piemontese, L

    1999-01-01

    Electron drift velocities have been measured in liquid krypton, pure and mixed with methane at different concentrations (1-10% in volume) versus electric field strength, and a possible effect of methane on electron lifetime has been investigated. While no effect on lifetime could be detected, since lifetimes were in all cases longer than what measurable, a very large increase in drift velocity (up to a factor 6) has been measured.

  8. The effect of heat exchanger parameters on performance predictions for nonazeotropic refrigerant mixtures in liquid-liquid heat pumps

    International Nuclear Information System (INIS)

    Stanger, S.; Den Braven, K.R.; Owre, T.A.S.

    1990-01-01

    The effects of constant heat exchanger area on the coefficient of performance (COP) for liquid-liquid heat pumps were analyzed for systems which use nonazeotropic mixtures as the working fluid. For this analysis, two different computer models were compared. In the first, the log mean temperature differences (LMTDs) through the heat exchangers were specified, and were held constant for all refrigerant compositions. The second method was constructed so that the heat exchanger UA product was held constant, thus approximating constant heat exchanger area over a range of refrigerant compositions. Results from these models show only a one percent difference in COP prediction between holding LMTD constant and holding UA constant over the range of mixture composition. This paper reports the models compared using mixtures of R-22/R-11 and R-22/R-114. It is also shown that changes in glide and lift temperatures have little influence on the differences between the two models

  9. Velocity of large bubble in liquid-solid mixture in a vertical tube

    International Nuclear Information System (INIS)

    Hamaguchi, H.; Sakaguchi, T.

    1995-01-01

    The upward movement of a large bubble in a stationary mixture of liquid and solid is one of the most fundamental phenomena of gas-liquid-solid three phase slug flow in a vertical tube. The purpose of this study is to make clear the characteristic of the rising velocity of this fundamental flow experimentally. The rising velocity of a large bubble V in a liquid-solid mixture was measured and compared with the velocity V o in a liquid (without solid). The experimental results were correlated using a non-dimensional velocity V * (=V/V o ), and the following results were obtained. It was found that the characteristic of the rising velocity differs according to the tube diameter and the liquid viscosity, or the Galileo number in the non-dimensional expression. It can be classified into two regimes. (i) When the liquid viscosity is large (or the tube diameter is small), V * decreases linearly against the volumetric solid fraction ε of the mixture. (ii) When the viscosity is small, on the other hand, the relation between V * and ε is not linear. This classification can be explained by the results in the previous papers by the authors dealing with a large bubble in a liquid

  10. Velocity of large bubble in liquid-solid mixture in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, H.; Sakaguchi, T. [Kobe Univ., Kobe (Japan)

    1995-09-01

    The upward movement of a large bubble in a stationary mixture of liquid and solid is one of the most fundamental phenomena of gas-liquid-solid three phase slug flow in a vertical tube. The purpose of this study is to make clear the characteristic of the rising velocity of this fundamental flow experimentally. The rising velocity of a large bubble V in a liquid-solid mixture was measured and compared with the velocity V{sub o} in a liquid (without solid). The experimental results were correlated using a non-dimensional velocity V{sup *}(=V/V{sub o}), and the following results were obtained. It was found that the characteristic of the rising velocity differs according to the tube diameter and the liquid viscosity, or the Galileo number in the non-dimensional expression. It can be classified into two regimes. (i) When the liquid viscosity is large (or the tube diameter is small), V{sup *} decreases linearly against the volumetric solid fraction {epsilon} of the mixture. (ii) When the viscosity is small, on the other hand, the relation between V{sup *} and {epsilon} is not linear. This classification can be explained by the results in the previous papers by the authors dealing with a large bubble in a liquid.

  11. Representation and validation of liquid densities for pure compounds and mixtures

    DEFF Research Database (Denmark)

    Diky, Vladimir; O'Connell, John P.; Abildskov, Jens

    2015-01-01

    Reliable correlation and prediction of liquid densities are important for designing chemical processes at normal and elevated pressures. A corresponding-states model from molecular theory was extended to yield a robust method for quality testing of experimental data that also provides predicted...... values at unmeasured conditions. The model has been shown to successfully represent and validate the pressure and temperature dependence of liquid densities greater than 1.5 of the critical density for pure compounds, binary mixtures, and ternary mixtures from the triple to critical temperatures...

  12. VISCOSITY OF BINARY NON-ELECTROLYTE LIQUID MIXTURES: PREDICTION AND CORRELATION

    Directory of Open Access Journals (Sweden)

    Mirjana Lj. Kijevčanin

    2008-11-01

    Full Text Available The viscosity of 31 binary liquid mixtures containing diverse groups of organic compounds, determined at atmospheric pressure: alcohols, alkanes (cyclo and aliphatic, esters, aromatics, ketones etc., were calculated using two different approaches, correlative (with Teja-Rice and McAllister models and predictive by group contribution models (UNIFAC-VISCO, ASOG-VISCO and Grunberg-Nissan. The obtained results were analysed in terms of the applied approach and model, the structure of the investigated mixtures, the nature of components of the mixtures and the influence of alkyl chain length of the alcohol molecule.

  13. Predictive Local Composition Models for Solid/Liquid Equilibrium in n-Alkane Systems: Wilson Equation for Multicomponent Systems

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Stenby, Erling Halfdan

    1996-01-01

    The predictive local composition model is applied to multicomponent hydrocarbon systems with long-chain n-alkanes as solutes. The results show that it can successfully be extended to highorder systems and accurately predict the solid appearance temperature, also known as cloud point, in solutions...

  14. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  15. Vapor-liquid, liquid-liquid and vapor-liquid-liquid equilibrium of binary and multicomponent systems with MEG modeling with the CPA EoS and an EoS/G(E) model

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    The cubic-plus-association (CPA) EoS is applied to multicomponent multiphase equilibria of systems containing MEG as a hydrate inhibitor. It is shown that the model provides very satisfactory prediction of the phase behavior for the systems tested. A more conventional engineering model for handling...

  16. Mixture

    Directory of Open Access Journals (Sweden)

    Silva-Aguilar Martín

    2011-01-01

    Full Text Available Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  17. Fully integrated microfluidic measurement system for real-time determination of gas and liquid mixtures composition

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Groenesteijn, Jarno; van der Wouden, E.J.; Sparreboom, Wouter; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2015-01-01

    We have designed and realised a fully integrated microfluidic measurement system for real-time determination of both flow rate and composition of gas- and liquid mixtures. The system comprises relative permittivity sensors, pressure sensors, a Coriolis flow and density sensor, a thermal flow sensor

  18. Non-linearity parameter of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    parameter B/A of four binary liquid mixtures using Tong and Dong equation at high pressures and .... in general as regular or ideal as no recognized association takes place between the unlike molecules. In this case ... Using the definition and.

  19. Density, viscosity and surface tension of liquid phase Beckmann rearrangement mixtures

    NARCIS (Netherlands)

    Zuidhof, K.T.; Croon, de M.H.J.M.; Schouten, J.C.; Tinge, J.T.

    2015-01-01

    We have determined the density, dynamic viscosity, and surface tension of liquid phase Beckmann rearrangement mixtures, consisting of e-caprolactam and fuming oleum. These important properties have been measured in wide ranges of both temperature and molar ratios of acid and e-caprolactam, covering

  20. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    Science.gov (United States)

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  1. Computer simulation of solid-liquid coexistence in binary hard sphere mixtures

    NARCIS (Netherlands)

    Kranendonk, W.G.T.; Frenkel, D.

    1991-01-01

    We present the results of a computer simulation study of the solid-liquid coexistence of a binary hard sphere mixture for diameter ratios in the range 0·85 ⩽ ğa ⩽ 1>·00. For the solid phase we only consider substitutionally disordered FCC and HCP crystals. For 0·9425 < α < 1·00 we find a

  2. Ternary and quaternary (liquid + liquid) equilibria for (water + ethanol + α-pinene, +β-pinene, or +limonene) and (water + ethanol + α-pinene + limonene) at the temperature 298.15 K

    International Nuclear Information System (INIS)

    Li Hengde; Tamura, Kazuhiro

    2006-01-01

    (Liquid + liquid) equilibria and tie-lines for the ternary (water + ethanol + α-pinene, or β-pinene or limonene) and quaternary (water + ethanol + α-pinene + limonene) mixtures have been measured at T = 298.15 K. The experimental multicomponent (liquid + liquid) equilibrium data have been successfully represented in terms of the modified UNIQUAC model with binary parameters

  3. Measurements and modeling of quaternary (liquid + liquid) equilibria for mixtures of (methanol or ethanol + water + toluene + n-dodecane)

    International Nuclear Information System (INIS)

    Mohammad Doulabi, F.S.; Mohsen-Nia, M.; Modarress, H.

    2006-01-01

    The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol) (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography. The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents. The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents

  4. Liquid, urea group-containing polyisocyanate mixtures and plastics derived therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Buethe, I.; Marx, M.; Schoenleben, W.

    1988-04-05

    The invention relates to urea group-containing polyisocyanate mixtures which are liquid at room temperature and have an isocyanate group content of from 15 to 30 weight percent and a diphenylmethane diisocyanate content of from 55 to 90 weight percent. These mixtures are obtained through the reaction of polyoxyalkylene polyamines having a functionality of from 2 to 5 and an amine number from 20 to 250 with a polyisocyanate selected from the group consisting of: a mixture of diphenylmethane diisocyanates and polyphenyl polymethylene polysocyanates having a diphenylmethane diisocyanate content of from 55 to 90 wt%, or at least one diphenylmethane diisocyanate isomer. The polyisocyanate mixtures claimed in the invention are used to prepare dense or cellular polyurethane and/or polyisocyanurate plastics, in particular, flexible polyurethane foams.

  5. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R. [Post-Graduate Department of Physics, Government College (Autonomous), Mandya-571401 (India); Sridhar, K. N.; Sridhara, G. R.; Nagaraja, N. [Government College for Boys, Kolar-563101 (India)

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  6. Liquid--vapor isotope fractionation factors in argon--krypton binary mixtures

    International Nuclear Information System (INIS)

    Lee, M.W.; Neufeld, P.; Bigeleisen, J.

    1977-01-01

    An equilibrium isotope effect has been studied as a continuous function of the potential field acting on the atom undergoing isotopic exchange. This has been accomplished through a study of the liquid vapor isotope fractionation factors for both, 36 Ar/ 40 Ar and 80 Kr/ 84 Kr in a series of binary mixtures which span the range between the pure components at 117.5 0 K. The 36 Ar/ 40 Ar fractionation factor increases (linearly) from (lnα)2.49 x 10 -3 in pure liquid argon to 2.91 x 10 -3 in an infinitely dilute solution in liquid krypton. Conversely, the 80 Kr/ 84 Kr fractionation factor decreases (linearly) from (lnα)0.98 x 10 -3 in pure liquid krypton to 0.64 x 10 -3 in an infinetely dilute solution in pure liquid argon. The mean force constants 2 U>/sub c/ on both argon and krypton atoms in the mixtures are derived from the respective isotope fractionation factors.The mean force constants for argon and krypton as a function of composition have been calculated by a modified corresponding states theory which uses the pure liquids as input parameters. The discrepancy is 8 percent at X/sub Ar/ + O. A systematic set of calculations has been made of 2 U> (Ar) and 2 U> (Kr) as a function of composition using radial distribution functions generated by the Weeks--Chandler--Anderson perturbation theory

  7. Thermodynamic properties of binary mixtures combining two pyridinium-based ionic liquids and two alkanols

    International Nuclear Information System (INIS)

    García-Mardones, Mónica; Barrós, Alba; Bandrés, Isabel; Artigas, Héctor; Lafuente, Carlos

    2012-01-01

    Highlights: ► Thermodynamic properties of an ionic liquid and an alkanol have been reported. ► The ionic liquids studied were 1-butyl-3 (or 4)-methylpyridinium tetrafluoroborate. ► The alkanols were methanol and ethanol. ► From measured data excess properties have been obtained and correlated. - Abstract: Densities and speeds of sound have been determined for the binary mixtures containing an ionic liquid (1-butyl-3-methylpyridinium tetrafluoroborate or 1-butyl-4-methylpyridinium tetrafluoroborate) and an alkanol (methanol or ethanol) over the temperature range (293.15 to 323.15) K. Excess volumes and excess isentropic compressibilities have been calculated from density and speed of sound data and correlated. All the mixtures show negative values for these excess properties. Furthermore, the isothermal (vapour + liquid) equilibrium has been measured at T = (303.15 and 323.15) K, and the corresponding activity coefficients and excess Gibbs functions have been obtained. In this case, positive excess Gibbs functions have been found. We have carried out an exhaustive interpretation of the experimental results in terms of structural and energetic effects taking also into account the thermodynamic information of pure compounds. Finally, in order to study the influence of both, the presence and the position of methyl group in the cation, we have compared the results of these systems with those obtained for the mixtures formed by 1-butylpyridinium tetrafluoroborate and methanol or ethanol.

  8. Radiation degradation of waste waters. Reverse phase-high performance liquid chromatography and multicomponent UV-VIS analysis of gamma-irradiated aqueous solutions of nitrobenzene Pt.1

    International Nuclear Information System (INIS)

    Kuruc, J.; Sahoo, M.K.; Locaj, J.; Hutta, M.

    1994-01-01

    Saturated aqueous solutions of nitrobenzene (in water, 0.1M nitric acid and 0.1M potassium hydroxide) were irradiated with 60 Co γ-rays in deaerated condition. Radiolytic products were analyzed using reverse phase-high performance liquid chromatography (RP-HPLC) and multicomponent UV-VIS spectrometry. With the aid of RP-HPLC retention times of the radiolytic products were found to be identical with those of isomeric nitrophenols, aminophenols and dinitrophenols. According to the primary information obtained from RP-HPLC and literature, we have chosen ten standards and eleven wavelengths for multicomponent UV-VIS analysis (linear multiparametric regression analysis) and the concentrations of nitrobenzene, nitrophenols, aminophenols and dinitrophenols in water, HNO 3 and KOH solutions were calculated. G-values (molecules/100 eV) of the radiolytic products and decomposition of nitrobenzene in aqueous solutions G(-nitrobenzene) were calculated from the dependence of their concentrations with dose. Ph has relatively little influence on the decrease of concentration of nitrobenzene, but has strong influence on the product composition. (author) 7 refs.; 5 figs.; 5 tabs

  9. Liquid-liquid extraction of Th4+ and UO22+ by LIX-26 and its mixtures

    International Nuclear Information System (INIS)

    Singh, S.; Panda, C.R.; Chakravortty, V.; Dash, K.C.

    1988-01-01

    Solvent extractions of thorium(IV) and uranium(VI) by a commercially available chelating extractant LIX-26 (an alkylated 8-hydroxyquinoline) of 8-hydroxyquinoline, benzoic or salicylic acid, dipentyl sulfoxide (DPSO) and their mixtures with butanol as modifier in benzene/methylisobutyl ketone (MIBK) as a diluent were studied. The influence of concentration of various anions on the extraction of Th 4+ by mixtures of LIX-26 and benzoic acid was studied. Studies on extraction of thorium(IV) and uranium(VI) by mixtures of LIX-26 (HQ) and DPSO show that the extracted species are possibly of the type [(ThQ 2 (DPSO) 2 (SCN) 2 )] and [(UO 2 Q 2 (DPSO)]), respectively. (author) 22 refs.; 8 figs

  10. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim; Amad, Maan H.; Al-Talla, Zeyad

    2012-01-01

    with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs

  11. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids.

    Science.gov (United States)

    Finotello, Alexia; Bara, Jason E; Narayan, Suguna; Camper, Dean; Noble, Richard D

    2008-02-28

    This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].

  12. Experimental and predicted refractive index properties in ternary mixtures of associated liquids

    International Nuclear Information System (INIS)

    Sechenyh, Vitaliy V.; Legros, Jean-Claude; Shevtsova, Valentina

    2011-01-01

    Highlights: → Measurements of refractive indices of 200 different aqueous ternary mixtures have been performed for two wave lengths. → Refractive indices of the associated ternary mixtures can be modeled with a relative error of about 0.9. → Difference between experimental and calculated derivatives of refractive index with concentration is unsatisfactory large. - Abstract: Refractive indices of ternary mixtures formed by (water + ethanol + k-ethylene glycol) (when k is mono, di or tri) and (water + t-butanol + dimethyl sulfoxide) are presented over a wide range of mixture compositions. All measurements have been conducted at 298.15 K and atmospheric pressure using two light sources: one in the visible (λ = 670 nm) and the other in the infrared (λ = 925 nm) spectrum. The performance of several mixing rules that are commonly used in modeling optical constants are examined. We demonstrate that the refractive indices of the associated ternary mixtures can be modeled with a relative error of about 0.9% by using the thermodynamical properties of the pure components. The concentration derivatives of the refractive index are an important parameter, as they are required for different experimental techniques. These derivatives have been determined from the experimental data on refractive indices. However, applying mixing rules for calculation of the derivatives of the refractive indices with respect to concentrations does not provide satisfactory results in the case of ternary mixtures of associated liquids.

  13. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent fi...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  14. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  15. Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review

    International Nuclear Information System (INIS)

    Heintz, Andreas

    2005-01-01

    Mixtures of ionic liquids with organic solvents exhibit a most interesting research area in thermodynamics. The increasing utilization of ionic liquids in chemical processes and separation processes requires reliable and systematic data of thermodynamic and thermophysical properties such as activity coefficients, VLE and LLE data, heats of mixing as well as gas solubility data, densities and transport properties like viscosity, electric conductivity and mutual diffusion coefficients. This review presents an survey of the most recent data material including current developments and aspects of research activities needed in the future

  16. Thermally excited capillary waves at vapor/liquid interfaces of water-alcohol mixtures

    International Nuclear Information System (INIS)

    Vaknin, David; Bu Wei; Sung, Jaeho; Jeon, Yoonnam; Kim, Doseok

    2009-01-01

    The density profiles of liquid/vapor interfaces of water-alcohol (methanol, ethanol and propanol) mixtures were studied by surface-sensitive synchrotron x-ray scattering techniques. X-ray reflectivity and diffuse scattering measurements, from the pure and mixed liquids, were analyzed in the framework of capillary wave theory to address the characteristic length scales of the intrinsic roughness and the shortest capillary wavelength (alternatively, the upper wavevector cutoff in capillary wave theory). Our results establish that the intrinsic roughness is dominated by average interatomic distances. The extracted effective upper wavevector cutoff indicates capillary wave theory breaks down at distances of the order of bulk correlation lengths.

  17. Investigation on the structure of liquid N-methylformamide-dimethylsulfoxide mixtures

    Science.gov (United States)

    Cordeiro, João M. M.; Soper, Alan K.

    2011-03-01

    The structures of liquid mixtures of N-methylformamide (NMF) and dimethyl sulfoxide (DMSO) at two concentrations (80% and 50% NMF) are investigated using a combination of neutron diffraction augmented with isotopic substitution and empirical potential structure refinement simulations. The results indicate that the NMF and DMSO molecules are hydrogen-bonded to one another with a preference for NMF-DMSO hydrogen bonding, compared to the NMF-NMF ones. The liquid is orientationally structured as a consequence of these hydrogen bonds between molecules. NMF-DMSO dimers are very stable species in the bulk of the mixture. The structure of the dimers is such that the angle between the molecular dipole moments is around 60°. The NMF molecules are well solvated in DMSO with potential implications for peptides solvation in this solvent.

  18. Divergent trend in density versus viscosity of ionic liquid/water mixtures: a molecular view from guanidinium ionic liquids.

    Science.gov (United States)

    Singh, Akhil Pratap; Gardas, Ramesh L; Senapati, Sanjib

    2015-10-14

    Ionic liquids (ILs) have shown great potential in the dissolution and stability of biomolecules when a low-to-moderate quantity of water is added. Hence, determining the thermophysical properties and understanding these novel mixtures at the molecular level are of both fundamental and practical importance. In this context, here we report the synthesis of two nontoxic guanidinium cation based ILs, tetramethylguanidinium benzoate [TMG][BEN] and tetramethylguanidinium salicylate [TMG][SAL], and present a detailed comparison of their thermophysical properties in the presence of water. The results show that the [TMG][SAL]/water mixtures have higher density and higher apparent molar volume, but a lower viscosity and higher compressibility than the [TNG][BEN]/water mixtures. The measured viscosity and compressibility data are explained from ab initio quantum mechanical calculations and liquid-phase molecular dynamics simulations, where salicylate anions of denser [TMG][SAL]/water were found to exist as isolated ions due to intramolecular H-bonding. On the contrary, intermolecular H-bonding among the benzoate anions and their strong tendency to form an extended H-bonding network with water made [TMG][BEN]/water solutions more viscous and less compressible. This study shows the importance of probing these emerging solvents at the molecular-to-atomic level, which could be helpful in their optimal usage for task-specific applications.

  19. Refractive indices of ternary liquid mixtures containing aliphatic alcohols at several temperatures

    Directory of Open Access Journals (Sweden)

    Sovilj Milan N.

    2005-01-01

    Full Text Available The refractive indices of ternary liquid mixtures (2-propanol+2-butanol+ethanol and (chloroform+2-propanol+2-butanol were measured at 20, 25, 30, and 35°C, and atmospheric pressure. The results were used to calculate the refractive index deviations over the entire mole fraction range for the mixtures. The refractive index deviations for the ternary mixtures were further fitted to empirical correlations (Cibulka Nagata-Tamura, and Lopez et al to estimate the ternary fitting parameters. Standard deviations and average percentage deviations from the regression lines are shown. The best fit was obtained by the Nagata-Tamura empirical correlation. Some of the existing predictive equations for the refractive index deviations (Tsao-Smith, Köhler, and Colinet were tested.

  20. Excess enthalpies and (vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones

    International Nuclear Information System (INIS)

    Radhamma, M.; Venkatesu, P.; Rao, M.V. Prabhakara; Prasad, D.H.L.

    2007-01-01

    Excess enthalpies (H E ), at ambient pressure and T = 298.15 K, have been measured by using a solution calorimeter for the binary liquid mixtures of dimethyl sulphoxide (DMSO) with ketones, as a function of composition. The ketones chosen in the present investigation were methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The H E values are positive over the entire composition range for the three binary mixtures. Furthermore, the (vapour + liquid) equilibrium (VLE) was measured at 715 Torr for these mixtures, of different compositions, with the help of Swietoslawski-ebulliometer. The experimental temperature-mole fraction (t-x) data were used to compute Wilson parameters and then used to calculate the equilibrium vapour-phase compositions as well as the theoretical points for these binary mixtures. These Wilson parameters are used to calculate activity coefficients (γ) and these in turn to calculate excess Gibbs free energy (G E ). The intermolecular interactions and structural effects were analyzed on the basis of the measured and derived properties

  1. Experimental Investigation Evaporation of Liquid Mixture Droplets during Depressurization into Air Stream

    Science.gov (United States)

    Liu, L.; Bi, Q. C.; Terekhov, Victor I.; Shishkin, Nikolay E.

    2010-03-01

    The objective of this study is to develop experimental method to study the evaporation process of liquid mixture droplets during depressurization and into air stream. During the experiment, a droplet was suspended on a thermocouple; an infrared thermal imager was used to measure the droplet surface temperature transition. Saltwater droplets were used to investigate the evaporation process during depressurization, and volatile liquid mixtures of ethanol, methanol and acetone in water were applied to experimentally research the evaporation into air stream. According to the results, the composition and concentration has a complex influence on the evaporation rate and the temperature transition. With an increase in the share of more volatile component, the evaporation rate increases. While, a higher salt concentration in water results in a lower evaporation rate. The shape variation of saltwater droplet also depends on the mass concentration in solution, whether it is higher or lower than the eutectic point (22.4%). The results provide important insight into the complex heat and mass transfer of liquid mixture during evaporation.

  2. Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures

    International Nuclear Information System (INIS)

    Genetier, M; Osmont, A; Baudin, G

    2014-01-01

    The objective is to compare the ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al. universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first few microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes only the detonation into account, the secondary combustion DP – air is not considered. To solve this problem a secondary combustion model has been developed to take the OB effect into account. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.

  3. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio; Vrabec, Jadran, E-mail: jadran.vrabec@uni-paderborn.de [Thermodynamics and Energy Technology, University of Paderborn, 33098 Paderborn (Germany)

    2016-03-28

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  4. Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.

    Science.gov (United States)

    Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher

    2012-05-14

    We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  6. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  7. Phase Diagram of Binary Mixture E7:TM74A Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Serafin Delica

    1999-12-01

    Full Text Available Although there are many liquid crystalline materials, difficulty is often experienced in obtaining LCs that are stable and has a wide mesophase range. In this study, mixtures of two different LCs were used to formulate a technologically viable LC operating at room temperature. Nematic E7(BDH and cholesteric TM74A were mixed at different weight ratios at 10% increments. Transition temperatures were determined via Differential Scanning Calorimetry and phase identification was done using Optical Polarizing Microscopy. The phase diagram showed the existence of three different phases for the temperature range of 10-80°C. Mixtures with 0-20% E7 exhibit only the cholesteric-nematic mesophase, which could be due to the mixture's being largely TM74A and its behavior in the temperature range considered is similar to the behavior of pure TM74A. With an increase in the concentration of E7, the smectic phase of the pure cholesteric was enhanced, as seen from the increased transition to the cholesteric-nematic phase and a broader smectic range. The cholesteric-nematic to isotropic transition increased as the nematic concentration increases, following the behavior expected from LC mixtures. For mixtures that are largely nematic (more than 50% E7, the smectic phase has vanished and the cholesteric-nematic phase dominated from 30-60°C.

  8. Molar excess volumes of liquid hydrogen and neon mixtures from path integral simulation

    International Nuclear Information System (INIS)

    Challa, S.R.; Johnson, J.K.

    1999-01-01

    Volumetric properties of liquid mixtures of neon and hydrogen have been calculated using path integral hybrid Monte Carlo simulations. Realistic potentials have been used for the three interactions involved. Molar volumes and excess volumes of these mixtures have been evaluated for various compositions at 29 and 31.14 K, and 30 atm. Significant quantum effects are observed in molar volumes. Quantum simulations agree well with experimental molar volumes. Calculated excess volumes agree qualitatively with experimental values. However, contrary to the existing understanding that large positive deviations from ideal mixtures are caused due to quantum effects in Ne - H 2 mixtures, both classical as well as quantum simulations predict the large positive deviations from ideal mixtures. Further investigations using two other Ne - H 2 potentials of Lennard - Jones (LJ) type show that excess volumes are very sensitive to the cross-interaction potential. We conclude that the cross-interaction potential employed in our simulations is accurate for volumetric properties. This potential is more repulsive compared to the two LJ potentials tested, which have been obtained by two different combining rules. This repulsion and a comparatively lower potential well depth can explain the positive deviations from ideal mixing. copyright 1999 American Institute of Physics

  9. Easy prediction of the refractive index for binary mixtures of ionic liquids with water or ethanol

    International Nuclear Information System (INIS)

    Rilo, E.; Domínguez-Pérez, M.; Vila, J.; Segade, L.; García, M.; Varela, L.M.; Cabeza, O.

    2012-01-01

    Highlights: ► We measure refractive index, n, in seven systems formed by IL + water or ethanol. ► Independently, theoretical estimations of the refractive index values were performed. ► To do that we use Gladstone–Dale and Newton models, relating n and density. ► We calculate density of each system from the value of the pure components. ► The agreement between experimental and calculated n values is about 99.8%. - Abstract: In this paper, we demonstrate that it is possible to know the refractive index, n D , of every given mixture of 1-alkyl-3methyl imidazolium tetrafluoroborate with water and ethanol just from the knowledge of the refractive index and density of pure components. To do that, we measured n D for seven different mixtures in all range of existing concentrations and, independently, we deduce n D theoretically. Both sets of values differ less than a 0.2% on average. The theoretical deduction takes into account that these mixtures are quasi-ideal from the molar volume point of view, as recently published, and so density for any composition of the mixture can be obtained with a precision better than 0.5% from the pure compounds value. Now we simply apply Newton or Gladstone–Dale models, which relate the refractive index of a binary mixture with its density from the value of both pure components, without any fitting parameter. Both models are very similar in form and in the values they deduce (less than a 0.2% of difference), but while that of Newton performs slightly better for ethanol mixtures, the model of Gladstone–Dale gives some better results for aqueous mixtures. We think that these results can be extended to the majority of ionic liquid plus solvent systems.

  10. Quantum liquid droplets in a mixture of Bose-Einstein condensates

    Science.gov (United States)

    Cabrera, C. R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L.

    2018-01-01

    Quantum droplets are small clusters of atoms self-bound by the balance of attractive and repulsive forces. Here, we report on the observation of droplets solely stabilized by contact interactions in a mixture of two Bose-Einstein condensates. We demonstrate that they are several orders of magnitude more dilute than liquid helium by directly measuring their size and density via in situ imaging. We show that the droplets are stablized against collapse by quantum fluctuations and that they require a minimum atom number to be stable. Below that number, quantum pressure drives a liquid-to-gas transition that we map out as a function of interaction strength. These ultradilute isotropic liquids remain weakly interacting and constitute an ideal platform to benchmark quantum many-body theories.

  11. Phase separation temperatures of a liquid mixture: Dynamic light scattering technique

    International Nuclear Information System (INIS)

    Dangudom, K.; Wongtawatnugool, C.; Lacharojana, S.

    2010-01-01

    Light scattering intensity measurements and photon correlation spectroscopy (PCS) techniques were employed in an investigation of liquid-liquid phase separation behaviour of a mixture of cyclohexane and methanol at seven different compositions. It was found that, except for one composition (29% methanol), the temperature at which the scattering intensity was a maximum did not coincide with the one where the diffusion coefficient was a minimum, as would be for the case of a vapour-liquid system. The difference may be explained in terms of the local density fluctuation and the random walk problem responsible for the peak intensity and the minimum in the diffusion coefficient, respectively. The definition of phase separation temperature, as determined from diffusion process, was also proposed in this work.

  12. Fundamental Study of Sorption of Pure Liquids and Liquid Mixtures into Polymeric Membrane

    Czech Academy of Sciences Publication Activity Database

    Randová, A.; Bartovská, L.; Friess, K.; Hovorka, Š.; Izák, Pavel

    2014-01-01

    Roč. 61, DEC 2014 (2014), s. 64-71 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GAP106/12/0569 Institutional support: RVO:67985858 Keywords : organic liquids * gravimetric sorption * flat polymer membrane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.005, year: 2014

  13. Structure of ionic liquid-water mixtures at interfaces: x-ray and neutron reflectometry studies

    International Nuclear Information System (INIS)

    Lauw, Yansen; Rodopoulos, Theo; Horne, Mike; Follink, Bart; Hamilton, Bill; Knott, Robert; Nelson, Andy

    2009-01-01

    Full text: Fundamental studies on the effect of water in ionic liquids are necessary since the overall performance of ionic liquids in many industrial applications is often hampered by the presence of water.[1] Based on this understanding, the surface and interfacial structures of 1-butyl-1methylpyrrolidinium trifluoromethylsulfonylimide [C4mpyr][NTf2] ionic liquid-water mixtures were probed using x-ray and neutron reflectometry techniques. At the gas-liquid surface, a thick cation+water layer was detected next to the phase boundary, followed by an increasing presence of anion towards the bulk. The overall thickness of the surface exhibits non-monotonic trends with an increasing water content, which explains similar phenomenological trends in surface tension reported in the literature.[2] At an electrified interface, the interfacial structure of pure ionic liquids probed by neutron reflectometry shows similar trends to those predicted by a mean-field model.[3] However, the presence of water within the electrical double-layer is less obvious, although it is widely known that water reduces electrochemical window of ionic liquids. To shed light on this issue, further studies are currently in progress.

  14. Experimental study of single taylor bubbles rising in stagnant liquid mixtures inside of vertical tubes

    International Nuclear Information System (INIS)

    Azevedo, Marcos B. de; Faccini, Jose L.H.; Su, Jian

    2015-01-01

    The present work reports an experimental study of single Taylor bubbles rising in vertical tubes filled with water-glycerin mixtures by using the pulse-echo ultrasonic technique. A 2m long acrylic tube with inner diameter of 24 mm was used in the experiments. Initially, the tube was sealed at the ends and filled partially with the liquid mixtures to leave an air pocket of length L 0 at the top end. A Taylor bubble was formed by the inversion of the tube. The rising bubbles were detected by ultrasonic transducers located at the upper part of the tube. The velocity, the length and the pro le of the bubbles and the thickness of the liquid lm around them were obtained from the ultrasonic signals processing. The liquid lm thickness in the vertical tube was also determined by a graphic method that relates the bubble length L b with the initial length of the air pocket L 0 . It was observed that the bubble velocity decreased with increasing viscosity, while the lm thickness increased. It was shown that the liquid lm thickness determined by the graphic method fitted well the higher viscosities data, but overestimated the lower viscosities data. Additionally, the results indicated that some correlations developed to estimate the thickness of liquid films falling down inside/outside of tubes and down a plane surface could be applied to estimate the thickness of liquid films falling around Taylor bubbles in an Inverse Viscosity Number (N f ) range different to those considered in the literature. (author)

  15. Multiphase, multicomponent phase behavior prediction

    Science.gov (United States)

    Dadmohammadi, Younas

    Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using

  16. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... parameters, is used for the segregated and for the bulk phases. With this approach, few parameters are needed to correlate pure component adsorption isotherms. These parameters may be used to predict adsorption equilibria of multicomponent mixtures without additional adjustment. A connection between...... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  17. The wetting of planar solid surfaces by symmetric binary mixtures near bulk gas-liquid coexistence

    International Nuclear Information System (INIS)

    Woywod, Dirk; Schoen, Martin

    2004-01-01

    We investigate the wetting of planar, nonselective solid substrates by symmetric binary mixtures where the attraction strength between like molecules of components A and B is the same, that is ε AA ε BB AB vertical bar ≤ vertical bar ε AA vertical bar, that is by varying the attraction between a pair of unlike molecules. By means of mean-field lattice density functional calculations we observe a rich wetting behaviour as a result of the interplay between ε AB and the attraction of fluid molecules by the solid substrate ε W . In accord with previous studies we observe complete wetting only above the critical end point if the bulk mixture exhibits a moderate to weak tendency to liquid-liquid phase separation even for relatively strong fluid-substrate attraction. However, in this case layering transitions may arise below the temperature of the critical end point. For strongly phase separating mixtures complete wetting is observed for all temperatures T ≥0 along the line of discontinuous phase transitions in the bulk

  18. Mixtures of glyme and aprotic-protic ionic liquids as electrolytes for energy storage devices

    Science.gov (United States)

    Stettner, T.; Huang, P.; Goktas, M.; Adelhelm, P.; Balducci, A.

    2018-05-01

    Ionic liquids (ILs) have been proven to be promising electrolytes for electrochemical energy storage devices such as supercapacitors and lithium ion batteries. In the last years, due to deficiency in storage of lithium on earth, innovative systems, such as sodium-based devices, attracted considerable attention. IL-based electrolytes have been proposed also as electrolytes for these devices. Nevertheless, in the case of these systems, the advantages and limits of IL-based electrolytes need to be further investigated. In this work we report an investigation about the chemical-physical properties of mixtures containing bis(2-methoxyethyl)ether diglyme (2G), which is presently considered as one of the most interesting solvents for sodium-based devices, and the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) and 1-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PyrH4TFSI). The conductivities, viscosities, and densities of several mixtures of 2G and these ILs have been investigated. Furthermore, their impact on the electrochemical behaviour of activated carbon composite electrodes has been considered. The results of this investigation indicate that these mixtures are promising electrolytes for the realization of advanced sodium-based devices.

  19. Excess molar volumes of binary mixtures (an ionic liquid + water): A review

    International Nuclear Information System (INIS)

    Bahadur, Indra; Letcher, Trevor M.; Singh, Sangeeta; Redhi, Gan G.; Venkatesu, Pannuru; Ramjugernath, Deresh

    2015-01-01

    Highlights: • Review of excess molar volumes for mixtures of (ionic liquids (ILs) + H 2 O). • 6 cation groups reviewed including imidazolium and pyrrolidinium groups. • 13 anions reviewed including tetraborate, triflate, and hydrogensulphate. • Effects of anion, cation, and temperature investigated. - Abstract: This review covers recent developments in the area of excess molar volumes for mixtures of {ILs (1) + H 2 O (2)} where ILs refers to ionic liquids involving cations: imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium and ammonium groups; and anions: tetraborate, triflate, hydrogensulphate, methylsulphate, ethylsulphate, thiocyanate, dicyanamide, octanate, acetate, nitrate, chloride, bromide, and iodine. The excess molar volumes of aqueous ILs were found to cover a wide range of values for the different ILs (ranging from −1.7 cm 3 · mol −1 to 1.2 cm 3 · mol −1 ). The excess molar volumes increased with increasing temperature for all systems studied in this review. The magnitude and in some cases the sign of the excess molar volumes for all the aqueous ILs mixtures, apart from the ammonium ILs, were very dependent on temperature. This was particularly important in the dilute IL concentration region. It was found that the sign and magnitude of the excess molar volumes of aqueous ILs (for ILs with hydrophobic cations), was more dependent on the nature of the anion than on the cation

  20. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan Nasef; Mohamed, Mahmoud [Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2014-05-15

    A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100-400W/cm{sup 2} and three frequencies ranging from 25-68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm{sup 2} and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress.

  1. The precise measurement of the (vapour + liquid) equilibrium properties for (CO2 + isobutane) binary mixtures

    International Nuclear Information System (INIS)

    Nagata, Y.; Mizutani, K.; Miyamoto, H.

    2011-01-01

    Recently, it has been suggested that natural working fluids, such as CO 2 , hydrocarbons, and their mixtures, could provide a long-term alternative to fluorocarbon refrigerants. (Vapour + liquid) equilibrium (VLE) data for these fluids are essential for the development of equations of state, and for industrial process such as separation and refinement. However, there are large inconsistencies among the available literature data for (CO 2 + isobutane) binary mixtures, and therefore provision of reliable and new measurements with expanded uncertainties is required. In this study, we determined precise VLE data using a new re-circulating type apparatus, which was mainly designed by Akico Co., Japan. An equilibrium cell with an inner volume of about 380 cm 3 and two optical windows was used to observe the phase behaviour. The cell had re-circulating loops and expansion loops that were immersed in a thermostatted liquid bath and air bath, respectively. After establishment of a steady state in these loops, the compositions of the samples were measured by a gas chromatograph (GL Science, GC-3200). The VLE data were measured for CO 2 /propane and CO 2 /isobutane binary mixtures within the temperature range from 300 K to 330 K and at pressures up to 7 MPa. These data were compared with the available literature data and with values predicted by thermodynamic property models.

  2. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment

    International Nuclear Information System (INIS)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan Nasef; Mohamed, Mahmoud

    2014-01-01

    A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100-400W/cm 2 and three frequencies ranging from 25-68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm 2 and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress

  3. Photo polymerization-induced vertical phase separation and homeotropic alignment in liquid crystal and polymer mixtures

    International Nuclear Information System (INIS)

    Kang, Hyo; Joo, Sangwoo; Kang, Daeseung

    2012-01-01

    We presented a novel method for the homeotropic alignment of LC by using the irradiation of UV light on the LC/NOA65 mixture cell, in which the photo-initiated-polymerization-induced phase separation lowers the surface energy. When the amount of polymer content is sufficiently small, the gravel and network patterns were formed at the substrates via the vertical phase separation. We found that surface roughness plays an important role in the formation of the homeotropic alignment of LC. We also observed the alignment transition of the cells by varying the mixing ratio of LC/NOA65 or the UV radiation time. Furthermore, the present proposed method has great potential for application in display devices. For decades, studies on the alignment of liquid crystal (LC) molecules have been of significant interest due to their immediate applications for display devices and the intriguing physiochemical properties they exhibit at the surface of mixtures. Usually, homeotropic (or vertical) alignment, in which the long axes of the LC molecules are oriented in a direction perpendicular to the surface, is achieved by using surfactants such as lecithin, silanes or polyimide. Recently homeotropic alignment of liquid crystal molecules was achieved by irradiating photosensitive polymers, by doping nanoparticles into LC, by utilizing nano/micro patterns, or by incorporating self-assembled monolayers (SAMs). However, a clear understanding about the alignment mechanism is still elusive. In this paper, we report a novel method for homeotropic alignment of LC by utilizing the phase separation of LC/polymer mixtures

  4. The (gas + liquid) critical properties and phase behaviour of some binary alkanol (C2-C5) + alkane (C5-C12) mixtures

    International Nuclear Information System (INIS)

    Morton, David W.; Lui, Matthew P.W.; Young, Colin L.

