WorldWideScience

Sample records for multi-channel wire gas

  1. Miniaturized multi channel infrared optical gas sensor system

    Science.gov (United States)

    Wöllenstein, Jürgen; Eberhardt, Andre; Rademacher, Sven; Schmitt, Katrin

    2011-06-01

    Infrared spectroscopy uses the characteristic absorption of the molecules in the mid infrared and allows the determination of the gases and their concentration. Especially by the absorption at longer wavelengths between 8 μm and 12 μm, the so called "fingerprint" region, the molecules can be measured with highest selectivity. We present an infrared optical filter photometer for the analytical determination of trace gases in the air. The challenge in developing the filter photometer was the construction of a multi-channel system using a novel filter wheel concept - which acts as a chopper too- in order to measure simultaneously four gases: carbon monoxide, carbon dioxide, methane and ammonia. The system consists of a broadband infrared emitter, a long path cell with 1.7m optical path length, a filter wheel and analogue and digital signal processing. Multi channel filter photometers normally need one filter and one detector per target gas. There are small detection units with one, two or more detectors with integrated filters available on the market. One filter is normally used as reference at a wavelength without any cross-sensitivities to possible interfering gases (e.g. at 3.95 μm is an "atmospheric window" - a small spectral band without absorbing gases in the atmosphere). The advantage of a filter-wheel set-up is that a single IR-detector can be used, which reduces the signal drift enormously. Pyroelectric and thermopile detectors are often integrated in these kinds of spectrometers. For both detector types a modulation of the light is required and can be done - without an additional chopper - with the filter wheel.

  2. On-line gas mixing and multi-channel distribution system

    International Nuclear Information System (INIS)

    Kalmani, S.D.; Mondal, N.K.; Satyanarayana, B.; Verma, P.; Joshi, Avinash

    2009-01-01

    In this presentation, we describe a mass-flow controller based on-line gas mixing unit with the multi-channel distribution system. We highlight different aspects such as requirement, design, calibration, control and operation of this system. This unit has the capability to mix up to four different input gases and distribute over 16 output channels. Output in individual channels is controlled accurately by using capillary-based system. At present, we are using this gas mixing unit for prototype of iron calorimeter (ICAL) detector of India-based Neutrino Observatory (INO).

  3. Theoretical Valuation of Multi-Channel Cyclone to Reduce Gas Flow Dustiness in Agressive Environment

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2016-10-01

    Full Text Available Contaminated gas cleaning from finely divided solids is carried out using a new generation of multi-channel design cyclones. The application of these devices are separated and precipitated particles with a minimum diameter up to 2 micrometers, reaching up to 95% cleaning efficiency. Cyclones of such constructions are usually used under usual conditions at elevated temperature and low humidity. Under aggressive conditions, these devices can be clogged, and their recovery is not possible. Further studies are research into the application of constructive solutions to adapt the cyclone gas cleaning of the particulate matter under aggressive conditions. This theoretical evaluation has described the characteristics change of gas flow and particulate matters at different aggressive environment. Such conditions were loudly describe the gas-flow high-temperature range of 50–200 °C and gas-vapor stream, the humidity reaches 70–100%. Estimated aggressive conditions on the gas flow dynamics forces – pressure, resistance and centrifugal, and particulate mechanical – gravitational and adhesion strength. All parameters are evaluated in comparison with the values under normal conditions.

  4. Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement.

    Science.gov (United States)

    Liu, Jing; Seo, Jung Hwan; Li, Yubo; Chen, Di; Kurabayashi, Katsuo; Fan, Xudong

    2013-03-07

    We developed a novel smart multi-channel two-dimensional (2-D) micro-gas chromatography (μGC) architecture that shows promise to significantly improve 2-D μGC performance. In the smart μGC design, a non-destructive on-column gas detector and a flow routing system are installed between the first dimensional separation column and multiple second dimensional separation columns. The effluent from the first dimensional column is monitored in real-time and decision is then made to route the effluent to one of the second dimensional columns for further separation. As compared to the conventional 2-D μGC, the greatest benefit of the smart multi-channel 2-D μGC architecture is the enhanced separation capability of the second dimensional column and hence the overall 2-D GC performance. All the second dimensional columns are independent of each other, and their coating, length, flow rate and temperature can be customized for best separation results. In particular, there is no more constraint on the upper limit of the second dimensional column length and separation time in our architecture. Such flexibility is critical when long second dimensional separation is needed for optimal gas analysis. In addition, the smart μGC is advantageous in terms of elimination of the power intensive thermal modulator, higher peak amplitude enhancement, simplified 2-D chromatogram re-construction and potential scalability to higher dimensional separation. In this paper, we first constructed a complete smart 1 × 2 channel 2-D μGC system, along with an algorithm for automated control/operation of the system. We then characterized and optimized this μGC system, and finally employed it in two important applications that highlight its uniqueness and advantages, i.e., analysis of 31 workplace hazardous volatile organic compounds, and rapid detection and identification of target gas analytes from interference background.

  5. A multi-channel integrated circuit for the readout of a microstrip gas chamber

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacher, F.; Enz, C. (Smart Silicon Systems S.A., Lausanne (Switzerland)); Bellazzini, R. (Dipt. di Fisica, Pisa (Italy) INFN, Pisa (Italy))

    1992-03-15

    The design and test of an 8 channel integrated circuit for the readout of the microstrip gas chamber and other multielectrode detectors are described. The circuit is composed of 8 identical channels, each providing the amplification and the shaping of the signal delivered by the detector. The peaking time of the shaper is 25 ns and the overall amplifier gain is 8 mV/1000 e{sup -}. In addition to the analog output, each channel provides a TTL compatible digital output. The equivalent input noise is less than 700 e{sup -} rms and the total dc power consumption is about 5 mW/channel. To avoid a baseline shift due to the tail of the current issued from the detector, an adjustable pole-zero cancellation circuit has been included. (orig.).

  6. Multi-channel Kondo necklace

    International Nuclear Information System (INIS)

    Fazekas, P.; Kee Haeyoung.

    1993-06-01

    A multi-channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins τ J , j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig

  7. Multi-channel Kondo necklace

    Energy Technology Data Exchange (ETDEWEB)

    Fazekas, P; Haeyoung, Kee

    1993-06-01

    A multi-channel generalization of Doniach`s Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins {tau}{sub J}, j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig.

  8. Digital Multi Channel Analyzer Enhancement

    International Nuclear Information System (INIS)

    Gonen, E.; Marcus, E.; Wengrowicz, U.; Beck, A.; Nir, J.; Sheinfeld, M.; Broide, A.; Tirosh, D.

    2002-01-01

    A cement analyzing system based on radiation spectroscopy had been developed [1], using novel digital approach for real-time, high-throughput and low-cost Multi Channel Analyzer. The performance of the developed system had a severe problem: the resulted spectrum suffered from lack of smoothness, it was very noisy and full of spikes and surges, therefore it was impossible to use this spectrum for analyzing the cement substance. This paper describes the work carried out to improve the system performance

  9. Multi-channel temperature measurement system for automotive battery stack

    Science.gov (United States)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  10. Estimation of seismic attenuation of gas hydrate bearing sediments from multi-channel seismic data: A case study from Krishna-Godavari offshore basin

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Mandal, R.; Jaiswal, P.; Ramprasad, T.; Sriram, G.

    thickness of water column. The estimated effective Q-values, along the inline and crossline seismic profiles, depend on several factors such as gas hydrate, free gas and the complex fault system. The combined interpretation of the quality factor...

