WorldWideScience

Sample records for multi-temporal ers-2 synthetic

  1. ARM CLASIC ER2 CRS/EDOP

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Heymsfield

    2010-12-20

    Data was taken with the NASA ER-2 aircraft with the Cloud Radar System and other instruments in conjunction with the DOE ARM CLASIC field campaign. The flights were near the SGP site in north Central Oklahoma and targeted small developing convection. The CRS is a 94 GHz nadir pointing Doppler radar. Also on board the ER-2 was the Cloud Physics Lidar (CPL). Seven science flights were conducted but the weather conditions did not cooperate in that there was neither developing convection, or there was heavy rain.

  2. Multi Temporal Interferometry as Tool for Urban Landslide Hazard Assessment

    Science.gov (United States)

    Vicari, A.; Colangelo, G.; Famiglietti, N.; Cecere, G.; Stramondo, S.; Viggiano, D.

    2017-12-01

    Advanced Synthetic Aperture Radar Differential Interferometry (A-DInSAR) are Multi Temporal Interferometry(MTI) techniques suitable for the monitoring of deformation phenomena in slow kinematics. A-DInSAR methodologies include both Coherence-based type, as well as Small Baseline Subset (SBAS) (Berardino et al., 2002, Lanari et al., 2004) and Persistent/Permanent Scatterers (PS), (Ferretti et al., 2001). Such techniques are capable to provide wide-area coverage (thousands of km2) and precise (mm-cm resolution), spatially dense information (from hundreds to thousands of measurementpoints/km2) on groundsurfacedeformations. SBAS and PShavebeenapplied to the town of Stigliano (MT) in Basilicata Region (Southern Italy), where the social center has been destroyed after the reactivation of a known landslide. The comparison of results has shown that these techniques are equivalent in terms of obtained coherent areas and displacement patterns, although lightly different velocity values for individual points (-5/-25 mm/y for PS vs. -5/-15 mm/y for SBAS) have been pointed out. Differences are probably due to scattering properties of the ground surface (e.g. Lauknes et al., 2010). Furthermore, on the crown of the landslide body, a Robotics Explorer Total Monitoring Station (Leica Nova TM50) that measures distance values with 0.6 mm of resolution has been installed. In particular, 20 different points corresponding to that identified through satellite techniques have been chosen, and a sampling time of 15 minutes has been fixed. The displacement values obtained are in agreement with the results of the MTI analysis, showing as these techniques could be a useful tool in the case of early - warning situations.

  3. BOREAS Level-0 ER-2 Navigation Data

    Science.gov (United States)

    Strub, Richard; Dominguez, Roseanne; Newcomer, Jeffrey A.; Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS Staff Science effort covered those activities that were BOREAS community-level activities or required uniform data collection procedures across sites and time. These activities included the acquisition, processing, and archiving of aircraft navigation/attitude data to complement the digital image data. The level-0 ER-2 navigation data files contain aircraft attitude and position information acquired during the digital image and photographic data collection missions. Temporally, the data were acquired from April to September 1994. Data were recorded at intervals of 5 seconds. The data are stored in tabular ASCII files.

  4. CAMEX-4 ER-2 HIGH ALTITUDE DROPSONDE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 High Altitude Dropsonde dataset was collected by the ER-2 High Altitude Dropsonde System (EHAD), which used dropwinsondes fitted with Global...

  5. CAMEX-4 ER-2 LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 Lightning Instrument Package (LIP) dataset was collected by the ER-2 LIP, which allows the vector components of the electric field (i.e, Ex, Ey, Ez...

  6. GPM Ground Validation Navigation Data ER-2 OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA ER-2 Navigation Data OLYMPEX dataset supplies navigation data collected by the NASA ER-2 aircraft for flights that occurred during...

  7. TCSP ER-2 DOPPLER RADAR (EDOP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TCSP ER-2 DOPPLER RADAR (EDOP) dataset was collected by the ER-2 Doppler radar (EDOP), which is an X-band (9.6 GHz) Doppler radar mounted in the nose of the ER-2...

  8. CAMEX-4 ER-2 DOPPLER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 Doppler Radar dataset was collected by the ER-2 Doppler radar (EDOP), which is an X-band (9.6 GHz) Doppler radar mounted in the nose of ER-2. The...

  9. MODIS multi-temporal data retrieval and processing toolbox

    NARCIS (Netherlands)

    Mattiuzzi, M.; Verbesselt, J.; Klisch, A.

    2012-01-01

    The package functionalities are focused for the download and processing of multi-temporal datasets from MODIS sensors. All standard MODIS grid data can be accessed and processed by the package routines. The package is still in alpha development and not all the functionalities are available for now.

  10. Azimuth Ambiguities Removal in Littoral Zones Based on Multi-Temporal SAR Images

    Directory of Open Access Journals (Sweden)

    Xiangguang Leng

    2017-08-01

    Full Text Available Synthetic aperture radar (SAR is one of the most important techniques for ocean monitoring. Azimuth ambiguities are a real problem in SAR images today, which can cause performance degradation in SAR ocean applications. In particular, littoral zones can be strongly affected by land-based sources, whereas they are usually regions of interest (ROI. Given the presence of complexity and diversity in littoral zones, azimuth ambiguities removal is a tough problem. As SAR sensors can have a repeat cycle, multi-temporal SAR images provide new insight into this problem. A method for azimuth ambiguities removal in littoral zones based on multi-temporal SAR images is proposed in this paper. The proposed processing chain includes co-registration, local correlation, binarization, masking, and restoration steps. It is designed to remove azimuth ambiguities caused by fixed land-based sources. The idea underlying the proposed method is that sea surface is dynamic, whereas azimuth ambiguities caused by land-based sources are constant. Thus, the temporal consistence of azimuth ambiguities is higher than sea clutter. It opens up the possibilities to use multi-temporal SAR data to remove azimuth ambiguities. The design of the method and the experimental procedure are based on images from the Sentinel data hub of Europe Space Agency (ESA. Both Interferometric Wide Swath (IW and Stripmap (SM mode images are taken into account to validate the proposed method. This paper also presents two RGB composition methods for better azimuth ambiguities visualization. Experimental results show that the proposed method can remove azimuth ambiguities in littoral zones effectively.

  11. Multi-temporal RADARSAT-1 and ERS backscattering signatures of coastal wetlands in southeastern Louisiana

    Science.gov (United States)

    Kwoun, Oh-Ig; Lu, Z.

    2009-01-01

    Using multi-temporal European Remote-sensing Satellites (ERS-1/-2) and Canadian Radar Satellite (RADARSAT-1) synthetic aperture radar (SAR) data over the Louisiana coastal zone, we characterize seasonal variations of radar backscat-tering according to vegetation type. Our main findings are as follows. First, ERS-1/-2 and RADARSAT-1 require careful radiometric calibration to perform multi-temporal backscattering analysis for wetland mapping. We use SAR backscattering signals from cities for the relative calibration. Second, using seasonally averaged backscattering coefficients from ERS-1/-2 and RADARSAT-1, we can differentiate most forests (bottomland and swamp forests) and marshes (freshwater, intermediate, brackish, and saline marshes) in coastal wetlands. The student t-test results support the usefulness of season-averaged backscatter data for classification. Third, combining SAR backscattering coefficients and an optical-sensor-based normalized difference vegetation index can provide further insight into vegetation type and enhance the separation between forests and marshes. Our study demonstrates that SAR can provide necessary information to characterize coastal wetlands and monitor their changes.

  12. Monitoring Ground Deformation of Subway Area during the Construction Based on the Method of Multi-Temporal Coherent Targets Analysis

    Science.gov (United States)

    Zhang, L.; Wu, J.; Zhao, J.; Yuan, M.

    2018-04-01

    Multi-temporal coherent targets analysis is a high-precision and high-spatial-resolution monitoring method for urban surface deformation based on Differential Synthetic Aperture Radar (DInSAR), and has been successfully applied to measure land subsidence, landslide and strain accumulation caused by fault movement and so on. In this paper, the multi-temporal coherent targets analysis is used to study the settlement of subway area during the period of subway construction. The eastern extension of Shanghai Metro Line. 2 is taking as an example to study the subway settlement during the construction period. The eastern extension of Shanghai Metro Line. 2 starts from Longyang Road and ends at Pudong airport. Its length is 29.9 kilometers from east to west and it is a key transportation line to the Pudong Airport. 17 PalSAR images during 2007 and 2010 are applied to analyze and invert the settlement of the buildings nearby the subway based on the multi-temporal coherent targets analysis. But there are three significant deformation areas nearby the Line 2 between 2007 and 2010, with maximum subsidence rate up to 30 mm/y in LOS. The settlement near the Longyang Road station and Chuansha Town are both caused by newly construction and city expansion. The deformation of the coastal dikes suffer from heavy settlement and the rate is up to -30 mm/y. In general, the area close to the subway line is relatively stable during the construction period.

  13. Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping

    Science.gov (United States)

    Tamiminia, H.; Homayouni, S.; Safari, A.

    2015-12-01

    Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.

  14. Backscatter Analysis Using Multi-Temporal SENTINEL-1 SAR Data for Crop Growth of Maize in Konya Basin, Turkey

    Science.gov (United States)

    Abdikan, S.; Sekertekin, A.; Ustunern, M.; Balik Sanli, F.; Nasirzadehdizaji, R.

    2018-04-01

    Temporal monitoring of crop types is essential for the sustainable management of agricultural activities on both national and global levels. As a practical and efficient tool, remote sensing is widely used in such applications. In this study, Sentinel-1 Synthetic Aperture Radar (SAR) imagery was utilized to investigate the performance of the sensor backscatter image on crop monitoring. Multi-temporal C-band VV and VH polarized SAR images were acquired simultaneously by in-situ measurements which was conducted at Konya basin, central Anatolia Turkey. During the measurements, plant height of maize plant was collected and relationship between backscatter values and plant height was analysed. The maize growth development was described under Biologische Bundesanstalt, bundessortenamt und CHemische industrie (BBCH). Under BBCH stages, the test site was classified as leaf development, stem elongation, heading and flowering in general. The correlation coefficient values indicated high correlation for both polarimetry during the early stages of the plant, while late stages indicated lower values in both polarimetry. As a last step, multi-temporal coverage of crop fields was analysed to map seasonal land use. To this aim, object based image classification was applied following image segmentation. About 80 % accuracies of land use maps were created in this experiment. As preliminary results, it is concluded that Sentinel-1 data provides beneficial information about plant growth. Dual-polarized Sentinel-1 data has high potential for multi-temporal analyses for agriculture monitoring and reliable mapping.

  15. Harvard ER-2 OH laser-induced fluorescence instrument

    Science.gov (United States)

    Wennberg, Paul O.; Anderson, James G.

    1994-01-01

    The Harvard ER-2 OH instrument is scheduled to be integrated into the NASA ER-2 high altitude aircraft ozone payload in August 1992. Design and fabrication is presently underway. This experiment is a descendant of a balloon borne instrument designed and built in the mid-1980s. The ER-2 instrument is being designed to measure OH and HO2 as part of the NASA ozone payload for the investigation of processes controlling the concentration of stratospheric ozone. Although not specifically designed to do so, it is hoped that valid measurements of OH and HO2 can be made in the remote free troposphere with this instrument.

  16. MULTI-TEMPORAL ANALYSIS OF LANDSCAPES AND URBAN AREAS

    Directory of Open Access Journals (Sweden)

    E. Nocerino

    2012-07-01

    Full Text Available This article presents a 4D modelling approach that employs multi-temporal and historical aerial images to derive spatio-temporal information for scenes and landscapes. Such imagery represent a unique data source, which combined with photo interpretation and reality-based 3D reconstruction techniques, can offer a more complete modelling procedure because it adds the fourth dimension of time to 3D geometrical representation and thus, allows urban planners, historians, and others to identify, describe, and analyse changes in individual scenes and buildings as well as across landscapes. Particularly important to this approach are historical aerial photos, which provide data about the past that can be collected, processed, and then integrated as a database. The proposed methodology employs both historical (1945 and more recent (1973 and 2000s aerial images from the Trentino region in North-eastern Italy in order to create a multi-temporal database of information to assist researchers in many disciplines such as topographic mapping, geology, geography, architecture, and archaeology as they work to reconstruct building phases and to understand landscape transformations (Fig. 1.

  17. TCSP ER-2 LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TCSP ER-2 Lightning Instrument Package (LIP) consists of 7 rotating vane type electric field sensors and a two channel conductivity probe along with a central...

  18. TCSP ER-2 DOPPLER RADAR (EDOP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The EDOP provides vertically profiled reflectivity and Doppler velocity at aircraft nadir along the flight track. The ER-2 Doppler radar (EDOP) is an X-band (9.6...

  19. Bridge Collapse Revealed By Multi-Temporal SAR Interferometry

    Science.gov (United States)

    Sousa, Joaquim; Bastos, Luisa

    2013-12-01

    On the night of March 4, 2001, the Hintze Ribeiro centennial Bridge, made of steel and concrete, collapsed in Entre-os-Rios (Northern Portugal), killing 59 people, including those in a bus and three cars that were attempting to reach the other side of the Douro River. It still remains the most serious road accident in the Portuguese history. In this work we do not intend to corroborate or contradict the official version of the accident causes, but only demonstrate the potential of Multi-Temporal Interferometric (MTI-InSAR) techniques for detection and monitoring of deformations in structures such as bridges, helping to prevent new catastrophic events. Based on the analysis of 57 ERS-1/2 covering the period from December 1992 to the fatality occurrence, we were able to detect significant movements (up to 20 mm/yr) in the section of the bridge that fell in the Douro River, obvious signs of the bridge instability.

  20. Rice yield estimation with multi-temporal Radarsat-2 data

    Science.gov (United States)

    Chen, Chi-Farn; Son, Nguyen-Thanh; Chen, Cheng-Ru

    2015-04-01

    Rice is the most important food crop in Taiwan. Monitoring rice crop yield is thus crucial for agronomic planners to formulate successful strategies to address national food security and rice grain export issues. However, there is a real challenge for this monitoring purpose because the size of rice fields in Taiwan was generally small and fragmented, and the cropping calendar was also different from region to region. Thus, satellite-based estimation of rice crop yield requires the data that have sufficient spatial and temporal resolutions. This study aimed to develop models to estimate rice crop yield from multi-temporal Radarsat-2 data (5 m resolution). Data processing were carried out for the first rice cropping season from February to July in 2014 in the western part of Taiwan, consisting of four main steps: (1) constructing time-series backscattering coefficient data, (2) spatiotemporal noise filtering of the time-series data, (3) establishment of crop yield models using the time-series backscattering coefficients and in-situ measured yield data, and (4) model validation using field data and government's yield statistics. The results indicated that backscattering behavior varied from region to region due to changes in cultural practices and cropping calendars. The highest correlation coefficient (R2 > 0.8) was obtained at the ripening period. The robustness of the established models was evaluated by comparisons between the estimated yields and in-situ measured yield data showed satisfactory results, with the root mean squared error (RMSE) smaller than 10%. Such results were reaffirmed by the correlation analysis between the estimated yields and government's rice yield statistics (R2 > 0.8). This study demonstrates advantages of using multi-temporal Radarsat-2 backscattering data for estimating rice crop yields in Taiwan prior to the harvesting period, and thus the methods were proposed for rice yield monitoring in other regions.

  1. MULTI-TEMPORAL SAR INTERFEROMETRY FOR LANDSLIDE MONITORING

    Directory of Open Access Journals (Sweden)

    R. Dwivedi

    2016-06-01

    Full Text Available In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS and Small Baseline (SB methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS based PS-InSAR and the Small Baselines Subset (SBAS techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.

  2. An Unsupervised Method of Change Detection in Multi-Temporal PolSAR Data Using a Test Statistic and an Improved K&I Algorithm

    Directory of Open Access Journals (Sweden)

    Jinqi Zhao

    2017-12-01

    Full Text Available In recent years, multi-temporal imagery from spaceborne sensors has provided a fast and practical means for surveying and assessing changes in terrain surfaces. Owing to the all-weather imaging capability, polarimetric synthetic aperture radar (PolSAR has become a key tool for change detection. Change detection methods include both unsupervised and supervised methods. Supervised change detection, which needs some human intervention, is generally ineffective and impractical. Due to this limitation, unsupervised methods are widely used in change detection. The traditional unsupervised methods only use a part of the polarization information, and the required thresholding algorithms are independent of the multi-temporal data, which results in the change detection map being ineffective and inaccurate. To solve these problems, a novel method of change detection using a test statistic based on the likelihood ratio test and the improved Kittler and Illingworth (K&I minimum-error thresholding algorithm is introduced in this paper. The test statistic is used to generate the comparison image (CI of the multi-temporal PolSAR images, and improved K&I using a generalized Gaussian model simulates the distribution of the CI. As a result of these advantages, we can obtain the change detection map using an optimum threshold. The efficiency of the proposed method is demonstrated by the use of multi-temporal PolSAR images acquired by RADARSAT-2 over Wuhan, China. The experimental results show that the proposed method is effective and highly accurate.

  3. Synthetic

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2010-06-01

    Full Text Available Traditionally materials have been associated with a series of physical properties that can be used as inputs to production and manufacturing. Recently we witnessed an interest in materials considered not only as ‘true matter’, but also as new breeds where geometry, texture, tooling and finish are able to provoke new sensations when they are applied to a substance. These artificial materials can be described as synthetic because they are the outcome of various qualities that are not necessarily true to the original matter, but they are the combination of two or more parts, whether by design or by natural processes. The aim of this paper is to investigate the potential of architectural surfaces to produce effects through the invention of new breeds of artificial matter, using micro-scale details derived from Nature as an inspiration.

  4. Multi-temporal SAR interferometry reveals acceleration of bridge sinking before collapse

    Science.gov (United States)

    Sousa, J. J.; Bastos, L.

    2013-03-01

    On the night of 4 March 2001, at Entre-os-Rios (Northern Portugal), the Hintze Ribeiro centennial bridge collapsed killing 59 people traveling in a bus and three cars that were crossing the Douro River. According to the national authorities, the collapse was due to two decades of uncontrolled sand extraction which compromised the stability of the bridge's pillars, together with underestimating the warnings from divers and technicians. In this work we do not intend to corroborate or contradict the official version of the accident's causes, but only demonstrate the potential of Multi-Temporal Interferometric techniques for detection and monitoring of deformations in structures such as bridges, and consequently the usefulness of the derived information in some type of early warning system to help prevent new catastrophic events. Based on the analysis of 52 ERS-1/2 covering the period from May 1995 to the fatal occurrence, we were able to detect significant movements, reaching rates of 20 mm yr-1, in the section of the bridge that fell into the Douro River, which are obvious signs of the bridge's instability. These promising results demonstrate that with the new high-resolution synthetic aperture radar satellite scenes it is possible to develop interferometric based methodologies for structural health monitoring.

  5. a Comparison Study of Different Kernel Functions for Svm-Based Classification of Multi-Temporal Polarimetry SAR Data

    Science.gov (United States)

    Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.

    2014-10-01

    In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.

  6. Methodology for heritage conservation in Belgium based on multi-temporal interferometry

    Science.gov (United States)

    Bejarano-Urrego, L.; Verstrynge, E.; Shimoni, M.; Lopez, J.; Walstra, J.; Declercq, P.-Y.; Derauw, D.; Hayen, R.; Van Balen, K.

    2017-09-01

    Soil differential settlements that cause structural damage to heritage buildings are precipitating cultural and economic value losses. Adequate damage assessment as well as protection and preservation of the built patrimony are priorities at national and local levels, so they require advanced integration and analysis of environmental, architectural and historical parameters. The GEPATAR project (GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium) aims to create an online interactive geo-information tool that allows the user to view and to be informed about the Belgian heritage buildings at risk due to differential soil settlements. Multi-temporal interferometry techniques (MTI) have been proven to be a powerful technique for analyzing earth surface deformation patterns through time series of Synthetic Aperture Radar (SAR) images. These techniques allow to measure ground movements over wide areas at high precision and relatively low cost. In this project, Persistent Scatterer Synthetic Aperture Radar Interferometry (PS-InSAR) and Multidimensional Small Baseline Subsets (MSBAS) are used to measure and monitor the temporal evolution of surface deformations across Belgium. This information is integrated with the Belgian heritage data by means of an interactive toolbox in a GIS environment in order to identify the level of risk. At country scale, the toolbox includes ground deformation hazard maps, geological information, location of patrimony buildings and land use; while at local scale, it includes settlement rates, photographic and historical surveys as well as architectural and geotechnical information. Some case studies are investigated by means of on-site monitoring techniques and stability analysis to evaluate the applied approaches. This paper presents a description of the methodology being implemented in the project together with the case study of the Saint Vincent's church which is located on a former colliery zone. For

  7. Atmospheric Ionizing Radiation (AIR) ER-2 Preflight Analysis

    Science.gov (United States)

    Tai, Hsiang; Wilson, John W.; Maiden, D. L.

    1998-01-01

    Atmospheric ionizing radiation (AIR) produces chemically active radicals in biological tissues that alter the cell function or result in cell death. The AIR ER-2 flight measurements will enable scientists to study the radiation risk associated with the high-altitude operation of a commercial supersonic transport. The ER-2 radiation measurement flights will follow predetermined, carefully chosen courses to provide an appropriate database matrix which will enable the evaluation of predictive modeling techniques. Explicit scientific results such as dose rate, dose equivalent rate, magnetic cutoff, neutron flux, and air ionization rate associated with those flights are predicted by using the AIR model. Through these flight experiments, we will further increase our knowledge and understanding of the AIR environment and our ability to assess the risk from the associated hazard.

  8. MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Multispectral remote sensing images have...

  9. Multi-Temporal vs. Hyper-Spectral Imaging for Future Land Imaging at 30 m

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to determine the information content of multi-temporal land imaging in discrete Landsat-like spectral bands at 30 m with a 360 km swath width and compare...

  10. Antiferromagnetic ordering of Er2NiSi3 compound

    International Nuclear Information System (INIS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2014-01-01

    Ternary intermetallics of the stoichiometric composition R 2 TX 3 , where, R = rare earth element, T = d-electron transition metal and X= p-electron element, crystallizes in hexagonal A1B 2 type crystal structure with space group P6/mmm. We report here the synthesis and basic magnetic properties of the compound Er 2 NiSi 3 . Paramagnetic to antiferromagnetic phase change occurs below 5.4 K for this compound. (author)

  11. Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Cable

    2014-03-01

    Full Text Available The purpose of this research is to analyze how changes in acquisition time and incidence angle affect various C-band synthetic aperture radar (SAR polarimetric intensities, co-polarized phase information, polarimetric response plots and decomposition parameters for various crops typical of Northern Ontario, Canada. We examine how these parameters may be used to monitor the growth stages of five common cash crops, namely, barley (Hordeum vulgare, canola (Brassica napus, oat (Avena sativa, soybean (Glycine max and wheat (Triticum spp.. In total, nine RADARSAT-2 polarimetric images were analyzed across a 14-week period beginning in June and ending in September 2011 using two incidence angles of approximately 26° and 41°. As expected, the backscatter intensities for all targets were found to show a higher response when acquired at the steeper incidence angle (26°. All cash crop targets showed a rise and fall in backscatter response over the course of the growing season, coinciding with changing growth stages. Slight phase differences were observed for cereal crops, possibly due to one of the polarizations penetrating between the rows allowing double-bounce to occur. The polarimetric response plots and decompositions offered insight into the scattering mechanisms of each crop type, generally showing an increase in volume scattering as the crops reached maturity. Specifically, the contributions of the crops increased towards the volume scattering component and zones 4 and 2, as the crops matured in regards to the Freeman-Durden and Cloude-Pottier decompositions respectively. Overall, soybean and canola showed a more similar response in comparison to the cereal cash crops. Although the study focused on Northern Ontario, it is anticipated that these results would be relevant in investigations of multi-temporal RADARSAT-2 for agricultural zones with similar crop types.

  12. Monitoring of Building Construction by 4D Change Detection Using Multi-temporal SAR Images

    Science.gov (United States)

    Yang, C. H.; Pang, Y.; Soergel, U.

    2017-05-01

    Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.

  13. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data

    Science.gov (United States)

    Jiao, Xianfeng; Kovacs, John M.; Shang, Jiali; McNairn, Heather; Walters, Dan; Ma, Baoluo; Geng, Xiaoyuan

    2014-10-01

    The aim of this paper is to assess the accuracy of an object-oriented classification of polarimetric Synthetic Aperture Radar (PolSAR) data to map and monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in North-eastern Ontario, Canada. Polarimetric images and field data were acquired during the 2011 and 2012 growing seasons. The classification and field data collection focused on the main crop types grown in the region, which include: wheat, oat, soybean, canola and forage. The polarimetric parameters were extracted with PolSAR analysis using both the Cloude-Pottier and Freeman-Durden decompositions. The object-oriented classification, with a single date of PolSAR data, was able to classify all five crop types with an accuracy of 95% and Kappa of 0.93; a 6% improvement in comparison with linear-polarization only classification. However, the time of acquisition is crucial. The larger biomass crops of canola and soybean were most accurately mapped, whereas the identification of oat and wheat were more variable. The multi-temporal data using the Cloude-Pottier decomposition parameters provided the best classification accuracy compared to the linear polarizations and the Freeman-Durden decomposition parameters. In general, the object-oriented classifications were able to accurately map crop types by reducing the noise inherent in the SAR data. Furthermore, using the crop classification maps we were able to monitor crop growth stage based on a trend analysis of the radar response. Based on field data from canola crops, there was a strong relationship between the phenological growth stage based on the BBCH scale, and the HV backscatter and entropy.

  14. Long-term ground deformation patterns of Bucharest using multi-temporal InSAR and multivariate dynamic analyses: a possible transpressional system?

    OpenAIRE

    Arma?, Iuliana; Mendes, Diana A.; Popa, R?zvan-Gabriel; Gheorghe, Mihaela; Popovici, Diana

    2017-01-01

    WOS:000395576200001 (Nº de Acesso Web of Science) The aim of this exploratory research is to capture spatial evolution patterns in the Bucharest metropolitan area using sets of single polarised synthetic aperture radar (SAR) satellite data and multi-temporal radar interferometry. Three sets of SAR data acquired during the years 1992–2010 from ERS-1/-2 and ENVISAT, and 2011–2014 from TerraSAR-X satellites were used in conjunction with the Small Baseline Subset (SBAS) and persistent scattere...

  15. ER2OWL: Generating OWL Ontology from ER Diagram

    Science.gov (United States)

    Fahad, Muhammad

    Ontology is the fundamental part of Semantic Web. The goal of W3C is to bring the web into (its full potential) a semantic web with reusing previous systems and artifacts. Most legacy systems have been documented in structural analysis and structured design (SASD), especially in simple or Extended ER Diagram (ERD). Such systems need up-gradation to become the part of semantic web. In this paper, we present ERD to OWL-DL ontology transformation rules at concrete level. These rules facilitate an easy and understandable transformation from ERD to OWL. The set of rules for transformation is tested on a structured analysis and design example. The framework provides OWL ontology for semantic web fundamental. This framework helps software engineers in upgrading the structured analysis and design artifact ERD, to components of semantic web. Moreover our transformation tool, ER2OWL, reduces the cost and time for building OWL ontologies with the reuse of existing entity relationship models.

  16. Geomorphological change detection using object-based feature extraction from multi-temporal LIDAR data

    NARCIS (Netherlands)

    Seijmonsbergen, A.C.; Anders, N.S.; Bouten, W.; Feitosa, R.Q.; da Costa, G.A.O.P.; de Almeida, C.M.; Fonseca, L.M.G.; Kux, H.J.H.

    2012-01-01

    Multi-temporal LiDAR DTMs are used for the development and testing of a method for geomorphological change analysis in western Austria. Our test area is located on a mountain slope in the Gargellen Valley in western Austria. Six geomorphological features were mapped by using stratified Object-Based

  17. Infrastructure assessment for disaster management using multi-sensor and multi-temporal remote sensing imagery

    DEFF Research Database (Denmark)

    Butenuth, Matthias; Frey, Daniel; Nielsen, Allan Aasbjerg

    2011-01-01

    In this paper, a new assessment system is presented to evaluate infrastructure objects such as roads after natural disasters in near-realtime. A particular aim is the exploitation of multi-sensorial and multi-temporal imagery together with further {GIS-}data in a comprehensive assessment framewor...

  18. Detection of polar stratospheric clouds with ERS2/GOME data

    International Nuclear Information System (INIS)

    Meerkoetter, R.; Schumann, U.

    1994-01-01

    Based on radiative transfer calculations it is studied whether Polar Stratospheric Clouds (PSCs) can be detected by the new Global Ozone Monitoring Experiment (GOME) onboard the second European Research Satellite (ERS-2) planned to be launched in winter 1994/95. It is proposed to identify PSC covered areas by use of an indicator, the Normalized Radiance Difference (NRD), which relates the difference of two spectral radiances at 0.5 μm and 0.7 μm to one radiance measured in the center of the oxygen A-band at 0.76 μm. The presence of PSCs and under conditions of large solar zenith angles Θ>80 the NRD values are clearly below those derived under conditions of a cloud free stratosphere. In this case the method is successful for PSCs with optical depths greater than 0.03 at 0.55 μm. It is not affected by existing tropospheric clouds and by different tropospheric aerosol loadings or surface albedoes. For solar zenith angles Θ<80 PSCs located above a cloud free troposphere are detectable. PSC detection becomes difficult for Θ<80 when highly reflecting tropospheric clouds like dense cirrus or stratus clouds affect spectral radiances measured at the top of the atmosphere. (orig.)

  19. Surface deformation monitoring of Sinabung volcano using multi temporal InSAR method and GIS analysis for affected area assessment

    Science.gov (United States)

    Aditiya, A.; Aoki, Y.; Anugrah, R. D.

    2018-04-01

    Sinabung Volcano which located in northern part of Sumatera island is part of a hundred active volcano in Indonesia. Surface deformation is detected over Sinabung Volcano and surrounded area since the first eruption in 2010 after 400 years long rest. We present multi temporal Interferometric Synthetic Aperture Radar (InSAR) time-series method of ALOS-2 L-band SAR data acquired from December 2014 to July 2017 to reveal surface deformation with high spatial resolution. The method includes focusing the SAR data, generating interferogram and phase unwrapping using SNAPHU tools. The result reveal significant deformation over Sinabung Volcano areas at rates up to 10 cm during observation period and the highest deformation occurs in western part which is trajectory of lava. We concluded the observed deformation primarily caused by volcanic activity respectively after long period of rest. In addition, Geographic Information System (GIS) analysis produces disaster affected areas of Sinabung eruption. GIS is reliable technique to estimate the impact of the hazard scenario to the exposure data and develop scenarios of disaster impacts to inform their contingency and emergency plan. The GIS results include the estimated affected area divided into 3 zones based on pyroclastic lava flow and pyroclastic fall (incandescent rock and ash). The highest impact is occurred in zone II due to many settlements are scattered in this zone. This information will be support stakeholders to take emergency preparation for disaster reduction. The continuation of this high rate of decline tends to endanger the population in next periods.

  20. Modelling of oil spill frequency, leak sources and contamination probability in the Caspian Sea using multi-temporal SAR images 2006–2010 and stochastic modelling

    Directory of Open Access Journals (Sweden)

    Emil Bayramov

    2016-05-01

    Full Text Available The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced Synthetic Aperture Radar Wide Swath Medium Resolution images acquired during 2006–2010. The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2–10 (3471.04 sq km, 11–20 (971.66 sq km, 21–50 (692.44 sq km, 51–128 (191.38 sq km. The most critical oil leak sources with the frequency range of 41–128 were observed at the Oil Rocks Settlement. The exponential regression analysis between wind speeds and oil slick areas detected from 136 multi-temporal ENVISAT images revealed the regression coefficient equal to 63%. The regression model showed that larger oil spill areas were observed with decreasing wind speeds. The spatiotemporal patterns of currents in the Caspian Sea explained the multi-directional spatial distribution of oil spills around Oil Rocks Settlement, the Chilov and Pirallahi Islands. The linear regression analysis between detected oil spill frequencies and predicted oil contamination probability by the stochastic model showed the positive trend with the regression coefficient of 30%.

  1. Long-term ground deformation patterns of Bucharest using multi-temporal InSAR and multivariate dynamic analyses: a possible transpressional system?

    Science.gov (United States)

    Armaş, Iuliana; Mendes, Diana A.; Popa, Răzvan-Gabriel; Gheorghe, Mihaela; Popovici, Diana

    2017-03-01

    The aim of this exploratory research is to capture spatial evolution patterns in the Bucharest metropolitan area using sets of single polarised synthetic aperture radar (SAR) satellite data and multi-temporal radar interferometry. Three sets of SAR data acquired during the years 1992-2010 from ERS-1/-2 and ENVISAT, and 2011-2014 from TerraSAR-X satellites were used in conjunction with the Small Baseline Subset (SBAS) and persistent scatterers (PS) high-resolution multi-temporal interferometry (InSAR) techniques to provide maps of line-of-sight displacements. The satellite-based remote sensing results were combined with results derived from classical methodologies (i.e., diachronic cartography) and field research to study possible trends in developments over former clay pits, landfill excavation sites, and industrial parks. The ground displacement trend patterns were analysed using several linear and nonlinear models, and techniques. Trends based on the estimated ground displacement are characterised by long-term memory, indicated by low noise Hurst exponents, which in the long-term form interesting attractors. We hypothesize these attractors to be tectonic stress fields generated by transpressional movements.

  2. Large-Area Landslides Monitoring Using Advanced Multi-Temporal InSAR Technique over the Giant Panda Habitat, Sichuan, China

    Directory of Open Access Journals (Sweden)

    Panpan Tang

    2015-07-01

    Full Text Available The region near Dujiangyan City and Wenchuan County, Sichuan China, including significant giant panda habitats, was severely impacted by the Wenchuan earthquake. Large-area landslides occurred and seriously threatened the lives of people and giant pandas. In this paper, we report the development of an enhanced multi-temporal interferometric synthetic aperture radar (MTInSAR methodology to monitor potential post-seismic landslides by analyzing coherent scatterers (CS and distributed scatterers (DS points extracted from multi-temporal l-band ALOS/PALSAR data in an integrated manner. Through the integration of phase optimization and mitigation of the orbit and topography-related phase errors, surface deformations in the study area were derived: the rates in the line of sight (LOS direction ranged from −7 to 1.5 cm/a. Dozens of potential landslides, distributed mainly along the Minjiang River, Longmenshan Fault, and in other the high-altitude areas were detected. These findings matched the distribution of previous landslides. InSAR-derived results demonstrated that some previous landslides were still active; many unstable slopes have developed, and there are significant probabilities of future massive failures. The impact of landslides on the giant panda habitat, however ranged from low to moderate, would continue to be a concern for conservationists for some time in the future.

  3. ApoER2 Function in the Establishment and Maintenance of Retinal Synaptic Connectivity

    Science.gov (United States)

    Trotter, Justin H.; Klein, Martin; Jinwal, Umesh K.; Abisambra, Jose F.; Dickey, Chad A.; Tharkur, Jeremy; Masiulis, Irene; Ding, Jindong; Locke, Kirstin G.; Rickman, Catherine Bowes; Birch, David G.; Weeber, Edwin J.; Herz, Joachim

    2011-01-01

    The cellular and molecular mechanisms responsible for the development of inner retinal circuitry are poorly understood. Reelin and apolipoprotein E (apoE), ligands of apoE receptor 2 (ApoER2), are involved in retinal development and degeneration, respectively. Here we describe the function of ApoER2 in the developing and adult retina. ApoER2 expression was highest during postnatal inner retinal synaptic development and was considerably lower in the mature retina. Both during development and in the adult ApoER2 was expressed by A-II amacrine cells. ApoER2 knockout (KO) mice had rod bipolar morphogenic defects, altered A-II amacrine dendritic development, and impaired rod-driven retinal responses. The presence of an intact ApoER2 NPxY motif, necessary for binding disabled-1 (Dab1) and transducing the Reelin signal, was also necessary for development of the rod bipolar pathway while the alternatively-spliced exon19 was not. Mice deficient in another Reelin receptor, very low-density lipoprotein receptor (VLDLR), had normal rod bipolar morphology but altered A-II amacrine dendritic development. VLDLR KO mice also had reductions in oscillatory potentials and delayed synaptic response intervals. Interestingly, age-related reductions in rod and cone function were observed in both ApoER2 and VLDLR KOs. These results support a pivotal role for ApoER2 in the establishment and maintenance of normal retinal synaptic connectivity. PMID:21976526

  4. Shallow deformation of the San Andreas fault 5 years following the 2004 Parkfield earthquake (Mw6) combining ERS2 and Envisat InSAR.

    Science.gov (United States)

    Bacques, Guillaume; de Michele, Marcello; Raucoules, Daniel; Aochi, Hideo; Rolandone, Frédérique

    2018-04-16

    This study focuses on the shallow deformation that occurred during the 5 years following the Parkfield earthquake (28/09/2004, Mw 6, San Andreas Fault, California). We use Synthetic Aperture Radar interferometry (InSAR) to provide precise measurements of transient deformations after the Parkfield earthquake between 2005 and 2010. We propose a method to combine both ERS2 and ENVISAT interferograms to increase the temporal data sampling. Firstly, we combine 5 years of available Synthetic Aperture Radar (SAR) acquisitions including both ERS-2 and Envisat. Secondly, we stack selected interferograms (both from ERS2 and Envisat) for measuring the temporal evolution of the ground velocities at given time intervals. Thanks to its high spatial resolution, InSAR could provide new insights on the surface fault motion behavior over the 5 years following the Parkfield earthquake. As a complement to previous studies in this area, our results suggest that shallow transient deformations affected the Creeping-Parkfield-Cholame sections of the San Andreas Fault after the 2004 Mw6 Parkfield earthquake.

  5. ApoER2 Function in the Establishment and Maintenance of Retinal Synaptic Connectivity

    OpenAIRE

    Trotter, Justin H.; Klein, Martin; Jinwal, Umesh K.; Abisambra, Jose F.; Dickey, Chad A.; Tharkur, Jeremy; Masiulis, Irene; Ding, Jindong; Locke, Kirstin G.; Rickman, Catherine Bowes; Birch, David G.; Weeber, Edwin J.; Herz, Joachim

    2011-01-01

    The cellular and molecular mechanisms responsible for the development of inner retinal circuitry are poorly understood. Reelin and apolipoprotein E (apoE), ligands of apoE receptor 2 (ApoER2), are involved in retinal development and degeneration, respectively. Here we describe the function of ApoER2 in the developing and adult retina. ApoER2 expression was highest during postnatal inner retinal synaptic development and was considerably lower in the mature retina. Both during development and i...

  6. GPM GROUND VALIDATION NASA ER-2 NAVIGATION DATA MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA ER-2 Navigation Data MC3E dataset contains information recorded by an on board navigation recorder (NavRec). In addition to typical...

  7. Smoke, Clouds and Radiation Brazil NASA ER-2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — SCARB_ER2_MAS data are Smoke, Clouds and Radiation Brazil (SCARB) NASA ER2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS)...

  8. The NASA Earth Research-2 (ER-2) Aircraft: A Flying Laboratory for Earth Science Studies

    Science.gov (United States)

    Navarro, Robert

    2007-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, has two Lockheed Martin Corporation (Bethesda, Maryland) Earth Research-2 (ER2) aircraft that serve as high-altitude and long-range flying laboratories. The ER-2 aircraft has been successfully utilized to conduct scientific studies of stratospheric and tropospheric chemistry, land-use mapping, disaster assessment, preliminary testing and calibration and validation of satellite sensors. The research missions for the ER-2 aircraft are planned, implemented, and managed by the Dryden Flight Research Center Science Mission Directorate. Maintenance and instrument payload integration is conducted by Dryden personnel. The ER-2 aircraft provides experimenters with a wide array of payload accommodations areas with suitable environment control with required electrical and mechanical interfaces. Missions may be flown out of Dryden or from remote bases worldwide, according to research requirements. The NASA ER-2 aircraft is utilized by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. The combination of the ER-2 aircraft s range, endurance, altitude, payload power, payload volume and payload weight capabilities complemented by a trained maintenance and operations team provides an excellent and unique platform system to the science community and other customers.

  9. Multi-temporal and Dual-polarization Interferometric SAR for Land Cover Type Classification

    Directory of Open Access Journals (Sweden)

    WANG Xinshuang

    2015-05-01

    Full Text Available In order to study SAR land cover classification method, this paper uses the multi-dimensional combination of temporal,polarization and InSAR data. The area covered by space borne data of ALOS PALSAR in Xunke County,Heilongjiang Province was chosen as test site. A land cover classification technique of SVM based on multi-temporal, multi-polarization and InSAR data had been proposed, using the sensitivity to land cover type of multi-temporal, multi-polarization SAR data and InSAR measurements, and combing time series characteristic of backscatter coefficient and correlation coefficient to identify ground objects. The results showed the problem of confusion between forest land and urban construction land can be nicely solved, using the correlation coefficient between HH and HV, and also combing the selected temporal, polarization and InSAR characteristics. The land cover classification result with higher accuracy is gotten using the classification algorithm proposed in this paper.

  10. Determination of the Impact of Urbanization on Agricultural Lands using Multi-temporal Satellite Sensor Images

    Science.gov (United States)

    Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2015-12-01

    Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.

  11. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

    Science.gov (United States)

    XIAO, Xiangming; DONG, Jinwei; QIN, Yuanwei; WANG, Zongming

    2016-01-01

    Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security. PMID:27695637

  12. A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations

    Science.gov (United States)

    Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza

    2017-06-01

    Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.

  13. Exploring the potential of Sentinel-1 data for regional scale slope instability detection using multi-temporal interferometry

    Science.gov (United States)

    Wasowski, Janusz; Bovenga, Fabio; Nutricato, Raffaele; Nitti, Davide Oscar; Chiaradia, Maria Teresa; Refice, Alberto; Pasquariello, Guido

    2016-04-01

    Launched in 2014, the European Space Agency (ESA) Sentinel-1 satellite carrying a medium resolution (20 m) C-Band Synthetic Aperture Radar (SAR) sensor holds much promise for new applications of multi-temporal interferometry (MTI) in landslide assessment. Specifically, the regularity of acquisitions, timeliness of data delivery, shorter repeat cycle (currently 12 days with Sentinel-1A sensor), and flexible incidence angle geometry, all imply better practical utility of MTI relying on Sentinel-1 with respect to MTI based on data from earlier ESA's satellite radar C-band sensors (ERS1/2, ENVISAT). Furthermore, the upcoming launch of Sentinel-1B will cut down the repeat cycle to 6 days, thereby further improving temporal coherence and quality and coverage of MTI products. Taking advantage of the Interferometric Wide (IW) Swath acquisition mode of Sentinel-1 (images covering a 250 km swath on the ground), in this work we test the potential of such data for regional scale slope instability detection through MTI. Our test area includes the landslide-prone Apennine Mountains of Southern Italy. We rely on over 30 Sentinel-1 images, most of which acquired in 2015, and MTI processing through the SPINUA algorithm (Stable Points INterferometry in Un-urbanized Areas). The potential of MTI results based on Sentinel-1 data is assessed by comparing the detected ground surface displacements with the MTI results obtained for the same test area using the C-Band data acquired by ERS1/2 and ENVISAT in 1990s and 2000s. Although the initial results are encouraging, it seems evident that longer-term (few years) acquisitions of Sentinel-1 are necessary to reliably detect some extremely slow movements, which were observed in the last two decades and are likely to be still present in peri-urban areas of many hilltop towns in the Apennine Mts. The MTI results obtained from Sentinel-1 data are also locally compared with the MTI outcomes based on the high resolution (3 m) TerraSAR-X imagery

  14. Subsidence Monitoring in Seville (S Spain) Using Multi-Temporal InSAR

    Science.gov (United States)

    Ruiz-Armenteros, Antonio M.; Ruiz-Constan, Ana; Lamas-Fernandez, Francisco; Galindo-Zaldivar, Jesus; Sousa, Joaquim J.; Sanz de Galdeano, Carlos; Delgado, Manuel J.; Pedrera-Parias, Antonio; Martos-Rosillo, Sergio; Gil, Antonio J.; Caro-Cuenca, Miguel; Hanssen, Ramon F.

    2016-08-01

    Seville, with a metropolitan population of about 1.5 million, is the capital and largest city of Andalusia (S Spain). It is the 30th most populous municipality in the European Union and contains three UNESCO World Heritage Sites. The Seville harbour, located about 80 km from the Atlantic Ocean, is the only river port in Spain. The city is located on the plain of the Guadalquivir River. Using Multi-Temporal InSAR with ERS-1/2 and Envisat data a subsidence behavior is detected in the period 1992-2010. The geometry of the subsiding areas suggests that it should be conditioned by the fluvial dynamics of the Guadalquivir River and its tributaries. Facies distribution along the fluvial system (paleochannels, flood plains...), with different grain size and matrix proportion, may explain the relative subsidence between the different sectors.

  15. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Shunping Ji

    2018-01-01

    Full Text Available This study describes a novel three-dimensional (3D convolutional neural networks (CNN based method that automatically classifies crops from spatio-temporal remote sensing images. First, 3D kernel is designed according to the structure of multi-spectral multi-temporal remote sensing data. Secondly, the 3D CNN framework with fine-tuned parameters is designed for training 3D crop samples and learning spatio-temporal discriminative representations, with the full crop growth cycles being preserved. In addition, we introduce an active learning strategy to the CNN model to improve labelling accuracy up to a required threshold with the most efficiency. Finally, experiments are carried out to test the advantage of the 3D CNN, in comparison to the two-dimensional (2D CNN and other conventional methods. Our experiments show that the 3D CNN is especially suitable in characterizing the dynamics of crop growth and outperformed the other mainstream methods.

  16. Multi-temporal maps of the Montaguto earth flow in southern Italy from 1954 to 2010

    Science.gov (United States)

    Guerriero, Luigi; Revellino, Paola; Coe, Jeffrey A.; Focareta, Mariano; Grelle, Gerardo; Albanese, Vincenzo; Corazza, Angelo; Guadagno, Francesco M.

    2013-01-01

    Historical movement of the Montaguto earth flow in southern Italy has periodically destroyed residences and farmland, and damaged the Italian National Road SS90 and the Benevento-Foggia National Railway. This paper provides maps from an investigation into the evolution of the Montaguto earth flow from 1954 to 2010. We used aerial photos, topographic maps, LiDAR data, satellite images, and field observations to produce multi-temporal maps. The maps show the spatial and temporal distribution of back-tilted surfaces, flank ridges, and normal, thrust, and strike-slip faults. Springs, creeks, and ponds are also shown on the maps. The maps provide a basis for interpreting how basal and lateral boundary geometries influence earth-flow behavior and surface-water hydrology.

  17. Multi-temporal AirSWOT elevations on the Willamette river: error characterization and algorithm testing

    Science.gov (United States)

    Tuozzolo, S.; Frasson, R. P. M.; Durand, M. T.