    2003-01-01

    Previously, the investigation of the (gas + liquid) critical properties of (alkanol + alkane) mixtures has focussed on (primary alkanol + straight chain alkane) mixtures. The experimental data available for (alkanol + alkane) mixtures, which include secondary or tertiary alcohols and/or branched chain alkanes, are extremely limited. This work extends the existing body of data on (alkanol + alkane) mixtures to include mixtures containing these components. Here the (gas + liquid) critical temperatures of 29 {alkanol (C 2 -C 5 ) + alkane (C 5 -C 12 )} mixtures are reported. All the (gas + liquid) critical lines for the binary mixtures studied are continuous, indicating they obey either Type I or Type II phase behaviour

  5. Surface tensions of binary mixtures of ionic liquids with bis(trifluoromethylsulfonyl)imide as the common anion

    International Nuclear Information System (INIS)

    Oliveira, M.B.; Domínguez-Pérez, M.; Cabeza, O.; Lopes-da-Silva, J.A.; Freire, M.G.; Coutinho, J.A.P.

    2013-01-01

    Highlights: • Novel data for the surface tensions of mixtures [C 4 mim][NTf 2 ] + [C 4 C 1 mim]/[C 3 mpy]/[C 3 mpyr]/[C 3 mpip][NTf 2 ] are presented. • γ were determined at a fixed temperature, 298.2 K, and at atmospheric pressure, for the whole composition range. • Surface tension deviations showed the near ideal behavior of the selected mixtures. • Gibbs adsorption isotherms showed the surface preferential adsorption of one ionic liquid over the other. -- Abstract: While values for thermophysical properties of ionic liquids are becoming widely available, data for ionic liquid mixtures are still scarce. In an effort to overcome this limitation and understand the behavior of ionic liquid mixtures, novel data for the surface tension of mixtures composed of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C 4 mim][NTf 2 ], with other ionic liquids with a common anion, namely 1-butyl-2,3-dimethylimidazolium, [C 4 C 1 mim] + , 3-methyl-1-propylpyridinium, [C 3 mpy] + , 1-methyl-1-propylpyrrolidinium, [C 3 mpyr] + , and 1-methyl-1-propylpiperidinium, [C 3 mpip] + , were measured at T = 298.2 K and atmospheric pressure over the entire composition range. From the surface tension deviations derived from the experimental results, it was possible to infer that the cation alkyl chain length of the second ionic liquid constituting the mixture has a stronger influence in the ideal mixture behavior than the type of family the ionic liquid cation belongs to. The Gibbs adsorption isotherms, estimated from the experimental values, show that the composition of the vapor–liquid interface is not the same as that of the bulk and that the interface is richer in the ionic liquid with the lowest surface tension, [C 4 mim][NTf 2

  6. Fingerprint analysis, multi-component quantitation, and antioxidant activity for the quality evaluation of Salvia miltiorrhiza var. alba by high-performance liquid chromatography and chemometrics.

    Science.gov (United States)

    Zhang, Danlu; Duan, Xiaoju; Deng, Shuhong; Nie, Lei; Zang, Hengchang

    2015-10-01

    Salvia miltiorrhiza Bge. var. alba C.Y. Wu and H.W. Li has wide prospects in clinical practice. A useful comprehensive method was developed for the quality evaluation of S. miltiorrhiza var. alba by three quantitative parameters: high-performance liquid chromatography fingerprint, ten-component contents, and antioxidant activity. The established method was validated for linearity, precision, repeatability, stability, and recovery. Principal components analysis and hierarchical clustering analysis were both used to evaluate the quality of the samples from different origins. The results showed that there were category discrepancies in quality of S. miltiorrhiza var. alba samples according to the three quantitative parameters. Multivariate linear regression was adopted to explore the relationship between components and antioxidant activity. Three constituents, namely, danshensu, rosmarinic acid, and salvianolic acid B, significantly correlated with antioxidant activity, and were successfully elucidated by the optimized multivariate linear regression model. The combined use of high-performance liquid chromatography fingerprint analysis, simultaneous multicomponent quantitative analysis, and antioxidant activity for the quality evaluation of S. miltiorrhiza var. alba is a reliable, comprehensive, and promising approach, which might provide a valuable reference for other herbal products in general to improve their quality control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Vapour pressures and osmotic coefficients of binary mixtures containing alcohol and pyrrolidinium-based ionic liquids

    International Nuclear Information System (INIS)

    Calvar, N.; Domínguez, Á.; Macedo, E.A.

    2013-01-01

    Highlights: • Osmotic coefficients of alcohols with pyrrolidinium ILs are determined. • Experimental data were correlated with extended Pitzer model of Archer and MNRTL. • Mean molal activity coefficients and excess Gibbs free energies were calculated. • The results have been interpreted in terms of interactions. -- Abstract: The osmotic and activity coefficients and vapour pressures of mixtures containing primary (1-propanol, 1-butanol and 1-pentanol) and secondary (2-propanol and 2-butanol) alcohols with pyrrolidinium-based ionic liquids (1-butyl-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide, C 4 MpyrNTf 2 , and 1-butyl-1-methyl pyrrolidinium trifluoromethanesulfonate, C 4 MpyrTFO) have been experimentally determined at T = 323.15 K. For the experimental measurements, the vapour pressure osmometry technique has been used. The results on the influence of the structure of the alcohol and of the anion of the ionic liquid on the determined properties have been discussed and compared with literature data. For the correlation of the osmotic coefficients obtained, the Extended Pitzer model of Archer and the Modified Non-Random Two Liquids model were applied. The mean molal activity coefficients and the excess Gibbs energy for the studied mixtures were calculated from the parameters obtained in the correlation

  8. Experimental vapor-liquid equilibria data for binary mixtures of xylene isomers

    Directory of Open Access Journals (Sweden)

    W.L. Rodrigues

    2005-09-01

    Full Text Available Separation of aromatic C8 compounds by distillation is a difficult task due to the low relative volatilities of the compounds and to the high degree of purity required of the final commercial products. For rigorous simulation and optimization of this separation, the use of a model capable of describing vapor-liquid equilibria accurately is necessary. Nevertheless, experimental data are not available for all binaries at atmospheric pressure. Vapor-liquid equilibria data for binary mixtures were isobarically obtained with a modified Fischer cell at 100.65 kPa. The vapor and liquid phase compositions were analyzed with a gas chromatograph. The methodology was initially tested for cyclo-hexane+n-heptane data; results obtained are similar to other data in the literature. Data for xylene binary mixtures were then obtained, and after testing, were considered to be thermodynamically consistent. Experimental data were regressed with Aspen Plus® 10.1 and binary interaction parameters were reported for the most frequently used activity coefficient models and for the classic mixing rules of two cubic equations of state.

  9. Process and apparatus for fractionating close-boiling components of a multi-component system

    International Nuclear Information System (INIS)

    Tsao, U.

    1983-01-01

    A process and apparatus are described for the fractionation of close-boiling components of a multi-component system comprising at least two fractionation columns A, B in series having a plurality of equilibrium stages in which the vapor stream from a downstream fractionation column B is compressed by a compressor and passed into a lower portion of a preceding fractionation column A and a liquid bottom stream from any one of said columns except the last is expanded by an orifice sufficiently to convey the resulting liquid-vapor mixture to the upper portion of the next fractionation column B. In a particularly preferred embodiment, the compressed overhead vapor stream is passed in heat transfer relationship to a liquid stream withdrawn from the preceding fractionation column A prior to introduction into the lower portion of such preceding fractionation column A. In one of the claims, the multi-component close-boiling system is a deuterium oxide-water solution. (author)

  10. Convective boiling heat transfer of mixture of immiscible two-liquids

    International Nuclear Information System (INIS)

    Hijikata, K.; Ito, H.; Mori, Y.

    1987-01-01

    Thermal energy conversion of low or middle temperature difference to electric power is conventionally made by the Rankine cycle using the organic compound as a working fluid. However, the energy conversion efficiency from thermal energy to electric power is limited by the pinch point temperature difference in the high temperature side heat exchanging. In order to avoid the efficiency ceiling due to the pinch point temperature difference, utilization of mixture of miscible two liquids as the working fluid of the Rankine cycle has been proposed and its cycle efficiency has been calculated. However, in the miscible mixture, mutual diffusion process is considered to greatly affect the thermo-fluid characteristics, but has not been clarified yet because of its complexity

  11. Robust optimization of psychotropic drug mixture separation in hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rakić, Tijana; Jovanović, Marko; Dumić, Aleksandra; Pekić, Marina; Ribić, Sanja; Stojanović, Biljana Jancić

    2013-01-01

    This paper presents multiobjective optimization of complex mixtures separation in hydrophilic interaction liquid chromatography (HILIC). The selected model mixture consisted of five psychotropic drugs: clozapine, thioridazine, sulpiride, pheniramine and lamotrigine. Three factors related to the mobile phase composition (acetonitrile content, pH of the water phase and concentration of ammonium acetate) were optimized in order to achieve the following goals: maximal separation quality, minimal total analysis duration and robustness of an optimum. The consideration of robustness in early phases of the method development provides reliable methods with low risk for failure in validation phase. The simultaneous optimization of all goals was achieved by multiple threshold approach combined with grid point search. The identified optimal separation conditions (acetonitrile content 83%, pH of the water phase 3.5 and ammonium acetate content in water phase 14 mM) were experimentally verified.

  12. Properties for binary mixtures of (acetamide + KSCN) eutectic ionic liquid with ethanol at several temperatures

    International Nuclear Information System (INIS)

    Liu, Baoyou; Liu, Yaru

    2016-01-01

    Graphical abstract: Viscosity deviation (Δη) against mole fraction of ethanol for [ethanol(1) + [(acetamide + KSCN)](2)] mixtures at several temperatures. The solid lines represent the corresponding correlation by the Redlich–Kister equation. - Highlights: • Density, viscosity and conductivity of (acetamide + KSCN) ethanol solution were measured. • V"E and Δη were calculated from the measured density and viscosity respectively. • V"E and Δη were both well fitted by a third order Redlich–Kister equation. • The conductivity was described by a Castell–Amis equation. - Abstract: Density, viscosity and conductivity were determined for the binary mixture of (acetamide + KSCN) eutectic ionic liquid with ethanol at T = (298.15, 303.15, 308.15, 313.15, 318.15) K and atmospheric pressure. The density, viscosity values decrease with the increase of temperature while the conductivity values increase over the whole concentration range. The density and viscosity values decrease monotonically with the increase of the mole content of ethanol. From the experimental values, excess molar volumes V"E and viscosity deviations Δη for the binary mixture were calculated and V"E and Δη were both well fitted by a third order Redlich–Kister equation. With the increase mole fraction of ethanol, the conductivity values of the mixture increase gradually first and then decrease dramatically, and the highest conductivity values appear at 0.8562 mol fraction of ethanol. The relationship between the conductivity and the mole fraction of ethanol can be well described by a Castell–Amis equation. The interactions with ethanol molecular and ions of (acetamide + KSCN) ionic liquid were discussed by FTIR spectra.

  13. Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}

    International Nuclear Information System (INIS)

    Alvarez, Victor H.; Mattedi, Silvana; Martin-Pastor, Manuel; Aznar, Martin; Iglesias, Miguel

    2011-01-01

    Research highlights: → This paper reports the density and speed of sound data of binary mixtures {2-hydroxy ethylammonium acetate + (water, or methanol, or ethanol)} measured between the temperatures (298.15 and 313.15) K at atmospheric pressure. → The aggregation, dynamic behavior, and hydrogen-bond network were studied using thermo-acoustic, X-ray, and NMR techniques. → The Peng-Robinson equation of state, coupled with the Wong-Sandler mixing rule using the COSMO-SAC model predicted the density of the solutions with relative mean deviations below than 3.0%. - Abstract: In this work, density and speed of sound data of binary mixtures of an ionic liquid consisting of {2-hydroxy ethylammonium acetate (2-HEAA) + (water, methanol, or ethanol)} have been measured throughout the entire concentration range, from the temperature of (288.15 to 323.15) K at atmospheric pressure. The excess molar volumes, variations of the isentropic compressibility, the apparent molar volume, isentropic apparent molar compressibility, and thermal expansion coefficient were calculated from the experimental data. The excess molar volumes were negative throughout the whole composition range. Compressibility data in combination with low angle X-ray scattering and NMR measurements proved that the presence of micelles formed due to ion pair interaction above a critical concentration of the ionic liquid in the mixtures. The Peng-Robinson equation of state coupled with the Wong-Sandler mixing rule and COSMO-SAC model was used to predict densities and the calculated deviations were lower than 3%, for binary mixtures in all composition range.

  14. Thermodynamic and spectroscopic studies on binary mixtures of imidazolium ionic liquids in ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupinder [Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana (India); Singh, Tejwant; Rao, K. Srinivasa [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002 (India); Pal, Amalendu, E-mail: palchem@sify.com [Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana (India); Kumar, Arvind, E-mail: arvind@csmcri.org [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002 (India)

    2012-01-15

    Highlights: > Macroscopic and molecular level interactions of imidazolium ionic liquids in ethylene glycol have been determined. > V{sub m}{sup E} is positive over the whole composition range for all the investigated mixtures. > Multiple hydrogen bonding interactions are prevailing between unlike components in mixtures of varying strengths. > Microscopic level interactions are not reflected in the mixing macroscopic behaviour. - Abstract: The thermodynamic behaviour of imidazolium based ionic liquids (ILs), 1-butyl-3-methylimidazolium chloride [C{sub 4}mim][Cl]; 1-octyl-3-methylimidazolium chloride [C{sub 8}mim][Cl], and 1-butyl-3-methylimidazolium methylsulfate [C{sub 4}mim][C{sub 1}OSO{sub 3}] in ethylene glycol [HOCH{sub 2}CH{sub 2}OH] (EG) have been investigated over the whole composition range at T = (298.15 to 318.15) K to probe the interactions in bulk. For the purpose, volumetric properties such as excess molar volume, V{sub m}{sup E}, apparent molar volume, V{sub {phi},i}, and its limiting values at infinite dilution, V{sub {phi},i}{sup {infinity}}, have been calculated from the experimental density measurements. The molecular scale interactions between ionic liquids and EG have been investigated through Fourier transform infrared (FTIR) and {sup 1}H NMR spectroscopy. The shift in the vibrational frequency for C-H stretch of aromatic ring protons of ILs and O-H stretch of EG molecules has been analysed. The NMR chemical shifts for various protons of RTILS or EG molecules and their deviations show multiple hydrogen bonding interactions of varying strengths between RTILs and EG in their binary mixtures.

  15. Electro-optic and dielectric properties of new binary ferroelectric and antiferroelectric liquid crystalline mixtures

    Czech Academy of Sciences Publication Activity Database

    Fitas, J.; Marzec, M.; Kurp, K.; Żurowska, M.; Tykarska, M.; Bubnov, Alexej

    2017-01-01

    Roč. 44, č. 9 (2017), s. 1468-1476 ISSN 0267-8292 R&D Projects: GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : liquid crystals * ferroelectric and antiferroelectric phase * binary mixture * dielectric spectroscopy * switching time * tilt angle Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 2.661, year: 2016

  16. Study of Molecular Interactions in Binary Liquid Mixtures by Acoustical Method at 303K

    Directory of Open Access Journals (Sweden)

    P. Paul Divakar

    2012-01-01

    Full Text Available Ultrasonic velocity and density measurements were made in two binary liquid mixtures Isopropyl acetate (IPA and Isobutyl acetate (IBA with cyclohexanone (CY as a common component at 303K, at fixed frequency of 2MHz using single crystal variable path interferometer and specific gravity bottle respectively. The experimental data have been used to calculate the acoustic impedance, adiabatic compressibility, inter molecular free length and molar volume. The excess thermodynamic parameters have been evaluated and discussed in the light of molecular interactions.

  17. Analysis of organic solvents and liquid mixtures using a fiber-tip evaporation sensor

    Science.gov (United States)

    Preter, Eyal; Donlagic, Denis; Artel, Vlada; Katims, Rachel A.; Sukenik, Chaim N.; Zadok, Avi

    2014-05-01

    The instantaneous size and rate of evaporation of pendant liquid droplets placed on the cleaved facet of a standard fiber are reconstructed based on reflected optical power. Using the evaporation dynamics, the relative contents of ethanol in ethanol-water binary mixtures are assessed with 1% precision and different blends of methanol in gasoline are properly recognized. The latter application, in particular, is significant for the use of alternative fuels in the automotive sector. Also, ten organic solvents are identified based on their evaporation from a fiber facet coated with a hydrophobic, selfassembled monolayer.

  18. Theoretical Rocket Performance of Liquid Methane with Several Fluorine-Oxygen Mixtures Assuming Frozen Composition

    Science.gov (United States)

    Gordon, Sanford; Kastner, Michael E

    1958-01-01

    Theoretical rocket performance for frozen composition during expansion was calculated for liquid methane with several fluorine-oxygen mixtures for a range of pressure ratios and oxidant-fuel ratios. The parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, and thermal conductivity. The maximum calculated value of specific impulse for a chamber pressure of 600 pounds per square inch absolute (40.827atm) and an exit pressure of 1 atmosphere is 315.3 for 79.67 percent fluorine in the oxidant.

  19. Experimental determination and prediction of liquid-solid equilibria for binary (methyl palimitate + naphthalene mixture

    Directory of Open Access Journals (Sweden)

    Benziane M.

    2013-07-01

    Full Text Available Solid-liquid equilibria for binary mixtures of {Methyl palmitate (1 + Naphthalene (2} were measured using differential scanning calorimeter (DSC. Simple eutectic behaviours for this system are observed. The experimental results were correlated by means of the NRTL, Wilson, UNIQUAC and ideal models. The root-mean-square deviations of the solubility temperatures for all measured data vary from 0.5477 K (for UNIQUAC model to 3.34K; the deviation depend on the model used. The best solubility correlation was obtained with UNIQUAC model and this observation confirms previous results.

  20. Generation of thermodynamic data for organic liquid mixtures from molecular simulations

    DEFF Research Database (Denmark)

    Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing

    2007-01-01

    Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic thermodynamic property models. Two benchmark systems, benzene-methyl acetate at 303.15 K and benzene-ethanol at 298.......15 K, are used. MD simulations are performed in the isobaric-isothermal ensemble (NPT) at the respective temperatures and at a pressure of 1 atm. We use the CHARMM27 force field at different mixing ratios. We sample positions to determine the binary (between the centers-of-mass of molecules of a pair...

  1. Ultrasonic absorption and velocity dispersion of binary mixture liquid crystal MBBA/EBBA

    International Nuclear Information System (INIS)

    Choi, K.

    1979-01-01

    The effect of phase transitions and the partial magnetic alignment for liquid crystal molecules on the ultrasonic absorption and velocity dispersion has been investigated. The binary mixture of Shiff base liquid crystals MBBA/EBBA (55:45 mole %) showed anomalous ultrasonic absorption and velocity dispersion at eutectic (Tsub(m) = -20 0 C) and clearing point (Tsub(c) = 50 0 C) at the frequency range of 5 MHz, 10MHz, 15MHz and 30 MHz. The experimental data were analyzed in terms of relaxation time and Fixman theory. The anisotropy of the propagation velocity due to the magnetic alignment was about 0.9% (the deviation between velocities propagating parallel and perpendicular to the applied field). (author)

  2. Mathematical Model for Multicomponent Adsorption Equilibria Using Only Pure Component Data

    DEFF Research Database (Denmark)

    Marcussen, Lis

    2000-01-01

    A mathematical model for nonideal adsorption equilibria in multicomponent mixtures is developed. It is applied with good results for pure substances and for prediction of strongly nonideal multicomponent equilibria using only pure component data. The model accounts for adsorbent...

  3. CFD-DEM based numerical simulation of liquid-gas-particle mixture flow in dam break

    Science.gov (United States)

    Park, Kyung Min; Yoon, Hyun Sik; Kim, Min Il

    2018-06-01

    This study investigates the multiphase flow of a liquid-gas-particle mixture in dam break. The open source codes, OpenFOAM and CFDEMproject, were used to reproduce the multiphase flow. The results of the present study are compared with those of previous results obtained by numerical and experimental methods, which guarantees validity of present numerical method to handle the multiphase flow. The particle density ranging from 1100 to 2500 kg/m3 is considered to investigate the effect of the particle density on the behavior of the free-surface and the particles. The particle density has no effect on the liquid front, but it makes the particle front move with different velocity. The time when the liquid front reach at the opposite wall is independent of particle density. However, such time for particle front decrease as particle density increases, which turned out to be proportional to particle density. Based on these results, we classified characteristics of the movement by the front positions of the liquid and the particles. Eventually, the response of the free-surface and particles to particle density is identified by three motion regimes of the advancing, overlapping and delaying motions.

  4. Nonlinear Raman spectroscopy of liquid crystals: orientational alignment and switching behaviour in a ferroelectric liquid crystal mixture

    Science.gov (United States)

    Grofcsik, Andras

    Picosecond inverse Raman spectroscopy has been employed to probe the alignment behaviour and switching characteristics of a 6 mum thick ferroelectric liquid crystal based on a host mixture of fluorinated phenyl biphenylcarboxylates and a chiral dopant. Optical bistability is observed in the Raman signal on application of dc electric fields of opposite polarity. For particular polarities of the applied field, the Raman signals display a cos4theta dependence on the angle of rotation around the beam direction. Reorientational rate constants of 300 mus and 590 mus are observed for the aromatic core at the high-voltage limit for the rise and decay of the 1600 cm-1 Raman signal on application of a switching ac electric field.

  5. An Improved Computational Method for the Calculation of Mixture Liquid-Vapor Critical Points

    Science.gov (United States)

    Dimitrakopoulos, Panagiotis; Jia, Wenlong; Li, Changjun

    2014-05-01

    Knowledge of critical points is important to determine the phase behavior of a mixture. This work proposes a reliable and accurate method in order to locate the liquid-vapor critical point of a given mixture. The theoretical model is developed from the rigorous definition of critical points, based on the SRK equation of state (SRK EoS) or alternatively, on the PR EoS. In order to solve the resulting system of nonlinear equations, an improved method is introduced into an existing Newton-Raphson algorithm, which can calculate all the variables simultaneously in each iteration step. The improvements mainly focus on the derivatives of the Jacobian matrix, on the convergence criteria, and on the damping coefficient. As a result, all equations and related conditions required for the computation of the scheme are illustrated in this paper. Finally, experimental data for the critical points of 44 mixtures are adopted in order to validate the method. For the SRK EoS, average absolute errors of the predicted critical-pressure and critical-temperature values are 123.82 kPa and 3.11 K, respectively, whereas the commercial software package Calsep PVTSIM's prediction errors are 131.02 kPa and 3.24 K. For the PR EoS, the two above mentioned average absolute errors are 129.32 kPa and 2.45 K, while the PVTSIM's errors are 137.24 kPa and 2.55 K, respectively.

  6. Thermophysical properties of energetic ionic liquids/nitric acid mixtures: insights from molecular dynamics simulations.

    Science.gov (United States)

    Hooper, Justin B; Smith, Grant D; Bedrov, Dmitry

    2013-09-14

    Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4-methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3(-)] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P(®) potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3(-)] does not. The structural, thermodynamic, and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non-equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutual diffusion coefficients for the mixtures. The latter have been employed in continuum-level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.

  7. (Liquid + liquid) equilibrium at T = 298.15 K for ternary mixtures of alkane + aromatic compounds + imidazolium-based ionic liquids

    International Nuclear Information System (INIS)

    Domínguez, Irene; Requejo, Patricia F.; Canosa, José; Domínguez, Ángeles

    2014-01-01

    Highlights: • The LLE ternary phase diagrams with 2 imidazolium-based ionic liquids were measured. • The LLE data were experimental determined at T = 298.15 K and p = 1 atm. • Mixtures of (octane or nonane) and (benzene or toluene or ethylbenzene) were studied. • LLE experimental data were correlated with NRTL and UNIQUAC thermodynamic models. - Abstract: Ionic liquids, with their unique and tunable properties, can be an advantageous alternative as extractive solvents in separation processes involving systems containing aliphatic and aromatic hydrocarbons. In this work, (liquid + liquid) equilibrium (LLE) data for the ternary systems {nonane (1) + benzene (2) + 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMim][NTf 2 ] (3)}, {octane (1) + benzene (2) + 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf 2 ] (3)}, and {nonane (1) + aromatic compound (benzene or toluene or ethylbenzene) (2) + [PMim][NTf 2 ] (3)} were determined at T = 298.15 K and atmospheric pressure. Selectivity and solute distribution ratio, derived from the equilibrium data, were used to determine if this ionic liquid can be considered as a potential solvent for the separation of aromatic compounds (benzene, toluene, and ethylbenzene) from alkanes (octane and nonane). The experimental data were satisfactorily correlated with NRTL and UNIQUAC models

  8. Ionic Liquid-Catalyzed Green Protocol for Multi-Component Synthesis of Dihydropyrano[2,3-c]pyrazoles as Potential Anticancer Scaffolds

    Directory of Open Access Journals (Sweden)

    Urja D. Nimbalkar

    2017-09-01

    Full Text Available A series of 6-amino-4-substituted-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles 5a–j were synthesized via one-pot, four-component condensation reactions of aryl aldehydes 1a–j, propanedinitrile (2, hydrazine hydrate (3 and ethyl acetoacetate (4 under solvent-free conditions. We report herein the use of the Brønsted acid ionic liquid (BAIL triethylammonium hydrogen sulphate [Et3NH][HSO4] as catalyst for this multi-component synthesis. Compared with the available reaction methodology, this new method has consistent advantages, including excellent yields, a short reaction time, mild reaction conditions and catalyst reusability. Selected synthesized derivatives were evaluated for in vitro anticancer activity against four human cancer cell lines viz. melanoma cancer cell line (SK-MEL-2, breast cancer cell line(MDA-MB-231, leukemia cancer cell line (K-562 and cervical cancer cell line (HeLa. Compounds 5b, 5d, 5g, 5h and 5j exhibited promising anticancer activity against all selected human cancer cell lines, except HeLa. Molecular docking studies also confirmed 5b and 5d as good lead molecules. An in silico ADMET study of the synthesized anticancer agents indicated good oral drug-like behavior and non-toxic nature.

  9. Generalized modeling of multi-component vaporization/condensation phenomena for multi-phase-flow analysis

    International Nuclear Information System (INIS)

    Morita, K.; Fukuda, K.; Tobita, Y.; Kondo, Sa.; Suzuki, T.; Maschek, W.

    2003-01-01

    A new multi-component vaporization/condensation (V/C) model was developed to provide a generalized model for safety analysis codes of liquid metal cooled reactors (LMRs). These codes simulate thermal-hydraulic phenomena of multi-phase, multi-component flows, which is essential to investigate core disruptive accidents of LMRs such as fast breeder reactors and accelerator driven systems. The developed model characterizes the V/C processes associated with phase transition by employing heat transfer and mass-diffusion limited models for analyses of relatively short-time-scale multi-phase, multi-component hydraulic problems, among which vaporization and condensation, or simultaneous heat and mass transfer, play an important role. The heat transfer limited model describes the non-equilibrium phase transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of non-condensable gases and multi-component mixture on V/C processes. Verification of the model and method employed in the multi-component V/C model of a multi-phase flow code was performed successfully by analyzing a series of multi-bubble condensation experiments. The applicability of the model to the accident analysis of LMRs is also discussed by comparison between steam and metallic vapor systems. (orig.)

  10. Liquid entrainment and off-take from the two-phase mixture surface in a vessel

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; No, Hee Cheon

    2003-01-01

    In order to determine the bleed capacity of the Safety Depressurization System (SDS) of Advanced Power Reactor 1400 (APR1400) in the case of Total Loss of Feed Water (TLOFW), we performed an experimental study of liquid entrainment and liquid off-take from the swelled two-phase mixture surface in a vessel. A total of 220 experimental data on the entrainment and off-take are obtained using a test vessel with a height of 2.0m and an inner diameter of 0.3m, and a top break with a diameter of 0.05m. Two-phase mixture levels are measured by an ultrasonic sensor within ±1.77% with respect to the visual level data. Droplet entrainment data are obtained with and without the top break and are compared with the existing pool entrainment data. The present droplet entrainment data have higher values than those of the existing pool entrainment due to (a) the pulling toward the break of the liquid deentrained on the top wall of the vessel and (b) gas acceleration in the vicinity of the break. In the present experiment, droplet entrainment, Efg, strongly depends upon jg/h and is proportional to the 7th power of jg/h in the same way as the off-take data. The empirical correlation for the onset of off-take is developed in terms of the Froude number (Frg) at the break and the non-dimensional inception height (hb/d). This correlation shows agreement with the present experimental data within ±15%. The present off-take quality data show agreement with Schrock's off-take quality correlation with the r.m.s. error of 15.8%

  11. Automated high performance liquid chromatography and liquid scintillation counting determination of pesticide mixture octanol/water partition rates

    International Nuclear Information System (INIS)

    Moody, R.P.; Carroll, J.M.; Kresta, A.M.

    1987-01-01

    Two novel methods are reported for measuring octanol/water partition rates of pesticides. A liquid scintillation counting (LSC) method was developed for automated monitoring of 14 C-labeled pesticides partitioning in biphasic water/octanol cocktail systems with limited success. A high performance liquid chromatography (HPLC) method was developed for automated partition rate monitoring of several constituents in a pesticide mixture, simultaneously. The mean log Kow +/- SD determined from triplicate experimental runs were for: 2,4-D-DMA (2,4-dichlorophenoxyacetic acid dimethylamine), 0.65 +/- .17; Deet (N,N-diethyl-m-toluamide), 2.02 +/- .01; Guthion (O,O-dimethyl-S-(4-oxo-1,2,3-benzotriazin-3(4H)-ylmethyl) phosphorodithioate), 2.43 +/- .03; Methyl-Parathion (O,O-dimethyl-O-(p-nitrophenyl) phosphorothioate), 2.68 +/- .05; and Fenitrothion (O,O-dimethyl O-(4-nitro-m-tolyl) phosphorothioate), 3.16 +/- .03. A strong positive linear correlation (r = .9979) was obtained between log Kow and log k' (log Kow = 2.35 (log k') + 0.63). The advantages that this automated procedure has in comparison with the standard manual shake-flask procedure are discussed

  12. Synergy in lipofection by cationic lipid mixtures: superior activity at the gel-liquid crystalline phase transition.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C

    2007-07-12

    Some mixtures of two cationic lipids including phospholipid compounds (O-ethylphosphatidylcholines) as well as common, commercially available cationic lipids, such as dimethylammonium bromides and trimethylammonium propanes, deliver therapeutic DNA considerably more efficiently than do the separate molecules. In an effort to rationalize this widespread "mixture synergism", we examined the phase behavior of the cationic lipid mixtures and constructed their binary phase diagrams. Among a group of more than 50 formulations, the compositions with maximum delivery activity resided unambiguously in the solid-liquid crystalline two-phase region at physiological temperature. Thus, the transfection efficacy of formulations exhibiting solid-liquid crystalline phase coexistence is more than 5 times higher than that of formulations in the gel (solid) phase and over twice that of liquid crystalline formulations; phase coexistence occurring at physiological temperature thus appears to contribute significantly to mixture synergism. This relationship between delivery activity and physical property can be rationalized on the basis of the known consequences of lipid-phase transitions, namely, the accumulation of defects and increased disorder at solid-liquid crystalline phase boundaries. Packing defects at the borders of coexisting solid and liquid crystalline domains, as well as large local density fluctuations, could be responsible for the enhanced fusogenicity of mixtures. This study leads to the important conclusion that manipulating the composition of the lipid carriers so that their phase transition takes place at physiological temperature can enhance their delivery efficacy.

  13. Application of the cubic-plus-association equation of state to mixtures with polar chemicals and high pressures

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    was given to low pressures and liquid-liquid equilibria. In this work, CPA is applied to two classes of mixtures containing polar chemicals for which high-pressure data are available: acetone-containing systems and dimethyl ether mixtures. They are of both scientific and industrial importance. Moreover, CPA......The cubic-plus-association (CPA) equation of state has been previously applied to vapor-liquid, liquid-liquid, and solid-liquid equilibria of mixtures containing associating compounds (water, alcohols, glycols, acids, amines). Although some high-pressure applications have been presented, emphasis...... to conventional models such as MHV2. Very good results are also obtained for multicomponent vapor-liquid-liquid equilibria for mixtures containing gases, water, and dimethyl ether. Finally, it is shown that high-pressure SLE can be predicted based on interaction parameters obtained from low-pressure SLE data....

  14. Numerical modeling of a vaporizing multicomponent droplet

    Science.gov (United States)

    Megaridis, C. M.; Sirignano, W. A.

    The fundamental processes governing the energy, mass, and momentum exchange between the liquid and gas phases of vaporizing, multicomponent liquid droplets have been investigated. The axisymmetric configuration under consideration consists of an isolated multicomponent droplet vaporizing in a convective environment. The model considers different volatilities of the liquid components, variable liquid properties due to variation of the species concentrations, and non-Fickian multicomponent gaseous diffusion. The bicomponent droplet model was employed to examine the commonly used assumptions of unity Lewis number in the liquid phase and Fickian gaseous diffusion. It is found that the droplet drag coefficients, the vaporization rates, and the related transfer numbers are not influenced by the above assumptions in a significant way.

  15. Phase-field simulation of solidification in multicomponent alloys coupled with thermodynamic and diffusion mobility databases

    International Nuclear Information System (INIS)

    Zhang Ruijie; Jing Tao; Jie Wanqi; Liu Baicheng

    2006-01-01

    To simulate quantitatively the microstructural evolution in the solidification process of multicomponent alloys, we extend the phase-field model for binary alloys to multicomponent alloys with consideration of the solute interactions between different species. These interactions have a great influence not only on the phase equilibria but also on the solute diffusion behaviors. In the model, the interface region is assumed to be a mixture of solid and liquid with the same chemical potential, but with different compositions. The simulation presented is coupled with thermodynamic and diffusion mobility databases, which can accurately predict the phase equilibria and the solute diffusion transportation in the whole system. The phase equilibria in the interface and other thermodynamic quantities are obtained using Thermo-Calc through the TQ interface. As an example, two-dimensional computations for the dendritic growth in Al-Cu-Mg ternary alloy are performed. The quantitative solute distributions and diffusion matrix are obtained in both solid and liquid phases

  16. Application of approximations for joint cumulative k-distributions for mixtures to FSK radiation heat transfer in multi-component high temperature non-LTE plasmas

    International Nuclear Information System (INIS)

    Maurente, André; França, Francis H.R.; Miki, Kenji; Howell, John R.

    2012-01-01

    Approximations for joint cumulative k-distribution for mixtures are efficient for full spectrum k-distribution (FSK) computations. These approximations provide reduction of the database that is necessary to perform FSK computation when compared to the direct approach, which uses cumulative k-distributions computed from the spectrum of the mixture, and also less computational expensive when compared to techniques in which RTE's are required to be solved for each component of the mixture. The aim of the present paper is to extend the approximations for joint cumulative k-distributions for non-LTE media. For doing that, a FSK to non-LTE media formulation well-suited to be applied along with approximations for joint cumulative k-distributions is presented. The application of the proposed methodology is demonstrated by solving the radiation heat transfer in non-LTE high temperature plasmas composed of N, O, N 2 , NO, N 2 + and mixtures of these species. The two more efficient approximations, that is, the superposition and multiplication are employed and analyzed.

  17. Genetic algorithm-based wavelength selection in multicomponent spectrophotometric determination by PLS: Application on sulfamethoxazole and trimethoprim mixture in bovine milk

    Directory of Open Access Journals (Sweden)

    Givianrad Hadi Mohammad

    2013-01-01

    Full Text Available The simultaneous determination of sulfamethoxazole (SMX and trimethoprim (TMP mixtures in bovine milk by spectrophotometric method is a difficult problem in analytical chemistry, due to spectral interferences. By means of multivariate calibration methods, such as partial least square (PLS regression, it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. Genetic algorithm (GA is a suitable method for selecting wavelengths for PLS calibration of mixtures with almost identical spectra without loss of prediction capacity using the spectrophotometric method. In this study, the calibration model based on absorption spectra in the 200-400 nm range for 25 different mixtures of SMX and TMP Calibration matrices were formed form samples containing 0.25-20 and 0.3-21 μg mL-1 for SMX and TMP, at pH=10, respectively. The root mean squared error of deviation (RMSED for SMX and TMP with PLS and genetic algorithm partial least square (GAPLS were 0.242, 0.066 μgmL-1 and 0.074, 0.027 μg mL-1, respectively. This procedure was allowed the simultaneous determination of SMX and TMP in synthetic and real samples and good reliability of the determination was proved.

  18. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... and high degree of predictability of the theory developed....... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  19. Positron Spur Reactions with Excess Electrons and Anions in Liquid Organic Mixtures of Electron Acceptors

    DEFF Research Database (Denmark)

    Lévay, B.; Mogensen, O. E.

    1980-01-01

    By means of the positron lifetime technique we have measured positronium (Ps) yields in mixtures of nonpolar liquids with various electron scavengers which bind the electron fairly weakly (1–2 eV) in stable anions. The results are discussed with reference to recent excess electron works, and new...... experiments on anions and excess electrons are proposed. The minimum of the Ps yield versus CS2 concentration curves caused by partly delocalization of electrons on several scavenger molecules, which was observed previously in saturated aliphatic hydrocarbons occurred also in the saturated cyclic hydrocarbon...... cyclohexane, but did not appear in the aromatic benzene. This might be explained by the weak electron acceptor property of aromatics. In the Ps yield versus SF6 concentration curve in hexane a similar minimum appeared as in the CS2 case, probably by the same reason. By adding 0.8 M CS2 to the system...

  20. Gas-liquid equilibrium in mixtures of methane + m-xylene, and methane + m-cresol

    Energy Technology Data Exchange (ETDEWEB)

    Simnick, J J; Sebastian, H M; Lin, H M; Chao, K C

    1979-01-01

    Compositions of saturated equilibrium liquid and vapor phases as determined in a flow apparatus for methane + m-xylene mixtures at 370/sup 0/, 450/sup 0/, 520/sup 0/, and 600/sup 0/F (190/sup 0/, 230/sup 0/, 270/sup 0/, and 310/sup 0/C) and up to 200 atm, and for methane + m-cresol at 370/sup 0/, 520/sup 0/, 660/sup 0/, and 730/sup 0/F (190/sup 0/, 270/sup 0/, 350/sup 0/, and 390/sup 0/C) and up to 250 atm. Compared with published data on its solubility in benzene, methane appears to be more soluble in m-xylene at similar conditions but substantially less soluble in m-cresol. This difference indicates that the functional groups CH/sub 3/ and OH play different roles in determining the solubility of methane.

  1. Efficacy of Ultrasonic Homogenization in the Separation of Benzene-n-Heptane Mixture by Liquid Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Chung, T.S. [Department of Chemical Engineering, Sung Kyun Kwan University, Seoul (Korea)

    1999-04-01

    In the separation of benzene-n-heptane mixture by liquid membrane, the efficacy of ultrasonic homogenization in emulsification was studied with two anionic surfactants. The two anionic surfactants used were triethanolamine lauryl sulfate and sodium polyoxyethylene(2) lauryl ether sulfate. The two anionic surfactants used were triethanolamine lauryl sulfate and sodium polyoxyethylene(2) lauryl ether stifle. The highest value of the separation factor obtained by ultrasonic homogenization was approximately three times as large as that for triethanolamine lauryl sulfate and one and a half times as large as that for sodium polyoxyethylene(2) lauryl sulfate when the mechanical stirring was used on the same operational conditions. The lowest membrane breakup was observed when the highest value of the separation factor was achieved with sodium polyoxyethylene(2) lauryl sulfate. 14 refs., 7 figs., 1 tab.

  2. Multiphase flow modeling of molten material-vapor-liquid mixtures in thermal nonequilibrium

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Park, Goon Cherl; Bang, Kwang Hyun

    2000-01-01

    This paper presents a numerical model of multiphase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multiphase flow conditions

  3. Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals

    International Nuclear Information System (INIS)

    Mousazadeh, M.H.; Faramarzi, E.; Maleki, Z.

    2010-01-01

    We developed an equation of state based on statistical-mechanical perturbation theory for pure and mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a monatomic system, segment size, σ, and segment energy, ε. In this work, we calculate the saturation and compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary and ternary alkali metal alloys of Cs-K, Na-K, Na-K-Cs, at temperatures from the freezing point up to several hundred degrees above the boiling point are presented. The calculated results are in good agreement with experimental data.

  4. Cesium transport across flat sheet supported liquid membrane containing CCD in NPOE-dodecane mixture

    International Nuclear Information System (INIS)

    Kandwal, P.; Mohapatra, P.K.