  11. Nanopowder production by gas-embedded electrical explosion of wire

    Institute of Scientific and Technical Information of China (English)

    Zou Xiao-Bing; Mao Zhi-Guo; Wang Xin-Xin; Jiang Wei-Hua

    2013-01-01

    A small electrical explosion of wire (EEW) setup for nanopowder production is constructed.It consists of a low inductance capacitor bank of 2 μF--4 μF typically charged to 8 kV-30 kV,a triggered gas switch,and a production chamber housing the exploding wire load and ambient gas.With the EEW device,nanosize powders of titanium oxides,titanium nitrides,copper oxides,and zinc oxides are successfully synthesized.The average particle size of synthesized powders under different experimental conditions is in a range of 20 nm-80 nm.The pressure of ambient gas or wire vapor can strongly affect the average particle size.The lower the pressure,the smaller the particle size is.For wire material with relatively high resistivity,such as titanium,whose deposited energy Wd is often less than sublimation energy Ws due to the flashover breakdown along the wire prematurely ending the Joule heating process,the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k =Wd/Ws) increasing.

  12. Nanopowder production by gas-embedded electrical explosion of wire

    International Nuclear Information System (INIS)

    Zou Xiao-Bing; Wang Xin-Xin; Jiang Wei-Hua; Mao Zhi-Guo

    2013-01-01

    A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF–4 μF typically charged to 8 kV−30 kV, a triggered gas switch, and a production chamber housing the exploding wire load and ambient gas. With the EEW device, nanosize powders of titanium oxides, titanium nitrides, copper oxides, and zinc oxides are successfully synthesized. The average particle size of synthesized powders under different experimental conditions is in a range of 20 nm−80 nm. The pressure of ambient gas or wire vapor can strongly affect the average particle size. The lower the pressure, the smaller the particle size is. For wire material with relatively high resistivity, such as titanium, whose deposited energy W d is often less than sublimation energy W s due to the flashover breakdown along the wire prematurely ending the Joule heating process, the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k = W d /W s ) increasing. (physics of gases, plasmas, and electric discharges)

  13. Multi-channel polarized thermal emitter

    Science.gov (United States)

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  14. An extended parametrization of gas amplification in proportional wire chambers

    International Nuclear Information System (INIS)

    Beingessner, S.P.; Carnegie, R.K.; Hargrove, C.K.

    1987-01-01

    It is normally assumed that the gas amplification in proportional chambers is a function of Townsend's first ionization coefficient, α, and that α is a function of the anode surface electric field only. Experimental measurements are presented demonstrating the breakdown of the latter assumption for electric fields, X, greater than about 150 V/cm/Torr on the anode wire surface for a gas mixture of 80/20 argon/methane. For larger values of X, the parametrization of the proportional gas gain data requires an additional term related to the gradient of the electric field near the wire. This extended gain parametrization remains valid until the onset of nonproportional contributions such as positive ion space charge saturation effects. Furthermore, deviations of the data from this parametrization are used to measure the onset of these space charge effects. A simple scaling dependence of the gain data on the product of pressure and wire radius over the whole proportional range is also demonstrated. (orig.)

  15. HEXEREI: a multi-channel heat conduction convection code for use in transient thermal hydraulic analysis of high-temperature, gas-cooled reactors. Interim report

    International Nuclear Information System (INIS)

    Giles, G.E.; DeVault, R.M.; Turner, W.D.; Becker, B.R.

    1976-05-01

    A description is given of the development and verification of a generalized coupled conduction-convection, multichannel heat transfer computer program to analyze specific safety questions involving high temperature gas-cooled reactors (HTGR). The HEXEREI code was designed to provide steady-state and transient heat transfer analysis of the HTGR active core using a basic hexagonal mesh and multichannel coolant flow. In addition, the core auxiliary cooling systems were included in the code to provide more complete analysis of the reactor system during accidents involving reactor trip and cooling down on the auxiliary systems. Included are brief descriptions of the components of the HEXEREI code and sample HEXEREI analyses compared with analytical solutions and other heat transfer codes

  16. Dynamic multi-channel TMS with reconfigurable coil.

    Science.gov (United States)

    Jiang, Ruoli; Jansen, Ben H; Sheth, Bhavin R; Chen, Ji

    2013-05-01

    Investigations of the causal involvement of particular brain areas and interconnections in behavior require an external stimulation system with reasonable spatio-temporal resolution. Current transcranial magnetic stimulation (TMS) technology is limited to stimulating a single brain area once in a given trial. Here, we present a feasibility study for a novel TMS system based on multi-channel reconfigurable coils. With this hardware, researchers will be able to stimulate multiple brain sites in any temporal order in a trial. The system employs a wire-mesh coil, constructed using x- and y-directional wires. By varying the current direction and/or strength on each wire, we can configure the proposed mesh-wire coil into a standard loop coil and figure-eight coil of varying size. This provides maximum flexibility to the experimenter in that the location and extent of stimulation on the brain surface can be modified depending on experimental requirement. Moreover, one can dynamically and automatically modify the site(s) of stimulation several times within the span of seconds. By pre-storing various sequences of excitation patterns inside a control unit, one can explore the effect of dynamic TMS on behavior, in associative learning, and as rehabilitative therapy. Here, we present a computer simulation and bench experiments that show the feasibility of the dynamically-reconfigurable coil.

  17. Multi-channel software defined radio experimental evaluation and analysis

    CSIR Research Space (South Africa)

    Van der Merwe, JR

    2014-09-01

    Full Text Available Multi-channel software-defined radios (SDRs) can be utilised as inexpensive prototyping platforms for transceiver arrays. The application for multi-channel prototyping is discussed and measured results of coherent channels for both receiver...

  18. Modelling customer behaviour in multi-channel service distribution

    NARCIS (Netherlands)

    Heinhuis, D.; de Vries, E.J.; Kundisch, D.; Veit, D.J.; Weitzel, T.; Weinhardt, C.

    2009-01-01

    Financial service providers are innovating their distribution strategy into multi-channel strategies. The success of a multi-channel approach and the high investments made in information systems and enterprise architectures depends on the adoption and multi-channel usage behaviour of consumers. We

  19. A multi-channel coronal spectrophotometer.

    Science.gov (United States)

    Landman, D. A.; Orrall, F. Q.; Zane, R.

    1973-01-01

    We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.

  20. A low power Multi-Channel Analyzer

    International Nuclear Information System (INIS)

    Anderson, G.A.; Brackenbush, L.W.

    1993-06-01

    The instrumentation used in nuclear spectroscopy is generally large, is not portable, and requires a lot of power. Key components of these counting systems are the computer and the Multi-Channel Analyzer (MCA). To assist in performing measurements requiring portable systems, a small, very low power MCA has been developed at Pacific Northwest Laboratory (PNL). This MCA is interfaced with a Hewlett Packard palm top computer for portable applications. The MCA can also be connected to an IBM/PC for data storage and analysis. In addition, a real-time time display mode allows the user to view the spectra as they are collected

  1. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  2. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...

  3. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  4. Multi-channel spintronic transistor design based on magnetoelectric barriers and spin-orbital effects

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a spin transistor design based on spin-orbital interactions in a two-dimensional electron gas, with magnetic barriers induced by a patterned ferromagnetic gate. The proposed device overcomes certain shortcomings of previous spin transistor designs such as long device length and degradation of conductance modulation for multi-channel transport. The robustness of our device for multi-channel transport is unique in spin transistor designs based on spin-orbit coupling. The device is more practical in fabrication and experimental respects compared to previously conceived single-mode spin transistors

  5. Skyrmion-based multi-channel racetrack

    Science.gov (United States)

    Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Xia, Haiyan; Wang, Jianbo; Liu, Qingfang

    2017-11-01

    Magnetic skyrmions are promising for the application of racetrack memories, logic gates, and other nano-devices, owing to their topologically protected stability, small size, and low driving current. In this work, we propose a skyrmion-based multi-channel racetrack memory where the skyrmion moves in the selected channel by applying voltage-controlled magnetic anisotropy gates. It is demonstrated numerically that a current-dependent skyrmion Hall effect can be restrained by the additional potential of the voltage-controlled region, and the skyrmion velocity and moving channel in the racetrack can be operated by tuning the voltage-controlled magnetic anisotropy, gate position, and current density. Our results offer a potential application of racetrack memory based on skyrmions.