    2017-12-01

    We analyze a multi-temporal dataset of in-situ and airborne water surface measurements from the March 2015 AirSWOT field campaign on the Willamette River in Western Oregon, which included six days of AirSWOT flights over a 75km stretch of the river. We examine systematic errors associated with dark water and layover effects in the AirSWOT dataset, and test the efficacies of different filtering and spatial averaging techniques at reconstructing the water surface profile. Finally, we generate a spatially-averaged time-series of water surface elevation and water surface slope. These AirSWOT-derived reach-averaged values are ingested in a prospective SWOT discharge algorithm to assess its performance on SWOT-like data collected from a borderline SWOT-measurable river (mean width = 90m).

  18. Monitoring Powdery Mildew of Winter Wheat by Using Moderate Resolution Multi-Temporal Satellite Imagery

    Science.gov (United States)

    Zhang, Jingcheng; Pu, Ruiliang; Yuan, Lin; Wang, Jihua; Huang, Wenjiang; Yang, Guijun

    2014-01-01

    Powdery mildew is one of the most serious diseases that have a significant impact on the production of winter wheat. As an effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study attempted to use multi-temporal moderate resolution satellite-based data of surface reflectances in blue (B), green (G), red (R) and near infrared (NIR) bands from HJ-CCD (CCD sensor on Huanjing satellite) to monitor disease at a regional scale. In a suburban area in Beijing, China, an extensive field campaign for disease intensity survey was conducted at key growth stages of winter wheat in 2010. Meanwhile, corresponding time series of HJ-CCD images were acquired over the study area. In this study, a number of single-stage and multi-stage spectral features, which were sensitive to powdery mildew, were selected by using an independent t-test. With the selected spectral features, four advanced methods: mahalanobis distance, maximum likelihood classifier, partial least square regression and mixture tuned matched filtering were tested and evaluated for their performances in disease mapping. The experimental results showed that all four algorithms could generate disease maps with a generally correct distribution pattern of powdery mildew at the grain filling stage (Zadoks 72). However, by comparing these disease maps with ground survey data (validation samples), all of the four algorithms also produced a variable degree of error in estimating the disease occurrence and severity. Further, we found that the integration of MTMF and PLSR algorithms could result in a significant accuracy improvement of identifying and determining the disease intensity (overall accuracy of 72% increased to 78% and kappa coefficient of 0.49 increased to 0.59). The experimental results also demonstrated that the multi-temporal satellite images have a great potential in crop diseases mapping at a regional scale. PMID:24691435

  19. Multi-Temporal Satellite Imagery for Urban Expansion Assessment at Sharjah City /UAE

    International Nuclear Information System (INIS)

    Al-Ruzouq, R; Shanableh, A

    2014-01-01

    Change detection is the process of identifying differences in land cover over time. As human and natural forces continue to alter the landscape, it is important to develop monitoring methods to assess and quantify these changes. Recent advances in satellite imagery, in terms of improved spatial and temporal resolutions, are allowing for efficient identification of change patterns and the prediction of areas of growth. Sharjah is the third largest and most populous city in the United Arab Emirates (UAE). It is located along the northern coast of the Persian Gulf on the Arabian Peninsula. After the discovery of oil and its export in the last four decades at UAE, it has experienced very rapid growth in industry, economy and population. The main purpose of this study is to detect urban development in Sharjah city by detecting and registering linear features in multi-temporal Landsat images. This paper used linear features for image registration that were chosen since they can be reliably extracted from imagery with significantly different geometric and radiometric properties. Derived edges from the registered images are used as the basis for change detection. Image registration and pixel-pixel subtraction has been implement using multi- temporal Landsat images for Sharjah City. Straight-line segments have been used for accurate co-registration as well as main element for a reliable change detection procedure. Results illustrate that highest range of growth that represented by linear features (building and roads) have been accrued during 1976 – 1987 and stand for 36.24% of the total urban features inside Sharjah city. Moreover, result shows that since 1976 to 2010, the cumulative urban expansion inside Sharjah city is 71.9%

  20. Crop classification based on multi-temporal satellite remote sensing data for agro-advisory services

    Science.gov (United States)

    Karale, Yogita; Mohite, Jayant; Jagyasi, Bhushan

    2014-11-01

    In this paper, we envision the use of satellite images coupled with GIS to obtain location specific crop type information in order to disseminate crop specific advises to the farmers. In our ongoing mKRISHI R project, the accurate information about the field level crop type and acreage will help in the agro-advisory services and supply chain planning and management. The key contribution of this paper is the field level crop classification using multi temporal images of Landsat-8 acquired during November 2013 to April 2014. The study area chosen is Vani, Maharashtra, India, from where the field level ground truth information for various crops such as grape, wheat, onion, soybean, tomato, along with fodder and fallow fields has been collected using the mobile application. The ground truth information includes crop type, crop stage and GPS location for 104 farms in the study area with approximate area of 42 hectares. The seven multi-temporal images of the Landsat-8 were used to compute the vegetation indices namely: Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR) and Difference Vegetation Index (DVI) for the study area. The vegetation indices values of the pixels within a field were then averaged to obtain the field level vegetation indices. For each crop, binary classification has been carried out using the feed forward neural network operating on the field level vegetation indices. The classification accuracy for the individual crop was in the range of 74.5% to 97.5% and the overall classification accuracy was found to be 88.49%.

  1. POTENTIAL OF MULTI-TEMPORAL OBLIQUE AIRBORNE IMAGERY FOR STRUCTURAL DAMAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    A. Vetrivel

    2016-06-01

    Full Text Available Quick post-disaster actions demand automated, rapid and detailed building damage assessment. Among the available technologies, post-event oblique airborne images have already shown their potential for this task. However, existing methods usually compensate the lack of pre-event information with aprioristic assumptions of building shapes and textures that can lead to uncertainties and misdetections. However, oblique images have been already captured over many cities of the world, and the exploitation of pre- and post-event data as inputs to damage assessment is readily feasible in urban areas. In this paper, we investigate the potential of multi-temporal oblique imagery for detailed damage assessment focusing on two methodologies: the first method aims at detecting severe structural damages related to geometrical deformation by combining the complementary information provided by photogrammetric point clouds and oblique images. The developed method detected 87% of damaged elements. The failed detections are due to varying noise levels within the point cloud which hindered the recognition of some structural elements. We observed, in general that the façade regions are very noisy in point clouds. To address this, we propose our second method which aims to detect damages to building façades using the oriented oblique images. The results show that the proposed methodology can effectively differentiate among the three proposed categories: collapsed/highly damaged, lower levels of damage and undamaged buildings, using a computationally light-weight approach. We describe the implementations of the above mentioned methods in detail and present the promising results achieved using multi-temporal oblique imagery over the city of L’Aquila (Italy.

  2. Phase Competition in the Palmer-Chalker X Y Pyrochlore Er2Pt2O7

    Science.gov (United States)

    Hallas, A. M.; Gaudet, J.; Butch, N. P.; Xu, Guangyong; Tachibana, M.; Wiebe, C. R.; Luke, G. M.; Gaulin, B. D.

    2017-11-01

    We report neutron scattering measurements on Er2Pt2O7 , a new addition to the X Y family of frustrated pyrochlore magnets. Symmetry analysis of our elastic scattering data shows that Er2Pt2O7 orders into the k =0 , Γ7 magnetic structure (the Palmer-Chalker state), at TN=0.38 K . This contrasts with its sister X Y pyrochlore antiferromagnets Er2Ti2O7 and Er2Ge2O7 , both of which order into Γ5 magnetic structures at much higher temperatures, TN=1.2 and 1.4 K, respectively. In this temperature range, the magnetic heat capacity of Er2Pt2O7 contains a broad anomaly centered at T*=1.5 K . Our inelastic neutron scattering measurements reveal that this broad heat capacity anomaly sets the temperature scale for strong short-range spin fluctuations. Below TN=0.38 K , Er2Pt2O7 displays a gapped spin-wave spectrum with an intense, flat band of excitations at lower energy and a weak, diffusive band of excitations at higher energy. The flat band is well described by classical spin-wave calculations, but these calculations also predict sharp dispersive branches at higher energy, a striking discrepancy with the experimental data. This, in concert with the strong suppression of TN, is attributable to enhanced quantum fluctuations due to phase competition between the Γ7 and Γ5 states that border each other within a classically predicted phase diagram.

  3. Model-based surface soil moisture (SSM) retrieval algorithm using multi-temporal RISAT-1 C-band SAR data

    Science.gov (United States)

    Pandey, Dharmendra K.; Maity, Saroj; Bhattacharya, Bimal; Misra, Arundhati

    2016-05-01

    Accurate measurement of surface soil moisture of bare and vegetation covered soil over agricultural field and monitoring the changes in surface soil moisture is vital for estimation for managing and mitigating risk to agricultural crop, which requires information and knowledge to assess risk potential and implement risk reduction strategies and deliver essential responses. The empirical and semi-empirical model-based soil moisture inversion approach developed in the past are either sensor or region specific, vegetation type specific or have limited validity range, and have limited scope to explain physical scattering processes. Hence, there is need for more robust, physical polarimetric radar backscatter model-based retrieval methods, which are sensor and location independent and have wide range of validity over soil properties. In the present study, Integral Equation Model (IEM) and Vector Radiative Transfer (VRT) model were used to simulate averaged backscatter coefficients in various soil moisture (dry, moist and wet soil), soil roughness (smooth to very rough) and crop conditions (low to high vegetation water contents) over selected regions of Gujarat state of India and the results were compared with multi-temporal Radar Imaging Satellite-1 (RISAT-1) C-band Synthetic Aperture Radar (SAR) data in σ°HH and σ°HV polarizations, in sync with on field measured soil and crop conditions. High correlations were observed between RISAT-1 HH and HV with model simulated σ°HH & σ°HV based on field measured soil with the coefficient of determination R2 varying from 0.84 to 0.77 and RMSE varying from 0.94 dB to 2.1 dB for bare soil. Whereas in case of winter wheat crop, coefficient of determination R2 varying from 0.84 to 0.79 and RMSE varying from 0.87 dB to 1.34 dB, corresponding to with vegetation water content values up to 3.4 kg/m2. Artificial Neural Network (ANN) methods were adopted for model-based soil moisture inversion. The training datasets for the NNs were

  4. Using high resolution satellite multi-temporal interferometry for landslide hazard detection in tropical environments: the case of Haiti

    Science.gov (United States)

    Wasowski, Janusz; Nutricato, Raffaele; Nitti, Davide Oscar; Bovenga, Fabio; Chiaradia, Maria Teresa; Piard, Boby Emmanuel; Mondesir, Philemon

    2015-04-01

    Synthetic aperture radar (SAR) multi-temporal interferometry (MTI) is one of the most promising satellite-based remote sensing techniques for fostering new opportunities in landslide hazard detection and assessment. MTI is attractive because it can provide very precise quantitative information on slow slope displacements of the ground surface over huge areas with limited vegetation cover. Although MTI is a mature technique, we are only beginning to realize the benefits of the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g., COSMO-SkyMed, TerraSAR-X). In this work we demonstrate the potential of high resolution X-band MTI for wide-area detection of slope instability hazards even in tropical environments that are typically very harsh (eg. coherence loss) for differential interferometry applications. This is done by presenting an example from the island of Haiti, a tropical region characterized by dense and rapidly growing vegetation, as well as by significant climatic variability (two rainy seasons) with intense precipitation events. Despite the unfavorable setting, MTI processing of nearly 100 COSMO-SkyMed (CSK) mages (2011-2013) resulted in the identification of numerous radar targets even in some rural (inhabited) areas thanks to the high resolution (3 m) of CSK radar imagery, the adoption of a patch wise processing SPINUA approach and the presence of many man-made structures dispersed in heavily vegetated terrain. In particular, the density of the targets resulted suitable for the detection of some deep-seated and shallower landslides, as well as localized, very slow slope deformations. The interpretation and widespread exploitation of high resolution MTI data was facilitated by Google EarthTM tools with the associated high resolution optical imagery. Furthermore, our reconnaissance in situ checks confirmed that MTI results provided useful information on landslides and marginally stable slopes that can represent a

  5. Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine

    Science.gov (United States)

    Farda, N. M.

    2017-12-01

    Coastal wetlands provide ecosystem services essential to people and the environment. Changes in coastal wetlands, especially on land use, are important to monitor by utilizing multi-temporal imagery. The Google Earth Engine (GEE) provides many machine learning algorithms (10 algorithms) that are very useful for extracting land use from imagery. The research objective is to explore machine learning in Google Earth Engine and its accuracy for multi-temporal land use mapping of coastal wetland area. Landsat 3 MSS (1978), Landsat 5 TM (1991), Landsat 7 ETM+ (2001), and Landsat 8 OLI (2014) images located in Segara Anakan lagoon are selected to represent multi temporal images. The input for machine learning are visible and near infrared bands, PCA band, invers PCA bands, bare soil index, vegetation index, wetness index, elevation from ASTER GDEM, and GLCM (Harralick) texture, and also polygon samples in 140 locations. There are 10 machine learning algorithms applied to extract coastal wetlands land use from Landsat imagery. The algorithms are Fast Naive Bayes, CART (Classification and Regression Tree), Random Forests, GMO Max Entropy, Perceptron (Multi Class Perceptron), Winnow, Voting SVM, Margin SVM, Pegasos (Primal Estimated sub-GrAdient SOlver for Svm), IKPamir (Intersection Kernel Passive Aggressive Method for Information Retrieval, SVM). Machine learning in Google Earth Engine are very helpful in multi-temporal land use mapping, the highest accuracy for land use mapping of coastal wetland is CART with 96.98 % Overall Accuracy using K-Fold Cross Validation (K = 10). GEE is particularly useful for multi-temporal land use mapping with ready used image and classification algorithms, and also very challenging for other applications.

  6. Image Fusion-Based Land Cover Change Detection Using Multi-Temporal High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Biao Wang

    2017-08-01

    Full Text Available Change detection is usually treated as a problem of explicitly detecting land cover transitions in satellite images obtained at different times, and helps with emergency response and government management. This study presents an unsupervised change detection method based on the image fusion of multi-temporal images. The main objective of this study is to improve the accuracy of unsupervised change detection from high-resolution multi-temporal images. Our method effectively reduces change detection errors, since spatial displacement and spectral differences between multi-temporal images are evaluated. To this end, a total of four cross-fused images are generated with multi-temporal images, and the iteratively reweighted multivariate alteration detection (IR-MAD method—a measure for the spectral distortion of change information—is applied to the fused images. In this experiment, the land cover change maps were extracted using multi-temporal IKONOS-2, WorldView-3, and GF-1 satellite images. The effectiveness of the proposed method compared with other unsupervised change detection methods is demonstrated through experimentation. The proposed method achieved an overall accuracy of 80.51% and 97.87% for cases 1 and 2, respectively. Moreover, the proposed method performed better when differentiating the water area from the vegetation area compared to the existing change detection methods. Although the water area beneath moderate and sparse vegetation canopy was captured, vegetation cover and paved regions of the water body were the main sources of omission error, and commission errors occurred primarily in pixels of mixed land use and along the water body edge. Nevertheless, the proposed method, in conjunction with high-resolution satellite imagery, offers a robust and flexible approach to land cover change mapping that requires no ancillary data for rapid implementation.

  7. Compatibility of dip-coated Er2O3 coating by MOD method with liquid Li

    International Nuclear Information System (INIS)

    Zhang Dongxun; Kondo, Masatoshi; Tanaka, Teruya; Muroga, Takeo; Valentyn, Tsisar

    2011-01-01

    An electrical insulating ceramic coating on the self-cooled lithium blanket is a promising technology for suppressing MHD pressure drop in the blanket system. Er 2 O 3 is thought to be one of the potential candidate materials for ceramic coatings because of their high electrical resistivity and high compatibility with liquid lithium. In this study, Er 2 O 3 coating was fabricated on the ferritic steels by dip-coating method with MOD (metal organic decomposition) liquid precursor followed by baking in different atmosphere. The coated specimens were immersed at 500 o C in the static liquid lithium to test the compatibility. It was shown that the compatibility of the coating was degraded when Fe 2 O 3 or Fe 3 O 4 was formed as the main composition of the substrate oxidation layer during the baking. On the other hand, thin Cr 2 O 3 layer in the substrate oxidation layer did not influence the stability of Er 2 O 3 coating. Atmosphere controlling for suppressing the substrate oxidation, especially Fe 2 O 3 or Fe 3 O 4 , during the baking is shown to be essential for the compatibility of MOD Er 2 O 3 coating on ferritic steels.

  8. A Multi-Temporal Remote Sensing Approach to Freshwater Turtle Conservation

    Science.gov (United States)

    Mui, Amy B.

    Freshwater turtles are a globally declining taxa, and estimates of population status are not available for many species. Primary causes of decline stem from widespread habitat loss and degradation, and obtaining spatially-explicit information on remaining habitat across a relevant spatial scale has proven challenging. The discipline of remote sensing science has been employed widely in studies of biodiversity conservation, but it has not been utilized as frequently for cryptic, and less vagile species such as turtles, despite their vulnerable status. The work presented in this thesis investigates how multi-temporal remote sensing imagery can contribute key information for building spatially-explicit and temporally dynamic models of habitat and connectivity for the threatened, Blanding's turtle (Emydoidea blandingii) in southern Ontario, Canada. I began with outlining a methodological approach for delineating freshwater wetlands from high spatial resolution remote sensing imagery, using a geographic object-based image analysis (GEOBIA) approach. This method was applied to three different landscapes in southern Ontario, and across two biologically relevant seasons during the active (non-hibernating) period of Blanding's turtles. Next, relevant environmental variables associated with turtle presence were extracted from remote sensing imagery, and a boosted regression tree model was developed to predict the probability of occurrence of this species. Finally, I analysed the movement potential for Blanding's turtles in a disturbed landscape using a combination of approaches. Results indicate that (1) a parsimonious GEOBIA approach to land cover mapping, incorporating texture, spectral indices, and topographic information can map heterogeneous land cover with high accuracy, (2) remote-sensing derived environmental variables can be used to build habitat models with strong predictive power, and (3) connectivity potential is best estimated using a variety of approaches

  9. Fusion of multi-temporal Airborne Snow Observatory (ASO) lidar data for mountainous vegetation ecosystems studies.

    Science.gov (United States)

    Ferraz, A.; Painter, T. H.; Saatchi, S.; Bormann, K. J.

    2016-12-01

    Fusion of multi-temporal Airborne Snow Observatory (ASO) lidar data for mountainous vegetation ecosystems studies The NASA Jet Propulsion Laboratory developed the Airborne Snow Observatory (ASO), a coupled scanning lidar system and imaging spectrometer, to quantify the spatial distribution of snow volume and dynamics over mountains watersheds (Painter et al., 2015). To do this, ASO weekly over-flights mountainous areas during snowfall and snowmelt seasons. In addition, there are additional flights in snow-off conditions to calculate Digital Terrain Models (DTM). In this study, we focus on the reliability of ASO lidar data to characterize the 3D forest vegetation structure. The density of a single point cloud acquisition is of nearly 1 pt/m2, which is not optimal to properly characterize vegetation. However, ASO covers a given study site up to 14 times a year that enables computing a high-resolution point cloud by merging single acquisitions. In this study, we present a method to automatically register ASO multi-temporal lidar 3D point clouds. Although flight specifications do not change between acquisition dates, lidar datasets might have significant planimetric shifts due to inaccuracies in platform trajectory estimation introduced by the GPS system and drifts of the IMU. There are a large number of methodologies that address the problem of 3D data registration (Gressin et al., 2013). Briefly, they look for common primitive features in both datasets such as buildings corners, structures like electric poles, DTM breaklines or deformations. However, they are not suited for our experiment. First, single acquisition point clouds have low density that makes the extraction of primitive features difficult. Second, the landscape significantly changes between flights due to snowfall and snowmelt. Therefore, we developed a method to automatically register point clouds using tree apexes as keypoints because they are features that are supposed to experience little change

  10. MULTI-TEMPORAL AND MULTI-SENSOR IMAGE MATCHING BASED ON LOCAL FREQUENCY INFORMATION

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-08-01

    Full Text Available Image Matching is often one of the first tasks in many Photogrammetry and Remote Sensing applications. This paper presents an efficient approach to automated multi-temporal and multi-sensor image matching based on local frequency information. Two new independent image representations, Local Average Phase (LAP and Local Weighted Amplitude (LWA, are presented to emphasize the common scene information, while suppressing the non-common illumination and sensor-dependent information. In order to get the two representations, local frequency information is firstly obtained from Log-Gabor wavelet transformation, which is similar to that of the human visual system; then the outputs of odd and even symmetric filters are used to construct the LAP and LWA. The LAP and LWA emphasize on the phase and amplitude information respectively. As these two representations are both derivative-free and threshold-free, they are robust to noise and can keep as much of the image details as possible. A new Compositional Similarity Measure (CSM is also presented to combine the LAP and LWA with the same weight for measuring the similarity of multi-temporal and multi-sensor images. The CSM can make the LAP and LWA compensate for each other and can make full use of the amplitude and phase of local frequency information. In many image matching applications, the template is usually selected without consideration of its matching robustness and accuracy. In order to overcome this problem, a local best matching point detection is presented to detect the best matching template. In the detection method, we employ self-similarity analysis to identify the template with the highest matching robustness and accuracy. Experimental results using some real images and simulation images demonstrate that the presented approach is effective for matching image pairs with significant scene and illumination changes and that it has advantages over other state-of-the-art approaches, which include: the

  11. The effect of thermal history on microstructure of Er_2O_3 coating layer prepared by MOCVD process

    International Nuclear Information System (INIS)

    Tanaka, Masaki; Takezawa, Makoto; Hishinuma, Yoshimitsu; Tanaka, Teruya; Muroga, Takeo; Ikeno, Susumu; Lee, Seungwon; Matsuda, Kenji

    2016-01-01

    Er_2O_3 is a high potential candidate material for tritium permeation barrier and electrical insulator coating for advanced breeding blanket systems with liquid metal or molten-salt types. Recently, Hishinuma et al. reported to form homogeneous Er_2O_3 coating layer on the inner surface of metal pipe using Metal Organic Chemical Vapor Deposition (MOCVD) process. In this study, the influence of thermal history on microstructure of Er_2O_3 coating layer on stainless steel 316 (SUS 316) substrate by MOCVD process was investigated using SEM, TEM and XRD. The ring and net shape selected-area electron diffraction (SAED) patterns of Er_2O_3 coating were obtained each SUS substrates, revealed that homogeneous Er_2O_3 coating had been formed on SUS substrate diffraction patterns. Close inspection of SEM images of the surface on the Er_2O_3 coating before and after thermal cycling up to 700degC in argon atmosphere, it is confirmed that the Er_2O_3 particles were refined by thermal history. The column-like Er_2O_3 grains were promoted to change to granular structure by thermal history. >From the cross-sectional plane of TEM observations, the formation of interlayer between Er_2O_3 coating and SUS substrate was also confirmed. (author)

  12. Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Fabio Bovenga

    2018-04-01

    Full Text Available Multi-temporal InSAR (MTI applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period.

  13. Flood Inundation Mapping in the Logone Floodplain from Multi Temporal Landsat ETM+Imagery

    Science.gov (United States)

    Jung, Hahn Chul; Alsdorf, Douglas E.; Moritz, Mark; Lee, Hyongki; Vassolo, Sara

    2011-01-01

    Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to approximately 5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.

  14. kCCA Transformation-Based Radiometric Normalization of Multi-Temporal Satellite Images

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2018-03-01

    Full Text Available Radiation normalization is an essential pre-processing step for generating high-quality satellite sequence images. However, most radiometric normalization methods are linear, and they cannot eliminate the regular nonlinear spectral differences. Here we introduce the well-established kernel canonical correlation analysis (kCCA into radiometric normalization for the first time to overcome this problem, which leads to a new kernel method. It can maximally reduce the image differences among multi-temporal images regardless of the imaging conditions and the reflectivity difference. It also perfectly eliminates the impact of nonlinear changes caused by seasonal variation of natural objects. Comparisons with the multivariate alteration detection (CCA-based normalization and the histogram matching, on Gaofen-1 (GF-1 data, indicate that the kCCA-based normalization can preserve more similarity and better correlation between an image-pair and effectively avoid the color error propagation. The proposed method not only builds the common scale or reference to make the radiometric consistency among GF-1 image sequences, but also highlights the interesting spectral changes while eliminates less interesting spectral changes. Our method enables the application of GF-1 data for change detection, land-use, land-cover change detection etc.

  15. Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry.

    Science.gov (United States)

    Bovenga, Fabio; Belmonte, Antonella; Refice, Alberto; Pasquariello, Guido; Nutricato, Raffaele; Nitti, Davide O; Chiaradia, Maria T

    2018-04-27

    Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period.

  16. Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs

    Directory of Open Access Journals (Sweden)

    Omar E. Mora

    2018-01-01

    Full Text Available Remote sensing technologies have seen extraordinary improvements in both spatial resolution and accuracy recently. In particular, airborne laser scanning systems can now provide data for surface modeling with unprecedented resolution and accuracy, which can effectively support the detection of sub-meter surface features, vital for landslide mapping. Also, the easy repeatability of data acquisition offers the opportunity to monitor temporal surface changes, which are essential to identifying developing or active slides. Specific methods are needed to detect and map surface changes due to landslide activities. In this paper, we present a methodology that is based on fusing probabilistic change detection and landslide surface feature extraction utilizing multi-temporal Light Detection and Ranging (LiDAR derived Digital Elevation Models (DEMs to map surface changes demonstrating landslide activity. The proposed method was tested in an area with numerous slides ranging from 200 m2 to 27,000 m2 in area under low vegetation and tree cover, Zanesville, Ohio, USA. The surface changes observed are probabilistically evaluated to determine the likelihood of the changes being landslide activity related. Next, based on surface features, a Support Vector Machine (SVM quantifies and maps the topographic signatures of landslides in the entire area. Finally, these two processes are fused to detect landslide prone changes. The results demonstrate that 53 out of 80 inventory mapped landslides were identified using this method. Additionally, some areas that were not mapped in the inventory map displayed changes that are likely to be developing landslides.

  17. Mapping Plastic-Mulched Farmland with Multi-Temporal Landsat-8 Data

    Directory of Open Access Journals (Sweden)

    Hasituya

    2017-06-01

    Full Text Available Using plastic mulching for farmland is booming around the world. Despite its benefit of protecting crops from unfavorable conditions and increasing crop yield, the massive use of the plastic-mulching technique causes many environmental problems. Therefore, timely and effective mapping of plastic-mulched farmland (PMF is of great interest to policy-makers to leverage the trade-off between economic profit and adverse environmental impacts. However, it is still challenging to implement remote-sensing-based PMF mapping due to its changing spectral characteristics with the growing seasons of crops and geographic regions. In this study, we examined the potential of multi-temporal Landsat-8 imagery for mapping PMF. To this end, we gathered the information of spectra, textures, indices, and thermal features into random forest (RF and support vector machine (SVM algorithms in order to select the common characteristics for distinguishing PMF from other land cover types. The experiment was conducted in Jizhou, Hebei Province. The results demonstrated that the spectral features and indices features of NDVI (normalized difference vegetation index, GI (greenness index, and textural features of mean are more important than the other features for mapping PMF in Jizhou. With that, the optimal period for mapping PMF is in April, followed by May. A combination of these two times (April and May is better than later in the season. The highest overall, producer’s, and user’s accuracies achieved were 97.01%, 92.48%, and 96.40% in Jizhou, respectively.

  18. Identification of brome grass infestations in southwest Oklahoma using multi-temporal Landsat imagery

    Science.gov (United States)

    Yan, D.; de Beurs, K.

    2013-12-01

    The extensive infestation of brome grasses (Cheatgrass, Rye brome and Japanese brome) in southwest Oklahoma imposes negative impacts on local economy and ecosystem in terms of decreasing crop and forage production and increasing fire risk. Previously proposed methodologies on brome grass detection are found ill-suitable for southwest Oklahoma as a result of similar responses of background vegetation to inter-annual variability of rainfall. In this study, we aim to identify brome grass infestations by detecting senescent brome grasses using the 2011 Cultivated Land Cover Data Sets and the difference Normalized Difference Infrared Index (NDII) derived from multi-temporal Landsat imagery. Landsat imageries acquired on May 18th and June 10th 2013 by Operational Land Imager and Enhanced Thematic Mapper plus were used. The imagery acquisition dates correspond to the peak growth and senescent time of brome grasses, respectively. The difference NDII was calculated by subtracting the NDII image acquired in May from the June NDII image. Our hypotheses is that senescent brome grasses and crop/pasture fields harvested between the two image acquisition dates can be distinguished from background land cover classes because of their increases in NDII due to decreased water absorption by senescent vegetation in the shortwave infrared region. The Cultivated Land Cover Data Sets were used to further separate senescent brome grass patches from newly harvested crop/pasture fields. Ground truth data collected during field trips in June, July and August of 2013 were used to validate the detection results.

  19. MAPPING THE EXTENT AND MAGNITUDE OF SEVER FLOODING INDUCED BY HURRICANE IRMA WITH MULTI-TEMPORAL SENTINEL-1 SAR AND INSAR OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2018-04-01

    Full Text Available During Hurricane Irma’s passage over Florida in September 2017, many sections of the state experienced heavy rain and sequent flooding. In order to drain water out of potential flooding zones and assess property damage, it is important to map the extent and magnitude of the flooded areas at various stages of the storm. We use Synthetic Aperture Radar (SAR and Interferometric SAR (InSAR observations, acquired by Sentinel-1 before, during and after the hurricane passage, which enable us to evaluate surface condition during different stages of the hurricane. This study uses multi-temporal images acquired under dry condition before the hurricane to constrain the background backscattering signature. Flooded areas are detected when the backscattering during the hurricane is statistically significantly different from the average dry conditions. The detected changes can be either an increase or decrease of the backscattering, which depends on the scattering characteristics of the surface. In addition, water level change information in Palmdale, South Florida is extracted from an interferogram with the aid of a local water gauge as the reference. The results of our flooding analysis revealed that the majority of the study area in South Florida was flooded during Hurricane Irma.

  20. Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR Data in the Context of Flood Mapping at River Saale, Germany

    Directory of Open Access Journals (Sweden)

    Sandro Martinis

    2015-06-01

    Full Text Available In this study, an analysis of multi-temporal and multi-frequency Synthetic Aperture Radar data is performed to investigate the backscatter behavior of various semantic classes in the context of flood mapping in central Europe. The focus is mainly on partially submerged vegetation such as forests and agricultural fields. The test area is located at River Saale, Saxony-Anhalt, Germany, which is covered by a time series of 39 TerraSAR-X data acquired within the time interval December 2009 to June 2013. The data set is supplemented by ALOS PALSAR L-band and RADARSAT-2 C-band data. The time series covers two inundations in January 2011 and June 2013 which allows evaluating backscatter variations between flood periods and normal water level conditions using different radar wavelengths. According to the results, there is potential in detecting flooding beneath vegetation in all microwave wavelengths, even in X-band for sparse vegetation or leaf-off forests.

  1. Doping-induced quantum crossover in Er2Ti2 -xSnxO7

    Science.gov (United States)

    Shirai, M.; Freitas, R. S.; Lago, J.; Bramwell, S. T.; Ritter, C.; Živković, I.

    2017-11-01

    We present the results of the investigation of magnetic properties of the Er2Ti2 -xSnxO7 series. For small doping values, the ordering temperature decreases linearly with x , while the moment configuration remains the same as in the x =0 parent compound. Around x =1.7 doping level, we observe a change in the behavior, where the ordering temperature starts to increase and new magnetic Bragg peaks appear. For the first time, we present evidence of a long-range order (LRO) in Er2Sn2O7 (x =2.0 ) below TN=130 mK. It is revealed that the moment configuration corresponds to a Palmer-Chalker type with a value of the magnetic moment significantly renormalized compared to x =0 . We discuss our results in the framework of a possible quantum phase transition occurring close to x =1.7 .

  2. Moessbauer Investigation of Spin Arrangements in Er2-xCexFe14B

    International Nuclear Information System (INIS)

    Bogacz, B.F.; Pedziwiatr, A.T.

    2008-01-01

    It was theoretically postulated earlier that in compounds Er 2-x Ce x Fe 14 B it may be possible to observe not only axial and planar spin arrangements but also a conical one. In order to experimentally verify this hypothesis, 57 Fe Moessbauer spectroscopy analysis was used to study the polycrystalline compounds Er 2-x Ce x Fe 14 B in the postulated composition region (x = 1.0, 1.1, 1.2, 1.3) in the wide range of temperatures. The obtained experimental data do not clearly support the suggestion of conical arrangement occurrence in the postulated compositions. They indicate that such phenomenon may be shifted towards higher Ce content. (authors)

  3. Calibrated Multi-Temporal Edge Images for City Infrastructure Growth Assessment and Prediction

    Science.gov (United States)

    Al-Ruzouq, R.; Shanableh, A.; Boharoon, Z.; Khalil, M.

    2018-03-01

    Urban Growth or urbanization can be defined as the gradual process of city's population growth and infrastructure development. It is typically demonstrated by the expansion of a city's infrastructure, mainly development of its roads and buildings. Uncontrolled urban Growth in cities has been responsible for several problems that include living environment, drinking water, noise and air pollution, waste management, traffic congestion and hydraulic processes. Accurate identification of urban growth is of great importance for urban planning and water/land management. Recent advances in satellite imagery, in terms of improved spatial and temporal resolutions, allows for efficient identification of change patterns and the prediction of built-up areas. In this study, two approaches were adapted to quantify and assess the pattern of urbanization, in Ajman City at UAE, during the last three decades. The first approach relies on image processing techniques and multi-temporal Landsat satellite images with ground resolution varying between 15 to 60 meters. In this approach, the derived edge images (roads and buildings) were used as the basis of change detection. The second approach relies on digitizing features from high-resolution images captured at different years. The latest approach was adopted, as a reference and ground truth, to calibrate extracted edges from Landsat images. It has been found that urbanized area almost increased by 12 folds during the period 1975-2015 where the growth of buildings and roads were almost parallel until 2005 when the roads spatial expansion witnessed a steep increase due to the vertical expansion of the City. Extracted Edges features, were successfully used for change detection and quantification in term of buildings and roads.

  4. Multi-temporal InSAR Datastacks for Surface Deformation Monitoring: a Review

    Science.gov (United States)

    Ferretti, A.; Novali, F.; Prati, C.; Rocca, F.

    2009-04-01

    In the last decade extensive processing of thousands of satellite radar scenes acquired by different sensors (e.g. ERS-1/2, ENVISAT and RADARSAT) has demonstrated how multi-temporal data-sets can be successfully exploited for surface deformation monitoring, by identifying objects on the terrain that have a stable, point-like behaviour. These objects, referred to as Permanent or Persistent Scatterers (PS), can be geo-coded and monitored for movement very accurately, acting as a "natural" geodetic network, integrating successfully continuous GPS data. After a brief analysis of both advantages and drawbacks of InSAR datastacks, the paper presents examples of applications of PS measurements for detecting and monitoring active faults, aquifers and oil/gas reservoirs, using experience in Europe, North America and Japan, and concludes with a discussion on future directions for PSInSAR analysis. Special attention is paid to the possibility of creating deformation maps over wide areas using historical archives of data already available. This second part of the paper will briefly discuss the technical features of the new radar sensors recently launched (namely: TerraSAR-X, RADARSAT-2, and CosmoSkyMed) and their impact on space geodesy, highlighting the importance of data continuity and standardized acquisition policies for almost all InSAR and PSInSAR applications. Finally, recent advances in the algorithms applied in PS analysis, such as detection of "temporary PS", PS characterization and exploitation of distributed scatterers, will be briefly discussed based on the processing of real data.

  5. Bush encroachment monitoring using multi-temporal Landsat data and random forests

    Science.gov (United States)

    Symeonakis, E.; Higginbottom, T.

    2014-11-01

    It is widely accepted that land degradation and desertification (LDD) are serious global threats to humans and the environment. Around a third of savannahs in Africa are affected by LDD processes that may lead to substantial declines in ecosystem functioning and services. Indirectly, LDD can be monitored using relevant indicators. The encroachment of woody plants into grasslands, and the subsequent conversion of savannahs and open woodlands into shrublands, has attracted a lot of attention over the last decades and has been identified as a potential indicator of LDD. Mapping bush encroachment over large areas can only effectively be done using Earth Observation (EO) data and techniques. However, the accurate assessment of large-scale savannah degradation through bush encroachment with satellite imagery remains a formidable task due to the fact that on the satellite data vegetation variability in response to highly variable rainfall patterns might obscure the underlying degradation processes. Here, we present a methodological framework for the monitoring of bush encroachment-related land degradation in a savannah environment in the Northwest Province of South Africa. We utilise multi-temporal Landsat TM and ETM+ (SLC-on) data from 1989 until 2009, mostly from the dry-season, and ancillary data in a GIS environment. We then use the machine learning classification approach of random forests to identify the extent of encroachment over the 20-year period. The results show that in the area of study, bush encroachment is as alarming as permanent vegetation loss. The classification of the year 2009 is validated yielding low commission and omission errors and high k-statistic values for the grasses and woody vegetation classes. Our approach is a step towards a rigorous and effective savannah degradation assessment.

  6. Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data

    Science.gov (United States)

    Koppe, Wolfgang; Gnyp, Martin L.; Hütt, Christoph; Yao, Yinkun; Miao, Yuxin; Chen, Xinping; Bareth, Georg

    2013-04-01

    This study assesses the use of TerraSAR-X data for monitoring rice cultivation in the Sanjiang Plain in Heilongjiang Province, Northeast China. The main objective is the understanding of the coherent co-polarized X-band backscattering signature of rice at different phenological stages in order to retrieve growth status. For this, multi-temporal dual polarimetric TerraSAR-X High Resolution SpotLight data (HH/VV) as well as single polarized StripMap (VV) data were acquired over the test site. In conjunction with the satellite data acquisition, a ground truth field campaign was carried out. The backscattering coefficients at HH and VV of the observed fields were extracted on the different dates and analysed as a function of rice phenology to provide a physical interpretation for the co-polarized backscatter response in a temporal and spatial manner. Then, a correlation analysis was carried out between TerraSAR-X backscattering signal and rice biomass of stem, leaf and head to evaluate the relationship with different vertical layers within the rice vegetation. HH and VV signatures show two phases of backscatter increase, one at the beginning up to 46 days after transplanting and a second one from 80 days after transplanting onwards. The first increase is related to increasing double bounce reflection from the surface-stem interaction. Then, a decreasing trend of both polarizations can be observed due to signal attenuation by increasing leaf density. A second slight increase is observed during senescence. Correlation analysis showed a significant relationship with different vertical layers at different phenological stages which prove the physical interpretation of X-band backscatter of rice. The seasonal backscatter coefficient showed that X-band is highly sensitive to changes in size, orientation and density of the dominant elements in the upper canopy.

  7. Multi-Temporal Analysis of Forestry and Coastal Environments Using UASs

    Directory of Open Access Journals (Sweden)

    Luís Pádua

    2017-12-01

    Full Text Available Due to strong improvements and developments achieved in the last decade, it is clear that applied research using remote sensing technology such as unmanned aerial vehicles (UAVs can provide a flexible, efficient, non-destructive, and non-invasive means of acquiring geoscientific data, especially aerial imagery. Simultaneously, there has been an exponential increase in the development of sensors and instruments that can be installed in UAV platforms. By combining the aforementioned factors, unmanned aerial system (UAS setups composed of UAVs, sensors, and ground control stations, have been increasingly used for remote sensing applications, with growing potential and abilities. This paper’s overall goal is to identify advantages and challenges related to the use of UAVs for aerial imagery acquisition in forestry and coastal environments for preservation/prevention contexts. Moreover, the importance of monitoring these environments over time will be demonstrated. To achieve these goals, two case studies using UASs were conducted. The first focuses on phytosanitary problem detection and monitoring of chestnut tree health (Padrela region, Valpaços, Portugal. The acquired high-resolution imagery allowed for the identification of tree canopy cover decline by means of multi-temporal analysis. The second case study enabled the rigorous and non-evasive registry process of topographic changes that occurred in the sandspit of Cabedelo (Douro estuary, Porto, Portugal in different time periods. The obtained results allow us to conclude that the UAS constitutes a low-cost, rigorous, and fairly autonomous form of remote sensing technology, capable of covering large geographical areas and acquiring high precision data to aid decision support systems in forestry preservation and coastal monitoring applications. Its swift evolution makes it a potential big player in remote sensing technologies today and in the near future.

  8. Multi-temporal analysis of slope movements in the Southern Apennines of Italy

    Science.gov (United States)

    Parise, M.

    2012-04-01

    Many types of thematic maps dealing with slope movements have been proposed in the scientific literature to describe the features and activity of landslides. One of the most common is the classical landslide inventory map: this can be defined as a photograph of the landscape at a given time, that is the moment of the field surveys, or the date of the air photographs and/or satellite images used for mapping. Unless further data (such as dates of occurrence of the landslides, frequency of movement, etc.) are not added, it does nothing more than depicting the instability situation at that given time. In order to reach more insights into the history and evolution of unstable slopes, a multi-time approach must be performed. This can be carried out through a multi-temporal analysis, based upon aerial photo interpretation of different years, possibly integrated by field surveys. Production of landslide inventory map for each available set of air photos results in the final output of landslide activity maps (LAMs), deriving from comparison of the individual inventory map. LAMs provide insights into the evolution of the landslide process, allowing to reconstruct a relative history of the mass movement, and to highlight the most active sectors in time. All these information may result extremely useful to correlate likely movements to anthropogenic activity or specific triggering factors, such as a seismic event or a rainstorm. In addition, LAMs can also be of effective use in evaluating the efficiency of remediation works. The Southern Apennines of Italy are intensely affected by a variety of slope movements, that interest very different settings and are at the origin of severe damage to the built-up environments, claiming every year a high number of casualties. Notwithstanding the availability of landslide maps for the whole Italian territory, with very good detail at local sites of interest, what is often lacking over the country is a thorough knowledge of the overall

  9. Analysis of Landslide Kinematics using Multi-temporal UAV Imagery, La Honda, California

    Science.gov (United States)

    Carey, J.; Pickering, A.; Prentice, C. S.; Pinter, N.; DeLong, S.

    2017-12-01

    High-resolution topographic data are vital to studies of earth-surface processes. The combination of unmanned aerial vehicle (UAV) photography and structure-from-motion (SfM) digital photogrammetry provide a quickly deployable and cost-effective method for monitoring geomorphic change and landscape evolution. We acquired imagery of an active landslide in La Honda, California using a GPS-enabled quadcopter UAV with a 12.4 megapixel camera. Deep-seated landslides were previously documented in this region during the winter of 1997-98, with movement recurring and the landslide expanding during the winters of 2004-05 and 2005-06. This study documents the kinematics of a new and separate landslide immediately adjacent to the previous ones, throughout the winter of 2016-17. The roughly triangular-shaped, deep-seated landslide covers an area of approximately 10,000 m2. The area is underlain by SW dipping late Miocene to Pliocene sandstones and mudstones. A 3 m high head scarp stretches along the northeast portion of the slide for approximately 100 m. Internally, the direction of movement is towards the southwest, with two prominent NW-SE striking extensional grabens and numerous tension cracks across the landslide body. Here we calculate displaced landslide volumes and surface displacements from multi-temporal UAV surveys. Photogrammetric reconstruction of UAV/SfM-derived point clouds allowed creation of six digital elevation models (DEMs) with spatial resolutions ranging from 3 to 15 cm per pixel. We derived displacement magnitude, direction and rate by comparing multiple generations of DEMs and orthophotos, and estimated displaced volumes by differencing subsequent DEMs. We then correlated displacements with total rainfall and rainfall intensity measurements. Detailed geomorphic maps identify major landslide features, documenting dominant surface processes. Additionally, we compare the accuracy of the UAV/SfM-derived DEM with a DEM sourced from a synchronous terrestrial

  10. Multi-Temporal Decomposed Wind and Load Power Models for Electric Energy Systems

    Science.gov (United States)

    Abdel-Karim, Noha

    electricity market rules capable of providing the right incentives to manage uncertainties and of differentiating various technologies according to the rate at which they can respond to ever changing conditions. Given the overall need for modeling uncertainties in electric energy systems, we consider in this thesis the problem of multi-temporal modeling of wind and demand power, in particular. Historic data is used to derive prediction models for several future time horizons. Short-term prediction models derived can be used for look-ahead economic dispatch and unit commitment, while the long-term annual predictive models can be used for investment planning. As expected, the accuracy of such predictive models depends on the time horizons over which the predictions are made, as well as on the nature of uncertain signals. It is shown that predictive models obtained using the same general modeling approaches result in different accuracy for wind than for demand power. In what follows, we introduce several models which have qualitatively different patterns, ranging from hourly to annual. We first transform historic time-stamped data into the Fourier Transform (Fr) representation. The frequency domain data representation is used to decompose the wind and load power signals and to derive predictive models relevant for short-term and long-term predictions using extracted spectral techniques. The short-term results are interpreted next as a Linear Prediction Coding Model (LPC) and its accuracy is analyzed. Next, a new Markov-Based Sensitivity Model (MBSM) for short term prediction has been proposed and the dispatched costs of uncertainties for different predictive models with comparisons have been developed. Moreover, the Discrete Markov Process (DMP) representation is applied to help assess probabilities of most likely short-, medium- and long-term states and the related multi-temporal risks. In addition, this thesis discusses operational impacts of wind power integration in

  11. Pseudopotential description of rare earths in oxides: The case of Er2Si2O7

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Stokbro, Kurt

    2001-01-01

    The applicability of ultrasoft pseudopotentials to the problem of rare-earth incorporation in silicates is investigated using the compound Er2Si2O7 as a test case. It is found that density-functional theory within the generalized gradient approximation provides a good description of the structural...... parameters, when treating the Er 4f states as a partially occupied core shell. The density of states and the distribution of electronic charge are analyzed, and it is concluded that the presence of Er tends to increase the covalency of neighboring Si-O bonds....

  12. Er2O3 coating development and improvisation by metal oxide decomposition method

    International Nuclear Information System (INIS)

    Rayjada, Pratipalsinh A.; Sircar, Amit; Raole, Prakash M.; Rahman, Raseel; Manocha, Lalit M.

    2015-01-01

    Compact, highly resistive and chemically as well as physically stable ceramic coatings are going to play vital role in successful and safe exploitation of tritium breeding and recovery system in the future fusion reactors. Due to its stability and high resistivity, Er 2 O 3 was initially studied for resistive coating application to mitigate Magneto Hydro Dynamic (MHD) forces in liquid Li cooled blanket concept. Subsequently, its excellence as tritium permeation barrier (TPB) was also revealed. Ever since, there is a continual thrust on studying its relevant properties and application methods among the fusion technology and materials community. Metal Oxide Decomposition is a chemical method of coating development. One of the major advantages of this process over most of the others is its simplicity and ability to coat complex structures swiftly. The component is dipped into a liquid solution of the Er 2 O 3 and subsequently withdrawn at an optimized constant speed, so as to leave a uniform wet layer on the surface. This can be repeated multiple times after drying the surface to obtain the required thickness. Subsequently, the component is heat treated to obtain crystalline uniform Er 2 O 3 coating over it. However, the porosity of the coatings and substrate oxidation are the challenges for in MOD method. We successfully develop Er 2 O 3 coating in cubic crystalline phase on P91 steel and fused silica substrates using 3 wt% erbium carboxylic acid solution in a solvent containing 50.5 wt% turpentine, 25.5 wt% n-butyl acetate, 8.4 wt% ethyl acetate, a stabilizer, and a viscosity adjustor. A dip coating system equipped with 800 C quartz tube furnace was used to prepare these coatings. The withdrawal speed was chosen as 72 mm/min from the literature survey. The crystallization and microstructure are studied as functions of heat treatment temperature in the range of 500-700 C. We also try to improvise the uniform coverage and porosity of the coating by altering the

  13. BOREAS Level-0 ER-2 Daedalus TMS Imagery Digital Counts in BIL Format

    Science.gov (United States)

    Newcomer, Jeffrey A.; Dominguez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    The level-0 Daedalus Thematic Mapper Simulator (TMS) imagery, along with the other remotely sensed images, was collected to provide spatially extensive information about radiant energy over the primary BOReal Ecosystem-Atmosphere Study (BOREAS) study areas. This information includes detailed land cover and biophysical parameter maps such as fraction of Photosynthetically Active Radiation (fPAR) and Leaf Area Index (LAI). Two flights of the Daedalus TMS instrument were made onboard the ER-2 aircraft on 16-Sep-1994 and 17-Sep-1994.