    2012-01-01

    137 Cs is an important fission product of concern for separation scientists working in the area of radioactive waste management. Removal of this long lived heat and gamma ray emitting radionuclides (t 1/2 = 30.2 y) from radioactive waste would drastically bring down the MANREM problem. In addition to this, the recovered cesium can find applications in irradiators for sterilization of foods, medical accessories, sewage sludge treatment, etc. Chlorinated cobalt dicarbollide (CCD) in nitrobenzene and xylene mixture as the diluent has been used for the extraction of radio-cesium from acidic wastes. Other studies have used phenyl trifluoromethylsulfone (FS-13) as the diluent and have been used for supported liquid membrane (SLM) based separation methods which not only have the advantage of simultaneous extraction and stripping, but also drastically cut down the VOC inventory which is welcome from environmental concern point of view

  5. Volumetric and sound speed study of ammonium-based ionic liquid mixtures with ethanol

    International Nuclear Information System (INIS)

    Santos, Ângela F.S.; Moita, Maria-Luísa C.J.; Silva, João F.C.C.; Lampreia, Isabel M.S.

    2017-01-01

    Highlights: • Densities and sound speeds were measured at five temperatures in three ammonium-based ionic liquids mixtures with ethanol. • Excess molar and limiting molar and partial molar properties were derived and interpreted. • Specific interactions and packing effects were compared in the three systems. • Reduced variables were used to highlight differences in cation size and solvophilic effects. - Abstract: Thermodynamic studies embracing molecular interactions between ionic liquids (ILs) and molecular solvents are scarce and are required to explore molecular interactions and structural effects with interest in engineering applications. Ammonium-based are interesting ILs since they can be tailored to provide information concerning both chain length and solvophobic/solvophilic effects. In this work from accurately measured density and sound speed data in the systems ethanol + {[N 4111 ]; [N 4441 ] or [choline]}[NTf 2 ] derived quantities such as excess partial molar volumes and isentropic compressions including their limiting values were obtained. The reasoning of the results permitted to conclude that while in the [N 4441 ][NTf 2 ] case packing effects due to the difference in size of the components prevail, in the other two cases specific interaction ethanol–cation explains both the lower minimums in the excess properties and the higher magnitude of the negative limiting excess partial molar, volumes and isentropic compression values in the mixture containing [N 4111 ][NTf 2 ] in relation to [N 4441 ][NTf 2 ] and the negative limiting partial molar isentropic compression in the [choline][NTf 2 ] case in contrast with positive values for the other two ILs.

  6. Hydroxyl group as IR probe to detect the structure of ionic liquid-acetonitrile mixtures

    Science.gov (United States)

    Xu, Jing; Deng, Geng; Zhou, Yu; Ashraf, Hamad; Yu, Zhi-Wu

    2018-06-01

    Task-specific ionic liquids (ILs) are those with functional groups introduced in the cations or anions of ILs to bring about specific properties for various tasks. In this work, the hydrogen bonding interactions between a hydroxyl functionalized IL 1-(2-hydroxylethyl)-3-methylimidazolium tetrafluoroborate ([C2OHMIM][BF4]) and acetonitrile were investigated in detail by infrared spectroscopy, excess spectroscopy, two-dimensional correlation spectroscopy, combined with hydrogen nuclear magnetic resonance and density functional theory calculations (DFT). The hydroxyl group rather than C2sbnd H is found to be the main interaction site in the cation. And the ν(Osbnd H) is more sensitive than v(C-Hs) to the environment, which has been taken as an intrinsic probe to reflect the structural change of IL. Examining the region of ν(Osbnd H), by combining excess spectroscopy and DFT calculation, a number of species were identified in the mixtures. Other than the hydrogen bond between a cation and an anion, the hydroxyl group allows the formation of a hydrogen bond between two like-charged cations. The Osbnd H⋯O hydrogen bonding interactions in the hydroxyl-mediated cation-cation complexes are cooperative, while Osbnd H⋯F and C2sbnd H⋯F hydrogen bonding interactions in cation-anion complexes are anti-cooperative. These in-depth studies on the properties of the ionic liquid-acetonitrile mixtures may shed light on exploring their applications as mixed solvents and understanding the nature of doubly ionic hydrogen bonds.

  7. Solid-Liquid Equilibria for the Binary Mixtures 1,4-Xylene + Ethylbenzene and 1,4-Xylene + Toluene

    DEFF Research Database (Denmark)

    Huyghe, Raphaël; Rasmussen, Peter; Thomsen, Kaj

    2004-01-01

    Solid-liquid equilibrium (SLE) data for the binary mixtures 1,4-xylene + ethylbenzene, and 1,4-xylene + toluene have been measured using differential scanning calorimetry (DSC) in the temperature range from 133.15 K to 293.15 K.......Solid-liquid equilibrium (SLE) data for the binary mixtures 1,4-xylene + ethylbenzene, and 1,4-xylene + toluene have been measured using differential scanning calorimetry (DSC) in the temperature range from 133.15 K to 293.15 K....

  8. Thermodynamic properties of binary liquid mixtures of diethylenetriamine with alcohols at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Gyan Prakash, E-mail: gyan.dubey@rediffmail.com [Department of Chemistry, Kurukshetra University, Kurukshetra 136119 (India); Kumar, Krishan [Department of Chemistry, Kurukshetra University, Kurukshetra 136119 (India)

    2011-09-20

    Highlights: {yields} Thermodynamic study of diethylenetriamine + 2-methyl-1-propanol, +2-propanol or +1-butanol have been made. {yields} Excess molar volumes and isentropic compressibility were determined. {yields} Types of interactions were discussed based on derived properties. - Abstract: Densities, {rho}, viscosities, {eta}, and speeds of sound, u, were measured for the binary liquid mixtures containing diethylenetriamine with 2-methyl-1-propanol, 2-propanol and 1-butanol at 293.15, 298.15, 303.15, 308.15 and 313.15 K. From density and speed of sound data, excess molar volumes, V{sub m}{sup E} and deviations in isentropic compressibility, {Delta}{kappa}{sub s}, and speed of sound, {Delta}u have been evaluated. Viscosity data were used to compute deviations in viscosity and excess Gibbs energy of activation of viscous flow {Delta}G*{sup E} at 298.15, 303.15 and 308.15 K. A Redlich-Kister type equation was applied to fit the excess molar volumes and deviations in isentropic compressibility, speed of sound and viscosity data. The viscosity data have been correlated with the equations of Grunberg-Nissan, Tamura-Kurata, Heric-Brewer and of Hind et al. All the binary systems of the present study have negative values of excess molar volumes and deviations in isentropic compressibility over whole composition range and at all temperatures which indicates strong interactions between the components of binary mixtures.

  9. Thermodynamic properties of binary liquid mixtures of diethylenetriamine with alcohols at different temperatures

    International Nuclear Information System (INIS)

    Dubey, Gyan Prakash; Kumar, Krishan

    2011-01-01

    Highlights: → Thermodynamic study of diethylenetriamine + 2-methyl-1-propanol, +2-propanol or +1-butanol have been made. → Excess molar volumes and isentropic compressibility were determined. → Types of interactions were discussed based on derived properties. - Abstract: Densities, ρ, viscosities, η, and speeds of sound, u, were measured for the binary liquid mixtures containing diethylenetriamine with 2-methyl-1-propanol, 2-propanol and 1-butanol at 293.15, 298.15, 303.15, 308.15 and 313.15 K. From density and speed of sound data, excess molar volumes, V m E and deviations in isentropic compressibility, Δκ s , and speed of sound, Δu have been evaluated. Viscosity data were used to compute deviations in viscosity and excess Gibbs energy of activation of viscous flow ΔG* E at 298.15, 303.15 and 308.15 K. A Redlich-Kister type equation was applied to fit the excess molar volumes and deviations in isentropic compressibility, speed of sound and viscosity data. The viscosity data have been correlated with the equations of Grunberg-Nissan, Tamura-Kurata, Heric-Brewer and of Hind et al. All the binary systems of the present study have negative values of excess molar volumes and deviations in isentropic compressibility over whole composition range and at all temperatures which indicates strong interactions between the components of binary mixtures.

  10. Effects of complex organic mixtures of coal liquid on cardiovascular function

    International Nuclear Information System (INIS)

    Springer, D.L.; Sasser, L.B.; Zangar, R.C.; Mahlum, D.D.

    1986-01-01

    The most common diseases in the US are those involving the cardiovascular system. Exposure to certain environmental chemicals and complex mixtures may be involved in some aspects of cardiovascular disease. They have previously reported that high-boiling coal liquids resulted in several affects related to the cardiovascular system of the rate when exposed via whole-body inhalation to the mixture. The most striking observation was a dose dependent elevation in arterial blood pressure for heavy distillate (HD) exposed rates compared to control animals at 2 weeks. They also noted an increase in heart rate and plasma and blood volume. Additional rats were evaluated 6 weeks after exposure, to determine whether these effects represented permanent changes in cardiovascular function, and the effects appeared to be reversible after this longer period. During the past year they have completed the assays of the studies initiated previously and have addressed some possible factors which could explain the effects that they observed. Electrolytes in plasma of rats exposed to the HD were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Plasma aldosterone and angiotensin were measured by radioimmunoassays, and plasma cholesterol, triglycerides, and high-density lipoprotein were evaluated with an Abbott VP bichromatic chemistry analyzer. In addition, a comparison of the blood pressure of control rats and rats fed a restricted diet were made, to determine if the anorexia which resulted from HD exposure could be responsible for the changes they observed in cardiovascular function

  11. Kinetic energy of He atoms in liquid 4He-3He mixtures

    International Nuclear Information System (INIS)

    Senesi, R.; Andreani, C.; Fielding, A.L.; Mayers, J.; Stirling, W.G.

    2003-01-01

    Deep inelastic neutron scattering measurements on liquid 3 He- 4 He mixtures in the normal phase have been performed on the VESUVIO spectrometer at the ISIS pulsed neutron source at exchanged wave vectors of about q≅120.0 A -1 . The neutron Compton profiles J(y) of the mixtures were measured along the T=1.96 K isotherm for 3 He concentrations, x, ranging from 0.1 to 1.0 at saturated vapor pressures. Values of kinetic energies of 3 He and 4 He atoms as a function of x, (x), were extracted from the second moment of J(y). The present determinations of (x) confirm previous experimental findings for both isotopes and, in the case of 3 He, a substantial disagreement with theory is found. In particular (x) for the 3 He atoms is found to be independent of concentration yielding a value 3 (x=0.1)≅12 K, much lower than the value suggested by the most recent theoretical estimates of approximately 19 K

  12. Dynamic depletion attraction between colloids suspended in a phase-separating binary liquid mixture

    International Nuclear Information System (INIS)

    Araki, Takeaki; Tanaka, Hajime

    2008-01-01

    Understanding interactions between colloids (or nanoparticles) immersed in a phase-separating binary mixture is of both fundamental and technological importance. Here we report a novel type of interparticle attractive interaction of a purely dynamic origin, which is found by a coarse-grained numerical simulation. Due to surface wetting effects, there are strong diffusion fluxes towards particles just after the initiation of phase separation of the matrix binary liquid mixture. The flux in the region between particles soon becomes weaker than that in the other regions since the depletion zones formed around particles overlap selectively between the particles. The resulting imbalance of the diffusion flux induces interparticle attractive interactions, i.e., the osmotic force pushes particles closer. We confirm that this wetting-induced 'dynamic' depletion force can be stronger than a van der Waals force and a capillary force that is induced by the interfacial tension, and thus plays a dominant role in the early stage of particle aggregation. We note that this novel interaction originating from the momentum conservation law may be generic to particles acting as diffusional sinks or sources. (fast track communication)

  13. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com [Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar Block, Sector 1, Kolkata-700064 (India)

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  14. A quantum mechanical strategy to investigate the structure of liquids: the cases of acetonitrile, formamide, and their mixture.

    Science.gov (United States)

    Mennucci, Benedetta; da Silva, Clarissa O

    2008-06-05

    A computational strategy based on quantum mechanical (QM) calculations and continuum solvation models is used to investigate the structure of liquids (either neat liquids or mixtures). The strategy is based on the comparison of calculated and experimental spectroscopic properties (IR-Raman vibrational frequencies and Raman intensities). In particular, neat formamide, neat acetonitrile, and their equimolar mixture are studied comparing isolated and solvated clusters of different nature and size. In all cases, the study seems to indicate that liquids, even when strongly associated, can be effectively modeled in terms of a shell-like system in which clusters of strongly interacting molecules (the microenvironments) are solvated by a polarizable macroenvironment represented by the rest of the molecules. Only taking into proper account both these effects can a correct picture of the liquid structure be achieved.

  15. Diffusion-stress coupling in liquid phase during rapid solidification of binary mixtures

    International Nuclear Information System (INIS)

    Sobolev, S.L.

    2014-01-01

    An analytical model has been developed to describe the diffusion-viscous stress coupling in the liquid phase during rapid solidification of binary mixtures. The model starts with a set of evolution equations for diffusion flux and viscous pressure tensor, based on extended irreversible thermodynamics. It has been demonstrated that the diffusion-stress coupling leads to non-Fickian diffusion effects in the liquid phase. With only diffusive dynamics, the model results in the nonlocal diffusion equations of parabolic type, which imply the transition to complete solute trapping only asymptotically at an infinite interface velocity. With the wavelike dynamics, the model leads to the nonlocal diffusion equations of hyperbolic type and describes the transition to complete solute trapping and diffusionless solidification at a finite interface velocity in accordance with experimental data and molecular dynamic simulation. -- Highlights: •We propose the diffusion-stress coupling model for binary solidification. •The coupling arises at deep undercooling. •With diffusive dynamics, the models result in parabolic transfer equations. •With the wavelike dynamics, the models lead to hyperbolic transfer equations. •The coupling strongly affects the solute partition coefficient

  16. Phase behavior of multicomponent membranes: Experimental and computational techniques

    DEFF Research Database (Denmark)

    Bagatolli, Luis; Kumar, P.B. Sunil

    2009-01-01

    Recent developments in biology seems to indicate that the Fluid Mosaic model of membrane proposed by Singer and Nicolson, with lipid bilayer functioning only as medium to support protein machinery, may be too simple to be realistic. Many protein functions are now known to depend on the compositio....... This review includes basic foundations on membrane model systems and experimental approaches applied in the membrane research area, stressing on recent advances in the experimental and computational techniques....... membranes. Current increase in interest in the domain formation in multicomponent membranes also stems from the experiments demonstrating liquid ordered-liquid disordered coexistence in mixtures of lipids and cholesterol and the success of several computational models in predicting their behavior...

  17. Organic Zeolite Analogues Based on Multi-Component Liquid Crystals: Recognition and Transformation of Molecules within Constrained Environments

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishida

    2011-01-01

    Full Text Available In liquid crystals (LCs, molecules are confined in peculiar environments, where ordered alignment and certain mobility are realized at the same time. Considering these characteristics, the idea of “controlling molecular events within LC media” seems reasonable. As a suitable system for investigating this challenge, we have recently developed a new class of ionic LCs; the salts of amphiphilic carboxylic acids with 2-amino alcohols, or those of carboxylic acids with amphiphilic 2-amino alcohols, have a strong tendency to exhibit thermotropic LC phases. Because of the noncovalent nature of the interaction between molecules, one of the two components can easily be exchanged with, or transformed into, another molecule, without distorting the original LC architecture. In addition, both components are common organic molecules, and a variety of compounds are easily available. Taking advantage of these characteristics, we have succeeded in applying two‑component LCs as chiral media for molecular recognition and reactions. This review presents an overview of our recent studies, together with notable reports related to this field.

  18. Experimental validation of a kinetic multi-component mechanism in a wide HCCI engine operating range for mixtures of n-heptane, iso-octane and toluene: Influence of EGR parameters

    International Nuclear Information System (INIS)

    Machrafi, Hatim

    2008-01-01

    The parameters that are present in exhaust gas recirculation (EGR) are believed to provide an important contribution to control the auto-ignition process of the homogeneous charge compression ignition (HCCI) in an engine. For the investigation of the behaviour of the auto-ignition process, a kinetic multi-component mechanism has been developed in former work, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene. This paper presents an experimental validation of this mechanism, comparing the calculated pressure, heat release, ignition delays and CO 2 emissions with experimental data performed on a HCCI engine. The validation is performed in a broad range of EGR parameters by varying the dilution by N 2 and CO 2 from 0 to 46 vol.%, changing the EGR temperature from 30 to 120 deg. C, altering the addition of CO and NO from 0 to 170 ppmv and varying the addition of CH 2 O from 0 to 1400 ppmv. These validations were performed respecting the HCCI conditions for the inlet temperature and the equivalence ratio. The results showed that the mechanism is validated experimentally in dilution ranges going up to 21-30 vol.%, depending on the species of dilution and over the whole range of the EGR temperature. The mechanism is validated over the whole range of CO and CH 2 O addition. As for the addition of NO, the mechanism is validated quantitatively up to 50 ppmv and qualitatively up to 170 ppmv

  19. The study of different methods of bio-liquids production from wood biomass and from biomass/polyolefine mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N. [Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, 660049 Krasnoyarsk, K. Marx str., 42 (Russian Federation); Siberian Federal University, Svobodny, 79, 660041 Krasnoyarsk (Russian Federation); Sharypov, V.I.; Kuznetsova, S.A.; Taraban' ko, V.E.; Ivanchenko, N.M. [Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, 660049 Krasnoyarsk, K. Marx str., 42 (Russian Federation)

    2009-08-15

    The different methods of wood biomass thermal liquefaction at atmospheric and elevated pressures were investigated in order to select the more effective one. Wood biomass liquefaction by melted formate/alkali mixtures and with the use of metallic iron/Na{sub 2}CO{sub 3} system is carried out at low pressures. But these methods give only moderate yield of bio-liquids. The highest yield of bio-liquid was obtained in the process of biomass dissolvation in methanol media in the presence of Zn-Cr-Fe catalyst at 20 MPa. Co-pyrolysis and co-hydropyrolysis of biomass/polyolefine mixtures makes it possible to obtain the rather high yield of bio-liquid at the moderate pressures (3 MPa). (author)

  20. DETERMINATION OF SOLID-LIQUID EQUILIBRIA DATA FOR MIXTURES OF HEAVY HYDROCARBONS IN A LIGHT SOLVENT

    Energy Technology Data Exchange (ETDEWEB)

    F.V. Hanson; J.V. Fletcher; Karthik R.

    2003-06-01

    A methodology was developed using an FT-IR spectroscopic technique to obtain solid-liquid equilibria (SLE) data for mixtures of heavy hydrocarbons in significantly lighter hydrocarbon diluents. SLE was examined in multiple Model Oils that were assembled to simulate waxes. The various Model oils were comprised of C-30 to C-44 hydrocarbons in decane. The FT-IR technique was used to identify the wax precipitation temperature (WPT). The DSC technique was also used in the identification of the onset of the two-phase equilibrium in this work. An additional Model oil made up of C-20 to C-30 hydrocarbons in decane was studied using the DSC experiment. The weight percent solid below the WPT was calculated using the FT-IR experimental results. The WPT and the weight percent solid below the WPT were predicted using an activity coefficient based thermodynamic model. The FT-IR spectroscopy method is found to successfully provide SLE data and also has several advantages over other laboratory-based methods.

  1. Densities and derived thermodynamic properties of binary (alkanol + boldine) mixtures in the compressed liquid region

    International Nuclear Information System (INIS)

    Durán-Zenteno, Moisés S.; Pérez-López, Hugo I.; Galicia-Luna, Luis A.; Elizalde-Solis, Octavio

    2012-01-01

    Highlights: ► We measured densities for {alkanol (ethanol or 1-propanol) + boldine} mixtures. ► Liquid densities are reported in the ranges of (1 to 20) MPa and (313 to 363) K. ► Thermodynamic derived properties were calculated using an empirical correlation. ► Extrapolated densities at atmospheric pressure agree with the literature data. - Abstract: In this work, densities of two binary systems of {alkanol (ethanol and 1-propanol) + boldine} are measured at temperatures from (313 to 363) K and pressures up to 20 MPa using an Anton Paar vibrating tube densimeter. Each (alkanol + boldine) system was prepared at five diluted compositions with respect to the alkaloid. These are (x 2 = 0.0012, 0.0074, 0.0136, 0.0196, 0.0267) and (x 2 = 0.0018, 0.0046, 0.0077, 0.0112, 0.0142) mixed in ethanol and 1-propanol, respectively. Experimental densities are correlated using an empirical 6-parameter equation with deviations within 0.04%. Extrapolated densities at atmospheric pressure agree with the literature data. Isobaric expansivity, isothermal compressibility, thermal pressure coefficient, and internal pressure have been calculated.

  2. Comparative study of physical properties of binary mixtures of halogen free ionic liquids with alcohols

    International Nuclear Information System (INIS)

    Alkhaldi, Khaled H.A.E.; Al-Jimaz, Adel S.; AlTuwaim, Mohammad S.

    2017-01-01

    Highlights: • Physical properties of binary mixtures of halogen free ILs with C 3 , C 4 and C 5 were invetigated. • Densities, refractive indices and speed of sound were measured. • V E , K s E , u D and n D E were calculated using the experimental data. • Speed of sound data were analyzed using different theories and relations. • Different mixing rules were used to predict the experimental refractive indices. - Abstract: Densities, refractive indices and speeds of sound along with their excess or deviation properties for both 1,3-dimethylimidazolium methylsulfate ([dmim][MeSO 4 ]) and 1-ethyl-3-methylimidazolium methylsulfate ([emim][MeSO 4 ]) with 1-propanol, 1-butanol and 1-pentanol over the entire range of mole fraction are reported at temperatures ranging from 298.15 K to 313.15 K and atmospheric pressure. Isentropic and excess isentropic compressibilities for both ionic liquids with 1-alcohols were calculated from the experimental results. Excess and deviation properties were further correlated using the Redlich-Kister polynomial. The measured speeds of sound were compared to the values obtained from Schaaffs' collision factor theory, Jacobson's intermolecular free length theory of solutions and Nomoto’s relation. In addition, the experimentally obtained refractive indices were compared to the calculated values using Lorentz-Lorenz, Dale-Gladstone and Eykman mixing rules.

  3. Method of extracting iodine from liquid mixtures of iodine, water and hydrogen iodide

    Science.gov (United States)

    Mysels, Karol J.

    1979-01-01

    The components of a liquid mixture consisting essentially of HI, water and at least about 50 w/o iodine are separated in a countercurrent extraction zone by treating with phosphoric acid containing at least about 90 w/o H.sub.3 PO.sub.4. The bottom stream from the extraction zone is substantially completely molten iodine, and the overhead stream contains water, HI, H.sub.3 PO.sub.4 and a small fraction of the amount of original iodine. When the water and HI are present in near-azeotropic proportions, there is particular advantage in feeding the overhead stream to an extractive distillation zone wherein it is treated with additional concentrated phosphoric acid to create an anhydrous HI vapor stream and bottoms which contain at least about 85 w/o H.sub.3 PO.sub.4. Concentration of these bottoms provides phosphoric acid infeed for both the countercurrent extraction zone and for the extractive distillation zone.

  4. Simultaneous biodegradation of volatile and toxic contaminant mixtures by solid–liquid two-phase partitioning bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Poleo, Eduardo E.; Daugulis, Andrew J., E-mail: andrew.daugulis@chee.queensu.ca

    2013-06-15

    Highlights: • We investigate the simultaneous biodegradation of phenol and butyl acetate. • We identify an effective polymer mixture to selectively absorb each of the substrates and decrease their initial concentration. •The polymer mixture is used to overcome the high phenol cytotoxicity and reduce the abiotic losses of butyl acetate associated with volatility. • The solid–liquid Two Phase Partitioning Bioreactor (TPPB) outperforms the liquid–liquid TPPB and the single phase systems. -- Abstract: Microbial inhibition and stripping of volatile compounds are two common problems encountered in the biotreatment of contaminated wastewaters. Both can be addressed by the addition of a hydrophobic auxiliary phase that can absorb and subsequently re-release the substrates, lowering their initial aqueous concentrations. Such systems have been described as Two Phase Partitioning Bioreactors (TPPBs). In the current work the performances of a solid–liquid TPPB, a liquid–liquid TPPB and a single phase reactor for the simultaneous degradation of butyl acetate (the volatile component) and phenol (the toxic component) have been compared. The auxiliary phase used in the solid–liquid TPPB was a 50:50 polymer mixture of styrene–butadiene rubber and Hytrel{sup ®} 8206, with high affinities for butyl acetate and phenol, respectively. The liquid–liquid TPPB employed silicone oil which has fixed physical properties, and had no capacity to absorb the toxic contaminant (phenol). Butyl acetate degradation was enhanced in both TPPBs relative to the single phase, arising from its sequestration into the auxiliary phase, thereby reducing volatilization losses. The solid–liquid TPPB additionally showed a substantial increase in the phenol degradation rate, relative to the silicone oil system, demonstrating the superiority and versatility of polymer based systems.

  5. Equivalence of Brownian dynamics and dynamic Monte Carlo simulations in multicomponent colloidal suspensions.

    Science.gov (United States)

    Cuetos, Alejandro; Patti, Alessandro

    2015-08-01

    We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics (BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions, and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.

  6. Excess Volumes and Excess Isentropic Compressibilities of Binary Liquid Mixtures of Trichloroethylene with Esters at 303.15 K

    Science.gov (United States)

    Ramanaiah, S.; Rao, C. Narasimha; Nagaraja, P.; Venkateswarlu, P.

    2015-11-01

    Exces volumes, VE, and excess isentropic compressibilities, κSE, have been reported as a function of composition for binary liquid mixtures of trichloroethylene with ethyl acetate, n-propyl acetate, and n-butyl acetate at 303.15 K. Isentropic compressibilities are calculated using measured sound speeds and density data for pure components and for binary mixtures. Excess volumes and excess isentropic compressibilities are found to be negative for the three systems studied over the entire composition range at 303.15 K, whereas these values become more negative with an increase of carbon chain length. The results are discussed in terms of intermolecular interactions between unlike molecules.

  7. Liquid viscosity of low-GWP refrigerant mixtures (R32 + R1234yf) and (R125 + R1234yf)

    International Nuclear Information System (INIS)

    Dang, Yagu; Kamiaka, Takumi; Dang, Chaobin; Hihara, Eiji

    2015-01-01

    Highlights: • We measured liquid viscosity of low GWP refrigerant R1234yf binary mixtures. • Viscosity of R1234yf mixtures were correlated with the roughness hard-sphere method. • Viscosity of R1234yf mixtures were correlated with the Grunberg and Nissan method. - Abstract: In this work, the viscosity of R1234yf, (R32 + R1234yf), and (R125 + R1234yf) in one-phase liquid was measured. The combined expanded uncertainty of viscosity measurement apparatus of confidence of 0.95 (k = 2) is about 2.0%. The measurements of mixtures containing (30.0, 50.0, and 70.0) wt% R32 or R125 were carried out between T = (283.0 and 323.0) K (at intervals of T = 5 K) and P = (1.58 and 2.74) MPa, with a moving piston viscometer (VISCOpro 1600, accuracy ±1.0%) and a Coriolis flowmeter (Ultramass MKII, accuracy ±0.001 g/ml). The measured data were correlated with a hard-sphere (RSH) method and the Grunberg and Nissan method. The average absolute deviations are (2.2 and 3.3)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by RSH method, (2.8 and 1.3)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by Grunberg and Nissan method, while (3.5 and 2.4)% for the (R32 + R1234yf) and (R125 + R1234yf) mixtures by RefProp V9.1, respectively

  8. In situ liquid-liquid extraction as a sample preparation method for matrix-assisted laser desorption/ionization MS analysis of polypeptide mixtures

    DEFF Research Database (Denmark)

    Kjellström, Sven; Jensen, Ole Nørregaard

    2003-01-01

    A novel liquid-liquid extraction (LLE) procedure was investigated for preparation of peptide and protein samples for matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). LLE using ethyl acetate as the water-immiscible organic solvent enabled segregation of hydrophobic...... matrix to the organic solvent enhanced the efficiency of the LLE-MALDI MS method for analysis of hydrophobic peptides and proteins. LLE-MALDI MS enabled the detection of the hydrophobic membrane protein bacteriorhodopsin as a component in a simple protein mixture. Peptide mixtures containing...... phosphorylated, glycosylated, or acylated peptides were successfully separated and analyzed by the in situ LLE-MALDI MS technique and demonstrate the potential of this method for enhanced separation and structural analysis of posttranslationally modified peptides in proteomics research....

  9. Experimental validation of a kinetic multi-component mechanism in a wide HCCI engine operating range for mixtures of n-heptane, iso-octane and toluene: Influence of EGR parameters

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [LGPPTS, Ecole Nationale Superieure de Chimie de Paris/ Universite Pierre et Marie Curie (Paris 6), 11, rue de Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

    2008-11-15

    The parameters that are present in exhaust gas recirculation (EGR) are believed to provide an important contribution to control the auto-ignition process of the homogeneous charge compression ignition (HCCI) in an engine. For the investigation of the behaviour of the auto-ignition process, a kinetic multi-component mechanism has been developed in former work, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene. This paper presents an experimental validation of this mechanism, comparing the calculated pressure, heat release, ignition delays and CO{sub 2} emissions with experimental data performed on a HCCI engine. The validation is performed in a broad range of EGR parameters by varying the dilution by N{sub 2} and CO{sub 2} from 0 to 46 vol.%, changing the EGR temperature from 30 to 120 C, altering the addition of CO and NO from 0 to 170 ppmv and varying the addition of CH{sub 2}O from 0 to 1400 ppmv. These validations were performed respecting the HCCI conditions for the inlet temperature and the equivalence ratio. The results showed that the mechanism is validated experimentally in dilution ranges going up to 21-30 vol.%, depending on the species of dilution and over the whole range of the EGR temperature. The mechanism is validated over the whole range of CO and CH{sub 2}O addition. As for the addition of NO, the mechanism is validated quantitatively up to 50 ppmv and qualitatively up to 170 ppmv. (author)

  10. Quantitative NMR spectroscopy of binary liquid mixtures (aldehyde + alcohol) Part I: Acetaldehyde + (methanol or ethanol or 1-propanol)

    International Nuclear Information System (INIS)

    Jaubert, Silke; Maurer, Gerd

    2014-01-01

    Highlights: • Formation of hemiacetal/poly(oxymethylene) hemiacetals in liquid binary mixtures. • Acetaldehyde and a low molecular alcohol (methanol or ethanol or 1-propanol). • Quantitative 13 C NMR spectroscopy at temperatures between (255 and 295) K. • Hemiacetals are the predominant species. • (Acetaldehyde + methanol (50 + 50)) at 255 K: hemiacetal (polymers) >80% (≈10%). -- Abstract: Aldehydes react with alcohols to hemiacetals and poly(oxymethylene) hemiacetals. The chemical reaction equilibria of such reactions, in particular in the liquid state, can have an essential influence on the thermodynamic properties and related phenomena like, for example, on the vapour + liquid phase equilibrium. Therefore, thermodynamic models that aim to describe quantitatively such phase equilibria have to consider the chemical reaction equilibrium in the coexisting phases. This is well known in the literature for systems such as, for example, formaldehyde and methanol. However, experimental information on the chemical reaction equilibria in mixtures with other aldehydes (than formaldehyde) and alcohols is extremely scarce. Therefore, quantitative NMR spectroscopy was used to investigate the chemical reaction equilibria in binary mixtures of acetaldehyde and a single alcohol (here either methanol, ethanol or 1-propanol) at temperatures between (255 and 295) K. The results reveal that the majority of the constituents of the mixture is present as hemiacetal and the first two poly(oxymethylene) hemiacetals: in an equimolar mixture of (acetaldehyde + methanol or ethanol or 1-propanol), between about 90% at T = 255 K and about 75% at 295 K. The mole-fraction based chemical reaction equilibrium constants for the formation of those species were determined and some derived properties are reported

  11. Effect of interaction between inclusions in a gas-liquid mixture on interphase heat and mass transfer

    International Nuclear Information System (INIS)

    Nigmatulin, B.I.; Kroshilin, A.E.; Kroshilin, V.E.

    1979-01-01

    The effect of interaction between inclusions in a gas-liquid mixture on interphase heat and mass transfer is analyzed. It is taken into account that inclusions (bubbles or drops) are not in a pure carrier phase, but in a disperse medium, mean properties of which are determined by the presence of other inclusions in it and by a temperature field around them. The consideration is carried out in the framework of two model of monodisperse mixture, i.e. that with a chaotic distribution of inclusions, and that with a regular distribution, when the distance between centers of inclusions is fixed. The correlation functions method is shown to be effective for the both models. Mean temperature fields around inclusions are determined along with the intensity of interphase heat and mass transfer. The dependences obtained are in a satisfactory agreement with experimental data. The dependence of interphase heat and mass transfer on the structure of disperse mixture is analyzed

  12. Phase behaviors of binary mixtures composed of electron-rich and electron-poor triphenylene discotic liquid crystals

    International Nuclear Information System (INIS)

    An Lingling; Jing Min; Xiao Bo; Bai Xiao-Yan; Zhao Ke-Qing; Zeng Qing-Dao

    2016-01-01

    Disk-like liquid crystals (DLCs) can self-assemble to ordered columnar mesophases and are intriguing one-dimensional organic semiconductors with high charge carrier mobility. To improve their applicable property of mesomorphic temperature ranges, we exploit the binary mixtures of electronic donor-acceptor DLC materials. The electron-rich 2,3,6,7,10,11-hexakis(alkoxy)triphenylenes (C4, C6, C8, C10, C12) and an electron-deficient tetrapentyl triphenylene-2,3,6,10-tetracarboxylate have been prepared and their binary mixtures have been investigated. The mesomorphism of the 1:1 (molar ratio) mixtures has been characterized by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and small angel x-ray scattering (SAXS). The self-assembled monolayer structure of a discogen on a solid-liquid interface has been imaged by the high resolution scanning tunneling microscopy (STM). The match of peripheral chain length has important influence on the mesomorphism of the binary mixtures. (special topic)

  13. Experimental, theoretical and numerical interpretation of thermodiffusion separation for a non-associating binary mixture in liquid/porous layers

    International Nuclear Information System (INIS)

    Ahadi, Amirhossein; Jawad, H.; Saghir, M.Z.; Giraudet, C.; Croccolo, F.; Bataller, H.

    2014-01-01

    Thermodiffusion in a hydrocarbon binary mixture has been investigated experimentally and numerically in a liquid-porous cavity. The solutal separation of the 50% toluene and 50% n-hexane binary mixture induced by a temperature difference at atmospheric pressure has been performed in a new thermodiffusion cell. A new optimized cell design is used in this study. The inner part of the cell is a cylindrical porous medium sandwiched between two liquid layers of the same binary hydrocarbon mixture. Experimental measurement and theoretical estimation of the molecular diffusion and thermodiffusion coefficients showed a good agreement. In order to understand the different regimes occurring in the different parts of the cell, a full transient numerical simulation of the solutal separation of the binary mixture has been performed. Numerical results showed that the lighter species, which are of n-hexane migrated toward the hot surface, while the denser species, which is toluene migrated towards the cold surface. Also, it was found that a good agreement has been reached between experimental measurements and numerical calculations for the solutal separation between the hot and cold surface for different medium porosity. In addition, we used the numerical results to analyse convection and diffusion regions in the cell precisely. (authors)

  14. (Ternary liquid + liquid) equilibria for (water + acetone + α-pinene, or β-pinene, or limonene) mixtures

    International Nuclear Information System (INIS)

    Li Xiaoli; Tamura, Kazuhiro

    2010-01-01

    (Ternary liquid + liquid) equilibria (tie-lines) of (water + acetone + α-pinene) at T = (288.15, 298.15, and 308.15) K and (water + acetone + β-pinene, or limonene) at T = 298.15 K have been measured. The experimental (ternary liquid + liquid) equilibrium data have been correlated successfully by the original UNIQUAC and modified UNIQUAC models. The modified UNIQUAC model reproduced accurately the experimental results for the (water + acetone + α-pinene) system at all the temperatures but fairly agreed with the experimental data for the (water + acetone + β-pinene, or limonene) systems.

  15. Application of High-Resolution Ultrasonic Spectroscopy for analysis of complex formulations. Compressibility of solutes and solute particles in liquid mixtures

    International Nuclear Information System (INIS)

    Buckin, V

    2012-01-01

    The paper describes key aspects of interpretation of compressibility of solutes in liquid mixtures obtained through high-resolution measurements of ultrasonic parameters. It examines the fundamental relationships between the characteristics of solutes and the contributions of solutes to compressibility of liquid mixtures expressed through apparent adiabatic compressibility of solutes, and adiabatic compressibility of solute particles. In addition, it analyses relationships between the adiabatic compressibility of solutes and the measured ultrasonic characteristics of mixtures. Especial attention is given to the effects of solvents on the measured adiabatic compressibility of solutes and on concentration increment of ultrasonic velocity of solutes in mixtures.

  16. Thermodynamic behavior of binary mixtures CnMpyNTf2 ionic liquids with primary and secondary alcohols

    International Nuclear Information System (INIS)

    Calvar, N.; Gómez, E.; Domínguez, Á.; Macedo, E.A.

    2012-01-01

    Highlights: ► Osmotic coefficients of alcohols with C n MpyNTf 2 (n = 2, 3, 4) are determined. ► Experimental data were correlated with Extended Pitzer model of Archer and MNRTL. ► Mean molal activity coefficients and excess Gibbs free energies were calculated. ► The results have been interpreted in terms of interactions. - Abstract: In this paper, the osmotic and activity coefficients and vapor pressures of the binary mixtures containing the ionic liquids 1-ethyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide, C 2 MpyNTf 2 , and 1-methyl-3-propylpyridinium bis(trifluoromethylsulfonyl)imide, C 3 MpyNTf 2 , with 1-propanol, or 2-propanol and the ionic liquid 1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide, C 4 MpyNTf 2 , with 1-propanol or 2-propanol or 1-butanol or 2-butanol were determined at T = 323.15 K using the vapor pressure osmometry technique. The influence of the structure of the alcohol and of the ionic liquid on both coefficients and vapor pressures is discussed and a comparison with literature data on binary mixtures containing ionic liquids with different cations and anion is also performed. Besides, the results have been interpreted in terms of solute–solvent and ion–ion interactions. The experimental osmotic coefficients were correlated using the Extended Pitzer model of Archer and the Modified Non-Random Two Liquids model obtaining standard deviations lower than 0.059 and 0.102 respectively, and the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated.

  17. Form of multicomponent Fickian diffusion coefficients matrix

    International Nuclear Information System (INIS)

    Wambui Mutoru, J.; Firoozabadi, Abbas

    2011-01-01

    Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.

  18. Quantum turbulence in cold multicomponent matter

    Science.gov (United States)

    Pshenichnyuk, Ivan A.

    2018-02-01

    Quantum vortices are pivotal for understanding of phenomena in quantum hydrodynamics. Vortices were observed in different physical systems like trapped dilute Bose-Einstein condensates, liquid helium, exciton-polariton condensates and other types of systems. Foreign particles attached to the vortices often serve for a visualization of the vortex shape and kinematics in superfluid experiments. Fascinating discoveries were made in the field of cold quantum mixtures, where vortices created in one component may interact with the other component. This works raise the fundamental question of the interaction between quantum vortices and matter. The generalized nonlinear Schrodinger equation based formalism is applied here to model three different processes involving the interaction of quantum vortices with foreign particles: propagation of a fast classical particle in a superfluid under the influence of sound waves, scattering of a single fermion by a quantized vortex line and dynamics of vortex pairs doped with heavy bosonic matter. The obtained results allow to to clarify the details of recent experiments and acquire a better understanding of the multicomponent quantum turbulence.

  19. Binary, ternary and quaternary liquid-liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Kraai, G. N.; Heeres, H. J.

    2009-01-01

    This work reports on liquid-liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were

  20. Glass transition behaviour of the quaternary ammonium type ionic liquid, {[DEME][I] + H2O} mixtures

    International Nuclear Information System (INIS)

    Imai, Yusuke; Abe, Hiroshi; Matsumoto, Hitoshi; Shimada, Osamu; Hanasaki, Tomonori; Yoshimura, Yukihiro

    2011-01-01

    By a simple DTA system, the glass transition temperatures of the quaternary ammonium type ionic liquid, {N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium iodide, [DEME][I] + H 2 O} mixtures after quick pre-cooling were measured as a function of water concentration (x mol% H 2 O). Results were compared with the previous results of {[DEME][BF 4 ] + H 2 O} mixtures in which double glass transitions were observed in the water concentration region of (16.5 to 30.0) mol% H 2 O. Remarkably, we observed the double glass transition phenomenon in {[DEME][I] + H 2 O} mixtures too, but the two-T g s regions lie towards the water-rich side of (77.5 to 85.0) mol% H 2 O. These clearly reflect the difference in the anionic effect between BF 4 - and I - on the water structure. The end of the glass-formation region of {[DEME][I] + H 2 O} mixtures is around x = 95.0 mol% H 2 O, and this is comparable to that of {[DEME][BF 4 ] + H 2 O} mixtures (x = 96.0 mol% H 2 O).