  6. Polymer growth rate in a wire chamber with oxygen, water, or alcohol gas additives

    International Nuclear Information System (INIS)

    Boyarski, Adam M.

    2009-01-01

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium:isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a scanning electron microscope/energy dispersive X-ray (SEM/EDX) instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build-up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water, or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is trapped in the polymer layer and that a high electric field is necessary to remove the charge.

  7. Reduction of Gas Bubbles and Improved Critical Current Density in Bi-2212 Round Wire by Swaging

    CERN Document Server

    Jiang, J; Huang, Y; Hong, S; Parrell, J; Scheuerlein, C; Di Michiel, M; Ghosh, A; Trociewitz, U; Hellstrom, E; Larbalestier, D

    2013-01-01

    Bi-2212 round wire is made by the powder-in-tube technique. An unavoidable property of powder-in-tube conductors is that there is about 30% void space in the as-drawn wire. We have recently shown that the gas present in the as-drawn Bi-2212 wire agglomerates into large bubbles and that they are presently the most deleterious current limiting mechanism. By densifying short 2212 wires before reaction through cold isostatic pressing (CIPping), the void space was almost removed and the gas bubble density was reduced significantly, resulting in a doubled engineering critical current density (JE) of 810 A/mm2 at 5 T, 4.2 K. Here we report on densifying Bi-2212 wire by swaging, which increased JE (4.2 K, 5 T) from 486 A/mm2 for as-drawn wire to 808 A/mm2 for swaged wire. This result further confirms that enhancing the filament packing density is of great importance for making major JE improvement in this round-wire magnet conductor.

  8. Multi-channel data acquisition system for CT

    International Nuclear Information System (INIS)

    Cao Fuqiang; He Bin; Liu Guohua; Xu Minjian

    2009-01-01

    The architecture design and realization of a data acquisition system for multi-channel CT is described. The article introduces the conversion of analog signal to digital signal, the data cache and transmission. This data acquisition system can be widely used in the system which requires the multi-channel, weak current signal detection. (authors)

  9. Computer-based multi-channel analyzer based on internet

    International Nuclear Information System (INIS)

    Zhou Xinzhi; Ning Jiaoxian

    2001-01-01

    Combined the technology of Internet with computer-based multi-channel analyzer, a new kind of computer-based multi-channel analyzer system which is based on browser is presented. Its framework and principle as well as its implementation are discussed

  10. Multi-channel mechanical test machine for HANARO (I)

    International Nuclear Information System (INIS)

    Song, M. S.; Choi, Y.; Cho, M. S.; Kim, B. G.; Kang, Y. H.

    2004-01-01

    Design and fabrication of multi-channel mechanical test machine is useful and important for the study of in-pile test of nuclear materials in HANARO. The dimension and shape of the multi-channel mechanical test machine should be fixed to a test reactor and their objectives. KAERI successfully developed a non-instrumented multi-channel mechanical test machine for material irradiation tests in a domestic research reactor, HANARO. This results in strongly stimulating and accelerating irradiation tests of materials in domestic industry and research fields with HANARO. Although various types of in-pile creep capsule were made for well installation in each test reactor, there is no in-pile creep multi-channel mechanical test machine for HANARO. Hence, the objectives of this study are to fabricate and test a multi-channel mechanical test machine of HANARO

  11. Study on aroma components of osmanthus by absorption wire gas chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Feng Janyue; Zhao Jing; Huang Qiaoqiao; Feng Lianmei

    2001-01-01

    The aroma components of fresh osmanthus are captured by absorption wires. The fragrant components absorbed in the wires are desorbed immediately at 358 degree C in Curie-point pyrolyzed, and then led into GC/MS to analyze. As a result, 41 aroma compounds such as β-linalool, linalooloxide, β-ocimene etc. in osmanthus are detected qualitatively by gas chromatography/mass spectrometry. This method can be used to analyze the change of aroma compounds of fresh flowers while blossoming

  12. Multi-Channel Capacitive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Bingnan Wang

    2016-01-01

    Full Text Available In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  13. Use of gas mixture electroluminescence for optical data readout from wire chambers

    International Nuclear Information System (INIS)

    Polyakov, V.A.; Rykalin, V.I.; Tskhadadze, Eh.G.

    1988-01-01

    The radiation spectra, the values of electroluminescence yield and coefficients of gas amplification of Ar and Ne mixture with inorganic and organic additions in a wire chamber operating under proportional and self-quenching streamer conditions are measured. Maximum light yield: 2x10 7 photons for Ar+acetone+white spirit gas mixture in a proportional regime and 1.1x10 7 photons for Ar+CO 2 + ethyl alcohol+ white spirit in self-quenching streamer regime is obtained. Three methods of optical data readout from the wire chambers are tested. The best results are obtained when spectrum shifting bands and fibers are placed behind the chamber cathode planes

  14. Wellhead to wire utilization of remote gas resources

    International Nuclear Information System (INIS)

    Harris, R.A.; Hines, T.L.

    1998-01-01

    Utilization of remote gas resources in developing countries continues to offer challenges and opportunities to producers and contractors. The Aguaytia Gas and Power Project is an example where perseverance and creativity resulted in successful utilization of natural gas resources in the Ucayali Region of Central Peru, a country which previously had no natural gas infrastructure. The resource for the project was first discovered by Mobil in 1961, and remained undeveloped for over thirty years due to lack of infrastructure and markets. Maple Gas won a competitively bid contract to develop the Aguaytia gas reserves in March of 1993. The challenges facing Maple Gas were to develop downstream markets for the gas, execute contracts with Perupetro S.A. and other Peruvian government entities, raise financing for the project, and solicit and execute engineering procurement and construction (EPC) contracts for the execution of the project. The key to development of the downstream markets was the decision to generate electric power and transmit the power over the Andes to the main electrical grid along the coast of Peru. Supplemental revenue could be generated by gas sales to a small regional power plant and extraction of LPG and natural gasoline for consumption in the Peruvian market. Three separate lump sum contracts were awarded to Asea Brown Boveri (ABB) companies for the gas project, power project and transmission project. Each project presented its unique challenges, but the commonalities were the accelerated schedule, high rainfall in a prolonged wet season and severe logistics due to lack of infrastructure in the remote region. This presentation focuses on how the gas plant contractor, ABB Randall, working in harmony with the developer, Maple Gas, tackled the challenges to monetize a remote gas resource

  15. A low-power high-flow shape memory alloy wire gas microvalve

    International Nuclear Information System (INIS)

    Gradin, Henrik; Braun, Stefan; Stemme, Göran; Van der Wijngaart, Wouter; Clausi, Donato; Peirs, Jan; Reynaerts, Dominiek

    2012-01-01

    In this paper the use of shape memory alloy (SMA) wire actuators for high gas flow control is investigated. A theoretical model for effective gas flow control is presented and gate microvalve prototypes are fabricated. The SMA wire actuator demonstrates the robust flow control of more than 1600 sccm at a pressure drop of 200 kPa. The valve can be successfully switched at over 10 Hz and at an actuation power of 90 mW. Compared to the current state-of-the-art high-flow microvalves, the proposed solution benefits from a low-voltage actuator with low overall power consumption. This paper demonstrate that SMA wire actuators are well suited for high-pressurehigh-flow applications. (paper)

  16. Multi-channel phase-equivalent transformation and supersymmetry

    OpenAIRE

    Shirokov, A. M.; Sidorenko, V. N.