  14. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors.

    Science.gov (United States)

    Chen, Fa-Hsyang; Her, Jim-Long; Shao, Yu-Hsuan; Matsuda, Yasuhiro H; Pan, Tung-Ming

    2013-01-08

    In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric.

  15. Multi-temporal terrestrial laser scanning for identifying rockslide modifications: potentialities and problems

    Science.gov (United States)

    Castagnetti, Cristina; Bertacchini, Eleonora; Capra, Alessandro; Rivola, Riccardo

    2013-04-01

    The heart of this research is to provide an efficient methodology for a reliable acquisition and interpretation of Terrestrial Laser Scanner (TLS) data in the application field of landslide monitoring. In particular, rockslides, which are characterized by vertical walls of rock and by a complex morphology, are of great concern in the study. In these cases the airborne laser scanning is not able to provide useful and reliable description and the terrestrial laser scanning might be the only possible choice to obtain a good and reliable description of the geomorphology or to identify the changes occurred over time. The last purpose is still a challenging task when long distances are involved because the accurate and punctual identification of displacements is not possible due to the laser beam divergence. The final purpose of the research is a proposal of a methodology which is based on TLS technology for identifying displacements and extracting geomorphological changes. The approach is clearly based on a multi-temporal analysis which is computed on several repetitions of TLS surveys performed on the area of interest. To achieve best results and optimize the processing strategy, different methods about point clouds alignment have been tested together with algorithms both for filtering and post-processing. The case study is the Collagna Landslide that is located in the North Appennines (Reggio Emilia, Italy) on the right flank of Biola torrent. The large scale composite landslide area is made both by a wide rock slide sector and a more limited earth slide sector that, after high precipitation rates, disrupted the National Road 63 in December 2008. An integrated monitoring system is installed since 2009 and comprises both point-based technologies such as extensometers, total station and global positioning system, and also area-based technologies such as airborne laser scanner, long-range TLS and ground-based radar. This choice allows to couple the advantages of both

  16. Multi-temporal mapping of a large, slow-moving earth flow for kinematic interpretation

    Science.gov (United States)

    Guerriero, Luigi; Coe, Jeffrey A.; Revellino, Paola; Guadagno, Francesco M.

    2014-01-01

    lowest in the upper and lower parts. As the velocity of movement initiated and increased, stretching of the earth flow body induced the formation of normal faults. Conversely, decreasing velocity and shortening of the earth flow induced the formation of thrust faults. A zone with relatively few structures, bounded by strike-slip faults, was located between stretching and shortening areas. These kinematic elements indicate that the overall earth flow was actually composed of numerous linked internal earth flows, with each internal flow having a distinct pattern of structures representative of stretching and shortening (Guerriero et al., in review). These observations indicated that the spatial variation in movement velocity associated with each internal earth flow, mimicked the pattern of movement for the overall earth flow. That is, the earth flow displayed a self-similar pattern at different scales. Furthermore, the presence of other structures such as back-tilted surfaces, flank-ridges, and hydrological elements provide specific information about the shape of the basal topographic surface. Our multi-temporal maps provided a basis for interpretation of the long-term kinematic evolution of the earth flow and the influence of the basal-slip surface on the earth flow movement. Our maps showed that main faults remained stationary through time, despite extensive mobilization and movement of material. This observation indicated that the slip-surface has remained relatively stationary since at least 1954.

  17. White light emission from Er2O3 nano-powder excited by infrared radiation

    Science.gov (United States)

    Tabanli, Sevcan; Eryurek, Gonul; Di Bartolo, Baldassare

    2017-07-01

    Phosphors of Er2O3 nano-crystalline powders were synthesized by the thermal decomposition method. The structural properties of the nano-powders were investigated with XRD and HRTEM measurements. The cubic phase with a = 10.540 Å was the only phase observed. The average crystalline sizes and the widths of the grain size distribution curves were determined to be 27.2, 18.7 and 9.7 nm, respectively. The spectroscopic properties of the Er2O3 nano-powder were studied by measuring the luminescence, decay and rise patterns under 808 and 975 nm diode laser excitations. A peculiar effect of the pressure was observed since an optically active ion (Er) is part of the complex and not a dopant. A broad band of the white light emission combined with blue, green and red up-conversion emission bands of Er3+ ions were observed at 0.03 mbar pressure under both excitation wavelengths. Only, an intense broad band white light emission was observed from these nanocrystals at atmospheric pressure. Rising patterns show that the white light intensity reaches its maximum value more rapidly under 975 nm excitation although it decays slower than that of 808 nm excitation. The color quality parameters such as the color coordinate (CRI), correlated color temperature and the color rendering index were found to vary with both the excitation wavelength and the ambient pressure indicating that these nanocrystals could be considered good white light emitting source under the infrared excitations.

  18. Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2014-05-01

    Full Text Available Fast crisis response after natural disasters, such as earthquakes and tropical storms, is necessary to support, for instance, rescue, humanitarian, and reconstruction operations in the crisis area. Therefore, rapid damage mapping after a disaster is crucial, i.e., to detect the affected area, including grade and type of damage. Thereby, satellite remote sensing plays a key role due to its fast response, wide field of view, and low cost. With the increasing availability of remote sensing data, numerous methods have been developed for damage assessment. This article gives a comprehensive review of these techniques focusing on multi-temporal SAR procedures for rapid damage assessment: interferometric coherence and intensity correlation. The review is divided into six parts: First, methods based on coherence; second, the ones using intensity correlation; and third, techniques using both methodologies combined to increase the accuracy of the damage assessment are reviewed. Next, studies using additional data (e.g., GIS and optical imagery to support the damage assessment and increase its accuracy are reported. Moreover, selected studies on post-event SAR damage assessment techniques and examples of other applications of the interferometric coherence are presented. Then, the preconditions for a successful worldwide application of multi-temporal SAR methods for damage assessment and the limitations of current SAR satellite missions are reported. Finally, an outlook to the Sentinel-1 SAR mission shows possible solutions of these limitations, enabling a worldwide applicability of the presented damage assessment methods.

  19. Uncertainty assessment of PM2.5 contamination mapping using spatiotemporal sequential indicator simulations and multi-temporal monitoring data

    Science.gov (United States)

    Yang, Yong; Christakos, George; Huang, Wei; Lin, Chengda; Fu, Peihong; Mei, Yang

    2016-04-01

    Because of the rapid economic growth in China, many regions are subjected to severe particulate matter pollution. Thus, improving the methods of determining the spatiotemporal distribution and uncertainty of air pollution can provide considerable benefits when developing risk assessments and environmental policies. The uncertainty assessment methods currently in use include the sequential indicator simulation (SIS) and indicator kriging techniques. However, these methods cannot be employed to assess multi-temporal data. In this work, a spatiotemporal sequential indicator simulation (STSIS) based on a non-separable spatiotemporal semivariogram model was used to assimilate multi-temporal data in the mapping and uncertainty assessment of PM2.5 distributions in a contaminated atmosphere. PM2.5 concentrations recorded throughout 2014 in Shandong Province, China were used as the experimental dataset. Based on the number of STSIS procedures, we assessed various types of mapping uncertainties, including single-location uncertainties over one day and multiple days and multi-location uncertainties over one day and multiple days. A comparison of the STSIS technique with the SIS technique indicate that a better performance was obtained with the STSIS method.

  20. Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey.

    Science.gov (United States)

    Duru, Umit

    2017-08-01

    The research summarized here determines historical shoreline changes along Lake Sapanca by using Remote Sensing (RS) and Geographical Information Systems (GIS). Six multi-temporal satellite images of Landsat Multispectral Scanner (L1-5 MMS), Enhanced Thematic Mapper Plus (L7 ETM+), and Operational Land Imager Sensors (L8 OLI), covering the period between 17 June 1975 and 15 July 2016, were used to monitor shoreline positions and estimate change rates along the coastal zone. After pre-possessing routines, the Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), and supervised classification techniques were utilized to extract six different shorelines. Digital Shoreline Analysis System (DSAS), a toolbox that enables transect-based computations of shoreline displacement, was used to compute historical shoreline change rates. The average rate of shoreline change for the entire cost was 2.7 m/year of progradation with an uncertainty of 0.2 m/year. While the great part of the lake shoreline remained stable, the study concluded that the easterly and westerly coasts and deltaic coasts are more vulnerable to shoreline displacements over the last four decades. The study also reveals that anthropogenic activities, more specifically over extraction of freshwater from the lake, cyclic variation in rainfall, and deposition of sediment transported by the surrounding creeks dominantly control spatiotemporal shoreline changes in the region. Monitoring shoreline changes using multi-temporal satellite images is a significant component for the coastal decision-making and management.

  1. AUTOMATIC CLOUD DETECTION FROM MULTI-TEMPORAL SATELLITE IMAGES: TOWARDS THE USE OF PLÉIADES TIME SERIES

    Directory of Open Access Journals (Sweden)

    N. Champion

    2012-08-01

    Full Text Available Contrary to aerial images, satellite images are often affected by the presence of clouds. Identifying and removing these clouds is one of the primary steps to perform when processing satellite images, as they may alter subsequent procedures such as atmospheric corrections, DSM production or land cover classification. The main goal of this paper is to present the cloud detection approach, developed at the French Mapping agency. Our approach is based on the availability of multi-temporal satellite images (i.e. time series that generally contain between 5 and 10 images and is based on a region-growing procedure. Seeds (corresponding to clouds are firstly extracted through a pixel-to-pixel comparison between the images contained in time series (the presence of a cloud is here assumed to be related to a high variation of reflectance between two images. Clouds are then delineated finely using a dedicated region-growing algorithm. The method, originally designed for panchromatic SPOT5-HRS images, is tested in this paper using time series with 9 multi-temporal satellite images. Our preliminary experiments show the good performances of our method. In a near future, the method will be applied to Pléiades images, acquired during the in-flight commissioning phase of the satellite (launched at the end of 2011. In that context, this is a particular goal of this paper to show to which extent and in which way our method can be adapted to this kind of imagery.

  2. Bamboo mapping of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery

    Science.gov (United States)

    Zhao, Yuanyuan; Feng, Duole; Jayaraman, Durai; Belay, Daniel; Sebrala, Heiru; Ngugi, John; Maina, Eunice; Akombo, Rose; Otuoma, John; Mutyaba, Joseph; Kissa, Sam; Qi, Shuhua; Assefa, Fiker; Oduor, Nellie Mugure; Ndawula, Andrew Kalema; Li, Yanxia; Gong, Peng

    2018-04-01

    Mapping the spatial distribution of bamboo in East Africa is necessary for biodiversity conservation, resource management and policy making for rural poverty reduction. In this study, we produced a contemporary bamboo cover map of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery series at 30 m spatial resolution. This is the first bamboo map generated using remotely sensed data for these three East African countries that possess most of the African bamboo resource. The producer's and user's accuracies of bamboos are 79.2% and 84.0%, respectively. The hotspots with large amounts of bamboo were identified and the area of bamboo coverage for each region was estimated according to the map. The seasonal growth status of two typical bamboo zones (one highland bamboo and one lowland bamboo) were analyzed and the multi-temporal imagery proved to be useful in differentiating bamboo from other vegetation classes. The images acquired in September to February are less contaminated by clouds and shadows, and the image series cover the dying back process of lowland bamboo, which were helpful for bamboo identification in East Africa.

  3. Self-diffusion of Er and Hf inpure and HfO2-doped polycrystalline Er2O3

    International Nuclear Information System (INIS)

    Scheidecker, R.W.

    1979-01-01

    Using a tracer technique, self-diffusion of Er and Hf was measured over the approximate temperature interval of 1600 to 1970 0 C in pure and HfO 2 -doped polycryatalline Er 2 O 3 . Up to about 10 m/o HfO 2 dopant level, the Er self-diffusion coefficients followed a relationship based on cation vacancies. Above 10 m/o HfO 2 , deviation from this relationship occurred, apparently due to clustering of cation vacancies and oxygen interstitials around the dopant hafnia ion. The activation energy for the self-diffusion of Er in pure Er 2 O 3 was 82.2 Kcal/mole and increased with the HfO 2 dopant level present. Self-diffusion of Hf was measured in pure Er 2 O 3 having two impurity levels, and a separation of the grain boundary. The volume diffusion of Hf showed both extrinsic and intrinsic behavior with the transition temperature increasing with the impurity level present in Er 2 O 3 . The activation energy for Hf volume diffusion in the intrinsic region was high, i.e. 235 -+ 9.5 Kcal/mole. The grain boundary diffusion was apparently extrinsic over the entire temperature interval Very low Hf self diffusion rates were found in both pure and HfO 2 doped Er 2 O 3 compositions. Despite a clustering effect, the HfO 2 dopant increased the Hf volume diffusion coefficients

  4. Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X =Se , S)

    Science.gov (United States)

    Gao, Shang; Zaharko, O.; Tsurkan, V.; Prodan, L.; Riordan, E.; Lago, J.; Fâk, B.; Wildes, A. R.; Koza, M. M.; Ritter, C.; Fouquet, P.; Keller, L.; Canévet, E.; Medarde, M.; Blomgren, J.; Johansson, C.; Giblin, S. R.; Vrtnik, S.; Luzar, J.; Loidl, A.; Rüegg, Ch.; Fennell, T.

    2018-03-01

    Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2 Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2 Ti2 O7 . In this Letter we use diffuse neutron scattering to show that both CdEr2 Se4 and CdEr2 S4 support a dipolar spin ice state—the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy2 Ti2 O7 , i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er3 + ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr2X4 (X =Se , S) are primarily due to much faster monopole hopping. Our work suggests that CdEr2X4 offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.

  5. Large-Area, High-Resolution Tree Cover Mapping with Multi-Temporal SPOT5 Imagery, New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Adrian Fisher

    2016-06-01

    Full Text Available Tree cover maps are used for many purposes, such as vegetation mapping, habitat connectivity and fragmentation studies. Small remnant patches of native vegetation are recognised as ecologically important, yet they are underestimated in remote sensing products derived from Landsat. High spatial resolution sensors are capable of mapping small patches of trees, but their use in large-area mapping has been limited. In this study, multi-temporal Satellite pour l’Observation de la Terre 5 (SPOT5 High Resolution Geometrical data was pan-sharpened to 5 m resolution and used to map tree cover for the Australian state of New South Wales (NSW, an area of over 800,000 km2. Complete coverages of SPOT5 panchromatic and multispectral data over NSW were acquired during four consecutive summers (2008–2011 for a total of 1256 images. After pre-processing, the imagery was used to model foliage projective cover (FPC, a measure of tree canopy density commonly used in Australia. The multi-temporal imagery, FPC models and 26,579 training pixels were used in a binomial logistic regression model to estimate the probability of each pixel containing trees. The probability images were classified into a binary map of tree cover using local thresholds, and then visually edited to reduce errors. The final tree map was then attributed with the mean FPC value from the multi-temporal imagery. Validation of the binary map based on visually assessed high resolution reference imagery revealed an overall accuracy of 88% (±0.51% standard error, while comparison against airborne lidar derived data also resulted in an overall accuracy of 88%. A preliminary assessment of the FPC map by comparing against 76 field measurements showed a very good agreement (r2 = 0.90 with a root mean square error of 8.57%, although this may not be representative due to the opportunistic sampling design. The map represents a regionally consistent and locally relevant record of tree cover for NSW, and

  6. Remote Sensing based multi-temporal observation of North Korea mining activities : A case study of Rakyeon mine

    Science.gov (United States)

    Lim, J. H.; Yu, J.; Koh, S. M.; Lee, G.

    2017-12-01

    Mining is a major industrial business of North Korea accounting for significant portion of an export for North Korean economy. However, due to its veiled political system, details of mining activities of North Korea is rarely known. This study investigated mining activities of Rakyeon Au-Ag mine, North Korea based on remote sensing based multi-temporal observation. To monitor the mining activities, CORONA data acquired in 1960s and 1970s, SPOT and Landsat data acquired in 1980s and 1990s and KOMPSAT-2 data acquired in 2010s are utilized. The results show that mining activities of Rakyeon mine continuously carried out for the observation period expanding tailing areas of the mine. However, its expanding rate varies between the period related to North Korea's economic and political situations.

  7. Detection of geothermal anomalies in Tengchong, Yunnan Province, China from MODIS multi-temporal night LST imagery

    Science.gov (United States)

    Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.

    2012-12-01

    Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.

  8. Integration of multi-temporal airborne and terrestrial laser scanning data for the analysis and modelling of proglacial geomorphodynamic processes

    Science.gov (United States)

    Briese, Christian; Glira, Philipp; Pfeifer, Norbert

    2013-04-01

    The actual on-going and predicted climate change leads in sensitive areas like in high-mountain proglacial regions to significant geomorphodynamic processes (e.g. landslides). Within a short time period (even less than a year) these processes lead to a substantial change of the landscape. In order to study and analyse the recent changes in a proglacial environment the multi-disciplinary research project PROSA (high-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps) selected the study area of the Gepatschferner (Tyrol), the second largest glacier in Austria. One of the challenges within the project is the geometric integration (i.e. georeferencing) of multi-temporal topographic data sets in a continuously changing environment. Furthermore, one has to deal with data sets of multiple scales (large area data sets vs. highly detailed local area observations) that are on one hand necessary to cover the complete proglacial area with the whole catchment and on the other hand guaranty a highly dense and accurate sampling of individual areas of interest (e.g. a certain highly affected slope). This contribution suggests a comprehensive method for the georeferencing of multi-temporal airborne and terrestrial laser scanning (ALS resp. TLS). It is studied by application to the data that was acquired within the project PROSA. In a first step a stable coordinate frame that allows the analysis of the changing environment has to be defined. Subsequently procedures for the transformation of the individual ALS and TLS data sets into this coordinate frame were developed. This includes the selection of appropriate reference areas as well as the development of special targets for the local TLS acquisition that can be used for the absolute georeferencing in the common coordinate frame. Due to the fact that different TLS instruments can be used (some larger distance sensors that allow covering larger areas vs. closer operating sensors that allow a

  9. Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure

    Science.gov (United States)

    McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Wing, Brian M.; Kellogg, Bryce; Kreitler, Jason R.

    2017-01-01

    Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often lacks validation with specific variables of change. Additional uncertainty remains regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which observational data cannot easily be acquired, and whether pre-fire agents of change such as bark beetle and timber harvest impact model accuracy. This study quantifies wildfire effects by correlating changes in forest structure derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions to multi-temporal spectral changes captured by the Landsat Thematic Mapper and Operational Land Imager for the 2012 Pole Creek Fire in central Oregon. Spatial regression modeling was assessed as a methodology to account for spatial autocorrelation, and model consistency was quantified across areas impacted by pre-fire mountain pine beetle and timber harvest. The strongest relationship (pseudo-r2 = 0.86, p LiDAR-derived estimate of canopy cover change. Relationships between percentage of LiDAR returns in forest strata and spectral indices generally increased in strength with strata height. Structural measurements made closer to the ground were not well correlated. The spatial regression approach improved all relationships, demonstrating its utility, but model performance declined across pre-fire agents of change, suggesting that such studies should stratify by pre-fire forest condition. This study establishes that spectral indices such as d74 and dNBR are most sensitive to wildfire-caused structural changes such as reduction in canopy cover and perform best when that structure has not been reduced pre-fire.

  10. Multi-Temporal Multi-Sensor Analysis of Urbanization and Environmental/Climate Impact in China for Sustainable Urban Development

    Science.gov (United States)

    Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun

    2016-08-01

    The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge

  11. Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring

    Directory of Open Access Journals (Sweden)

    Pauline Dusseux

    2014-06-01

    Full Text Available The aim of this study was to assess the ability of optical images, SAR (Synthetic Aperture Radar images and the combination of both types of data to discriminate between grasslands and crops in agricultural areas where cloud cover is very high most of the time, which restricts the use of visible and near-infrared satellite data. We compared the performances of variables extracted from four optical and five SAR satellite images with high/very high spatial resolutions acquired during the growing season. A vegetation index, namely the NDVI (Normalized Difference Vegetation Index, and two biophysical variables, the LAI (Leaf Area Index and the fCOVER (fraction of Vegetation Cover were computed using optical time series and polarization (HH, VV, HV, VH. The polarization ratio and polarimetric decomposition (Freeman–Durden and Cloude–Pottier were calculated using SAR time series. Then, variables derived from optical, SAR and both types of remotely-sensed data were successively classified using the Support Vector Machine (SVM technique. The results show that the classification accuracy of SAR variables is higher than those using optical data (0.98 compared to 0.81. They also highlight that the combination of optical and SAR time series data is of prime interest to discriminate grasslands from crops, allowing an improved classification accuracy.

  12. Remote Sensing of Smoke, Land and Clouds from the NASA ER-2 during SAFARI 2000

    Science.gov (United States)

    King, Michael D.; Platnick, Steven; Moeller, Christopher C.; Revercomb, Henry E.; Chu, D. Allen

    2002-01-01

    The NASA ER-2 aircraft was deployed to southern Africa between August 17 and September 25, 2000 as part of the Southern Africa Regional Science Initiative (SAFARI) 2000. This aircraft carried a sophisticated array of multispectral scanners, multiangle spectroradiometers, a monostatic lidar, a gas correlation radiometer, upward and downward spectral flux radiometers, and two metric mapping cameras. These observations were obtained over a 3200 x 2800 km region of savanna, woody savanna, open shrubland, and grassland ecosystems throughout southern Africa, and were quite often coordinated with overflights by NASA's Terra and Landsat 7 satellites. The primary purpose of this sophisticated high altitude observing platform was to obtain independent observations of smoke, clouds, and land surfaces that could be used to check the validity of various remote sensing measurements derived by Earth-orbiting satellites. These include such things as the accuracy of the Moderate Resolution Imaging Spectro-radiometer (MODIS) cloud mask for distinguishing clouds and heavy aerosol from land and ocean surfaces, and Terra analyses of cloud optical and micro-physical properties, aerosol properties, leaf area index, vegetation index, fire occurrence, carbon monoxide, and surface radiation budget. In addition to coordination with Terra and Landsat 7 satellites, numerous flights were conducted over surface AERONET sites, flux towers in South Africa, Botswana, and Zambia, and in situ aircraft from the University of Washington, South Africa, and the United Kingdom.

  13. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region.

    Science.gov (United States)

    Zhou, Tao; Pan, Jianjun; Zhang, Peiyu; Wei, Shanbao; Han, Tao

    2017-05-25

    Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure-up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data.

  14. Clinical application of entire gastrointestinal barium meal combined with multi-temporal abdominal films in patients with intestinal neuronal dysplasia type B.

    Science.gov (United States)

    Li, Xiao-Yun; Li, Xiao-Gang; Du, Ming-Guo; Chen, Zhi-Dan; Tao, Zheng-Gui; Liao, Xiao-Feng

    2013-01-01

    To report and evaluate the application of entire gastrointestinal barium meal combined with multi-temporal abdominal films in the diagnosis of patients with intestinal neuronal dysplasia type B (IND type B). Thirty-six patients with symptoms of long-standing constipation were enrolled in this study. The study took place at the Department of General Surgery, Xiangyang Central Hospital, Hubei Province, China from July 2007 to October 2012. All of them had already been subjected to the tests of barium enema and anorectal manometry and were suspected to be IND type B, but were not confirmed by mucous membrane acetylcholinesterase determination. All underwent the entire gastrointestinal barium meal combined with multi-temporal abdominal films. The data was collected and then analyzed retrospectively. After entire gastrointestinal barium meal combined with multi-temporal abdominal films, 30 out of 36 cases in this group were diagnosed with intestinal neuronal diseases, and then were treated with appropriate surgical treatment. The postoperative pathological diagnosis was IND type B. The other 6 patients in this group still could not be diagnosed explicitly after the test; thus, we treated them with conservative treatment. Entire gastrointestinal barium meal combined with multi-temporal abdominal films has the advantage of being able to test the gastrointestinal transfer capabilities and to find physiological and pathological changes simultaneously. It could provide important proof for the diagnosis of patients with intestinal neuronal dysplasia type B.

  15. Rapid groundwater-related land subsidence in Yemen observed by multi-temporal InSAR

    Science.gov (United States)

    Abdullin, Ayrat; Xu, Wenbin; Kosmicki, Maximillian; Jonsson, Sigurjon

    2015-04-01

    Several basins in Yemen are suffering from a rapid drawdown of groundwater, which is the most important water source for agricultural irrigation, industry and domestic use. However, detailed geodetic measurements in the region have been lacking and the extent and magnitude of groundwater-related land subsidence has been poorly known. We used 13 ascending ALOS and 15 descending Envisat images to study land subsidence of several basins in Yemen, with a special focus on the Sana'a and Mabar basins. From multitemporal synthetic aperture radar interferometric analysis (persistent scatterers (PS) and small baseline subsets (SBAS)) we examined the spatio-temporal behavior of the subsidence induced by depletion of groundwater aquifer systems from November 2003 to February 2011. In the interferometric data processing, we carefully chose interferogram pairs to minimize spatial and temporal decorrelation, because of high subsidence rates and the type of land cover. Our results show that the spatial pattern of subsidence remained quite stable during the observation period in both the Sana'a and Mabar basins. In the Sana'a basin, the maximum subsidence rate exceeded 14 cm/year in the radar line-of-sight (LOS) direction between 2003 and 2008 in an agricultural area just north of Sana'a city, where water wells have been drying up according to the well data. The subsidence rate was lower in the urban areas, or approximately 1 cm/year, exhibiting annual variations. The main subsidence was found in the center and southern parts of the city, while deformation in the northern part is less obvious. For the Mabar basin, the subsidence rate exceeded 30 cm/year in the agricultural area north of the town of Mabar during 2007 - 2011. The southern part of the Mabar basin also experienced high subsidence rates, although somewhat lower than to the north. Excessive water pumping is the main cause of the ground subsidence and it has already led to extensive ground fracturing at the edge of some

  16. Rapid groundwater-related land subsidence in Yemen observed by multi-temporal InSAR

    KAUST Repository

    Abdullin, Ayrat

    2015-04-01

    Several basins in Yemen are suffering from a rapid drawdown of groundwater, which is the most important water source for agricultural irrigation, industry and domestic use. However, detailed geodetic measurements in the region have been lacking and the extent and magnitude of groundwater-related land subsidence has been poorly known. We used 13 ascending ALOS and 15 descending Envisat images to study land subsidence of several basins in Yemen, with a special focus on the Sana\\'a and Mabar basins. From multitemporal synthetic aperture radar interferometric analysis (persistent scatterers (PS) and small baseline subsets (SBAS)) we examined the spatio-temporal behavior of the subsidence induced by depletion of groundwater aquifer systems from November 2003 to February 2011. In the interferometric data processing, we carefully chose interferogram pairs to minimize spatial and temporal decorrelation, because of high subsidence rates and the type of land cover. Our results show that the spatial pattern of subsidence remained quite stable during the observation period in both the Sana\\'a and Mabar basins. In the Sana\\'a basin, the maximum subsidence rate exceeded 14 cm/year in the radar line-of-sight (LOS) direction between 2003 and 2008 in an agricultural area just north of Sana\\'a city, where water wells have been drying up according to the well data. The subsidence rate was lower in the urban areas, or approximately 1 cm/year, exhibiting annual variations. The main subsidence was found in the center and southern parts of the city, while deformation in the northern part is less obvious. For the Mabar basin, the subsidence rate exceeded 30 cm/year in the agricultural area north of the town of Mabar during 2007 - 2011. The southern part of the Mabar basin also experienced high subsidence rates, although somewhat lower than to the north. Excessive water pumping is the main cause of the ground subsidence and it has already led to extensive ground fracturing at the edge

  17. Repeat-Pass Multi-Temporal Interferometric SAR Coherence Variations with Amazon Floodplain and Lake Habitats

    Science.gov (United States)

    Jung, H.; Alsdorf, D.

    2006-12-01

    Monitoring discharge in the main channels of rivers and upland tributaries as well as storage changes in floodplain lakes is necessary for understanding flooding hazards, methane production, sediment transport, and nutrient exchange. Interferometric processing of synthetic aperture radar (SAR) data may enable hydrologists to detect environmental and ecological changes in hydrological systems over space and time. An aim of our experiments is to characterize interferometric SAR coherence variations that occur in Amazon aquatic habitats. We analyze coherence variations in JERS-1 data at three central Amazon sites; Lake Balbina, the Cabaliana floodplain, and the confluence of the Purus and Amazon rivers. Because radar pulse interactions with inundated vegetation typically follow a double-bounce travel path which returns energy to the antenna, coherence will vary with vegetation type, physical baseline, and temporal baseline. Balbina's vegetation consists mostly of forest and inundated trunks of dead, leafless trees as opposed to Cabaliana and Amazon- Purus (dominated by flooded forests), thus it serves to isolate the vegetation signal. Coherence variations with baselines were determined from 253 interferograms at Balbina, 210 at Calbaliana, and 153 at Purus. The average temporal and perpendicular baselines (mean std.) are 574 394 days and 1708 1159 m at Balbina, 637 435 days and 1381 981 m at Cabaliana, and 587 425 days and 1430 964 m at Purus. Balbina has a stronger coherence than either Cabaliana or Amazon-Purus. With results of Mann-Whitney statistical tests, Balbina has a difference between terre-firme and flooded coherence values plotted with perpendicular baseline but Cabaliana and Amazon-Purus do not show this difference. Balbina has a linearly decreasing trend in coherence plotted with temporal baseline whereas Cabaliana and Amazon-Purus have a steep drop-off, non- linear change. A strong annual periodicity is evident on power spectrums of the coherence values

  18. SUPPORT VECTOR MACHINE CLASSIFICATION OF OBJECT-BASED DATA FOR CROP MAPPING, USING MULTI-TEMPORAL LANDSAT IMAGERY

    Directory of Open Access Journals (Sweden)

    R. Devadas

    2012-07-01

    Full Text Available Crop mapping and time series analysis of agronomic cycles are critical for monitoring land use and land management practices, and analysing the issues of agro-environmental impacts and climate change. Multi-temporal Landsat data can be used to analyse decadal changes in cropping patterns at field level, owing to its medium spatial resolution and historical availability. This study attempts to develop robust remote sensing techniques, applicable across a large geographic extent, for state-wide mapping of cropping history in Queensland, Australia. In this context, traditional pixel-based classification was analysed in comparison with image object-based classification using advanced supervised machine-learning algorithms such as Support Vector Machine (SVM. For the Darling Downs region of southern Queensland we gathered a set of Landsat TM images from the 2010–2011 cropping season. Landsat data, along with the vegetation index images, were subjected to multiresolution segmentation to obtain polygon objects. Object-based methods enabled the analysis of aggregated sets of pixels, and exploited shape-related and textural variation, as well as spectral characteristics. SVM models were chosen after examining three shape-based parameters, twenty-three textural parameters and ten spectral parameters of the objects. We found that the object-based methods were superior to the pixel-based methods for classifying 4 major landuse/land cover classes, considering the complexities of within field spectral heterogeneity and spectral mixing. Comparative analysis clearly revealed that higher overall classification accuracy (95% was observed in the object-based SVM compared with that of traditional pixel-based classification (89% using maximum likelihood classifier (MLC. Object-based classification also resulted speckle-free images. Further, object-based SVM models were used to classify different broadacre crop types for summer and winter seasons. The influence of

  19. Using Urban Landscape Trajectories to Develop a Multi-Temporal Land Cover Database to Support Ecological Modeling

    Directory of Open Access Journals (Sweden)

    Marina Alberti

    2009-12-01

    Full Text Available Urbanization and the resulting changes in land cover have myriad impacts on ecological systems. Monitoring these changes across large spatial extents and long time spans requires synoptic remotely sensed data with an appropriate temporal sequence. We developed a multi-temporal land cover dataset for a six-county area surrounding the Seattle, Washington State, USA, metropolitan region. Land cover maps for 1986, 1991, 1995, 1999, and 2002 were developed from Landsat TM images through a combination of spectral unmixing, image segmentation, multi-season imagery, and supervised classification approaches to differentiate an initial nine land cover classes. We then used ancillary GIS layers and temporal information to define trajectories of land cover change through multiple updating and backdating rules and refined our land cover classification for each date into 14 classes. We compared the accuracy of the initial approach with the landscape trajectory modifications and determined that the use of landscape trajectory rules increased our ability to differentiate several classes including bare soil (separated into cleared for development, agriculture, and clearcut forest and three intensities of urban. Using the temporal dataset, we found that between 1986 and 2002, urban land cover increased from 8 to 18% of our study area, while lowland deciduous and mixed forests decreased from 21 to 14%, and grass and agriculture decreased from 11 to 8%. The intensity of urban land cover increased with 252 km2 in Heavy Urban in 1986 increasing to 629 km2 by 2002. The ecological systems that are present in this region were likely significantly altered by these changes in land cover. Our results suggest that multi-temporal (i.e., multiple years and multiple seasons within years Landsat data are an economical means to quantify land cover and land cover change across large and highly heterogeneous urbanizing landscapes. Our data, and similar temporal land cover change

  20. ERS-2 SAR and IRS-1C LISS III data fusion: A PCA approach to improve remote sensing based geological interpretation

    Science.gov (United States)

    Pal, S. K.; Majumdar, T. J.; Bhattacharya, Amit K.

    Fusion of optical and synthetic aperture radar data has been attempted in the present study for mapping of various lithologic units over a part of the Singhbhum Shear Zone (SSZ) and its surroundings. ERS-2 SAR data over the study area has been enhanced using Fast Fourier Transformation (FFT) based filtering approach, and also using Frost filtering technique. Both the enhanced SAR imagery have been then separately fused with histogram equalized IRS-1C LISS III image using Principal Component Analysis (PCA) technique. Later, Feature-oriented Principal Components Selection (FPCS) technique has been applied to generate False Color Composite (FCC) images, from which corresponding geological maps have been prepared. Finally, GIS techniques have been successfully used for change detection analysis in the lithological interpretation between the published geological map and the fusion based geological maps. In general, there is good agreement between these maps over a large portion of the study area. Based on the change detection studies, few areas could be identified which need attention for further detailed ground-based geological studies.

  1. Multi-temporal InSAR monitoring of landslides in a tropical urban environment: focus on Bukavu (DR Congo)

    Science.gov (United States)

    Nobile, Adriano; Monsieurs, Elise; Dewitte, Olivier; d'Oreyes, Nicolas; Kervyn, Francois

    2016-04-01

    The western branch of the East African Rift System, in Central Africa, is characterized by the presence of several geohazards: earthquakes, volcanoes, and landslides. Every year, landslides cause fatalities, structural and functional damage to infrastructure and private properties with serious disruptions of the organization of societies and severe impact on the populations. These impacts are particularly important in the city of Bukavu (DR Congo) located within the Rift, on the southern shore of Lake Kivu. Large slow-moving landslides continuously affect highly populated slopes in the city. However little is known about their actual kinematics and the processes at play. Here we use multi-temporal InSAR technique to monitor these ground deformations. Using 50 Cosmo-SkyMed SAR images, acquired between March - October 2015 with a revisiting time of 8 days (ascending and descending orbits), we produce displacement-rate maps and ground deformation time series using the PS technique. Movements with a velocity >5cm/yr are detected, which is consistent with field observations. DGPS measurements, taken at 21 benchmarks in the area during the same period, allow validating the results. Similar ground deformation rates are found for the period 2002-2008 using Envisat ASAR images. Furthermore, comparison with rainfall monitoring data acquire on site should help us to understand the influence of water and the tropical seasonality in the slide mechanisms.

  2. Multi-temporal change image inference towards false alarms reduction for an operational photogrammetric rockfall detection system

    Science.gov (United States)

    Partsinevelos, Panagiotis; Kallimani, Christina; Tripolitsiotis, Achilleas

    2015-06-01

    Rockfall incidents affect civil security and hamper the sustainable growth of hard to access mountainous areas due to casualties, injuries and infrastructure loss. Rockfall occurrences cannot be easily prevented, whereas previous studies for rockfall multiple sensor early detection systems have focused on large scale incidents. However, even a single rock may cause the loss of a human life along transportation routes thus, it is highly important to establish methods for the early detection of small-scale rockfall incidents. Terrestrial photogrammetric techniques are prone to a series of errors leading to false alarm incidents, including vegetation, wind, and non relevant change in the scene under consideration. In this study, photogrammetric monitoring of rockfall prone slopes is established and the resulting multi-temporal change imagery is processed in order to minimize false alarm incidents. Integration of remote sensing imagery analysis techniques is hereby applied to enhance early detection of a rockfall. Experimental data demonstrated that an operational system able to identify a 10-cm rock movement within a 10% false alarm rate is technically feasible.

  3. The evolution of active Lavina di Roncovetro landslides by multi-temporal high-resolution topographic data

    Science.gov (United States)

    Isola, Ilaria; Fornaciai, Alessandro; Favalli, Massimiliano; Gigli, Giovanni; Nannipieri, Luca; Mucchi, Lorenzo; Intrieri, Emanuele; Pizziolo, Marco; Bertolini, Giovanni; Trippi, Federico; Casagli, Nicola; Schina, Rosa; Carnevale, Ennio

    2017-04-01

    High-resolution topographic data has been collected over the Lavina di Roncovetro active landslide (Reggio Emilia, Italy) for about 3 years by using various methods and technologies. Tha Lavina di Roncovetro landslide can be considered as a fluid-viscous mudflow, which can reach a down flow maximum rate of 10 m/day. The landslide started between the middle and the end of the XIX century and since then it has had a rapid evolution mainly characterized by the rapid retrogression of the crown to the extent that now reaches the top of Mount Staffola. In the frame of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12ENV/IT/001033) the Lavina di Roncovetro landslide has been periodically tracked using technologies that span from the LiDAR, both terrestrial and aerial, to the Structure from Motion (SfM) photogrammetry method based on Unmanned Aerial Vehicle (UAV) and aerial survey. These data are used to create six high-resolution Digital Terrain Models (DEMs), which imaged the landslide surface on March 2014, October 2014, June 2015, July 2015, January 2016 and December 2016. Multi-temporal high-resolution topographic data have been used for qualitative and quantitative morphometric analysis and topographic change detection of the landslide with the aim to estimate and map the volume of removed and/or accumulated material, the average rates of vertical and horizontal displacement and the deformation structures affecting the landslide over the investigated period.

  4. Object-Based Greenhouse Horticultural Crop Identification from Multi-Temporal Satellite Imagery: A Case Study in Almeria, Spain

    Directory of Open Access Journals (Sweden)

    Manuel A. Aguilar

    2015-06-01

    Full Text Available Greenhouse detection and mapping via remote sensing is a complex task, which has already been addressed in numerous studies. In this research, the innovative goal relies on the identification of greenhouse horticultural crops that were growing under plastic coverings on 30 September 2013. To this end, object-based image analysis (OBIA and a decision tree classifier (DT were applied to a set consisting of eight Landsat 8 OLI images collected from May to November 2013. Moreover, a single WorldView-2 satellite image acquired on 30 September 2013, was also used as a data source. In this approach, basic spectral information, textural features and several vegetation indices (VIs derived from Landsat 8 and WorldView-2 multi-temporal satellite data were computed on previously segmented image objects in order to identify four of the most popular autumn crops cultivated under greenhouse in Almería, Spain (i.e., tomato, pepper, cucumber and aubergine. The best classification accuracy (81.3% overall accuracy was achieved by using the full set of Landsat 8 time series. These results were considered good in the case of tomato and pepper crops, being significantly worse for cucumber and aubergine. These results were hardly improved by adding the information of the WorldView-2 image. The most important information for correct classification of different crops under greenhouses was related to the greenhouse management practices and not the spectral properties of the crops themselves.

  5. Landuse change detection in a surface coal mine area using multi-temporal high resolution satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, N.; Duzgun, S.; Kemal Emil, M. [Middle East Technical Univ., Ankara (Turkey). Dept. of Mining Engineering

    2010-07-01

    Changes in the landcover and landuse of a mine area can be caused by surface mining activities, exploitation of ore and stripping and dumping overburden. In order to identify the long-term impacts of mining on the environment and land cover, these changes must be continuously monitored. A facility to regularly observe the progress of surface mining and reclamation is important for effective enforcement of mining and environmental regulations. Remote sensing provides a powerful tool to obtain rigorous data and reduce the need for time-consuming and expensive field measurements. The purpose of this study was to conduct post classification change detection for identifying, quantifying, and analyzing the spatial response of landscape due to surface lignite coal mining activities in Goynuk, Bolu, Turkey, from 2004 to 2008. The paper presented the research algorithm which involved acquiring multi temporal high resolution satellite data; preprocessing the data; performing image classification using maximum likelihood classification algorithm and performing accuracy assessment on the classification results; performing post classification change detection algorithm; and analyzing the results. Specifically, the paper discussed the study area, data and methodology, and image preprocessing using radiometric correction. Image classification and change detection were also discussed. It was concluded that the mine and dump area decreased by 192.5 ha from 2004 to 2008 and was caused by the diminishing reserves in the area and decline in the required production. 5 refs., 2 tabs., 4 figs.

  6. Detecting Damaged Building Regions Based on Semantic Scene Change from Multi-Temporal High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Jihui Tu

    2017-04-01

    Full Text Available The detection of damaged building regions is crucial to emergency response actions and rescue work after a disaster. Change detection methods using multi-temporal remote sensing images are widely used for this purpose. Differing from traditional methods based on change detection for damaged building regions, semantic scene change can provide a new point of view since it can indicate the land-use variation at the semantic level. In this paper, a novel method is proposed for detecting damaged building regions based on semantic scene change in a visual Bag-of-Words model. Pre- and post-disaster scene change in building regions are represented by a uniform visual codebook frequency. The scene change of damaged and non-damaged building regions is discriminated using the Support Vector Machine (SVM classifier. An evaluation of experimental results, for a selected study site of the Longtou hill town of Yunnan, China, which was heavily damaged in the Ludian earthquake of 14 March 2013, shows that this method is feasible and effective for detecting damaged building regions. For the experiments, WorldView-2 optical imagery and aerial imagery is used.

  7. Characterization Of Ocean Wind Vector Retrievals Using ERS-2 High-Resolution Long-Term Dataset And Buoy Measurements

    Science.gov (United States)

    Polverari, F.; Talone, M.; Crapolicchio, R. Levy, G.; Marzano, F.

    2013-12-01

    The European Remote-sensing Satellite (ERS)-2 scatterometer provides wind retrievals over Ocean. To satisfy the needs of high quality and homogeneous set of scatterometer measurements, the European Space Agency (ESA) has developed the project Advanced Scatterometer Processing System (ASPS) with which a long-term dataset of new ERS-2 wind products, with an enhanced resolution of 25km square, has been generated by the reprocessing of the entire ERS mission. This paper presents the main results of the validation work of such new dataset using in situ measurements provided by the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). The comparison indicates that, on average, the scatterometer data agree well with buoys measurements, however the scatterometer tends to overestimates lower winds and underestimates higher winds.

  8. ER-2 #809 on the SAGE III Ozone Loss and Validation Experiment (SOLVE) with pilot Dee Porter prepari

    Science.gov (United States)

    2000-01-01

    Lockheed Martin pilot Dee Porter climbs up the ladder wearing a heavy tan pressure suit, preparing to board NASA ER-2 #809 at Kiruna, Sweden, for the third flight in the SAGE III Ozone Loss and Validation Experiment. Assisting him is Jim Sokolik, a Lockheed Martin life support technician. Number 809, one of Dryden's two high-flying ER-2 Airborne Science aircraft, a civilian variant of Lockheed's U-2, and another NASA flying laboratory, Dryden's DC-8, were based north of the Arctic Circle in Kiruna, Sweden during the winter of 2000 to study ozone depletion as part of the SAGE III Ozone Loss and Validation Experiment (SOLVE). A large hangar built especially for research, 'Arena Arctica' housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. 'The collaborative campaign will provide an immense new body of information about the Arctic stratosphere,' said program scientist Dr. Michael Kurylo, NASA Headquarters. 'Our understanding of the Earth's ozone will be greatly enhanced by this research.' ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main

  9. High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7

    Science.gov (United States)

    Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.

    2008-01-01

    Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.

  10. High Pressure Phase Transitions and Compressibilities of Er2Zr2O7 and Ho2Zr2O7

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,F.; Lang, M.; Becker, U.; Ewing, R.; Lian, J.

    2008-01-01

    Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of {approx} 22 and {approx} 30 GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.

  11. SeP, ApoER2 and megalin as necessary factors to maintain Se homeostasis in mammals.

    Science.gov (United States)

    Krol, Magdalena Beata; Gromadzinska, Jolanta; Wasowicz, Wojciech

    2012-10-01

    Selenoprotein P (SeP) is an extracellular protein containing ten selenium atoms in the form of selenocysteine, secreted mainly from the liver. About 60% of the whole plasma selenium level is present in SeP, which makes it a useful biomarker of selenium nutritional status. The main functions of SeP are transport and storage of selenium in plasma. It is especially an important protein for the brain, testes and kidneys where the supplementation of the proper amount of Se ensures the synthesis of selenoenzymes with antioxidant properties.Recently, it has been found that SeP uptake in kidneys, testes and brain depends on the apolipoprotein receptor 2 (ApoER2) and lipoprotein megalin receptor (Lrp2). Megalin receptor represents a physiological SeP receptor in kidneys, mediating the re-uptake of secreted SeP from the primary urine. The absence of a functional megalin receptor causes a significant reduction of plasma selenium and the SeP levels as a result of Se excretion. ApoER2 is a SeP receptor in the brain and testes which uptakes Se from the extracellular fluid. Deletion of ApoER2 in mice leads to a lowered selenium level in the brain and testes, neurological dysfunction, production of abnormal spermatozoa, infertility and even death when the subjects are fed a low-selenium diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Modifications of structural, chemical, and electrical characteristics of Er2O3/Si interface under Co-60 gamma irradiation

    Science.gov (United States)

    Kaya, Senol; Yilmaz, Ercan

    2018-03-01

    This paper reports the influences of gamma radiation on the structural, electrical, and chemical characteristics of erbium oxide (Er2O3) thin films and the possible mechanisms underlying these irradiation-induced effects. The crystallographic and morphological modifications under gamma irradiation were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively, while radiation influences on electrochemical characteristics were analyzed by X-ray photoelectron spectroscopy (XPS). Furthermore, changes in electrical characteristics were analyzed on the basis of capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements. The XRD results demonstrated that small atomic displacement was observed and that the grain size of the nanostructure slightly increased. Improvements in surface roughness were observed in AFM measurements. The observed variations in the XRD and AFM measurements can be attributed to the radiation-induced local heating and microscopic atomic mobility. In addition, the XPS analysis obviously demonstrated that the oxygen vacancies increased with irradiation dose because of the breaking of Er2O3 and ErxOy bonds. Significant influences of the generated oxygen vacancies on the electrical measurements were observed, and the radiation-induced hole traps, which caused large flat band shifts, can be attributed to the generated oxygen vacancies. The results show that radiation does not degrade the physical characteristics significantly, but the generation of oxygen vacancies considerably increases the electrical sensitivity of the Er2O3 dielectric.