  1. Vapor-liquid equilibrium prediction with pseudo-cubic equation of state for binary mixtures containing hydrogen, helium, or neon

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Tanaka, H. (Nihon Univ.,Fukushima, (Japan). Faculty of Enineering)

    1990-03-01

    As an equation of state of vapor-liquid equilibrium, an original pseudo-cubic equation of state was previously proposed by the authors of this report and its study is continued. In the present study, new effective critical values of hydrogen, helium and neon were determined empirically from vapor-liquid equilibrium data of literature values against their critical temperatures, critical pressures and critical volumes. The vapor-liquid equilibrium relations of binary system quantum gas mixtures were predicted combining the conventinal pseudo-cubic equation of state and the new effective critical values, and without using binary heteromolecular interaction parameter. The predicted values of hydrogen-ethylene, helium-propane and neon-oxygen systems were compared with literature values. As a result, it was indicated that the vapor-liquid relations of binary system mixtures containing hydrogen, helium and neon can be predicted with favorable accuracy combining the effective critical values and the three parameter pseudo-cubic equation of state. 37 refs., 3 figs., 4 tabs.

  2. Two-phase mixture level swell and liquid entrainment/off-take in a vessel during rapid depressurization

    International Nuclear Information System (INIS)

    Kim, Chang Hyun

    2004-02-01

    An experimental study has been performed to analyze the two-phase mixture level swell and the liquid entrainment/off-take through the break in a vessel, which are important phenomena to determine the bleed capacity of the Safety Depressurization System (SDS) of Korea Advanced Power Reactor 1400 (APR1400). Three separate experiments are performed in this study: (a) the depressurization and two-phase mixture level swell experiment: (b) the two-phase mixture level measurement experiment: (c) the liquid entrainment and off-take experiment. A series of experiments has been performed using a scaled pressurized vessel in various depressurization conditions to analyze the two-phase mixture level swell and the liquid entrainment/off-take phenomena from the two-phase mixture surface in the first experiment. The test parameters are the initial pressure (10 - 38.75bars), the initial water level (43.7% - 80.0% of full height), the orifice inner diameter (10mm, 17.5mm, and 20mm). The liquid off-take takes place in certain experimental conditions. The measured parameters in the present experiments are axial void fraction distributions, pressures, temperatures in the test vessel, and the mixture density and mass flowrate through the discharge pipe. An assessment of RELAP5/MOD3 code with the present experimental data has been performed. With appropriate nodalization and time step, RELAP5/MOD3 showed reasonable agreement with the present experimental data for the gradual depressurization without liquid off-take. In the case that the off-take takes place, however, RELAP5/MOD3 under-predicts the amount of liquid entrainment/off-take during depressurization. In the second experiment, an assessment of an ultrasonic sensor and a two-wire type capacitance probe for the two-phase mixture level measurement has been performed under the same experimental conditions to adopt an appropriate measurement method for the two-phase mixture level swell and to investigate pool void fraction by the

  3. Multicomponent Syntheses of Macrocycles

    Science.gov (United States)

    Masson, Géraldine; Neuville, Luc; Bughin, Carine; Fayol, Aude; Zhu, Jieping

    How to access efficiently the macrocyclic structure remained to be a challenging synthetic topic. Although many elegant approaches/reactions have been developed, construction of diverse collection of macrocycles is still elusive. This chapter summarized the recently emerged research area dealing with multicomponent synthesis of macrocycles, with particular emphasis on the approach named "multiple multicomponent reaction using two bifunctional building blocks".

  4. Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  5. Composition shift in liquid-recirculation refrigerating systems: an experimental investigation for the pure fluid R134a and the mixture R32/134a

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, G.; Marchesi Donati, F.; Polonara, F. [Ancona Univ. (Italy). Dip. di Energetica; Hewitt, N.J. [University of Ulster at Coleraine, Northern Ireland (United Kingdom). NICERT

    1999-09-01

    The ability of zeotropic mixtures with a remarkable temperature glide to operate in liquid-recirculation systems is investigated and the results of an experimental comparison between the performances of the pure fluid R134a and the zeotropic mixture R32/134a (25/75% by mass) are presented. R134a performs slightly better in the liquid-recirculation mode than in the traditional dry-expansion mode; on the other hand, liquid-recirculation configuration has a detrimental effect on the zeotropic mixture's performance. The reason for this detrimental effect is the mixture component separation which occurs at the liquid/vapor separator. The effect of this separation is investigated using gas chromatograph analysis.

  6. Global phase equilibrium calculations: Critical lines, critical end points and liquid-liquid-vapour equilibrium in binary mixtures

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht

    2007-01-01

    A general strategy for global phase equilibrium calculations (GPEC) in binary mixtures is presented in this work along with specific methods for calculation of the different parts involved. A Newton procedure using composition, temperature and Volume as independent variables is used for calculation...

  7. First measurements of dtμ-cycle characteristics in liquid H/D/T mixture

    International Nuclear Information System (INIS)

    Averin, Yu.P.; Balin, D.V.; Bom, V.R.

    1998-01-01

    The muon catalyzed fusion in dense triple mixture of hydrogen isotopes has been investigated for the first time. The experimental method is based on the registration of neutrons from dtμ fusions by a full absorption detectors in 4π geometry. The measurements have been performed in H/D/T mixture at T = 22 K and φ ≅ 1.1 LHD at four sets of isotope concentrations. The basic parameters of dtμ cycle (neutron yield, cycling rate and total sticking) in H/D/T mixtures are presented and discussed

  8. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M., E-mail: luismiguel.varela@usc.es [Grupo de Nanomateriais e Materia Branda, Departamento de Física da Materia Condensada, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela (Spain); Cabeza, Oscar [Facultade de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, E-15008 A Coruña (Spain); Fedorov, Maxim [Department of Physics, Scottish University Physics Alliance (SUPA), University of Strathclyde, John Anderson Bldg., 107 Rottenrow East, Glasgow G4 0NG (United Kingdom); Lynden-Bell, Ruth M. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF{sub 6}]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO{sub 3}]{sup −} and [PF{sub 6}]{sup −} anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca{sup 2

  9. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    International Nuclear Information System (INIS)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M.; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.

    2015-01-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF 6 ]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO 3 ] − and [PF 6 ] − anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca 2+ cations. No qualitative

  10. Volumetric and surface properties of pure ionic liquid n-octyl-pyridinium nitrate and its binary mixture with alcohol

    International Nuclear Information System (INIS)

    Jiang Haichao; Wang Jianying; Zhao Fengyun; Qi Guodi; Hu Yongqi

    2012-01-01

    Highlights: ► Density and surface tension of [Ocpy][NO 3 ] were measured. ► Thermal expansion coefficient, molecular volume, and standard entropies were obtained. ► The critical temperature and enthalpy of vaporization were discussed. ► Density and surface tension were measured for (ionic liquid + alcohols) mixtures. ► Excess molar volumes and surface tension deviations were fitted to Redlich–Kister equation. - Abstract: The density and surface tension for pure ionic liquid N-octyl-pyridinium nitrate were measured from (293.15 to 328.15) K. The coefficient of thermal expansion, molecular volume, standard entropies, and lattice energy were calculated from the experimental density values. The critical temperature, surface entropy, surface enthalpy, and enthalpy of vaporization were also studied from the experimental surface tension results. Density and surface tension were also determined for binary mixtures of (N-octyl-pyridinium nitrate + alcohol) (methanol, ethanol, and 1-butanol) systems over the whole composition range at 298.15 K and atmospheric pressure. Excess molar volumes and surface tension deviations for the binary systems have been calculated and were fitted to a Redlich–Kister equation to determine the fitting parameters and the root mean square deviations. The partial molar volume, excess partial molar volume, and apparent molar volume of the component IL and alcohol in the binary mixtures were also discussed.

  11. Investigating magnetorheological properties of a mixture of two types of carbonyl iron powders suspended in an ionic liquid

    International Nuclear Information System (INIS)

    Dodbiba, Gjergj; Park, Hyun Seo; Okaya, Katsunori; Fujita, Toyohisa

    2008-01-01

    In this work, properties of a magnetorheological (MR) fluid, prepared by dispersing a mixture of two types of carbonyl iron powders (CIPs) of different sizes, in an ionic liquid (N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate) that is stable from 9 deg. C to ca. 300 deg. C, have been investigated. At first, the random packing density of the mixture was computed as function of mixing ratio of CIP, in order to find out the tendency of the variation. Next, several mixtures, all having the same weight, were prepared at various mixing ratios and dispersed in the ionic liquid, in order to experimentally find the most suitable mixing ratio of CIP. Then, the magnetic clusters of the synthesized MR fluids were observed by using a digital microscope equipped with two permanent magnets, whereas the MR properties were investigated by using a rotation viscometer equipped with a solenoid coil. The experimental results pointed out that the MR fluid with 60 wt% fraction of large particles exhibited the highest MR response

  12. Determination and correlation thermodynamic models for solid–liquid equilibrium of the Nifedipine in pure and mixture organic solvents

    International Nuclear Information System (INIS)

    Wu, Gang; Hu, Yonghong; Gu, Pengfei; Yang, Wenge; Wang, Chunxiao; Ding, Zhiwen; Deng, Renlun; Li, Tao; Hong, Housheng

    2016-01-01

    Highlights: • The solubility increased with increasing temperature. • The data were fitted using the modified Apelblat equation in pure solvents. • The data were fitted using the CNIBS/R-K model in binary solvent mixture. - Abstract: Knowledge of thermodynamic parameters on corresponding solid-liquid equilibrium of nifedipine in different solvents is essential for a preliminary study of pharmaceutical engineering and industrial applications. In this paper, a gravimetric method was used to correct the solid-liquid equilibrium of nifedipine in methanol, ethanol, 1-butanol, acetone, acetonitrile, ethyl acetate and tetrahydrofuran pure solvents as well as in the (tetrahydrofuran + acetonitrile) mixture solvents at temperatures from 278.15 K to 328.15 K under 0.1 MPa. For the temperature range investigation, the solubility of nifedipine in the solvents increased with increasing temperature. The solubility of nifedipine in tetrahydrofuran is superior to other selected pure solvents. The modified Apelblat model, the Buchowski-Ksiazaczak λh model, and the ideal model were adopted to describe and predict the change tendency of solubility. Computational results showed that the modified Apelblat model stood out to be more suitable with the higher accuracy. The solubility values were fitted using a modified Apelblat model, a variant of the combined nearly ideal binary solvent/Redich-Kister (CNIBS/R-K) model and Jouyban-Acree model in (tetrahydrofuran + acetonitrile) binary solvent mixture. Computational results showed that the CNIBS/R-K model had more advantages than other models.

  13. Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

    International Nuclear Information System (INIS)

    Orchillés, A. Vicent; Miguel, Pablo J.; González-Alfaro, Vicenta; Llopis, Francisco J.; Vercher, Ernesto; Martínez-Andreu, Antoni

    2017-01-01

    Highlights: • VLE of binary and ternary systems of 2-propanol, water and [emim][DCA] at 100 kPa. • The e-NRTL model fits the VLE data of 2-propanol + water + [emim][DCA] system. • [emim][DCA] breaks the 2-propanol + water azeotrope at an IL mole fraction >0.085. - Abstract: Isobaric vapor–liquid equilibria for the binary systems 2-propanol + water, 2-propanol + 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]), and water + [emim][DCA] as well as the vapor–liquid equilibria for the 2-propanol + water + [emim][DCA] ternary system have been obtained at 100 kPa using a recirculating still. The electrolyte nonrandom two-liquid (e-NRTL) model was used for fitting successfully the experimental data. The effect of [emim][DCA] on the 2-propanol + water system has been compared with that produced by other ionic liquids reported in the literature. From the results, [emim][DCA] appears as a good entrainer for the extractive distillation of this solvent mixture, causing the azeotrope to disappear at 100 kPa when the ionic liquid mole fraction is greater than 0.085.

  14. Determination of favorable conditions of detonation in liquid and solid substance mixtures

    International Nuclear Information System (INIS)

    Aubeau, Raymond; Carles, Maurice; Cochet Muchy, Bernard; Ducouret, Andre

    1976-03-01

    Theoretical methods or testing techniques may be employed to provide for possible detonations of chemical substances capable of interreactions. The theoretical methods are based upon the determination of the specific energy of possible mixtures and the system geometry. But the testing techniques are the only ones to insure whether a given mixture may detonate, deflagrate or to be inert. Different possible examples are given [fr

  15. The effect of the alkyl chain length on physicochemical features of (ionic liquids + γ-butyrolactone) binary mixtures

    International Nuclear Information System (INIS)

    Papović, Snežana; Bešter-Rogač, Marija; Vraneš, Milan; Gadžurić, Slobodan

    2016-01-01

    Highlights: • Influence of alkyl substituent length on IL properties was studied. • Nature of interactions between studied [C_nC_1im][NTf_2] and GBL were discussed. • Angell strength parameter indicates [C_nC_1im][NTf_2] are fragile liquids. • ILs properties regularly change with increase of the alkyl chain length. • Absence of GBL self-association upon addition of IL is observed. - Abstract: Densities and viscosities were determined and analysed for γ-butyrolactone (GBL) binary mixtures with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (where alkyl = ethyl, hexyl, octyl) as a function of temperature at atmospheric pressure (p = 0.1 MPa) and over the whole composition range. Excess molar volumes have been calculated from the experimental densities and were fitted using Redlich–Kister’s polynomial equation. Other volumetric parameters have been also calculated in order to obtain information about interactions between GBL and imidazolium based ionic liquids with different alkyl chain length. From the viscosity measurements, the Angell strength parameter was calculated for pure ionic liquids indicating that all investigated electrolytes are “fragile” liquids.

  16. Chiral domain formation from the mixture of achiral rod-like liquid crystal and tri boomerang-shaped molecule

    Science.gov (United States)

    Lee, Ji-Hoon; Yoon, Tae-Hoon

    2013-08-01

    Spontaneous formation of chiral domains such as a helical filament and a bent-broom texture was observed from the mixture of a rod-like liquid crystal octylcyano-biphenyl (8CB) and a tri boomerang-shaped 2,4,6-triphenoxy-1,3,5-triazine (triphenoxy) molecule. Although the constituent molecules were achiral, their mixture showed the chiral domains with the equal fraction of the opposite handedness. No tilt of 8CB molecules in the smectic layer was observed, implying the chirality is not due to the polar packing and tilt of the molecules. In addition, the splay and bend elastic constant of 8CB was decreased after doping triphenoxy. A structural conformation of triphenoxy and an orientational coupling between 8CB and triphenoxy are considered to be related to the chiral domain formation.

  17. Study of thermodynamic and transport properties of binary liquid mixture of diesel with biodiesel at 298.15K

    Science.gov (United States)

    Suthar, Shyam Sunder; Purohit, Suresh

    2018-05-01

    Properties of diesel and biodiesel (produced from corn oil) are used. Densities and viscosities of binary mixture of diesel with biodiesel (produced from corn oil) have been computed by using liquid binary mixture law over the entire range of compositions at T=298.15K and atmospheric pressure. From the computed values of density and viscosities, viscosity deviation (Δη), the excess molar volume (VE) and excess Gibbs energy of activation of viscous flow (ΔG#E) have been calculated. The results of excess volume, excess Gibbs energy of activation of viscous flow and viscosity deviation have been fitted to Redlich -Kister models to estimate the binary coefficients. The results are communicated in terms of the molecular interactions and the best suited composition has been found.

  18. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid

    International Nuclear Information System (INIS)

    Kim, Yoon Jo; Kim, Sarah; Joshi, Yogendra K.; Fedorov, Andrei G.; Kohl, Paul A.

    2012-01-01

    Thermodynamics of an ionic-liquid (IL) based absorption refrigeration system has been numerically analyzed. It provides an alternative to the normally toxic working fluids, such as the ammonia in conventional absorption systems. The use of ILs also eliminates crystallization and metal-compatibility problems of the water/LiBr system. Mixtures of refrigerants and imidazolium-based ILs are theoretically explored as the working fluid pairs in a miniature absorption refrigeration system, so as to utilize waste-heat to power a refrigeration/heat pump system for electronics cooling. A non-random two-liquid (NRTL) model was built and used to predict the solubility of the mixtures. Saturation temperatures at the evaporator and condenser were set at 25 °C and 50 °C, respectively, with the power dissipation of 100 W. Water in combination with [emim][BF 4 ] (1-ethyl-3-methylimidazolium tetrafluoroborate) gave the highest coefficient of performance (COP) around 0.9. The refrigerant/IL compatibility indicated by the circulation ratio, alkyl chain length of the IL, and thermodynamic properties of the refrigerants, such as latent heat of evaporation were proven to be important factors in determining the performance of the absorption system. The negative effect of high viscosity was mitigated by dilution of the IL with the refrigerant and the use of slightly larger microfluidic channel heat exchangers. -- Highlights: ► Mixtures of refrigerant/ionic-liquid are studied for absorption system. ► We carry out comprehensive theoretical thermodynamic analysis. ► The essential factors of refrigerant/IL affecting the performance are identified. ► Water/[emim][BF 4 ] showed the best performance of COP. ► The effects of high viscosity ILs on the system performance are not significant.

  19. New theories for smectic and nematic liquid-crystal polymers: Backbone LCPs [liquid crystalline polymers] and their mixtures and side-chain LCPs

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of predictions and explanations from statistical-physics theories for both backbone and side-chain liquid crystalline polymers (LCPs) and for mixtures with backbone LCPs are presented. Trends in the thermodynamic and molecular ordering properties have been calculated as a function of pressure, density, temperature, and molecule chemical structures (including degree of polymerization and the following properties of the chemical structures of the repeat units: lengths and shapes, intra-chain rotation energies, dipole moments, site-site polarizabilities and Lennard-Jones potentials, etc.) in nematic and multiple smectic-A LC phases and in the isotropic liquid phase. The theoretical results are found to be in good agreement with existing experimental data. These theories can also be applied to combined LCPs. Since these theories have no ad hoc or arbitrarily adjustable parameters, these theories can be used to design new LCPs and new solvents as well as to predict and explain properties. 27 refs., 4 tabs

  20. Solid-Liquid Equilibria for Many-component Mixtures Using Cubic-Plus-Association (CPA) equation of state

    DEFF Research Database (Denmark)

    Fettouhi, André; Thomsen, Kaj

    2010-01-01

    In the creation of liquefied natural gas the formation of solids play a substantial role, hence detailed knowledge is needed about solid-liquid equilibria (SLE). In this abstract we shortly summarize the work we have carried out at CERE over the past year with SLE for many-component mixtures usin...... the Cubic-Plus-Association (CPA) equation of state. Components used in this work are highly relevant to the oil and gas industry and include light and heavy hydrocarbons, alcohols, water and carbon dioxide....

  1. Empirical equation of state of the products of the detonation of a liquid explosive based on mixtures of tetranitromethane and nitrobenzene of various compositions

    International Nuclear Information System (INIS)

    Adigamova, T.A.; Davydov, N.B.

    2012-01-01

    The equation of state of the products of the detonation of liquid explosives has been derived by theoretical analysis and calculations. The dependence of the detonation rate on the oxygen balance has been obtained using the existing data on the physicomechanical and detonation properties of liquid explosive mixtures. Calculation dependences of the density on the weight content of nitrobenzene have been obtained [ru

  2. "Self-Shaping" of Multicomponent Drops.

    Science.gov (United States)

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  3. Viscosity and Liquid Density of Asymmetric n-Alkane Mixtures: Measurement and Modelling

    DEFF Research Database (Denmark)

    Queimada, António J.; Marrucho, Isabel M.; Coutinho, João A.P.

    2005-01-01

    Viscosity and liquid density Measurements were performed, at atmospheric pressure. in pure and mixed n-decane. n-eicosane, n-docosane, and n-tetracosane from 293.15 K (or above the melting point) up to 343.15 K. The viscosity was determined with a rolling ball viscometer and liquid densities...... with a vibrating U-tube densimeter. Pure component results agreed, oil average, with literature values within 0.2% for liquid density and 3% for viscosity. The measured data were used to evaluate the performance of two models for their predictions: the friction theory coupled with the Peng-Robinson equation...... of state and a corresponding states model recently proposed for surface tension, viscosity, vapor pressure, and liquid densities of the series of n-alkanes. Advantages and shortcoming of these models are discussed....

  4. Enhanced Membrane System for Recovery of Water from Gas-Liquid Mixtures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas-Liquid separation is an acute microgravity problem. Existing devices use centrifugal motion on microporous membranes to separate the two phases. Centrifugal...

  5. Separation of Gas Mixtures by New Type of Membranes – Dynamic Liquid Membranes.

    Czech Academy of Sciences Publication Activity Database

    Setničková, Kateřina; Šíma, Vladimír; Petričkovič, Roman; Řezníčková Čermáková, Jiřina; Uchytil, Petr

    2016-01-01

    Roč. 160, FEB 29 (2016), s. 132-135 ISSN 1383-5866 Institutional support: RVO:67985858 Keywords : gas separation * liquid membrane * methane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  6. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    Science.gov (United States)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  7. CuInS2/ZnS QD-ferroelectric liquid crystal mixtures for faster electro-optical devices and their energy storage aspects

    Science.gov (United States)

    Singh, Dharmendra Pratap; Vimal, Tripti; Mange, Yatin J.; Varia, Mahesh C.; Nann, Thomas; Pandey, K. K.; Manohar, Rajiv; Douali, Redouane

    2018-01-01

    CuInS2/ZnS core/shell quantum dots (CIS/ZnS QDs) dispersed ferroelectric liquid crystal (FLC) mixtures have been characterized for their application in electro-optical devices, energy storage, and solar cells. Physical properties of the CIS/ZnS QD-FLC (ferroelectric liquid crystal) mixtures have also been investigated with varying QD concentrations in order to optimize the critical concentration of QDs in mixtures. The presence of QDs breaks the geometrical symmetry in the FLC matrix, which results in a change in the physical properties of the mixtures. We observed the reduced values of primary and secondary order parameters (tilt angle and spontaneous polarization, respectively) for mixtures, which also depend on the concentration of QDs. The reduction of spontaneous polarization in QDs-FLC mixtures is attributed to the adverse role of flexoelectric contribution in the mixtures. The 92% faster electro-optic response and enhanced capacitance indicate the possible application of these mixtures in electro-optical devices and solar cells. Photoluminescence emission of pure FLC and QDs-FLC mixtures has been thermally tailored, which is explained by suitable models.

  8. Liquid-liquid extraction of uranium from Egyptian phosphoric acid using a synergistic D2EHPA-DBBP mixture

    International Nuclear Information System (INIS)

    Abdel-Khalek, A.A.

    2011-01-01

    Extraction of uranium from Egyptian phosphoric acid with synergistic mixture of di-2-ethylhexylphosphoric acid (D2EHPA) and di-butyl butyl phosphonate (DBBP) is reported in this paper. The influence of various factors such as D2EHPA concentration, DBBP concentration, phosphoric acid concentration, contact time, aqueous: organic phase's ratio (aq:org) and temperature on the degree of extraction has been established. The data on the effect of temperature on the extraction showed that the enthalpy change is -23.12 kJ/mol. Uranium extracted by D2EHPA- DBBP is further subjected to a second cycle of extraction and scrubbing impurities. The uranium is finally converted to a high purity UO 3 product using precipitation with hydrogen peroxide and heat treatment at 375 deg C. (author)

  9. BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Prof. P. Somasundaran

    2002-03-01

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analytical ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.

  10. Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces.

    Science.gov (United States)

    Ciesielski, Artur; Palma, Carlos-Andres; Bonini, Massimo; Samorì, Paolo

    2010-08-24

    Materials with a pre-programmed order at the supramolecular level can be engineered with a sub-nanometer precision making use of reversible non- covalent interactions. The intrinsic ability of supramolecular materials to recognize and exchange their constituents makes them constitutionally dynamic materials. The tailoring of the materials properties relies on the full control over the self-assembly behavior of molecular modules exposing recognition sites and incorporating functional units. In this review we focus on three classes of weak-interactions to form complex 2D architectures starting from properly designed molecular modules: van der Waals, metallo-ligand and hydrogen bonding. Scanning tunneling microscopy studies will provide evidence with a sub-nanometer resolution, on the formation of responsive multicomponent architectures with controlled geometries and properties. Such endeavor enriches the scientist capability of generating more and more complex smart materials featuring controlled functions and unprecedented properties.

  11. Growth kinetics in multicomponent fluids

    International Nuclear Information System (INIS)

    Chen, S.; Lookman, T.

    1995-01-01

    The hydrodynamic effects on the late-stage kinetics in spinodal decomposition of multicomponent fluids are examined using a lattice Boltzmann scheme with stochastic fluctuations in the fluid and at the interface. In two dimensions, the three- and four-component immiscible fluid mixture (with a 1024 2 lattice) behaves like an off-critical binary fluid with an estimated domain growth of t 0.4 +/= 0.03 rather than t 1/3 as previously estimated, showing the significant influence of hydrodynamics. In three dimensions (with a 256 3 lattice), we estimate the growth as t 0.96 +/= 0.05 for both critical and off-critical quenches, in agreement with phenomenological theory

  12. Transport properties of binary liquid mixtures - candidate solvents for optimized flue gas cleaning processes

    Directory of Open Access Journals (Sweden)

    Stanimirović Andrej M.

    2016-01-01

    Full Text Available Thermal conductivities and viscosities of three pure chemicals, monoethanol amine (MEA, tetraethylene glycol dimethyl ether (TEGDME and polyethylene glycol 200 (PEG 200 and two binary mixtures (MEA + + TEGDME and MEA + PEG 200 were measured at six temperatures: 298.15, 303.15, 308.15, 313.15, 318.15 and 323.15 K and atmospheric pressure. Measurement of thermal conductivities was based on a transient hot wire measurement setup, while viscosities were measured with a digital Stabinger SVM 3000/G2 viscometer. From these data, deviations in thermal conductivity and viscosity were calculated and fitted to the Redlich-Kister equation. Thermal conductivities of mixtures were correlated using Filippov, Jamieson, Baroncini and Rowley models, while viscosity data were correlated with the Eyring-UNIQUAC, Eyring-NRTL and McAlistermodels. [Projekat Ministarstva nauke Republike Srbije, br. 172063

  13. Osmotic and apparent molar properties of binary mixtures alcohol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid

    International Nuclear Information System (INIS)

    González, Emilio J.; Calvar, Noelia; Domínguez, Ángeles; Macedo, Eugénia A.

    2013-01-01

    Highlights: ► Osmotic and physical properties of binary mixtures {alcohol + [BMim][TfO]} were measured. ► From experimental data, apparent molar properties and osmotic coefficients were calculated. ► The apparent properties were fitted using a Redlich–Meyer type equation. ► The osmotic coefficients were correlated using the Extended Pitzer model. -- Abstract: In this work, physical properties (densities and speeds of sound) for the binary systems {1-propanol, or 2-propanol, or 1-butanol, or 2-butanol, or 1-pentanol + 1-butyl-3-methylimidazolium trifluoromethanesulfonate} were experimentally measured from T = (293.15 to 323.15) K and at atmospheric pressure. These data were used to calculate the apparent molar volume and apparent molar isentropic compression which were fitted to a Redlich–Meyer type equation. This fit was used to obtain the corresponding apparent molar properties at infinite dilution. On the other hand, the osmotic and activity coefficients and vapor pressures of these binary mixtures were also determined at T = 323.15 K using the vapor pressure osmometry technique. The Extended Pitzer model of Archer was employed to correlate the experimental osmotic coefficients. From the parameters obtained in the correlation, the mean molal activity coefficients and the excess Gibbs free energy for the studied mixtures were calculated

  14. Optical properties of binary and ternary liquid mixtures containing tetralin, isobutylbenzene and dodecane

    International Nuclear Information System (INIS)

    Sechenyh, Vitaliy V.; Legros, Jean-Claude; Shevtsova, Valentina

    2013-01-01

    Highlights: ► The refractive indices in binary and ternary mixtures of hydrocarbons were measured. ► The error of the theoretical prediction of the refractive indices does not exceed 0.13%. ► The error of the prediction of concentration derivatives is unsatisfactory large. ► Feasibility of application of optical methods to measuring mass transport coefficients is studied. -- Abstract: Refractive indices of binary and ternary mixtures formed by tetralin (1,2,3,4-tetrahydronaphthalene), isobutylbenzene (2-methyl-1-propyl benzene) and n-dodecane are presented over a wide range of compositions. All measurements of the refractive index have been conducted at 298.15 K and atmospheric pressure using two light sources: one in the visible (λ = 670 nm) and the other in the infrared (λ = 925 nm) spectrum. The concentration derivatives of the refractive index have been determined. The mixture compositions, where these two wavelengths are applicable for the measurements of mass transport coefficients by interferometry, are estimated and discussed

  15. The Making of a Liquid Soap Process From Used Wasted Cooking Oil and Coconut Oil Mixture

    OpenAIRE

    S.T., M.T., Zulkarnain

    2011-01-01

    This Moment, used frying oil has not been used well and only used discarded as household waste or industrial. Therefore, to use of used frying oil as raw material a liquid soap will provide added value for used frying oil. The main purpose of this research is to cultivative used frying oil become a liquid soap way saponification with potassium hidroxide . This research do with variation feed ratio that is used frying oil and coconut oil (0:1; 0,5:1; 1:1; 1,5:1; and 2:1) and time of saponifica...

  16. Aerolization During Boron Nanoparticle Multi-Component Fuel Group Burning Studies

    Science.gov (United States)

    2014-02-03

    overall energy density of the multi-component fuel mixture. Boron nanoparticle- doped multi-component hydrocarbon fuels represent a potential high...addressed, Boron nanoparticle- doped multi-component hydrocarbon fuels represent a potential high-efficiency, tactical fuel that could increase thrust...and micron-sized aluminum particles. Combustion and Flame 158(2): 354-368. Gan, Y., Y. S. Lim, and L. Qiao. 2012. Combustion of nanofluid fuels

  17. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part IV. Applications to mixtures of CO2 with alkanes

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Ali, Shahid; Kontogeorgis, Georgios

    2015-01-01

    The thermodynamic properties of pure gaseous, liquid or supercritical CO2 and CO2 mixtures with hydrocarbons and other compounds such as water, alcohols, and glycols are very important in many processes in the oil and gas industry. Design of such processes requires use of accurate thermodynamic...... models, capable of predicting the complex phase behavior of multicomponent mixtures as well as their volumetric properties. In this direction, over the last several years, the cubic-plus-association (CPA) thermodynamic model has been successfully used for describing volumetric properties and phase...

  18. Solute Transport from Aqueous Mixture through Supported Ionic Liquid Membrane by Pervaporation.

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Koekerling, M.; Kragl, U.

    2006-01-01

    Roč. 199, 1-3 (2006) , s. 96–98 ISSN 0011-9164. [Euromembrane 2006. Giardini, Naxos, 24.09.2006-28.09.2006] Institutional research plan: CEZ:AV0Z40720504 Keywords : supported ionic liquid membrane * pervaporation * 1,3-propanediol Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.917, year: 2006

  19. Density and viscosity behavior of a North Sea crude oil, natural gas liquid, and their mixtures

    DEFF Research Database (Denmark)

    Schmidt, KAG; Cisneros, Sergio; Kvamme, B

    2005-01-01

    to accurately model the saturation pressures, densities, and viscosities of petroleum systems ranging from natural gases to heavy crude oils. The applicability of this overall modeling technique to reproduce measured bubble points, densities, and viscosities of a North Sea crude oil, a natural gas liquid...

  20. Modeling the Phase Behavior in Mixtures of Pharmaceuticals with Liquid or Supercritical Solvents

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Economou, Ioannis; Kontogeorgis, Georgios

    2009-01-01

    of the studied pharmaceuticals in liquid solvents was calculated. The average root-mean-square deviation between experimental and calculated solubilities is 0.190 and 0.037 in log10 units for prediction (calculations without a binary interaction parameter adjustment) and for correlation (calculations using one...

  1. Relaxation phenomena of polar non-polar liquid mixtures under low ...

    Indian Academy of Sciences (India)

    der high-frequency electric field have gained much importance to study the structure as ... Purohit et al [1,2] and Srivastava and Srivastava [3] had measured the real ε¼ ... The cell containing the experimental liquid in a given solvent .... due to inductive, mesomeric and electromeric effects of the substituent polar groups at-.

  2. Induced liquid-crystalline ordering in solutions of stiff and flexible amphiphilic macromolecules: Effect of mixture composition

    International Nuclear Information System (INIS)

    Glagolev, Mikhail K.; Vasilevskaya, Valentina V.; Khokhlov, Alexei R.

    2016-01-01

    Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a single direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.

  3. (Liquid + liquid) equilibria for the ternary mixtures (alkane + toluene + ionic liquid) at T = 298.15 K: Influence of the anion on the phase equilibria

    International Nuclear Information System (INIS)

    Seoane, Raquel G.; Gómez, Elena; González, Emilio J.; Domínguez, Ángeles

    2012-01-01

    Highlights: ► [BMpyr][NTF 2 ] and [BMpyr][TFO] were studied as solvents to extract aromatics from alkanes. ► (Liquid + liquid) equilibrium data were measured at 298.15 K for six ternary systems. ► Selectivity and solute distribution ratio were calculated and compared. ► The influence of the structure of anion of the ionic liquid was analyzed. ► Experimental data were satisfactorily correlated using NRTL model. - Abstract: (Liquid + liquid) equilibrium data for the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMpyr][NTf 2 ], and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, [BMpyr][TFO], with toluene, and heptane or cyclohexane were determined at T = 298.15 K and atmospheric pressure. In order to check if these ILs can be used as potential solvents for the extraction of toluene from aliphatic compounds, the ability of the ILs as solvents was evaluated in terms of selectivity and solute distribution ratio. The experimental data were correlated accurately with the Non Random Two-Liquid model.

  4. Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN Spray A

    NARCIS (Netherlands)

    Matheis, Jan; Hickel, S.

    2018-01-01

    We present and evaluate a two-phase model for Eulerian large-eddy simulations (LES) of liquid-fuel injection and mixing at high pressure. The model is based on cubic equations of state and vapor-liquid equilibrium calculations and can represent the coexistence of supercritical states and

  5. Theory of multicomponent disordered magnets

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.; Margolych, I.F.

    1988-01-01

    The method of functional integration is used to investigate a topologically disordered multicomponent system of magnetic atoms with Heisenberg exchange interaction. The partition function for a fixed random configuration of the atoms is represented as a functional integral over fluctuations of the magnetization. The first few coefficient functions are calculated in the functional series that represents the free energy functional. The magnetic part of the free energy for the liquid and amorphous states is obtained in the random phase approximation. The structure factor of the liquid magnet is calculated. For a two-component system, the nature of its variation is investigated, and so too is the shift of the point of thermodynamic instability of the liquid under the influence of a magnetic field. The Curie temperature of an amorphous two-species ferromagnet is found with allowance for the magnetic fluctuations and the topological disorder. For a model system with disorder of liquid type modeled by the structure factor of hard spheres an explicit analytic expression is calculated for the concentration dependence of the temperature of ferromagnetic ordering

  6. Simplified simulation of multicomponent isotope separation by gas centrifuge

    International Nuclear Information System (INIS)

    Guo Zhixiong; Ying Chuntong

    1995-01-01

    The expressions of diffusion equation for multicomponent isotope separation by gas centrifuge are derived by utilizing the simplified diffusion transport vector. A method of radial averaging which was restricted to a binary mixture is extended to multicomponent isotope mixtures by using an iterative scheme. A numerical analysis of tetradic UF 6 or SF 6 gas isotope separation by centrifuge is discussed when a special model of velocity distribution is given. The dependence of mutual separation factor for the components on their molecular weights' difference is obtained. Some aspects of the given model of gas fluid are also discussed

  7. Experimental (liquid + liquid) equilibrium data for ternary and quaternary mixtures of fatty acid methyl and ethyl esters (FAME/FAEE) from soybean oil

    International Nuclear Information System (INIS)

    Beneti, Stéphani C.; Lanza, Marcelo; Mazutti, Marcio A.; Kunita, Marcos Hiroiuqui; Cardozo-Filho, Lúcio; Vladimir Oliveira, J.

    2014-01-01

    Highlights: • Innovative technique for quantification of compounds involved in the biodiesel production. • Easy and quick determination from NIR combined with multivariate calibration. • Reliable LLE correlation and predictions can be attained from the technique. -- Abstract: This work is aimed at providing an easy and quick determination of the biodiesel products using near infrared spectroscopy (NIR) by combination with the multivariate calibration in the analysis of (liquid + liquid) equilibrium (LLE) data for ternary and quaternary mixtures containing soybean fatty acid methyl (FAME) and ethyl (FAEE) esters, glycerol, ethanol, methanol and water, at various temperatures. The mass balance for the compositions obtained for each phase was carried out so as to demonstrate the reliability of the models generated by the multivariate calibration. Two distinct phases are observed, a glycerol-rich and the other ester-rich, while ethanol is dissolved among the phases hence reducing the partial mutual miscibility between glycerol and ester. Through (liquid + liquid) equilibrium (LLE) results, systems containing FAEE at T = 318.15 K and 303.15 K (calibration using data obtained at temperature of 318.15 K), a good agreement is verified among the values determined using conventional and NIR technique for alcoholic phase (AP) or aqueous phase (WP) and biodiesel phase (BP). Likewise in the systems containing FAME at 318.15 K, 303.15 K and 333.15 K (calibration using data obtained at temperature of 318.15 K), the LLE results were reproduced at the upper and lower temperature to the tests of the reproducibility of the models generated by the multivariate calibration

  8. HoTbTi2O7, the mixtures of spin ice and spin liquid

    International Nuclear Information System (INIS)

    Chang, L.J.; Terashita, H.; Schweika, W.; Chen, Y.Y.; Gardner, J.S.

    2007-01-01

    Polycrystalline samples of Ho 2- x Tb x Ti 2 O 7 (x=0.5, 1, and 1.5) have been prepared and characterized. No long-range order is observed for HoTbTi 2 O 7 in magnetization and specific heat measurements down to 2 K. The low-energy magnetic excitation measurements suggests that HoTbTi 2 O 7 possesses both characteristics of spin ice and spin liquid in the ground state

  9. Contribution to the liquid-vapour equilibrium of potassium and sodium mixtures

    International Nuclear Information System (INIS)

    Schreinlechner, I.; Schwarz, N.

    1975-10-01

    In this paper the phase diagram of the binary system potassium-sodium in the liquid-vapour range was calculated for different pressures and temperatures, assuming the two metals acting as ideal solution. The assumption was verified by experimental results. It is thus possible to calculate the separation factor for the rectification of potassium and to estimate the content of sodium in the vapour phase during experiments with vapourized potassium from the data of the vapour pressures of the pure metals. (author)

  10. Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents

    International Nuclear Information System (INIS)

    Ciocirlan, Oana; Croitoru, Oana; Iulian, Olga

    2016-01-01

    Highlights: • Viscosities of four binary mixtures of [Emim][BF4] with organic solvents. • Viscosity models based on Eyring’s theory. • Excess functions calculated. • Data for binaries new in the literature, except for system with DMSO. - Abstract: This paper reports experimental values of dynamic viscosity for four binary systems of 1-ethyl-3-methylimidazolium tetrafluoroborate, [Emim][BF4], with dimethyl sulfoxide (DMSO), acetonitrile (ACN), ethylene glycol (EG) and 1,4-dioxane over the temperature ranges from 293.15 K to 353.15 K at p = 0.1 MPa. All binary mixtures were completely miscible over the entire range of mole fraction, except the system with 1,4-dioxane. The viscosity results have been correlated by the one parameter Grunberg–Nissan and Fang and He equations and the two-parameter McAllister, Eyring-UNIQUAC, Eyring-NRTL and Eyring-Wilson models and the results were compared. Additionally, the viscosity deviations, Δη, and the excess Gibbs energy of activation for viscous flow, G"∗"E, were calculated and fitted to the Redlich–Kister equation. The results show that all Δη values are negative over the whole composition range and the G"∗"E values are positive, except for the system with EG. The results of the excess functions are discussed in terms of molecular interactions.

  11. Functionalized copolyimide membranes for the separation of gaseous and liquid mixtures

    Directory of Open Access Journals (Sweden)

    Nadine Schmeling

    2010-08-01

    Full Text Available Functionalized copolyimides continue to attract much attention as membrane materials because they can fulfill the demands for industrial applications. Thus not only good separation characteristics but also high temperature stability and chemical resistance are required. Furthermore, it is very important that membrane materials are resistant to plasticization since it has been shown that this phenomenon leads to a significant increase in permeability with a dramatic loss in selectivity. Plasticization effects occur with most polymer membranes at high CO2 concentrations and pressures, respectively. Plasticization effects are also observed with higher hydrocarbons such as propylene, propane, aromatics or sulfur containing aromatics. Unfortunately, these components are present in mixtures of high commercial relevance and can be separated economically by single membrane units or hybrid processes where conventional separation units are combined with membrane-based processes. In this paper the advantages of carboxy group containing 6FDA (4,4′-hexafluoroisopropylidene diphthalic anhydride -copolyimides are discussed based on the experimental results for non cross-linked, ionically and covalently cross-linked membrane materials with respect to the separation of olefins/paraffins, e.g. propylene/propane, aromatic/aliphatic separation e.g. benzene/cyclohexane as well as high pressure gas separations, e.g. CO2/CH4 mixtures. In addition, opportunities for implementing the membrane units in conventional separation processes are discussed.