    2000-01-01

    Phase-equivalent transformation of local interaction is generalized to the multi-channel case. Generally, the transformation does not change the number of the bound states in the system and their energies. However, with a special choice of the parameters, the transformation removes one of the bound states and is equivalent to the multi-channel supersymmetry transformation recently suggested by Sparenberg and Baye. Using the transformation, it is also possible to add a bound state to the discr...

  17. Essays on Online and Multi-Channel Marketing

    OpenAIRE

    Zhang, Lingling

    2016-01-01

    Firms increasingly adopt online and multi-channel marketing strategies to reach and persuade consumers. Therefore, designing an effective marketing mix is critical to their success. The aim of my dissertation is to understand the strategy behind firms’ channel choices and assess marketing effectiveness. It consists of three large-scale empirical studies examining several important aspects of online and multi-channel marketing. My first essay focuses on the business-to-business (B2B) inte...

  18. Visualization for gas-liquid two-phase flow using wire mesh tomography

    International Nuclear Information System (INIS)

    Motegi, Yuichi; Wanjiraniran, Weerin; Kikura, Hiroshige; Aritomi, Masanori; Yamauchi, Toyoaki

    2003-01-01

    Wire Mesh Tomography (WMT), which is system to measure two-phase flow, has been developed in our laboratory. Measurement principle of WMT is detecting conductivity difference between gas and liquid. WMT measures void fraction as raw date, and calculates gas velocity and bubble volume etc. In this paper, this measurement technique was applied to vertical circular pipe of 50 mm diameter and about 7 m heights. New Wire Mesh Sensor (WMS), which is measurement part of WMT, for circular pipe, have been made. When experiment was performed, superficial gas and water velocity. The effect of each flow parameter was found for void fraction, true gas velocity and bubble volume and the results was in good agreement with the past research, qualitatively. (author)

  19. The Buywell Way: seven essential practices of a highly successful multi-channel e-tailer

    Directory of Open Access Journals (Sweden)

    Mary Tate

    2005-05-01

    Full Text Available After the dot-com bust there is considerable evidence that multi-channel retailers are more successful than purely on-line retailers. Multi-channel retailing is becoming mainstream and considerable research exists on successful multi-channel strategies. Despite this, some organisations are having more success than others with their multi-channel approach. We talked to the management of one of Australasia’s most successful multi-channel apparel and home-ware retailers about the theory and practice of multi-channel retailing, with the aim of building on existing theory in multi-channel e-commerce.

  20. Study of the deoxidation of steel with aluminum wire injection in a gas-stirred ladle

    Science.gov (United States)

    Beskow, K.; Jonsson, L.; Sichen, Du; Viswanathan, N. N.

    2001-04-01

    In the present work, the deoxidation of liquid steel with aluminum wire injection in a gas-stirred ladle was studied by mathematical modeling using a computational fluid dynamics (CFD) approach. This was complemented by an industrial trial study conducted at Uddeholm Tooling AB (Hagfors, Sweden). The results of the industrial trials were found to be in accordance with the results of the model calculation. In order to study the aspect of nucleation of alumina, emphasis was given to the initial period of deoxidation, when aluminum wire was injected into the bath. The concentration distributions of aluminum and oxygen were calculated both by considering and not considering the chemical reaction. Both calculations revealed that the driving force for the nucleation fo Al2O3 was very high in the region near the upper surface of the bath and close to the wire injection. The estimated nucleation rate in the vicinity of the aluminum wire injection point was much higher than the recommended value for spontaneously homogeneous nucleation, 103 nuclei/(cm3/s). The results of the model calculation also showed that the alumina nuclei generated at the vicinity of the wire injection point are transported to other regions by the flow.

  1. Wire rod coating process of gas diffusion layers fabrication for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, A.M.; Sadananda, S.; Parker, D.; Munukutla, L. [Electronic Systems Department, Arizona State University, 7001 E Williams Field Road, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road West Groton, MA 01472 (United States); Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2008-03-15

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth and Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 C using H{sub 2} and air at 50% RH, compared to all other compositions. (author)

  2. Research on digital multi-channel pulse height analysis techniques

    International Nuclear Information System (INIS)

    Xiao Wuyun; Wei Yixiang; Ai Xianyun; Ao Qi

    2005-01-01

    Multi-channel pulse height analysis techniques are developing in the direction of digitalization. Based on digital signal processing techniques, digital multi-channel analyzers are characterized by powerful pulse processing ability, high throughput, improved stability and flexibility. This paper analyzes key techniques of digital nuclear pulse processing. With MATLAB software, main algorithms are simulated, such as trapezoidal shaping, digital baseline estimation, digital pole-zero/zero-pole compensation, poles and zeros identification. The preliminary general scheme of digital MCA is discussed, as well as some other important techniques about its engineering design. All these lay the foundation of developing homemade digital nuclear spectrometers. (authors)

  3. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  4. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. AC dielectrophoresis alignment of single-walled carbon nano tubes (SWNTS) and palladium nano wires for hydrogen gas sensor

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Nur Ubaidah Saidin; Ying, K.K.; KKhuan, N.I.; Mohammad Hafizuddin Jumali

    2013-01-01

    Full-text: Using AC electric field, nano wires or nano tubes can be aligned, chained or accelerated in a direction parallel to the applied field, oriented or concentrated onto designated locations as well as dispersed in controlled manner under high efficiencies. In this work, systematic study on the alignment of nano wires/ nano tubes across the 3 μm-gaps between pairs of micro fabricated gold electrodes was carried out using AC dielectrophoresis technique. Densities and alignment of the nano wires/ nano tubes across the gaps of the electrodes were controlled by the applied AC field strengths and frequencies on the electrodes. Good alignments of SWNTs and Pd nano wires were achieved at an applied frequency of 5 MHz and a field strength as high as 25 V pp for Pd nano wires compared to only 2 V pp for SWNTs. The aligned nano wires/ nano tubes will be functioned as sensor elements for hydrogen gas sensing. (author)

  6. Multi-channel electronically scanned cryogenic pressure sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Kruse, Nancy M. H. (Inventor)

    1995-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multielement array. These dies are bonded at specific sites on a glass, prepatterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  7. Online purchase intentions: A multi-channel store image perspective

    NARCIS (Netherlands)

    Verhagen, T.; van Dolen, W.

    2009-01-01

    The advantages of the bricks-and-clicks retail format in the battle for the online customer has been widely discussed but empirical research on it has been limited. We applied a multi-channel store image perspective to assess its influence on online purchase intentions. Drawing on a sample of 630

  8. A high-speed interface for multi-channel analyzer

    International Nuclear Information System (INIS)

    Shen Ji; Zheng Zhong; Qiao Chong; Chen Ziyu; Ye Yunxiu; Ye Zhenyu

    2003-01-01

    This paper presents a high-speed computer interface for multi-channel analyzer based on DMA technique. Its essential principle and operating procedure are introduced. By the detecting of γ spectrum of 137 Cs with the interface, it's proved that the interface can meet the requirements of high-speed data acquisition

  9. Dense Clustered Multi-Channel Wireless Sensor Cloud

    Directory of Open Access Journals (Sweden)

    Sivaramakrishnan Sivakumar

    2015-08-01

    Full Text Available Dense Wireless Sensor Network Clouds have an inherent issue of latency and packet drops with regards to data collection. Though there is extensive literature that tries to address these issues through either scheduling, channel contention or a combination of the two, the problem still largely exists. In this paper, a Clustered Multi-Channel Scheduling Protocol (CMSP is designed that creates a Voronoi partition of a dense network. Each partition is assigned a channel, and a scheduling scheme is adopted to collect data within the Voronoi partitions. This scheme collects data from the partitions concurrently and then passes it to the base station. CMSP is compared using simulation with other multi-channel protocols like Tree-based Multi-Channel, Multi-Channel MAC and Multi-frequency Media Access Control for wireless sensor networks. Results indicate CMSP has higher throughput and data delivery ratio at a lower power consumption due to network partitioning and hierarchical scheduling that minimizes load on the network.