  13. The influence of substrate on the properties of Er2O3 films grown by magnetron sputtering

    International Nuclear Information System (INIS)

    Miritello, M.; Lo Savio, R.; Iacona, F.; Franzo, G.; Bongiorno, C.; Irrera, A.; Priolo, F.

    2006-01-01

    The structural properties and the room temperature luminescence of Er 2 O 3 thin films deposited by RF magnetron sputtering have been studied. Films characterized by good morphological properties have been obtained by using a SiO 2 interlayer between the film and the Si substrate. The evolution of the properties of the Er 2 O 3 films due to rapid thermal annealing processes in O 2 ambient performed at temperatures in the range 800-1200 deg. C has been investigated in details. The existence of well-defined annealing conditions (temperature of 1100 deg. C or higher) allowing to avoid the occurrence of extensive chemical reactions with the oxidized substrate has been demonstrated and an increase of the photoluminescence (PL) intensity by about a factor of 40 with respect to the as deposited material has been observed. The enhanced efficiency of the photon emission process has been correlated with the longer lifetime of the PL signal. The same annealing processes are less effective when Er 2 O 3 is deposited on Si. In this latter case interfacial reactions and pit formation occur, leading to a material characterized by stronger non-radiative phenomena that limit the PL efficiency

  14. Key insights on the structural characterization of textured Er2O3–ZrO2 nano-oxides prepared by a surfactant-free solvothermal route

    International Nuclear Information System (INIS)

    Julián-López, Beatriz; Luz, Verónica de la; Gonell, Francisco; Cordoncillo, Eloisa; López-Haro, Miguel; Calvino, Jose J.; Escribano, Purificación

    2012-01-01

    Highlights: ► Structural resolution of fluorite vs. pyrochlore in small nanocrystals. ► Simple template-free solvothermal synthesis of Er 2 O 3 –ZrO 2 nanooxides. ► Good control over size, morphology and surface properties (280 m 2 g −1 ). - Abstract: Zirconia-mixed oxides can exhibit cubic fluorite and pyrochlore structure. Their discrimination is not easy in nanooxides with a crystal size close to that of a few unit cells. In this work, high resolution transmission electron microscopy (HRTEM) has been employed to provide key insights on the structural characterization of a nanometric and porous mixed Er 2 O 3 –ZrO 2 oxide. The material was prepared by a simple template-free solvothermal route that provided nanocrystalline powders at low temperature (170 °C) with spherical morphology, and high surface area (∼280 m 2 g −1 ). The porosity was mainly originated from the assembling of organic complexing agents used in the synthesis to limit the crystal growth and to control hydrolysis and condensation reaction rates. The samples were characterized by thermal analysis, X-ray diffraction, scanning electron microscopy and N 2 adsorption measurements. A detailed study by HRTEM was conducted on microtomed samples. It was observed that the material was made of nanocrystals packed into spherical agglomerates. HRTEM simulations indicated that it is not possible to identify the pyrochlore phase in nanoparticles with diameter below 2 nm. In our samples, the analysis of the HRTEM lattice images by means of fast Fourier transform (FFT) techniques revealed well defined spots that can be assigned to different planes of a cubic fluorite-type phase, even in the raw material. Raman spectroscopy was also a powerful technique to elucidate the crystalline phase of the materials with the smallest nanoparticles. HREM and Raman results evidenced that the material is constituted, irrespective of the temperature of the final calcination step, by an ensemble of randomly

  15. Multi Scale Multi Temporal Near Real Time Approach for Volcanic Eruptions monitoring, Test Case: Mt Etna eruption 2017

    Science.gov (United States)

    Buongiorno, M. F.; Silvestri, M.; Musacchio, M.

    2017-12-01

    In this work a complete processing chain from the detection of the beginning of eruption to the estimation of lava flow temperature on active volcanoes using remote sensing data is presented showing the results for the Mt. Etna eruption on March 2017. The early detection of new eruption is based on the potentiality ensured by geostationary very low spatial resolution satellite (3x3 km in nadiral view), the hot spot/lava flow evolution is derived by S2 polar medium/high spatial resolution (20x20 mt) while the surface temperature is estimated by polar medium/low spatial resolution such as L8, ASTER and S3 (from 90 mt up to 1km).This approach merges two outcome derived by activity performed for monitoring purposes within INGV R&D activities and the results obtained by Geohazards Exploitation Platform ESA funded project (GEP) aimed to the development of shared platform for providing services based on EO data. Because the variety of phenomena to be analyzed a multi temporal multi scale approach has been used to implement suitable and robust algorithms for the different sensors. With the exception of Sentinel 2 (MSI) data, for which the algorithm used is based on NIR-SWIR bands, we exploit the MIR-TIR channels of L8, ASTER, S3 and SEVIRI for generating automatically the surface thermal state analysis. The developed procedure produces time series data and allows to extract information from each single co-registered pixel, to highlight variation of temperatures within specific areas. The final goal is to implement an easy tool which enables scientists and users to extract valuable information from satellite time series at different scales produced by ESA and EUMETSAT in the frame of Europe's Copernicus program and other Earth observation satellites programs such as LANDSAT (USGS) and GOES (NOAA).

  16. Land development assessment on the preserved Al Somalia Island/UAE using multi-temporal aerial photographs and GIS

    International Nuclear Information System (INIS)

    Issa, S.M.

    2009-01-01

    The main objective of this study is to apply the most appropriate change detection techniques to assess land development achievements on Al Sammalyah Island, off the coast of Abu Dhabi, United Arab Emirates capital city. This was accomplished by mapping trajectory of land cover change of the whole island between 1999 and 2005. Another objective was to assess the level of development that occurred on the island and the level of change in the local environment. Available historical large scale aerial photographs from the late nineties to the most recent 2005 were used for the multi temporal study. Geographic information systems (GIS) layers were created by on-screen digitizing of corrected and co-registered images. A GIS overlay analysis combined with post classification change detection method analysis schema was adopted. Results of the current study demonstrate intense land development occurring on the Al Sammalyah Island; vegetation cover extent has increased from 3.742 km/sup 2/ (1.44 miles/sup 2/) in 1999 to 5.101 km/sup 2/ (1.97 miles/sup 2/) in 2005 that corresponds to 36.3% increase over this period. The study also shows that this increase in vegetation extent is mostly attributed to the increase in mangrove planted areas alone with an aerial increase from 2.256 km/sup 2/ (0.87 miles/sup 2/) in 1999 to 3.568 km/sup 2/ (1.38 miles/sup 2/) in 2005, an increase of 58.2% in seven years. (author)

  17. Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR

    Science.gov (United States)

    Reddy, Ashwan D.; Hawbaker, Todd J.; Wurster, F.; Zhu, Zhiliang; Ward, S.; Newcomb, Doug; Murray, R.

    2015-01-01

    Peatlands are a major reservoir of global soil carbon, yet account for just 3% of global land cover. Human impacts like draining can hinder the ability of peatlands to sequester carbon and expose their soils to fire under dry conditions. Estimating soil carbon loss from peat fires can be challenging due to uncertainty about pre-fire surface elevations. This study uses multi-temporal LiDAR to obtain pre- and post-fire elevations and estimate soil carbon loss caused by the 2011 Lateral West fire in the Great Dismal Swamp National Wildlife Refuge, VA, USA. We also determine how LiDAR elevation error affects uncertainty in our carbon loss estimate by randomly perturbing the LiDAR point elevations and recalculating elevation change and carbon loss, iterating this process 1000 times. We calculated a total loss using LiDAR of 1.10 Tg C across the 25 km2 burned area. The fire burned an average of 47 cm deep, equivalent to 44 kg C/m2, a value larger than the 1997 Indonesian peat fires (29 kg C/m2). Carbon loss via the First-Order Fire Effects Model (FOFEM) was estimated to be 0.06 Tg C. Propagating the LiDAR elevation error to the carbon loss estimates, we calculated a standard deviation of 0.00009 Tg C, equivalent to 0.008% of total carbon loss. We conclude that LiDAR elevation error is not a significant contributor to uncertainty in soil carbon loss under severe fire conditions with substantial peat consumption. However, uncertainties may be more substantial when soil elevation loss is of a similar or smaller magnitude than the reported LiDAR error.

  18. Vegetation cover change detection and assessment in arid environment using multi-temporal remote sensing images and ecosystem management approach

    Science.gov (United States)

    Abdelrahman Aly, Anwar; Mosa Al-Omran, Abdulrasoul; Shahwan Sallam, Abdulazeam; Al-Wabel, Mohammad Ibrahim; Shayaa Al-Shayaa, Mohammad

    2016-04-01

    Vegetation cover (VC) change detection is essential for a better understanding of the interactions and interrelationships between humans and their ecosystem. Remote sensing (RS) technology is one of the most beneficial tools to study spatial and temporal changes of VC. A case study has been conducted in the agro-ecosystem (AE) of Al-Kharj, in the center of Saudi Arabia. Characteristics and dynamics of total VC changes during a period of 26 years (1987-2013) were investigated. A multi-temporal set of images was processed using Landsat images from Landsat4 TM 1987, Landsat7 ETM+2000, and Landsat8 to investigate the drivers responsible for the total VC pattern and changes, which are linked to both natural and social processes. The analyses of the three satellite images concluded that the surface area of the total VC increased by 107.4 % between 1987 and 2000 and decreased by 27.5 % between years 2000 and 2013. The field study, review of secondary data, and community problem diagnosis using the participatory rural appraisal (PRA) method suggested that the drivers for this change are the deterioration and salinization of both soil and water resources. Ground truth data indicated that the deteriorated soils in the eastern part of the Al-Kharj AE are frequently subjected to sand dune encroachment, while the southwestern part is frequently subjected to soil and groundwater salinization. The groundwater in the western part of the ecosystem is highly saline, with a salinity ≥ 6 dS m-1. The ecosystem management approach applied in this study can be used to alike AE worldwide.

  19. The multi temporal/multi-model approach to predictive uncertainty assessment in real-time flood forecasting

    Science.gov (United States)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Brocca, Luca; Todini, Ezio

    2017-08-01

    This work extends the multi-temporal approach of the Model Conditional Processor (MCP-MT) to the multi-model case and to the four Truncated Normal Distributions (TNDs) approach, demonstrating the improvement on the single-temporal one. The study is framed in the context of probabilistic Bayesian decision-making that is appropriate to take rational decisions on uncertain future outcomes. As opposed to the direct use of deterministic forecasts, the probabilistic forecast identifies a predictive probability density function that represents a fundamental knowledge on future occurrences. The added value of MCP-MT is the identification of the probability that a critical situation will happen within the forecast lead-time and when, more likely, it will occur. MCP-MT is thoroughly tested for both single-model and multi-model configurations at a gauged site on the Tiber River, central Italy. The stages forecasted by two operative deterministic models, STAFOM-RCM and MISDc, are considered for the study. The dataset used for the analysis consists of hourly data from 34 flood events selected on a time series of six years. MCP-MT improves over the original models' forecasts: the peak overestimation and the rising limb delayed forecast, characterizing MISDc and STAFOM-RCM respectively, are significantly mitigated, with a reduced mean error on peak stage from 45 to 5 cm and an increased coefficient of persistence from 0.53 up to 0.75. The results show that MCP-MT outperforms the single-temporal approach and is potentially useful for supporting decision-making because the exceedance probability of hydrometric thresholds within a forecast horizon and the most probable flooding time can be estimated.

  20. Multi-temporal Soil Erosion Modelling over the Mt Kenya Region with Multi-Sensor Earth Observation Data

    Science.gov (United States)

    Symeonakis, Elias; Higginbottom, Thomas

    2015-04-01

    Accelerated soil erosion is the principal cause of soil degradation across the world. In Africa, it is seen as a serious problem creating negative impacts on agricultural production, infrastructure and water quality. Regarding the Mt Kenya region, specifically, soil erosion is a serious threat mainly due to unplanned and unsustainable practices linked to tourism, agriculture and rapid population growth. The soil types roughly correspond with different altitudinal zones and are generally very fertile due to their volcanic origin. Some of them have been created by eroding glaciers while others are due to millions of years of fluvial erosion. The soils on the mountain are easily eroded once exposed: when vegetation is removed, the soil quickly erodes down to bedrock by either animals or humans, as tourists erode paths and local people clear large swaths of forested land for agriculture, mostly illegally. It is imperative, therefore, that a soil erosion monitoring system for the Mt Kenya region is in place in order to understand the magnitude of, and be able to respond to, the increasing number of demands on this renewable resource. In this paper, we employ a simple regional-scale soil erosion modelling framework based on the Thornes model and suggest an operational methodology for quantifying and monitoring water runoff and soil erosion using multi-sensor and multi-temporal remote sensing data in a GIS framework. We compare the estimates of this study with general data on the severity of soil erosion over Kenya and with measured rates of soil loss at different locations over the area of study. The results show that the measured and estimated rates of erosion are generally similar and within the same order of magnitude. They also show that, over the last years, erosion rates are increasing in large parts of the region at an alarming rate, and that mitigation measures are needed to reverse the negative effects of uncontrolled socio-economic practices.

  1. Multi-Temporal Interferometry to Investigate Landslide Dynamics in a Tropical Urban Environment: Focus on Bukavu (DR Congo)

    Science.gov (United States)

    Monsieurs, E.; Dille, A.; Nobile, A.; d'Oreye, N.; Kervyn, F.; Dewitte, O.

    2017-12-01

    Landslides can lead to high impacts in less developed countries, particularly in some urban tropical environments where a combination of intense rainfall, active tectonics, steep topography and high population density can be found. However, the processes controlling landslides initiation and their evolution through time remains poorly understood. Here we show the relevance of the use of multi-temporal differential SAR interferometry (DInSAR) to characterize ground deformations associated to landslides in the rapidly expanding city of Bukavu (DR Congo). A series of 70 COSMO-SkyMed SAR images acquired between March 2015 and April 2016 with a mean revisiting time of 8 days were used to produce displacement rate maps and ground deformation time series using the Small Baseline Subset approach. Results show that various landslide processes of different ages, mechanisms and state of activity can be identified across Bukavu city. InSAR ground deformation maps reveal for instance the complexity of a large (1.5 km²) active slide affecting a densely inhabited slum neighbourhood and characterized by the presence of sectors moving at different rates (ranging from 10 mm/yr up to 75 mm/yr in LOS direction). The evaluation of the ground deformations captured by DInSAR through a two-step validation procedure combining Differential GPS measurements and field observations attested the reliability of the measurements as well as the capability of the technique to grasp the deformation pattern affecting this complex tropical-urban environment. However, longer time series will be needed to infer landside response to climate, seismic and anthropogenic activities.

  2. The rapid moving Capriglio earth flow (Parma Province, North Italy): multi-temporal mapping and GB-InSAR monitoring

    Science.gov (United States)

    Bardi, Federica; Raspini, Federico; Frodella, William; Lombardi, Luca; Nocentini, Massimiliano; Gigli, Giovanni; Morelli, Stefano; Corsini, Alessandro; Casagli, Nicola

    2017-04-01

    This research presents the main findings of the multi-temporal mapping and of the long-term, real-time monitoring of the Capriglio landslide in the Emilian Apennines (Northern Italy). The landslide, triggered by prolonged rainfall and rapid snowmelt, activated of April 6th 2013. It is constituted by two main adjacent enlarging bodies with a roto-translational kinematics. They activated in sequence and subsequently joined into a large fast moving earth flow, channelizing downstream the Bardea Creek, for a total length of about 3600 meters. The landslide completely destroyed a 450 m sector of the provincial roadway S.P. 101, and its retrogression tendency put at high risk the Capriglio and Pianestolla villages, located in the upper watershed area of the Bardea River. Furthermore, the advancing toe seriously threatened the Antria bridge, representing the "Massese" provincial roadway S.P. 665R transect over the Bardea Creek, the only strategic roadway left able to connect the above-mentioned villages. With the final aim of supporting local authorities in the hazard assessment and risk management during the emergency phase, on May 5th 2013 aerial optical surveys were conducted to accurately map the landslide extension and evolution. Moreover, a GB-InSAR monitoring campaign was started in order to assess displacements of the whole landslide area. The versatility and flexibility of the GB-InSAR sensors allowed acquiring data with two different configurations, designed and set up to continuously retrieve information on the landslide movements rates (both in its upper slow-moving sectors and in its fast-moving toe). The first acquisition mode revealed that the Capriglio and Pianestolla villages were affected by minor displacements (order of magnitude of few millimetres per month). The second acquisition mode allowed to acquire data every 28'', reaching very high temporal resolution values by applying GB-InSAR technique (Monserrat et al., 2014; Caduff et al., 2015).

  3. Analysis of elevation changes detected from multi-temporal LiDAR surveys in forested landslide terrain in western Oregon

    Science.gov (United States)

    Burns, W.J.; Coe, J.A.; Kaya, B.S.; Ma, Liwang

    2010-01-01

    We examined elevation changes detected from two successive sets of Light Detection and Ranging (LiDAR) data in the northern Coast Range of Oregon. The first set of LiDAR data was acquired during leafon conditions and the second set during leaf-off conditions. We were able to successfully identify and map active landslides using a differential digital elevation model (DEM) created from the two LiDAR data sets, but this required the use of thresholds (0.50 and 0.75 m) to remove noise from the differential elevation data, visual pattern recognition of landslideinduced elevation changes, and supplemental QuickBird satellite imagery. After mapping, we field-verified 88 percent of the landslides that we had mapped with high confidence, but we could not detect active landslides with elevation changes of less than 0.50 m. Volumetric calculations showed that a total of about 18,100 m3 of material was missing from landslide areas, probably as a result of systematic negative elevation errors in the differential DEM and as a result of removal of material by erosion and transport. We also examined the accuracies of 285 leaf-off LiDAR elevations at four landslide sites using Global Positioning System and total station surveys. A comparison of LiDAR and survey data indicated an overall root mean square error of 0.50 m, a maximum error of 2.21 m, and a systematic error of 0.09 m. LiDAR ground-point densities were lowest in areas with young conifer forests and deciduous vegetation, which resulted in extensive interpolations of elevations in the leaf-on, bare-earth DEM. For optimal use of multi-temporal LiDAR data in forested areas, we recommend that all data sets be flown during leaf-off seasons.

  4. Contribution of multi-temporal remote sensing images to characterize landslide slip surface ‒ Application to the La Clapière landslide (France

    Directory of Open Access Journals (Sweden)

    B. Casson

    2005-01-01

    Full Text Available Landslide activity is partly controlled by the geometry of the slip surface. This activity is traduced at the surface by displacements and topographic variations. Consequently, multi-temporal remote sensing images can be used in order to characterize the geometry of landslide slip surface and its spatial and temporal evolution. Differential Digital Elevation Models (DEMs are obtained by subtracting two DEMs of different years. A method of multi-temporal images correlation allows to generate displacement maps that can be interpreted in terms of velocity and direction of movements. These data are then used to characterize qualitatively the geometry of the slip surface of the la Clapière landslide (French Southern Alps. Distribution of displacement vectors and of topographic variations are in accordance with a curved slip surface, characterizing a preferential rotational behaviour of this landslide. On the other hand, a spatial and temporal evolution of the geometry of the slip surface is pointed out. Indeed, a propagation of the slip surface under the Iglière bar, in the W part of the landslide, is suspected and can be linked to the acceleration of the landslide in 1987. This study shows the high potential of multi-temporal remote sensing images for slip surface characterization. Although this method could not replace in situ investigations, it can really help to well distribute geophysical profiles or boreholes on unstable areas.

  5. Application of Deep Learning of Multi-Temporal SENTINEL-1 Images for the Classification of Coastal Vegetation Zone of the Danube Delta

    Science.gov (United States)

    Niculescu, S.; Ienco, D.; Hanganu, J.

    2018-04-01

    Land cover is a fundamental variable for regional planning, as well as for the study and understanding of the environment. This work propose a multi-temporal approach relying on a fusion of radar multi-sensor data and information collected by the latest sensor (Sentinel-1) with a view to obtaining better results than traditional image processing techniques. The Danube Delta is the site for this work. The spatial approach relies on new spatial analysis technologies and methodologies: Deep Learning of multi-temporal Sentinel-1. We propose a deep learning network for image classification which exploits the multi-temporal characteristic of Sentinel-1 data. The model we employ is a Gated Recurrent Unit (GRU) Network, a recurrent neural network that explicitly takes into account the time dimension via a gated mechanism to perform the final prediction. The main quality of the GRU network is its ability to consider only the important part of the information coming from the temporal data discarding the irrelevant information via a forgetting mechanism. We propose to use such network structure to classify a series of images Sentinel-1 (20 Sentinel-1 images acquired between 9.10.2014 and 01.04.2016). The results are compared with results of the classification of Random Forest.

  6. Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov random fields and multi-temporal TerraSAR-X data

    Science.gov (United States)

    Hagensieker, Ron; Roscher, Ribana; Rosentreter, Johannes; Jakimow, Benjamin; Waske, Björn

    2017-12-01

    Remote sensing satellite data offer the unique possibility to map land use land cover transformations by providing spatially explicit information. However, detection of short-term processes and land use patterns of high spatial-temporal variability is a challenging task. We present a novel framework using multi-temporal TerraSAR-X data and machine learning techniques, namely discriminative Markov random fields with spatio-temporal priors, and import vector machines, in order to advance the mapping of land cover characterized by short-term changes. Our study region covers a current deforestation frontier in the Brazilian state Pará with land cover dominated by primary forests, different types of pasture land and secondary vegetation, and land use dominated by short-term processes such as slash-and-burn activities. The data set comprises multi-temporal TerraSAR-X imagery acquired over the course of the 2014 dry season, as well as optical data (RapidEye, Landsat) for reference. Results show that land use land cover is reliably mapped, resulting in spatially adjusted overall accuracies of up to 79% in a five class setting, yet limitations for the differentiation of different pasture types remain. The proposed method is applicable on multi-temporal data sets, and constitutes a feasible approach to map land use land cover in regions that are affected by high-frequent temporal changes.

  7. Mapping Post-Fire Vegetation Recovery at Different Lithologies of Taygetos mt (greece) with Multi-Temporal Remote Sensing Data

    Science.gov (United States)

    Vassilakis, Emmanuel; Mallinis, George; Christopoulou, Anastasia; Farangitakis, Georgios-Pavlos; Papanikolaou, Ioannis; Arianoutsou, Margarita

    2017-04-01

    Mt Taygetos (2407m), located at southern Peloponnese (Greece) suffered a large fire during the summer of 2007. The fire burned approximately 45% of the area covered by the endemic Greek fir (Abies cephalonica) and Black Pine (Pinus nigra) forest ecosystems. The aim of the current study is to examine the potential differences on post-fire vegetation recovery imposed by the lithology as well as the geomorphology of the given area over sites of the same climatic and landscape conditions (elevation, aspect, slope etc.). The main lithologies consist of carbonate, permeable, not easily erodible formations (limestones and marbles) and clastic, impermeable (schists, slate and flysch) erodible ones. A time-series of high spatial resolution satellite images were interpreted, analyzed and compared in order to detect changes in vegetation coverage which could prioritize areas of interest for fieldwork campaigns. The remote sensing datasets were acquired before (Ikonos-2), a few months after (Quickbird-2) and some years after (Worldview-3) the 2007 fire. High resolution Digital Elevation Model was used for the ortho-rectification and co-registration of the remote sensing data, but also for the extraction of the mountainous landscape characteristics. The multi-temporal image dataset was analyzed through GEographic-Object Based Image Analysis (GEOBIA). Objects corresponding to different vegetation types through time were identified through spectral and textural features. The classification results were combined with basic layers such as lithological outcrops, pre-fire vegetation, landscape morphology etc., supplementing a spatial geodatabase used for classifying burnt areas with varying post-fire plant community recovery. We validated the results of the classification during fieldwork and found that at a local scale, where the landscape features are quite similar, the bedrock type proves to be an important factor for vegetation recovery, as it clearly defines the soil generation

  8. Capturing pre-failure signs of slope instability using multi-temporal interferometry and Sentinel-1 data

    Science.gov (United States)

    Wasowski, Janusz; Bovenga, Fabio; Nitti, Davide Oscar; Tijani, Khalid; Morea, Alberto; Nutricato, Raffaele; Chiaradia, Maria Teresa

    2017-04-01

    The shorter repeat cycle (6 days since October 2016) and regularity of acquisitions of Sentinel-1A/B with respect to earlier European Space Agency (ESA) satellites with C-band sensors (ERS1/2, ENVISAT) represent the key advantages for the research-oriented and practical applications of multi-temporal interferometry (MTI). The applicability of the Interferometric Wide Swath acquisition mode of Sentinel-1 (images covering a 250 km swath on the ground) to regional scale slope instability detection through MTI has already been demonstrated, e.g., via studies of landslide-prone areas in Italy. Here we focus on the potential of Sentinel-1 data for local (site-specific), MTI-based monitoring and capturing pre-failure signs of slope instability, by exploiting the Persistent and Distributed Scatterers processing capability of the SPINUA algorithm. In particular, we present an example of a retrospective study of a large (over 2 km long) landslide, which took place in 2016 in an active open-cast coal mine in central Europe. This seemingly sudden failure caused destruction of the mining equipment, blocked the mining operations thereby resulting in significant economic losses. For the study, we exploited over 60 Sentinel-1A/B images acquired since November 2014. The MTI results furnished a valuable overview of the ground instability/stability conditions within and around the active mine, even though considerable spatial gaps in information were encountered due to surface disturbance by mining operations. Significantly, the ground surface displacement time series revealed that the 2016 slope failure was preceded by very slow (generally 1-3 cm/yr) creep-like deformations, already present in 2014. The MTI results also indicated that the slope experienced a phase of accelerated movement several weeks prior to the landslide event. Furthermore, the spatio-temporal analysis of interferometric coherence changes in the unstable area (mapped on Sentinel-2 Bottom Of Atmosphere reflectance

  9. Magnetic Order and Crystal Field Excitations in Er2Ru2O7: A Neutron Scattering Study

    International Nuclear Information System (INIS)

    Ehlers, Georg; Gardner, Jason

    2009-01-01

    The magnetic pyrochlore Er 2 Ru 2 O 7 has been studied with neutron scattering and susceptibility measurements down to a base temperature of 270 mK. For the low temperature phase in which the Er sublattice orders, new magnetic Bragg peaks are reported which can be indexed with integer (hkl) for a face centered cubic cell. Inelastic measurements reveal a wealth of crystal field levels of the Er ion and a copious amount of magnetic scattering below 15 meV. The three lowest groups of crystal field levels are at 6.7, 9.1 and 18.5 meV.

  10. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  11. Adsorption of H atoms on cubic Er2O3 (0 0 1) surface: A DFT study

    International Nuclear Information System (INIS)

    Mao, Wei; Chikada, Takumi; Shimura, Kenichiro; Suzuki, Akihiro; Yamaguchi, Kenji; Terai, Takayuki

    2013-01-01

    First-principles plane wave calculations based on spin-polarized density functional theory (DFT) and generalized gradient approximation (GGA) have been used to study the adsorption of H atoms on cubic Er 2 O 3 (0 0 1) surface. We identify stable adsorption positions and find that H preferentially adsorbs on top of fourfold-hollow sites and transfers electrons to the surface, resulting in the formations of covalent bonds to the nearest neighboring four oxygen atoms. In the most energetically favorable adsorption sites, It was found that H bonds with O atoms at the cubic Er 2 O 3 (0 0 1) surface with an adsorption energy of −295.68 kJ mol −1 at coverage 1/8 ML, and the adsorption energy is inclined to decrease with the increase of H coverage (>1/4 ML). In addition, our calculations indicate that the dissociative H atom configurations have adsorption energies that are at least 152.64 kJ mol −1 greater than the H 2 molecule configurations on the surface. These results discussed in the context of erbium oxide slabs are employed to rationalize some processes regarding to the hydrogen isotope permeation behavior of tritium permeation barrier

  12. Improving the effectiveness of real-time flood forecasting through Predictive Uncertainty estimation: the multi-temporal approach

    Science.gov (United States)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Todini, Ezio

    2015-04-01

    The negative effects of severe flood events are usually contrasted through structural measures that, however, do not fully eliminate flood risk. Non-structural measures, such as real-time flood forecasting and warning, are also required. Accurate stage/discharge future predictions with appropriate forecast lead-time are sought by decision-makers for implementing strategies to mitigate the adverse effects of floods. Traditionally, flood forecasting has been approached by using rainfall-runoff and/or flood routing modelling. Indeed, both types of forecasts, cannot be considered perfectly representing future outcomes because of lacking of a complete knowledge of involved processes (Todini, 2004). Nonetheless, although aware that model forecasts are not perfectly representing future outcomes, decision makers are de facto implicitly assuming the forecast of water level/discharge/volume, etc. as "deterministic" and coinciding with what is going to occur. Recently the concept of Predictive Uncertainty (PU) was introduced in hydrology (Krzysztofowicz, 1999), and several uncertainty processors were developed (Todini, 2008). PU is defined as the probability of occurrence of the future realization of a predictand (water level/discharge/volume) conditional on: i) prior observations and knowledge, ii) the available information obtained on the future value, typically provided by one or more forecast models. Unfortunately, PU has been frequently interpreted as a measure of lack of accuracy rather than the appropriate tool allowing to take the most appropriate decisions, given a model or several models' forecasts. With the aim to shed light on the benefits for appropriately using PU, a multi-temporal approach based on the MCP approach (Todini, 2008; Coccia and Todini, 2011) is here applied to stage forecasts at sites along the Upper Tiber River. Specifically, the STAge Forecasting-Rating Curve Model Muskingum-based (STAFOM-RCM) (Barbetta et al., 2014) along with the Rating

  13. Studies on calibration and validation of data provided by the Global Ozone Monitoring Experiment GOME on ERS-2 (CAVEAT). Final report; Studie zur Kalibrierung und Validation von Daten des Global Ozone Monitoring Experiments GOME auf ERS-2 (CAVEAT). Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, J.P.; Kuenzi, K.; Ladstaetter-Weissenmayer, A.; Langer, J. [Bremen Univ. (Germany). Inst. fuer Umweltphysik; Neuber, R.; Eisinger, M. [Alfred-Wegener-Institut fuer Polar- und Meeresforschung, Potsdam (Germany)

    2000-04-01

    The Global Ozone Monitoring Experiment (GOME) was launched on 21 April 1995 as one of six scientific instruments on board the second European remote sensing satellite (ERS-2) of the ESA. The investigations presented here aimed at assessing and improving the accuracy of the GOME measurements of sun-standardized and absolute radiation density and the derived data products. For this purpose, the GOME data were compared with measurements pf terrestrial, airborne and satellite-borne systems. For scientific reasons, the measurements will focus on the medium and high latitudes of both hemispheres, although equatorial regions were investigated as well. In the first stage, operational data products of GOME were validated, i.e. radiation measurements (spectra, level1 product) and trace gas column densities (level2 product). [German] Am 21. April 1995 wurde das Global Ozone Monitoring Experiment (GOME) als eines von insgesamt sechs wissenschaftlichen Instrumenten an Bord des zweiten europaeischen Fernerkundungssatelliten (ERS-2) der ESA ins All gebracht. Das Ziel dieses Vorhabens ist es, die Genauigkeit der von GOME durchgefuehrten Messungen von sonnennormierter und absoluter Strahlungsdichte sowie der aus ihnen abgeleiteten Datenprodukte zu bewerten und zu verbessern. Dazu sollten die GOME-Daten mit Messungen von boden-, flugzeug- und satellitengestuetzten Systemen verglichen werden. Aus wissenschaftlichen Gruenden wird der Schwerpunkt auf Messungen bei mittleren und hohen Breitengraden in beiden Hemisphaeren liegen. Jedoch wurden im Laufe des Projektzeitraumes auch Regionen in Aequatornaehe untersucht. Im ersten Schritt sollen operationelle Datenprodukte von GOME validiert werden. Dieses sind Strahlungsmessungen (Spektren, Level1-Produkt) und Spurengas-Saeulendichten (Level2-Produkt). (orig.)

  14. Production, characterization and application of Gd2O3 and Er2O3 nanoparticles as radiosensitizers in radiotherapy beams

    International Nuclear Information System (INIS)

    Corrêa, Eduardo de Lima

    2017-01-01

    In this study Gd 2 O 3 and Er 2 O 3 nanoparticles were produced for application as radiosensitizers in radiotherapy beams. They were synthesized at the Hyperfine Interactions Laboratory, IPEN, using thermal decomposition method and characterized by X-ray diffraction, to verify crystalline structure, transmission electron microscopy, to obtain information about shape, size and size distribution, neutron activation analysis, whereby it was possible to determine samples purity and gadolinium and erbium concentration. Magnetization and perturbed γ-γ angular correlation (PAC) measurements were performed in order to study particles magnetic behavior and quadrupole interactions, respectively. Characterization results showed a bixbyite structure, 5 nm diameter post-synthesis particles with narrow size distribution. Rare-earth mass determination in each sample was important to perform normalization in magnetic susceptibility measurements, making possible the view of a high magnetization under 30 K for post-synthesis samples, what was not observed in larger particles, together with an effective magnetic moment enhancement for nanoparticles, not seen in bulk samples, and a change in the antiferromagnetic ordering temperature for Er 2 O 3 . PAC spectroscopy results show possible surface effects. The absence of a well-defined frequency in 5 nm samples indicates the amount of 111 In( 111 Cd) at particle surface is bigger than in the core, resulting in a non-evident hyperfine interaction between the probe nuclei and the host. The X-ray diffraction and PAC spectroscopy joint was vital to understand the particles structural damage caused by 60 Co irradiation. About radiosensitizer measurements a dose enhancement factor (DEF) of up to 1,67 and 1,09 for Gd 2 O 3 nanoparticles under 60 Co and 6MV irradiation, respectively, were observed. Under same conditions DEF values of up to 1,37 and 1,06 were found for Er 2 O 3 samples. Results reached in this study provide not only important

  15. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane

    CERN Document Server

    Goldhagen, P E; Kniss, T; Reginatto, M; Singleterry, R C; Van Steveninck, W; Wilson, J W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (t...

  16. Large-Scale, Multi-Temporal Remote Sensing of Palaeo-River Networks: A Case Study from Northwest India and its Implications for the Indus Civilisation

    Directory of Open Access Journals (Sweden)

    Hector A. Orengo

    2017-07-01

    Full Text Available Remote sensing has considerable potential to contribute to the identification and reconstruction of lost hydrological systems and networks. Remote sensing-based reconstructions of palaeo-river networks have commonly employed single or limited time-span imagery, which limits their capacity to identify features in complex and varied landscape contexts. This paper presents a seasonal multi-temporal approach to the detection of palaeo-rivers over large areas based on long-term vegetation dynamics and spectral decomposition techniques. Twenty-eight years of Landsat 5 data, a total of 1711 multi-spectral images, have been bulk processed using Google Earth Engine© Code Editor and cloud computing infrastructure. The use of multi-temporal data has allowed us to overcome seasonal cultivation patterns and long-term visibility issues related to recent crop selection, extensive irrigation and land-use patterns. The application of this approach on the Sutlej-Yamuna interfluve (northwest India, a core area for the Bronze Age Indus Civilisation, has enabled the reconstruction of an unsuspectedly complex palaeo-river network comprising more than 8000 km of palaeo-channels. It has also enabled the definition of the morphology of these relict courses, which provides insights into the environmental conditions in which they operated. These new data will contribute to a better understanding of the settlement distribution and environmental settings in which this, often considered riverine, civilisation operated.

  17. Multi-temporal image co-registration improvement for a better representation and quantification of risky situations: the Belvedere Glacier case study

    Directory of Open Access Journals (Sweden)

    Enrico Borgogno Mondino

    2015-07-01

    Full Text Available Scientific applications dealing with natural hazards make wide use of digital geographical data and change detection techniques. If the attention is focused on changes affecting surfaces’ geometry, multi-temporal aerial photogrammetry can represent an effective tool. In this case, the degree of spatial coherence between measurements at different times is an important issue to deal with. Reliability and accuracy of measured differences strictly depend on the strategy used during image processing. In this paper, a simultaneous multi-temporal aerial image bundle adjustment approach (MTBA is compared against two more traditional strategies for aerial stereo-pair adjustment to map surface changes of the Belvedere Glacier (Italian north-western Alps in the period 2001–2003. Two aerial stereo pairs (of 2001 and 2003 were used to generate the correspondent digital surface models. These were then compared to map glacier shape differences and calculate ablation and accumulation volumes. Results demonstrate that the proposed MTBA approach improves and maximizes accuracy and reliability of measured differences also when available reference data are low quality ones. Final uncertainty for both direct (surface height differences and derived (volume changes measurements were quantified and mapped.

  18. Shoreline change after 12 years of tsunami in Banda Aceh, Indonesia: a multi-resolution, multi-temporal satellite data and GIS approach

    Science.gov (United States)

    Sugianto, S.; Heriansyah; Darusman; Rusdi, M.; Karim, A.

    2018-04-01

    The Indian Ocean Tsunami event on the 26 December 2004 has caused severe damage of some shorelines in Banda Aceh City, Indonesia. Tracing back the impact can be seen using remote sensing data combined with GIS. The approach is incorporated with image processing to analyze the extent of shoreline changes with multi-temporal data after 12 years of tsunami. This study demonstrates multi-resolution and multi-temporal satellite images of QuickBird and IKONOS to demarcate the shoreline of Banda Aceh shoreline from before and after tsunami. The research has demonstrated a significant change to the shoreline in the form of abrasion between 2004 and 2005 from few meters to hundred meters’ change. The change between 2004 and 2011 has not returned to the previous stage of shoreline before the tsunami, considered post tsunami impact. The abrasion occurs between 18.3 to 194.93 meters. Further, the change in 2009-2011 shows slowly change of shoreline of Banda Aceh, considered without impact of tsunami e.g. abrasion caused by ocean waves that erode the coast and on specific areas accretion occurs caused by sediment carried by the river flow into the sea near the shoreline of the study area.

  19. Robust Automated Image Co-Registration of Optical Multi-Sensor Time Series Data: Database Generation for Multi-Temporal Landslide Detection

    Directory of Open Access Journals (Sweden)

    Robert Behling

    2014-03-01

    Full Text Available Reliable multi-temporal landslide detection over longer periods of time requires multi-sensor time series data characterized by high internal geometric stability, as well as high relative and absolute accuracy. For this purpose, a new methodology for fully automated co-registration has been developed allowing efficient and robust spatial alignment of standard orthorectified data products originating from a multitude of optical satellite remote sensing data of varying spatial resolution. Correlation-based co-registration uses world-wide available terrain corrected Landsat Level 1T time series data as the spatial reference, ensuring global applicability. The developed approach has been applied to a multi-sensor time series of 592 remote sensing datasets covering an approximately 12,000 km2 area in Southern Kyrgyzstan (Central Asia strongly affected by landslides. The database contains images acquired during the last 26 years by Landsat (ETM, ASTER, SPOT and RapidEye sensors. Analysis of the spatial shifts obtained from co-registration has revealed sensor-specific alignments ranging between 5 m and more than 400 m. Overall accuracy assessment of these alignments has resulted in a high relative image-to-image accuracy of 17 m (RMSE and a high absolute accuracy of 23 m (RMSE for the whole co-registered database, making it suitable for multi-temporal landslide detection at a regional scale in Southern Kyrgyzstan.

  20. A 3D convolutional neural network approach to land cover classification using LiDAR and multi-temporal Landsat imagery

    Science.gov (United States)

    Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.

    2017-12-01

    Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.

  1. Magnetic order, magnetic correlations, and spin dynamics in the pyrochlore antiferromagnet Er2Ti2O7

    Science.gov (United States)

    Dalmas de Réotier, P.; Yaouanc, A.; Chapuis, Y.; Curnoe, S. H.; Grenier, B.; Ressouche, E.; Marin, C.; Lago, J.; Baines, C.; Giblin, S. R.

    2012-09-01

    Er2Ti2O7 is believed to be a realization of an XY antiferromagnet on a frustrated lattice of corner-sharing regular tetrahedra. It is presented as an example of the order-by-disorder mechanism in which fluctuations lift the degeneracy of the ground state, leading to an ordered state. Here we report detailed measurements of the low-temperature magnetic properties of Er2Ti2O7, which displays a second-order phase transition at TN≃1.2 K with coexisting short- and long-range orders. Magnetic susceptibility studies show that there is no spin-glass-like irreversible effect. Heat capacity measurements reveal that the paramagnetic critical exponent is typical of a 3-dimensional XY magnet while the low-temperature specific heat sets an upper limit on the possible spin-gap value and provides an estimate for the spin-wave velocity. Muon spin relaxation measurements show the presence of spin dynamics in the nanosecond time scale down to 21 mK. This time range is intermediate between the shorter time characterizing the spin dynamics in Tb2Sn2O7, which also displays long- and short-range magnetic order, and the time scale typical of conventional magnets. Hence the ground state is characterized by exotic spin dynamics. We determine the parameters of a symmetry-dictated Hamiltonian restricted to the spins in a tetrahedron, by fitting the paramagnetic diffuse neutron scattering intensity for two reciprocal lattice planes. These data are recorded in a temperature region where the assumption that the correlations are limited to nearest neighbors is fair.

  2. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  3. Magnetovolume effects and magnetic transitions in the invar systems Fe65Ni35 and Er2Fe14B at high hydrostatic pressure

    International Nuclear Information System (INIS)

    Sidorov, V.A.; Khvostantsev, L.G.

    1994-01-01

    The relative volume change and the initial ac-susceptibility have been measured for Fe 65 Ni 35 and Er 2 Fe 14 B under hydrostatic pressure up to 8.5 GPa at room temperature. The bulk modulus of Fe 65 Ni 35 begins to rise and the susceptibility begins to drop at 3.5-4 GPa, indicating the continuous disappearance of ferromagnetism at high pressure. The transition from ferromagnetic to paramagnetic state in Er 2 Fe 14 B at 5.7 GPa is more abrupt and the giant (order of magnitude) softening of the bulk modulus is observed before this transition. The spin reorientation (SR) transition in Er 2 Fe 14 B shifts under pressure to lower temperatures (dT SR /dP = -19 K/GPa). (orig.)

  4. Synthetic Rutile

    International Nuclear Information System (INIS)

    Burastero, J.

    1975-01-01

    This work is about the laboratory scale investigation of the conditions in the rutile synthetic production from one me nita in Aguas Dulces reservoir. The iron mineral is chlorinated and volatilized selectively leaving a residue enriched in titanium dioxide which can be used as a substitute of rutile mineral

  5. Completion Report for Well ER-2-2 Corrective Action Unit 97: Yucca Flat/Climax Mine

    International Nuclear Information System (INIS)

    Wurtz, Jeffrey; Rehfeldt, Ken

    2017-01-01

    Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was not completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted - principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at

  6. Completion Report for Well ER-2-2 Corrective Action Unit 97: Yucca Flat/Climax Mine

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, Jeffrey [Navarro, Las Vegas, NV (United States); Rehfeldt, Ken [Navarro, Las Vegas, NV (United States)

    2017-01-01

    Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was not completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted—principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at

  7. Er2S[SiO4]: An erbium sulfide ortho-oxosilicate with unusual sulfide anion coordination

    International Nuclear Information System (INIS)

    Hartenbach, Ingo; Lauxmann, Petra; Schleid, Thomas

    2004-01-01

    During the reaction of cadmium sulfide with erbium and sulfur in evacuated silica ampoules pink lath-shaped crystals of Er 2 S[SiO 4 ] occur as by-product which were characterized by X-ray single crystal structure analysis. The title compound crystallizes orthorhombically in the space group Cmce (a = 1070.02(8), b = 1235.48(9), c = 683.64(6) pm) with eight formula units per unit cell. Besides isolated ortho-oxosilicate units [SiO 4 ] 4- , the crystal structure contains two crystallographically independent Er 3+ cations which are both eightfold coordinated by six oxygen and two sulfur atoms. The sulfide anions are surrounded by four erbium cations each in the shape of very distorted tetrahedra. These excentric [SEr 4 ] 10+ tetrahedra build up layers according to 2 ∞ [SEr 4/2 ] 4+ by vertex- and edge-connection. They are piled parallel to (010) and separated by the isolated ortho-oxosilicate tetrahedra. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [de

  8. Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and Etymotic Research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz

    DEFF Research Database (Denmark)

    Han, Loc A; Poulsen, Torben

    1998-01-01

    Equivalent Threshold Sound Pressure Levels (ETSPLs) have been determined for the Sennheiser HDA 200 earphone and the Etymotic Research ER-2insert earphone. Thirty-one young normal-hearing test subjects participated and the thresholds were determined for all recommended frequencies in thefrequency...

  9. ApoER2 Controls Not Only Neuronal Migration in the Intermediate Zone But Also Termination of Migration in the Developing Cerebral Cortex.

    Science.gov (United States)

    Hirota, Yuki; Kubo, Ken-Ichiro; Fujino, Takahiro; Yamamoto, Tokuo T; Nakajima, Kazunori

    2018-01-01

    Neuronal migration contributes to the establishment of mammalian brain. The extracellular protein Reelin sends signals to various downstream molecules by binding to its receptors, the apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor and exerts essential roles in the neuronal migration and formation of the layered neocortex. However, the cellular and molecular functions of Reelin signaling in the cortical development are not yet fully understood. Here, to gain insight into the role of Reelin signaling during cortical development, we examined the migratory behavior of Apoer2-deficient neurons in the developing brain. Stage-specific labeling of newborn neurons revealed that the neurons ectopically invaded the marginal zone (MZ) and that neuronal migration of both early- and late-born neurons was disrupted in the intermediate zone (IZ) in the Apoer2 KO mice. Rescue experiments showed that ApoER2 functions both in cell-autonomous and noncell-autonomous manners, that Rap1, integrin, and Akt are involved in the termination of migration beneath the MZ, and that Akt also controls neuronal migration in the IZ downstream of ApoER2. These data indicate that ApoER2 controls multiple processes in neuronal migration, including the early stage of radial migration and termination of migration beneath the MZ in the developing neocortex. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. X-ray circular magnetic dichroism as a probe of spin reorientation transitions in Nd2Fe14B and Er2Fe14B systems

    International Nuclear Information System (INIS)

    Chaboy, J.; Marcelli, A.; Garcia, L.M.; Bartolome, J.; Kuz'min, M.D.; Maruyama, H.; Kobayashi, K.; Kawata, H.; Iwazumi, T.