  12. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C{sub 1}-C{sub 4}) and dimethyl carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroyuki, E-mail: matsuda@chem.cst.nihon-u.ac.jp [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Fukano, Makoto; Kikkawa, Shinichiro [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Constantinescu, Dana [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany); Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Gmehling, Juergen [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany)

    2012-01-15

    Highlights: > The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. > VLE data for ternary and binary mixtures containing alcohol and DMC were measured. > Several activity coefficient models were used for data reduction or prediction. > Valley line, i.e., distillation boundary, was observed for the ternary mixture. > Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {l_brace}methanol + propan-1-ol + dimethyl carbonate (DMC){r_brace}, and four binary mixtures, namely an {l_brace}alcohol (C{sub 3} or C{sub 4}) + DMC{r_brace}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  13. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C1-C4) and dimethyl carbonate

    International Nuclear Information System (INIS)

    Matsuda, Hiroyuki; Fukano, Makoto; Kikkawa, Shinichiro; Constantinescu, Dana; Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji; Gmehling, Juergen

    2012-01-01

    Highlights: → The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. → VLE data for ternary and binary mixtures containing alcohol and DMC were measured. → Several activity coefficient models were used for data reduction or prediction. → Valley line, i.e., distillation boundary, was observed for the ternary mixture. → Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {methanol + propan-1-ol + dimethyl carbonate (DMC)}, and four binary mixtures, namely an {alcohol (C 3 or C 4 ) + DMC}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  14. Phase equilibria for mixtures containing very many components. development and application of continuous thermodynamics for chemical process design

    International Nuclear Information System (INIS)

    Cotterman, R.L.; Bender, R.; Prausnitz, J.M.

    1984-01-01

    For some multicomponent mixtures, where detailed chemical analysis is not feasible, the compositio of the mixture may be described by a continuous distribution function of some convenient macroscopic property suc as normal boiling point or molecular weight. To attain a quantitative description of phase equilibria for such mixtures, this work has developed thermodynamic procedures for continuous systems; that procedure is called continuous thermodynamics. To illustrate, continuous thermodynamics is used to calculate dew points for natural-gas mixtures, solvent loss in a high-pressure absorber, and liquid-liquid phase equilibria in a polymer fractionation process. Continuous thermodynamics provides a rational method for calculating phase equilibria for those mixtures where complete chemical analysis is not available but where composition can be given by some statistical description. While continuous thermodynamics is only the logical limit of the well-known pseudo-component method, it is more efficient than that method because it is less arbitrary and it often requires less computer time

  15. On the predictive capabilities of CPA for applications in the chemical industry: Mulficomponent mixtures containing methyl-methacrylate, dimethyl-ether or acetic acid

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios

    2014-01-01

    mixtures exhibiting vapor-liquid (VLE) and/or liquid-liquid (LLE) equilibrium. The first two cases include mixtures of methyl-methacrylate with acetone or methanol and dimethyl-ether with ethanol, respectively. In these two cases, the classical form of CPA is used. The third case involves aqueous mixtures...... for the acetic acid-water system for which different parameter sets at different temperatures can be recommended. Even with the use of CPA-HV mixing rules, modeling of the acetic acid-water system with few interaction parameters remains a challenging task. Excellent simultaneous VLE and LLE correlation...... is obtained for complex systems such as aqueous mixtures with ethers and esters. The multicomponent results are, with a few exceptions, very satisfactory, especially for the vapor-liquid equilibrium cases. For the demanding aqueous acetic acid-water containing systems, one parameter set is recommended...

  16. From ionic liquid to electrolyte solution: dynamics of 1-N-butyl-3-N-methylimidazolium tetrafluoroborate/dichloromethane mixtures.

    Science.gov (United States)

    Hunger, Johannes; Stoppa, Alexander; Buchner, Richard; Hefter, Glenn

    2008-10-16

    Dielectric spectra have been measured at 25 degrees C for mixtures of the room temperature ionic liquid 1- N-butyl-3- N-methylimidazolium tetrafluoroborate (IL) with dichloromethane (DCM) over the entire composition range at frequencies 0.2 less than or approximately nu/GHz < or = 89. The spectra could be satisfactorily fitted by assuming only two relaxation modes: a Cole-Cole process at lower frequencies and a Debye process at higher frequencies. However, detailed analysis indicated that both spectral features contain additional modes, which could not be resolved due to overlaps. The spectra indicate that the IL appears to retain its chemical character to extraordinarily high levels of dilution ( x IL greater than or approximately 0.5) in DCM. At even higher dilutions ( x IL less than or approximately 0.3), the IL behaves as a conventional but strongly associated electrolyte.

  17. Argentation gas chromatography revisited: Separation of light olefin/paraffin mixtures using silver-based ionic liquid stationary phases.

    Science.gov (United States)

    Nan, He; Zhang, Cheng; Venkatesh, Amrit; Rossini, Aaron J; Anderson, Jared L

    2017-11-10

    Silver ion or argentation chromatography utilizes stationary phases containing silver ions for the separation of unsaturated compounds. In this study, a mixed-ligand silver-based ionic liquid (IL) was evaluated for the first time as a gas chromatographic (GC) stationary phase for the separation of light olefin/paraffin mixtures. The selectivity of the stationary phase toward olefins can be tuned by adjusting the ratio of silver ion and the mixed ligands. The maximum allowable operating temperature of these stationary phases was determined to be between 125°C and 150°C. Nuclear magnetic resonance (NMR) spectroscopy was used to characterize the coordination behavior of the silver-based IL as well as provide an understanding into the retention mechanism of light olefins. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  19. Ferroelectric BaTiO3 and LiNbO3 Nanoparticles Dispersed in Ferroelectric Liquid Crystal Mixtures: Electrooptic and Dielectric (Postprint)

    Science.gov (United States)

    2016-10-14

    strength for non- doped LF4 and LiNbO3/LF4 nanocolloids at temperature 30C. 146 R. K . SHUKLA ET AL. 6 Distribution A. Approved for public release (PA...AFRL-RX-WP-JA-2017-0210 FERROELECTRIC BaTiO3 AND LiNbO3 NANOPARTICLES DISPERSED IN FERROELECTRIC LIQUID CRYSTAL MIXTURES: ELECTROOPTIC...COMMAND UNITED STATES AIR FORCE Ferroelectric BaTiO3 and LiNbO3 nanoparticles dispersed in ferroelectric liquid crystal mixtures: Electrooptic and

  20. (Vapour + liquid) equilibria for the binary mixtures (1-propanol + dibromomethane, or + bromochloromethane, or + 1,2-dichloroethane or + 1-bromo-2-chloroethane) at T = 313.15 K

    International Nuclear Information System (INIS)

    Gil-Hernandez, V.; Garcia-Gimenez, P.; Otin, S.; Artal, M.; Velasco, I.

    2005-01-01

    Isothermal (vapour + liquid) equilibria (VLE) at 313.15 K have been measured for liquid 1-propanol + dibromomethane, or + bromochloromethane or + 1,2-dichloroethane or + 1-bromo-2-chloroethane mixtures. The VLE data were reduced using the Redlich-Kister equation taking into consideration the vapour phase imperfection in terms of the 2nd molar virial coefficients. The excess molar Gibbs free energies of all the studied mixtures are positive and ranging from 794 J·mol -1 for (1-propanol + bromochloromethane) and 1052 J·mol -1 for (1-propanol + 1-bromo-2-chloroethane), at x = 0.5. The experimental results are compared with modified UNIFAC predictions

  1. An isotherm-based thermodynamic model of multicomponent aqueous solutions, applicable over the entire concentration range.

    Science.gov (United States)

    Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L

    2013-04-18

    In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).

  2. Unimolecular H2 elimination during the liquid phase radiolysis and photolysis of alkane - alkane mixtures

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Foeldiak, G.

    1980-01-01

    Unimolecular H 2 elimination from alkanes was investigated in cyclopentane-cyclohexane, n-hexane-cyclohexane and cyclohexane-cyclooctane mixtures during fluradiolysis and 7.6 eV photolysis. During the radiolysis of all systems, and when the fluorescence shift law allowed it, during the photolysis as well, inhibited H 2 detachment was observed from the first component and sensitized hydrogen molecule elimination from the second. It has been concluded that the same excited state (the lowest singlet, S 1 ) is responsible for the H 2 elimination during radiolysis and photolysis and this is that one that gives rise to fluorescence in the experiments of other authors. The H 2 and H elimination from alkanes generally have different excited precursors. The direct population of S 1 by γ-irradiation is of limited importance and this intermediate is mainly produced in ''charge neutralization'' processes. (author)

  3. Physicochemical properties of the liquid mixture between stearate methyl / acid methyl sulfur stearate

    Directory of Open Access Journals (Sweden)

    Jesús Alfonso Torres Ortega

    2008-06-01

    Full Text Available The need of new alternatives for advance of the domestic oil-chemical industry, based local natural resources, make use of palm oil (Elaeis guineensis, as a source for obtaining alkyl esters, an excellent alternative development to be explored initially by the research groups at universities or institutions of scientifc innovation and development. The sulfonation process for the manufacture of surfactant were conducted in a falling flm reactor by the absorption and chemical reaction with SO3 gas on methyl esters derived from hydrogenated palm stearin. Identifying the properties of the reactants, products, and its mix is very important for the characterized by gas chromatography and infrared spectroscopy. It presents the properties of these inputs as a result of a series of experiments, which varies the mole ratio of the mixture of reactants and products, the process temperature and the percentage of sulfonate agent in the gas fow.

  4. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry

    International Nuclear Information System (INIS)

    Sun, Chenxing; Zhao, Yuan-Yuan; Curtis, Jonathan M.

    2013-01-01

    Highlights: ► An ozonolysis reactor was coupled in-line with mass spectrometry (O 3 -MS). ► Double bond positions in FAME were determined unambiguously without standards. ► LC directly connected to O 3 -MS allowed double bond localization in lipid mixtures. ► LC/O 3 -MS applied to bovine fat demonstrated practical use in lipid analysis. -- Abstract: The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O 3 -MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O 3 -MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O 3 -MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O 3 -MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures

  5. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chenxing; Zhao, Yuan-Yuan [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5 (Canada); Curtis, Jonathan M., E-mail: jcurtis1@ualberta.ca [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5 (Canada)

    2013-01-31

    Highlights: ► An ozonolysis reactor was coupled in-line with mass spectrometry (O{sub 3}-MS). ► Double bond positions in FAME were determined unambiguously without standards. ► LC directly connected to O{sub 3}-MS allowed double bond localization in lipid mixtures. ► LC/O{sub 3}-MS applied to bovine fat demonstrated practical use in lipid analysis. -- Abstract: The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O{sub 3}-MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O{sub 3}-MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O{sub 3}-MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O{sub 3}-MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures.

  6. On the solid–liquid phase diagrams of binary mixtures of even saturated fatty alcohols: Systems exhibiting peritectic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Carareto, Natália D.D. [EXTRAE, Department of Food Engineering, Food Engineering Faculty, University of Campinas, UNICAMP, CEP 13083-862 Campinas, SP (Brazil); Santos, Adenílson O. dos [Social Sciences, Health and Technology Center, University of Maranhão, UFMA, CEP 65900-410 Imperatriz, MA (Brazil); Rolemberg, Marlus P. [Institute of Science and Technology, University of Alfenas, UNIFAL, Rodovia José AurélioVilela, CEP 37715400 Poços de Caldas, MG (Brazil); Cardoso, Lisandro P. [Institute of Physics GlebWataghin, University of Campinas, UNICAMP, C.P. 6165, CEP 13083-970 Campinas, SP (Brazil); Costa, Mariana C. [School of Applied Science, University of Campinas, UNICAMP, CEP 13484-350 Limeira, SP (Brazil); Meirelles, Antonio J.A., E-mail: tomze@fea.unicamp.br [EXTRAE, Department of Food Engineering, Food Engineering Faculty, University of Campinas, UNICAMP, CEP 13083-862 Campinas, SP (Brazil)

    2014-08-10

    Highlights: • SLE of binary mixtures of saturated fatty alcohols was studied. • Experimental data were obtained using DSC and stepscan DSC. • Microscopy and X-ray diffraction used as complementary techniques. • Systems presented eutectic, peritectic and metatectic points. - Abstract: The solid–liquid phase diagrams of the following binary mixtures of even saturated fatty alcohols are reported in the literature for the first time: 1-octanol (C8OH) + 1-decanol (C10OH), 1-decanol + 1-dodecanol (C12OH), 1-dodecanol + 1-hexadecanol (C16OH) and 1-tetradecanol (C14OH) + 1-octadecanol (C18OH). The phase diagrams were obtained by differential scanning calorimetry (DSC) using a linear heating rate of 1 K min{sup −1} and further investigated by using a stepscan DSC method. X-ray diffraction (XRD) and polarized light microscopy were also used to complement the characterization of the phase diagrams which have shown a complex global behavior, presenting not only peritectic and eutectic reactions, but also the metatectic reaction and partial immiscibility on solid state.

  7. On the solid–liquid phase diagrams of binary mixtures of even saturated fatty alcohols: Systems exhibiting peritectic reaction

    International Nuclear Information System (INIS)

    Carareto, Natália D.D.; Santos, Adenílson O. dos; Rolemberg, Marlus P.; Cardoso, Lisandro P.; Costa, Mariana C.; Meirelles, Antonio J.A.

    2014-01-01

    Highlights: • SLE of binary mixtures of saturated fatty alcohols was studied. • Experimental data were obtained using DSC and stepscan DSC. • Microscopy and X-ray diffraction used as complementary techniques. • Systems presented eutectic, peritectic and metatectic points. - Abstract: The solid–liquid phase diagrams of the following binary mixtures of even saturated fatty alcohols are reported in the literature for the first time: 1-octanol (C8OH) + 1-decanol (C10OH), 1-decanol + 1-dodecanol (C12OH), 1-dodecanol + 1-hexadecanol (C16OH) and 1-tetradecanol (C14OH) + 1-octadecanol (C18OH). The phase diagrams were obtained by differential scanning calorimetry (DSC) using a linear heating rate of 1 K min −1 and further investigated by using a stepscan DSC method. X-ray diffraction (XRD) and polarized light microscopy were also used to complement the characterization of the phase diagrams which have shown a complex global behavior, presenting not only peritectic and eutectic reactions, but also the metatectic reaction and partial immiscibility on solid state

  8. Phase Behaviour, Interactions, and Structural Studies of (Amines+Ionic Liquids) Binary Mixtures

    Czech Academy of Sciences Publication Activity Database

    Jacquemin, J.; Bendová, Magdalena; Sedláková, Zuzana; Holbrey, J.D.; Mullan, C.L.; Youngs, T.G.A.; Pison, L.; Wagner, Zdeněk; Aim, Karel; Costa Gomes, M.F.; Hardacre, Ch.

    2012-01-01

    Roč. 13, č. 7 (2012), s. 1825-1835 ISSN 1439-4235 R&D Projects: GA ČR GP203/09/P141; GA ČR GA104/07/0444; GA AV ČR IAA400720710; GA ČR GP104/06/P066 Grant - others:QUILL(GB) EP/D029538 Institutional research plan: CEZ:AV0Z40720504 Keywords : amines * interactions * ionic liquids Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.349, year: 2012

  9. Liquid fuel obtain from polypropylene (PP-5) and high density polyethylene (HDPE-2) waste plastics mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Rashid, Mohammad Mamunor; Rahman, Md. Sadikur; Molla, Mohammed [Department of Research and Development, Natural State Research Inc, Stamford, (United States)

    2011-07-01

    Plastics are made by combination of small based molecules to form monomers. The monomers are then joined together by chemical polymerization mechanism to form polymers also known as plastics. These plastics contain various elements such as carbon, hydrogen, oxygen, nitrogen, chlorine and sul fur. The use of plastics is vastly expanded and it is being used in every sector of the world. However, using plastics does have a negative aspect, after use they end up in our landfill as waste causing numerous health and environmental problems. Landfill waste plastics release harmful gases due to the presence of carbon, chlorine and sul fur in them into the atmosphere causing climates to change drastically, equivalent to the effects of greenhouse gases (GHG) emission. To overcome these environmental issues, scientists have already developed many methods to converting these waste plastics into energy and fuel . We developed one new methods thermal cracking conversion to convert these waste plastics into usable liquid fuel . Thermal cracking conversion is a process to shorten the long chain hydrocarbons to produce liquid fuel in the absence of a catalyst. The thermal degradation process of the waste plastics long chain hydrocarbon to makes short chain hydrocarbon fuel. The fuel produced has been analyzed and tested according to standard methods. Key words: fuel , hydrocarbon, waste plastic, thermal degradation, conversion, GC/MS.

  10. Liquid fuel obtain from polypropylene (PP-5) and high density polyethylene (HDPE-2) waste plastics mixture

    International Nuclear Information System (INIS)

    Sarker, Moinuddin; Rashid, Mohammad Mamunor; Rahman, Md. Sadikur; Molla, Mohammed

    2011-01-01

    Plastics are made by combination of small based molecules to form monomers. The monomers are then joined together by chemical polymerization mechanism to form polymers also known as plastics. These plastics contain various elements such as carbon, hydrogen, oxygen, nitrogen, chlorine and sul fur. The use of plastics is vastly expanded and it is being used in every sector of the world. However, using plastics does have a negative aspect, after use they end up in our landfill as waste causing numerous health and environmental problems. Landfill waste plastics release harmful gases due to the presence of carbon, chlorine and sul fur in them into the atmosphere causing climates to change drastically, equivalent to the effects of greenhouse gases (GHG) emission. To overcome these environmental issues, scientists have already developed many methods to converting these waste plastics into energy and fuel . We developed one new methods thermal cracking conversion to convert these waste plastics into usable liquid fuel . Thermal cracking conversion is a process to shorten the long chain hydrocarbons to produce liquid fuel in the absence of a catalyst. The thermal degradation process of the waste plastics long chain hydrocarbon to makes short chain hydrocarbon fuel. The fuel produced has been analyzed and tested according to standard methods. Key words: fuel , hydrocarbon, waste plastic, thermal degradation, conversion, GC/MS

  11. The analysis of aqueous mixtures using liquid chromatography-electrospray mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steven [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    The focus of this dissertation is the use of chromatographic methods coupled with electrospray mass spectrometry (ES-MS) for the determination of both organic and inorganic compounds in aqueous solutions. The combination of liquid chromatography (LC) methods and ES-MS offers one of the foremost methods for determining compounds in complex aqueous solutions. In this work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed phase chromatography, and ion exchange chromatography, as well as capillary electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS techniques require no sample preparation or analyte derivatization, which makes it possible to observe a wide variety of analytes as they exist in solution. The majority of this work focuses on the use of LC-ES-MS for the determination of unknown products and intermediates formed during electrochemical incineration (ECI), an experimental waste remediation process. This report contains a general introduction to the project and the general conclusions. Four chapters have been removed for separate processing. Titles are: Chapter 2: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry; Chapter 3: Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte; Chapter 4: The determination of electrochemical incineration products of 4-chlorophenol by liquid chromatography-electrospray mass spectrometry; and Chapter 5: Determination of small carboxylic acids by capillary electrophoresis with electrospray mass spectrometry.

  12. Synthesis of diamond films by pulsed liquid injection chemical vapor deposition using a mixture of acetone and water as precursor

    International Nuclear Information System (INIS)

    Apatiga, L.M.; Morales, J.

    2009-01-01

    A chemical vapor deposition reactor based on the flash evaporation of an organic liquid precursor was used to grow diamond films on Si substrates. An effective pulsed liquid injection mechanism consisting of an injector, normally used for fuel injection in internal combustion engines, injects micro-doses of the precursor to the evaporation zone at 280 o C and is instantly evaporated. The resulting vapor mixture is transported by a carrier gas to the high-temperature reaction chamber where the diamond nucleates and grows on the substrate surface at temperatures ranging from 750 to 850 o C. The injection frequency, opening time, number of pulses and other injector parameters are controlled by a computer-driven system. The diamond film morphology and structure were characterized by scanning electron microscopy and Raman spectroscopy. The as-deposited diamond films show a ball-shaped morphology with a grain size that varies from 100 to 400 nm, as well as the characteristic diamond Raman band at 1332 cm -1 . The effects of the experimental parameters and operation principle on the diamond films quality are analyzed and discussed in terms of crystallinity, composition, structure, and morphology.

  13. Semiclassical multicomponent wave function

    NARCIS (Netherlands)

    Mostovoy, M.V.

    A consistent method for obtaining the semiclassical multicomponent wave function for any value of adiabatic parameter is discussed and illustrated by examining the motion of a neutral particle in a nonuniform magnetic field. The method generalizes the Bohr-Sommerfeld quantization rule to

  14. Characterization of liquid products from the co-cracking of ternary and quaternary mixture of petroleum vacuum residue, polypropylene, Samla coal and Calotropis Procera

    Energy Technology Data Exchange (ETDEWEB)

    M. Ahmaruzzaman; D.K. Sharma [Indian Institute of Technology Delhi, New Delhi (India). Centre for Energy Studies

    2008-08-15

    The co-cracking of the petroleum vacuum residue (XVR) with polypropylene (PP), Samla coal (SC) and Calotropis procera (CL) has been carried out in a batch reactor under isothermal conditions at atmospheric pressure. The liquids obtained by co-cracking have been characterized by Fourier transform infrared spectroscopy, high performance liquid chromatography, {sup 1}H nuclear magnetic resonance (NMR), {sup 13}C NMR, gel permeation chromatography (GPC), and inductively coupled argon plasma analyses. It was found that the liquid products obtained from the co-cracking of ternary and quaternary mixtures of the petroleum vacuum residue with polypropylene, coal and C. procera contained less than 1 ppm of Ni and V. The HPLC analyses indicates that the liquids obtained from the cracking of ternary mixture of XVR+PP+CL were mainly aliphatic in nature (saturates content 87.4%). NMR analyses showed that the aromatic carbon contents decreased (15.0%) in the liquid products derived from the co-cracking of quaternary mixtures of XVR+PP+SC+CL compared to their theoretical averages (taking the averages of aromatic carbon contents of the liquids from XVR, PP, SC and CL individually). The overall results indicated that there exists a definite interaction of reactive species when XVR, PP, SC and CL were co-cracked together. 27 refs., 5 tabs.

  15. Rapid hydrogen hydrate growth from non-stoichiometric tuning mixtures during liquid nitrogen quenching.

    Science.gov (United States)

    Grim, R Gary; Kerkar, Prasad B; Sloan, E Dendy; Koh, Carolyn A; Sum, Amadeu K

    2012-06-21

    In this study the rapid growth of sII H(2) hydrate within 20 min of post formation quenching towards liquid nitrogen (LN(2)) temperature is presented. Initially at 72 MPa and 258 K, hydrate samples would cool to the conditions of ~60 MPa and ~90 K after quenching. Although within the stability region for H(2) hydrate, new hydrate growth only occurred under LN(2) quenching of the samples when preformed hydrate "seeds" of THF + H(2) were in the presence of unconverted ice. The characterization of hydrate seeds and the post-quenched samples was performed with confocal Raman spectroscopy. These results suggest that quenching to LN(2) temperature, a common preservation technique for ex situ hydrate analysis, can lead to rapid unintended hydrate growth. Specifically, guest such as H(2) that may otherwise need sufficiently long induction periods to nucleate, may still experience rapid growth through an increased kinetic effect from a preformed hydrate template.

  16. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    Science.gov (United States)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  17. Remote Monitoring of a Multi-Component Liquid-Phase Organic Synthesis by Infrared Emission Spectroscopy: The Recovery of Pure Component Emissivities by Band-Target Entropy Minimization

    Czech Academy of Sciences Publication Activity Database

    Cheng, S.; Tjahjono, M.; Rajarathnam, D.; Chuanzhao, L.; Lyapkalo, Ilya; Chen, D.; Garland, M.

    2007-01-01

    Roč. 61, č. 10 (2007), s. 1057-1062 ISSN 0003-7028 Institutional research plan: CEZ:AV0Z40550506 Keywords : infrared emission spectroscopy * liquid phase reaction * band-target entropy minimization * BTEM * emittance Subject RIV: CC - Organic Chemistry Impact factor: 1.902, year: 2007

  18. Liquid-liquid extraction of uranium (VI) using Cyanex 272 in kerosene from sodium salicylate medium

    International Nuclear Information System (INIS)

    Kamble, Pravin N.; Mohite, Baburao S.; Suryavanshi, Vishal J.; Salunkhe, Suresh T.

    2015-01-01

    Liquid-liquid extraction of uranium (VI) from sodium salicylate media using Cyanex 272 in kerosene has been carried out. Uranium (VI) was quantitatively extracted from 1x10 -4 M sodium salicylate with 5x10 -4 M Cyanex 272 in kerosene. It was stripped quantitatively from the organic phase with 4M HCl and determined spectrophotometrically with arsenazo(III) at 600 nm. The effects of concentrations of sodium salicylate, metal ions and strippants have been studied. Separation of uranium (VI) from other elements was achieved from binary as well as from multicomponent mixtures. The method is simple, rapid and selective with good reproducibility (approximately ±2%). (author)

  19. Vapor-liquid critical surface of ternary difluoromethane + pentafluoroethane + 1,1,1,2-tetrafluoroethane (R-32/125/134a) mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Y.

    1999-09-01

    The plane of vapor-liquid criticality for ternary refrigerant mixtures of difluoromethane (R-32) + pentafluoroethane (R-125) + 1,1,1,2-tetrafluoroethane (R-134a) was determined from data on the vapor-liquid coexistence curve near the mixture critical points. The composition (mass percentage) of the mixtures studied were 23% R-32 + 25% R-125 + 52% R-134a (R-407C). 25% R-32 + 15% R-125 + 60% R-134a (R-407E), and 20% R-32 + 40% R-125 + 40% R-134a (R-407A). The critical temperature of each mixture was determined by observation of the disappearance of the meniscus. The critical density of each mixture was determined on the basis of meniscus disappearance level and the intensity of the critical opalescence. The uncertainties of the temperature, density, and composition measurements are estimated as {+-}10mK, {+-}5kg{center_dot}m{sup {minus}3}, and {+-}0.05%, respectively. In addition, predictive methods for the critical parameters of R-32/125/134a mixtures are discussed.

  20. Interfaces and fluctuations in confined polymeric liquid mixtures: from immiscible to near critical systems

    International Nuclear Information System (INIS)

    Sferrazza, Michele; Carelli, Clara

    2007-01-01

    In this paper the structure of the interface between polymer films is discussed to elucidate fluctuations and confinement effects in fluid polymer mixtures. The neutron reflectivity technique has been employed to investigate the dependence of the structure of the interface on the degree of immiscibility of the polymers over a wide range, as criticality is approached, and to characterize it in terms of intrinsic width, as calculated by mean field theories, and capillary fluctuations. For more immiscible systems, as the degree of incompatibility between the polymers is decreased, the width of the interface increases slowly, and it is independent of the molecular weight of the polymers. Closer to the critical point the dependence on the degree of miscibility becomes stronger and the way in which the interfacial width diverges, as criticality is approached, is related to both chain length and Flory-Huggins interaction parameter (χ). The results have been compared to the predictions of mean field theories. Self-consistent field numerical calculations, with the additional contribution due to capillary waves, provide a good description of the width of the interface between two polymer bulk phases, in particular at higher and intermediate degrees of immiscibility-the product of the Flory-Huggins interaction parameter χ and the number N of monomers of the chain, χN. For more miscible systems a crossover is observed to a region where the square gradient theory in the weak segregation limit better approximates the experimental results. Moreover, the mechanisms by which confinement affects the interface have been investigated. To understand the relative importance of the long ranged van der Waals forces and short ranged 'truncation forces' in modifying thermally excited fluctuations at the polymer/polymer interface, the thickness dependence of the interfacial width has been studied for different degrees of miscibility, approaching criticality. The results show a gradual

  1. Separation of toluene from n-heptane by liquid–liquid extraction using binary mixtures of [bpy][BF4] and [4bmpy][Tf2N] ionic liquids as solvent

    International Nuclear Information System (INIS)

    García, Silvia; Larriba, Marcos; García, Julián; Torrecilla, José S.; Rodríguez, Francisco

    2012-01-01

    Highlights: ► Binary mixtures of ionic liquids as extraction solvents of aromatics. ► [4bmpy][Tf 2 N] shows higher capacity but lower selectivity than sulfolane. ► [bpy][BF 4 ] shows lower capacity but higher selectivity than sulfolane. ► Mixed {[4bmpy][Tf 2 N] + [bpy][BF 4 ]} improves both extractive properties. - Abstract: The use of binary mixture of ionic liquids N-butylpyridinium tetrafluoroborate ([bpy][BF 4 ]), and 1-butyl-4-methylpyridinium bis(trifluoromethylsulfonyl)imide ([4bmpy][Tf 2 N]) in the liquid–liquid extraction of toluene from n-heptane has been investigated at 313.2 K and atmospheric pressure. The experimental capacity of extraction and selectivity for this binary mixture has proved to be intermediate to those corresponding to the pure ionic liquids, and they can be predicted using a logarithmic–linear model of solubility. Furthermore, the results showed that the use of binary mixture of {[bpy][BF 4 ] + [4bmpy][Tf 2 N]} at a mole solvent composition around 0.7 for [bpy][BF 4 ] improves both the capacity of extraction of toluene and the selectivity with respect to those of sulfolane, the organic solvent taken as a benchmark. Thus, this mixed ionic liquid could be likely to be used in the extraction of aromatic from aliphatic in replacement to sulfolane.

  2. Boiling of multicomponent working fluids used in refrigeration and cryogenic systems

    Science.gov (United States)

    Mogorychny, V. I.; Dolzhikov, A. S.

    2017-11-01

    Working fluids based on mixtures are widely used in cryogenic and refrigeration engineering. One of the main elements of low-temperature units is a recuperative heat exchanger where the return flow cools the direct (cold regeneration is carrying out) resulting in continuous boiling and condensation of the multicomponent working fluid in the channels. The temperature difference between the inlet and outlet of the heat exchanger can be more than 100K, which leads to a strong change in thermophysical properties along its length. In addition, the fraction of the liquid and vapor phases in the flow varies very much, which affects the observed flow regimes in the heat exchanger channels. At the moment there are not so many experimental data and analytical correlations that would allow to estimate the heat transfer coefficient during the flow of a two-phase mixture flow at low temperatures. The work is devoted to the study of the boiling process of multicomponent working fluids used in refrigeration and cryogenic engineering. The description of the method of determination of heat transfer coefficient during boiling of mixtures in horizontal heated channel is given as well as the design of the experimental stand allowing to make such measurements. This stand is designed on the basis of a refrigeration unit operating on the Joule-Thomson throttle cycle and makes it possible to measure the heat transfer coefficient with a good accuracy. Also, the calculated values of the heat transfer coefficient, obtained with the use of various correlations, are compared with the existing experimental data. Knowing of the heat transfer coefficient will be very useful in the design of heat exchangers for low-temperature units operating on a mixture refrigerant.

  3. Rigorous Multicomponent Reactive Separations Modelling: Complete Consideration of Reaction-Diffusion Phenomena

    International Nuclear Information System (INIS)

    Ahmadi, A.; Meyer, M.; Rouzineau, D.; Prevost, M.; Alix, P.; Laloue, N.

    2010-01-01

    This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO 2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used. Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick's law is less adapted for multicomponent mixtures where some abnormalities such as counter

  4. Influence of trace elements mixture on bacterial diversity and fermentation characteristics of liquid diet fermented with probiotics under air-tight condition.

    Directory of Open Access Journals (Sweden)

    Yuyong He

    Full Text Available Cu2+, Zn2+, Fe2+ and I- are often supplemented to the diet of suckling and early weaning piglets, but little information is available regarding the effects of different Cu2+, Zn2+, Fe2+ and I- mixtures on bacteria growth, diversity and fermentation characteristics of fermented liquid diet for piglets. Pyrosequencing was performed to investigate the effect of Cu2+, Zn2+, Fe2+ and I- mixtures on the diversity, growth and fermentation characteristics of bacteria in the liquid diet fermented with Bacillus subtilis and Enterococcus faecalis under air-tight condition. Results showed that the mixtures of Cu2+, Zn2+, Fe2+ and I- at different concentrations promoted Bacillus growth, increased bacterial diversity and lactic acid production and lowered pH to about 5. The importance of Cu2+, Zn2+, Fe2+ and I- is different for Bacillus growth with the order Zn2+> Fe2+>Cu2+> I- in a 21-d fermentation and Cu2+>I->Fe2+>Zn2+ in a 42-d fermentation. Cu2+, Zn2+, Fe2+ and I- is recommended at a level of 150, 60, 150 and 0.6 mg/kg respectively for the production of fermented liquid diet with Bacillus subtilis. The findings improve our understanding of the influence of trace elements on liquid diet fermentation with probiotics and support the proper use of trace elements in the production of fermented liquid diet for piglets.

  5. Enhanced CO2 capture in binary mixtures of 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids with water.

    Science.gov (United States)

    Romanos, George E; Zubeir, Lawien F; Likodimos, Vlassis; Falaras, Polycarpos; Kroon, Maaike C; Iliev, Boyan; Adamova, Gabriela; Schubert, Thomas J S

    2013-10-10

    Absorption of carbon dioxide and water in 1-butyl-3-methylimidazoliun tricyanomethanide ([C4C1im][TCM]) and 1-octyl-3-methylimidazolium tricyanomethanide ([C8C1im][TCM]) ionic liquids (ILs) was systematically investigated for the first time as a function of the H2O content by means of a gravimetric system together with in-situ Raman spectroscopy, excess molar volume (V(E)), and viscosity deviation measurements. Although CO2 absorption was marginally affected by water at low H2O molar fractions for both ILs, an increase of the H2O content resulted in a marked enhancement of both the CO2 solubility (ca. 4-fold) and diffusivity (ca. 10-fold) in the binary [C(n)C1im][TCM]/H2O systems, in contrast to the weak and/or detrimental influence of water in most physically and chemically CO2-absorbing ILs. In-situ Raman spectroscopy on the IL/CO2 systems verified that CO2 is physically absorbed in the dry ILs with no significant effect on their structural organization. A pronounced variation of distinct tricyanomethanide Raman modes was disclosed in the [C(n)C1im][TCM]/H2O mixtures, attesting to the gradual disruption of the anion-cation coupling by the hydrogen-bonded water molecules to the [TCM](-) anions, in accordance with the positive excess molar volumes and negative viscosity deviations for the binary systems. Most importantly, CO2 absorption in the ILs/H2O mixtures at high water concentrations revealed that the [TCM](-) Raman modes tend to restore their original state for the heavily hydrated ILs, in qualitative agreement with the intriguing nonmonotonous transients of CO2 absorption kinetics unveiled by the gravimetric measurements for the hybrid solvents. A molecular exchange mechanism between CO2 in the gas phase and H2O in the liquid phase was thereby proposed to explain the enhanced CO2 absorption in the hybrid [C(n)C1im][TCM]//H2O solvents based on the subtle competition between the TCM-H2O and TCM-CO2 interactions, which renders these ILs very promising for CO2

  6. Structural and interactional behaviour of aqueous mixture of room temperature ionic liquid; 2-hydroxyethyl-trimethylammonium L-lactate

    International Nuclear Information System (INIS)

    Chaudhary, Ganga Ram; Bansal, Shafila; Mehta, S.K.; Ahluwalia, A.S.

    2014-01-01

    Highlights: • Thermophysical and spectroscopic properties of aqueous mixtures 2-[HE3MA]LAC have been measured. • Effect of temperature on thermophysical properties has also been studied. • Stronger intermolecular have been observed between [HE3MA]LAC and H 2 O. • Magnitude of interactions decreases with the rise in temperature. • Spectroscopic studies shows interactions between -N + -(CH 3 ) 3 with -OH - group and COO − with -H + of IL and H 2 O. - Abstract: In order to understand the molecular interactions between the green solvent system, (water + lactate based ionic liquid); 2-hydroxyethyl-trimethylammonium L-lactate ([(C 2 H 4 OH)(CH 3 ) 3 N][Lactate]), the thermophysical properties viz. density ρ, speed of sound u, specific conductivity κ, refractive index n D and spectroscopic properties viz. IR, 1 H and 13 C NMR have been investigated over the whole composition range at atmospheric pressure with temperature varied from (293.15 to 323.15) K. To gain more insight of intermolecular interactions occurring in the aqueous mixture of [(C 2 H 4 OH)(CH 3 ) 3 N][Lactate], intermolecular free length L f , acoustic impedance Z, relative association R A , excess molar volume V E , deviations in isentropic compressibility ΔK S , partial molar excess volume V i E , partial molar deviations in isentropic compressibility ΔK S,i , deviation in specific conductivity Δκ and deviation in refractive index Δn D have been predicted as a function of IL concentration over the whole composition range. These results have been fitted to the Redlich–Kister polynomial. A large deviation from ideality has been observed on mixing water and [(C 2 H 4 OH)(CH 3 ) 3 N][Lactate] which are due to the formation of strong intermolecular hydrogen bonding between the two molecules. Also, it has been noticed that the mixture of water and [(C 2 H 4 OH)(CH 3 ) 3 N][Lactate] became warm that indicates mixing of these two components is exothermic. Thermodynamic and spectroscopic data

  7. Experimental determination of the (vapor + liquid) equilibrium data of binary mixtures of fatty acids by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Matricarde Falleiro, Rafael M.; Meirelles, Antonio J.A.; Kraehenbuehl, Maria A.

    2010-01-01

    (Vapor + liquid) equilibrium (VLE) data for three binary mixtures of saturated fatty acids were obtained by differential scanning calorimetry (DSC). However, changes in the calorimeter pressure cell and the use of hermetic pans with holes (φ = 250 mm) in the lids were necessary to make it possible to apply this analytical technique, obtaining accurate results with smaller samples and shorter operational times. The systems evaluated in this study were: myristic acid (C 14:0 ) + palmitic acid (C 16:0 ), myristic acid (C 14:0 ) + stearic acid (C 18:0 ), and palmitic acid (C 16:0 ) + stearic acid (C 18:0 ), all measured at 50 mm Hg and with mole fractions between 0.0 and 1.0 in relation to the most volatile component of each diagram. The fugacity coefficients for the components in the vapor phase were calculated using the Hayden and O'Connell method [J.G. Hayden, J.P. O'Connell, Ind. Eng. Chem. Process Design Develop. 14 (3) (1975) 209-216] and the activity coefficients for the liquid phase were correlated with the traditional g E models (NRTL [H. Renon, J.M. Prausnitz, Aiche J. 14 (1968) 135-144], UNIQUAC [D.S. Abrams, J.M. Prausnitz, Aiche J. 21 (1975) 116-128], and Wilson [J.M. Prausnitz, N.L. Linchtenthaler, E.G. Azevedo, Molecular Thermodynamics of Fluid-phase Equilibria, River-Prentice Hall, Upper Saddle, 1999]). The sets of parameters were then compared in order to determine which adjustments best represented the VLE.

  8. Multicomponent diffusion in two-temperature magnetohydrodynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Chang, C.H.

    1996-01-01

    A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zero-field form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations. copyright 1996 The American Physical Society

  9. Stratification of mixtures in evaporating liquid films occurs only for a range of volume fractions of the smaller component

    Science.gov (United States)

    Sear, Richard P.

    2018-04-01

    I model the drying of a liquid film containing small and big colloid particles. Fortini et al. [Phys. Rev. Lett. 116, 118301 (2016)] studied these films with both computer simulation and experiment. They found that at the end of drying, the mixture had stratified with a layer of the smaller particles on top of the big particles. I develop a simple model for this process. The model has two ingredients: arrest of the diffusion of the particles at high density and diffusiophoretic motion of the big particles due to gradients in the volume fraction of the small particles. The model predicts that stratification only occurs over a range of initial volume fractions of the smaller colloidal species. Above and below this range, the downward diffusiophoretic motion of the big particles is too slow to remove the big particles from the top of the film, and so there is no stratification. In agreement with earlier work, the model also predicts that large Péclet numbers for drying are needed to see stratification.

  10. Isobaric (vapour + liquid) equilibria for the (1-pentanol + propionic acid) binary mixture at (53.3 and 91.3) kPa

    International Nuclear Information System (INIS)

    Mohsen-Nia, M.; Memarzadeh, M.R.