  10. Salt Intrusion, Tides and Mixing in Multi-channel Estuaries

    NARCIS (Netherlands)

    Nguyen, A.D.

    2008-01-01

    Multi-channel estuaries, such as the Mekong Delta in Vietnam and the Scheldt in the Netherlands, have characteristics of both the river and the sea, forming a unique environment influenced by tidal movements of the sea and freshwater flow of the river. This study addresses a number of knowledge gaps

  11. A multi-channel high-resolution time recorder system

    International Nuclear Information System (INIS)

    Zhang Lingyun; Yang Xiaojun; Song Kezhu; Wang Yanfang

    2004-01-01

    This paper introduces a multi-channel and high-speed time recorder system, which was originally designed to work in the experiments of quantum cryptography research. The novelty of the system is that all the hardware logic is performed by only one FPGA. The system can achieve several desirable features, such as simplicity, high resolution and high processing speed. (authors)

  12. [Multi-channel cochlear implants in patients with Mondini malformation].

    Science.gov (United States)

    Li, Yong-xin; Han, De-min; Zhao, Xiao-tian; Chen, Xue-qing; Kong, Ying; Zheng, Jun; Liu, Bo; Liu, Sha; Mo, Ling-yan; Zhang, Hua; Wang, Shuo

    2004-02-01

    To describe clinical experiences with multi-channel cochlear implantation in patients with Mondini malformation. Among 300 patients who received multi-channel cochlear implants from 1996 to 2002 in Beijing Tongren Hospital, 15 patients were diagnosed with Mondini malformation. A retrospective analysis was performed dealing with the surgical techniques, mapping and rehabilitations characteristics after surgery. 15 patients with normal cochlear structure are consider as control group. Gusher is found more common than the normal cochlear implantation, most of them are serious. The electrodes are inserted in the "cochleostomy" in full length of 13 Patients, 2 pairs of electrodes remains outside of "cochleostomy" in 2 patients. No serious complications occurred after implantation. All patients have auditory sensations. The impedance of the electrodes, the T level, C level and the hearing threshold are similar with the normal cochlear implantation group. The results have no significant difference in compare with normal cochlear group(P > 0.05). Multi-channel cochlear implantation could be performed safely in patients with Mondini malformation. The primary outcome for patients with Mondini malformation are similar to those with normal cochlear structure following the multi-channel cochlear implantation.

  13. The Art of Multi-channel Hypermedia Application Development

    NARCIS (Netherlands)

    Synodinos, Dionysios G.; Avgeriou, Paris

    2003-01-01

    The plethora of networked devices and platforms that continuously come to light, as well as the emergence of alternative ways to access the internet, have increased the demand for multi-channel access to hypermedia applications. Researchers and practitioners nowadays not only have to deal with the

  14. Recent advances in Multi-Channel Algebraic Scattering

    International Nuclear Information System (INIS)

    Karataglidis, S.; Fraser, P. R.; Amos, K.; Canton, L.; Pisent, G.; Svenne, J. P.; Knijff, D. van der

    2011-01-01

    For coupled-channel descriptions of low-energy nucleon-induced interactions involving nuclei with particle-unstable exited states, it is necessary to include the widths of the target states. How those widths may affect the elastic scattering cross sections is examined within the framework of the Multi-Channel Algebraic Scattering (MCAS) method.

  15. Multi-channel service concept design and prototyping

    NARCIS (Netherlands)

    Sperling, C.P.; Simons, L.P.A.; Bouwman, W.A.G.A.

    2007-01-01

    Designing e-services which have to function in a multi-channel context has proved to be challenging for organizations. Previous research has shown that structured design methods are useful to structure the design process. In this paper we proceed from an existing method (which identifies

  16. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  17. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  18. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  19. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  20. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  1. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  2. Multi-channel fiber optic dew and humidity sensor

    Science.gov (United States)

    Limodehi, Hamid E.; Mozafari, Morteza; Amiri, Hesam; Légaré, François

    2018-03-01

    In this article, we introduce a multi-channel fiber optic dew and humidity sensor which works using a novel method based on relation between surface plasmon resonance (SPR) and water vapor condensation. The proposed sensor can instantly detect moisture or dew formation through its fiber optic channels, separately situated in different places. It enables to simultaneously measure the ambient Relative Humidity (RH) and dew point temperature of several environments with accuracy of 5%.

  3. Mimicking multi-channel scattering with single-channel approaches

    OpenAIRE

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2009-01-01

    The collision of two atoms is an intrinsic multi-channel (MC) problem as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold 6Li and 87Rb atoms in the ground state and in the ...

  4. A wireless multi-channel recording system for freely behaving mice and rats.

    Science.gov (United States)

    Fan, David; Rich, Dylan; Holtzman, Tahl; Ruther, Patrick; Dalley, Jeffrey W; Lopez, Alberto; Rossi, Mark A; Barter, Joseph W; Salas-Meza, Daniel; Herwik, Stanislav; Holzhammer, Tobias; Morizio, James; Yin, Henry H

    2011-01-01

    To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems.

  5. A wireless multi-channel recording system for freely behaving mice and rats.

    Directory of Open Access Journals (Sweden)

    David Fan

    Full Text Available To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems.

  6. Multi-channel data acquisition and processing system for moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Jin Ge; Yang Yanming

    1987-01-01

    A multi-channel data acquisition and processing system for moessbauer spectroscopy is described, which consists of an intelligent interface and a BC3-80 microcomputer. The system has eight data channels, each channel contains a counting circuit and a memory. A Z80-CPU is used as a main unit for control and access. The microcomputer is used for real-time displaying spectrum, saving the data to disk, printing data and data processing. The system is applicable to a high counting rate multi-wire proportional chamber. It can increase greatly the counting rate for measuring moessbauer spectrum. The signals of each wire in the chamber go through a corresponding amplifier and a differential discriminator and are recorded by a corresponding data channel, the data of each channel is added by the microcomputer. In addition, two channels can be used to measure an absorption and a scattering spectrum at the same time and the internal and the surface information of the sample are obtained simultaneously

  7. Multi-channel imaging cytometry with a single detector

    Science.gov (United States)

    Locknar, Sarah; Barton, John; Entwistle, Mark; Carver, Gary; Johnson, Robert

    2018-02-01

    Multi-channel microscopy and multi-channel flow cytometry generate high bit data streams. Multiple channels (both spectral and spatial) are important in diagnosing diseased tissue and identifying individual cells. Omega Optical has developed techniques for mapping multiple channels into the time domain for detection by a single high gain, high bandwidth detector. This approach is based on pulsed laser excitation and a serial array of optical fibers coated with spectral reflectors such that up to 15 wavelength bins are sequentially detected by a single-element detector within 2.5 μs. Our multichannel microscopy system uses firmware running on dedicated DSP and FPGA chips to synchronize the laser, scanning mirrors, and sampling clock. The signals are digitized by an NI board into 14 bits at 60MHz - allowing for 232 by 174 pixel fields in up to 15 channels with 10x over sampling. Our multi-channel imaging cytometry design adds channels for forward scattering and back scattering to the fluorescence spectral channels. All channels are detected within the 2.5 μs - which is compatible with fast cytometry. Going forward, we plan to digitize at 16 bits with an A-toD chip attached to a custom board. Processing these digital signals in custom firmware would allow an on-board graphics processing unit to display imaging flow cytometry data over configurable scanning line lengths. The scatter channels can be used to trigger data buffering when a cell is present in the beam. This approach enables a low cost mechanically robust imaging cytometer.