    1995-01-01

    We present the first experimental observation of spin reorientation phase transitions (SRT) with the X-Ray circular magnetic dichroism (XCMD) technique. Both the first-order SRT in Er 2 Fe 14 B and the second-order one in Nd 2 Fe 14 B have been clearly detected, demonstrating the feasibility of this technique for studying SRTs. ((orig.))

  11. Earthquake Building Damage Mapping Based on Feature Analyzing Method from Synthetic Aperture Radar Data

    Science.gov (United States)

    An, L.; Zhang, J.; Gong, L.

    2018-04-01

    Playing an important role in gathering information of social infrastructure damage, Synthetic Aperture Radar (SAR) remote sensing is a useful tool for monitoring earthquake disasters. With the wide application of this technique, a standard method, comparing post-seismic to pre-seismic data, become common. However, multi-temporal SAR processes, are not always achievable. To develop a post-seismic data only method for building damage detection, is of great importance. In this paper, the authors are now initiating experimental investigation to establish an object-based feature analysing classification method for building damage recognition.

  12. Completion Report for Well ER-2-2 Corrective Action Unit 97: Yucca Flat/Climax Mine, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, Jeffrey [Navarro, Las Vegas, NV (United States)

    2017-05-01

    Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was not completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted—principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at

  13. Physical and optical properties of calcium sulfate ultra-phosphate glass-doped Er2O3

    Science.gov (United States)

    Aliyu, Aliyu Mohammed; Hussin, R.; Deraman, Karim; Ahmad, N. E.; Danmadami, Amina M.; Yamusa, Y. A.

    2018-03-01

    The influence of erbium on physical and optical properties of calcium sulfate ultra-phosphate glass was investigated using conventional melt quench process. Selected samples of composition 20CaSO4 (80 - x) P2O5- xEr2O3 with 0.1 ≤x ≤ 0.9 mol.% were prepared and assessed. X-ray diffraction (XRD) techniques were used to confirm the amorphous nature of the said samples. The structural units of phosphate-based glass were assessed from Raman spectra as ultra-(Q3), meta-(Q2), pyro-(Q1) and orthophosphate (Q0) units. Depolymerization process of the glasses was testified for higher calcium oxide content and UV-visible for optical measurement. Thermal analysis have been investigated by means of thermogravimetric analysis. The results show the decomposition of materials in the temperature range of 25∘C-1000∘C. Er3+ absorption spectra were measured in the range of 400-1800nm. PL measurement was carried out in order to obtain the excitation and emission spectra of the samples. The emission spectra excited at 779nm comprises of 518nm, 550nm and 649nm of transition 4F9/2, 4S3/2 and 2H11/2 excited states to 4I15/2 ground state. In physical properties, the density calculated using Archimedes method is inversely proportional to molar volume with increase in Er3+ ions. Optical bandgap (Eg) were determined using Tauc’s plots for direct transitions where Eg (direct) decreases with increase in erbium content. The refractive index increases with decreasing molar volume; this may have a tendency for larger optical bandgap. The result obtained from the glass matrix indicates that erbium oxide-doped calcium sulfate ultra-phosphate may give important information for wider development of functional glasses.

  14. Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE

    Science.gov (United States)

    Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.

    2006-01-01

    Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus

  15. Small-scale gravity waves in ER-2 MMS/MTP wind and temperature measurements during CRYSTAL-FACE

    Directory of Open Access Journals (Sweden)

    L. Wang

    2006-01-01

    Full Text Available Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs at the aircraft's flight level (typically ~20 km altitude. For a given flight segment, the S-transform (a Gaussian wavelet transform was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of ~5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, ~20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.

  16. Natural - synthetic - artificial!

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  17. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  18. ApoER2 expression increases Aβ production while decreasing Amyloid Precursor Protein (APP endocytosis: Possible role in the partitioning of APP into lipid rafts and in the regulation of γ-secretase activity

    Directory of Open Access Journals (Sweden)

    Bu Guojun

    2007-07-01

    Full Text Available Abstract Background The generation of the amyloid-β peptide (Aβ through the proteolytic processing of the amyloid precursor protein (APP is a central event in the pathogenesis of Alzheimer's disease (AD. Recent studies highlight APP endocytosis and localization to lipid rafts as important events favoring amyloidogenic processing. However, the precise mechanisms underlying these events are poorly understood. ApoER2 is a member of the low density lipoprotein receptor (LDL-R family exhibiting slow endocytosis rate and a significant association with lipid rafts. Despite the important neurophysiological roles described for ApoER2, little is known regarding how ApoER2 regulates APP trafficking and processing. Results Here, we demonstrate that ApoER2 physically interacts and co-localizes with APP. Remarkably, we found that ApoER2 increases cell surface APP levels and APP association with lipid rafts. The increase of cell surface APP requires the presence of ApoER2 cytoplasmic domain and is a result of decreased APP internalization rate. Unexpectedly, ApoER2 expression correlated with a significant increase in Aβ production and reduced levels of APP-CTFs. The increased Aβ production was dependent on the integrity of the NPxY endocytosis motif of ApoER2. We also found that expression of ApoER2 increased APP association with lipid rafts and increased γ-secretase activity, both of which might contribute to increased Aβ production. Conclusion These findings show that ApoER2 negatively affects APP internalization. However, ApoER2 expression stimulates Aβ production by shifting the proportion of APP from the non-rafts to the raft membrane domains, thereby promoting β-secretase and γ-secretase mediated amyloidogenic processing and also by incrementing the activity of γ-secretase.

  19. Synthetic Brainbows

    KAUST Repository

    Wan, Y.

    2013-06-01

    Brainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications. In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct cellular structures. These structures are often packed and obscure each other in rendered images making analysis difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like images. In addition, we incorporate ID shuffing and Monte-Carlo sampling into our technique, so that it can be applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves visualizations of volume data with complex structures for biologists.

  20. Synthetic Botany.

    Science.gov (United States)

    Boehm, Christian R; Pollak, Bernardo; Purswani, Nuri; Patron, Nicola; Haseloff, Jim

    2017-07-05

    Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Spatial and multi-temporal analysis of deforestation and quantification of the remnant forests on Porto Rico Island, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    João Batista Campos

    1999-01-01

    Full Text Available The process of land occupation by the state of Paraná practically decimated its forests. Presently, only 7% from a total area of 83.41% is covered by forests. Most of them are now concentrated in the "Serra do Mar" and in the Iguaçu National Park. With regard to forest cover the most critical region is situated in the northwestern of the state with less than 1% of its area covered by forest. This restricted area mainly consists of conservation units and the islands of the high Paraná River floodplain. The present study consists of a spatial and multi-temporal analysis of deforestation and the quantification of the remnant forests on Porto Rico island (22º45'S; 53º15'W, which have their occupation history linked to the colonization process of the region. Historical aerial photographs of this region were used and the relationship of deforestation with the process of colonization and social transformation of the region is discussed.O processo de ocupação das terras do Paraná praticamente dizimou as florestas do Estado, que originalmente possuía 83,41% de sua área total coberta com florestas. Atualmente remanescem aproximadamente 7% da área com florestas, concentradas na Serra do Mar e no Parque Nacional do Iguaçu. Na região noroeste, a situação é mais crítica, com menos de 1% de sua área coberta por florestas, concentradas, principalmente, em unidades de conservação e nas ilhas da planície de inundação do alto rio Paraná. Esta planície é formada por uma ampla calha aluvial, com inúmeros canais, lagoas e ilhas, que têm sua história de ocupação ligadas ao processo de colonização na região. Neste trabalho, é realizada uma análise espacial e multi-temporal dos desflorestamentos e uma quantificação das florestas remanescentes da ilha Porto Rico (22º45'S; 53º15'W, por meio de fotografias aéreas históricas da região e discutidas as relações destes desflorestamentos com os processo de colonização e transforma

  2. Validation of GOME (ERS-2) NO2 vertical column data with ground-based measurements at Issyk-Kul (Kyrgyzstan)

    Science.gov (United States)

    Ionov, D.; Sinyakov, V.; Semenov, V.

    Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic observations of NO2 vertical column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 vertical column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 vertical column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based observations is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 vertical columns were integrated from simultaneous stratospheric profile measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based observations. In particular cases, NO2 vertical profiles retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 vertical columns were found to be systematicaly lower than ground-based data. This work was supported by International Association

  3. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Koji; Sakai, Akiko; Nuimura, Takayuki [Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601 (Japan); Yamaguchi, Satoru [Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Prevention, Nagaoka 940-0821 (Japan); Sharma, Rishi R [Department of Hydrology and Meteorology, Ministry of Environment, Science and Technology, Babar Mahal, Kathmandu (Nepal)

    2009-10-15

    Changes in the area and bathymetry of Imja Glacial Lake and in the elevation of its damming moraine, Khumbu region, Nepal Himalaya are investigated. Previously reported changes in the lake area have been updated by multi-temporal ASTER images, which revealed a decreased expansion rate after 2000. A provisional expansion of the lake observed in 2004, from which some studies concluded an accelerated lake expansion due to global warming, has, from 2005, subsided to the glacier surface. Bathymetric changes for the period 1992-2002 that were first obtained for Himalayan glacial lakes suggest that the melting of debris-covered ice beneath the lake is insignificant in terms of the increase in lake volume, and that the retreat of a glacier in contact with the lake by calving is essential for the lake's expansion. Changes in the height of a damming moraine for the period 2001-2007 suggest a continuous surface lowering near the lake, though the lowering rates are smaller than those for the period 1989-1994.

  4. Predicting Volume and Biomass Change from Multi-Temporal Lidar Sampling and Remeasured Field Inventory Data in Panther Creek Watershed, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Krishna P. Poudel

    2018-01-01

    Full Text Available Using lidar for large-scale forest management can improve operational and management decisions. Using multi-temporal lidar sampling and remeasured field inventory data collected from 78 plots in the Panther Creek Watershed, Oregon, USA, we evaluated the performance of different fixed and mixed models in estimating change in aboveground biomass ( ∆ AGB and cubic volume including top and stump ( ∆ CVTS over a five-year period. Actual values of CVTS and AGB were obtained using newly fitted volume and biomass equations or the equations used by the Pacific Northwest unit of the Forest Inventory and Analysis program. Estimates of change based on fixed and mixed-effect linear models were more accurate than change estimates based on differences in LIDAR-based estimates. This may have been due to the compounding of errors in LIDAR-based estimates over the two time periods. Models used to predict volume and biomass at a given time were, however, more precise than the models used to predict change. Models used to estimate ∆ CVTS were not as accurate as the models employed to estimate ∆ AGB . Final models had cross-validation root mean squared errors as low as 40.90% for ∆ AGB and 54.36% for ∆ CVTS .

  5. A Multi-Temporal Analyses of Land Surface Temperature Using Landsat-8 Data and Open Source Software: The Case Study of Modena, Italy

    Directory of Open Access Journals (Sweden)

    Tommaso Barbieri

    2018-05-01

    Full Text Available The Urban Heat Island (UHI phenomenon, namely urban areas where the atmospheric temperature is significantly higher than in the surrounding rural areas, is currently a very well-known topic both in the scientific community and in public debates. Growing urbanization is one of the anthropic causes of UHI. The UHI phenomenon has a negative impact on the life quality of the local population (thermal discomfort, summer thermal shock, etc., thus investigations and analyses on this topic are really useful and important for correct and sustainable urban planning; this study is included in this context. A multi-temporal analysis was performed in the municipality of Modena (Italy to identify and estimate the Surface Urban Heat Island (SUHI, strictly correlated to the UHI phenomenon from 2014 to 2017. For this purpose, Landsat-8 satellite images were processed with Quantum Geographic Information System (QGIS to obtain the Land Surface Temperature (LST and the Normalized Difference Vegetation Index (NDVI. For every pixel, LST and NDVI values of three regions of interest (ROI, i.e., Countryside, Suburbs, and City Center were extracted and their correlations were investigated. A maximum variation of 6.4 °C in the LST values between City Center and Countryside was highlighted, confirming the presence of the SUHI phenomenon even in a medium-sized municipality like Modena. The implemented procedure demonstrates that satellite data are suitable for SUHI identification and estimation, therefore it could be a useful tool for public administration for urban planning policies.

  6. Pixel Color Clustering of Multi-Temporally Acquired Digital Photographs of a Rice Canopy by Luminosity-Normalization and Pseudo-Red-Green-Blue Color Imaging

    Directory of Open Access Journals (Sweden)

    Ryoichi Doi

    2014-01-01

    Full Text Available Red-green-blue (RGB channels of RGB digital photographs were loaded with luminosity-adjusted R, G, and completely white grayscale images, respectively (RGwhtB method, or R, G, and R + G (RGB yellow grayscale images, respectively (RGrgbyB method, to adjust the brightness of the entire area of multi-temporally acquired color digital photographs of a rice canopy. From the RGwhtB or RGrgbyB pseudocolor image, cyan, magenta, CMYK yellow, black, L*, a*, and b* grayscale images were prepared. Using these grayscale images and R, G, and RGB yellow grayscale images, the luminosity-adjusted pixels of the canopy photographs were statistically clustered. With the RGrgbyB and the RGwhtB methods, seven and five major color clusters were given, respectively. The RGrgbyB method showed clear differences among three rice growth stages, and the vegetative stage was further divided into two substages. The RGwhtB method could not clearly discriminate between the second vegetative and midseason stages. The relative advantages of the RGrgbyB method were attributed to the R, G, B, magenta, yellow, L*, and a* grayscale images that contained richer information to show the colorimetrical differences among objects than those of the RGwhtB method. The comparison of rice canopy colors at different time points was enabled by the pseudocolor imaging method.

  7. Utilization of multi-temporal landsat imagery for analyzing land Use/Cover changes and urban expansion of Nakhon Rachasima City

    Directory of Open Access Journals (Sweden)

    Prach Sangthongwattanakul

    2014-03-01

    Full Text Available One of important causes to climate change is land use/ land cover changes due to their important role in the amount of carbon dioxide in the atmosphere which directly relate to a solution to the problem of global warming. Analysis of land use/ land cover changes is thus very important for developing countries such as Thailand, especially to study the trend of land use/land cover changes that can be used for investigation of theirs driving forces. In addition, during these four decades, land use/cover in Nakhon Ratchasima city, a metropolitan city in Northeastern Thailand, has been rapidly changes because of rapid economical growth together with its location situated in the central of Northeastern Thailand. This study aims to determine land use/cover changes pattern of the Nakhon Ratchasima city. We employed unsupervised classification approach coupled with GIS analyses was employed to generate land use/cover maps for 1972, 2002 and 2013 with four classes; vegetated areas, settlement areas, barelands and water resoures. The results indicate that urban areas have increased based on economic and population growth as well as road network extension and consequently the urban growth affected environmental conditions. In the study, with multi-temporal Landsat data, we successfully used remote sensing techniques together with information technology as a tool for effectively monitoring urban growth.

  8. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery

    International Nuclear Information System (INIS)

    Fujita, Koji; Sakai, Akiko; Nuimura, Takayuki; Yamaguchi, Satoru; Sharma, Rishi R

    2009-01-01

    Changes in the area and bathymetry of Imja Glacial Lake and in the elevation of its damming moraine, Khumbu region, Nepal Himalaya are investigated. Previously reported changes in the lake area have been updated by multi-temporal ASTER images, which revealed a decreased expansion rate after 2000. A provisional expansion of the lake observed in 2004, from which some studies concluded an accelerated lake expansion due to global warming, has, from 2005, subsided to the glacier surface. Bathymetric changes for the period 1992-2002 that were first obtained for Himalayan glacial lakes suggest that the melting of debris-covered ice beneath the lake is insignificant in terms of the increase in lake volume, and that the retreat of a glacier in contact with the lake by calving is essential for the lake's expansion. Changes in the height of a damming moraine for the period 2001-2007 suggest a continuous surface lowering near the lake, though the lowering rates are smaller than those for the period 1989-1994.

  9. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    Science.gov (United States)

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  10. The geomorphological evidences of subsidence in the Nile Delta: Analysis of high resolution topographic DEM and multi-temporal satellite images

    Science.gov (United States)

    El Bastawesy, M.; Cherif, O. H.; Sultan, M.

    2017-12-01

    This paper investigates the relevance of landforms to the subsidence of the Nile Delta using a high resolution topographic digital elevation model (DEM) and sets of multi-temporal Landsat satellite images. 195 topographic map sheets produced in 1946 at 1:25,000 scale were digitized, and the DEM was interpolated. The undertaken processing techniques have distinguished all the natural low-lying closed depressions from the artificial errors induced by the interpolation of the DEM. The local subsidence of these depressions from their surroundings reaches a maximum depth of 2.5 m. The regional subsidence of the Nile Delta has developed inverted topography, where the tracts occupied by the contemporary distributary channels are standing at higher elevations than the areas in between. This inversion could be related to the differences in the hydrological and sedimentological properties of underlying sediments, as the channels are underlain by water-saturated sands while the successions of clay and silt on flood plains are prone to compaction. Furthermore, the analysis of remote sensing and topographic data clearly show significant changes in the land cover and land use, particularly in the northern lagoons and adjacent sabkhas, which are dominated by numerous low subsiding depressions. The areas covered by water logging and ponds are increasing on the expense of agricultural areas, and aquaculture have been practiced instead. The precise estimation of subsidence rates and distribution should be worked out to evaluate probable changes in land cover and land use.

  11. Multi-temporal analysis of forest fire risk driven by environmental and socio-economic change in the Republic of Korea

    Science.gov (United States)

    Kim, S. J.; Lim, C. H.; Kim, G. S.; Lee, W. K.

    2017-12-01

    Analysis of forest fire risk is important in disaster risk reduction (DRR) since it provides a way to manage forest fires. Climate and socio-economic factors are important in the cause of forest fires, and the role of the socio-economic factors in prevention and preparedness of forest fires is increasing. As most of the forest fires in the Republic of Korea are highly related to human activities, both environmental factors and socio-economic factors were considered into the analysis of forest fire risk. In this study, the Maximum Entropy (MaxEnt) model was used to predict the potential geographical distribution and probability of forest fire occurrence spatially and temporally from 1980s to the 2010s in the Republic of Korea by multi-temporal analysis and analyze the relationship between forest fires and the factors. As a result of the risk analysis, there was an overall increasing trend in forest fire risk from the 1980s to the 2000s, and socio-economic factors were highly correlated with the occurrence of forest fires. The study demonstrates that the socio-economic factors considered as human activities can increase the occurrence of forest fires. The result implies that managing human activities are significant to prevent forest fire occurrence. In addition, timely forest fire prevention and control is necessary as drought index such as Standardized Precipitation Index (SPI) also affected forest fires.

  12. Built-up Area Change Analysis in Hanoi Using Support Vector Machine Classification of Landsat Multi-Temporal Image Stacks and Population Data

    Directory of Open Access Journals (Sweden)

    Duong H. Nong

    2015-12-01

    Full Text Available In 1986, the Government of Vietnam implemented free market reforms known as Doi Moi (renovation that provided private ownership of farms and companies, and encouraged deregulation and foreign investment. Since then, the economy of Vietnam has achieved rapid growth in agricultural and industrial production, construction and housing, and exports and foreign investments, each of which have resulted in momentous landscape transformations. One of the most evident changes is urbanization and an accompanying loss of agricultural lands and open spaces. These rapid changes pose enormous challenges for local populations as well as planning authorities. Accurate and timely data on changes in built-up urban environments are essential for supporting sound urban development. In this study, we applied the Support Vector Machine classification (SVM to multi-temporal stacks of Landsat Thematic Mapper (TM and Enhanced Thematic Mapper Plus (ETM+ images from 1993 to 2010 to quantify changes in built-up areas. The SVM classification algorithm produced a highly accurate map of land cover change with an overall accuracy of 95%. The study showed that most urban expansion occurred in the periods 2001–2006 and 2006–2010. The analysis was strengthened by the incorporation of population and other socio-economic data. This study provides state authorities a means to examine correlations between urban growth, spatial expansion, and other socio-economic factors in order to not only assess patterns of urban growth but also become aware of potential environmental, social, and economic problems.

  13. A New Method of Gold Foil Damage Detection in Stone Carving Relics Based on Multi-Temporal 3D LiDAR Point Clouds

    Directory of Open Access Journals (Sweden)

    Miaole Hou

    2016-05-01

    Full Text Available The timely detection of gold foil damage in gold-overlaid stone carvings and the associated maintenance of these relics pose several challenges to both the research and heritage protection communities internationally. This paper presents a new method for detecting gold foil damage by making use of multi-temporal 3D LiDAR point clouds. By analyzing the errors involved in the detection process, a formula is developed for calculation of the damage detection threshold. An improved division method for the linear octree that only allocates memory to the non-blank nodes, is proposed, which improves storage and retrieval efficiency for the point clouds. Meanwhile, the damage-occurrence regions are determined according to Hausdorff distances. Using a triangular mesh, damaged regions can be identified and measured in order to determine the relic’s total damaged area. Results demonstrate that this method can effectively detect gold foil damage in stone carvings. The identified surface area of damaged regions can provide the information needed for subsequent restoration and protection of relics of this type.

  14. Generation of a tenascin-C-CreER2 knockin mouse line for conditional DNA recombination in renal medullary interstitial cells.

    Directory of Open Access Journals (Sweden)

    Wenjuan He

    Full Text Available Renal medullary interstitial cells (RMIC are specialized fibroblast-like cells that exert important functions in maintaining body fluid homeostasis and systemic blood pressure. Here, we generated a RMIC specific tenascin-C promoter driven inducible CreER2 knockin mouse line with an EGFP reporter. Similar as endogenous tenascin-C expression, the reporter EGFP expression in the tenascin-C-CreER2(+/- mice was observed in the inner medulla of the kidney, and co-localized with COX2 but not with AQP2 or AQP1, suggesting selective expression in RMICs. After recombination (tenascin-C-CreER2(+/-/ROSA26-lacZ(+/- mice + tamoxifen, β-gal activity was restricted to the cells in the inner medulla of the kidney, and didn't co-localize with AQP2, consistent with selective Cre recombinase activity in RMICs. Cre activity was not obvious in other major organs or without tamoxifen treatment. This inducible RMIC specific Cre mouse line should therefore provide a novel tool to manipulate genes of interest in RMICs.

  15. Synthetic Astrobiology

    Science.gov (United States)

    Rothschild, Lynn J.

    2017-01-01

    "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  16. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska

    Science.gov (United States)

    Selkowitz, D.J.

    2010-01-01

    Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets

  17. Multi-temporal Linkages of Net Ecosystem Exchanges (NEE) with the Climatic and Ecohydrologic Drivers in a Florida Everglades Short-hydroperiod Freshwater Marsh

    Science.gov (United States)

    Zaki, M. T.; Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2017-12-01

    Wetlands are considered one of the most productive and ecologically valuable ecosystems on earth. We investigated the multi-temporal linkages of net ecosystem exchange (NEE) with the relevant climatic and ecohydrological drivers for a Florida Everglades short-hydroperiod freshwater wetland. Hourly NEE observations and the associated driving variables during 2008-12 were collected from the AmeriFlux and EDEN databases, and then averaged for the four temporal scales (1-day, 8-day, 15-day, and 30-day). Pearson correlation and factor analysis were employed to identify the interrelations and grouping patterns among the participatory variables for each time scale. The climatic and ecohydrological linkages of NEE were then reliably estimated using bootstrapped (1000 iterations) partial least squares regressions by resolving multicollinearity. The analytics identified four bio-physical components exhibiting relatively robust interrelations and grouping patterns with NEE across the temporal scales. In general, NEE was most strongly linked with the `radiation-energy (RE)' component, while having a moderate linkage with the `temperature-hydrology (TH)' and `aerodynamic (AD)' components. However, the `ambient atmospheric CO2 (AC)' component was very weakly linked to NEE. Further, RE and TH had a decreasing trend with the increasing time scales (1-30 days). In contrast, the linkages of AD and AC components increased from 1-day to 8-day scales, and then remained relatively invariable at the longer scales of aggregation. The estimated linkages provide insights into the dominant biophysical process components and drivers of ecosystem carbon in the Everglades. The invariant linking pattern and linkages would help to develop low-dimensional models to reliably predict CO2 fluxes from the tidal freshwater wetlands.

  18. SMAP Multi-Temporal Soil Moisture and Vegetation Optical Depth Retrievals in Vegetated Regions Including Higher-Order Soil-Canopy Interactions

    Science.gov (United States)

    Feldman, A.; Akbar, R.; Konings, A. G.; Piles, M.; Entekhabi, D.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission utilizes a zeroth order radiative transfer model, known as the tau-omega model, to retrieve soil moisture from microwave brightness temperature observations. This model neglects first order scattering which is significant at L-Band in vegetated regions, or 30% of land cover. Previous higher order algorithms require extensive in-situ measurements and characterization of canopy layer physical properties. We propose a first order retrieval algorithm that approximately characterizes the eight first order emission pathways using rough surface reflectivity, vegetation optical depth (VOD), and scattering albedo terms. The recently developed Multi-Temporal Dual Channel Algorithm (MT-DCA) then retrieves these three parameters in a forward model without ancillary information under the assumption of temporally static albedo and constant vegetation water content between three day SMAP revisits. The approximated scattering terms are determined to be conservative estimates of analytically derived first order scattering terms. In addition, we find the first order algorithm to be more sensitive to surface emission than the tau-omega model. The simultaneously retrieved VOD, previously demonstrated to be proportional to vegetation water content, can provide insight into vegetation dynamics in regions with significant phenology. Specifically, dry tropical forests exhibit an increase in VOD during the dry season in alignment with prior studies that suggest that certain vegetative species green up during the dry season despite limited water availability. VOD retrieved using the first order algorithm and MT-DCA framework can therefore contribute to understanding of tropical forests' role in the carbon, energy, and water cycles, which has yet to be fully explained.

  19. An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images

    Directory of Open Access Journals (Sweden)

    Yuhan Rao

    2015-06-01

    Full Text Available Due to technical limitations, it is impossible to have high resolution in both spatial and temporal dimensions for current NDVI datasets. Therefore, several methods are developed to produce high resolution (spatial and temporal NDVI time-series datasets, which face some limitations including high computation loads and unreasonable assumptions. In this study, an unmixing-based method, NDVI Linear Mixing Growth Model (NDVI-LMGM, is proposed to achieve the goal of accurately and efficiently blending MODIS NDVI time-series data and multi-temporal Landsat TM/ETM+ images. This method firstly unmixes the NDVI temporal changes in MODIS time-series to different land cover types and then uses unmixed NDVI temporal changes to predict Landsat-like NDVI dataset. The test over a forest site shows high accuracy (average difference: −0.0070; average absolute difference: 0.0228; and average absolute relative difference: 4.02% and computation efficiency of NDVI-LMGM (31 seconds using a personal computer. Experiments over more complex landscape and long-term time-series demonstrated that NDVI-LMGM performs well in each stage of vegetation growing season and is robust in regions with contrasting spatial and spatial variations. Comparisons between NDVI-LMGM and current methods (i.e., Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM, Enhanced STARFM (ESTARFM and Weighted Linear Model (WLM show that NDVI-LMGM is more accurate and efficient than current methods. The proposed method will benefit land surface process research, which requires a dense NDVI time-series dataset with high spatial resolution.

  20. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000

    Science.gov (United States)

    Giri, Chandra; Pengra, Bruce; Zhu, Zhiliang; Singh, Ashbindu; Tieszen, Larry L.

    2007-06-01

    Mangrove forests in many parts of the world are declining at an alarming rate—possibly even more rapidly than inland tropical forests. The rate and causes of such changes are not known. The forests themselves are dynamic in nature and are undergoing constant changes due to both natural and anthropogenic forces. Our research objective was to monitor deforestation and degradation arising from both natural and anthropogenic forces. We analyzed multi-temporal satellite data from 1970s, 1990s, and 2000s using supervised classification approach. Our spatio-temporal analysis shows that despite having the highest population density in the world in its periphery, areal extent of the mangrove forest of the Sundarbans has not changed significantly (approximately 1.2%) in the last ˜25 years. The forest is however constantly changing due to erosion, aggradation, deforestation and mangrove rehabilitation programs. The net forest area increased by 1.4% from the 1970s to 1990 and decreased by 2.5% from 1990 to 2000. The change is insignificant in the context of classification errors and the dynamic nature of mangrove forests. This is an excellent example of the co-existence of humans with terrestrial and aquatic plant and animal life. The strong commitment of governments under various protection measures such as forest reserves, wildlife sanctuaries, national parks, and international designations, is believed to be responsible for keeping this forest relatively intact (at least in terms of area). While the measured net loss of mangrove forest is not that high, the change matrix shows that turnover due to erosion, aggradation, reforestation and deforestation was much greater than net change. The forest is under threat from natural and anthropogenic forces leading to forest degradation, primarily due to top-dying disease and over-exploitation of forest resources.

  1. Simple luminosity normalization of greenness, yellowness and redness/greenness for comparison of leaf spectral profiles in multi-temporally acquired remote sensing images.

    Science.gov (United States)

    Doi, Ryoichi

    2012-09-01

    Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.

  2. Urban Growth Modeling Using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm.

    Science.gov (United States)

    Naghibi, Fereydoun; Delavar, Mahmoud Reza; Pijanowski, Bryan

    2016-12-14

    Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC) algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was made through statistical methods such as overall accuracy, the figure of merit and total operating characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to assess the performance of our proposed model versus similar swarm intelligence algorithm methods. We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and 51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model with fewer quantity and allocation errors and slightly more hits.

  3. Monitoring small pioneer trees in the forest-tundra ecotone: using multi-temporal airborne laser scanning data to model height growth.

    Science.gov (United States)

    Hauglin, Marius; Bollandsås, Ole Martin; Gobakken, Terje; Næsset, Erik

    2017-12-08

    Monitoring of forest resources through national forest inventory programmes is carried out in many countries. The expected climate changes will affect trees and forests and might cause an expansion of trees into presently treeless areas, such as above the current alpine tree line. It is therefore a need to develop methods that enable the inclusion of also these areas into monitoring programmes. Airborne laser scanning (ALS) is an established tool in operational forest inventories, and could be a viable option for monitoring tasks. In the present study, we used multi-temporal ALS data with point density of 8-15 points per m 2 , together with field measurements from single trees in the forest-tundra ecotone along a 1500-km-long transect in Norway. The material comprised 262 small trees with an average height of 1.78 m. The field-measured height growth was derived from height measurements at two points in time. The elapsed time between the two measurements was 4 years. Regression models were then used to model the relationship between ALS-derived variables and tree heights as well as the height growth. Strong relationships between ALS-derived variables and tree heights were found, with R 2 values of 0.93 and 0.97 for the two points in time. The relationship between the ALS data and the field-derived height growth was weaker, with R 2 values of 0.36-0.42. A cross-validation gave corresponding results, with root mean square errors of 19 and 11% for the ALS height models and 60% for the model relating ALS data to single-tree height growth.

  4. Object-Based Land Use Classification of Agricultural Land by Coupling Multi-Temporal Spectral Characteristics and Phenological Events in Germany

    Science.gov (United States)

    Knoefel, Patrick; Loew, Fabian; Conrad, Christopher

    2015-04-01

    Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty

  5. A Method for Estimating the Aerodynamic Roughness Length with NDVI and BRDF Signatures Using Multi-Temporal Proba-V Data

    Directory of Open Access Journals (Sweden)

    Mingzhao Yu

    2016-12-01

    Full Text Available Aerodynamic roughness length is an important parameter for surface fluxes estimates. This paper developed an innovative method for estimation of aerodynamic roughness length (z0m over farmland with a new vegetation index, the Hot-darkspot Vegetation Index (HDVI. To obtain this new index, the normalized-difference hot-darkspot index (NDHD is introduced using a semi-empirical, kernel-driven bidirectional reflectance model with multi-temporal Proba-V 300-m top-of-canopy (TOC reflectance products. A linear relationship between HDVI and z0m was found during the crop growth period. Wind profiles data from two field automatic weather station (AWS were used to calibrate the model: one site is in Guantao County in Hai Basin, in which double-cropping systems and crop rotations with summer maize and winter wheat are implemented; the other is in the middle reach of the Heihe River Basin from the Heihe Watershed Allied Telemetry Experimental Research (HiWATER project, with the main crop of spring maize. The iterative algorithm based on Monin–Obukhov similarity theory is employed to calculate the field z0m from time series. Results show that the relationship between HDVI and z0m is more pronounced than that between NDVI and z0m for spring maize at Yingke site, with an R2 value that improved from 0.636 to 0.772. At Guantao site, HDVI also exhibits better performance than NDVI, with R2 increasing from 0.630 to 0.793 for summer maize and from 0.764 to 0.790 for winter wheat. HDVI can capture the impacts of crop residue on z0m, whereas NDVI cannot.

  6. Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3,Er2O3,Lu2O3)

    International Nuclear Information System (INIS)

    Tang, M.; Lu, P.; Valdez, J.A.; Sickafus, K.E.

    2006-01-01

    Polycrystalline pellets of cubic C-type rare earth structure (Ia3) Dy 2 O 3 , Er 2 O 3 , and Lu 2 O 3 were irradiated at cryogenic temperature (120 K) with 300 keV Kr ++ ions to a maximum fluence of 1x10 20 Kr/m 2 . Irradiated specimens were examined using grazing incidence x-ray diffraction and transmission electron microscopy. Ion irradiation leads to different radiation effects in these three materials. First, Dy 2 O 3 begins to transform to a monoclinic B-type rare earth structure (C2/m) at a peak dose of ∼5 displacements per atom (dpa) (corresponding to a fluence of 2x10 19 Kr/m 2 ). This transformation is nearly complete at a peak dose of 25 dpa (a fluence of 1x10 20 Kr/m 2 ). Er 2 O 3 also transforms to the B-type structure, but the transformation starts at a higher irradiation dose of about 15-20 dpa [a fluence of about (6-8)x10 19 Kr/m 2 ]. Lu 2 O 3 was found to maintain the C-type structure even at the highest irradiation dose of 25 dpa (a fluence of 1x10 20 Kr/m 2 ). No C-to-B transformation was observed in Lu 2 O 3 . The irradiation dose dependence of the C-to-B phase transformation observed in Dy 2 O 3 , Er 2 O 3 , and Lu 2 O 3 is closely related to the temperature dependence of the C-to-B phase transformation found in phase diagrams for these three materials

  7. Dynamics in mangroves assessed by high-resolution and multi-temporal satellite data: a case study in Zhanjiang Mangrove National Nature Reserve (ZMNNR, P. R. China

    Directory of Open Access Journals (Sweden)

    K. Leempoel

    2013-08-01

    Full Text Available Mangrove forests are declining across the globe, mainly because of human intervention, and therefore require an evaluation of their past and present status (e.g. areal extent, species-level distribution, etc. to implement better conservation and management strategies. In this paper, mangrove cover dynamics at Gaoqiao (P. R. China were assessed through time using 1967, 2000 and 2009 satellite imagery (sensors Corona KH-4B, Landsat ETM+, GeoEye-1 respectively. Firstly, multi-temporal analysis of satellite data was undertaken, and secondly biotic and abiotic differences were analysed between the different mangrove stands, assessed through a supervised classification of a high-resolution satellite image. A major decline in mangrove cover (−36% was observed between 1967 and 2009 due to rice cultivation and aquaculture practices. Moreover, dike construction has prevented mangroves from expanding landward. Although a small increase of mangrove area was observed between 2000 and 2009 (+24%, the ratio mangrove / aquaculture kept decreasing due to increased aquaculture at the expense of rice cultivation in the vicinity. From the land-use/cover map based on ground-truth data (5 × 5 m plot-based tree measurements (August–September, 2009 as well as spectral reflectance values (obtained from pansharpened GeoEye-1, both Bruguiera gymnorrhiza and small Aegiceras corniculatum are distinguishable at 73–100% accuracy, whereas tall A. corniculatum was correctly classified at only 53% due to its mixed vegetation stands with B. gymnorrhiza (overall classification accuracy: 85%. In the case of sediments, sand proportion was significantly different between the three mangrove classes. Overall, the advantage of very high resolution satellite images like GeoEye-1 (0.5 m for mangrove spatial heterogeneity assessment and/or species-level discrimination was well demonstrated, along with the complexity to provide a precise classification for non-dominant species (e

  8. ENERGIC OD Geopan application using Virtual Hub: multi-temporal knowledge oriented information on built environment and riverbed changes to geologist community

    Science.gov (United States)

    Boldrini, E.; Brumana, R.; Previtali, M., Jr.; Mazzetti, P., Sr.; Cuca, B., Sr.; Barazzetti, L., Sr.; Camagni, R.; Santoro, M.

    2016-12-01

    The Built Environment (BE) is intended as the sum of natural and human activities in dynamic transformations in the past, in the present and in the future: it calls for more informed decisions to face the challenging threats (climate change, natural hazards, anthropic pressures) by exploiting resilience, sustainable intervention and tackling societal opportunities, as heritage valorization and tourism acknowledgment; thus, it asks for awareness rising among circular reflective society. In the framework of ENERGIC OD project (EU Network for Redistributing Geographic Information - Open Data), this paper describes the implementation of an application (GeoPAN Atl@s app) addressed to improve a circular multi-temporal knowledge oriented generation of information, able to integrate and take in account historic and current maps, as well as products of satellite image processing to understand on course and on coming phenomena and relating them with the ones occurred in the ancient and recent past in a diachronic approach. The app is focused on riverbeds-BE and knowledge generation for the detection of their changes by involving geologist community and providing to other user the retrieved information (architects and urban planner, tourists and citizen). Here is described the implementation of the app interfaced with the ENERGIC OD Virtual Hub component, based on a brokering framework for OD discovery and access, to assure interoperability and integration of different datasets, wide spread cartographic products with huge granularity (national, regional environmental Risk Maps, i.e. PAI, on site local data, i.e. UAV data, or results of Copernicus Programme satellite data processing, i.e. object-based and time series image analysis for riverbed monitoring using Sentinel2): different sources, scales and formats, including historical maps needing metadata generation, and SHP data used by the geologist in their daily activities for hydrogeological analysis, to be both usable as

  9. MULTI-TEMPORAL CROP SURFACE MODELS COMBINED WITH THE RGB VEGETATION INDEX FROM UAV-BASED IMAGES FOR FORAGE MONITORING IN GRASSLAND

    Directory of Open Access Journals (Sweden)

    M. Possoch

    2016-06-01

    Full Text Available Remote sensing of crop biomass is important in regard to precision agriculture, which aims to improve nutrient use efficiency and to develop better stress and disease management. In this study, multi-temporal crop surface models (CSMs were generated from UAV-based dense imaging in order to derive plant height distribution and to determine forage mass. The low-cost UAV-based RGB imaging was carried out in a grassland experiment at the University of Bonn, Germany, in summer 2015. The test site comprised three consecutive growths including six different nitrogen fertilizer levels and three replicates, in sum 324 plots with a size of 1.5×1.5 m. Each growth consisted of six harvesting dates. RGB-images and biomass samples were taken at twelve dates nearly biweekly within two growths between June and September 2015. Images were taken with a DJI Phantom 2 in combination of a 2D Zenmuse gimbal and a GoPro Hero 3 (black edition. Overlapping images were captured in 13 to 16 m and overview images in approximately 60 m height at 2 frames per second. The RGB vegetation index (RGBVI was calculated as the normalized difference of the squared green reflectance and the product of blue and red reflectance from the non-calibrated images. The post processing was done with Agisoft PhotoScan Professional (SfM-based and Esri ArcGIS. 14 ground control points (GCPs were located in the field, distinguished by 30 cm × 30 cm markers and measured with a RTK-GPS (HiPer Pro Topcon with 0.01 m horizontal and vertical precision. The errors of the spatial resolution in x-, y-, z-direction were in a scale of 3-4 cm. From each survey, also one distortion corrected image was georeferenced by the same GCPs and used for the RGBVI calculation. The results have been used to analyse and evaluate the relationship between estimated plant height derived with this low-cost UAV-system and forage mass. Results indicate that the plant height seems to be a suitable indicator for forage mass

  10. Multi-Temporal Crop Surface Models Combined with the RGB Vegetation Index from Uav-Based Images for Forage Monitoring in Grassland

    Science.gov (United States)

    Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G.

    2016-06-01

    Remote sensing of crop biomass is important in regard to precision agriculture, which aims to improve nutrient use efficiency and to develop better stress and disease management. In this study, multi-temporal crop surface models (CSMs) were generated from UAV-based dense imaging in order to derive plant height distribution and to determine forage mass. The low-cost UAV-based RGB imaging was carried out in a grassland experiment at the University of Bonn, Germany, in summer 2015. The test site comprised three consecutive growths including six different nitrogen fertilizer levels and three replicates, in sum 324 plots with a size of 1.5×1.5 m. Each growth consisted of six harvesting dates. RGB-images and biomass samples were taken at twelve dates nearly biweekly within two growths between June and September 2015. Images were taken with a DJI Phantom 2 in combination of a 2D Zenmuse gimbal and a GoPro Hero 3 (black edition). Overlapping images were captured in 13 to 16 m and overview images in approximately 60 m height at 2 frames per second. The RGB vegetation index (RGBVI) was calculated as the normalized difference of the squared green reflectance and the product of blue and red reflectance from the non-calibrated images. The post processing was done with Agisoft PhotoScan Professional (SfM-based) and Esri ArcGIS. 14 ground control points (GCPs) were located in the field, distinguished by 30 cm × 30 cm markers and measured with a RTK-GPS (HiPer Pro Topcon) with 0.01 m horizontal and vertical precision. The errors of the spatial resolution in x-, y-, z-direction were in a scale of 3-4 cm. From each survey, also one distortion corrected image was georeferenced by the same GCPs and used for the RGBVI calculation. The results have been used to analyse and evaluate the relationship between estimated plant height derived with this low-cost UAV-system and forage mass. Results indicate that the plant height seems to be a suitable indicator for forage mass. There is a

  11. Use of ERS-2 Sar and Landsat TM Images for Geological Mapping and Mineral Exploration Of Sol Hamid Area, South Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Ramadan, T.M.

    2003-01-01

    Sol hamid area is chiefy occupied by neo proterozoic rocks, partly covered by miocene sediments and recent sand sheets and dunes. The neo proterozoic rocks include ophiolitic ultramafic to mafic rocks, meta volcano-sedimentary rocks, meta volcanics, gabbros-diorite rocks, granodiorites, biotite granites and alkali granites. Magnesite, chromite, iron ores, manganese and barite ore deposits are hosted in different at the study area. ERS-2 SAR data enabled to obtain an image that reveals some buried fluvial features beneath the surface cover of desert sand. These features are not observable in Landsat TM image of similar resolution. In this work, Principal Component Analysis (PCA) technique was used for merging ERS-2 SAR and Landsat TM images to make use of the potential of data fusion technique of image processing in the interpretation of geological features. This procedure has resulted in enhancing subsurface structure such as faults that control distribution of several deposits in the study area. This study represents an example to demonstrate the utility of merging various remote sensing data for exploring mineral deposits in arid region

  12. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Synthetic Cathinones ("Bath Salts")

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  15. Synthesis and atomic scale characterization of Er2O3 nanoparticles: enhancement of magnetic properties and changes in the local structure

    Science.gov (United States)

    Corrêa, Eduardo L.; Bosch-Santos, Brianna; Freitas, Rafael S.; Potiens, Maria da Penha A.; Saiki, Mitiko; Carbonari, Artur W.

    2018-05-01

    In the investigation reported in this paper a modified thermal decomposition method was developed to produce very small Er2O3 nanoparticles (NPs). Particles structure, shape and size were characterized by x-ray diffraction and transmission electron microscopy which showed that the synthesis by thermal decomposition under O2 atmosphere produced very small and monodisperse NPs, allowing the investigation of finite-size and surface effects. Results of magnetization measurements showed that the smallest particles present the highest values of susceptibility that decrease as particle size increases. Specific heat measurements indicate that the sample with the smallest NPs (diameter ∼5 nm) has a Néel temperature of 0.54 K. The local structure of particles was investigated by measurements of hyperfine interactions with perturbed angular correlation spectroscopy using 111Cd as probe nuclei replacing the cationic sites. Results showed that the relative population of sites 8b increases in both the core and surface layer of particles.

  16. Physical and electrical characteristics of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with rare earth Er2O3 as a gate dielectric

    International Nuclear Information System (INIS)

    Lin, Ray-Ming; Chu, Fu-Chuan; Das, Atanu; Liao, Sheng-Yu; Chou, Shu-Tsun; Chang, Liann-Be

    2013-01-01

    In this study, the rare earth erbium oxide (Er 2 O 3 ) was deposited using an electron beam onto an AlGaN/GaN heterostructure to fabricate metal-oxide-semiconductor high-electron-mobility transistors (MOS–HEMTs) that exhibited device performance superior to that of a conventional HEMT. Under similar bias conditions, the gate leakage currents of these MOS–HEMT devices were four orders of magnitude lower than those of conventional Schottky gate HEMTs. The measured sub-threshold swing (SS) and the effective trap state density (N t ) of the MOS–HEMT were 125 mV/decade and 4.3 × 10 12 cm −2 , respectively. The dielectric constant of the Er 2 O 3 layer in this study was 14, as determined through capacitance–voltage measurements. In addition, the gate–source reverse breakdown voltage increased from –166 V for the conventional HEMT to –196 V for the Er 2 O 3 MOS–HEMT. - Highlights: ► GaN/AlGaN/Er 2 O 3 metal-oxide semiconductor high electron mobility transistor ► Physical and electrical characteristics are presented. ► Electron beam evaporated Er 2 O 3 with excellent surface roughness ► Device exhibits reduced gate leakage current and improved I ON /I OFF ratio

  17. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  18. [From synthetic biology to synthetic humankind].

    Science.gov (United States)

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. Test-retest reliability of pure-tone thresholds from 0.5 to 16 kHz using Sennheiser HDA 200 and Etymotic Research ER-2 earphones.