    2010-01-01

    Isobaric (vapour + liquid) equilibrium measurements have been reported for the binary mixture of (1-pentanol + propionic acid) at (53.3 and 91.3) kPa. Liquid phase activity coefficients were calculated from the equilibrium data. The thermodynamic consistency of the experimental results was checked using the area test and direct test methods. According to these criteria, the measured (vapour + liquid) equilibrium results were found to be consistent thermodynamically. The obtained results showed a maximum boiling temperature azeotrope at both pressures studied. The measured equilibrium results were satisfactorily correlated by the models of Wilson, UNIQUAC, and NRTL activity coefficients. The results obtained indicate that the performance of the NRTL model is superior to the Wilson and UNIQUAC models for correlating the measured isobaric (vapour + liquid) equilibrium data.

  11. Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Amad, Maan H.; Sioud, Salim

    2012-01-01

    RATIONALE An ethanol-based multicomponent dopant consisting of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v/v/v) has been used as a dopant for atmospheric pressure photoionization (APPI) of polycyclic aromatic hydrocarbons (PAHs). In this study the mechanism of ionization of PAHs assisted by the ethanol-based multicomponent dopant is investigated. METHODS The reactant background cluster ions of the ethanol-based multicomponent dopant observed in the positive ion APPI were studied. These studies were performed to investigate the mechanism behind the generation of a molecular radical cation (M +•) for PAHs by APPI assisted by the ethanol-based multicomponent dopant. Full scan and MS/MS analyses were conducted using an LTQ Orbitrap mass spectrometer. The effect of acidification of the mobile phase on the dopant cluster ion formation was also investigated. RESULTS With the ethanol-based multicomponent dopant, a single type of molecular radical cation M +• was observed for the studied PAHs. The characteristic ion signal of the multicomponent dopant mixture consisted of mainly anisole photoions at m/z 108.05697 and its adduct ions at m/z 124.05188 and 164.07061. The anisole ion response at m/z 108.05697 was stable in the presence of acetonitrile, methanol, water and 0.1% formic acid mobile phase composition. CONCLUSIONS The abundance formation of anisole photoions shows the universality of this multicomponent dopant in ionizing compounds with ionization energy ranging from 7.1-8.2 eV. Since the ionization energy of anisole is 8.2 eV and is lower than those of chlorobenzene (9.07 eV) and bromobenzene (9.0 eV), the mechanism of formation of anisole photoions even with its very minute amounts was not only governed by its photoionization by the krypton lamp photon energy (10.0 eV and 10.6 eV), but also by charge transfer from bromobenzene and chlorobenzene radical cations. PAH molecules were mainly ionized by charge transfer reaction from

  12. Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Amad, Maan H.

    2012-09-23

    RATIONALE An ethanol-based multicomponent dopant consisting of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v/v/v) has been used as a dopant for atmospheric pressure photoionization (APPI) of polycyclic aromatic hydrocarbons (PAHs). In this study the mechanism of ionization of PAHs assisted by the ethanol-based multicomponent dopant is investigated. METHODS The reactant background cluster ions of the ethanol-based multicomponent dopant observed in the positive ion APPI were studied. These studies were performed to investigate the mechanism behind the generation of a molecular radical cation (M +•) for PAHs by APPI assisted by the ethanol-based multicomponent dopant. Full scan and MS/MS analyses were conducted using an LTQ Orbitrap mass spectrometer. The effect of acidification of the mobile phase on the dopant cluster ion formation was also investigated. RESULTS With the ethanol-based multicomponent dopant, a single type of molecular radical cation M +• was observed for the studied PAHs. The characteristic ion signal of the multicomponent dopant mixture consisted of mainly anisole photoions at m/z 108.05697 and its adduct ions at m/z 124.05188 and 164.07061. The anisole ion response at m/z 108.05697 was stable in the presence of acetonitrile, methanol, water and 0.1% formic acid mobile phase composition. CONCLUSIONS The abundance formation of anisole photoions shows the universality of this multicomponent dopant in ionizing compounds with ionization energy ranging from 7.1-8.2 eV. Since the ionization energy of anisole is 8.2 eV and is lower than those of chlorobenzene (9.07 eV) and bromobenzene (9.0 eV), the mechanism of formation of anisole photoions even with its very minute amounts was not only governed by its photoionization by the krypton lamp photon energy (10.0 eV and 10.6 eV), but also by charge transfer from bromobenzene and chlorobenzene radical cations. PAH molecules were mainly ionized by charge transfer reaction from

  13. Determination of multicomponent contents in Calculus bovis by ultra-performance liquid chromatography-evaporative light scattering detection and its application for quality control.

    Science.gov (United States)

    Kong, Weijun; Jin, Cheng; Xiao, Xiaohe; Zhao, Yanling; Liu, Wei; Li, Zulun; Zhang, Ping

    2010-06-01

    A fast ultra-performance liquid chromatography-evaporative light scattering detection (UPLC-ELSD) method was established for simultaneous quantification of seven components in natural Calculus bovis (C. bovis) and its substitutes or spurious breeds. On a Waters Acquity UPLC BEH C(18) column, seven analytes were efficiently separated using 0.2% aqueous formic acid-acetonitrile as the mobile phase in a gradient program. The evaporator tube temperature of ELSD was set at 100 degrees C with the nebulizing gas flow-rate of 1.9 L/min. The results showed that this established UPLC-ELSD method was validated to be sensitive, precise and accurate with the LODs of seven analytes at 2-11 ng, and the overall intra-day and inter-day variations less than 3.0%. The recovery of the method was in the range of 97.8-101.6%, with RSD less than 3.0%. Further results of PCA on the contents of seven investigated analytes suggested that compounds of cholic acid, deoxycholic acid and chenodeoxycholic acid or cholesterol should be added as chemical markers to UPLC analysis of C. bovis samples for quality control and to discriminate natural C. bovis sample and its substitutes or some spurious breeds, then normalize the use of natural C. bovis and ensure its clinical efficacy.

  14. Mixed-mode chromatography with zwitterionic phosphopeptidomimetic selectors from Ugi multicomponent reaction

    NARCIS (Netherlands)

    Gargano, Andrea F G; Leek, Tomas; Lindner, Wolfgang; Lämmerhofer, Michael

    2013-01-01

    In the present contribution a novel Ugi multicomponent reaction (MCR) was used to generate zwitterionic chromatographic selectors with capability for application in mixed-mode chromatography featuring complementary selectivities in reversed-phase (RP) and hydrophilic interaction liquid

  15. Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid (Cyanex 272) with different diluents at temperature 303.15 K: an ultrasonic study

    International Nuclear Information System (INIS)

    Kamila, Susmita; Jena, Satyaban; Swain, Bipin Bihari

    2005-01-01

    Acoustical investigations for the binary mixtures of phosphinic acid (Cyanex 272), used as liquid-liquid extractant, have been made in various diluents such as benzene, toluene, and xylene from ultrasonic velocity and density measurements at temperature 303.15 K and atmospheric pressure. This study involves evaluation of different thermo-acoustic parameters along with the excess properties, which are interpreted in the light of molecular interaction between a polar extractant, Cyanex 272 with non-polar diluent, benzene and weakly polar diluents, toluene and xylene. The excess values are correlated using Redlich-Kister polynomial equation, and corresponding adjustable parameters are derived

  16. Excess molar volumes and deviation in viscosities of binary liquid mixtures of acrylic esters with hexane-1-ol at 303.15 and 313.15K

    OpenAIRE

    Patil, Sujata S.; Mirgane, Sunil R.; Arbad, Balasaheb R.

    2014-01-01

    Densities and viscosities for the four binary liquid mixtures of methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate with hexane-1-ol at temperatures 303.15 and 313.15 K and at atmospheric pressure were measured over the entire composition range. These values were used to calculate excess molar volumes and deviation in viscosities which were fitted to Redlich–Kister polynomial equation. Recently proposed Jouyban Acree model was also used to correlate the experimental value...

  17. Measurements of the osmotic pressure in liquid mixtures of 3He and 4He near the lambda line and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.

    1977-01-01

    Values of the concentration susceptibility (par. deltax/par. deltaΔ)/sub T,P/ near the lambda line and tricritical point in liquid mixtures of 3He and 4 He were calculated from measurements of osmotic pressure differences. Measurements were made by inducing a small 3 He mole fraction difference Δx between two chambrs separated by a pressure transducer, and measuring the resulting osmotic pressure difference as a function of temperature

  18. Oxygen reduction reaction properties of nitrogen-incorporated nanographenes synthesized using in-liquid plasma from mixture of ethanol and iron phthalocyanine

    Science.gov (United States)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-04-01

    Nanographenes were synthesized using in-liquid plasma from a mixture of iron phthalocyanine and ethanol. In a previous study, micrometer-scale flakes with nitrogen incorporation were obtained. A nonprecious metal catalytic activity was observed with 3.13 electrons in an oxygen reduction reaction under an acidic solute condition. Large-surface-area, high-graphene-crystallinity, and iron-carbon-bonding sites were found owing to a high catalytic activity in Fe-N/nanographene.

  19. Densities and viscosities for ionic liquids mixtures containing [eOHmim][BF4], [bmim][BF4] and [bpy][BF4

    International Nuclear Information System (INIS)

    Song, Dayong; Chen, Jing

    2014-01-01

    Highlights: • Targets of this research are ILs mixtures. • Densities and viscosities were measured for three ILs mixtures. • Excess molar properties were deduced from the experiments. • Viscosities were discussed by the ideal Grunberg and Nissan mixing law. - Abstract: Densities and viscosities of binary ionic liquids mixtures, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF 4 ]) + 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF 4 ]), 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF 4 ]) + N-butylpyridinium tetrafluoroborate ([bpy][BF 4 ]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF 4 ]) + N-butylpyridinium tetrafluoroborate ([bpy][BF 4 ]) were measured over the entire mole fraction from T = (298.15 to 343.15) K. The excess molar volumes were calculated and correlated by Redlich–Kiser polynomial expansions. The viscosities for pure ionic liquids were analyzed by means of the Vogel–Tammann–Fulcher equation and ideal mixing rules were applied for the ILs mixtures

  20. Study of the Vapor-Liquid Coexistence Curve and the Critical Curve for Nonazeotropic Refrigerant Mixture R152a + R114 System

    Science.gov (United States)

    Kabata, Yasuo; Higashi, Yukihiro; Uematsu, Masahiko; Watanabe, Koichi

    Measurements of the vapor-liquid coexistence curve in the critical region for the refrigerant mixture of R152a (CH3CHF2: 1, l-difluoroethane) +R 114 (CCIF2CCIF2 :1, 2-dichloro-1, 1, 2, 2-tetrafluoroethane) system were made by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Forty-eight saturated densities along the vapor-liquid coexistence curve between 204 and 861 kg·m-3 for five different compositions of 10, 20, 50, 80 and 90 wt% R 152a were obtained in the temperature range 370 to 409 K. The experimental errors of temperature, density, and mass fraction were estimated within ±10mK, ±0.5% and +0.05 %, respectively. On the basis of these measurements, the critical parameters of five different compositions for the R 152a +R 114 system were determined in consideration of the meniscus disappearance level as well as intensity of the critical opalescence. In accordance with the previous results of three other refrigerant mixtures, i.e., R 12 +R 22 system, R 22 +R 114 system and R 13B1 + R 114 system, the coexistence curve and critical curve on the temperature-density diagram for binary refrigerant mixtures were discussed. In addition, correlations of its composition dependence for this system were proposed.

  1. Characterization of Mixtures. Part 2: QSPR Models for Prediction of Excess Molar Volume and Liquid Density Using Neural Networks.

    Science.gov (United States)

    Ajmani, Subhash; Rogers, Stephen C; Barley, Mark H; Burgess, Andrew N; Livingstone, David J

    2010-09-17

    In our earlier work, we have demonstrated that it is possible to characterize binary mixtures using single component descriptors by applying various mixing rules. We also showed that these methods were successful in building predictive QSPR models to study various mixture properties of interest. Here in, we developed a QSPR model of an excess thermodynamic property of binary mixtures i.e. excess molar volume (V(E) ). In the present study, we use a set of mixture descriptors which we earlier designed to specifically account for intermolecular interactions between the components of a mixture and applied successfully to the prediction of infinite-dilution activity coefficients using neural networks (part 1 of this series). We obtain a significant QSPR model for the prediction of excess molar volume (V(E) ) using consensus neural networks and five mixture descriptors. We find that hydrogen bond and thermodynamic descriptors are the most important in determining excess molar volume (V(E) ), which is in line with the theory of intermolecular forces governing excess mixture properties. The results also suggest that the mixture descriptors utilized herein may be sufficient to model a wide variety of properties of binary and possibly even more complex mixtures. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide

    Science.gov (United States)

    Akasaka, Ryo

    This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.

  3. Multicomponent polymeric materials

    CERN Document Server

    Thomas, Sabu; Saha, Prosenjit

    2016-01-01

    The book offers an in-depth review of the materials design and manufacturing processes employed in the development of multi-component or multiphase polymer material systems. This field has seen rapid growth in both academic and industrial research, as multiphase materials are increasingly replacing traditional single-component materials in commercial applications. Many obstacles can be overcome by processing and using multiphase materials in automobile, construction, aerospace, food processing, and other chemical industry applications. The comprehensive description of the processing, characterization, and application of multiphase materials presented in this book offers a world of new ideas and potential technological advantages for academics, researchers, students, and industrial manufacturers from diverse fields including rubber engineering, polymer chemistry, materials processing and chemical science. From the commercial point of view it will be of great value to those involved in processing, optimizing an...

  4. Inverse Opal Photonic Crystals as an Optofluidic Platform for Fast Analysis of Hydrocarbon Mixtures.

    Science.gov (United States)

    Xu, Qiwei; Mahpeykar, Seyed Milad; Burgess, Ian B; Wang, Xihua

    2018-06-13

    Most of the reported optofluidic devices analyze liquid by measuring its refractive index. Recently, the wettability of liquid on various substrates has also been used as a key sensing parameter in optofluidic sensors. However, the above-mentioned techniques face challenges in the analysis of the relative concentration of components in an alkane hydrocarbon mixture, as both refractive indices and wettabilities of alkane hydrocarbons are very close. Here, we propose to apply volatility of liquid as the key sensing parameter, correlate it to the optical property of liquid inside inverse opal photonic crystals, and construct powerful optofluidic sensors for alkane hydrocarbon identification and analysis. We have demonstrated that via evaporation of hydrocarbons inside the periodic structure of inverse opal photonic crystals and observation of their reflection spectra, an inverse opal film could be used as a fast-response optofluidic sensor to accurately differentiate pure hydrocarbon liquids and relative concentrations of their binary and ternary mixtures in tens of seconds. In these 3D photonic crystals, pure chemicals with different volatilities would have different evaporation rates and can be easily identified via the total drying time. For multicomponent mixtures, the same strategy is applied to determine the relative concentration of each component simply by measuring drying time under different temperatures. Using this optofluidic sensing platform, we have determined the relative concentrations of ternary hydrocarbon mixtures with the difference of only one carbon between alkane hydrocarbons, which is a big step toward detailed hydrocarbon analysis for practical use.

  5. Ethanol production from a biomass mixture of furfural residues with green liquor-peroxide saccarified cassava liquid.

    Science.gov (United States)

    Ji, Li; Zheng, Tianran; Zhao, Pengxiang; Zhang, Weiming; Jiang, Jianxin

    2016-06-01

    As the most abundant renewable resources, lignocellulosic materials are ideal candidates as alternative feedstock for bioethanol production. Cassava residues (CR) are byproducts of the cassava starch industry which can be mixed with lignocellulosic materials for ethanol production. The presence of lignin in lignocellulosic substrates can inhibit saccharification by reducing the cellulase activity. Simultaneous saccharification and fermentation (SSF) of furfural residues (FR) pretreated with green liquor and hydrogen peroxide (GL-H2O2) with CR saccharification liquid was investigated. The final ethanol concentration, yield, initial rate, number of live yeast cells, and the dead yeast ratio were compared to evaluate the effectiveness of combining delignificated lignocellulosic substrates and starchy substrates for ethanol production. Our results indicate that 42.0 % of FR lignin removal was achieved on FR using of 0.06 g H2O2/g-substrate and 9 mL GL/g-substrate at 80 °C. The highest overall ethanol yield was 93.6 % of the theoretical. When the ratio of 0.06 g/g-H2O2-GL-pretreated FR to CR was 5:1, the ethanol concentration was the same with that ratio of untreated FR to CR of 1:1. Using 0.06 g/g-H2O2-GL-pretreated FR with CR at a ratio of 2:1 resulted in 51.9 g/L ethanol concentration. Moreover, FR pretreated with GL-H2O2 decreased the concentration of byproducts in SSF compared with that obtained in the previous study. The lignin in FR would inhibit enzyme activity and GL-H2O2 is an advantageous pretreatment method to treat FR and high intensity of FR pretreatment increased the final ethanol concentration. The efficiency of ethanol fermentation of was improved when delignification increased. GL-H2O2 is an advantageous pretreatment method to treat FR. As the pretreatment dosage of GL-H2O2 on FR increased, the proportion of lignocellulosic substrates was enhanced in the SSF of the substrate mixture of CR and FR as compared with untreated FR. Moreover, the

  6. (Vapour + liquid) equilibria for binary and ternary mixtures of 2-propanol, tetrahydropyran, and 2,2,4-trimethylpentane at P = 101.3 kPa

    International Nuclear Information System (INIS)

    Lin, Dun-Yi; Tu, Chein-Hsiun

    2012-01-01

    Highlights: ► We report the VLE data at P = 101.3 kPa involving a cyclic ether. ► The activity coefficients of mixtures were obtained from modified Raoult’s law. ► The VLE data were correlated by four liquid activity coefficient models. ► The ternary VLE data were predicted from binary parameters of the four models. - Abstract: (Vapour + liquid) equilibrium (VLE) at P = 101.3 kPa have been determined for a ternary system (2-propanol + tetrahydropyran + 2,2,4-trimethylpentane) and its constituent binary systems (2-propanol + tetrahydropyran, 2-propanol + 2,2,4-trimethylpentane), and (tetrahydropyran + 2,2,4-trimethylpentane). Analysis of VLE data reveals that two binary systems (2-propanol + tetrahydropyran) and (2-propanol + 2,2,4-trimethylpentane) have a minimum boiling azeotrope. No azeotrope was found for the ternary system. The activity coefficients of liquid mixtures were obtained from the modified Raoult’s law and were used to calculate the reduced excess molar Gibbs free energy (g E /RT). Thermodynamic consistency tests were performed for all VLE data using the Van Ness direct test for the binary systems and the test of McDermott–Ellis as modified by Wisniak and Tamir for the ternary system. The VLE data of the binary mixtures were correlated using the three-suffix Margules, Wilson, NRTL, and UNIQUAC activity-coefficient models. The models with their best-fitted interaction parameters of the binary systems were used to predict the ternary (vapour + liquid) equilibrium.

  7. Molecular dynamics simulation for the test of calibrated OPLS-AA force field for binary liquid mixture of tri-iso-amyl phosphate and n-dodecane

    Science.gov (United States)

    Das, Arya; Ali, Sk. Musharaf

    2018-02-01

    Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by

  8. Molecular dynamics simulation for the test of calibrated OPLS-AA force field for binary liquid mixture of tri-iso-amyl phosphate and n-dodecane.

    Science.gov (United States)

    Das, Arya; Ali, Sk Musharaf

    2018-02-21

    Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by

  9. Relationship between composition of mixture charged and that in circulation in an auto refrigerant cascade and a J-T refrigerator operating in liquid refrigerant supply mode

    Science.gov (United States)

    Sreenivas, Bura; Nayak, H. Gurudath; Venkatarathnam, G.

    2017-01-01

    The composition of the refrigerant mixture in circulation during steady state operation of J-T and allied refrigerators is not the same as that charged due to liquid hold up in the heat exchangers and phase separators, as well as the differential solubility of different refrigerant components in the compressor lubricating oil. The performance of refrigerators/liquefiers operating on mixed refrigerant cycles is dependent on the mixture composition. It is therefore important to charge the right mixture that results in an optimum composition in circulation during steady state operation. The relationship between the charged and circulating composition has been experimentally studied in a J-T refrigerator operating in the liquid refrigerant supply (LRS) mode and an auto refrigerant cascade refrigerator (with a phase separator) operating in the gas refrigerant supply (GRS) mode. The results of the study are presented in this work. The results show that the method presented earlier for J-T refrigerators operating in GRS mode is also applicable in the case of refrigerators studied in this work.

  10. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: influence of lapse time of reaction.

    Science.gov (United States)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 degrees C) and high (400 degrees C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 degrees C was firstly aromatic products and then olefin products, while at 400 degrees C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 degrees C) and 83 min (at 400 degrees C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was

  11. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: Influence of lapse time of reaction

    International Nuclear Information System (INIS)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 deg. C) and high (400 deg. C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 deg. C was firstly aromatic products and then olefin products, while at 400 deg. C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 deg. C) and 83 min (at 400 deg. C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the

  12. Pressure-induced change in the Raman spectra of ionic liquid [DEME][BF4]-H2O mixtures

    International Nuclear Information System (INIS)

    Imai, Y; Abe, H; Goto, T; Miyashita, T; Yoshimura, Y

    2010-01-01

    We have measured Raman spectral changes of N,N,diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF 4 ]-H 2 O mixtures under high pressure. All the Raman spectra of mixtures of water concentrations below 50.0 mol% H 2 O changed at around 1 GPa at room temperature. The spectrum at high pressure is completely different from that obtained by cooling the sample at a normal pressure.

  13. Studies on transport behaviour of a binary liquid mixture of ethanol and toluene at 298.15K in terms of viscosity models

    Science.gov (United States)

    Purohit, Suresh; Suthar, Shyam Sunder; Vyas, Mahendra; Beniwal, Ram Chandra

    2018-05-01

    The main transport properties of liquid or liquid mixtures are viscosity, diffusion, transference and electrical conductance. Viscosities of various liquid mixtures have been studied and their analyses have also been done by the help of some parameters. For each solution, the excess thermodynamic properties (YE) have been investigated. These excess thermodynamic properties are excess molar volume (VE), viscosity deviation (Δη) and excess Gibbs free energy of activation of viscous flow (ΔG*E). These parameters provide us the important information about interaction between molecules. For example, the negative value of VE and positive value of Δη shows the strong interaction between the solute and solvent molecules while positive value of VE and negative value of Δη shows the weak interaction between solute and solvent molecules. Above parameters and their discussion have been made in our earlier paper. In the present research paper, the viscosity data have been correlated with the equations of Grunberg and Nissan, Hind et al., Tamura and Kurata Katti. The excess values have been correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations. It has been found that in all cases, the data obtained fitted with the values correlated by the corresponding models very well. The results are interpreted in terms of molecular interactions occurring in the solution.

  14. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent

    NARCIS (Netherlands)

    Altena, Frank W.; Smolders, C.A.

    1982-01-01

    A numerical method for the calculation of the binodal of liquid-liquid phase separation in a ternary system is described. The Flory-Huggins theory for three-component systems is used. Binodals are calculated for polymer/solvent/nonsolvent systems which are used in the preparation of asymmetric

  15. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.

    Science.gov (United States)

    Li, D Q; Zhao, J; Li, S P

    2014-06-06

    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Physical properties and solubility parameters of 1-ethyl-3-methylimidazolium based ionic liquids/DMSO mixtures at 298.15 K

    Science.gov (United States)

    Saba, H.; Yumei, Z.; Huaping, W.

    2015-12-01

    Densities, refractive indices, conductivities and viscosities of binary mixtures of 1-ethyl-3-methylimidazolium-based ionic liquids (ILs) with dimethyl sulfoxide at 298.15 K are reported. Excess molar volumes have been calculated from experimental data and were fitted with Redlich-Kister equation. The density and refractive index were found to increase with increasing concentration in all cases except [EMIM]COOH. The free mobility of ions has found to enhance conductivity and decrease viscosity to varying extent in all mixtures being studied. It has been observed that solubility parameters, dielectric constants and nature of anions of ILs being used play a vital role in determining the subsequent characteristics. As DMSO has high dielectric constant therefore, it was able to form interactions with most of ILs except with [EMIM]COOH due to anomalous nature of anion.

  17. Thermophysical properties of binary mixtures of {l_brace}ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol){r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Victor H. [School of Chemical Engineering, State University of Campinas (UNICAMP), P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Chemical Engineering Department, ETSE, University of Santiago de Compostela (USC), P.O. Box 15782, Santiago de Compostela (Spain); Mattedi, Silvana [Chemical Engineering Department, Polytechnic School, Federal University of Bahia (UFBA), 40210-630 Salvador-BA (Brazil); Martin-Pastor, Manuel [Unidade de Resonancia Magnetica, RIAIDT, edif. CACTUS, University of Santiago de Compostela (USC), P.O. Box 15706, Santiago de Compostela (Spain); Aznar, Martin [School of Chemical Engineering, State University of Campinas (UNICAMP), P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Iglesias, Miguel, E-mail: miguel.iglesias@usc.es [Chemical Engineering Department, ETSE, University of Santiago de Compostela (USC), P.O. Box 15782, Santiago de Compostela (Spain)

    2011-07-15

    Research highlights: > This paper reports the density and speed of sound data of binary mixtures {l_brace}2-hydroxy ethylammonium acetate + (water, or methanol, or ethanol){r_brace} measured between the temperatures (298.15 and 313.15) K at atmospheric pressure. > The aggregation, dynamic behavior, and hydrogen-bond network were studied using thermo-acoustic, X-ray, and NMR techniques. > The Peng-Robinson equation of state, coupled with the Wong-Sandler mixing rule using the COSMO-SAC model predicted the density of the solutions with relative mean deviations below than 3.0%. - Abstract: In this work, density and speed of sound data of binary mixtures of an ionic liquid consisting of {l_brace}2-hydroxy ethylammonium acetate (2-HEAA) + (water, methanol, or ethanol){r_brace} have been measured throughout the entire concentration range, from the temperature of (288.15 to 323.15) K at atmospheric pressure. The excess molar volumes, variations of the isentropic compressibility, the apparent molar volume, isentropic apparent molar compressibility, and thermal expansion coefficient were calculated from the experimental data. The excess molar volumes were negative throughout the whole composition range. Compressibility data in combination with low angle X-ray scattering and NMR measurements proved that the presence of micelles formed due to ion pair interaction above a critical concentration of the ionic liquid in the mixtures. The Peng-Robinson equation of state coupled with the Wong-Sandler mixing rule and COSMO-SAC model was used to predict densities and the calculated deviations were lower than 3%, for binary mixtures in all composition range.

  18. A filter paper-based liquid culture system for citrus shoot organogenesis - a mixture-amount experiment

    Science.gov (United States)

    The objective of this study was to determine the effects of a static liquid culture system on shoot regeneration from citrus epicotyl explants. Two citrus types were used, Carrizo citrange and Ridge Pineapple sweet orange. A liquid culture system comprised of a Petri dish, cellulose filter paper dis...

  19. Application of numerical modelling to scaling-up of electrically induced extraction from an organic mixture using an ionic liquid

    Directory of Open Access Journals (Sweden)

    Kamiński Kamil

    2016-03-01

    Full Text Available Liquid-liquid extraction provides an environmentally friendly process as an alternative to azeotropic distillation, pervaporation and reverse osmosis because these techniques require the use of large amounts of energy, may involve volatile organic compounds, and operation at high pressure.

  20. Computational solvation analysis of biomolecules in aqueous ionic liquid mixtures : From large flexible proteins to small rigid drugs.

    Science.gov (United States)

    Zeindlhofer, Veronika; Schröder, Christian

    2018-06-01

    Based on their tunable properties, ionic liquids attracted significant interest to replace conventional, organic solvents in biomolecular applications. Following a Gartner cycle, the expectations on this new class of solvents dropped after the initial hype due to the high viscosity, hydrolysis, and toxicity problems as well as their high cost. Since not all possible combinations of cations and anions can be tested experimentally, fundamental knowledge on the interaction of the ionic liquid ions with water and with biomolecules is mandatory to optimize the solvation behavior, the biodegradability, and the costs of the ionic liquid. Here, we report on current computational approaches to characterize the impact of the ionic liquid ions on the structure and dynamics of the biomolecule and its solvation layer to explore the full potential of ionic liquids.

  1. Differential dynamic optical microscopy for the characterization of soft matter: liquid crystal dynamics, volume phase transition of hydrogels, and phase transition of binary mixtures

    Science.gov (United States)

    Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan; Smith, Michael H.; Lyon, L. Andrew

    2011-03-01

    The structure and dynamics of soft matter were studied by differential dynamic optical microscopy. One can retrieve q-space information through image processing and Fourier analysis, even when the feature sizes in real space image are too small to be resolved or even visible in an optical microscope. The temporal sequence of real space images were Fourier transformed, and analyzed for the temporal and spatial fluctuations of power spectrum. Here, we present the results on liquid crystal dynamics and their elastic properties, volume phase transition of hydrogels when their dimensions are sub-micron, and critical opalescence of binary mixtures (water/2,6-lutidine).

  2. Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the (solid + liquid) equilibrium and the (vapour + liquid) equilibrium. The modified UNIFAC (Do) model characterization

    International Nuclear Information System (INIS)

    Domanska, Urszula; Lachwa, Joanna

    2005-01-01

    The (solid + liquid) equilibrium (SLE) of eight binary systems containing N-methyl-2-pyrrolidinone (NMP) with (2-propanone, or 2-butanone, or 2-pentanone, or 3-pentanone, or cyclopentanone, or 2-hexanone, or 4-methyl-2-pentanone, or 3-heptanone) were carried out by using a dynamic method from T = 200 K to the melting point of the NMP. The isothermal (vapour + liquid) equilibrium data (VLE) have been measured for three binary mixtures of NMP with 2-propanone, 3-pentanone and 2-hexanone at pressure range from p = 0 kPa to p = 115 kPa. Data were obtained at the temperature T = 333.15 K for the first system and at T = 373.15 K for the second two systems. The experimental results of SLE have been correlated using the binary parameters Wilson, UNIQUAC ASM and two modified NRTL equations. The root-mean-square deviations of the solubility temperatures for all the calculated values vary from (0.32 K to 0.68 K) and depend on the particular equation used. The data of VLE were correlated with one to three parameters in the Redlich-Kister expansion. Binary mixtures of NMP with (2-propanone, or 2-butanone, or 2-pentanone, or 3-pentanone, or cyclopentanone, or 2-hexanone, or 4-methyl-2-pentanone, or 3-heptanone) have been investigated in the framework of the modified UNIFAC (Do) model. The reported new interaction parameters for NMP-group (c-CONCH 3 ) and carbonyl group ( C=O) let the model consistently described a set of thermodynamic properties, including (solid + liquid) equilibrium (vapour + liquid) equilibrium, excess Gibbs energy and molar excess enthalpies of mixing. Our experimental and literature data of binary mixtures containing NMP and ketones were compared with the results of prediction with the modified UNIFAC (Do) model

  3. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    Science.gov (United States)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  4. A novel spectral resolution and simultaneous determination of multicomponent mixture of Vitamins B1, B6, B12, Benfotiamine and Diclofenac in tablets and capsules by derivative and MCR-ALS

    Science.gov (United States)

    Hegazy, Maha A.; Abdelwahab, Nada S.; Fayed, Ahmed S.

    2015-04-01

    A novel method was developed for spectral resolution and further determination of five-component mixture including Vitamin B complex (B1, B6, B12 and Benfotiamine) along with the commonly co-formulated Diclofenac. The method is simple, sensitive, precise and could efficiently determine the five components by a complementary application of two different techniques. The first is univariate second derivative method that was successfully applied for determination of Vitamin B12. The second is Multivariate Curve Resolution using the Alternating Least Squares method (MCR-ALS) by which an efficient resolution and quantitation of the quaternary spectrally overlapped Vitamin B1, Vitamin B6, Benfotiamine and Diclofenac sodium were achieved. The effect of different constraints was studied and the correlation between the true spectra and the estimated spectral profiles were found to be 0.9998, 0.9983, 0.9993 and 0.9933 for B1, B6, Benfotiamine and Diclofenac, respectively. All components were successfully determined in tablets and capsules and the results were compared to HPLC methods and they were found to be statistically non-significant.

  5. Development of dispersive liquid-liquid microextraction technique using ternary solvents mixture followed by heating for the rapid and sensitive analysis of phthalate esters and di(2-ethylhexyl) adipate.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Khoshmaram, Leila

    2015-01-30

    In this study, for the first time, a dispersive liquid-liquid microextraction technique using a ternary solvent mixture is reported. In order to extract five phthalate esters and di(2-ethylhexyl) adipate with different polarities from aqueous samples, a simplex centroid experimental design method was used to select an optimal mixture of ternary solvents prior to gas chromatographyflame ionization detection. In this work, dimethyl formamide as a disperser solvent containing dichloromethane, chloroform, and carbon tetrachloride as a ternary extraction solvent mixture is injected into sample solution and a cloudy solution is formed. After centrifuging, 250μL of the obtained sedimented phase was transferred into another tube and 5μL DMF was added to it. Then, the tube was heated in a water bath at 75°C for 5min in order to evaporate the main portion of the extraction solvents. Finally, 2μL of the remained phase is injected into the separation system. Under the optimum extraction conditions, the method shows wide linear ranges and low limits of detection and quantification between 0.03-0.15 and 0.09-0.55μgL(-1), respectively. Enrichment factors and extraction recoveries are in the ranges of 980-4500 and 20-90%, respectively. The method is successfully applied in the determination of the target analytes in mineral water, soda, lemon juice, vinegar, dough, and yogurt packed in plastic packages. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. First Principles Modeling of Structure and Transport in Solid Polymer Electrolytes, Ionic Liquids, and Methanol/Water Mixtures

    Science.gov (United States)

    2016-02-10

    chemical calculations of the magnesium battery electrolytes we were able to make all vibrational frequency assignments (measured in the IR and Raman ...electrolytes for magnesium batteries incorporating chloro- or iodo- ionic liquids. Much of this work was done in collaboration with the experimental group... magnesium batteries incorporating chloro- or iodo- ionic liquids. Much of this work was done in collaboration with the experimental group of Prof. Vito Di

  7. Vapor-liquid equilibria of binary and ternary mixtures of acetaldehyde with Versatic 9 and Veova 9

    NARCIS (Netherlands)

    Raeissi, S.; Florusse, L.J.; Kroon, M.C.; Peters, C.J.

    2016-01-01

    In continuation of our earlier publication on the phase behavior of binary and ternary mixtures involving acetaldehyde, Versatic 10, and Veova 10, in this work we present bubble-point pressures of the binary and ternary systems of acetaldehyde, Versatic 9, and Veova 9. The measurements were carried

  8. Co-processing of lignite-plastic mixtures into liquid distillate fractions in the presence of iron catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Sharypov, V.I.; Beregovtsova, N.G.; Baryshnikov, S.V.; Doroginskaya, A.N. [Russian Academy of Sciences, Krasnoyarsk (Russian Federation). Inst. of Chemistry of Natural Organic Materials Sibirian Branch

    1997-12-31

    Some features of co-processing of Kansk-Achinsk lignite with plastics into hydrocarbon mixtures in the presence of activated iron-containing minerals (hematite, magnetite, pyrrhotite) were investigated under various operating parameters. The following catalytic processes were studied: pyrolysis in an inert atmosphere, hydropyrolysis and water-steam cracking. (orig.)

  9. Riemann solvers for multi-component gas mixtures with temperature dependent heat capacities; Solveurs de riemann pour des melanges de gaz parfaits avec capacites calorifiques dependant de la temperature

    Energy Technology Data Exchange (ETDEWEB)

    Beccantini, A

    2001-07-01

    This thesis represents a contribution to the development of upwind splitting schemes for the Euler equations for ideal gaseous mixtures and their investigation in computing multidimensional flows in irregular geometries. In the preliminary part we develop and investigate the parameterization of the shock and rarefaction curves in the phase space. Then, we apply them to perform some field-by-field decompositions of the Riemann problem: the entropy-respecting one, the one which supposes that genuinely-non-linear (GNL) waves are both shocks (shock-shock one) and the one which supposes that GNL waves are both rarefactions (rarefaction-rarefaction one). We emphasize that their analysis is fundamental in Riemann solvers developing: the simpler the field-by-field decomposition, the simpler the Riemann solver based on it. As the specific heat capacities of the gases depend on the temperature, the shock-shock field-by-field decomposition is the easiest to perform. Then, in the second part of the thesis, we develop an upwind splitting scheme based on such decomposition. Afterwards, we investigate its robustness, precision and CPU-time consumption, with respect to some of the most popular upwind splitting schemes for polytropic/non-polytropic ideal gases. 1-D test-cases show that this scheme is both precise (exact capturing of stationary shock and stationary contact) and robust in dealing with strong shock and rarefaction waves. Multidimensional test-cases show that it suffers from some of the typical deficiencies which affect the upwind splitting schemes capable of exact capturing stationary contact discontinuities i.e the developing of non-physical instabilities in computing strong shock waves. In the final part, we use the high-order multidimensional solver here developed to compute fully-developed detonation flows. (author)

  10. Phase formation in multicomponent monotectic aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje; Groebner, Joachim; Schmid-Fetzer, Rainer [Institute of Metallurgy, Clausthal University of Technology (Germany)

    2008-07-01

    Alloys with a miscibility gap in the liquid state are potential materials for advanced bearings in automotive and other applications. While binary alloys, such as Al-Pb or Al-Bi, are well known, the information available for ternary monotectic Al-alloys is scarce. However, the phase formation in multicomponent alloys is not only more challenging from a scientific aspect, it is also a prerequisite for a focused development of advanced alloys. This motivated our detailed study of monotectic Al-Bi-Cu-Sn alloys including both experimental and computational thermodynamic methods. Based on the initially established systematic classification of monotectic ternary Al-alloys, the first promising monotectic reaction was observed in the ternary Al-Bi-Zn system. Further ternary systems Al-Cu-Sn, Al-Bi-Sn, Al-Bi-Cu and Bi-Cu-Sn were investigated as basis for quaternary Al-Bi-Cu-Sn alloys. Experimental investigations of phase equilibria, enthalpies and solidification microstructures were combined with thermodynamic modeling. The results demonstrate that the developed precise thermodynamic description is vital to reveal the distinct multicomponent monotectic features of pertinent phase diagrams. The solidification paths of ternary monotectic alloy systems, Al-Bi-Zn, Al-Sn-Cu and Al-Bi-Cu, were also studied using thermodynamic calculations, revealing specific details of phase formation during solidification of selected alloys.

  11. Transport processes in multicomponent plasma

    International Nuclear Information System (INIS)

    Zissis, G.

    2002-01-01

    Full text: This book treats in detail, as indicated in the title, the transport phenomena in multicomponent plasmas. Here, the term 'transport' applies to the study of mass and energy transfer in plasmas due to the interactions between pairs of particles only. Radiation is legitimately omitted; anyway, radiative transfer is another field of study. As the author himself mentions in the introduction, 'the term multicomponent plasma implies a partially or fully ionized mixture of arbitrary number of species of neutral and charged particles satisfying the condition of quasi-neutrality'. In fact, this book treats a large variety of plasmas applying to different systems ranging from low-pressure systems which may be far from local thermodynamic equilibrium (LTE) conditions, to thermal plasmas in LTE or near-LTE states with special attention to two-temperature systems; partially ionized plasmas with low ionization degree for which electron-neutral interactions are predominant, to systems with higher ionization degrees in which charged particle interactions are no more negligible. In addition, for all the above stated situations, the author treats both plasmas which are subjected to an external electromagnetic field and those which are not (homogeneous and inhomogeneous cases). Furthermore, in the last chapters a special discussion concerning molecular plasmas is presented. Taking into account the evolution of plasma modelling in the last few years, the subject is of current interest and the reader will find in the book a large amount of information necessary for a good understanding of transport phenomena in plasmas: for a plasma simulation specialist, this book may be regarded as reference text, which includes all necessary mathematical relations for his work. However, it should not be considered a simple formulary; the reader will also find here an excellent description of the theoretical basis necessary for the derivation of all given expressions. To this point of view

  12. Study on kinetics of description of gases and their mixtures through the interface

    International Nuclear Information System (INIS)

    Ermashkevich, V.N.; Kachalov, A.B.; Shlejfer, A.A.; Redin, Yu.A.

    1986-01-01

    The velocity of release of gases into a bubble and a cavity from liquid has been described. It is shown that at simultaneous desorption of several gases dissolved in liquid, into emerging bubble the contribution of each gas is proportional to its coefficient of solubility and is independent of concentration of these gases in liquid. For gases with solubility coefficients above 1000 kg/(m 3 xMPa), partial pressure readily reaches equilibrium. Nitric oxide dissolved in nitrogen tetroxide ranks among them. Alternatively, for gases with low solubility coefficients (for example, nitrogen in N 2 O 4 ), partial pressure in the cavity (bubble) increases slowly. An effect of any gas on the desorption rate of another gas has not been observed. The study allows to evaluate some parameters in formed cavities or in moving gaseous bubbles in multicomponent mixtures (in particular, in dissociating nitrogen tetroxide and in solutions on the basis of nitrogen tetroxide)

  13. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.