  8. Coordinating Multi-Channel Pricing of Seasonal Goods

    OpenAIRE

    Preetam Basu

    2012-01-01

    Advancement in information technology has opened new avenues for traditional retailers to expand their operations. Pricing, which has been a critical issue, is more important than ever before as traditional retailers pursue multi-channel sales. In this paper the author studies the pricing problem of a retailer selling a seasonal product simultaneously in a ‘brick and mortar’ store as well as online. Optimal prices are derived and different product-market conditions are determined under wh...

  9. A Low-cost Multi-channel Analogue Signal Generator

    CERN Document Server

    Muller, F; Shen, W; Stamen, R

    2009-01-01

    A scalable multi-channel analogue signal generator is presented. It uses a commercial low-cost graphics card with multiple outputs in a standard PC as signal source. Each color signal serves as independent channel to generate an analogue signal. A custom-built external PCB was developed to adjust the graphics card output voltage levels for a specific task, which needed differential signals. The system furthermore comprises a software package to program the signal shape. The implementation of the signal generator is presented as well as an application where it was successfully utilized.

  10. A Low-cost Multi-channel Analogue Signal Generator

    CERN Document Server

    Müller, F; The ATLAS collaboration; Shen, W; Stamen, R

    2009-01-01

    A scalable multi-channel analogue signal generator is presented. It uses a commercial low-cost graphics card with multiple outputs in a standard PC as signal source. Each color signal serves as independent channel to generate an analogue signal. A custom-built external PCB was developed to adjust the graphics card output voltage levels for a specific task, which needed differential signals. The system furthermore comprises a software package to program the signal shape. The signal generator was successfully used as independent test bed for the ATLAS Level-1 Trigger Pre-Processor, providing up to 16 analogue signals.

  11. Wire-mesh and ultrasound techniques applied for the characterization of gas-liquid slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Ofuchi, Cesar Y.; Sieczkowski, Wytila Chagas; Neves Junior, Flavio; Arruda, Lucia V.R.; Morales, Rigoberto E.M.; Amaral, Carlos E.F.; Silva, Marco J. da [Federal University of Technology of Parana, Curitiba, PR (Brazil)], e-mails: ofuchi@utfpr.edu.br, wytila@utfpr.edu.br, neves@utfpr.edu.br, lvrarruda@utfpr.edu.br, rmorales@utfpr.edu.br, camaral@utfpr.edu.br, mdasilva@utfpr.edu.br

    2010-07-01

    Gas-liquid two-phase flows are found in a broad range of industrial applications, such as chemical, petrochemical and nuclear industries and quite often determine the efficiency and safety of process and plants. Several experimental techniques have been proposed and applied to measure and quantify two-phase flows so far. In this experimental study the wire-mesh sensor and an ultrasound technique are used and comparatively evaluated to study two-phase slug flows in horizontal pipes. The wire-mesh is an imaging technique and thus appropriated for scientific studies while ultrasound-based technique is robust and non-intrusive and hence well suited for industrial applications. Based on the measured raw data it is possible to extract some specific slug flow parameters of interest such as mean void fraction and characteristic frequency. The experiments were performed in the Thermal Sciences Laboratory (LACIT) at UTFPR, Brazil, in which an experimental two-phase flow loop is available. The experimental flow loop comprises a horizontal acrylic pipe of 26 mm diameter and 9 m length. Water and air were used to produce the two phase flow under controlled conditions. The results show good agreement between the techniques. (author)

  12. Twin-Wire Pulsed Tandem Gas Metal Arc Welding of API X80 Steel Linepipe

    Directory of Open Access Journals (Sweden)

    Wenhao Wu

    2018-01-01

    Full Text Available Twin-Wire Pulsed Tandem Gas Metal Arc Welding process with high welding production efficiency was used to join the girth weld seam of API X80 steel linepipe of 18.4 mm wall thickness and 1422 mm diameter. The macrostructure, microstructure, hardness, and electrochemical corrosion behavior of welded joints were studied. Effects of temperature and Cl− concentration on the corrosion behavior of base metal and weld metal were investigated. Results show that the welded joint has good morphology, mechanical properties, and corrosion resistance. The corrosion resistance of both the base metal and the weld metal decreases with increasing temperature or Cl− concentration. In the solution with high Cl− concentration, the base metal and weld metal are more susceptible to pitting. The corrosion resistance of the weld metal is slightly lower than that of the base metal.

  13. Empirical Study on Multi-Channel Service Quality and Customer Loyalty of Retailers

    OpenAIRE

    Qi Yong-zhi

    2014-01-01

    This paper studies the influence of offline RSSQ (retailing store service quality), online store ESQ (E-service quality) and O2O MCISQ (multi-channel integration service quality) on traditional retailers' customer loyalty as well as the relation of them three in multi-channel retailing. 380 customers with both offline and online shopping experience at the same retailer's store are investigated. Through the structural equation model, we find out that in multi-channel retailing, RSSQ and MCISQ ...

  14. Enhancing the x-ray output of a single-wire explosion with a gas-puff based plasma opening switch

    Science.gov (United States)

    Engelbrecht, Joseph T.; Ouart, Nicholas D.; Qi, Niansheng; de Grouchy, Philip W.; Shelkovenko, Tatiana A.; Pikuz, Sergey A.; Banasek, Jacob T.; Potter, William M.; Rocco, Sophia V.; Hammer, David A.; Kusse, Bruce R.; Giuliani, John L.

    2018-02-01

    We present experiments performed on the 1 MA COBRA generator using a low density, annular, gas-puff z-pinch implosion as an opening switch to rapidly transfer a current pulse into a single metal wire on axis. This gas-puff on axial wire configuration was studied for its promise as an opening switch and as a means of enhancing the x-ray output of the wire. We demonstrate that current can be switched from the gas-puff plasma into the wire, and that the timing of the switch can be controlled by the gas-puff plenum backing pressure. X-ray detector measurements indicate that for low plenum pressure Kr or Xe shots with a copper wire, this configuration can offer a significant enhancement in the peak intensity and temporal distribution of radiation in the 1-10 keV range.

  15. Multi-channel grouping techniques for conducting reactor safety studies

    International Nuclear Information System (INIS)

    Waltar, A.E.; Wilburn, N.P.

    1975-01-01

    In conducting safety studies for postulated unprotected accidents in an LMFBR system, it is common practice to employ multi-channel coupled neutronics, thermal hydraulics computer programs such as SAS3A or MELT-III. The multichannel feature of such code systems is important if the natural fuel failure incoherencies and the resulting sodium void/fuel motion reactivity feedbacks--which have strong spatial variations--are to be properly modeled. Because of the large amounts of computer time associated with many channel runs, however, there is a strong incentive to conduct parametric studies with as few channels as possible. The paper presented is focused on methods successfully employed to accomplish this end for a study of the hypothetical unprotected transient overpower accident conducted for the FFTF

  16. Multi-channel bolometer system on JFT-2M tokamak

    International Nuclear Information System (INIS)

    Tamai, Hiroshi; Maeno, Masaki; Matsuda, Toshiaki; Matoba, Tohru

    1988-07-01

    Multi-channel bolometer system is designed and installed to observe the radiation profile on JFT-2M tokamak. Sensor head is made of Thinistor, which is a kind of semiconductor, because it has the advantage of higher sensitivity of about one order of magnitude than the conventional metal foil bolometer and is suitable for the profile measurement in which the signal from the plasma is relatively small. The response and cooling characteristics of the bolometer sensor are suitable for the condition of JFT-2M tokamak plasma. Low noise circuit of bridge and differentiator is developed to optimize the signal to noise ratio in the JFT-2M operating condition. With use of the bolometer system, the radiation profile in joule heating plasma as well as additional heating plasma especially in H-mode plasma is successfully observed. (author)

  17. Multi-channel unidirectional transmission of phononic crystal heterojunctions

    Science.gov (United States)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-02-01

    Two square steel columns are arranged in air to form two-dimensional square lattice phononic crystals (PNCs). Two PNCs can be combined into a non-orthogonal 45∘ heterojunction when the difference in the directional band gaps of the two PNC types is utilized. The finite element method is used to calculate the acoustic band structure, the heterogeneous junction transmission characteristics, acoustic field distribution, and many others. Results show that a non-orthogonal PNC heterojunction can produce a multi-channel unidirectional transmission of acoustic waves. With the square scatterer rotated, the heterojunction can select a frequency band for unidirectional transmission performance. This capability is particularly useful for constructing acoustic diodes with wide-bands and high-efficiency unidirectional transmission characteristics.