    Science.gov (United States)

    Schmuziger, Nicolas; Probst, Rudolf; Smurzynski, Jacek

    2004-04-01

    The purposes of the study were: (1) To evaluate the intrasession test-retest reliability of pure-tone thresholds measured in the 0.5-16 kHz frequency range for a group of otologically healthy subjects using Sennheiser HDA 200 circumaural and Etymotic Research ER-2 insert earphones and (2) to compare the data with existing criteria of significant threshold shifts related to ototoxicity and noise-induced hearing loss. Auditory thresholds in the frequency range from 0.5 to 6 kHz and in the extended high-frequency range from 8 to 16 kHz were measured in one ear of 138 otologically healthy subjects (77 women, 61 men; mean age, 24.4 yr; range, 12-51 yr) using HDA 200 and ER-2 earphones. For each subject, measurements of thresholds were obtained twice for both transducers during the same test session. For analysis, the extended high-frequency range from 8 to 16 kHz was subdivided into 8 to 12.5 and 14 to 16 kHz ranges. Data for each frequency and frequency range were analyzed separately. There were no significant differences in repeatability for the two transducer types for all frequency ranges. The intrasession variability increased slightly, but significantly, as frequency increased with the greatest amount of variability in the 14 to 16 kHz range. Analyzing each individual frequency, variability was increased particularly at 16 kHz. At each individual frequency and for both transducer types, intrasession test-retest repeatability from 0.5 to 6 kHz and 8 to 16 kHz was within 10 dB for >99% and >94% of measurements, respectively. The results indicated a false-positive rate of HDA 200. Repeatability was similar for both transducer types. Intrasession test-retest repeatability from 0.5 to 12.5 kHz at each individual frequency including the frequency range susceptible to noise-induced hearing loss was excellent for both transducers. Repeatability was slightly, but significantly poorer in the frequency range from 14 to 16 kHz compared with the frequency ranges from 0.5 to 6

  20. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  1. Structural stability and self-healing capability of Er2O3 in situ coating on V-4Cr-4Ti in liquid lithium

    International Nuclear Information System (INIS)

    Yao, Zhenyu; Suzuki, Akihiro; Muroga, Takeo; Nagasaka, Takuya

    2006-01-01

    The in situ Er 2 O 3 insulating coating is under development for the self-cooled Li/V-alloy type fusion blanket. In this study, the structural stability and self-healing capability of the coating are investigated. Since the cracking in the coating was not observed after exposure when Li was removed with a weak lotion (liquid NH 3 ), the cracking observed in the previous studies is not a practical issue in a real blanket. The re-exposure of the coating in pure Li showed that the coating once formed in Li (Er) is thought to be stable in pure Li. Thus, coating has the possibility to be serviced in a Li environment without an Er supply. By prior exposure to Li (Er) at 873 K, the exhaustion of the oxygen storage in V-alloy substrate during exposure at 973 K could be delayed effectively. The self-healing capability of the coating was demonstrated by the examination with the re-exposing cracked coating in Li (Er)

  2. Determination of ETSPLs for the Sennheiser HDA 200 headphone and the Etymotic Research ER-2 insertphone and MAF in the frequency range 125 Hz to 16 kHz

    DEFF Research Database (Denmark)

    Han, Loc A.; Poulsen, Torben

    1997-01-01

    The binaural free field hearing threshold for pure tones (the minimum audible field, MAF) and Equivalent Threshold Sound Pressure Levels (ETSPL) for the Sennheiser HDA 200 earphone and the Etymotic Research ER-2 insert earphone have been determined for thirty-one otologically normal test subjects...

  3. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem?

    Science.gov (United States)

    Fang, Qingqing; Wang, Guoqiang; Xue, Baolin; Liu, Tingxi; Kiem, Anthony

    2018-04-23

    In water-limited ecosystems, hydrological processes significantly affect the carbon flux. The semi-arid grassland ecosystem is particularly sensitive to variations in precipitation (PRE) and soil moisture content (SMC), but to what extent is not fully understood. In this study, we estimated and analyzed how hydrological variables, especially PRE at multi-temporal scales (diurnal, monthly, phenological-related, and seasonal) and SMC at different soil depths (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm) affect the carbon flux. For these aims, eddy covariance data were combined with a Vegetation Photosynthesis and Respiration Model (VPRM) to simulate the regional gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem exchange of CO 2 (NEE). Interestingly, carbon flux showed no relationship with diurnal PRE or phenological-related PRE (precipitation in the growing season and non-growing season). However, carbon flux was significantly related to monthly PRE and to seasonal PRE (spring + summer, autumn). The GPP, R eco , and NEE increased in spring and summer but decreased in autumn with increasing precipitation due to the combined effect of salinization in autumn. The GPP, R eco , and NEE were more responsive to SMC at 0-20 cm depth than at deeper depths due to the shorter roots of herbaceous vegetation. The NEE increased with increasing monthly PRE because soil microbes responded more quickly than plants. The NEE significantly decreased with increasing SMC in shallow surface due to a hysteresis effect on water transport. The results of our study highlight the complex processes that determine how and to what extent PRE at multi-temporal scale and SMC at different depths affect the carbon flux response in a water-limited grassland. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Synthetic Defects for Vibrothermography

    Science.gov (United States)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  5. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  6. Teknik Cepat Identifikasi Lahan Terbuka Melalui Citra Multi Temporal dan Multi Spasial (Quick Tecniques in Indentifying Open Area by the Use of Multi Spatial and Multidate Imageries

    Directory of Open Access Journals (Sweden)

    Ahyar Gunawan

    2010-12-01

    Full Text Available This study describes the use of multitemporal principal component analysis (MPCA and vegetation indexdifferencing (VIDN techniques in identifying open area on post-coal-mining sites using multi spatial and multidateof Landsat TM and SPOT 4 XS imageries. The study revealed that the synthetic images derived from stablebrightness, stable greenness,s and delta brightness of MPCA summarize information on post-coal-mining openedareas provided overall accuracy of 76.47% for the new ex mining area and 32.69% for old ex mining area. TheVIDN method provided relatively lower accuracy than those from MPCA i.e. 58.87% for new ex mining and13.25% for old ex-mining areas. The study also concluded that identifying open area on post-coal-mining sitesusing imageries was more efficient than using only ground survey, providing cost efficiency of 29%. Thisindicates that the cost required using satellite image is only 29% of the cost required for ground survey. Thestudy concluded that MPCA is better than VIDN for identifying open area on post-coal-mining sites.

  7. Models for synthetic biology.

    Science.gov (United States)

    Kaznessis, Yiannis N

    2007-11-06

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  8. Technical Assessment: Synthetic Biology

    Science.gov (United States)

    2015-01-01

    Pfizer, Bausch & Lomb, Coca - Cola , and other Fortune 500 companies 8 Data estimated by the... financial prize for ideas to drive forward the production of a sensor relying on synthetic organisms that can detect exposure to 500 specific chemicals

  9. Are We Drowning? Urban Land Subsidence in Thyborøn, Denmark, From Ers-2 and Sentinel-1 Imagery and Precision Leveling

    DEFF Research Database (Denmark)

    F. Levinsen, J.; Broge, N.H.; Sørensen, Carlo Sass

    2016-01-01

    We assess the potential in information on rates of vertical land deformation, which is useful for, e.g., climate change adaptation. The optimal results are obtained from observations with a high spatial coverage, such as those from Sentinel-1 Synthetic Aperture Radar Interferometry (InSAR) data. ...

  10. Estimation of Paddy Rice Variables with a Modified Water Cloud Model and Improved Polarimetric Decomposition Using Multi-Temporal RADARSAT-2 Images

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    2016-10-01

    Full Text Available Rice growth monitoring is very important as rice is one of the staple crops of the world. Rice variables as quantitative indicators of rice growth are critical for farming management and yield estimation, and synthetic aperture radar (SAR has great advantages for monitoring rice variables due to its all-weather observation capability. In this study, eight temporal RADARSAT-2 full-polarimetric SAR images were acquired during rice growth cycle and a modified water cloud model (MWCM was proposed, in which the heterogeneity of the rice canopy in the horizontal direction and its phenological changes were considered when the double-bounce scattering between the rice canopy and the underlying surface was firstly considered as well. Then, three scattering components from an improved polarimetric decomposition were coupled with the MWCM, instead of the backscattering coefficients. Using a genetic algorithm, eight rice variables were estimated, such as the leaf area index (LAI, rice height (h, and the fresh and dry biomass of ears (Fe and De. The accuracy validation showed the MWCM was suitable for the estimation of rice variables during the whole growth season. The validation results showed that the MWCM could predict the temporal behaviors of the rice variables well during the growth cycle (R2 > 0.8. Compared with the original water cloud model (WCM, the relative errors of rice variables with the MWCM were much smaller, especially in the vegetation phase (approximately 15% smaller. Finally, it was discussed that the MWCM could be used, theoretically, for extensive applications since the empirical coefficients in the MWCM were determined in general cases, but more applications of the MWCM are necessary in future work.

  11. Evaluating a New Homogeneous Total Ozone Climate Data Record from GOME/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A

    Science.gov (United States)

    Koukouli, M.E.; Lerot, C.; Granville, J.; Goutail, F.; Lambert, J.-C.; Pommereau, J.-P.; Balis, D.; Zyrichidou, I.; Van Roozendael, M.; Coldewey-Egbers, M.; hide

    2015-01-01

    The European Space Agency's Ozone Climate Change Initiative (O3-CCI) project aims at producing and validating a number of high-quality ozone data products generated from different satellite sensors. For total ozone, the O3-CCI approach consists of minimizing sources of bias and systematic uncertainties by applying a common retrieval algorithm to all level 1 data sets, in order to enhance the consistency between the level 2 data sets from individual sensors. Here we present the evaluation of the total ozone products from the European sensors Global Ozone Monitoring Experiment (GOME)/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A produced with the GOME-type Direct FITting (GODFIT) algorithm v3. Measurements from the three sensors span more than 16 years, from 1996 to 2012. In this work, we present the latest O3-CCI total ozone validation results using as reference ground-based measurements from Brewer and Dobson spectrophotometers archived at the World Ozone and UV Data Centre of the World Meteorological Organization as well as from UV-visible differential optical absorption spectroscopy (DOAS)/Système D'Analyse par Observations Zénithales (SAOZ) instruments from the Network for the Detection of Atmospheric Composition Change. In particular, we investigate possible dependencies in these new GODFIT v3 total ozone data sets with respect to latitude, season, solar zenith angle, and different cloud parameters, using the most adequate type of ground-based instrument. We show that these three O3-CCI total ozone data products behave very similarly and are less sensitive to instrumental degradation, mainly as a result of the new reflectance soft-calibration scheme. The mean bias to the ground-based observations is found to be within the 1 plus or minus 1 percent level for all three sensors while the near-zero decadal stability of the total ozone columns (TOCs) provided by the three European instruments falls well within the 1-3 percent requirement of the European Space

  12. A FUZZY LOGIC-BASED APPROACH FOR THE DETECTION OF FLOODED VEGETATION BY MEANS OF SYNTHETIC APERTURE RADAR DATA

    Directory of Open Access Journals (Sweden)

    V. Tsyganskaya

    2016-06-01

    Full Text Available In this paper an algorithm designed to map flooded vegetation from synthetic aperture radar (SAR imagery is introduced. The approach is based on fuzzy logic which enables to deal with the ambiguity of SAR data and to integrate multiple ancillary data containing topographical information, simple hydraulic considerations and land cover information. This allows the exclusion of image elements with a backscatter value similar to flooded vegetation, to significantly reduce misclassification errors. The flooded vegetation mapping procedure is tested on a flood event that occurred in Germany over parts of the Saale catchment on January 2011 using a time series of high resolution TerraSAR-X data covering the time interval from 2009 to 2015. The results show that the analysis of multi-temporal X-band data combined with ancillary data using a fuzzy logic-based approach permits the detection of flooded vegetation areas.

  13. The 1988 Arctic Survey, Diurnal Study (Sunrise and Sunset) and Peak Altitude (22 km) Flights for the In Situ Detection of ClO and BrO from the NASA ER-2 Aircraft

    Science.gov (United States)

    Anderson, James G.

    1996-01-01

    Two critical areas of research were addressed successfully by this research. The first involves NASA ER-2 airborne observations of ClO and BrO radical destruction of ozone within the arctic vortex. The second involves the analysis of diurnal variations in ClO, to test the production and loss rates of ClO that constitutes the test for coupling reactions between the chlorine and nitrogen systems. We discuss results from this research in order.

  14. What Are Synthetic Cannabinoids?

    Science.gov (United States)

    ... years, synthetic cannabinoid mixtures have been easy to buy in drug paraphernalia shops, novelty stores, gas stations, and over ... abuse, authorities have made it illegal to sell, buy, or possess some of ... use is that standard drug tests cannot easily detect many of the chemicals ...

  15. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective is to im......A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is to improve and obtain a more range independent lateral resolution compared to conventional dynamic receive focusing (DRF) without compromising frame rate. SASB is a two-stage procedure using two separate beamformers. First a set of Bmode image lines using a single focal point in both transmit and receive...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  16. Building synthetic cellular organization

    OpenAIRE

    Polka, Jessica K.; Silver, Pamela A.

    2013-01-01

    The elaborate spatial organization of cells enhances, restricts, and regulates protein–protein interactions. However, the biological significance of this organization has been difficult to study without ways of directly perturbing it. We highlight synthetic biology tools for engineering novel cellular organization, describing how they have been, and can be, used to advance cell biology.

  17. Towards a synthetic chloroplast.

    Directory of Open Access Journals (Sweden)

    Christina M Agapakis

    2011-04-01

    Full Text Available The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.

  18. Synthetic Metabolic Pathways

    DEFF Research Database (Denmark)

    topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synthetic Metabolic Pathways: Methods and Protocols aims to ensure successful results in the further study...

  19. A Hybrid Approach Combining the Multi-Temporal Scale Spatio-Temporal Network with the Continuous Triangular Model for Exploring Dynamic Interactions in Movement Data: A Case Study of Football

    Directory of Open Access Journals (Sweden)

    Pengdong Zhang

    2018-01-01

    Full Text Available Benefiting from recent advantages in location-aware technologies, movement data are becoming ubiquitous. Hence, numerous research topics with respect to movement data have been undertaken. Yet, the research of dynamic interactions in movement data is still in its infancy. In this paper, we propose a hybrid approach combining the multi-temporal scale spatio-temporal network (MTSSTN and the continuous triangular model (CTM for exploring dynamic interactions in movement data. The approach mainly includes four steps: first, the relative trajectory calculus (RTC is used to derive three types of interaction patterns; second, for each interaction pattern, a corresponding MTSSTN is generated; third, for each MTSSTN, the interaction intensity measures and three centrality measures (i.e., degree, betweenness and closeness are calculated; finally, the results are visualized at multiple temporal scales using the CTM and analyzed based on the generated CTM diagrams. Based on the proposed approach, three distinctive aims can be achieved for each interaction pattern at multiple temporal scales: (1 exploring the interaction intensities between any two individuals; (2 exploring the interaction intensities among multiple individuals, and (3 exploring the importance of each individual and identifying the most important individuals. The movement data obtained from a real football match are used as a case study to validate the effectiveness of the proposed approach. The results demonstrate that the proposed approach is useful in exploring dynamic interactions in football movement data and discovering insightful information.

  20. Investigating the chlorophyll-a variability in the Gulf of Taranto (North-western Ionian Sea) by a multi-temporal analysis of MODIS-Aqua Level 3/Level 2 data

    Science.gov (United States)

    Ciancia, Emanuele; Coviello, Irina; Di Polito, Carmine; Lacava, Teodosio; Pergola, Nicola; Satriano, Valeria; Tramutoli, Valerio

    2018-03-01

    The analysis of chlorophyll-a (chl-a) variability on a long-term basis could allow detecting possible issues in the whole marine ecosystem functioning. The Gulf of Taranto (Southern Italy), in the North-western Ionian Sea (Mediterranean Sea), has been affected by several environmental threats in the last decade, thus deserving the implementation of an adequate monitoring system able to provide accurate indications about the variability of the most relevant bio-optical parameters. In this context, the main objectives of this study are to investigate the long-term chl-a variability in the Gulf of Taranto and identify the occurrence of any past spatiotemporal anomalies by implementing the multi-temporal Robust Satellite Technique (RST) on a 12-year (2003-2015) period of MODIS/AQUA Level 3/Level 2 chlorophyll-a data. The achieved results show well-clustered near-surface positive chl-a anomalies during the January-February 2011 period. This detected offshore phytoplankton bloom may be related to sub-basin processes, such as the inflow of the Western Adriatic Coastal Current (WACC), probably fostered by the cyclonic reversal of the Bimodal Oscillating System (BiOS) mechanism. Therefore, the RST approach proved successful in detecting chl-a anomalous variations with a high level of confidence regardless of the absolute value measured, thus suggesting its exportability in other areas with different site-setting conditions.

  1. Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska

    International Nuclear Information System (INIS)

    Necsoiu, Marius; Dinwiddie, Cynthia L; Walter, Gary R; Stothoff, Stuart A; Larsen, Amy

    2013-01-01

    Multi-temporal image analysis of very-high-resolution historical aerial and recent satellite imagery of the Ahnewetut Wetlands in Kobuk Valley National Park, Alaska, revealed the nature of thaw lake and polygonal terrain evolution over a 54-year period of record comprising two 27-year intervals (1951–1978, 1978–2005). Using active-contouring-based change detection, high-precision orthorectification and co-registration and the normalized difference index, surface area expansion and contraction of 22 shallow water bodies, ranging in size from 0.09 to 179 ha, and the transition of ice-wedge polygons from a low- to a high-centered morphology were quantified. Total surface area decreased by only 0.4% during the first time interval, but decreased by 5.5% during the second time interval. Twelve water bodies (ten lakes and two ponds) were relatively stable with net surface area decreases of ≤10%, including four lakes that gained area during both time intervals, whereas ten water bodies (five lakes and five ponds) had surface area losses in excess of 10%, including two ponds that drained completely. Polygonal terrain remained relatively stable during the first time interval, but transformation of polygons from low- to high-centered was significant during the second time interval. (letter)

  2. Synthetic Electric Microbial Biosensors

    Science.gov (United States)

    2017-06-10

    domains and DNA-binding domains into a single protein for deregulation of down stream genes of have been favored [10]. Initially experiments with... Germany DISTRIBUTION A. Approved for public release: distribution unlimited.   Talk title: “Synthetic biology based microbial biosensors for the...toolbox” in Heidelberg, Germany Poster title: “Anaerobic whole cell microbial biosensors” Link: http://phdsymposium.embl.org/#home   September, 2014

  3. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  4. MULTI-TEMPORAL SPATIAL DATA AFRICA

    Directory of Open Access Journals (Sweden)

    R. Becker

    2017-11-01

    Full Text Available To plan for the future, it is essential to understand the present as well as the past. Hindsight is the most valuable asset when examining how to proceed. Apart from natural catastrophes, conditions do not happen, they develop! This paper proposes that in order to change or influence conditions, not only must their present state be considered, but it is essential to investigate what triggered them in the first place. This requires access to records that might have to reach back for as much as many years. In Africa, such records are hard, if not impossible, to retrieve. Moreover, whatever records can be located are likely to have been compiled by a variety of different agencies, each presenting their own versions of events and consequently, often contradictory. To overcome such problems, it is proposed to use aerial photography that has been taken and hopefully archived over the past decades. Such aerial imagery can provide temporal geospatial data to trace the course, interaction and consequences of events. Combined with more recent satellite imagery, they provide unbiased evidence of past developments that can now be analyzed and assessed based on our awareness of today. This presentation deals with advanced data conversion and automated processing procedures conceived for convenient and user-friendly information access, as well as data mining and bigdata processing.

  5. Synthetic staggered architecture composites

    International Nuclear Information System (INIS)

    Dutta, Abhishek; Tekalur, Srinivasan Arjun

    2013-01-01

    Highlights: ► Composite design inspired by nature. ► Tuning microstructure via changing ceramic content and aspect ratio. ► Experimental display of structure–property correlationship in synthetic composites. - Abstract: Structural biocomposites (for example, nacre in seashells, bone, etc.) are designed according to the functional role they are delegated for. For instance, bone is primarily designed for withstanding time-dependent loading (for example, withstanding stresses while running, jumping, accidental fall) and hence the microstructure is designed primarily from enhanced toughness and moderate stiffness point of view. On the contrary, seashells (which lie in the abyss of oceans) apart from providing defense to the organism (it is hosting) against predatory attacks, are subjected to static loading (for example, enormous hydrostatic pressure). Hence, emphasis on the shell structure evolution is directed primarily towards providing enhanced stiffness. In order to conform between stiffness and toughness, nature precisely employs a staggered arrangement of inorganic bricks in a biopolymer matrix (at its most elementary level of architecture). Aspect ratio and content of ceramic bricks are meticulously used by nature to synthesize composites having varying degrees of stiffness, strength and toughness. Such an amazing capability of structure–property correlationship has rarely been demonstrated in synthetic composites. Therefore, in order to better understand the mechanical behavior of synthetic staggered composites, the problem becomes two-pronged: (a) synthesize composites with varying brick size and contents and (b) experimental investigation of the material response. In this article, an attempt has been made to synthesize and characterize staggered ceramic–polymer composites having varying aspect ratio and ceramic content using freeze-casting technique. This will in-turn help us in custom-design manufacture of hybrid bio-inspired composite materials

  6. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...

  7. Transition in synthetic jets

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Kordík, Jozef

    2012-01-01

    Roč. 187, NOV 2012 (2012), s. 105-117 ISSN 0924-4247 R&D Projects: GA TA ČR(CZ) TA02020795; GA ČR(CZ) GPP101/12/P556; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulence * synthetic jet * transition * velocity spectra Subject RIV: BK - Fluid Dynamics Impact factor: 1.841, year: 2012 http://www. science direct.com/ science /article/pii/S0924424712005031

  8. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    OpenAIRE

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  9. Analog synthetic biology.

    Science.gov (United States)

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  10. Synthetic lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Jurado, J

    1953-01-01

    A yellow solid petroleum paraffin d/sup 60/ 0.808, I number 3.5, average molecular weight 350, chlorinated and condensed with benzene, xylene, or naphthalene by the Friedel and Crafts reaction, in the presence of anhydrous AlCl/sub 3/ or activated Al, gave synthetic lubricating oils. Xylene was the preferred aromatic compound, naphthalene required the use of less completely chlorinated paraffin, benzene produced resins difficult to remove and gave darker oils with excessive green fluorescence. Activated Al rather than anhydrous AlCl/sub 3/ gave darker oils with higher viscosity and Conradson C values. Tar from the low-temperature distillation of lignite, used as a source of a paraffin fraction melting 40/sup 0/ to 48/sup 0/ (chlorinated to 26.5 percent Cl) and an aromatic fraction, 45 percent aromatic compounds by volume (mainly polysubstituted benzenes), I number 10, was converted to a similar synthetic lubricant with the following properties: Kinematic viscosity at 210/sup 0/ F., 50.4 centistokes; viscosity index, 92; Conradson C, 1.5 percent; solidification point, 9/sup 0/; S, 0.41 percent.

  11. Coloring of synthetic fluorite

    International Nuclear Information System (INIS)

    Birsoy, R.

    1980-01-01

    A synthetic fluorite of the Harshaw Chemical Company is analyzed for rare earth elements, yttrium, and sodium. Samples of this fluorite are irradiated with X-rays, γ-rays, neutrons, electrons, protons, and α-particles at different energies, and their absorption spectra are analyzed. Analyzing the thermal bleaching of these radiation-coloured fluorites shows that both, impurities and radiation play a part in the coloration of synthetic fluorite. However, the main contribution comes from the radiation induced lattice defects. In the visible region spectra, the colour centre of the 5800 to 5900 A absorption band is probably mainly related with large aggregates of F-centres. The 5450 and the 5300 A absorption bands are mainly related to monovalent and divalent ion impurities and their association with lattice defects. The 3800 A absorption band seems to be related with F-centre aggregates. However, the contribution from the rare earth elements related complex color centres also plays some part for the production of this absorption band. These results indicate that the color centres of different origin can absorb light at the same wavelength. (author)

  12. Raman and Fluorescence Spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7

    Directory of Open Access Journals (Sweden)

    Jianlan Cui

    2015-01-01

    Full Text Available To better understand and ascertain the mechanisms of flotation reagent interaction with rare earth (RE minerals, it is necessary to determine the physical and chemical properties of the constituent components. Seven rare earth oxides (CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7 that cover the rare earth elements (REEs from light to heavy REEs have been investigated using Raman spectroscopy. Multiple laser sources (wavelengths of 325 nm, 442 nm, 514 nm, and 632.8 nm for the Raman shift ranges from 100 cm−1 to 5000 cm−1 of these excitations were used for each individual rare earth oxide. Raman shifts and fluorescence emission have been identified. Theoretical energy levels for Er, Nd, and Yb were used for the interpretation of fluorescence emission. The experimental results showed good agreement with the theoretical calculation for Er2O3 and Nd2O3. Additional fluorescence emission was observed with Yb2O3 that did not fit the reported energy level diagram. Tb4O7 was observed undergoing laser induced changes during examination.

  13. Structural, electronic properties and enhancement of electrical polarization in Er2NiMnO6/La2NiMnO6 superlattice by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Haipeng Lu

    2016-03-01

    Full Text Available Employing first-principles calculations, structural, electronic properties of new multiferroic material Er2NiMnO6/La2NiMnO6 perovskite superlattice are investigated. This structure is computed as monoclinic phase with obvious distortion. The average in-plane anti-phase rotation angle, average out-of-plane in-phase rotation angle and other microscopic features are reported in this paper. Ni and Mn are found in this superlattice that stay high spin states. These microscopic properties play important roles in multiferroic properties. Based on these microscopic features, the relationship between the direction of spontaneous polarization and the order of substitution in neighboring A-O layers is explained. Finally, we try to enhance the electrical polarization magnitude by 32% by altering the previous superlattice as LaEr2NiMnO7 structure. Our results show that both repulsion force of A site rare earth ions and the arrangement of B site ions can exert influences on spontaneous polarization.

  14. On the crystal structures of USe2, UTe2, ThOTe, and Er2Se3 - a contribution to the crystal chemistry of rare earth and actinide chalcogenides

    International Nuclear Information System (INIS)

    Dausch, W.M.

    1987-01-01

    The dichalcogenides of rare earth metals and actinides were classified into isostructural compounds without considering their composition. The structures of of α-USe 2 , β-USe 2 , UTe 2 , and HoSe 2 as well as of ThOTe, Er 2 Se 3 , and UTe 3 were determined by X-ray diffraction of their crystals. The results demonstrate that α-USe 2 has a SrBr 2 -analog structure and a stoichiometric composition. The atomic parameters derived from powder data of ThOTe and UTe 2 could be confirmed by X-ray analysis of the crystalline compounds. ThOTe crystallizes into a PbFCl-analog structure. The order of atoms in UTe 2 is similar to that of the ZrSe 3 type. The crystals of ErSe 3 , UTe 3 , HoSe 2 , and β-USe 2 were investigated only by camera methods. As in the case of Er 2 Se 3 or UTe 3 twin formation could be observed in β-USe 3 . (orig./RB) [de

  15. Space Synthetic Biology Project

    Science.gov (United States)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  16. Current status of synthetic epikeratoplasty.

    Science.gov (United States)

    Thompson, K P; Hanna, K; Waring, G O; Gipson, I; Liu, Y; Gailitis, R P; Johnson-Wint, B; Green, K

    1991-01-01

    Many of the deficiencies with human tissue epikeratoplasty might be improved by the use of a suitable synthetic lenticule. Potential biomaterials for epikeratoplasty include collagen (types I, III, or IV), collagen-hydrogel copolymers, bioactive synthetics, and coated hydrogels. The biomaterial must be engineered to achieve strict specifications of optical clarity, support of epithelial migration and adhesion, permeability to solutes, and stability to corneal proteases. Attaching synthetic lenticules to the cornea without cutting Bowman's layer by adhesives, laser welding, or direct adhesion may also improve the efficacy of synthetic epikeratoplasty.

  17. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  18. Finding Hope in Synthetic Biology.

    Science.gov (United States)

    Takala, Tuija

    2017-04-01

    For some, synthetic biology represents great hope in offering possible solutions to many of the world's biggest problems, from hunger to sustainable development. Others remain fearful of the harmful uses, such as bioweapons, that synthetic biology can lend itself to, and most hold that issues of biosafety are of utmost importance. In this article, I will evaluate these points of view and conclude that although the biggest promises of synthetic biology are unlikely to become reality, and the probability of accidents is fairly substantial, synthetic biology could still be seen to benefit humanity by enhancing our ethical understanding and by offering a boost to world economy.

  19. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  20. Life after the synthetic cell

    DEFF Research Database (Denmark)

    Rasmussen, Steen

    2010-01-01

    Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self-replicating ......Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self...

  1. Computational synthetic geometry

    CERN Document Server

    Bokowski, Jürgen

    1989-01-01

    Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...

  2. Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk

    and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging......Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B......-mode images have high contrast. Like all imaging modalities, ultrasound is subject to a number of inherent artifacts that compromise image quality. The most prominent artifact is the degradation by coherent wave interference, known as “speckle”, which gives a granular appearance to an otherwise homogeneous...

  3. Transionospheric synthetic aperture imaging

    CERN Document Server

    Gilman, Mikhail; Tsynkov, Semyon

    2017-01-01

    This landmark monograph presents the most recent mathematical developments in the analysis of ionospheric distortions of SAR images and offers innovative new strategies for their mitigation. As a prerequisite to addressing these topics, the book also discusses the radar ambiguity theory as it applies to synthetic aperture imaging and the propagation of radio waves through the ionospheric plasma, including the anisotropic and turbulent cases. In addition, it covers a host of related subjects, such as the mathematical modeling of extended radar targets (as opposed to point-wise targets) and the scattering of radio waves off those targets, as well as the theoretical analysis of the start-stop approximation, which is used routinely in SAR signal processing but often without proper justification. The mathematics in this volume is clean and rigorous – no assumptions are hidden or ambiguously stated. The resulting work is truly interdisciplinary, providing both a comprehensive and thorough exposition of the field,...

  4. Radioimmunoassay of synthetic steroids

    Energy Technology Data Exchange (ETDEWEB)

    Raynaud, J -P; Bucourt, R; Salmon, J

    1975-12-01

    The sensitivity of a radioimmunoassay depends on the intrinsic association constant of the interaction between ligand and antibody. Its specificity depends on the position of the chain which forms the link with the antigen. Thus, an antibody specific of estradiol has been obtained by coupling estradiol to albumin via a chain at position 7. For synthetic steroids the structure of which is sufficiency different from that of natural hormones, the requirements for a sensitive assay method not involving chromatography are simply maximum affinity and positioning of the couple at a site which does not undergo metabolic attack. These criteria were used to develop assays for R 2858 and R 2453 which obviate the need to administer radioactive product in clinical pharmacology. Cross-reaction with structural analogs may be used to assay competitors. Thus, R 2323 antibody, highly specific for endogenous steroids, may be used to assay other trienes such as R 1697 (trenbolone) and R 2010 (norgestrienone).

  5. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  6. Modeling the impacts of phenological and inter-annual changes in landscape metrics on local biodiversity of agricultural lands of Eastern Ontario using multi-spatial and multi-temporal remote sensing data

    Science.gov (United States)

    Alavi-Shoushtari, N.; King, D.

    2017-12-01

    Agricultural landscapes are highly variable ecosystems and are home to many local farmland species. Seasonal, phenological and inter-annual agricultural landscape dynamics have potential to affect the richness and abundance of farmland species. Remote sensing provides data and techniques which enable monitoring landscape changes in multiple temporal and spatial scales. MODIS high temporal resolution remote sensing images enable detection of seasonal and phenological trends, while Landsat higher spatial resolution images, with its long term archive enables inter-annual trend analysis over several decades. The objective of this study to use multi-spatial and multi-temporal remote sensing data to model the response of farmland species to landscape metrics. The study area is the predominantly agricultural region of eastern Ontario. 92 sample landscapes were selected within this region using a protocol designed to maximize variance in composition and configuration heterogeneity while controlling for amount of forest and spatial autocorrelation. Two sample landscape extents (1×1km and 3×3km) were selected to analyze the impacts of spatial scale on biodiversity response. Gamma diversity index data for four taxa groups (birds, butterflies, plants, and beetles) were collected during the summers of 2011 and 2012 within the cropped area of each landscape. To extract the seasonal and phenological metrics a 2000-2012 MODIS NDVI time-series was used, while a 1985-2012 Landsat time-series was used to model the inter-annual trends of change in the sample landscapes. The results of statistical modeling showed significant relationships between farmland biodiversity for several taxa and the phenological and inter-annual variables. The following general results were obtained: 1) Among the taxa groups, plant and beetles diversity was most significantly correlated with the phenological variables; 2) Those phenological variables which are associated with the variability in the start of

  7. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  8. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  9. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  10. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  11. The Ethics of Synthetic Biology

    DEFF Research Database (Denmark)

    Christiansen, Andreas

    The dissertation analyses and discusses a number of ethical issues that have been raised in connection with the development of synthetic biology. Synthetic biology is a set of new techniques for DNA-level design and construction of living beings with useful properties. The dissertation especially...

  12. Synthetic biology of polyketide synthases

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Backman, Tyler W.H.; Keasling, Jay D.

    2018-01-01

    ). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we...... realize the potential that synthetic biology approaches bring to this class of molecules....

  13. Structural and sensing characteristics of Gd2Ti2O7, Er2TiO5 and Lu2Ti2O7 sensing membrane electrolyte–insulator–semiconductor for bio-sensing applications

    International Nuclear Information System (INIS)

    Pan, Tung-Ming; Liao, Pei-You; Chang, Kung-Yuan; Chi, Lifeng

    2013-01-01

    Highlights: ► The structural and sensing properties of Gd 2 Ti 2 O 7 , Er 2 TiO 5 and Lu 2 Ti 2 O 7 sensing films grown on Si substrates by reactive co-sputtering. ► The EIS device incorporating a Lu 2 Ti 2 O 7 sensing film exhibited a higher sensitivity, a larger drift rate, a higher hysteresis voltage, and a larger hysteresis gap than other sensing films. ► The impedance effect of EIS sensors has been investigated using C–V method. -- Abstract: This paper describes the structural and sensing characteristics of Gd 2 Ti 2 O 7 , Er 2 TiO 5 , and Lu 2 Ti 2 O 7 sensing membranes deposited on Si substrates through reactive co-sputtering for electrolyte–insulator–semiconductor (EIS) pH sensors. In this work, the structural properties of Gd 2 Ti 2 O 7 , Er 2 TiO 5 , and Lu 2 Ti 2 O 7 membranes were investigated by X-ray diffraction, atomic force microscopy and X-ray photoelectron spectroscopy. The observed structural properties were then correlated with the resulting pH sensing performances. The EIS device incorporating a Lu 2 Ti 2 O 7 sensing film exhibited a higher sensitivity (59.32 mV pH −1 ), a larger drift rate (0.55 mV h −1 ), a higher hysteresis voltage (5 mV), and a larger hysteresis gap (∼70 mV) compared to those of the other sensing films. This result is attributed to the higher surface roughness and the formation of a thicker interfacial layer at the oxide–Si interface. Furthermore, the impedance effect of EIS sensors has been investigated using capacitance–voltage (C–V) method (frequency-dependent C–V curves). From the impedance spectroscopy analysis, we find that the diameter of a semicircle of an EIS sensor becomes smaller due to a gradual decrease in the bulk resistance of the device with degree of pH value

  14. Computing with synthetic protocells.

    Science.gov (United States)

    Courbet, Alexis; Molina, Franck; Amar, Patrick

    2015-09-01

    In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.

  15. Forest Disturbance Mapping Using Dense Synthetic Landsat/MODIS Time-Series and Permutation-Based Disturbance Index Detection

    Directory of Open Access Journals (Sweden)

    David Frantz

    2016-03-01

    Full Text Available Spatio-temporal information on process-based forest loss is essential for a wide range of applications. Despite remote sensing being the only feasible means of monitoring forest change at regional or greater scales, there is no retrospectively available remote sensor that meets the demand of monitoring forests with the required spatial detail and guaranteed high temporal frequency. As an alternative, we employed the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM to produce a dense synthetic time series by fusing Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS nadir Bidirectional Reflectance Distribution Function (BRDF adjusted reflectance. Forest loss was detected by applying a multi-temporal disturbance detection approach implementing a Disturbance Index-based detection strategy. The detection thresholds were permutated with random numbers for the normal distribution in order to generate a multi-dimensional threshold confidence area. As a result, a more robust parameterization and a spatially more coherent detection could be achieved. (i The original Landsat time series; (ii synthetic time series; and a (iii combined hybrid approach were used to identify the timing and extent of disturbances. The identified clearings in the Landsat detection were verified using an annual woodland clearing dataset from Queensland’s Statewide Landcover and Trees Study. Disturbances caused by stand-replacing events were successfully identified. The increased temporal resolution of the synthetic time series indicated promising additional information on disturbance timing. The results of the hybrid detection unified the benefits of both approaches, i.e., the spatial quality and general accuracy of the Landsat detection and the increased temporal information of synthetic time series. Results indicated that a temporal improvement in the detection of the disturbance date could be achieved relative to the irregularly spaced Landsat

  16. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  17. Synthetic Biology: Advancing Biological Frontiers by Building Synthetic Systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E; Smolke, Christina D

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  18. Approaches to chemical synthetic biology.

    Science.gov (United States)

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Synthetic Biology for Specialty Chemicals.

    Science.gov (United States)

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  20. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  1. Adaptive Synthetic Forces: Situation Awareness

    National Research Council Canada - National Science Library

    Hill, Randall

    2001-01-01

    ...: perception, comprehension, and prediction. Building on these ideas, we developed techniques for improving the situation awareness in synthetic helicopter pilots for the ModSAF military simulation by giving them more human-like perception...

  2. Programming languages for synthetic biology.

    Science.gov (United States)

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  3. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Science.gov (United States)

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  4. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    Science.gov (United States)

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  5. Synthetic biology, metaphors and responsibility.

    Science.gov (United States)

    McLeod, Carmen; Nerlich, Brigitte

    2017-08-29

    Metaphors are not just decorative rhetorical devices that make speech pretty. They are fundamental tools for thinking about the world and acting on the world. The language we use to make a better world matters; words matter; metaphors matter. Words have consequences - ethical, social and legal ones, as well as political and economic ones. They need to be used 'responsibly'. They also need to be studied carefully - this is what we want to do through this editorial and the related thematic collection. In the context of synthetic biology, natural and social scientists have become increasingly interested in metaphors, a wave of interest that we want to exploit and amplify. We want to build on emerging articles and books on synthetic biology, metaphors of life and the ethical and moral implications of such metaphors. This editorial provides a brief introduction to synthetic biology and responsible innovation, as well as a comprehensive review of literature on the social, cultural and ethical impacts of metaphor use in genomics and synthetic biology. Our aim is to stimulate an interdisciplinary and international discussion on the impact that metaphors can have on science, policy and publics in the context of synthetic biology.

  6. Content metamorphosis in synthetic holography

    International Nuclear Information System (INIS)

    Desbiens, Jacques

    2013-01-01

    A synthetic hologram is an optical system made of hundreds of images amalgamated in a structure of holographic cells. Each of these images represents a point of view on a three-dimensional space which makes us consider synthetic holography as a multiple points of view perspective system. In the composition of a computer graphics scene for a synthetic hologram, the field of view of the holographic image can be divided into several viewing zones. We can attribute these divisions to any object or image feature independently and operate different transformations on image content. In computer generated holography, we tend to consider content variations as a continuous animation much like a short movie. However, by composing sequential variations of image features in relation with spatial divisions, we can build new narrative forms distinct from linear cinematographic narration. When observers move freely and change their viewing positions, they travel from one field of view division to another. In synthetic holography, metamorphoses of image content are within the observer's path. In all imaging Medias, the transformation of image features in synchronisation with the observer's position is a rare occurrence. However, this is a predominant characteristic of synthetic holography. This paper describes some of my experimental works in the development of metamorphic holographic images.

  7. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  8. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  9. Synthetic neurosteroids on brain protection

    Directory of Open Access Journals (Sweden)

    Mariana Rey

    2015-01-01

    Full Text Available Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABA A receptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disorders via reducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl configuration is the key for binding and activity, but modifications in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions.

  10. Synthetic biology as red herring.

    Science.gov (United States)

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. US Competitiveness in Synthetic Biology.

    Science.gov (United States)

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  12. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  13. Synthetic biology and its promises

    Directory of Open Access Journals (Sweden)

    José Manuel De Cózar Escalante

    2016-12-01

    Full Text Available Synthetic biology is a new science and emerging technology, or rather a technoscience, which converges with others such as nanotechnology, information technology, robotics, artificial intelligence and neuroscience. All have common features that could have highly concerning social and environmental impacts. With its ambitious goals of controlling complexity, redesigning and creating new living entities, synthetic biology perfectly exemplifies the new bioeconomic reality. This requires expanding the focus of the discussion beyond the limited comparative analysis of risks and benefits, to address uncertainties, reassign responsibilities and initiate a thorough social assessment of what is at stake.

  14. Where Synthetic Biology Meets ET

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  15. Stereoscopy in cinematographic synthetic imagery

    Science.gov (United States)

    Eisenmann, Jonathan; Parent, Rick

    2009-02-01

    In this paper we present experiments and results pertaining to the perception of depth in stereoscopic viewing of synthetic imagery. In computer animation, typical synthetic imagery is highly textured and uses stylized illumination of abstracted material models by abstracted light source models. While there have been numerous studies concerning stereoscopic capabilities, conventions for staging and cinematography in stereoscopic movies have not yet been well-established. Our long-term goal is to measure the effectiveness of various cinematography techniques on the human visual system in a theatrical viewing environment. We would like to identify the elements of stereoscopic cinema that are important in terms of enhancing the viewer's understanding of a scene as well as providing guidelines for the cinematographer relating to storytelling. In these experiments we isolated stereoscopic effects by eliminating as many other visual cues as is reasonable. In particular, we aim to empirically determine what types of movement in synthetic imagery affect the perceptual depth sensing capabilities of our viewers. Using synthetic imagery, we created several viewing scenarios in which the viewer is asked to locate a target object's depth in a simple environment. The scenarios were specifically designed to compare the effectiveness of stereo viewing, camera movement, and object motion in aiding depth perception. Data were collected showing the error between the choice of the user and the actual depth value, and patterns were identified that relate the test variables to the viewer's perceptual depth accuracy in our theatrical viewing environment.

  16. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  17. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  18. Assessment of synthetic image fidelity

    Science.gov (United States)

    Mitchell, Kevin D.; Moorhead, Ian R.; Gilmore, Marilyn A.; Watson, Graham H.; Thomson, Mitch; Yates, T.; Troscianko, Tomasz; Tolhurst, David J.

    2000-07-01

    Computer generated imagery is increasingly used for a wide variety of purposes ranging from computer games to flight simulators to camouflage and sensor assessment. The fidelity required for this imagery is dependent on the anticipated use - for example when used for camouflage design it must be physically correct spectrally and spatially. The rendering techniques used will also depend upon the waveband being simulated, spatial resolution of the sensor and the required frame rate. Rendering of natural outdoor scenes is particularly demanding, because of the statistical variation in materials and illumination, atmospheric effects and the complex geometric structures of objects such as trees. The accuracy of the simulated imagery has tended to be assessed subjectively in the past. First and second order statistics do not capture many of the essential characteristics of natural scenes. Direct pixel comparison would impose an unachievable demand on the synthetic imagery. For many applications, such as camouflage design, it is important that nay metrics used will work in both visible and infrared wavebands. We are investigating a variety of different methods of comparing real and synthetic imagery and comparing synthetic imagery rendered to different levels of fidelity. These techniques will include neural networks (ICA), higher order statistics and models of human contrast perception. This paper will present an overview of the analyses we have carried out and some initial results along with some preliminary conclusions regarding the fidelity of synthetic imagery.

  19. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  20. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  1. Methods for preparing synthetic freshwaters.

    Science.gov (United States)

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis.

  2. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  3. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  4. Design Automation in Synthetic Biology.

    Science.gov (United States)

    Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas

    2017-04-03

    Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Synthetic biology character and impact

    CERN Document Server

    Pade, Christian; Wigger, Henning; Gleich, Arnim

    2015-01-01

    Synthetic Biology is already an object of intensive debate. However, to a great extent the discussion to date has been concerned with fundamental ethical, religious and philosophical questions. By contrast, based on an investigation of the field’s scientific and technological character, this book focuses on new functionalities provided by synthetic biology and explores the associated opportunities and risks. Following an introduction to the subject and a discussion of the most central paradigms and methodologies, the book provides an overview of the structure of this field of science and technology. It informs the reader about the current stage of development, as well as topical problems and potential opportunities in important fields of application. But not only the science itself is in focus. In order to investigate its broader impact, ecological as well as ethical implications will be considered, paving the way for a discussion of responsibilities in the context of a field at a transitional crossroads be...

  6. Synthetic greenhouse gases under control

    International Nuclear Information System (INIS)

    Horisberger, B.; Karlaganis, G.

    2003-01-01

    This article discusses new Swiss regulations on the use of synthetic materials that posses a considerable greenhouse-warming potential. Synthetic materials such as hydro-chlorofluorocarbons HCFCs, perfluoride-hydrocarbons and sulphur hexafluoride have, in recent years, replaced chlorofluorocarbons CFCs, which were banned on account of their ozone depletion characteristics. The use of these persistent substances is now being limited to applications where more environment-friendly alternatives are not available. The measures decreed in the legislation, which include a general ban on HCFCs as of 2004 and a ban on the export of installations and equipment that use ozone-depleting refrigerants are described. Details on the legislation's effects on the Swiss refrigeration industry are listed and discussed

  7. Towards Snowpack Characterization using C-band Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    Park, J.; Forman, B. A.

    2017-12-01

    Sentinel 1A and 1B, operated by the European Space Agency (ESA), carries a C-band synthetic aperture radar (SAR) sensor that can be used to monitor terrestrial snow properties. This study explores the relationship between terrestrial snow-covered area, snow depth, and snow water equivalent with Sentinel 1 backscatter observations in order to better characterize snow mass. Ground-based observations collected by the National Oceanic and Atmospheric Administration - Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) in Caribou, Maine in the United States are also used in the comparative analysis. Sentinel 1 Ground Range Detected (GRD) imagery with Interferometric Wide swath (IW) were preprocessed through a series of steps accounting for thermal noise, sensor orbit, radiometric calibration, speckle filtering, and terrain correction using ESA's Sentinel Application Platform (SNAP) software package, which is an open-source module written in Python. Comparisons of dual-polarized backscatter coefficients (i.e., σVV and σVH) with in-situ measurements of snow depth and SWE suggest that cross-polarized backscatter observations exhibit a modest correlation between both snow depth and SWE. In the case of the snow-covered area, a multi-temporal change detection method was used. Results using Sentinel 1 yield similar spatial patterns as when using hyperspectral observations collected by the MODerate Resolution Imaging Spectroradiometer (MODIS). These preliminary results suggest the potential application of Sentinel 1A/1B backscatter coefficients towards improved discrimination of snow cover, snow depth, and SWE. One goal of this research is to eventually merge C-band SAR backscatter observations with other snow information (e.g., passive microwave brightness temperatures) as part of a multi-sensor snow assimilation framework.

  8. Synthetic LDL as targeted drug delivery vehicle

    Science.gov (United States)

    Forte, Trudy M [Berkeley, CA; Nikanjam, Mina [Richmond, CA

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  9. Vibrational spectrum of synthetic carnotite

    Energy Technology Data Exchange (ETDEWEB)

    Baran, E J; Botto, I L [La Plata Univ. Nacional (Argentina). Facultad de Ciencias Exactas

    1976-05-01

    The infrared and laser-Raman spectra of synthetic carnotite, K/sub 2/((UO/sub 2/)/sub 2/V/sub 2/O/sub 8/), are reported and discussed. Force constants for the terminal V-O bonds as well as for the UO/sub 2//sup 2 +/ ions are evaluated. From the spectroscopic data, a U-O bond length of 1.81 A is estimated for the uranyl ion in this compound.

  10. Designer Drugs: A Synthetic Catastrophe

    OpenAIRE

    Fratantonio, James; Andrade, Lawrence; Febo, Marcelo

    2015-01-01

    Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are "Not for Human Consumption", therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance...