    Science.gov (United States)

    Rosenholm, Jarl B

    2018-03-01

    The perfect gas law is used as a reference when selecting state variables (P, V, T, n) needed to characterize ideal gases (vapors), liquids and solids. Van der Waals equation of state is used as a reference for models characterizing interactions in liquids, solids and their mixtures. Van der Waals loop introduces meta- and unstable states between the observed gas (vapor)-liquid P-V transitions at low T. These intermediate states are shown to appear also between liquid-liquid, liquid-solid and solid-solid phase transitions. First-order phase transitions are characterized by a sharp discontinuity of first-order partial derivatives (P, S, V) of Helmholtz and Gibbs free energies. Second-order partial derivatives (K T , B, C V , C P , E) consist of a static contribution relating to second-order phase transitions and a relaxation contribution representing the degree of first-order phase transitions. Bimodal (first-order) and spinodal (second-order) phase boundaries are used to separate stable phases from metastable and unstable phases. The boundaries are identified and quantified by partial derivatives of molar Gibbs free energy or chemical potentials with respect to P, S, V and composition (mole fractions). Molecules confined to spread Langmuir monolayers or adsorbed Gibbs monolayers are characterized by equation of state and adsorption isotherms relating to a two-dimensional van der Waals equation of state. The basic work of two-dimensional wetting (cohesion, adsorption, spreading, immersion), have to be adjusted by a horizontal surface pressure in the presence of adsorbed vapor layers. If the adsorption is extended to liquid films a vertical surface pressure (Π) may be added to account for the lateral interaction, thus restoring PV = ΠAh dependence of thin films. Van der Waals attraction, Coulomb repulsion and structural hydration forces contribute to the vertical surface pressure. A van der Waals type coexistence of ordered (dispersed) and disordered

  14. Properties of pure n-butylammonium nitrate ionic liquid and its binary mixtures of with alcohols at T = (293.15 to 313.15) K

    International Nuclear Information System (INIS)

    Xu, Yingjie; Chen, Bin; Qian, Wu; Li, Haoran

    2013-01-01

    Highlights: ► Densities and viscosities of (N4NO 3 + alcohols) mixtures were measured. ► Coefficient of thermal expansion, molecular volume, standard entropy, and lattice energy were obtained. ► Excess molar volumes, viscosity deviations, and partial molar volumes were calculated. ► Redlich–Kister polynomial was used to correlate the excess properties. ► The intermolecular interactions between N4NO 3 and alcohols were analysed. -- Abstract: Values of the density and viscosity of the pure ionic liquid n-butylammonium nitrate (N4NO 3 ) and its binary mixtures with methanol, ethanol, 1-propanol, and 1-butanol were measured at temperature ranging from T = (293.15 to 313.15) K. The thermal expansion coefficient, molecular volume, standard entropy, and lattice energy of N4NO 3 were deduced from the experimental density results. The temperature dependence of the viscosity of N4NO 3 was fitted to the fluidity equation. Excess molar volumes V E and viscosity deviations Δη for the binary mixtures were calculated and fitted to the Redlich–Kister equation with satisfactory results. Both excess molar volumes and viscosity deviations show negative deviations for (N4NO 3 + alcohol) mixtures. The effect of the temperature and the size of the alcohol on the excess molar volumes and viscosity deviations are discussed and analysed. Other derived properties, such as the apparent molar volume, partial molar volume, excess partial molar volume, thermal expansion coefficient, and excess thermal expansion coefficient of the above-mentioned systems were also calculated

  15. Properties of pure 1,1,3,3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K

    International Nuclear Information System (INIS)

    Chen, Jiayi; Chen, Lingxiao; Xu, Yingjie

    2015-01-01

    Highlights: • Densities and viscosities of [TMG]IM + alcohol mixtures were measured. • Coefficient of thermal expansion, molecular volume, standard entropy, and lattice energy were obtained. • Excess molar volumes and viscosity deviations were calculated and fitted to Redlich–Kister equation. • Other volumetric properties and excess Gibbs free energy of activation for viscous flow were deduced. • The intermolecular interactions between [TMG]IM and alcohols were analyzed. - Abstract: Densities and viscosities of the pure ionic liquid 1,1,3,3-tetramethylguanidine imidazole ([TMG]IM) and its binary mixtures with methanol, ethanol, 1-propanol, and 1-butanol were measured at temperatures from T = (293.15 to 313.15) K. The thermal expansion coefficient, molecular volume, standard entropy, and lattice energy of [TMG]IM were obtained from the experimental density value. The temperature dependence of the viscosity of [TMG]IM was fitted to the fluidity equation. Excess molar volumes V E and viscosity deviations Δη of the binary mixtures were calculated and fitted to the Redlich–Kister equation with satisfactory results. The result shows that the V E values of the binary mixtures are negative over the whole composition range, while Δη values have an S-shape deviation. Temperature has little effect on the V E of the systems, but it has significant effect on the Δη. Furthermore, the absolute values of V E for {[TMG]IM (1) + alcohol (2)} systems at the same temperature decrease with increasing carbon alkyl chain of the primary alcohol. Other derived properties, such as the apparent molar volumes, partial molar volumes, excess partial molar volumes, Gibbs free energy of activation for viscous flow, and excess Gibbs free energy of activation for viscous flow of the above-mentioned systems were also calculated

  16. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  17. Solidification in Multicomponent Multiphase Systems (SIMMS)

    Science.gov (United States)

    Rex, S.; Hecht, U.

    2005-06-01

    The multiphase microstructures that evolve during the solidification of multicomponent alloys are attracting widespread interest for industrial applications and fundamental research.Thermodynamic databases are now well-established for many alloy systems. Thermodynamic calculations provide all the required information about phase equilibria, forming an integral part of both dedicated and comprehensive microstructure models. Among the latter, phase-field modelling has emerged as the method of choice. Solidification experiments are intended to trigger model development or to serve as benchmarks for model validation. For benchmarking, microgravity conditions offer a unique opportunity for avoiding buoyancy-induced convection and buoyancy forces in bulk samples. However, diffusion and the free-energy of interfaces and its anisotropy need to be determined.The measurement of chemical diffusivities in the liquid state can equally benefit from microgravity experiments.

  18. Solidification paths of multicomponent monotectic aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje; Groebner, Joachim [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany)], E-mail: schmid-fetzer@tu-clausthal.de

    2008-10-15

    Solidification paths of three ternary monotectic alloy systems, Al-Bi-Zn, Al-Sn-Cu and Al-Bi-Cu, are studied using thermodynamic calculations, both for the pertinent phase diagrams and also for specific details concerning the solidification of selected alloy compositions. The coupled composition variation in two different liquids is quantitatively given. Various ternary monotectic four-phase reactions are encountered during solidification, as opposed to the simple binary monotectic, L' {yields} L'' + solid. These intricacies are reflected in the solidification microstructures, as demonstrated for these three aluminum alloy systems, selected in view of their distinctive features. This examination of solidification paths and microstructure formation may be relevant for advanced solidification processing of multicomponent monotectic alloys.

  19. Densities, viscosities, and excess properties of binary mixtures of two imidazolide anion functionalized ionic liquids with water at T = (293.15 to 313.15) K

    International Nuclear Information System (INIS)

    Chen, Lingxiao; Chen, Jiayi; Song, Zihao; Cui, Guokai; Xu, Yingjie; Wang, Xuhong; Liu, Jian

    2015-01-01

    Highlights: • Densities and viscosities of binary mixtures of [HDBU]IM and [BDBU]IM with water were measured. • Excess molar volumes and viscosity deviations were calculated and fitted to Redlich–Kister equation. • Other volumetric properties and excess Gibbs free energy of activation for viscous flow were deduced. • The intermolecular interactions between water and [HDBU]IM or [BDBU]IM were analyzed and compared. - Abstract: Densities and viscosities of binary mixtures of 8-hydrogen-1,8-diazabicyclo[5,4,0]-undec-7-enium imidazolide ([HDBU]IM) and 8-butyl-1,8-diazabicyclo[5,4,0]-undec-7-enium imidazolide ([BDBU]IM) ionic liquids (ILs) with water were measured at temperatures from T = (293.15 to 313.15) K. Excess molar volumes V"E and viscosity deviations Δη of the mixtures were calculated to study the intermolecular interactions and structural factors between ILs and water. The results show that the V"E values of the two mixtures are negative over the whole composition range, while the Δη values have positive deviations, indicating that the hydrogen bonding interactions between IL and water are dominant in the mixtures. Moreover, the absolute values of V"E (|V"E|) of {[HDBU]IM (1) + H_2O (2)} system are larger than those of {[BDBU]IM (1) + H_2O (2)} system at the same condition, indicating that the hydrogen bonding interactions between [HDBU]IM and water are stronger than those between [BDBU]IM and water. Both |V"E| and Δη values of the mixtures decrease with the increasing temperature, resulting from the decreasing the hydrogen bonding interactions between IL and water. Other derived properties of the studied systems, such as the apparent molar volumes, partial molar volumes, excess partial molar volumes, Gibbs free energy of activation for viscous flow, and excess Gibbs free energy of activation for viscous flow were also calculated from the experimental values.

  20. Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture

    NARCIS (Netherlands)

    Meindersma, G.W.; Haan, de A.B.

    2012-01-01

    Ionic liquids can replace conventional solvents in aromatic/aliphatic extractions, if they have higher aromatic distribution coefficients and higher or similar aromatic/aliphatic selectivities. Also physical properties, such as density and viscosity, must be taken into account if a solvent is

  1. Enhanced CO2 capture in binary mixtures of 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids with water

    NARCIS (Netherlands)

    Romanos, G.E.; Zubeir, L.F.; Likodimos, V.; Falaras, P.; Kroon, M.C.; Iliev, B.; Adamova, G.; Schubert, T.J.S.

    2013-01-01

    The absorption of carbon dioxide and water in the 1-butyl-3-methylimidazoliun tricyanomethanide ([C4C1im][TCM]) and 1-octyl-3-methylimidazolium tricyanomethanide ([C8C1im][TCM]) ionic liquids (ILs) was systematically investigated for the first time as a function of the H2O content by means of a

  2. Experimental unit to study motion of gas-liquid mixtures in vertical pipes for lifting highly viscous oils

    Energy Technology Data Exchange (ETDEWEB)

    Abishev, S K; Bulgakov, R R; Sakharov, V A

    1981-01-01

    Basic features are presented of a new experimental-research unit of gas-lift recovery of oil UGDN-2 for conditions of lifting the highly viscous oil. It is proposed that this unit be used to conduct experiments and to determine the calculated relationships of a gas-liquid lifter on fluids simulating highly viscous oil.

  3. Thermophysical properties of ionic liquid {1-butyl-3-methylimidazolium bromide [bmim][Br] in alkoxyalkanols + water} mixtures at different temperatures

    International Nuclear Information System (INIS)

    Pal, Amalendu; Kumar, Harsh; Kumar, Bhupinder; Sharma, Pooja; Kaur, Kirtanjot

    2013-01-01

    Highlights: ► Densities and speeds of sound of alkoxyalkanols in [bmim][Br]. ► Synthesis of room temperature ionic liquid [bmim][Br]. ► Partial molar volumes and compressibility of transfer. ► Apparent molar expansivities and the Hepler’s constant were calculated. ► Solute–solute and solute–solvent interactions and the structural changes of the solutes. - Abstract: The interactions of alkoxyalkanols with the ionic liquid 1-butyl-3-methylimidazolium bromide [bmim][Br] as a function of temperature were investigated by combination of volumetric and acoustic methods. The density, ρ, and speed of sound, u, of ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, and triethylene glycol monomethyl ether (0.00–1.01 mol·kg −1 ) in aqueous 1-butyl-3-methylimidazolium bromide solutions ranging from pure water to 0.29 mass% of ionic liquid have been measured at T = (288.15, 298.15 and 308.15) K and atmospheric pressure. The apparent molar volume (V φ ) and adiabatic compressibility (K φ,S ) of alkoxyalkanols in aqueous ionic liquid solution were determined at the measured temperatures. The partial molar volume (V φ 0 ) and partial molar adiabatic compressibility (K φ 0 ) of alkoxyalkanols at infinite dilution were evaluated. Transfer volumes (ΔV φ 0 ) and transfer adiabatic compressibility (ΔK φ 0 ) at infinite dilution from water to aqueous ionic liquid solution were also calculated. The temperature dependence of the apparent molar volume was used to calculate apparent molar expansivity (φ E 0 ) and the Hepler’s constant values, (∂ 2 V φ 0 /∂T 2 ). The results were explained on the basis of competing patterns of interactions of co-solvent and the solute.

  4. Topological defects in mixtures of superconducting condensates with different charges

    Science.gov (United States)

    Garaud, Julien; Babaev, Egor

    2014-06-01

    We investigate the topological defects in phenomenological models describing mixtures of charged condensates with commensurate electric charges. Such situations are expected to appear for example in liquid metallic deuterium. This is modeled by a multicomponent Ginzburg-Landau theory where the condensates are coupled to the same gauge field by different coupling constants whose ratio is a rational number. We also briefly discuss the case where electric charges are incommensurate. Flux quantization and finiteness of the energy per unit length dictate that the different condensates have different winding and thus different number of (fractional) vortices. Competing attractive and repulsive interactions lead to molecule-like bound states between fractional vortices. Such bound states have finite energy and carry integer flux quanta. These can be characterized by the CP1 topological invariant that motivates their denomination as skyrmions.

  5. Protein remains stable at unusually high temperatures when solvated in aqueous mixtures of amino acid based ionic liquids

    DEFF Research Database (Denmark)

    Chevrot, Guillaume; Fileti, Eudes Eterno; Chaban, Vitaly V.

    2016-01-01

    Using molecular dynamics simulations, we investigated the thermal stability and real-time denaturation of a model mini-protein in four solvents: (1) water, (2) 1-ethyl-3-methylimidazolium alaninate [EMIM][ALA] (5 mol% in water), (3) methioninate [EMIM][MET] (5 mol% in water), and (4) tryptophanat...... (AAILs) than in water. This thermal stability was correlated with the thermodynamics and shear viscosity of the AAIL-containing mixtures. These results suggest that AAILs are generally favorable for protein conservation. [Figure not available: see fulltext.]...

  6. Onward treatment of irradiated liquid egg: Detection in sponge cake mixture after baking by means of LC-GC-MS

    International Nuclear Information System (INIS)

    Grabowski, H.U. von; Schulzki, G.; Pfordt, J.; Spiegelberg, A.; Helle, N.; Boegl, K.W.; Schreiber, G.A.

    1993-01-01

    Irradiated whole liquid egg used for preparation of sponge cake could be identified using gaschromatographic/mass spectrometric detection of the radiation induced hydrocarbons for doses from 1 kGy. Separation of the hydrocarbons out of the fat was carried out by HPLC coupled on-line to the GC. That means, for the first time an irradiated component of a heat treated food could be detected. (orig.) [de

  7. Phase Behavior of Aqueous NA-K-MG-CA-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    M.S. Gruszkiewiez; D.A. Palmer; R.D. Springer; P. Wang; A. Anderko

    2006-09-14

    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems.

  8. Novel separation process of gaseous mixture of SO2 and O2 with ionic liquid for hydrogen production in thermochemical sulfur-iodine water splitting cycle

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Gong, Gyeong Taek; Yoo, Kye Sang; Kim, Honggon; Lee, Byoung Gwon; Ahn, Byoung Sung; Jung, Kwang Deog; Lee, Ki Yong; Song, Kwang Ho

    2007-01-01

    anion in the interaction between SO 2 and ionic liquids during absorption process is analyzed by FT-IR spectra. Peak shift, is recognized by comparing SO 2 absorbed [BMIm] PF 6 and [BMIm] BF 4 spectrum. The amount of interaction which results in the absorption amount difference may not analyzed quantitatively; however, it can be verified qualitatively because only anion is the difference between two spectrum conditions. Based on the properties of SO 2 absorbing ionic liquid mentioned, continuous SO 2 separation process of the gaseous SO 2 /O 2 mixture in the thermochemical sulfur-iodine cycle can be realized after acquiring more properties of ionic liquid which is useful for the process design in the near future. (authors)

  9. Thermodynamic properties of deep eutectic solvent and ionic liquid mixtures at temperatures from 293.15 K to 343.15 K

    Science.gov (United States)

    Achsah, R. S.; Shyam, S.; Mayuri, N.; Anantharaj, R.

    2018-04-01

    Deep eutectic solvents (DES) and ionic liquids (ILs) have their applications in various fields of research and in industries due to their attractive physiochemical properties. In this study, the combined thermodynamic properties of DES (choline chloride-glycerol) + IL1 (1-butyl-3-methylimiazolium acetate) and DES(choline chloride-glycerol) + IL2 (1-ethyl-3-methylimadzolium ethyl sulphate) have been studied. The thermodynamic properties such as excess molar volume, partial molar volume, excess partial molar volume and apparent molar volume were calculated for different mole fractions ranging from 0 to 1 and varying temperatures from 293.15 K to 343.15 K. In order to know the solvent properties of DESs and ILs mixtures at different temperatures and their molecular interactions to enhance the solvent performance and process efficiency at fixed composition and temperature the thermodynamic properties were analyzed.

  10. Determination of two-liquid mixture composition by assessing its dielectric parameters 2. modified measuring system for monitoring the dehydration process of bioethanol production

    Directory of Open Access Journals (Sweden)

    Vilitis O.

    2014-02-01

    Full Text Available In Part 2 of the work we describe a modified measuring system for precise monitoring of the dehydration process of bioethanol production. This is based on the earlier proposed system for measuring the concentration of solutions and two-liquid mixtures using devices with capacitive sensors (1-300pF, which provides a stable measuring resolution of ± 0.005 pF at measuring the capacitance of a sensor. In this part of our work we determine additional requirements that are to be imposed on the measuring system at monitoring the ethanol dehydration process and control of bioethanol production. The most important parameters of the developed measuring system are identified. An exemplary calculation is given for the thermocompensated calibration of measuring devices. The results of tests have shown a good performance of the developed measuring system.

  11. Experimental study of the vapour-liquid equilibria of HI-I-2-H2O ternary mixtures, Part 2: Experimental results at high temperature and pressure

    International Nuclear Information System (INIS)

    Larousse, B.; Lovera, P.; Borgard, J.M.; Roehrich, G.; Mokrani, N.; Maillault, C.; Doizi, D.; Dauvois, V.; Roujou, J.L.; Lorin, V.; Fauvet, P.; Carles, P.; Hartmann, J.M.

    2009-01-01

    In order to assess the choice of the sulphur-iodine thermochemical cycle for massive hydrogen production, a precise knowledge of the concentrations of the gaseous species (HI, I 2 , and H 2 O) in thermodynamic equilibrium with the liquid phase of the HI-I 2 -H 2 O ternary mixture is required, in a wide range of concentrations and for temperatures and pressures up to 300 degrees C and 50 bar. In the companion paper (Part 1) the experimental device was described, which enables the measurement of the total pressure and concentrations of the vapour phase (and thus the knowledge of the partial pressures of the different gaseous species) for the HI-I 2 -H 2 O mixture in the 20-140 degrees C range and up to 2 bar. This (Part 2) article describes the experimental device which enables similar measurements but now in the process domain. The results concerning concentrations in the vapour phase for the HI-I 2 -H 2 O initial mixture (with a global composition) in the 120-270 degrees C temperature range and up to 30 bar are presented. As previously, optical online diagnostics are used, based on recordings of infrared transmission spectra for HI and H 2 O and on UV/visible spectrometry for I 2 . The concentrations measured in the vapour phase are the first to describe the vapour composition under thermophysical conditions close to those of the distillation column. The experimental results are compared with a thermodynamic model and will help us to scale up and optimize the reactive distillation column we promote for the HI section of the sulphur-iodine cycle. (authors)

  12. Structure-retention and mobile phase-retention relationships for reversed-phase high-performance liquid chromatography of several hydroxythioxanthone derivatives in binary acetonitrile-water mixtures

    International Nuclear Information System (INIS)

    Amiri, Ali Asghar; Hemmateenejad, Bahram; Safavi, Afsaneh; Sharghi, Hashem; Beni, Ali Reza Salimi; Shamsipur, Mojtaba

    2007-01-01

    The reversed-phase high-performance liquid chromatographic (RP-HPLC) behavior of some newly synthesized hydroxythioxanthone derivatives using binary acetonitrile-water mixtures as mobile phase has been examined. First, the variation in the retention time of each molecule as a function of mobile phase properties was studied by Kamlet-Taft solvatochromic equations. Then, the influences of molecular structure of the hydroxythioxanthone derivatives on their retention time in various mobile phase mixtures were investigated by quantitative structure-property relationship (QSPR) analysis. Finally, a unified model containing both the molecular structure parameters and mobile phase properties was developed to describe the chromatographic behavior of the systems studied. Among the solvent properties, polarity/polarizability parameter (π * ) and hydrogen-bond basicity (β), and among the solute properties, the most positive local charge (MPC), the sum of positive charges on hydrogen atoms contributing in hydrogen bonding (SPCH) and lipophilicity index (log P) were identified as controlling factors in the RP-HPLC behavior of hydroxythioxanthone derivatives in actonitrile-water binary solvents

  13. The mixture of liquid foam soap, ethanol and citric acid as a new fixative-preservative solution in veterinary anatomy.

    Science.gov (United States)

    Turan, Erkut; Gules, Ozay; Kilimci, Figen Sevil; Kara, Mehmet Erkut; Dilek, Omer Gurkan; Sabanci, Seyyid Said; Tatar, Musa

    2017-01-01

    The present study investigates the efficiency of liquid foam soap, ethanol, citric acid and benzalkonium chloride as a fixative-preservative solution (a soap-and ethanol-based fixing solution, or SEFS). In this study, ethanol serves as the fixative and preservative, liquid foam soap as the modifying agent, citric acid as the antioxidant and benzalkonium chloride as the disinfectant. The goat cadavers perfused with SEFS (n=8) were evaluated over a period of one year with respect to hardness, colour and odour using objective methods. Colour and hardness were compared between one fresh cadaver and the SEFS-embalmed cadavers. Histological and microbiological examinations were also performed in tissue samples. Additionally, the cadavers were subjectively evaluated after dissection and palpation. The SEFS provided the effectiveness expected over a 1-year embalming period for the animal cadavers. No bacteria or fungi were isolated except for some non-pathogenic Bacillus species. Visible mould was not present on either cadavers or in the surrounding environment. The cadavers maintained an appearance close to their original anatomical appearance, with muscles having good hardness and elasticity for dissection. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Structure and effective interactions in three-component hard sphere liquids.

    Science.gov (United States)

    König, A; Ashcroft, N W

    2001-04-01

    Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as applied to multicomponent systems by Lebowitz [Phys. Rev. 133, A895 (1964)]. As an important application, we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is obtained from the correlation functions by using an approximate inversion, and examples of effective potentials for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from melts with at least three atomic constituents.

  15. Viscosity and diffusivity in melts: from unary to multicomponent systems

    Science.gov (United States)

    Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun

    2014-05-01

    Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.

  16. Multicomponent Adsorption Model for Polar and Associating Mixtures

    DEFF Research Database (Denmark)

    Nesterov, Igor; Shapiro, Alexander; Kontogeorgis, Georgios M.

    2015-01-01

    of these problems could be due to the fact that the original MPTA assumes that a given adsorbent has the same adsorption capacity (for example, porous volume) for all the adsorbed substances and is adjusted simultaneously to many data. This is a simplified picture, as experimental data indicate that the adsorption......-Radushkevich-Astakhov potentials and the potentials directly restored from experimental data by solving the inverse problem. Application of the latter potentials Clearly demonstrates the importance of the difference in adsorption capacities. However, the quality of prediction of binary adsorption is similar for both potentials...

  17. Application of Prigogine-Flory-Patterson theory to excess molar volume of mixtures of 1-butyl-3-methylimidazolium ionic liquids with N-methyl-2-pyrrolidinone

    International Nuclear Information System (INIS)

    Qi Feng; Wang Haijun

    2009-01-01

    The densities of two binary mixtures formed by 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF 4 ] and 1-butyl-3-methy limidazolium hexafluorophosphate [bmim][PF 6 ] with compound N-methyl-2-pyrrolidinone have been determined over the full range of composition and range of temperature from (298.15 to 313.15) K and at atmospheric pressure using a vibrating-tube densimeter (DMA4500). Excess molar volumes, V m E , have been obtained from these experimental results, and been fitted by the fourth-order Redlich-Kister equation. From the experimental results, partial molar volumes, apparent molar volume and partial molar volumes at infinite dilution were calculated over the whole composition range. Our results show that V m E decreases slightly when temperature increases in the systems studied. The experimental results have been used to test the applicability of the Prigogine-Flory-Patterson (PFP) theory. The results have been interpreted in terms of ion-dipole interactions and structural factors of the ionic liquid and these organic molecular liquids

  18. Characterization of polyoxyethylene tallow amine surfactants in technical mixtures and glyphosate formulations using ultra-high performance liquid chromatography and triple quadrupole mass spectrometry

    Science.gov (United States)

    Tush, Daniel; Loftin, Keith A.; Meyer, Michael T.

    2013-01-01

    Little is known about the occurrence, fate, and effects of the ancillary additives in pesticide formulations. Polyoxyethylene tallow amine (POEA) is a non-ionic surfactant used in many glyphosate formulations, a widely applied herbicide both in agricultural and urban environments. POEA has not been previously well characterized, but has been shown to be toxic to various aquatic organisms. Characterization of technical mixtures using ultra-high performance liquid chromatography (UHPLC) and mass spectrometry shows POEA is a complex combination of homologs of different aliphatic moieties and ranges of ethoxylate units. Tandem mass spectrometry experiments indicate that POEA homologs generate no product ions readily suitable for quantitative analysis due to poor sensitivity. A comparison of multiple high performance liquid chromatography (HPLC) and UHPLC analytical columns indicates that the stationary phase is more important in column selection than other parameters for the separation of POEA. Analysis of several agricultural and household glyphosate formulations confirms that POEA is a common ingredient but ethoxylate distributions among formulations vary.

  19. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture

    Science.gov (United States)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  20. Prediction of the Flash Point of Binary and Ternary Straight-Chain Alkane Mixtures

    Directory of Open Access Journals (Sweden)

    X. Li

    2014-01-01

    Full Text Available The flash point is an important physical property used to estimate the fire hazard of a flammable liquid. To avoid the occurrence of fire or explosion, many models are used to predict the flash point; however, these models are complex, and the calculation process is cumbersome. For pure flammable substances, the research for predicting the flash point is systematic and comprehensive. For multicomponent mixtures, especially a hydrocarbon mixture, the current research is insufficient to predict the flash point. In this study, a model was developed to predict the flash point of straight-chain alkane mixtures using a simple calculation process. The pressure, activity coefficient, and other associated physicochemical parameters are not required for the calculation in the proposed model. A series of flash points of binary and ternary mixtures of straight-chain alkanes were determined. The results of the model present consistent experimental results with an average absolute deviation for the binary mixtures of 0.7% or lower and an average absolute deviation for the ternary mixtures of 1.03% or lower.

  1. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lan, E-mail: lwang322@yahoo.com.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Medical University, Harbin 150081 (China); Sun Xiudong, E-mail: xdsun@hit.edu.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu Wenjing [Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001 (China); Liu Bingyi [Laboratory Center for the School of Pharmacy, Harbin Medical University, Harbin 150081 (China)

    2010-03-15

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  2. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    International Nuclear Information System (INIS)

    Wang Lan; Sun Xiudong; Liu Wenjing; Liu Bingyi

    2010-01-01

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  3. MOLECULAR SIMULATION OF THE VAPOR-LIQUID EQUILIBRIUM OF N2-NC5 MIXTURE BY MONTE CARLO SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Florianne Castillo-Borja

    2013-12-01

    Full Text Available ABSTRACT This study used Monte Carlo simulations in the Gibbs ensemble to describe the liquid-vapor phase equilibrium of nitrogen-n-pentane system for three isotherms. The study analyzed a wide range of pressures ranging up to 25 MPa. The system was modeled using the intermolecular potential Galassi-Tildesley for nitrogen and SKS for n-pentane. Results were compared against experimental data. Far from the critical point region, analyzed models reproduce favorably shape of the curve of phase equilibrium and in the vicinity of the critical point, results tend to move away from the experimental behavior. Critical points were determined (pressure, density and composition for the three isotherms using an extrapolation method based on scaling laws, with satisfactory results. Calculated coexistence curves are adequate even if the models analyzed do not contain optimized binary interaction parameters .

  4. Solubility of gallic acid in liquid mixtures of (ethanol + water) from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    Noubigh, Adel; Jeribi, Chokri; Mgaidi, Arbi; Abderrabba, Manef

    2012-01-01

    Graphical abstract: Solubility of gallic acid vs the mole fraction of ethanol (0.0 to 1) on a solute-free basis in ethanol + water at different temperatures/K. □, 293.15; Δ, 298.15; ◊, 303.15; line calculated by equation. Highlights: ► Solubilities of gallic acid in binary mixtures were determined over the temperatures range (293.15 to 318.15) K. ► The gallic acid solubility in mixed solvents presents a maximum-solubility effect. ► Two empirical equations were proposed to correlate the solubility Data. ► The thermodynamic properties were determined. - Abstract: The solubility of gallic acid in (water + ethanol) binary solvents was determined from (293.15 to 318.15) K at atmospheric pressure using a thermostatted reactor and UV/vis spectrophotometer analysis. The effects of binary solvents composition and temperature on the solubility were discussed. It was found that gallic acid solubility in (water + ethanol) mixed solvents presents a maximum-solubility effect. Two empirical equations were proposed to correlate the solubility data. The calculated solubilities show good agreement with the experimental data within the studied temperature range. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of the gallic acid such as Gibbs energy (Δ sol G°), molar enthalpy of dissolution (Δ sol H°), and molar entropy of dissolution (Δ sol S°) were calculated.

  5. Analysis of conjugated linoleic acid-enriched triacylglycerol mixtures by isocratic silver-ion high-performance liquid chromatography.

    Science.gov (United States)

    Adlof, R O; Menzel, A; Dorovska-Taran, V

    2002-04-12

    Silver-ion HPLC (Ag-HPLC) was applied to the fractionation of a triacylglycerol (TAG) sample enriched (>80%) with conjugated linoleic acid (CLA). After conversion of the TAGs to fatty acid methyl esters using sodium methoxide in methanol, Ag-HPLC (dual-column; isocratic solvent system of 0.1% acetonitrile in hexane; UV detection at 233 nm) was used to determine the CLA isomer distribution (50:50 mixture of 9c 11t- and 10t,12c-18:2). Three or four Ag-HPLC columns connected in series (0.6-1.0% acetonitrile in hexane as solvent; UV detection at 206 nm) were used to analyze the sample in TAG form. Elution times for CLA-enriched TAGs averaged 30 min or less. Isocratic solvent conditions were used to eliminate the solvent equilibration times (often 30 min or more) required between sample injections when solvent programming is used. The ratio of TAGs containing three vs. only two CLA molecules was found to be approximately 3 to 1. Ag-HPLC has thus been shown to be a useful method for rapidly analyzing not only CLA isomers as esters, but also in the TAG form.

  6. Solid–liquid equilibrium and thermodynamic research of 3-Thiophenecarboxylic acid in (water + acetic acid) binary solvent mixtures

    International Nuclear Information System (INIS)

    Liu, Xiang; Liang, Mengmeng; Hu, Yonghong; Yang, Wenge; Shi, Ying; Yin, Jingjing; Liu, Yan

    2014-01-01

    Highlights: • The solubility was measured in (water + acetic acid) from 283.15 to 338.15 K. • The solubility increased with increasing temperature and water contents. • The modified Apelblat equation was more accurate than the λh equation. - Abstract: In this study, the solubility of 3-thiophenecarboxylic acid was measured in (water + acetic acid) binary solvent mixtures in the temperature ranging from 283.15 to 338.15 K by the analytical stirred-flask method under atmospheric pressure. The experimental data were well-correlated with the modified Apelblat equation and the λh equation. In addition, the calculated solubilities showed good agreement with the experimental results. It was found that the modified Apelblat equation could obtain the better correlation results than the λh equation. The experiment results indicated that the solubility of 3-thiophenecarboxylic acid in the binary solvents increased with increasing temperature, increases with increasing water contents, but the increments with temperature differed from different water contents. In addition, the thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis. The experimental data and model parameters would be useful for optimizing the process of purification of 3-thiophenecarboxylic acid in industry

  7. Liquid-liquid extraction of beryllium (II) using Cyanex 923 in kerosene from sodium acetate medium

    International Nuclear Information System (INIS)

    Kamble, Pravin N.; Madane, Namdev S.; Mohite, Baburao S.

    2013-01-01

    Liquid-liquid extraction of beryllium(II) from sodium acetate media using cyanex 923 in kerosene has been carried out. Beryllium(II) was quantitatively extracted from 1x10 -1 M sodium acetate with 1x10 -2 M cyanex 923 in kerosene. It was stripped quantitatively from the organic phase with 1M H 2 SO 4 and determined spectrophotometrically with eriochrome cyanine R at 525 nm. The effect of concentrations of sodium acetate, metal ions and strippants have been studied. Separation of beryllium(II) from other elements was achieved from binary as well as from multicomponent mixtures. The method is simple, rapid and selective with good reproducibility (approximately±2%). (author)

  8. Fingerprinting of complex mixtures with the use of high performance liquid chromatography, inductively coupled plasma atomic emission spectroscopy and chemometrics

    International Nuclear Information System (INIS)

    Ni Yongnian; Peng Yunyan; Kokot, Serge

    2008-01-01

    The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC-a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices-thus, supporting the PCA approach

  9. Laser photolysis study of anthraquinone in binary mixtures ofionic liquid [bmim][PF6] and organic solvent

    Directory of Open Access Journals (Sweden)

    Side Yao

    2006-12-01

    Full Text Available Photochemical properties of the ionic liquid (RTIL 1-butyl-3-methylimidazoliumhexafluorophosphate [bmim][PF6] and its binary mixed solutions with organic solvent(DMF and MeCN were investigated by laser photolysis at an excitation wavelength of 355nm, using anthraquinone (AQ as a probe molecule. It was indicated that the triplet excitedstate of AQ (3AQ* can abstract hydrogen from [bmim][PF6]. Moreover, along with thechange of the ratio of RTIL and organic solvent, the reaction rate constant changes regularly.Critical points were observed at volume fraction VRTIL = 0.2 for RTIL/MeCN and VRTIL =0.05 for RTIL/DMF. For both systems, before the critical point, the rate constant increasesrapidly with increasing VRTIL; however, it decreases obviously with VRTIL after the criticalpoint. We conclude that the concentration dependence is dominant at lower VRTIL, while theviscosity and phase transformation are dominant at higher VRTIL for the effect of ionic liquidon the decay of rate constant.

  10. Dual-Mode Measurement and Theoretical Analysis of Evaporation Kinetics of Binary Mixtures

    Science.gov (United States)

    Song, Hanyu; He, Chi-Ruei; Basdeo, Carl; Li, Ji-Qin; Ye, Dezhuang; Kalonia, Devendra; Li, Si-Yu; Fan, Tai-Hsi

    Theoretical and experimental investigations are presented for the precision measurement of evaporation kinetics of binary mixtures using a quartz crystal resonator. A thin layer of light alcohol mixture including a volatile (methanol) and a much less volatile (1-butanol) components is deployed on top of the resonator. The normal or acoustic mode is to detect the moving liquid-vapor interface due to evaporation with a great spatial precision on the order of microns, and simultaneously the shear mode is used for in-situ detection of point viscosity or concentration of the mixture near the resonator. A one-dimensional theoretical model is developed to describe the underlying mass transfer and interfacial transport phenomena. Along with the modeling results, the transient evaporation kinetics, moving interface, and the stratification of viscosity of the liquid mixture during evaporation are simultaneously measured by the impedance response of the shear and longitudinal waves emitted from the resonator. The system can be used to characterize complicated evaporation kinetics involving multi-component fuels. American Chemical Society Petroleum Research Fund, NSF CMMI-0952646.

  11. CHEMOMETRICS IN BIOANALYTICAL SAMPLE PREPARATION - A FRACTIONATED COMBINED MIXTURE AND FACTORIAL DESIGN FOR THE MODELING OF THE RECOVERY OF 5 TRICYCLIC AMINES FROM PLASMA AFTER LIQUID-LIQUID-EXTRACTION PRIOR TO HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY

    NARCIS (Netherlands)

    WIELING, J; MENSINK, CK; JONKMAN, JHG; COENEGRACHT, PMJ; DUINEVELD, CAA; DOORNBOS, DA

    1993-01-01

    A general systematic approach is described for the chemometric modelling of liquid-liquid extraction data of drugs from biological fluids. Extraction solvents were selected from Snyder's solvent selectivity triangle: methyl tert.-butyl ether, methylene chloride and chloroform. The composition of a

  12. Application of high performance liquid chromatography for the profiling of complex chemical mixtures with the aid of chemometrics.

    Science.gov (United States)

    Ni, Yongnian; Zhang, Liangsheng; Churchill, Jane; Kokot, Serge

    2007-06-15

    In this paper, chemometrics methods were applied to resolve the high performance liquid chromatography (HPLC) fingerprints of complex, many-component substances to compare samples from a batch from a given manufacturer, or from those of different producers. As an example of such complex substances, we used a common Chinese traditional medicine, Huoxiang Zhengqi Tincture (HZT) for this research. Twenty-one samples, each representing a separate HZT production batch from one of three manufacturers were analyzed by HPLC with the aid of a diode array detector (DAD). An Agilent Zorbax Eclipse XDB-C18 column with an Agilent Zorbax high pressure reliance cartridge guard-column were used. The mobile phase consisted of water (A) and methanol (B) with a gradient program of 25-65% (v/v, B) during 0-30min, 65-55% (v/v, B) during 30-35min and 55-100% (v/v, B) during 35-60min (flow rate, 1.0mlmin(-1); injection volume, 20mul; and column temperature-ambient). The detection wavelength was adjusted for maximum sensitivity at different time periods. A peak area matrix with 21objectsx14HPLC variables was obtained by sampling each chromatogram at 14 common retention times. Similarities were then calculated to discriminate the batch-to-batch samples and also, a more informative multi-criteria decision making methodology (MCDM), PROMETHEE and GAIA, was applied to obtain more information from the chromatograms in order to rank and compare the complex HZT profiles. The results showed that with the MCDM analysis, it was possible to match and discriminate correctly the batch samples from the three different manufacturers. Fourier transform infrared (FT-IR) spectra taken from samples from several batches were compared by the common similarity method with the HPLC results. It was found that the FT-IR spectra did not discriminate the samples from the different batches.

  13. Modeling the [NTf2] pyridinium ionic liquids family and their mixtures with the soft statistical associating fluid theory equation of state.

    Science.gov (United States)

    Oliveira, M B; Llovell, F; Coutinho, J A P; Vega, L F

    2012-08-02

    In this work, the soft statistical associating fluid theory (soft-SAFT) equation of state (EoS) has been used to provide an accurate thermodynamic characterization of the pyridinium-based family of ionic liquids (ILs) with the bis(trifluoromethylsulfonyl)imide anion [NTf(2)](-). On the basis of recent molecular simulation studies for this family, a simple molecular model was proposed within the soft-SAFT EoS framework. The chain length value was transferred from the equivalent imidazolium-based ILs family, while the dispersive energy and the molecular parameters describing the cation-anion interactions were set to constant values for all of the compounds. With these assumptions, an appropriate set of molecular parameters was found for each compound fitting to experimental temperature-density data at atmospheric pressure. Correlations for the nonconstant parameters (describing the volume of the IL) with the molecular weight were established, allowing the prediction of the parameters for other pyridiniums not included in the fitting. Then, the suitability of the proposed model and its optimized parameters were tested by predicting high-pressure densities and second-order thermodynamic derivative properties such as isothermal compressibilities of selected [NTf(2)] pyridinium ILs, in a large range of thermodynamic conditions. The surface tension was also provided using the density gradient theory coupled to the soft-SAFT equation. Finally, the soft-SAFT EoS was applied to describe the phase behavior of several binary mixtures of [NTf(2)] pyridinium ILs with carbon dioxide, sulfur dioxide, and water. In all cases, a temperature-independent binary parameter was enough to reach quantitative agreement with the experimental data. The description of the solubility of CO(2) in these ILs also allowed identification of a relation between the binary parameter and the molecular weight of the ionic liquid, allowing the prediction of the CO(2) + C(12)py[NTf(2)] mixture. The good

  14. Numerical simulations of multicomponent evaporation and gas-phase transport using M{sup 2}NOTS

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.K. [Sandia National Laboratories, Albuquerque, NM (United States)

    1995-03-01

    The multiphase, multicomponent, non-isothermal simulator M{sup 2}NOTS was tested against several one-dimensional experiments. The experiments represented a through-flow limiting condition of soil venting in which air flows through the contaminated region. Predictions using M{sup 2}NOTS of changing in situ compositions and effluent concentrations for toluene and o-xylene mixtures were compared to the observed results. Results showed that M{sup 2}NOTS was able to capture the salient trends and features of multicomponent through-flow venting processes.