  18. New ultra small battery operated portable multi-channel analyzer

    International Nuclear Information System (INIS)

    Wolf, M.A.; Umbarger, C.J.

    1979-01-01

    A newly designed portable multi-channel analyzer (MCA) has been developd at Los Alamos that has much improved physical and performance characteristics over previous designs. Namely, the instrument is very compact (25 cm wide x 14 cm deep x 21 cm high) and has a mass of 4.2 Kg (9.2 lb). The device has 1024 channels and is microprocessor controlled. The instrument has most of the standard features of present laboratory-based pulse height analyzers, including CRT display, region of interest integration, etc. Battery life of the MCA is nearly eight hours, with full charging over night. An accessory case carries a small audio cassette recorder for data storage. The case also contains two different NaI(Tl) detectors

  19. Determination of optimum "multi-channel surface wave method" field parameters.

    Science.gov (United States)

    2012-12-01

    Multi-channel surface wave methods (especially the multi-channel analyses of surface wave method; MASW) are routinely used to : determine the shear-wave velocity of the subsurface to depths of 100 feet for site classification purposes. Users are awar...

  20. Multi-channel Analysis of Passive Surface Waves (MAPS)

    Science.gov (United States)

    Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.

    2017-12-01

    Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be

  1. Experimental test results of multi-channel test rig of T1 test section, 5

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Takase, Kazuyuki; Miyamoto, Yoshiaki

    1990-09-01

    Channel blockage test on a fuel column of the high temperature engineering test reactor (HTTR) has been performed under the helium gas atmosphere at a high temperature and a high pressure in order to obtain safety data on flow rate and temperature distributions in the fuel column with the multi-channel test rig of the fuel stack test section (T 1 ) in HENDEL. In the test, one of 12 fuel channels was blockaded to 90% of flow area at the channel inlet. Experimental results showed that the helium gas flow rate in the blockaded channel was 28%∼33% lower than the average flow rate for Reynolds number from 2300 to 14000 in isothermal flow. When simulated fuel rods were heated, the flow rate in the blockaded channel did not decrease down in comparison with the isothermal flow. This is due to that the heat generated in the fuel rods conducts to the other fuel channels in graphite fuel blocks, so that accelerated pressure losses in the fuel channels change with helium gas temperatures. (author)

  2. Microcontroller based multi-channel ultrasonic level monitoring system

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Singh, Inder Jeet; Chadda, V.K.

    2004-01-01

    Microcontroller based Multi-channel Ultrasonic Level Monitoring System developed by Computer Division is based on echo ranging techniques to monitor level. The transmitter directs an ultrasonic burst towards the liquid, which gets reflected from the top of the liquid surface. The time taken for ultrasound to travel from the transmitter to the top of liquid surface is measured and used to calculate the liquid level. The system provides for temperature compensation for accurate measurement as the ultrasound velocity depends on the ambient temperature. It can measure liquid level up to 5 meters. A single monitor can be used to measure level in 6 tanks. PC connectivity has been provided via RS 232 and RS 485 for remote operation and data logging of level. A GUI program developed using LABVIEW package displays level on PC monitor. The program provides for pictorial as well as numerical display for level and temperature in the front panel on the PC monitor. A user can monitor level for any or all tanks from the PC. One unit is installed at CIRUS for measuring level in Acid/ Alkali tanks and one is installed at APSARA for measuring water level in the reactor pool. (author)

  3. A multi-channel AC power supply controller

    International Nuclear Information System (INIS)

    Su Hong; Li Xiaogang; Ma Xiaoli; Zhou Bo; Yin Weiwei

    2003-01-01

    A multi-channel ac power supply controller developed recently by authors is introduced briefly in this paper. This controller is a computer controlled multi-electronic-switch device. This controller was developed for the automatic control and monitoring system of a 220 V ac power supply system, it is a key front-end device of the automatic control and monitoring system. There is an electronic switch in each channel, the rated load power is ≤1 kW/each channel. Another function is to sample the 220 V ac output voltage so that computer can monitor the operation state of each electronic switch. Through these switches, the 220 V ac power supply is applied to some device or apparatus that need to be powered by 220 V ac power supply. In the design, a solid-state relay was employed as an electronic switch. This controller can be connected in cascade mode. There are 8 boxes at most can be connected in cascade mode. The length of control word is 8 bit, which contains addressing information and electronic switch state setting information. The sampling output of the controller is multiplexed. It is only one bit that indicates the operating state of an electronic switch. This controller has been used in an automatic control and monitoring system for 220 V ac power supply system

  4. A multi-channel stakeholder consultation process for transmission deregulation

    International Nuclear Information System (INIS)

    Gregory, Robin; Fischhoff, Baruch; Thorne, Sarah; Butte, Gordon

    2003-01-01

    Deregulating Ontario's energy market required designing a rate structure for transmission costs that previously had been bundled with other electricity services. The Ontario Hydro Networks Company (now called Hydro One Networks, or 'Hydro One') owns and operates the transmission lines. It sought input from a full spectrum of stakeholders in preparing a proposed rate structure for submission to the regulator, the Ontario Energy Board (OEB). Securing that input meant accommodating great differences in stakeholders' familiarity with the (often highly technical) issues of rate setting. Hydro One drew on recent developments in stakeholder processes, integrated assessment, and risk communication to create a multi-channel process for eliciting and responding to stakeholder input. That process included (a) detailed background documents, (b) dedicated briefings and workshops, (c) mental models interviews, (d) focused meetings, and (e) mail (and email) boxes. The process was coordinated with a formal expert model, summarizing the factors determining the multiple impacts of the rate structure and the regulatory process producing it. The model analyzed these impacts, structured communications, and organized inputs, in a comprehensive and coherent way. This process facilitated developing proposals that were both technically sound and widely accepted by stakeholders, including the OEB. The case study provides a model for addressing other problems requiring stakeholder input on complex technical issues. It contrasts with other consultative processes with a less formal structure for eliciting concerns, less ability to encourage learning, and greater emphasis on achieving consensus

  5. Multi-Channel Data Recording of Marx switch closures

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Ruggles, L.E.; Ziska, G.R.

    1984-01-01

    The authors have measured the optical signals associated with switch closure on the Demon marx at Sandia National Laboratories. Using the High Speed Multi-Channel Data Recorder(HSMCDR), they have recorded the time histories of the optical signals from the thirty switches in the marx generator. All thirty switches were fiber connected to the HSMCDR. The HSMCDR consists of a high speed streak camera, and a microcomputer-based video digitizing system. Since the thirty signals are recorded on a single streak, the time sequence can be determined with great accuracy. The appearance of a given signal can be determined to within two samples of the 256 samples that make up the time streak. The authors have found that the light intensity and time history of any given switch varied over a large range from shot to shot. Thus, the ability to record the entire optical signal as a function of time for each switch on every shot is necessary if accurate timing results are required

  6. Equations for nickel-chromium wire heaters of column transfer lines in gas chromatographic-electroantennographic detection (GC-EAD).