  11. Hydrogen speciation in synthetic quartz

    Science.gov (United States)

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  12. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  13. A Canadian refiner's perspective of synthetic crudes

    International Nuclear Information System (INIS)

    Halford, T.L.; McIntosh, A.P.; Rasmussen

    1997-01-01

    Some of the factors affecting a refiner's choice of crude oil include refinery hardware, particularly gas oil crackers, products slate and product specifications, crude availability, relative crude price and crude quality. An overview of synthetic crude, the use of synthetic crude combined with other crudes and a comparison of synthetic crude with conventional crude oil was given. The two main users of synthetic crude are basically two groups of refiners, those large groups who use synthetic crude combined with other crudes, and a smaller group who run synthetic crude on specially designed units as a sole feed. The effects of changes in fuel legislation were reviewed. It was predicted that the changes will have a mixed impact on the value of synthetic crude, but low sulphur diesel regulations and gasoline sulphur regulations will make current synthetic crudes attractive. The big future change with a negative impact will be diesel cetane increases to reduce engine emissions. This will reduce synthetic crude attractiveness due to distillate yields and quality and high gas oil yields. Similarly, any legislation limiting aromatics in diesel fuel will also make synthetic crudes less attractive. Problems experienced by refiners with hardware dedicated to synthetic crude (salt, naphthenic acid, fouling, quality variations) were also reviewed. 3 tabs

  14. Synthetic biology: Emerging bioengineering in Indonesia

    Science.gov (United States)

    Suhandono, Sony

    2017-05-01

    The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.

  15. Printability of Synthetic Papers by Electrophotography

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2010-04-01

    Full Text Available This paper deals with the printability of synthetic papers by the electrophotography technique. Prints of cmyk colour fields from 20% to 100% raster tone values were printed on three types of synthetic papers (one film synthetic paper and two fiber synthetic papers. The investigation of the appearance included densitometric measurement of the cmyk prints. The results have shown differences in the optical density and optical tone value between cmyk prints made on various synthetic papers. The highest optical density and the increase of the optical tone value were observed on the film synthetic paper, where cmyk prints were more saturated. The highest abrasion resistance of cmyk prints was obtained from the fibre synthetic paper.

  16. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando

    The main objective of this project was to continue the development of a synthetic aperture vector flow estimator. This type of estimator is capable of overcoming two of the major limitations in conventional ultrasound systems: 1) the inability to scan large region of interest with high temporal......, this thesis showed that novel information can be obtained with vector velocity methods providing quantitative estimates of blood flow and insight into the complexity of the hemodynamics dynamics. This could give the clinician a new tool in assessment and treatment of a broad range of diseases....

  17. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  18. Tracking the emergence of synthetic biology.

    Science.gov (United States)

    Shapira, Philip; Kwon, Seokbeom; Youtie, Jan

    2017-01-01

    Synthetic biology is an emerging domain that combines biological and engineering concepts and which has seen rapid growth in research, innovation, and policy interest in recent years. This paper contributes to efforts to delineate this emerging domain by presenting a newly constructed bibliometric definition of synthetic biology. Our approach is dimensioned from a core set of papers in synthetic biology, using procedures to obtain benchmark synthetic biology publication records, extract keywords from these benchmark records, and refine the keywords, supplemented with articles published in dedicated synthetic biology journals. We compare our search strategy with other recent bibliometric approaches to define synthetic biology, using a common source of publication data for the period from 2000 to 2015. The paper details the rapid growth and international spread of research in synthetic biology in recent years, demonstrates that diverse research disciplines are contributing to the multidisciplinary development of synthetic biology research, and visualizes this by profiling synthetic biology research on the map of science. We further show the roles of a relatively concentrated set of research sponsors in funding the growth and trajectories of synthetic biology. In addition to discussing these analyses, the paper notes limitations and suggests lines for further work.

  19. DNA recognition by synthetic constructs.

    Science.gov (United States)

    Pazos, Elena; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2011-09-05

    The interaction of transcription factors with specific DNA sites is key for the regulation of gene expression. Despite the availability of a large body of structural data on protein-DNA complexes, we are still far from fully understanding the molecular and biophysical bases underlying such interactions. Therefore, the development of non-natural agents that can reproduce the DNA-recognition properties of natural transcription factors remains a major and challenging goal in chemical biology. In this review we summarize the basics of double-stranded DNA recognition by transcription factors, and describe recent developments in the design and preparation of synthetic DNA binders. We mainly focus on synthetic peptides that have been designed by following the DNA interaction of natural proteins, and we discuss how the tools of organic synthesis can be used to make artificial constructs equipped with functionalities that introduce additional properties to the recognition process, such as sensing and controllability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthetic Biology of Polyhydroxyalkanoates (PHA).

    Science.gov (United States)

    Meng, De-Chuan; Chen, Guo-Qiang

    Microbial polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible polyesters which have been extensively studied using synthetic biology and metabolic engineering methods for improving production and for widening its diversity. Synthetic biology has allowed PHA to become composition controllable random copolymers, homopolymers, and block copolymers. Recent developments showed that it is possible to establish a microbial platform for producing not only random copolymers with controllable monomers and their ratios but also structurally defined homopolymers and block copolymers. This was achieved by engineering the genome of Pseudomonas putida or Pseudomonas entomophiles to weaken the β-oxidation and in situ fatty acid synthesis pathways, so that a fatty acid fed to the bacteria maintains its original chain length and structures when incorporated into the PHA chains. The engineered bacterium allows functional groups in a fatty acid to be introduced into PHA, forming functional PHA, which, upon grafting, generates endless PHA variety. Recombinant Escherichia coli also succeeded in producing efficiently poly(3-hydroxypropionate) or P3HP, the strongest member of PHA. Synthesis pathways of P3HP and its copolymer P3HB3HP of 3-hydroxybutyrate and 3-hydroxypropionate were assembled respectively to allow their synthesis from glucose. CRISPRi was also successfully used to manipulate simultaneously multiple genes and control metabolic flux in E. coli to obtain a series of copolymer P3HB4HB of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB). The bacterial shapes were successfully engineered for enhanced PHA accumulation.

  1. Vectoring of parallel synthetic jets

    Science.gov (United States)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  2. Synthetic membrane-targeted antibiotics.

    Science.gov (United States)

    Vooturi, S K; Firestine, S M

    2010-01-01

    Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.

  3. Synthetic vision display evaluation studies

    Science.gov (United States)

    Regal, David M.; Whittington, David H.

    1994-01-01

    The goal of this research was to help us understand the display requirements for a synthetic vision system for the High Speed Civil Transport (HSCT). Four experiments were conducted to examine the effects of different levels of perceptual cue complexity in displays used by pilots in a flare and landing task. Increased levels of texture mapping of terrain and runway produced mixed results, including harder but shorter landings and a lower flare initiation altitude. Under higher workload conditions, increased texture resulted in an improvement in performance. An increase in familiar size cues did not result in improved performance. Only a small difference was found between displays using two patterns of high resolution texture mapping. The effects of increased perceptual cue complexity on performance was not as strong as would be predicted from the pilot's subjective reports or from related literature. A description of the role of a synthetic vision system in the High Speed Civil Transport is provide along with a literature review covering applied research related to perceptual cue usage in aircraft displays.

  4. Word selection affects perceptions of synthetic biology

    Directory of Open Access Journals (Sweden)

    Tonidandel Scott

    2011-07-01

    Full Text Available Abstract Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008. Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create".

  5. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  6. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  7. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  8. Synthetic Lipoproteins as Carriers for Drug Delivery.

    Science.gov (United States)

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  9. Geo synthetic-reinforced Pavement systems

    International Nuclear Information System (INIS)

    Zornberg, J. G.

    2014-01-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  10. Veterans Affairs Suicide Prevention Synthetic Dataset

    Data.gov (United States)

    Department of Veterans Affairs — The VA's Veteran Health Administration, in support of the Open Data Initiative, is providing the Veterans Affairs Suicide Prevention Synthetic Dataset (VASPSD). The...

  11. Synthetic biology assemblies for sustainable space exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The work utilized synthetic biology to create sustainable food production processes by developing technology to efficiently convert inedible crop waste to...

  12. Synthetic biology of antimicrobial discovery

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K.

    2012-01-01

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore, used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251

  13. Preparation of synthetic standard minerals

    International Nuclear Information System (INIS)

    Herrick, C.C.; Bustamante, S.J.; Charls, R.W.; Cowan, R.E.; Hakkila, E.A.; Hull, D.E.; Olinger, B.W.; Roof, R.B.; Sheinberg, H.; Herrick, G.C.

    1978-01-01

    A number of techniques for synthetic mineral preparations have been examined. These techniques include hot-pressing in graphite dies at moderate pressures, high-pressure, high-temperature synthesis in a piston and cylinder apparatus, isostatic pressing under helium gas pressures, hydrous mineral preparations using water as the pressure medium, explosion-generated shock waves, and radiofrequency heating. Minerals suitable for equation-of-state studies (three-inch, high-density discs), for thermodynamic property determinations (low-density powders) and for microprobe standards (fusion-cast microbeads) have been prepared. Mechanical stress-strain calculations in the piston-cylinder apparatus have been initiated and their integration with thermal stress calculations is currently under investigation

  14. Synthetic biology of antimicrobial discovery.

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K

    2013-07-19

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.

  15. Synthetic biology: a utilitarian perspective.

    Science.gov (United States)

    Smith, Kevin

    2013-10-01

    I examine the positive and negative features of synthetic biology ('SynBio') from a utilitarian ethical perspective. The potential beneficial outcomes from SynBio in the context of medicine are substantial; however it is not presently possible to predict precise outcomes due to the nascent state of the field. Potential negative outcomes from SynBio also exist, including iatrogenesis and bioterrorism; however it is not yet possible to quantify these risks. I argue that the application of a 'precautionary' approach to SynBio is ethically fraught, as is the notion that SynBio-associated knowledge ought to be restricted. I conclude that utilitarians ought to support a broadly laissez-faire stance in respect of SynBio. © 2013 John Wiley & Sons Ltd.

  16. Synthetic biology: engineering molecular computers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  17. Microorganism Utilization for Synthetic Milk

    Science.gov (United States)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  18. Synergistic Synthetic Biology: Units in Concert

    International Nuclear Information System (INIS)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications.

  19. Study of seed for synthetical quartz

    International Nuclear Information System (INIS)

    Suzuki, C.K.; Torikai, D.

    1988-01-01

    Natural quartz blocks for seed (synthetic quartz technology) were studied by using various characterization techniques, such as X-ray topography, optical micrography, inspectoscopy, polariscopy and conoscopy, and etching. One of the most commonly found defect is the electrical or Dauphine twin. In The present research, we have developed a methodology to obtain a highly perfect seed for the synthetic quartz industries. (author) [pt

  20. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.

  1. Synergistic Synthetic Biology: Units in Concert

    Science.gov (United States)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications. PMID:25022769

  2. Metal immobilization in soils using synthetic zeolites

    NARCIS (Netherlands)

    Osté, L.A.; Lexmond, T.M.; Riemsdijk, van W.H.

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type,

  3. Synthetic and Empirical Capsicum Annuum Image Dataset

    NARCIS (Netherlands)

    Barth, R.

    2016-01-01

    This dataset consists of per-pixel annotated synthetic (10500) and empirical images (50) of Capsicum annuum, also known as sweet or bell pepper, situated in a commercial greenhouse. Furthermore, the source models to generate the synthetic images are included. The aim of the datasets are to

  4. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  5. Opportunities for microfluidic technologies in synthetic biology

    OpenAIRE

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed.

  6. Steel desulphurization with synthetic slag

    Directory of Open Access Journals (Sweden)

    Heput, T.

    2007-02-01

    Full Text Available Generally speaking, sulphur is considered a harmful element for steel quality, reason why all the technological steps are being taken in order to eliminate it from the metal bath. This paper deals with the influence of the chemical composition, on the slag quantity and of the bath stirring condition upon the desulphurization process in the casting ladle by treatment with synthetic slag. The experiments were made at an open-hearth plant with the steel tapping in two ladles (the desulphurization was made with synthetic slag at one ladle while the other one was considered standard and at the electric steel plant and for the synthetic slag formation a mix was used, made, according to several receipts, of: lime (50-75%, fluorine (0-17%, bauxite (0-32% and aluminous slag (8-22%. The data were processed in the calculation programs EXCEL and MATLAB, which resulted in a series of correlations between the desulphurization degree and the chemical composition of the slag, respectively the slag quantity both for the charges bubbled with Argon and the unbubbled ones.

    En general, el azufre es considerado un elemento nocivo para la calidad del acero y, por eso, en la práctica, se toman todas las medidas de orden tecnológico para su eliminación del baño metálico. En este trabajo se analiza la influencia de la composición química, de la cantidad de escoria y del estado de agitación del baño sobre el proceso de desulfuración en la cuchara para fundir por tratamiento con escoria sintética. Los experimentos se han realizado en una acería evacuando el acero en dos ollas (en una cuchara se efectuó la desulfuración con escoria sintética y a la otra se consideró como patrón y en un acería eléctrica y para la formación de la escoria sintética se utilizó una mezcla producida según muchas recetas, formada por: cal (50-75%, fluorina (0-17%, bauxita (0-32% y escoria aluminosa (8-22%. Los datos han sido procesados en los programas de c

  7. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  8. Mammalian synthetic biology: emerging medical applications.

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Mass Spectrometric Analysis of Synthetic Organic Pigments.

    Science.gov (United States)

    Sugaya, Naeko; Takahashi, Mitsuko; Sakurai, Katsumi; Tanaka, Nobuko; Okubo, Ichiro; Kawakami, Tsuyoshi

    2018-04-18

    Though synthetic organic colorants are used in various applications nowadays, there is the concern that impurities by-produced during the manufacturing and degradation products in some of these colorants are persistent organic pollutants and carcinogens. Thus, it is important to identify the synthetic organic colorants in various products, such as commercial paints, ink, cosmetics, food, textile, and plastics. Dyes, which are soluble in water and other solvents, could be analyzed by chromatographic methods. In contrast, it is difficult to analyze synthetic organic pigments by these methods because of their insolubility. This review is an overview of mass spectrometric analysis of synthetic organic pigments by various ionization methods. We highlight a recent study of textile samples by atmospheric pressure solid analysis probe MS. Furthermore, the mass spectral features of synthetic organic pigments and their separation from other components such as paint media and plasticizers are discussed.

  10. Science with Synthetic Stellar Surveys

    Science.gov (United States)

    Sanderson, Robyn Ellyn

    2018-04-01

    A new generation of observational projects is poised to revolutionize our understanding of the resolved stellar populations of Milky-Way-like galaxies at an unprecedented level of detail, ushering in an era of precision studies of galaxy formation. In the Milky Way itself, astrometric, spectroscopic and photometric surveys will measure three-dimensional positions and velocities and numerous chemical abundances for stars from the disk to the halo, as well as for many satellite dwarf galaxies. In the Local Group and beyond, HST, JWST and eventually WFIRST will deliver pristine views of resolved stars. The groundbreaking scale and dimensionality of this new view of resolved stellar populations in galaxies challenge us to develop new theoretical tools to robustly compare these surveys to simulated galaxies, in order to take full advantage of our new ability to make detailed predictions for stellar populations within a cosmological context. I will describe a framework for generating realistic synthetic star catalogs and mock surveys from state-of-the-art cosmological-hydrodynamical simulations, and present several early scientific results from, and predictions for, resolved stellar surveys of our Galaxy and its neighbors.

  11. Synthetic mimics of antimicrobial peptides.

    Science.gov (United States)

    Som, Abhigyan; Vemparala, Satyavani; Ivanov, Ivaylo; Tew, Gregory N

    2008-01-01

    Infectious diseases and antibiotic resistance are now considered the most imperative global healthcare problem. In the search for new treatments, host defense, or antimicrobial, peptides have attracted considerable attention due to their various unique properties; however, attempts to develop in vivo therapies have been severely limited. Efforts to develop synthetic mimics of antimicrobial peptides (SMAMPs) have increased significantly in the last decade, and this review will focus primarily on the structural evolution of SMAMPs and their membrane activity. This review will attempt to make a bridge between the design of SMAMPs and the fundamentals of SMAMP-membrane interactions. In discussions regarding the membrane interaction of SMAMPs, close attention will be paid to the lipid composition of the bilayer. Despite many years of study, the exact conformational aspects responsible for the high selectivity of these AMPs and SMAMPs toward bacterial cells over mammalian cells are still not fully understood. The ability to design SMAMPs that are potently antimicrobial, yet nontoxic to mammalian cells has been demonstrated with a variety of molecular scaffolds. Initial animal studies show very good tissue distribution along with more than a 4-log reduction in bacterial counts. The results on SMAMPs are not only extremely promising for novel antibiotics, but also provide an optimistic picture for the greater challenge of general proteomimetics.

  12. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  13. Online professionalism: A synthetic review.

    Science.gov (United States)

    Chretien, Katherine C; Tuck, Matthew G

    2015-04-01

    The rise of social media has increased connectivity and blurred personal and professional boundaries, bringing new challenges for medical professionalism. Whether traditional professionalism principles apply to the online social media space remains unknown. The purpose of this synthetic literature review was to characterize the original peer-reviewed research studies published between 1 January 2000-1 November 2014 on online professionalism, to assess methodologies and approaches used, and to provide insights to guide future studies in this area. The investigators searched three databases and performed manual searches of bibliographies to identify the 32 studies included. Most studies originated in the USA. Cross-sectional surveys and analyses of publicly available online content were the most common methodologies employed. Studies covered the general areas of use and privacy, assessment of unprofessional online behaviours, consensus-gathering of what constitutes unprofessional or inappropriate online behaviours, and education and policies. Studies were of variable quality; only around half of survey studies had response rates of 50% or greater. Medical trainees were the most common population studied. Future directions for research include public perspectives of online professionalism, impact on patient trust, and how to use social media productively as medical professionals.

  14. Coseismic Deformation of Chi-Chi Earthquake as Detected by Differential Synthetic Aperture Radar Interferometry and GPS Data

    Directory of Open Access Journals (Sweden)

    Chia-Sheng Hsieh Tian-Yuan Shih

    2006-01-01

    Full Text Available A rupture in the Chelungpu fault caused an Mw 7.6 earthquake on 21 September 1999 near Chi-Chi in central Taiwan. This earthquake was the most destructive experienced in Taiwan for the past century along this fault. In this study, we examined the earthquake-induced surface deformation pattern using differential synthetic aperture radar interferometry (D-InSAR combined with global positioning system (GPS data regarding the footwall of the Chelungpu fault. Six synthetic aperture radar (SAR scenes, approximately 100 × 100 km each, recorded by the European Remote Sensing Satellite 2 (ERS-2, spanning the rupture area, were selected for study. The data were used to generate a high-resolution, wide-area map of displacements in flat or semi-flat areas. Interferograms show radar line contours indicating line-of-sight (LOS changes corresponding to surface displacements caused by earthquake ruptures. These results were compared to synthetic interferograms generated from GPS data. Displacements shown by GPS data were interpolated onto wide-area maps and transformed to coincide with the radar LOS direction. The resulting coseismic displacement contour map showed a lobed pattern consistent with the precise GPSbased displacement field. Highly accurate vertical displacement was determined using D-InSAR data using the coordinate transform method, while GPS data was effective in showing the horizontal component. Thus, this study confirmed the effectiveness of the D-InSAR method for determining the coseismic deformation caused by the Chi-Chi earthquake at the footwall of the Chelungpu fault.

  15. Synthetic Biology: Mapping the Scientific Landscape

    Science.gov (United States)

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  16. Synthetic Biology: game changer in intelectual property

    Directory of Open Access Journals (Sweden)

    Laurens Landeweerd

    2016-12-01

    Full Text Available Synthetic biology can be considered a game changer that plays an important role in the current NBIC, or BINC convergence of nano-, bio-, info and cognitive sciences. Although most synthetic biology experts are unaware of it, the field appeals to the imagination in its adherence to targets that were usually associated with premodern alchemist science. This paper elaborates several aspects of synthetic biology as well as its consequences for long held notions of intellectual property and the ontological categories of scientific discovery on the one hand and engineering on the other, the distinction between natural and artificial, the grown and the made.

  17. Defining the Synthetic Biology Supply Chain

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Hund, Gretchen E.; Bonheyo, George T.; Diggans, James; Bartholomew, Rachel A.; Gehrig, Lindsey; Greaves, Mark

    2017-08-01

    In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology. The team analyzes selected interactions within that network to better understand the risks raised by synthetic biology and identifies opportunities for risk mitigation. To introduce the concept, the article will briefly describe how an understanding of supply chains has been important in promoting nuclear nonproliferation objectives. The article concludes by assessing the structure and networks identified in the supply chains to reveal potential opportunities for future biodefense research and development; options for additional information exchange; and means to interdict, detect, or deter suspicious activity.

  18. [Smart therapeutics based on synthetic gene circuits].

    Science.gov (United States)

    Peng, Shuguang; Xie, Zhen

    2017-03-25

    Synthetic biology has an important impact on biology research since its birth. Applying the thought and methods that reference from electrical engineering, synthetic biology uncovers many regulatory mechanisms of life systems, transforms and expands a series of biological components. Therefore, it brings a wide range of biomedical applications, including providing new ideas for disease diagnosis and treatment. This review describes the latest advances in the field of disease diagnosis and therapy based on mammalian cell or bacterial synthetic gene circuits, and provides new ideas for future smart therapy design.

  19. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  20. [Progress in synthetic biology of "973 Funding Program" in China].

    Science.gov (United States)

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.

  1. Monitoring flooding and vegetation on seasonally inundated floodplains with multifrequency polarimetric synthetic aperture radar

    Science.gov (United States)

    Hess, Laura Lorraine

    case of distinguishing flooded macrophyte from non-flooded forest vegetation. However, the large changes in backscattering caused by flooding make it possible to achieve good accuracies (>85%) using multi-temporal data. Where river stage records are available, SAR-based maps of inundation status on a series of dates can be linked to long-term stage data to define wetland habitat types based on flooding regime and low-water vegetation cover.

  2. CRISPR and the Rebirth of Synthetic Biology

    NARCIS (Netherlands)

    Heidari, Raheleh; Shaw, David Martin; Elger, Bernice Simone

    Emergence of novel genome engineering technologies such as clustered regularly interspaced short palindromic repeat (CRISPR) has refocused attention on unresolved ethical complications of synthetic biology. Biosecurity concerns, deontological issues and human right aspects of genome editing have

  3. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    Science.gov (United States)

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  4. Synthetic biology platform technologies for antimicrobial applications.

    Science.gov (United States)

    Braff, Dana; Shis, David; Collins, James J

    2016-10-01

    The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Synthetic Sediments and Stochastic Groundwater Hydrology

    Science.gov (United States)

    Wilson, J. L.

    2002-12-01

    For over twenty years the groundwater community has pursued the somewhat elusive goal of describing the effects of aquifer heterogeneity on subsurface flow and chemical transport. While small perturbation stochastic moment methods have significantly advanced theoretical understanding, why is it that stochastic applications use instead simulations of flow and transport through multiple realizations of synthetic geology? Allan Gutjahr was a principle proponent of the Fast Fourier Transform method for the synthetic generation of aquifer properties and recently explored new, more geologically sound, synthetic methods based on multi-scale Markov random fields. Focusing on sedimentary aquifers, how has the state-of-the-art of synthetic generation changed and what new developments can be expected, for example, to deal with issues like conceptual model uncertainty, the differences between measurement and modeling scales, and subgrid scale variability? What will it take to get stochastic methods, whether based on moments, multiple realizations, or some other approach, into widespread application?

  6. Philosophy of Systems and Synthetic Biology

    DEFF Research Database (Denmark)

    Green, Sara

    2017-01-01

    This entry aims to clarify how systems and synthetic biology contribute to and extend discussions within philosophy of science. Unlike fields such as developmental biology or molecular biology, systems and synthetic biology are not easily demarcated by a focus on a specific subject area or level...... of organization. Rather, they are characterized by the development and application of mathematical, computational, and synthetic modeling strategies in response to complex problems and challenges within the life sciences. Proponents of systems and synthetic biology often stress the necessity of a perspective...... that goes beyond the scope of molecular biology and genetic engineering, respectively. With the emphasis on systems and interaction networks, the approaches explicitly engage in one of the oldest philosophical discussions on the relationship between parts and wholes, or between reductionism and holism...

  7. Defining the Synthetic Biology Supply Chain.

    Science.gov (United States)

    Frazar, Sarah L; Hund, Gretchen E; Bonheyo, George T; Diggans, James; Bartholomew, Rachel A; Gehrig, Lindsey; Greaves, Mark

    Several recent articles have described risks posed by synthetic biology and spurred vigorous discussion in the scientific, commercial, and government communities about how to best detect, prevent, regulate, and respond to these risks. The Pacific Northwest National Laboratory's (PNNL) deep experience working with dual-use technologies for the nuclear industry has shown that analysis of supply chains can reveal security vulnerabilities and ways to mitigate security risk without hindering beneficial research and commerce. In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology to illustrate new insights about the effectiveness of current regulations, the possible need for different screening approaches, and new technical solutions that could help identify or mitigate risks in the synthetic biology supply chain.

  8. Synthetic Sling Failure - Evaluations and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. S. [Washington River Protection Solutions, Richland, WA (United States); Mackey, Thomas C. [Washington River Protection Solutions, Richland, WA (United States)

    2009-10-26

    The information and evaluations provided in this report were compiled to address the recurring problem of synthetic sling failure. As safety is the number one priority in all work aspects, a solution must be devised to prevent accidents from occurring. A total of thirteen cases regarding synthetic sling failure were evaluated in order to determine their causes, effects, and preventative measures. From the collected data, it was found that all cases in which the synthetic sling contacted the edge of its load resulted in sling failure. It is required that adequate synthetic sling protection devices be used to protect slings in any lift where the sling comes in direct contact with the edge or corner of its load. However, there are no consensus codes or standards stating the type, material, or purpose of the type of protective device used to protect the sling from being cut. Numerous industry standards and codes provide vague descriptions on how to protect synthetic slings. Without a clear, concise statement of how to protect synthetic slings, it is common for inadequate materials and sling protection devices to be used in an attempt to meet the intent of these requirements. The use of an inadequate sling protection device is the main cause of synthetic sling failure in all researched cases. Commercial sling protection devices come in many shapes and sizes, and have a variety of names, as well as advertised uses. 'Abrasion pads' and 'wear protectors' are two different names for products with the same intended purpose. There is no distinguishable way to determine the extent of sling protection which these devices will provide, or what specific scenarios they are made for. This creates room for error in a field where error is unacceptable. This report provides a recommended action for hoisting and rigging activities which require synthetic slings to contact a load, as well as recommended changes to industry standards which will benefit overall

  9. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology.

    Science.gov (United States)

    Galdzicki, Michal; Clancy, Kevin P; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline Y; Rodriguez, Cesar A; Roehner, Nicholas; Wilson, Mandy L; Adam, Laura; Anderson, J Christopher; Bartley, Bryan A; Beal, Jacob; Chandran, Deepak; Chen, Joanna; Densmore, Douglas; Endy, Drew; Grünberg, Raik; Hallinan, Jennifer; Hillson, Nathan J; Johnson, Jeffrey D; Kuchinsky, Allan; Lux, Matthew; Misirli, Goksel; Peccoud, Jean; Plahar, Hector A; Sirin, Evren; Stan, Guy-Bart; Villalobos, Alan; Wipat, Anil; Gennari, John H; Myers, Chris J; Sauro, Herbert M

    2014-06-01

    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.

  10. Synthetic Biology and the Translational Imperative.

    Science.gov (United States)

    Heidari Feidt, Raheleh; Ienca, Marcello; Elger, Bernice Simone; Folcher, Marc

    2017-12-18

    Advances at the interface between the biological sciences and engineering are giving rise to emerging research fields such as synthetic biology. Harnessing the potential of synthetic biology requires timely and adequate translation into clinical practice. However, the translational research enterprise is currently facing fundamental obstacles that slow down the transition of scientific discoveries from the laboratory to the patient bedside. These obstacles including scarce financial resources and deficiency of organizational and logistic settings are widely discussed as primary impediments to translational research. In addition, a number of socio-ethical considerations inherent in translational research need to be addressed. As the translational capacity of synthetic biology is tightly linked to its social acceptance and ethical approval, ethical limitations may-together with financial and organizational problems-be co-determinants of suboptimal translation. Therefore, an early assessment of such limitations will contribute to proactively favor successful translation and prevent the promising potential of synthetic biology from remaining under-expressed. Through the discussion of two case-specific inventions in synthetic biology and their associated ethical implications, we illustrate the socio-ethical challenges ahead in the process of implementing synthetic biology into clinical practice. Since reducing the translational lag is essential for delivering the benefits of basic biomedical research to society at large and promoting global health, we advocate a moral obligation to accelerating translational research: the "translational imperative."

  11. Synthetic biology era: Improving antibiotic's world.

    Science.gov (United States)

    Guzmán-Trampe, Silvia; Ceapa, Corina D; Manzo-Ruiz, Monserrat; Sánchez, Sergio

    2017-06-15

    The emergence of antibiotic-resistant pathogen microorganisms is problematic in the context of the current spectrum of available medication. The poor specificity and the high toxicity of some available molecules have made imperative the search for new strategies to improve the specificity and to pursue the discovery of novel compounds with increased bioactivity. Using living cells as platforms, synthetic biology has counteracted this problem by offering novel pathways to create synthetic systems with improved and desired functions. Among many other biotechnological approaches, the advances in synthetic biology have made it possible to design and construct novel biological systems in order to look for new drugs with increased bioactivity. Advancements have also been made in the redesigning of RNA and DNA molecules in order to engineer antibiotic clusters for antibiotic overexpression. As for the production of these antibacterial compounds, yeasts and filamentous fungi as well as gene therapy are utilized to enhance protein solubility. Specific delivery is achieved by creating chimeras using plant genes into bacterial hosts. Some of these synthetic systems are currently in clinical trials, proving the proficiency of synthetic biology in terms of both pharmacological activities as well as an increase in the biosafety of treatments. It is possible that we may just be seeing the tip of the iceberg, and synthetic biology applications will overpass expectations beyond our present knowledge. Copyright © 2017. Published by Elsevier Inc.

  12. Synthetic cannabis and acute ischemic stroke.

    Science.gov (United States)

    Bernson-Leung, Miya E; Leung, Lester Y; Kumar, Sandeep

    2014-01-01

    An association between marijuana use and stroke has been previously reported. However, the health risks of newer synthetic cannabinoid compounds are less well known. We describe 2 cases that introduce a previously unreported association between synthetic cannabis use and ischemic stroke in young adults. A 22-year-old woman presented with dysarthria, left hemiplegia, and left hemianesthesia within hours of first use of synthetic cannabis. She was healthy and without identified stroke risk factors other than oral contraceptive use and a patent foramen ovale without venous thromboses. A 26-year-old woman presented with nonfluent aphasia, left facial droop, and left hemianesthesia approximately 12 hours after first use of synthetic cannabis. Her other stroke risk factors included migraine with aura, oral contraceptive use, smoking, and a family history of superficial thrombophlebitis. Both women were found to have acute, large-territory infarctions of the right middle cerebral artery. Our 2 cases had risk factors for ischemic stroke but were otherwise young and healthy and the onset of their deficits occurred within hours after first-time exposure to synthetic cannabis. Synthetic cannabis use is an important consideration in the investigation of stroke in young adults. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Multi temporal monitoring and assessment of desertification in Andalusia (Spain)

    International Nuclear Information System (INIS)

    Rodriguez Surian, M.; Moreira Madueno, J. M.; Quijada Munoz, J.; Corzo Toscano, M.; Gil Gimenez, T.

    2009-01-01

    Desertification, as a process of degradation caused by the confluence of certain arid or semiarid climatic conditions together with aggressive and barely sustainable human activities in the natural and productive environment, and also bearing in mind the current context of climate change, is an environmental phenomenon whose monitoring would seem to be advisable, both with regard to its evolution in recent years and in relation to the changes that the new climatic scenarios may determine, in order to prepare mitigation or enhancement strategies, and also to raise greater awareness of the approaching problems. (Author) 4 refs.

  14. and remote sensing for multi-temporal analysis of sand ...

    African Journals Online (AJOL)

    dalel

    remote sensing techniques particularly those referring to change detection. This kind of ... Technol. depending on many factors in relation to climate conditions, nature .... geomorphologic position make it a perfect wind corridor. (Chahbani ...

  15. MULTI-TEMPORAL CLASSIFICATION AND CHANGE DETECTION USING UAV IMAGES

    Directory of Open Access Journals (Sweden)

    S. Makuti

    2018-05-01

    Full Text Available In this paper different methodologies for the classification and change detection of UAV image blocks are explored. UAV is not only the cheapest platform for image acquisition but it is also the easiest platform to operate in repeated data collections over a changing area like a building construction site. Two change detection techniques have been evaluated in this study: the pre-classification and the post-classification algorithms. These methods are based on three main steps: feature extraction, classification and change detection. A set of state of the art features have been used in the tests: colour features (HSV, textural features (GLCM and 3D geometric features. For classification purposes Conditional Random Field (CRF has been used: the unary potential was determined using the Random Forest algorithm while the pairwise potential was defined by the fully connected CRF. In the performed tests, different feature configurations and settings have been considered to assess the performance of these methods in such challenging task. Experimental results showed that the post-classification approach outperforms the pre-classification change detection method. This was analysed using the overall accuracy, where by post classification have an accuracy of up to 62.6 % and the pre classification change detection have an accuracy of 46.5 %. These results represent a first useful indication for future works and developments.

  16. Multi-temporal Assessment of Forest Cover, Stocking parameters ...

    African Journals Online (AJOL)

    user

    conventional forest inventory and remote sensing and GIS techniques. Results show that .... sensing does not measure biomass directly, but rather it measures other ... with good drainage and vegetation is mostly dry Miombo (Lovett and Pócs ...

  17. Multi-Temporal Analysis of Landsat Imagery for Bathymetry.

    Science.gov (United States)

    1983-05-01

    warping, etc.) have been carried out * as described in section 3.4 and the DIPS operator manuals . For each date * the best available parameter...1982. 5. Digital Image Processing System User’s Manual DBA Systems, Inc., Under Contract DMA800-78-C-0101, 8 November 1979. 6. Naylor, L.D. Status of...OMA. 7H Q!T4 HTP I)FP!H ANALYSIS SOFTWARE CAN 91 INTAL.LEn ON DMA#S 11/45 Py n !ING THE FOLLOWrNns STEPSt !OG ’IN 1,%P] tTH! UIC USED FOR THE ERIM

  18. Multi-temporal Assessment of Forest Cover, Stocking parameters ...

    African Journals Online (AJOL)

    user

    The study assessed forest cover, stocking parameters and above-ground tree .... deration new emerging ideas on REDD+, this study .... representing areas of change and zero values representing no ..... John Wiley & Sons, Inc. New York.

  19. PHOTOGRAMMETRIC EVALUATION OF MULTI-TEMPORAL FIXED WING UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    E. Gülch

    2012-09-01

    Full Text Available Several flights have been undertaken with PAMS (Photogrammetric Aerial Mapping System by Germatics, Germany, which is briefly introduced. This system is based on the SmartPlane fixed-wing UAV and a CANON IXUS camera system. The plane is equipped with GPS and has an infrared sensor system to estimate attitude values. A software has been developed to link the PAMS output to a standard photogrammetric processing chain built on Trimble INPHO. The linking of the image files and image IDs and the handling of different cases with partly corrupted output have to be solved to generate an INPHO project file. Based on this project file the software packages MATCH-AT, MATCH-T DSM, OrthoMaster and OrthoVista for digital aerial triangulation, DTM/DSM generation and finally digital orthomosaik generation are applied. The focus has been on investigations on how to adapt the "usual" parameters for the digital aerial triangulation and other software to the UAV flight conditions, which are showing high overlaps, large kappa angles and a certain image blur in case of turbulences. It was found, that the selected parameter setup shows a quite stable behaviour and can be applied to other flights. Investigations have been performed to improve the image quality estimates by the PAMS software and extend it to whole images. This gives the user a reliable basis when deciding on rejecting images with low quality for the follow-up process. Flights over the same area at different times have been compared to each other. The major objective was first to see, on how far differences occur relative to each other, without having access to ground control data, which would have a potential for applications with low requirements on the absolute accuracy. In a second stage the results are compared to GPS measurements on the ground. The results show, that there are influences of weather and illumination visible. The "unusual" flight pattern, which shows big time differences for neighbouring strips has an influence on the AT and DTM/DSM generation. The results obtained so far do indicate problems in the stability of the camera calibration and a need for some GCPs. It is clearly recommended to use at least a moderate number of GCPs for all projects, independent on the application, as the GPS data of the sensor does not proof to be sufficient.

  20. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders

    Science.gov (United States)

    Rußwurm, Marc; Körner, Marco

    2018-03-01

    Earth observation (EO) sensors deliver data with daily or weekly temporal resolution. Most land use and land cover (LULC) approaches, however, expect cloud-free and mono-temporal observations. The increasing temporal capabilities of today's sensors enables the use of temporal, along with spectral and spatial features. Domains, such as speech recognition or neural machine translation, work with inherently temporal data and, today, achieve impressive results using sequential encoder-decoder structures. Inspired by these sequence-to-sequence models, we adapt an encoder structure with convolutional recurrent layers in order to approximate a phenological model for vegetation classes based on a temporal sequence of Sentinel 2 (S2) images. In our experiments, we visualize internal activations over a sequence of cloudy and non-cloudy images and find several recurrent cells, which reduce the input activity for cloudy observations. Hence, we assume that our network has learned cloud-filtering schemes solely from input data, which could alleviate the need for tedious cloud-filtering as a preprocessing step for many EO approaches. Moreover, using unfiltered temporal series of top-of-atmosphere (TOA) reflectance data, we achieved in our experiments state-of-the-art classification accuracies on a large number of crop classes with minimal preprocessing compared to other classification approaches.

  1. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  2. Synthetic bedding and wheeze in childhood.

    Science.gov (United States)

    Ponsonby, Anne-Louise; Dwyer, Terence; Kemp, Andrew; Cochrane, Jennifer; Couper, David; Carmichael, Allan

    2003-01-01

    The reasons for the increase in childhood asthma over time are unclear. The indoor environment is of particular concern. An adverse role for synthetic bedding on asthma development in childhood has been suggested by cross-sectional studies that have found an association between synthetic pillow use and childhood wheeze. Prospective data on infant bedding have not been available. Bedding data at 1 month of age were available from an infant survey for children who were participating in a 1995 follow-up study (N = 863; 78% traced). The 1995 follow-up was embedded in a larger cross-sectional survey involving 6,378 seven year olds in Tasmania (N = 92% of eligible). Outcome measures included respiratory symptoms as defined in the International Study of Asthma and Allergies in Childhood protocol. Frequent wheeze was defined as more than 12 wheeze episodes over the past year compared with no wheeze. Synthetic pillow use at 1 month of age was associated with frequent wheeze at age 7 (adjusted relative risk [aRR] = 2.5; 95% confidence interval [CI] = 1.2-5.5) independent of childhood exposure. Current synthetic pillow and quilt use was strongly associated with frequent wheeze (aRR = 5.2; CI = 1.3-20.6). Substantial trends were evident for an association of increasing number of synthetic bedding items with frequent wheeze and with increasing wheeze frequency. Among children with asthma, the age of onset of asthma occurred earlier if synthetic bedding was used in infancy. In this cohort, synthetic bedding was strongly and consistently associated with frequent childhood wheeze. The association did not appear to be attributable to bedding choice as part of an asthma management strategy.

  3. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  4. On the retrieval of significant wave heights from spaceborne Synthetic Aperture Radar using the Max-Planck Institut algorithm.

    Science.gov (United States)

    Violante-Carvalho, Nelson

    2005-12-01

    Synthetic Aperture Radar (SAR) onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM) imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI) scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.

  5. 21 CFR 73.1200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  6. 21 CFR 73.200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  7. 21 CFR 172.888 - Synthetic petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...

  8. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. WISB: Warwick Integrative Synthetic Biology Centre.

    Science.gov (United States)

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  10. Cfd modeling of a synthetic jet actuator

    International Nuclear Information System (INIS)

    Dghim, Marouane; Ben Chiekh, Maher; Ben Nasrallah, Sassi

    2009-01-01

    Synthetic jet actuators show good promise as an enabling technology for innovative boundary layer flow control applied to external surfaces, like airplane wings, and to internal flows, like those occurring in a curved engine inlet. The appealing characteristics of a synthetic jet are zero-net-mass flux operation and an efficient control effect that takes advantages of unsteady fluid phenomena. The formation of a synthetic jet in a quiescent external air flow is only beginning to be understood and a rational understanding of these devices is necessary before they can be applied to the control of flows outside of the laboratory. The synthetic jet flow generated by a planar orifice is investigated here using computational approach. Computations of the 2D synthetic jet are performed with unsteady RANS modeled with the Realizable κ - ε turbulence model available in FLUENT environment. In this present work, the ability of the first order turbulence model, employed in our computations, to model the formation of the counter-rotating-vortex pair (CVP) that appears in the flow-field was investigated. Computational results were in good agreement with experimental measurements. The effectiveness of such control actuator was tested on separated boundary layer. Preliminary investigation were presented and discussed

  11. Synthetic cathinones: a new public health problem.

    Science.gov (United States)

    Karila, Laurent; Megarbane, Bruno; Cottencin, Olivier; Lejoyeux, Michel

    2015-01-01

    New psychoactive substances (NPS) have completely modified the drug scene and the current landscape of addiction. Synthetic substances, such as substituted or synthetic cathinones, also known as « legal highs », are often produced and used to mimic the effects of controlled drugs such as cocaine, methylenedioxymethamphetamine (MDMA, ecstasy), and methamphetamine. The overwhelming majority of synthetic cathinones are produced in China and South East Asian countries. The Internet has emerged as the new marketplace for NPS, playing a major role in providing information on acquisition, synthesis, extraction, identification, and substance use. All these compounds are intentionally mislabeled and sold on-line under slang terms such as bath salts, plant food, plant feeders and research chemicals. They are sometimes labeled « not for human use » or « not tested for hazards or toxicity ». The rapid spread of NPS forces member countries of the European Union to adapt their response to the potential new dangers that may cause. To date, not only health actors but also the general public need to be clearly informed and aware of dangers resulting from NPS spread and use. Here, we review the major clinical effects of synthetic cathinones to highlight their impact on public health. A literature search was conducted from 2009 to 2014 based on PubMed, Google Scholar, Erowid, and governmental websites, using the following keywords alone or in combination: "new psychoactive substances", "synthetic cathinones", "substituted cathinones", "mephedrone", "methylone", "MDPV", "4-MEC", "addiction", and "substance use disorder".

  12. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  13. [Treatment approaches for synthetic drug addiction].

    Science.gov (United States)

    Kobayashi, Ohji

    2015-09-01

    In Japan, synthetic drugs have emerged since late 2000s, and cases of emergency visits and fatal traffic accidents due to acute intoxication have rapidly increased. The synthetic drugs gained popularity mainly because they were cheap and thought to be "legal". The Japanese government restricted not only production and distribution, but also its possession and use in April 2014. As the synthetic drug dependent patients have better social profiles compared to methamphetamine abusers, this legal sanction may have triggered the decrease in the number of synthetic drug dependent patient visits observed at Kanagawa Psychiatric Center since July 2014. Treatment of the synthetic drug dependent patients should begin with empathic inquiry into the motives and positive psychological effects of the drug use. In the maintenance phase, training patients to trust others and express their hidden negative emotions through verbal communications is essential. The recovery is a process of understanding the relationship between psychological isolation and drug abuse, and gaining trust in others to cope with negative emotions that the patients inevitably would face in their subsequent lives.

  14. Role of Synthetic and Dimensional Synthetic Organic Chemistry in Block Copolymer Micelle Nanosensor Engineering

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar

    This thesis investigated the role of amphiphilic triblock copolymer micelle nanomaterials in nanosensors, with emphasis on the synthesis of micelle particle sensors. The thesis is focused on the role of synthetic and dimensional synthetic organic chemistry in amphiphilic triblock core-shellcorona...

  15. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  16. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available......Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central...... for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression...

  17. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  18. CSBB: synthetic biology research at Newcastle University.

    Science.gov (United States)

    Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio

    2017-06-15

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).

  19. Is It Time for Synthetic Biodiversity Conservation?

    Science.gov (United States)

    Piaggio, Antoinette J; Segelbacher, Gernot; Seddon, Philip J; Alphey, Luke; Bennett, Elizabeth L; Carlson, Robert H; Friedman, Robert M; Kanavy, Dona; Phelan, Ryan; Redford, Kent H; Rosales, Marina; Slobodian, Lydia; Wheeler, Keith

    2017-02-01

    Evidence indicates that, despite some critical successes, current conservation approaches are not slowing the overall rate of biodiversity loss. The field of synthetic biology, which is capable of altering natural genomes with extremely precise editing, might offer the potential to resolve some intractable conservation problems (e.g., invasive species or pathogens). However, it is our opinion that there has been insufficient engagement by the conservation community with practitioners of synthetic biology. We contend that rapid, large-scale engagement of these two communities is urgently needed to avoid unintended and deleterious ecological consequences. To this point we describe case studies where synthetic biology is currently being applied to conservation, and we highlight the benefits to conservation biologists from engaging with this emerging technology. Published by Elsevier Ltd.

  20. Bioinspired Chemical Communication between Synthetic Nanomotors.

    Science.gov (United States)

    Chen, Chuanrui; Chang, Xiaocong; Teymourian, Hazhir; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Lu, Xiaolong; Li, Jinxing; He, Sha; Fang, Chengcheng; Liang, Yuyan; Mou, Fangzhi; Guan, Jianguo; Wang, Joseph

    2018-01-02

    While chemical communication plays a key role in diverse natural processes, the intelligent chemical communication between synthetic nanomotors remains unexplored. The design and operation of bioinspired synthetic nanomotors is presented. Chemical communication between nanomotors is possible and has an influence on propulsion behavior. A chemical "message" is sent from a moving activator motor to a nearby activated (receiver) motor by release of Ag + ions from a Janus polystyrene/Ni/Au/Ag activator motor to the activated Janus SiO 2 /Pt nanomotor. The transmitted silver signal is translated rapidly into a dramatic speed change associated with the enhanced catalytic activity of activated motors. Selective and successive activation of multiple nanomotors is achieved by sequential localized chemical communications. The concept of establishing chemical communication between different synthetic nanomotors paves the way to intelligent nanoscale robotic systems that are capable of cooperating with each other. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  2. Engineering emergent multicellular behavior through synthetic adhesion

    Science.gov (United States)

    Glass, David; Riedel-Kruse, Ingmar

    In over a decade, synthetic biology has developed increasingly robust gene networks within single cells, but constructed very few systems that demonstrate multicellular spatio-temporal dynamics. We are filling this gap in synthetic biology's toolbox by developing an E. coli self-assembly platform based on modular cell-cell adhesion. We developed a system in which adhesive selectivity is provided by a library of outer membrane-displayed peptides with intra-library specificities, while affinity is provided by consistent expression across the entire library. We further provide a biophysical model to help understand the parameter regimes in which this tool can be used to self-assemble into cellular clusters, filaments, or meshes. The combined platform will enable future development of synthetic multicellular systems for use in consortia-based metabolic engineering, in living materials, and in controlled study of minimal multicellular systems. Stanford Bio-X Bowes Fellowship.