  15. Local composition shift of mixed working fluid in gas–liquid flow with phase transition

    International Nuclear Information System (INIS)

    Xu Xiongwen; Liu Jinping; Cao Le; Li Zeyu

    2012-01-01

    Local composition shift is an important characteristic of gas-liquid mixture flow with phase transition. It affects the heat transfer process, stream sonic velocity and the mixture distribution in the thermodynamic cycle. Presently, it is mainly calculated through the empirical models of the void fraction from pure fluid experiments. In this paper, we made efforts to obtain it and its rules basing on conservation equations derivation. The result calculated with propane/i-butane binary mixture was verified by the experiment in the evaporator of a refrigerator. As an extending, it was applied to a ternary mixture with components of methane, propane and butane and more information was presented and analyzed. The calculation approach presented in this paper can be applied any multicomponent mixture, and the rules will be helpful to improve the composition shift theory. - Highlights: ► Local composition shift of mixed working fluid in gas–liquid flow was modelled. ► A solution method for local composition of gas–liquid flow was proposed. ► The solution method was verified by the experimental result. ► Local composition shift mechanism of gas–liquid flow was studied

  16. The application of experimental design methodology for the investigation of liquid radioactive waste treatment

    Directory of Open Access Journals (Sweden)

    Šljivić-Ivanović Marija Z.

    2017-01-01

    Full Text Available The sorption properties of waste facade, brick, and asphalt sample towards Sr(II, Co(II, and Ni(II ions from single and multicomponent solutions were investigated. The highest sorption capacity was found for Ni(II ions, while the most effective sorbent was facade. Simplex Centroid Mixture Design was used in order to investigate the sorption processes of ions from solutions with different composition as well as the competition between the cations. Based on the statistical analysis results, the equations for data modeling were proposed. According to the observations, the investigated solid matrices can be effectively used for the liquid radioactive waste treatment. Furthermore, the applied methodology turned out to be an easy and operational way for the investigations of multicomponent sorption processes. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 43009 and Grant no. OI 171007

  17. Un nouveau moyen de mesure absolue du taux gazeux des mélanges gaz-liquides : le SMAC A New Absolute Measurement of the Volumetric Gas Ratio of Gas-Liquid Mixture: the Smac

    Directory of Open Access Journals (Sweden)

    Porot P.

    2006-11-01

    Full Text Available Du graphe (P, V de la compression d'un mélange gaz-liquide, on peut tirer la valeur du taux volumique de gaz dans le mélange. La vérification théorique et expérimentale de ce principe ainsi que ses limites d'application comme moyen de mesure sont présentées. Ce résultat a été utilisé pour développer un système de mesure de l'aération de l'huile moteur, le SMAC (Système de Mesure d'Aération par Compressibilité. Des exemples d'application, tels que l'étude de la sensibilité de certaines huiles à l'aération, sont exposés. Oil aeration can be a real problem in engine oil circuit. The involved lubrication power decrease and thermic properties changes can damage the engine. Furthermore, the increased compressibility is very dangerous for hydraulic systems like valve lash adjusters. A first step to control this aeration is to be able to measure it. Gammametry is often used but this measurement needs a very precise calibration and is quite complicated and dangerous. A new absolute measurement has been discovered, based on the difference of compressibility between air and oil. It is absolute because the measurement principle is independant of the conditions, The system does not need a new calibration at each new environment. It is valid for any gas-liquid mixture. From the (P, V graph of a gas-liquid mixture compression, one can derive the gas-liquid volumetric ratio. The log-log graph (P/PO, 1-V/VO of a mixture sample pressurization always shows an inflexion point. The y value of this inflexion point (1-V/VO is equal to the volumetric gas ratio of the sample (before compression. This phenomenon is obvious on hydraulic curves (see Annexe 1. To check it, we have proceeded to a theoretical demonstration and an experimental verification. The theoretical demonstration of this principle concludes that the principle is verified as long as the ration P index 0 / alpha B is small. B is the oil bulk modulus, alpha is the volumetric gas ratio

  18. Mass flows in N2 - Ar - O2 mixture for a temperature range of 80 K to 100 K in presence of concentration gradients

    International Nuclear Information System (INIS)

    Cristescu, I.; Peculea, M.; Serban, I.

    1992-01-01

    In separation processes of multicomponent mixtures by cryogenic distillation, out of mass transfer at liquid-vapor interface, an essential part is played by Fick diffusion of the two phases. In the present study we have developed a calculus of the generalized diffusion coefficients based on the Chapman-Cowling theory, and we applied it for the N 2 - Ar - O 2 mixture in vapor phase. After computing Fick's law of diffusion for a tri-component nonreactive mixture in which diffusion is occurring in x -direction only, under constant pressure, we have established the time variation of the N 2 , Ar, and O 2 concentrations, taking into account the initial distribution of concentrations and boundary conditions. (Author)

  19. Determination of sildenafil mixed into herbal honey mixture by ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Neira Mustabasic

    2017-01-01

    Full Text Available There has been a number of reports of natural products contaminated with illegal adulterants that threaten consumer health because of their adverse pharmacological effects worldwide. In this study, a multi-residual ultra-performance liquid chromatography method with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS was applied for the identification of sildenafil added into a herbal honey mixture used as an immune system booster. Electrospray ionization (ESI source was applied and operated in the positive ion mode. The mobile phase consisted of 0.1% formic acid aqueous solution/acetonitrile (70:30, v/v using the isocratic gradient elution system at a detection wavelength of 290 nm. The compound of sildenafil added into traditional herbal mixed honey was identified according to the spectrum, chromatographic behavior, and mass spectral data were identified by comparison with the reference substance. The method is selective, sensitive and can be used to detect the sildenafil illegally added into traditional herbal medicinal preparations.

  20. Small-angle x-ray scattering and density measurements of liquid Se50-Te50 mixture at high temperatures and high pressures using synchrotron radiation

    International Nuclear Information System (INIS)

    Kajihara, Y; Inui, M; Matsuda, K; Tomioka, Y

    2010-01-01

    We have carried out small-angle x-ray scattering and x-ray transmission measurements of liquid Se 50 -Te 50 mixture at SPring-8 in Japan and obtained the structure factor S(Q) at small-Q region (0.6 -1 ) and the density at high temperatures and high pressures up to 1000 0 C and 180 MPa. We report preliminary results in this paper. With increasing temperature, the density shows a minimum at around 500 0 C and a maximum at around 700 0 C. On the other hand, S(0) becomes maximum and S(Q) strongly depends on Q at around 600 0 C, which is about the middle temperature where the density shows the minimum and maximum. The temperatures shift to lower side when the pressure increases. These results prove that, with increasing temperature, the sample exhibits gradual transition from low-density structure to high-density structure, which causes mesoscopic density fluctuations in the intermediate temperature region.

  1. The Use of Computer-Based Image Analysis on Colour Determination of Liquid Smoked Trout (Oncorhynchus mykiss Treated with Different Dry Salt-Sugar Mixtures

    Directory of Open Access Journals (Sweden)

    Zayde Ayvaz

    2017-12-01

    Full Text Available In this study, the changes in % yield, dry matter, ash, lipid, protein content, water activity, pH, total volatile basic nitrogen (TVB-N, total viable aerobic count (TVC, yeast and mold count, lactic acid bacteria (LAB, colour parameters and sensorial properties were analysed in rainbow trout (Oncorhynchus mykiss exposed to either salt only or two different salt-sugar mixture treatments. For this purpose, three groups were formed. For the first, second and third group, fish samples were treated with only salt (S, salt and sugar blend (WS and salt and brown sugar blend (BS, respectively. Then, the samples were vacuum packaged and stored at +4°C for 3 months. Overall, salt treatments, liquid smoking and cooking as well as storage generally caused remarkable changes in the parameters of interest. However, except for the sensory analysis, not a remarkable change was seen when the three groups were compared among themselves. The results of experienced panelists suggested that group BS samples had superior appearance, taste, odor and texture and therefore expected to be more preferred by the potential consumers.

  2. Composition tailoring in the Ce-doped multicomponent garnet epitaxial film scintillators

    Czech Academy of Sciences Publication Activity Database

    Průša, Petr; Kučera, M.; Mareš, Jiří A.; Onderišinová, Z.; Hanuš, M.; Babin, Vladimir; Beitlerová, Alena; Nikl, Martin

    2015-01-01

    Roč. 15, č. 8 (2015), s. 3715-3723 ISSN 1528-7483 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : scintillation * liquid phase epitaxy * photoelectron yield * Ce 3+ * multicomponent garnet Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.425, year: 2015

  3. Microwave-Assisted Multicomponent Synthesis of Heterocycles

    NARCIS (Netherlands)

    Kruithof, A.; Ruijter, E.; Orru, R.V.A.

    2011-01-01

    Multicomponent reactions are valuable tools for the generation of diverse heterocycles. As in many fields or organic chemistry, microwave irradiation is rapidly replacing conventional heating methods in multicomponent chemistry. In this review, we present an overview of recent applications of the

  4. BUFFER CAPACITY IN HETEROGENEOUS MULTICOMPONENT SYSTEMS. REVIEW

    Directory of Open Access Journals (Sweden)

    Oxana Spinu

    2015-12-01

    Full Text Available The quantitative basis of the theory of buffer properties for two-phase acid-base buffer systems and for multicomponent heterogeneous systems has been derived. The analytical equations with respect to all components for diverse multicomponent systems were deduced. It has been established, that the buffer capacities of components are mutually proportional.

  5. Energy saving in multicomponent separation using an internally heat-integrated distillation column (HIDiC)

    Energy Technology Data Exchange (ETDEWEB)

    Iwakabe, Koichi [Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo 152-8552 (Japan); Nakaiwa, Masaru; Huang, Kejin; Ohmori, Takao; Endo, Akira; Yamamoto, Takuji [Energy-Efficient Chemical Systems Group, Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Nakanishi, Toshinari [R and D Department, Kimura Chemical Plants Co., Ltd, 2-1-2, Terajima Kuise, Amagasaki, Hyogo 660-8567 (Japan); Roesjorde, Audun [Department of Chemistry, Norwegian University of Science and Technology, 7491 Tronheim (Norway)

    2006-09-15

    Energy savings by an internally heat-integrated distillation column (HIDiC) for the separation of multicomponent mixtures were studied. The design and the operating variables of a HIDiC were defined for this purpose, and were systematically varied to carry out a sensitivity analysis. Benzene-toluene-p-xylene (BTX) mixture and 12-component hydrocarbons (12HC) mixture were chosen as model systems. Sensitivity analysis showed that the HIDiC is able to reduce energy consumption by about 30% for the BTX system and an even better 50% for the 12HC system. The effects on energy consumption of the design and the operating variables were also examined. (author)

  6. Volumetric properties of binary liquid-phase mixture of (water + glycerol) at temperatures of (278.15 to 323.15) K and pressures of (0.1 to 100) MPa

    International Nuclear Information System (INIS)

    Egorov, Gennadiy I.; Makarov, Dmitriy M.

    2014-01-01

    Highlights: • Coefficients of compressibility of liquid binary mixture (water + glycerol) were measured. • Partial molar volumes of the components and excess molar volumes of the mixture were calculated. • Molar isothermal compression, molar isobaric expansion and molar isochoric elasticity of the mixture were evaluated. • Analysis of volume characteristics confirms glycerol hydrophilic nature. - Abstract: The coefficients of compressibility, k = ΔV/V o , of liquid binary mixture of {water (1) + glycerol (2)} were measured over the whole composition range at pressures from (0.1 to 100) MPa and temperatures from (278.15 to 323.15) K. Excess molar volumes of the mixture, V m E , partial molar volumes of the mixture components, V ¯ i , as well as their limiting values, molar isothermal compression K T,m , molar isobaric expansion E P,m , molar isochoric elasticity (isochoric coefficient of thermal pressure) β m were calculated. It was revealed that with glycerol molar fraction increasing the coefficients of compressibility, k, decreased to x 2 ≈ 0.3 ÷ 0.4 (where x 2 was glycerol molar fraction), and further changed insignificantly. It was shown that all isobars of excess molar volumes were negative and their absolute values, V m E , decreased on temperature and pressure rising. No extremes were observed on concentration dependences of partial molar volumes of glycerol in the mixture at its low concentrations. Under the state parameters studied limiting partial volumes of water and glycerol decrease with pressure rising but increase with temperature growth. Dependences of molar isothermal compression and molar isochoric elasticity on glycerol molar fraction passed extremes, and similar dependences of molar isobaric expansion had the temperature inversion regions

  7. Performance test of multicomponent quantum mechanical calculation with polarizable continuum model for proton chemical shift.

    Science.gov (United States)

    Kanematsu, Yusuke; Tachikawa, Masanori

    2015-05-21

    Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.

  8. Using Partial Least-Squares Regression in Multivariate UV Spectroscopic Analysis ofMixtures of Imidazolium-Based Ionic Liquids and 1-Methylimidazole for Measurements of Liquid-Liquid Equilibria

    Czech Academy of Sciences Publication Activity Database

    Bendová, Magdalena; Sedláková, Zuzana; Andresová, Adéla; Wagner, Zdeněk

    2012-01-01

    Roč. 41, č. 12 (2012), s. 2164-2172 ISSN 0095-9782 R&D Projects: GA ČR GP203/09/P141; GA AV ČR IAA400720710 Institutional support: RVO:67985858 Keywords : room-temperature ionic liquids * PLS2 * uv spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.128, year: 2012

  9. Diffusion of Charged Species in Liquids

    Science.gov (United States)

    Del Río, J. A.; Whitaker, S.

    2016-11-01

    In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.

  10. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport

    Directory of Open Access Journals (Sweden)

    Afrooz Farjoo

    2017-10-01

    Full Text Available Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene was studied within the temperature and pressure ranges of 25–600 °C and 110–160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption–diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  11. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.

    Science.gov (United States)

    Farjoo, Afrooz; Kuznicki, Steve M; Sadrzadeh, Mohtada

    2017-10-06

    Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25-600 °C and 110-160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption-diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  12. A Four-Site Molecular Model for Simulations of Liquid Methanol and Water-Methanol Mixtures: MeOH-4P.

    Science.gov (United States)

    Martínez-Jiménez, Manuel; Saint-Martin, Humberto

    2018-04-17

    In this work, we present a new four-site potential for methanol, MeOH-4P, fitted to reproduce the dielectric constant ε, the surface tension γ s , and the liquid density ρ of the pure liquid at T = 298.15 K and p = 1 bar. The partial charges on each site were taken from the OPLS/2016 model with the only difference of putting the negative charge on the fourth site ( M) instead of on the O atom, as done in four-site water models. The original Lennard-Jones (LJ) parameters of OPLS/2016 for the methyl moiety (Me) were modified for the fitting of ρ and γ s , whereas the parameters of the TIP4P-FB water model were used for the O atom without change. Taking into account the energetic cost of the enhanced dipole relative to the isolated molecule, the results from simulations with this model showed good agreement with experiments for ρ, α p , κ T , C p , and Δ H v- l . Also, the temperature dependence of γ s and ε is satisfactory in the interval between 260 and 360 K, and the critical point description is similar to that of OPLS/2016. It is shown that orientational correlations, described by the Kirkwood factor G k , play a prominent role in the appropriate description of dielectric constants in existing models; unfortunately, the enhancement of the dipole moment produced a low diffusion coefficient D MeOH ; thus, a compromise was required between a good reproduction of ε and an acceptable D MeOH . The use of a fourth site resulted in a significant improvement for water-methanol mixtures described with TIP4P-FB and MeOH-4P, respectively, but required the modification of the LJ geometric combination rule to allow a good description of the methanol molar-fraction dependence of ρ, ε, and methanol (water) diffusion coefficients D MeOH ( D H 2 O ) and excess volume of mixing Δ V mix in the entire range of composition. The resulting free energy of hydration Δ G hyd shows excellent agreement with experiments in the interval between 280 and 360 K.

  13. Differential osmotic pressure measurements of the concentration susceptibility of liquid 3He/4He mixtures near the lambda curve and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.; Zimmermann, W. Jr.

    1979-01-01

    Values of the concentration susceptibility (partial x/partial Δ)/sub T/,P of liquid 3 He/ 4 He mixtures have been determined near the lambda curve and tricritical point from measurements of the differential osmotic pressure as a function of temperature T at four values of the 3 He mole fraction, x = 0.594, x = 0.644, x = 0.680, and x = 0.706. Here Δ = μ 3 - μ 4 is the difference between molar chemical potentials and P is the pressure. Our results for the two values of x less than the tricritical value x/sub t/ = 0.675 show pronounced peaks at the lambda transition. For 3 x 10 -4 -2 , where t equals [T - T/sub lambda/(x)]/T/sub lambda/(x), these peaks may be characterized both above and below the transition by the form (A/sub plus-or-minus//α/sub plus-or-minus/) (vertical-bart vertical-bar/sup -alpha/ +- - 1) + B/sub plus-or-minus/, with exponents α/sub plus-or-minus/ lying in the range from approx. 0.0 to approx. 0.2. Except perhaps for x -1 [T-T/sub t//T/sub t/)/vertical-barx-x/sub t//x/sub t/vertical-bar], where f and Ψ are functions determined by experiment and T/sub t/ = 0.867 K is the tricritical value of T. With the aid of this scaling relationship, the behavior of (partialx/partialΔ)/sub T/,P along curves of constant Δ near the lambda curve has been constucted from our data at constant x

  14. Measurements of the osmotic pressure in liquid mixtures of 3He and 4He near the lambda line and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.

    1977-06-01

    Values of the concentration susceptibility near the lambda line and tricritical point in liquid mixtures of 3 He and 4 He have been calculated from measurements of osmotic pressure differences. Measurements were made by inducing a small 3 He mole fraction difference Δx between two chambers separated by a pressure transducer, and measuring the resulting osmotic pressure difference as a function of temperature. Osmotic equilibrium was established through a Vycor glass superleak, which for 3 He mole fraction x > 0.55 functions not only in the superfluid phase but in portions of the normal fluid region of the phase diagram as well. Measurements were made at four 3 He mole fractions, x = 0.59, x = 0.64, x = 0.68, and x = 0.70. In contrast with determinations from light scattering and vapor pressure measurements, the present measurements show a pronounced peak at the lambda transition for the two values of x less than the tricritical value (x/sub t/ = 0.675). The susceptibilities are consistent with α = 0 both above and below the lambda transition except at x = 0.64, where some combination of α and α' greater than zero seems to be preferred. (The result α = 0 corresponds to a logarithmic divergence.) It is possible that this positive value of α or α' represents the influence of tricritical effects. It should be emphasized that there is considerable ambiguity in our determination of α, with acceptable least-squares fits corresponding to values of α between 0.0 and 0.2 being found at both concentrations, both above and below T/sub lambda/. The results appear to be consistent with the results of other experiments away from the lambda line, and also to be consistent with a simple tricritical scaling relationship

  15. Liquid-liquid extraction of uranium(VI) using Cyanex 272 in toluene from sodium salicylate medium

    International Nuclear Information System (INIS)

    Madane, Namdev S.; Nikam, Gurunath H.; Jadhav, Deepali V.; Mohite, Baburao S.

    2011-01-01

    Liquid-liquid extraction of U(VI) from sodium salicylate media using Cyanex 272 in toluene has been carried out. Uranium(VI) was quantitatively extracted from 1 x 10 -3 M sodium salicylate with 5 x 10 -4 M Cyanex 272 in toluene. It was stripped quantitatively from the organic phase with 1M HCl and determined spectrophotometrically with arsenazo(III) at 660 nm. The effect of concentrations of sodium salicylate, extractant, diluents, metal ion and strippants have been studied. Separation of uranium(VI) from other elements was achieved from binary as well as from multicomponent mixtures. The method was extended to determination of uranium(VI) in geological samples. The method is simple, rapid and selective with good reproducibility (approximately ± 2%). (author)

  16. Excess molar volumes and deviation in viscosities of binary liquid mixtures of acrylic esters with hexane-1-ol at 303.15 and 313.15 K

    Directory of Open Access Journals (Sweden)

    Sujata S. Patil

    2014-12-01

    Full Text Available Densities and viscosities for the four binary liquid mixtures of methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate with hexane-1-ol at temperatures 303.15 and 313.15 K and at atmospheric pressure were measured over the entire composition range. These values were used to calculate excess molar volumes and deviation in viscosities which were fitted to Redlich–Kister polynomial equation. Recently proposed Jouyban Acree model was also used to correlate the experimental values of density and viscosity. The mixture viscosities were correlated by several semi-empirical approaches like Hind, Choudhary–Katti, Grunberg–Nissan, Tamura and Kurata, McAllister three and four body model equations. A graphical representation of excess molar volumes and deviation in isentropic compressibility shows positive nature whereas deviation in viscosity shows negative nature at both temperatures for all four binary liquid mixtures. Positive values of excess molar volumes show that volume expansion is taking place causing rupture of H-bonds in self associated alcohols. The results were discussed in terms of molecular interactions prevailing in the mixtures.

  17. Exergy Rate Profile of Multicomponent Distillation System

    Directory of Open Access Journals (Sweden)

    Kehinde Adewale Adesina

    2016-07-01

    Full Text Available Exergy rate profiles, exergetic efficiency and irreversibility were used to examine the driving forces in multicomponent distillation system with the view to identifying feasible and efficient operating parameters. The mixture used comprised of 5% propane, 15% iso-butane, 25% nbutane, 20% iso-pentane and 35% n-pentane. Operating variables were feed temperature (-30 oC and -80 oC, pressure (800 kPa and 1200 kPa, and reflux-ratio (2 and 6. Stage-by-stage system exergy analysis was estimated. Column profiles of base case -30 oC, -80 oC, -30 oC-reflus ratio 6, -80 oC reflux ratio 6 and base case reflux ratio 6 did not crossed thus are thermodynamically feasible. Base case -30 oC-reflux ratio 2, -80 oC-reflux ratio 2, and base case-reflux ratio 2 were crossed and constricted and are infeasible. Base case results gave efficiency of 81.7% at depropanizer and 65.2% at debutanizer. Base cases sensitivity results with -30 oC, -80 oC and reflux ratio 6, efficiency range 57.40 – 70% and 65.20% - 54.90% for depropanizer and debutanizer respectively. Spitted cases gave 81.7% and 62.20% with more scatter profiles. Splitted feed base case -30 oC design gave the lowest overall system exergy loss rate of 1.12E+6 and efficiency of 95.70%. Design feasible parameters, system efficiency and irreversibility which form basis

  18. Intermolecular Interactions in Binary Liquid Mixtures of Styrene with m-, o-, or p-xylene%苯乙烯与邻、间、对-二甲苯二元混合液的分子间相互作用

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The densities (ρ), ultrasonic speeds (v), and refractive indices (n) of binary mixtures of styrene (STY)with m-, o-, or p-xylene, including those of their pure liquids, were measured over the entire composition range at the temperatures 298.15, 303.15, 308.15, and 313.15 K. The excess volumes (VE), deviations in isentropic compressibilities(△ks), acoustic impedances (△Z), and refractive indices (△n) were calculated from the experimental data. Partial molar volumes (V0φ,2) and partial molar isentropic compressibilities (K0φ,2) of xylenes in styrene have also been calculated. The derived functions, namely, VE, △ks, △Z, △n, V0φ,2, and K0φ,2 were used to have a better understanding of the intermolecular interactions occurring between the component molecules of the present liquid mixtures. The variations of these parameters suggest that the interactions between styrene and o-, m-, or p-xylene molecules follow the sequences: p-xylene>o-xylene>m-xylene. Apart from using density data for the calculation of VE, excess molar volumes were also estimated using refractive index data. Furthermore, several refractive index mixing rules have been used to estimate the refractive indices of the studied liquid mixtures theoretically. Overall, the computed and measured data were interpreted in terms of interactions between the mixing components.

  19. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2010-08-01

    Full Text Available Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008. This model allows the reliable computation of the liquid-liquid coexistence curve (binodal, corresponding tie-lines, the limit of stability/metastability (spinodal, and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six

  20. Detailed finite element method modeling of evaporating multi-component droplets

    Energy Technology Data Exchange (ETDEWEB)

    Diddens, Christian, E-mail: C.Diddens@tue.nl

    2017-07-01

    The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet. Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.

  1. Prediction of vapour-liquid equilibria for the kinetic study of processes based on synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Di Serio, M.; Tesser, R.; Cozzolino, M.; Santacesaria, E. [Naples Univ., Napoli (Italy). Dept. of Chemistry

    2006-07-01

    Syngas is normally used in the production of a broad range of chemicals and fuels. In many of these processes multiphase reactors, gas-liquid or gas-liquid-solid are used. Kinetic studies in multiphase systems are often complicated by the non-ideal behaviour of reagents and/or products that are consistently partitioned between the liquid and the vapour phase. Moreover, as often kinetic data are collected in batch conditions for the liquid phase, activity coefficients of the partitioned components can consistently change during the time as a consequence of changing the composition of the reaction mixture. Therefore, it is necessary, in these cases, to known the vapor-liquid equilibria (VLE) in order to collect and to interpret correctly the kinetic data. The description of phase equilibria, at high pressures, is usually performed by means of an EOS (Equation of State) allowing the calculation of fugacity coefficients, for each component, in both phases and determining the partition coefficients but the EOS approach involves the experimental determination of the interaction parameters for all the possible binary system of the mixture. For multicomponent mixtures a complete experimental determination of vapourliquid equilibria is very hard, also considering the high pressure and temperatures used. Some predictive group contribution methods have been recently developed. In this paper, we will describe in detail the application of these methods to the methanol homologation, as an example, with the scope of determining more reliable kinetic parameters for this reaction. (orig.)

  2. The multi-component WKI hierarchy

    International Nuclear Information System (INIS)

    Yao Yuqin; Zhang Yufeng

    2005-01-01

    Firstly a new loop algebra G∼ M with 3M dimensions is constructed, which is devoted to establishing a new isospectral problem. Then the multi-component WKI hierarchy of soliton equations is obtained

  3. Novel energy sharing collisions of multicomponent solitons

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... Abstract. In this paper, we discuss the fascinating energy sharing collisions of multicomponent solitons in certain incoherently coupled and coherently coupled nonlinear Schrödinger-type equations arising in the context of nonlinear optics.

  4. Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Charles J Werth; Albert J Valocchi, Hongkyu Yoon

    2011-05-21

    Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

  5. Investigation of Deviations from Ideality in the Two Liquid Phase Region of Systems of Medium Molecular Weight Hydrocarbon Mixtures and Water.

    Science.gov (United States)

    1986-02-01

    determined by refractometry using a Bausch and Lomb Refractometer (Abbe 3-L). Refractive index calibrations for the binary mixtures examined are given in...mixture sample was taken and analyzed by refractometry . b. Results The results of the vapor pressure experiments and the Redlich- Kister coefficients

  6. On a partial differential equation method for determining the free energies and coexisting phase compositions of ternary mixtures from light scattering data.

    Science.gov (United States)

    Ross, David S; Thurston, George M; Lutzer, Carl V

    2008-08-14

    In this paper we present a method for determining the free energies of ternary mixtures from light scattering data. We use an approximation that is appropriate for liquid mixtures, which we formulate as a second-order nonlinear partial differential equation. This partial differential equation (PDE) relates the Hessian of the intensive free energy to the efficiency of light scattering in the forward direction. This basic equation applies in regions of the phase diagram in which the mixtures are thermodynamically stable. In regions in which the mixtures are unstable or metastable, the appropriate PDE is the nonlinear equation for the convex hull. We formulate this equation along with continuity conditions for the transition between the two equations at cloud point loci. We show how to discretize this problem to obtain a finite-difference approximation to it, and we present an iterative method for solving the discretized problem. We present the results of calculations that were done with a computer program that implements our method. These calculations show that our method is capable of reconstructing test free energy functions from simulated light scattering data. If the cloud point loci are known, the method also finds the tie lines and tie triangles that describe thermodynamic equilibrium between two or among three liquid phases. A robust method for solving this PDE problem, such as the one presented here, can be a basis for optical, noninvasive means of characterizing the thermodynamics of multicomponent mixtures.

  7. Multicomponent quantitative spectroscopic analysis without reference substances based on ICA modelling.

    Science.gov (United States)

    Monakhova, Yulia B; Mushtakova, Svetlana P

    2017-05-01

    A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV-vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of "unknown" model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer-Lambert-Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.

  8. A multi-component matrix loop algebra and a unified expression of the multi-component AKNS hierarchy and the multi-component BPT hierarchy

    International Nuclear Information System (INIS)

    Zhang Yufeng

    2005-01-01

    A set of multi-component matrix Lie algebra is constructed, which is devote to obtaining a new loop algebra A-bar M-1 . It follows that an isospectral problem is established. By making use of Tu scheme, a Liouville integrable multi-component hierarchy of soliton equations is generated, which possesses the bi-Hamiltonian structures. As its reduction cases, the multi-component AKNS hierarchy and the formalism of the multi-component BPT hierarchy are given, respectively

  9. Diclofenac Sodium Loaded Multicomponent Implant

    Science.gov (United States)

    Nikkola, Lila; Viitanen, Petrus; Ashammakhi, Nureddin

    2008-02-01

    Earlier we have reported on developing DS releasing bioabsorbable rods for inhibition of osteolysis [l]. Due to their unsatisfactory drug release profiles we assessed the use of sintering technique of enhancement of drug release in the current study. Melt extruded PLGA 80/20 rods were compounded 8 wt-% DS. Some rods were self reinforced (SR) and some of them were sterilized to get three different components with different drug release profiles. Different rods were sintered together with heat and pressure. Three different specimen groups with different construction were studied. Thermal properties were analyzed using differential scanning calorimetry (DSC). Changes of IV were performed with capillary analysis and drug release measurements with UV-Vis spectrophotometer. Mechanical strength were measured two weeks, when disintegration occurred. Release rate consisted of 1) sharp jump start peak, 2) second smoother peak, and 3) third smooth peak. Released DS concentrations reached local therapeutic levels and maintained at that stage for 24-36 days. All DS was released during 50-70 days. The drug release from multicomponent implant was more stable and commenced earlier than from initial rods. Such properties were favored ones. Initial shear strength was 82 MPa and it decreased to 15 MPa. The mechanical bonding was sufficient although the components disintegrated relatively fast. By sintering different PLGA/DS components with different release rates it is possible to construct a truly controlled release implant for bone fixation with anti-inflammatory properties.

  10. Inverse design of multicomponent assemblies

    Science.gov (United States)

    Piñeros, William D.; Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.

    2018-03-01

    Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously self-assemble into a desired structure. Here, we extend an inverse design methodology—relative entropy optimization—to determine isotropic interactions that promote assembly of targeted multicomponent phases, and we apply this extension to design interactions for a variety of binary crystals ranging from compact triangular and square architectures to highly open structures with dodecagonal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for the binary assemblies to those obtained from optimization of analogous single-component systems. This comparison reveals that self-interactions act as a "primer" to position particles at approximately correct coordination shell distances, while cross interactions act as the "binder" that refines and locks the system into the desired configuration. For simpler binary targets, it is possible to successfully design self-assembling systems while restricting one of these interaction types to be a hard-core-like potential. However, optimization of both self- and cross interaction types appears necessary to design for assembly of more complex or open structures.

  11. PEG1000-Based Dicationic Acidic Ionic Liquid Catalyzed One-Pot Synthesis of 4-Aryl-3-Methyl-1-Phenyl-1H-Benzo[h]pyrazolo [3,4-b]quinoline-5,10-Diones via Multicomponent Reactions

    Directory of Open Access Journals (Sweden)

    Yi-Ming Ren

    2015-09-01

    Full Text Available A novel and green approach for efficient and rapid synthesis of 4-aryl-3-methyl-1-phenyl-1H-benzo[h]pyrazolo[3,4-b]quinoline-5,10-diones has been accomplished by the one-pot condensation reaction of aromatic aldehydes, 3-methyl-1-phenyl-1H-pyrazol-5-amine and 2-hydroxynaphthalene-1,4-dione using PEG1000-based dicationic acidic ionic liquid (PEG1000-DAIL as a catalyst was reported. Recycling studies have shown that the PEG1000-DAIL can be readily recovered and reused several times without significant loss of activity. The key advantages are the short reaction time, high yields, simple workup, and recovered catalyst.

  12. Ultrasonic measurement process of the ratio volume of gas in an enclosure containing a gas-liquid mixture to the total volume of the enclosure

    International Nuclear Information System (INIS)

    Marini, J.; Heinrich, J.P.

    1983-01-01

    Ultrasonic waves with two different frequencies are sent through the fluid in the containment. Time of propagation are measured and the difference is calculated. If propagation times are identical the gas phase forms a layer on the top of the liquid phase and void fraction is determined from propagation speeds in the gas and in the liquid. If propagation times are different, part of the gas forms bubbles and void fraction is the sum of gas on top of the liquid and gas bubbles in the liquid determined separatly. Void fraction coming from the gas over the liquid is determined by waves reflected at the interface gas-liquid. Void fraction coming from the bubbles is determined by relations between the speed of ultrasonic waves and their frequency as a function of pressure and void fraction [fr

  13. Application of ultraperformance liquid chromatography/mass spectrometry-based metabonomic techniques to analyze the joint toxic action of long-term low-level exposure to a mixture of organophosphate pesticides on rat urine profile.

    Science.gov (United States)

    Du, Longfei; Wang, Hong; Xu, Wei; Zeng, Yan; Hou, Yurong; Zhang, Yuqiu; Zhao, Xiujuan; Sun, Changhao

    2013-07-01

    In previously published articles, we evaluated the toxicity of four organophosphate (OP) pesticides (dichlorvos, dimethoate, acephate, and phorate) to rats using metabonomic technology at their corresponding no observed adverse effect level (NOAEL). Results show that a single pesticide elicits no toxic response. This study aimed to determine whether chronic exposure to a mixture of the above four pesticides (at their corresponding NOAEL) can lead to joint toxic action in rats using the same technology. Pesticides were administered daily to rats through drinking water for 24 weeks. The above mixture of the four pesticides showed joint toxic action at the NOAEL of each pesticide. The metabonomic profiles of rats urine were analyzed by ultraperformance liquid chromatography/mass spectrometry. The 16 metabolites statistically significantly changed in all treated groups compared with the control group. Dimethylphosphate and dimethyldithiophosphate exclusively detected in all treated groups can be used as early, sensitive biomarkers for exposure to a mixture of the OP pesticides. Moreover, exposure to the OP pesticides resulted in increased 7-methylguanine, ribothymidine, cholic acid, 4-pyridoxic acid, kynurenine, and indoxyl sulfate levels, as well as decreased hippuric acid, creatinine, uric acid, gentisic acid, C18-dihydrosphingosine, phytosphingosine, suberic acid, and citric acid. The results indicated that a mixture of OP pesticides induced DNA damage and oxidative stress, disturbed the metabolism of lipids, and interfered with the tricarboxylic acid cycle. Ensuring food safety requires not only the toxicology test data of each pesticide for the calculation of the acceptable daily intake but also the joint toxic action.

  14. [Theoretical modeling and experimental research on direct compaction characteristics of multi-component pharmaceutical powders based on the Kawakita equation].

    Science.gov (United States)

    Si, Guo-Ning; Chen, Lan; Li, Bao-Guo

    2014-04-01

    Base on the Kawakita powder compression equation, a general theoretical model for predicting the compression characteristics of multi-components pharmaceutical powders with different mass ratios was developed. The uniaxial flat-face compression tests of powder lactose, starch and microcrystalline cellulose were carried out, separately. Therefore, the Kawakita equation parameters of the powder materials were obtained. The uniaxial flat-face compression tests of the powder mixtures of lactose, starch, microcrystalline cellulose and sodium stearyl fumarate with five mass ratios were conducted, through which, the correlation between mixture density and loading pressure and the Kawakita equation curves were obtained. Finally, the theoretical prediction values were compared with experimental results. The analysis showed that the errors in predicting mixture densities were less than 5.0% and the errors of Kawakita vertical coordinate were within 4.6%, which indicated that the theoretical model could be used to predict the direct compaction characteristics of multi-component pharmaceutical powders.

  15. Density Functional Theory for Liquid−Liquid Interfaces of Mixtures Using the Perturbed-Chain Polar Statistical Associating Fluid Theory Equation of State

    Czech Academy of Sciences Publication Activity Database

    Klink, Ch.; Planková, Barbora; Gross, J.

    2015-01-01

    Roč. 54, č. 16 (2015), s. 4633-4642 ISSN 0888-5885 Institutional support: RVO:61388998 Keywords : interfacial tension * liquid-liquid equilibira * PCP-SAFT Subject RIV: BJ - Thermodynamics Impact factor: 2.567, year: 2015 http://pubs.acs.org/doi/abs/10.1021/acs.iecr.5b00445

  16. Phase diagrams of (vapour + liquid) equilibrium for binary mixtures of α,α,α-trifluorotoluene with ethanol, or benzene, or chloroform at pressure 101.4 kPa

    International Nuclear Information System (INIS)

    Atik, Zadjia

    2008-01-01

    (Vapour + liquid) equilibrium (VLE) of binary mixtures of (ethanol + α,α,α-trifluorotoluene), (benzene + α,α,α-trifluorotoluene), and (chloroform + α,α,α-trifluorotoluene) have been investigated at the pressure 101.4 kPa using the dynamic-ebulliometry method over the whole composition range. The correlated VLE phase diagrams were adequately described by means of NRTL and UNIQUAC thermodynamic models. Fair attractive energies in the first two systems are capable to yield azeotropes, while moderate repulsive energies in the later system make it zeotrope

  17. An improved molecular dynamics algorithm to study thermodiffusion in binary hydrocarbon mixtures

    Science.gov (United States)

    Antoun, Sylvie; Saghir, M. Ziad; Srinivasan, Seshasai

    2018-03-01

    In multicomponent liquid mixtures, the diffusion flow of chemical species can be induced by temperature gradients, which leads to a separation of the constituent components. This cross effect between temperature and concentration is known as thermodiffusion or the Ludwig-Soret effect. The performance of boundary driven non-equilibrium molecular dynamics along with the enhanced heat exchange (eHEX) algorithm was studied by assessing the thermodiffusion process in n-pentane/n-decane (nC5-nC10) binary mixtures. The eHEX algorithm consists of an extended version of the HEX algorithm with an improved energy conservation property. In addition to this, the transferable potentials for phase equilibria-united atom force field were employed in all molecular dynamics (MD) simulations to precisely model the molecular interactions in the fluid. The Soret coefficients of the n-pentane/n-decane (nC5-nC10) mixture for three different compositions (at 300.15 K and 0.1 MPa) were calculated and compared with the experimental data and other MD results available in the literature. Results of our newly employed MD algorithm showed great agreement with experimental data and a better accuracy compared to other MD procedures.

  18. The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ali Khazaei

    2014-07-01

    Full Text Available In this work, artificial neural network (ANN has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocarbon components. The ANN model has been developed as a function of temperature, critical properties, and acentric factor of the mixture according to conventional corresponding-state models. 80% of the data points were employed for training ANN and the remaining data were utilized for testing the generated model. The average absolute relative deviations (AARD% of the model for the training set, the testing set, and the total data points were obtained 1.69, 1.86, and 1.72 respectively. Comparing the results with Flory theory, Brok-Bird equation, and group contribution theory has proved the high prediction capability of the attained model.

  19. Device for the continuous measurement of radio-activity of solutions of substances in a homogeneous mixture with a liquid scintillator

    International Nuclear Information System (INIS)

    Gross, V.N.

    1979-01-01

    The β-activity of marked particles from the radio-chemical industry or nuclear power plants is measured in two isolated, opposed flows of homogeneous integrating mixtures. The measuring vessel for this is represented by a glass cylinder, which is separated by a glass separating wall into two parts of equal volume. The volume of the measuring vessel and therefore the volume of mixture to be measured can be increased without worsening the chromatographic separation of substances. (DG) 891 HP/DG 892 CKA [de

  20. Benchmarks for multicomponent diffusion and electrochemical migration

    DEFF Research Database (Denmark)

    Rasouli, Pejman; Steefel, Carl I.; Mayer, K. Ulrich

    2015-01-01

    In multicomponent electrolyte solutions, the tendency of ions to diffuse at different rates results in a charge imbalance that is counteracted by the electrostatic coupling between charged species leading to a process called “electrochemical migration” or “electromigration.” Although not commonly...... not been published to date. This contribution provides a set of three benchmark problems that demonstrate the effect of electric coupling during multicomponent diffusion and electrochemical migration and at the same time facilitate the intercomparison of solutions from existing reactive transport codes...