  3. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  4. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Synthetic mullite fabrication from smectite clays

    International Nuclear Information System (INIS)

    Lima, L.N. de; Kiminami, R.H.G.A.

    1988-01-01

    The technological importance of mullite is mostly due to its refractory properties. Mullite in native form is very rare, and therefore it may be necessary to produced it by synthetic means. Brazil has a large reserve of smectite clays. In this work the process to produce synthetic mullite from these clays by treatment with aluminum sulphate was studied. X-ray analyses has shown the presence of mullite crystals in treated smectite clays of several colours, sinterized at 1100 0 C. By sintering at 1300 0 C, pure mullite was obtained in some colours. (author) [pt

  6. Functional mining of transporters using synthetic selections

    DEFF Research Database (Denmark)

    Genee, Hans Jasper; Bali, Anne Pihl; Petersen, Søren Dalsgård

    2016-01-01

    transporters, PnuT, which is widely distributed across multiple bacterial phyla. We demonstrate that with modular replacement of the biosensor, we could expand our method to xanthine and identify xanthine permeases from gut and soil metagenomes. Our results demonstrate how synthetic-biology approaches can......-responsive biosensor systems that enable selective growth of cells only if they encode a ligand-specific importer. We developed such a synthetic selection system for thiamine pyrophosphate and mined soil and gut metagenomes for thiamine-uptake functions. We identified several members of a novel class of thiamine...

  7. New Synthetic Methods for Hypericum Natural Products

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Insik [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.

  8. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  9. Parity-Time Synthetic Phononic Media

    DEFF Research Database (Denmark)

    Christensen, Johan; Willatzen, Morten; Velasco, V. R.

    2016-01-01

    media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain......, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection....

  10. Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Chen

    2016-12-01

    Full Text Available Microbial polyhydroxyalkanoates (PHA have been produced as bioplastics for various purposes. Under the support of China National Basic Research 973 Project, we developed synthetic biology methods to diversify the PHA structures into homo-, random, block polymers with improved properties to better meet various application requirements. At the same time, various pathways were assembled to produce various PHA from glucose as a simple carbon source. At the end, Halomonas bacteria were reconstructed to produce PHA in changing morphology for low cost production under unsterile and continuous conditions. The synthetic biology will advance the PHA into a bio- and material industry.

  11. Purifying synthetic or fermentation ethyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-22

    Synthetic or fermentation grade ethanol is treated with an alkaki metal sulfite for about 10 hours then rectified to give a product free of odor and taste defects. For example, ethanol from molasses was treated with 10g Na/sub 2/SO/sub 3/.7H/sub 2/O per liter of alcohol, (70/sup 0/ Gay-Lussac) for 10 hours. Synthetic ethanol was treated with 3g Na/sub 2/SO/sub 3/.7H/sub 2/O for 10 hours.

  12. Purifying synthetic or fermentation ethyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-22

    Synthetic or fermentation grade ethanol is treated with an alkali metal sulfite for about 10 hours then rectified to give a product free of odor and taste defects. For example, ethanol from molasses was treated with 10g, Na/sub 2/SO/sub 3/.7H/sub 2/0 per liter of alcohol, (70/sup 0/ Gay-Lussac) for 10 hours. Synthetic ethanol was treated with 3 g Na/sub 2/SO/sub 3/.7H/sub 2/O for 10 hours.

  13. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  14. [Salem witches, flying brooms, and synthetic drugs].

    Science.gov (United States)

    Castellanos Tejero, Manuel; Castellanos Tejero, M de los Angeles

    2002-10-01

    As supplementary material to Health Education programs about synthetic drugs, the authors present a historical summary on LSD, stramonium and khat. "Tripis", Special K and other synthetic pills contain these substances and are being widely used by youths. The history of these main hallucinogenic active ingredients has a strong tie to the mythology of witchcraft and witches: a historically interesting time period bearing a large amount of religious intolerance. The objective of this review is to end the belief today's youth have that they are taking new substances which have no risks.

  15. Synthetic clay excels in 90Sr removal

    International Nuclear Information System (INIS)

    Komarneni, Sridhar; Kodama, Tatsuya; Paulus, William J.; Carlson, C.

    2000-01-01

    Tests with actual ground water from Hanford site, and fundamental studies of 2Na + →Sr 2+ exchange equilibria revealed that a synthetic clay is extremely selective for 90 Sr with a high capacity for uptake. Comparative studies with existing Sr selective ion exchangers clearly revealed that the present synthetic clay exhibited the best performance for 90 Sr removal from actual ground water collected from three different locations at Hanford. This novel Sr ion sieve is expected to be useful for the decontamination of the environment after accidental release and contamination with 90 Sr. (c) 2000 Materials Research Society

  16. SYNTHETIC JET APPLIED TO DETECT POTENTIAL TERRORISTS

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Peszyński, K.

    2010-01-01

    Roč. 5, č. 3 (2010), s. 229-234 ISSN 1231-3998 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jets * annular jets * terrorism Subject RIV: BK - Fluid Dynamics

  17. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  18. Homogeneous nucleation of water in synthetic air

    NARCIS (Netherlands)

    Fransen, M.A.L.J.; Sachteleben, E.; Hruby, J.; Smeulders, D.M.J.; DeMott, P.J.; O'Dowd, C.D.

    2013-01-01

    Homogeneous nucleation rates for water vapor in synthetic air are measured by means of a Pulse-Expansion Wave Tube (PEWT). A comparison of the experimental nucleation rates with the Classical Nucleation Theory (CNT) shows that a more elaborated model is necessary to describe supercooled water

  19. A combinatorial approach to synthetic receptors

    NARCIS (Netherlands)

    Timmerman, P.; Reinhoudt, David

    1999-01-01

    Antibodies, the workhorses of every living organisms immune system, are characterized by their extraordinarily high binding affinity and selectivity for a particular antigen. Despite numerous efforts to mimic these binding properties in synthetic molecules, chemists have so far not been able to

  20. Raman spectrum of natural and synthetic stishovite

    Science.gov (United States)

    Hemley, R.J.; Mao, Ho-kwang; Chao, E.C.T.

    1986-01-01

    Raman spectra of natural and synthetic samples of stishovite have been measured with a micro-optical spectrometer system. These spectra have a pattern that is characteristic of rutile-structured oxides. The spectrum of synthetic stishovite is characterized by well-resolved bands at 231, 589, 753, and 967 cm-1, which are assigned as the B1g, Eg, A1g, and B2g fundamentals, respectively, of the first-order Raman spectrum of the ideal, ordered structure. Natural stishovite obtained from Meteor Crater, Arizona has a first-order Raman spectrum that is fully consistent with that of the synthetic material. The observed spectrum of the natural sample, however, is weaker and has bands in addition to those identified as fundamentals in the spectrum of the synthetic material. A broad band at ???475 cm-1 may be indicative of glass or contaminants derived from the extraction procedure. Alternatively, this band may arise from multiphonon scattering that is enhanced by poor crystallinity or structural disorder in the natural shocked sample. ?? 1986 Springer-Verlag.

  1. Synthetic tsunamis along the Israeli coast.

    Science.gov (United States)

    Tobias, Joshua; Stiassnie, Michael

    2012-04-13

    The new mathematical model for tsunami evolution by Tobias & Stiassnie (Tobias & Stiassnie 2011 J. Geophys. Res. Oceans 116, C06026) is used to derive a synthetic tsunami database for the southern part of the Eastern Mediterranean coast. Information about coastal tsunami amplitudes, half-periods, currents and inundation levels is presented.

  2. DESCQA: Synthetic Sky Catalog Validation Framework

    Science.gov (United States)

    Mao, Yao-Yuan; Uram, Thomas D.; Zhou, Rongpu; Kovacs, Eve; Ricker, Paul M.; Kalmbach, J. Bryce; Padilla, Nelson; Lanusse, François; Zu, Ying; Tenneti, Ananth; Vikraman, Vinu; DeRose, Joseph

    2018-04-01

    The DESCQA framework provides rigorous validation protocols for assessing the quality of high-quality simulated sky catalogs in a straightforward and comprehensive way. DESCQA enables the inspection, validation, and comparison of an inhomogeneous set of synthetic catalogs via the provision of a common interface within an automated framework. An interactive web interface is also available at portal.nersc.gov/project/lsst/descqa.

  3. Synthetic Biology: Applications in the Food Sector.

    Science.gov (United States)

    Tyagi, Ashish; Kumar, Ashwani; Aparna, S V; Mallappa, Rashmi H; Grover, Sunita; Batish, Virender Kumar

    2016-08-17

    Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.

  4. Evaluation of synthetic promoters in Physcomitrella patens

    DEFF Research Database (Denmark)

    Peramuna, Anantha; Bae, Hansol; Rasmussen, Erling Koch

    2018-01-01

    Securing a molecular toolbox including diverse promoters is essential for genome engineering. However, native promoters have limitations such as the available number or the length of the promoter. In this work, three short synthetic promoters were characterized by using the yellow fluorescent...

  5. Synthetic biology advances for pharmaceutical production

    Science.gov (United States)

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872

  6. News: Synthetic biology leading to specialty chemicals

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate productio...

  7. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  8. Design and construction of "synthetic species".

    Directory of Open Access Journals (Sweden)

    Eduardo Moreno

    Full Text Available Synthetic biology is an area of biological research that combines science and engineering. Here, I merge the principles of synthetic biology and regulatory evolution to create a new species with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfils the criteria of a new species according to Mayr's Biological Species Concept. The population described here is the first transgenic organism that cannot hybridize with the original wild type population but remains fertile when crossed with other identical transgenic animals. I therefore propose the term "synthetic species" to distinguish it from "natural species", not only because it has been created by genetic manipulation, but also because it may never be able to survive outside the laboratory environment. The use of genetic engineering to design artificial species barriers could help us understand natural speciation and may have practical applications. For instance, the transition from transgenic organisms towards synthetic species could constitute a safety mechanism to avoid the hybridization of genetically modified animals with wild type populations, preserving biodiversity.

  9. CO2 Capture with Enzyme Synthetic Analogue

    Energy Technology Data Exchange (ETDEWEB)

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  10. Synthetic analog computation in living cells.

    Science.gov (United States)

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  11. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  12. Simultaneous adsorption and biodegradation of synthetic melanoidin

    African Journals Online (AJOL)

    Being an antioxidant, melanoidin removal through purely biodegradation has been inadequate. Consequently, in the current study, simultaneous adsorption and biodegradation (SAB) was employed in a stirred tank system to remove melanoidin from synthetic wastewater. Mixed microbial consortium was immobilized onto ...

  13. Super-Resolution for Synthetic Zooming

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

  14. Preparation of Natural and Synthetic Porous Biodegradable ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Preparation of Natural and Synthetic Porous Biodegradable Scaffolds for Infected Wounds. Characterised for their physical properties, pore size and release kinetics. Release kinetics of bioactive molecules (antibiotics) in a controlled fashion. Release pattern of the ...

  15. 21 CFR 175.250 - Paraffin (synthetic).

    Science.gov (United States)

    2010-04-01

    ... hydrocarbons. Lower molecular-weight fractions are removed by distillation. The residue is hydrogenated and may... its components by a solvent separation method, using synthetic isoparaffinic petroleum hydrocarbons... method E131-81a, “Standard Definitions of Terms and Symbols Relating to Molecular-Spectroscopy,” which is...

  16. Immobilization of radioiodine in synthetic boracite

    Science.gov (United States)

    Babad, H.; Strachan, D.M.

    1982-09-23

    A nuclear waste storage product is disclosed in which radioiodine is incorporated in a synthetic boracite. The boracite may be prepared by reacting a transition metal iodide with an alkali horate under mild hydrothermal conditions, drying the reaction product, and then hot pressing.

  17. Sonar path correction in synthetic aperture processing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Sabel, J.C.

    2003-01-01

    In the next generation of mine hunting sonars, in particular on Autonomous Underwater Vehicles (AUVs), Synthetic Aperture Sonar (SAS) will play an important role. The benefit of SAS is to increase resolution and signal-tonoise ratio by coherent processing of successive pings. A challenge in SAS is

  18. Once more on Analytic vs. Synthetic

    Czech Academy of Sciences Publication Activity Database

    Materna, Pavel

    2007-01-01

    Roč. 16, č. 1 (2007), s. 3-43 ISSN 1425-3305 R&D Projects: GA ČR(CZ) GA401/07/0451 Institutional research plan: CEZ:AV0Z90090514 Keywords : analytic * synthetic * intensions * constructions * concepts * pragmatics Subject RIV: AA - Philosophy ; Religion

  19. SYNTHETIC AGB EVOLUTION .1. A NEW MODEL

    NARCIS (Netherlands)

    GROENEWEGEN, MAT; DEJONG, T

    We have constructed a model to calculate in a synthetic way the evolution of stars on the asymptotic giant branch (AGB). The evolution is started at the first thermal pulse (TP) and is terminated when the envelope mass has been lost due to mass loss or when the core mass reaches the Chandrasekhar

  20. Synthetic Aperture Beamformation using the GPU

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Schaa, Dana; Jensen, Jørgen Arendt

    2011-01-01

    A synthetic aperture ultrasound beamformer is implemented for a GPU using the OpenCL framework. The implementation supports beamformation of either RF signals or complex baseband signals. Transmit and receive apodization can be either parametric or dynamic using a fixed F-number, a reference...

  1. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy plan...

  2. Synthetic biology between technoscience and thing knowledge.

    Science.gov (United States)

    Gelfert, Axel

    2013-06-01

    Synthetic biology presents a challenge to traditional accounts of biology: Whereas traditional biology emphasizes the evolvability, variability, and heterogeneity of living organisms, synthetic biology envisions a future of homogeneous, humanly engineered biological systems that may be combined in modular fashion. The present paper approaches this challenge from the perspective of the epistemology of technoscience. In particular, it is argued that synthetic-biological artifacts lend themselves to an analysis in terms of what has been called 'thing knowledge'. As such, they should neither be regarded as the simple outcome of applying theoretical knowledge and engineering principles to specific technological problems, nor should they be treated as mere sources of new evidence in the general pursuit of scientific understanding. Instead, synthetic-biological artifacts should be viewed as partly autonomous research objects which, qua their material-biological constitution, embody knowledge about the natural world-knowledge that, in turn, can be accessed via continuous experimental interrogation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Synthetic biology for pharmaceutical drug discovery

    Directory of Open Access Journals (Sweden)

    Trosset JY

    2015-12-01

    Full Text Available Jean-Yves Trosset,1 Pablo Carbonell2,3 1Bioinformation Research Laboratory, Sup’Biotech, Villejuif, France; 2Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; 3Department of Experimental and Health Sciences (DCEXS, Research Programme on Biomedical Informatics (GRIB, Hospital del Mar Medical Research Institute (IMIM, Universitat Pompeu Fabra (UPF, Barcelona, Spain Abstract: Synthetic biology (SB is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell–cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity. Keywords: metabolic engineering, plant synthetic biology, natural products, synthetic quorum sensing, drug resistance

  4. Synthetic biology and biosecurity: challenging the "myths".

    Science.gov (United States)

    Jefferson, Catherine; Lentzos, Filippa; Marris, Claire

    2014-01-01

    Synthetic biology, a field that aims to "make biology easier to engineer," is routinely described as leading to an increase in the "dual-use" threat, i.e., the potential for the same scientific research to be "used" for peaceful purposes or "misused" for warfare or terrorism. Fears have been expressed that the "de-skilling" of biology, combined with online access to the genomic DNA sequences of pathogenic organisms and the reduction in price for DNA synthesis, will make biology increasingly accessible to people operating outside well-equipped professional research laboratories, including people with malevolent intentions. The emergence of do-it-yourself (DIY) biology communities and of the student iGEM competition has come to epitomize this supposed trend toward greater ease of access and the associated potential threat from rogue actors. In this article, we identify five "myths" that permeate discussions about synthetic biology and biosecurity, and argue that they embody misleading assumptions about both synthetic biology and bioterrorism. We demonstrate how these myths are challenged by more realistic understandings of the scientific research currently being conducted in both professional and DIY laboratories, and by an analysis of historical cases of bioterrorism. We show that the importance of tacit knowledge is commonly overlooked in the dominant narrative: the focus is on access to biological materials and digital information, rather than on human practices and institutional dimensions. As a result, public discourse on synthetic biology and biosecurity tends to portray speculative scenarios about the future as realities in the present or the near future, when this is not warranted. We suggest that these "myths" play an important role in defining synthetic biology as a "promissory" field of research and as an "emerging technology" in need of governance.

  5. From noise to synthetic nucleoli: can synthetic biology achieve new insights?

    Science.gov (United States)

    Ciechonska, Marta; Grob, Alice; Isalan, Mark

    2016-04-18

    Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."

  6. Characterization of high speed synthetic jet actuators

    Science.gov (United States)

    Pikcilingis, Lucia

    Over the last 20 years, synthetic jets have been studied as a means for aerodynamic active flow control. Specifically, synthetic jets provide momentum transfer with zero-net mass flux, which has been proven to be effective for controlling flow fields. A synthetic jet is created by the periodic formation of vortex rings at its orifice due to the periodic motion of a piezoelectric disk(s). The present study seeks to optimize the performance of a synthetic jet actuator by utilizing different geometrical parameters such as disk thickness, orifice width and length, cavity height and cavity diameter, and different input parameters such as driving voltage and frequency. Two apparatuses were used with a cavity diameter of either 80 mm or 160 mm. Piezoelectric-based disks were provided by the Mide Corporation. Experiments were conducted using several synthetic jet apparatuses designed for various geometrical parameters utilizing a dual disk configuration. Velocity and temperature measurements were acquired at the center of the synthetic jet orifice using a temperature compensated hotwire and thermocouple probe. The disk(s) displacement was measured at the center of the disk with a laser displacement sensor. It was shown that the synthetic jets, having the 80 mm cavity diameter, are capable of exceeding peak velocities of 200 m/s with a relatively large orifice of dimensions AR = 12, hc* = 3, and hn* = 4. In addition, the conditions at which the disks were manufactured had minimal effect on the performance of the jet, except for the pair with overnight resting time as opposed to less than an hour resting time for the control units. Altering the tab style of the disks, where the tab allows the electrical circuit to be exposed for external power connection, showed that a thin fragile tab versus a tab of the same thickness as the disk has minimal effect on the performance but affects the durability of the disk due to the fragility or robustness of the tab. The synthetic jets

  7. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils

    Directory of Open Access Journals (Sweden)

    Anand Kumar Tripathi

    2015-03-01

    Full Text Available Engine oils undergo oxidative degradation and wears out during service. Hence it is important to characterize ageing of engine oils at different simulated conditions to evaluate the performance of existing oils and also design new formulations. This work focuses on characterizing the thermo-oxidative degradation of synthetic and semi-synthetic engine oils aged at 120, 149 and 200 °C. Apparent activation energy of decomposition of aged oils evaluated using the isoconversional Kissinger-Akahira-Sunose technique was used as a thermal stability marker. The temporal variation of stability at different ageing temperatures was corroborated with kinematic viscosity, oxidation, sulfation and nitration indices, total base number, antiwear additive content and molecular structure of the organic species present in the oils. At the lowest temperature employed, synthetic oil underwent higher rate of oxidation, while semi-synthetic oil was stable for longer time periods. At higher temperatures, the initial rate of change of average apparent activation energy of synthetic oil correlated well with a similar variation in oxidation number. A mixture of long chain linear, branched, and cyclic hydrocarbons were observed when semi-synthetic oil was degraded at higher temperatures.

  8. Fentanyl and Other Synthetic Opioids Drug Overdose Deaths

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  9. GC X GCTOFMS OF SYNTHETIC PYRETHROIDS IN FOODS SAMPLES

    Science.gov (United States)

    Pyrethrins are natural insecticides in the extract of chrysanthemum flowers1. Pyrethroids are synthetic forms of pyrethrins, and many are halogenated (F, Cl, Br). Synthetic pyrethroids have become popular replacements for organophosphorus pesticides, which have become increasin...

  10. Ships as salient objects in synthetic aperture radar imaginary

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2016-07-01

    Full Text Available The widespread access to Synthetic Aperture Radar data has created a need for more precise ship extraction, specifically in low-to-medium resolution imagery. While Synthetic Aperture Radar pixel resolution is improving for a large swaths...

  11. Engineering of synthetic, stress-responsive yeast promoters

    DEFF Research Database (Denmark)

    Rajkumar, Arun Stephen; Liu, Guodong; Bergenholm, David

    2016-01-01

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducibleby specific endogenous or environmental conditions...

  12. Health safety issues of synthetic food colorants.

    Science.gov (United States)

    Amchova, Petra; Kotolova, Hana; Ruda-Kucerova, Jana

    2015-12-01

    Increasing attention has been recently paid to the toxicity of additives used in food. The European Parliament and the Council published the REGULATION (EC) No. 1333/2008 on food additives establishing that the toxicity of food additives evaluated before 20th January 2009 must be re-evaluated by European Food Safety Authority (EFSA). The aim of this review is to survey current knowledge specifically on the toxicity issues of synthetic food colorants using official reports published by the EFSA and other available studies published since the respective report. Synthetic colorants described are Tartrazine, Quinoline Yellow, Sunset Yellow, Azorubine, Ponceau 4R, Erythrosine, Allura Red, Patent Blue, Indigo Carmine, Brilliant Blue FCF, Green S, Brilliant Black and Brown HT. Moreover, a summary of evidence on possible detrimental effects of colorant mixes on children's behaviour is provided and future research directions are outlined. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. [Progress in synthetic biology of pinocembrin].

    Science.gov (United States)

    Guo, Lei; Kong, Jianqiang

    2015-04-01

    Pinocembrin, belonging to flavanons, was isolated from various plants. Pinocembrin has a variety of pharmacological activities, such as neuroprotective effect, antimicrobial activity, and antioxidant efficacy. Pinocembrin was approved as class I drugs to its phase II clinical trial by CFDA in 2009, mainly used for the treatment of ischemic stroke. As a promising compound, the manufacturing technologies of pinocembrin, including chemical synthesis, extraction from plant and synthetic biology, have attracted many attentions. Compared with the first two technologies, synthetic biology has many advantages, such as environment-friendly and low-cost. Construction of biosynthetic pathway in microorganism offers promising results for large scale pinocembrin production by fermentation after taking lots of effective strategies. This article reviews some of recent strategies in microorganisms to improve the yield, with focus on the selection of appropriate the key enzyme sources, the supply of precursors and cofactors by microorganisms, the choice of substance and the level of the key enzyme expression.

  14. Fusion as a source of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Steinberg, M.

    1981-01-01

    In the near-term, coal derived synthetic fuels will be used; but in the long-term, resource depletion and environmental effects will mandate synthetic fuels from inexhaustible sources - fission, fusion, and solar. Of the three sources, fusion appears uniquely suited for the efficient production of hydrogen-based fuels, due to its ability to directly generate very high process temperatures (up to approx. 2000 0 C) for water splitting reactions. Fusion-based water splitting reactions include high temperature electrolysis (HTE) of steam, thermochemical cycles, hybrid electrochemical/thermochemical, and direct thermal decomposition. HTE appears to be the simplest and most efficient process with efficiencies of 50 to 70% (fusion to hydrogen chemical energy), depending on process conditions

  15. Synthetic risks, risk potency, and carcinogen regulation.

    Science.gov (United States)

    Viscusi, W K; Hakes, J K

    1998-01-01

    This article analyzes a comprehensive sample of over 350 chemicals tested for carcinogenicity to assess the determinants of the probability of regulation. Controlling for differences in the risk potency and noncancer risks, synthetic chemicals have a significantly higher probability of regulation overall: this is due to the greater likelihood of U.S. Food and Drug Administration (FDA) regulation. Measures of risk potency increase the probability of regulation by the U.S. Environmental Protection Agency (EPA), have a somewhat weaker positive effect on regulation by the U.S. Occupational Safety and Health Administration (OSHA), and decrease the likelihood of regulation by the FDA. The overall regulatory pattern is one in which the FDA targets synthetic chemicals and chemicals that pose relatively minor cancer risk. The EPA particularly performed more sensibly than many critics have suggested.

  16. The Prion Concept and Synthetic Prions.

    Science.gov (United States)

    Legname, Giuseppe; Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrP Sc ). Prions derive from a conformational conversion of the normally folded prion protein (PrP C ), which acquires pathological and infectious features. Moreover, PrP Sc is able to transmit the pathological conformation to PrP C through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrP C conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents. © 2017 Elsevier Inc. All rights reserved.

  17. Consequentialism and the Synthetic Biology Problem.

    Science.gov (United States)

    Heavey, Patrick

    2017-04-01

    This article analyzes the ethics of synthetic biology (synbio) from a consequentialist perspective, examining potential effects on food and agriculture, and on medicine, fuel, and the advancement of science. The issues of biosafety and biosecurity are also examined. A consequentialist analysis offers an essential road map to policymakers and regulators as to how to deal with synbio. Additionally, the article discusses the limitations of consequentialism as a tool for analysing synbioethics. Is it possible to predict, with any degree of plausibility, what the consequences of synthetic biology will be in 50 years, or in 100, or in 500? Synbio may take humanity to a place of radical departure from what is known or knowable.

  18. Designing synthetic RNA for delivery by nanoparticles

    International Nuclear Information System (INIS)

    Jedrzejczyk, Dominika; Pawlowska, Roza; Chworos, Arkadiusz; Gendaszewska-Darmach, Edyta

    2017-01-01

    The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid’s nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided. (topical review)

  19. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... estimation is −1.8% and the relative standard deviation 5.4%. The approach can thus estimate both high and low velocities with equal accuracy and thereby makes it possible to present vector flow images with a high dynamic range. Measurements are made using the SARUS research scanner, a linear array......Conventional color flow images are limited in velocity range and can either show the high velocities in systole or be optimized for the lower diastolic velocities. The full dynamics of the flow is, thus, hard to visualize. The dynamic range can be significantly increased by employing synthetic...

  20. Experience with synthetic fluorinated fluid lubricants

    Science.gov (United States)

    Conley, Peter L.; Bohner, John J.

    1990-01-01

    Since the late 1970's, the wet lubricant of choice for space mechanisms has been one of the family of synthetic perfluoro polyalkylether (PFPE) compounds, namely Fomblin Z-25 (Bray-815Z) or DuPont's Krytox 143xx series. While offering the advantages of extremely low vapor pressures and wide temperature ranges, these oils and derived greases have a complex chemistry compared to the more familiar natural and synthetic hydrocarbons. Many aerospace companies have conducted test programs to characterize the behavior of these compounds in a space environment, resulting in a large body of hard knowledge as well as considerable space lore concerning the suitability of the lubricants for particular applications and techniques for successful application. The facts are summarized and a few myths about the compounds are dispelled, and some performance guidelines for the mechanism design engineer are provided.

  1. The adjuvant potential of synthetic alkylglycerols.

    Science.gov (United States)

    Acevedo, Reinaldo; Gil, Danay; del Campo, Judith; Bracho, Gustavo; Valdés, Yolanda; Pérez, Oliver

    2006-04-12

    Alkylglycerols (AGs) have shown immune stimulant and adjuvant activity in many studies, but natural sources are not so accessible and their extraction from them is very complicated. Therefore, a group of chemists at IFAL have synthesized AG analogs. The aim of this work was to evaluate the adjuvant potential of different synthetic AGs. A mix of ovoalbumin (Ova) and AGs increase anti-Ova IgG antibodies production in sera of immunized mice. The predominant subclass was IgG1 although higher levels of IgG2a were observed as the carbon chain length of AGs increased. AGs also induced the production of IL-12 and nitric oxide (NO) in the U937 human histiocyte and J774 mouse macrophage cell lines, respectively. These results indicate that synthetic AGs are effective adjuvants for the standardized antigen, Ova.

  2. Prospects for applying synthetic biology to toxicology

    DEFF Research Database (Denmark)

    Behrendorff, James Bruce Yarnton H; Gillam, Elizabeth M.J.

    2017-01-01

    The 30 years since the inception of Chemical Research in Toxicology, game-changing advances in chemical and molecular biology, the fundamental disciplines underpinning molecular toxicology, have been made. While these have led to important advances in the study of mechanisms by which chemicals...... damage cells and systems, there has been less focus on applying these advances to prediction, detection, and mitigation of toxicity. Over the last ∼15 years, synthetic biology, the repurposing of biological "parts" in systems engineered for useful ends, has been explored in other areas of the biomedical...... and life sciences, for such applications as detecting metabolites, drug discovery and delivery, investigating disease mechanisms, improving medical treatment, and producing useful chemicals. These examples provide models for the application of synthetic biology to toxicology, which, for the most part, has...

  3. Carbon monosulfide: a useful synthetic intermediate

    International Nuclear Information System (INIS)

    Kramer, M.P.

    1986-01-01

    The physical properties of carbon monosulfide, CS, are well documented. The molecule has been observed in interstellar space and is found to be a common intermediate in the thermal decomposition of carbon disulfide and other sulfur compounds. Interestingly enough, the chemistry of carbon monosulfide, a molecule that is isovalent with carbon monoxide, has received little attention. The explosive nature of the carbon monosulfide monomer, which hindered previous workers, was overcome by the development of special handling techniques. The ability to produce carbon monosulfide in gram quantities had lead to synthesis of novel compounds and to a more direct synthetic route for certain known compounds. Specifically, the following general reaction demonstrates the capabilities of carbon monosulfide on the synthetic scale. CS + RXY → RXC(S)Y;(X = N,S), (Y = H, Cl). Note: The initial product formed in the reaction can be an unstable intermediate

  4. Preparing Synthetic Biology for the World

    Directory of Open Access Journals (Sweden)

    Gerd H.G. Moe-Behrens

    2013-01-01

    Full Text Available Synthetic Biology promises low-cost, exponentially scalable products and global health solutions in the form of self-replicating organisms, or living devices. As these promises are realized, proof-of-concept systems will gradually migrate from tightly regulated laboratory or industrial environments into private spaces as, for instance, probiotic health products, food, and even do-it-yourself bioengineered systems. What additional steps, if any, should be taken before releasing engineered self-replicating organisms into a broader user space? In this review, we explain how studies of genetically modified organisms lay groundwork for the future landscape of biosafety. Early in the design process, biological engineers are anticipating potential hazards and developing innovative tools to mitigate risk. Here, we survey lessons learned, ongoing efforts to engineer intrinsic biocontainment, and how different stakeholders in synthetic biology can act to accomplish best practices for biosafety.

  5. Synthetic biology expands chemical control of microorganisms.

    Science.gov (United States)

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Synthetic cannabimimetic agents metabolized by carboxylesterases

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Nielsen, Line M; Holm, Niels B

    2015-01-01

    Synthetic cannabimimetic agents are a large group of diverse compounds which act as agonists at cannabinoid receptors. Since 2004, synthetic cannabinoids have been used recreationally, although several of the compounds have been shown to cause severe toxicity in humans. In this study......, the metabolism of two indazole carboxamide derivatives, AB-PINACA and AB-FUBINACA, was investigated by using human liver microsomes (HLM). For both compounds, a major metabolic pathway was the enzymatic hydrolysis of the primary amide, resulting in the major metabolites AB-PINACA-COOH and AB-FUBINACA-COOH. Other...... major metabolic pathways were mono-hydroxylation of the N-pentyl chain in AB-PINACA and mono-hydroxylation of the 1-amino-3-methyl-1-oxobutane moiety in AB-FUBINACA. To identify the enzyme(s) responsible for the amide hydrolysis, incubations with recombinant carboxylesterases and human serum, as well...

  7. Growth and optical spectroscopy of synthetic diamonds

    International Nuclear Information System (INIS)

    Mudryj, A.V.; Larionova, T.P.; Shakin, I.A.; Gysakov, G.A.; Dubrov, G.A.; Tikhonov, V.V.

    2003-01-01

    It is studied the growth and optical properties of synthetic diamonds, which may be used for detection of ionizing radiation, optical windows, heat removal, ultraviolet and thermo sensors, optoelectronic devices. Optical properties of diamonds (grown in different technological conditions) were studied in temperature range 78 - 300 K by means of measuring transmission in spectral band 0.2 - 25 μm, photoluminescence and registration of luminescence excitation spectra in spectral band 0.2 - 2 μm

  8. Mammalian Synthetic Biology: Time for Big MACs.

    Science.gov (United States)

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-10-21

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.

  9. Synthetic Biology to Engineer Bacteriophage Genomes.

    Science.gov (United States)

    Rita Costa, Ana; Milho, Catarina; Azeredo, Joana; Pires, Diana Priscila

    2018-01-01

    Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

  10. Visualization of synthetic jet formation in air

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Broučková, Zuzana; Kordík, Jozef; Vít, T.

    2015-01-01

    Roč. 18, č. 4 (2015), s. 595-609 ISSN 1343-8875 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : synthetic jet * flow visualization * hot-wire anemometry Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 0.720, year: 2015 http://link.springer.com/article/10.1007/s12650-015-0273-2

  11. Visualization study of hybrid synthetic jets

    Czech Academy of Sciences Publication Activity Database

    Broučková, Zuzana; Trávníček, Zdeněk

    2015-01-01

    Roč. 18, č. 4 (2015), s. 581-593 ISSN 1343-8875 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : synthetic jet * efficiency * flow visualization Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 0.720, year: 2015 http://link.springer.com/article/10.1007/s12650-014-0256-8

  12. Quasi-Similarity Model of Synthetic Jets

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Kordík, Jozef

    2009-01-01

    Roč. 149, č. 2 (2009), s. 255-265 ISSN 0924-4247 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * synthetic jets * similarity solution Subject RIV: BK - Fluid Dynamics Impact factor: 1.674, year: 2009 http://www.sciencedirect.com

  13. Decolorization of six synthetic dyes by fungi

    OpenAIRE

    Hartikainen, E. Samuel; Miettinen, Otto; Hatakka, Annele; Kähkönen, Mika A.

    2016-01-01

    To find out ability of fourteen basidiomycetes and four ascomycetes strains to grow in the presence of synthetic colour dyes and to degrade them, fungi were cultivated on the malt agar plates containing 0.5 g kg-1 dye, either Remazol Brilliant Blue R, Remazol Brilliant Yellow GL, Remazol Brilliant Orange 3 R, Reactive Blue 4, Remazol Brilliant Red F3B or Reactive Black 5. Fungi representing basidiomycetes were Phlebia radiata (FBCC 43), Tremella encephala (FBCC 1145), Dichomitus squalens (FBC...

  14. Advanced synthetic holograms for security purposes

    Science.gov (United States)

    Kotačka, Libor; Vízdal, Petr; Behounek, Tomás

    2009-05-01

    Our paper deals with the recent advances in synthetically written optical security devices (DOVIDs) and holograms. The synthesized holographic security elements are recorded with a resolution reaching 500.000 dpi and are specially developed for the "layman-level" security of the most important state valuables and documents, like banknotes and identity cards. We especially pay an attention to such holographic features being impossible to originate through conventional optical holography of matrix based devices.

  15. Synthetic tsunami waveform catalogs with kinematic constraints

    Science.gov (United States)

    Baptista, Maria Ana; Miranda, Jorge Miguel; Matias, Luis; Omira, Rachid

    2017-07-01

    In this study we present a comprehensive methodology to produce a synthetic tsunami waveform catalogue in the northeast Atlantic, east of the Azores islands. The method uses a synthetic earthquake catalogue compatible with plate kinematic constraints of the area. We use it to assess the tsunami hazard from the transcurrent boundary located between Iberia and the Azores, whose western part is known as the Gloria Fault. This study focuses only on earthquake-generated tsunamis. Moreover, we assume that the time and space distribution of the seismic events is known. To do this, we compute a synthetic earthquake catalogue including all fault parameters needed to characterize the seafloor deformation covering the time span of 20 000 years, which we consider long enough to ensure the representability of earthquake generation on this segment of the plate boundary. The computed time and space rupture distributions are made compatible with global kinematic plate models. We use the tsunami empirical Green's functions to efficiently compute the synthetic tsunami waveforms for the dataset of coastal locations, thus providing the basis for tsunami impact characterization. We present the results in the form of offshore wave heights for all coastal points in the dataset. Our results focus on the northeast Atlantic basin, showing that earthquake-induced tsunamis in the transcurrent segment of the Azores-Gibraltar plate boundary pose a minor threat to coastal areas north of Portugal and beyond the Strait of Gibraltar. However, in Morocco, the Azores, and the Madeira islands, we can expect wave heights between 0.6 and 0.8 m, leading to precautionary evacuation of coastal areas. The advantages of the method are its easy application to other regions and the low computation effort needed.

  16. Ion exchange of strontium on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Lazic, S.; Vukovic, Z.

    1991-01-01

    Adsorption of strontium ions on synthetic hydroxyapatite was examined using both batch and column methods. The apatite was prepared from aqueous solutions and characterized by standard analytical methods. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. The experimental data for sorption of strontium can be very well fitted with Langmuir's adsorption isotherm. It was found that sorption occurs by an ion exchange reaction between strontium ions in solution and calcium ions in apatite. (author) 14 refs.; 5 figs.; 1 tab

  17. Generation of Synthetic Turbulence in Arbitrary Domains

    DEFF Research Database (Denmark)

    Gilling, Lasse; Nielsen, Søren R.K.; Sørensen, Niels

    2009-01-01

    A new method for generating synthetic turbulence is presented. The method is intended for generating a turbulent velocity field with a fine spatial resolution but only covering a small moving part of the rotor area of a wind turbine. For this application the Mann and Sandia methods cannot be used......-spectra a realization of a velocity field is determined by factorization and Fourier transform as in the Sandia method....

  18. Optical studies of high quality synthetic diamond

    International Nuclear Information System (INIS)

    Sharp, S.J.

    1999-01-01

    This thesis is concerned with the study of fundamental and defect induced optical properties of synthetic diamond grown using high pressure, high temperature (HPHT) synthesis or chemical vapour deposition (CVD). The primary technique used for investigation is cathodoluminescence (including imaging and decay-time measurements) in addition to other forms of optical spectroscopy. This thesis is timely in that the crystallinity and purity of synthetic diamond has increased ten fold over the last few years. The diamond exciton emission, which is easily quenched by the presence of defects, is studied in high quality samples in detail. In addition the ability now exists to engineer the isotopic content of synthetic diamond to a high degree of accuracy. The experimental chapters are divided as follows: Chapter 2: High resolution, low temperature spectra reveal a splitting of the free-exciton phonon recombination emission peaks and the bound-exciton zero phonon line. Included are measurements of the variation in intensity and decay-time as a function of temperature. Chapter 3: The shift in energy of the phonon-assisted free-exciton phonon replicas with isotopic content has been measured. The shift is in agreement with the results of interatomic force model for phonon scattering due to isotope disorder. Chapter 4: A study of the shift in energy with isotopic content of the diamond of the GR1 band due to the neutral vacancy has allowed a verification of the theoretical predictions due to the Jahn Teller effect. Chapter 5: The spatial distribution of the free-exciton luminescence is studied in HPHT synthetic and CVD diamond. A variation in intensity with distance from the surface is interpreted as a significant non-radiative loss of excitons to the surface. Chapter 6: The decay-times of all known self-interstitial related centres have been measured in order to calculate the concentration of these centres present in electron irradiated diamond. (author)

  19. Synthetic prions and other human neurodegenerative proteinopathies.

    Science.gov (United States)

    Le, Nhat Tran Thanh; Narkiewicz, Joanna; Aulić, Suzana; Salzano, Giulia; Tran, Hoa Thanh; Scaini, Denis; Moda, Fabio; Giachin, Gabriele; Legname, Giuseppe

    2015-09-02

    Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Critical Perspective on Synthetic Biology

    OpenAIRE

    Michel Morange

    2009-01-01

    Synthetic biology emerged around 2000 as a new biological discipline. It shares with systems biology the same modular vision of organisms, but is more concerned with applications than with a better understanding of the functioning of organisms. A herald of this new discipline is Craig Venter who aims to create an artificial microorganism with the minimal genome compatible with life and to implement into it different 'functional modules' to generate new micro-organisms adapted to specific task...

  1. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  2. Agent-based modelling in synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  3. Synthetic Biology: Putting Synthesis into Biology

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  4. Synthetic biology: Novel approaches for microbiology.

    Science.gov (United States)

    Padilla-Vaca, Felipe; Anaya-Velázquez, Fernando; Franco, Bernardo

    2015-06-01

    In the past twenty years, molecular genetics has created powerful tools for genetic manipulation of living organisms. Whole genome sequencing has provided necessary information to assess knowledge on gene function and protein networks. In addition, new tools permit to modify organisms to perform desired tasks. Gene function analysis is speed up by novel approaches that couple both high throughput data generation and mining. Synthetic biology is an emerging field that uses tools for generating novel gene networks, whole genome synthesis and engineering. New applications in biotechnological, pharmaceutical and biomedical research are envisioned for synthetic biology. In recent years these new strategies have opened up the possibilities to study gene and genome editing, creation of novel tools for functional studies in virus, parasites and pathogenic bacteria. There is also the possibility to re-design organisms to generate vaccine subunits or produce new pharmaceuticals to combat multi-drug resistant pathogens. In this review we provide our opinion on the applicability of synthetic biology strategies for functional studies of pathogenic organisms and some applications such as genome editing and gene network studies to further comprehend virulence factors and determinants in pathogenic organisms. We also discuss what we consider important ethical issues for this field of molecular biology, especially for potential misuse of the new technologies. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  5. Biologic and synthetic skin substitutes: An overview.

    Science.gov (United States)

    Halim, Ahmad Sukari; Khoo, Teng Lye; Mohd Yussof, Shah Jumaat

    2010-09-01

    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.

  6. LEVELS OF SYNTHETIC MUSKS COMPOUNDS IN AQUATIC ...

    Science.gov (United States)

    Synthetic musk compounds are consumer chemicals manufactured as fragrance materials Due to their high worldwide usage and release, they frequently occur in the aquatic and marine environments. The U.S. EPA (ORD, Las Vegas) developed surface-water monitoring methodology and conducted a one-year monthly monitoring of synthetic musks in water and biota from Lake Mead (Nevada) as well as from combined sewage effluent streams feeding Lake Mead. Presented are the overview of the chemistry, the monitoring methodology, and the significance of synthetic musk compounds in the aquatic environment. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than p

  7. Biologic and synthetic skin substitutes: An overview

    Directory of Open Access Journals (Sweden)

    Halim Ahmad

    2010-10-01

    Full Text Available The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.

  8. Paper-based synthetic gene networks.

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A; Ferrante, Tom; Cameron, D Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J

    2014-11-06

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides an alternate, versatile venue for synthetic biologists to operate and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze dried onto paper, enabling the inexpensive, sterile, and abiotic distribution of synthetic-biology-based technologies for the clinic, global health, industry, research, and education. For field use, we create circuits with colorimetric outputs for detection by eye and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small-molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors.

  9. Synthetic biology approaches to fluorinated polyketides.

    Science.gov (United States)

    Thuronyi, Benjamin W; Chang, Michelle C Y

    2015-03-17

    The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides.

  10. Carbon Nanotube-Based Synthetic Gecko Tapes

    Science.gov (United States)

    Dhinojwala, Ali

    2008-03-01

    Wall-climbing geckos have unique ability to attach to different surfaces without the use of any viscoelastic glues. On coming in contact with any surface, the micron-size gecko foot-hairs deform, enabling molecular contact over large areas, thus translating weak van der Waals (vdW) interactions into enormous shear forces. We will present our recent results on the development of synthetic gecko tape using aligned carbon nanotubes to mimic the keratin hairs found on gecko feet. The patterned carbon nanotube-based gecko tape can support a shear stress (36 N/cm^2) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micron-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak vdW interactions into high shear forces. The carbon nanotube based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics and space applications. The mechanism behind these large shear forces and self-cleaning properties of these carbon nanotube based synthetic gecko tapes will be discussed. This work was performed in collaboration with graduate students Liehui Ge, and Sunny Sethi, and collaborators from RPI; Lijie Ci and Professor Pulickel Ajayan.

  11. Paper-based Synthetic Gene Networks

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  12. 75 FR 52752 - Request for Comments on Synthetic Biology

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Request for Comments on Synthetic Biology AGENCY... Bioethical Issues is requesting public comment on the emerging science of synthetic biology, including its... Commission has begun an inquiry into the emerging science of synthetic biology. The President asked the...

  13. Reasons for Synthetic THC Use among College Students

    Science.gov (United States)

    Vidourek, Rebecca A.; King, Keith A.; Burbage, Michelle L.

    2013-01-01

    Synthetic THC, also known as fake marijuana, is used by college students in the United States. The present study examined reasons for recent synthetic THC use among college students (N = 339). Students completed a 3-page survey during regularly scheduled class times. Results indicated students reported using synthetic THC for curiosity, to get…

  14. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction.

    Science.gov (United States)

    Elsheshtawy, Moustafa; Sriganesh, Priatharsini; Virparia, Vasudev; Patel, Falgun; Khanna, Ashok

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  15. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    OpenAIRE

    Moustafa Elsheshtawy; Priatharsini Sriganesh; Vasudev Virparia; Falgun Patel; Ashok Khanna

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  16. Efficacy of bio and synthetic pesticides against the American ...

    African Journals Online (AJOL)

    Management for the bollworm complex in Uganda is largely synthetic chemical use with little or no biopesticide use which reduces natural enemies population and resistance development to continuous use of a single synthetic pesticide product. Therefore this study aimed at determining the efficacy of bio and synthetic ...

  17. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  18. 21 CFR 172.275 - Synthetic paraffin and succinic derivatives.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic paraffin and succinic derivatives. 172... FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.275 Synthetic paraffin and succinic derivatives. Synthetic paraffin and succinic derivatives identified in this section may be safely...

  19. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    Science.gov (United States)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  20. Natural and Synthetic Barriers to Immobilize Radionuclides

    International Nuclear Information System (INIS)

    Um, W.

    2011-01-01

    The experiments of weathering of glass waste form and the reacted sediments with simulated glass leachates show that radionuclide sequestration can be significantly enhanced by promoting the formation of secondary precipitates. In addition, synthetic phosphate-bearing nanoporous material exhibits high stability at temperature and has a very high K d value for U(VI) removal. Both natural and synthetic barrier materials can be used as additional efficient adsorbents for retarding transport of radionuclides for various contaminated waste streams and waste forms present at U. S. Department of Energy clean-up sites and the proposed geologic radioactive waste disposal facility. In the radioactive waste repository facility, natural or synthetic materials are planned to be used as a barrier material to immobilize and retard radionuclide release. The getter material can be used to selectively scavenge the radionuclide of interest from a liquid waste stream and subsequently incorporate the loaded getters in a cementitious or various monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides form monolithic waste forms by being emplaced as a backfill barrier material around the wastes or waste form to minimize the potential around the wastes or waste form to minimize the potential hazard of leached radioactive wastes. The barrier material should be highly efficient to sequester radionuclides and possess physical and chemical stability for long-term exposure to severe weathering conditions. Because potential leaching of radionuclides depends on various environmental and weathering conditions of the near-field repository, the barrier materials must be durable and not disintegrate under a range of moisture, temperature, pressure, radiation, Eh, ph. and