    Science.gov (United States)

    Byers, John A

    2004-05-30

    Heating of chromatographic columns, transfer lines, and other devices is often required in neuroscience research. For example, volatile compounds passing through a capillary column of a gas chromatograph (GC) can be split, with half exiting the instrument through a heated transfer line to an insect antenna or olfactory sensillum for electroantennographic detector (GC-EAD) recordings. The heated transfer line is used to prevent condensation of various chemicals in the capillary that would otherwise occur at room temperature. Construction of such a transfer line heater is described using (80/20%) nickel-chromium heating wire wrapped in a helical coil and powered by a 120/220 V ac rheostat. Algorithms were developed in a computer program to estimate the voltage at which a rheostat should be set to obtain the desired heater temperature for a specific coil. The coil attributes (radius, width, number of loops, or length of each loop) are input by the user, as well as AWG size of heating wire and desired heater temperature. The program calculates total length of wire in the helix, resistance of the wire, amperage used, and the voltage to set the rheostat. A discussion of semiochemical isolation methods using the GC-EAD and bioassays is presented.

  7. Investigations of X-ray response of single wire anode Ar-N2 flow type gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Garg, S.P.; Sharma, R.C.

    1984-01-01

    The X-ray response of single wire anode gas scintillation proportional counters of two different geometries operated with argon+nitrogen gases in continuous flow has been investigated with wire anodes of diameters 25 μm to 1.7 mm. An energy resolution of 19% is obtained for 5.9 keV X-rays entering the counter perpendicular to the anode in pill-box geometry with 25 μm diameter anode. With cylindrical geometry counters energy obtained at 5.9 keV are 18%, 24% and 33% for 50 μm, 0.5 mm and 1.7 mm diameter anodes respectively. An analysis of the observed resolution shows that the contribution from photon counting statistics to the relative variance of scintillation pulses even for X-rays in Ar-N 2 single wire anode gas scintillation proportional counters is small and is not a limiting factor. The energy resolution with thicker anodes, where the contribution from the variance of the charge multiplication factor also has been minimised, is found to deteriorate mainly by the interaction in the scintillation production region. Comments are made on the possibility of improvement in energy resolution by suppression of pulses due to such interactions with the help of the pulse risetime discrimination technique. (orig.)

  8. Use of trapezoidal shaping algorithm in the digital multi-channel system

    International Nuclear Information System (INIS)

    Wang Jihong; Wang Lianghou; Fang Zongliang

    2011-01-01

    It discusses one kind of digital filter technology-trapezoidal algorithm based on actual need of studying the digital multi-channel. Firstly, demonstrating the feasibility of the arithmetic with theoretical analysis; secondly, predigesting the process of the arithmetic; thirdly, simulating with MATLAB; lastly, using the arithmetic to measure data. The result of testing indicates trapezoidal shaping algorithm accords with the need of digital multi-channel shaping extraordinary. The best filter can be obtained by means of setting parameter due to superiority of digital multi-channel. (authors)

  9. Integrated multi-channel vehicle-vehicle and vehicle-roadside communications for ITS

    Science.gov (United States)

    2008-12-01

    This research describes a medium access control (MAC) protocol to Enable multi-channel operation for dedicated short-range communication (DSRC). In particular, we focus on the challenge of supporting potentially high-bandwidth commercial or infotainm...

  10. EDMC: An enhanced distributed multi-channel anti-collision algorithm for RFID reader system

    Science.gov (United States)

    Zhang, YuJing; Cui, Yinghua

    2017-05-01

    In this paper, we proposes an enhanced distributed multi-channel reader anti-collision algorithm for RFID environments which is based on the distributed multi-channel reader anti-collision algorithm for RFID environments (called DiMCA). We proposes a monitor method to decide whether reader receive the latest control news after it selected the data channel. The simulation result shows that it improves interrogation delay.

  11. Four-Wire Impedance Spectroscopy on Planar Zeolite/Chromium Oxide Based Hydrocarbon Gas Sensors

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2007-11-01

    Full Text Available Impedometric zeolite hydrocarbon sensors with a chromium oxide intermediatelayer show a very promising behavior with respect to sensitivity and selectivity. Theunderlying physico-chemical mechanism is under investigation at the moment. In order toverify that the effect occurs at the electrode and that zeolite bulk properties remain almostunaffected by hydrocarbons, a special planar setup was designed, which is very close to realsensor devices. It allows for conducting four-wire impedance spectroscopy as well as two-wire impedance spectroscopy. Using this setup, it could be clearly demonstrated that thesensing effect can be ascribed to an electrode impedance. Furthermore, by combining two-and four-wire impedance measurements at only one single frequency, the interference of thevolume impedance can be suppressed and an easy signal evaluation is possible, withouttaking impedance data at different frequencies.

  12. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  13. JADSPE, Multi-Channel Gamma Spectra Unfolding Program

    International Nuclear Information System (INIS)

    Rikovska, J.; Stejskalova, E.

    2005-01-01

    1 - Description of program or function: JADSPE is a package of eight programs to process multi-channel gamma-ray spectra. The programs can be used to: - locate automatically spectral peaks and calculate their positions, areas, and full widths at half maximum (FWHM); - plot the spectra on a CALCOMP plotter, TEKTRONIX terminal or a line printer; - add or subtract several spectra with the possibility of adjusting either their start and end channels or the maxima of the chosen corresponding peaks. The JADSPE package comprises the following programs: - SPECTF: automatic location of peaks and calculation of their positions, areas and FWHMS. The standard deviations of peak parameters are also determined, and each evaluated region is plotted on the line printer. - SPECT1: The areas and FWHMs are calculated for peaks whose positions are known beforehand. The standard deviations of calculated parameters are also determined, and each evaluated region is plotted on the line printer. - PLOCHA: The peak net area is calculated by summing the channel contents in specified regions and by subtracting a linear background. - GRAPH: Spectrum plotting on the line printer. - PLTNEW: Spectrum plotting on CALCOMP plotter or on TEKTRONIX terminal. - SUMDIF: The channel contents of several gamma-ray spectra are added or subtracted. - SSPFP: The channel contents of several gamma-ray spectra are added with adjustment of the maxima of specified peaks. - SOUCET: The channel contents of several gamma-ray spectra are added with the adjustment of start and end channels of the spectra. 2 - Method of solution: Non-linear least-square fit. 3 - Restrictions on the complexity of the problem: The full energy peaks are approximated by a symmetrical Gaussian function and the underlying background is approximated by a first-order polynomial. A fixed spectrum length of 4096 channels is assumed. Maxima of: - number of peaks in one multiplet: 9; - number of peaks identified by the automatic search procedure

  14. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    International Nuclear Information System (INIS)

    Nasr, Amgad

    2012-01-01

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N 2 , Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  15. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  16. A multi-channel scaler designed with programmable logic device

    International Nuclear Information System (INIS)

    Sun Yongjie; Li Cheng; Xing Tao; Zhang Junjie

    2004-01-01

    This scaler used programmable logic device is a design for the electronics of telescope system of the beam. The scaler can scale 30 ECL inputs at the same time. With the EPP (Enhanced Parallel Port) modes of the Parallel Port, the transmitted rate of data is 2 MB/s. This scaler can be used in the position system of MWPC (Multi-Wires Proportional Chamber). Tested with particles of 5 x 10 3 /s, the scaler gives a credible and stable result. (authors)

  17. Gas shielded metal arc welding with fusible electrode wire. First returns on experience and opportunities in nuclear maintenance and fabrication

    International Nuclear Information System (INIS)

    Huguet, Fr.; Joly, P.; Leconte, F.; Baritaux, S.; Prin, C.

    2013-06-01

    In a brief text and a Power Point Presentation, the authors report a return on experience for the implementation of two applications using gas shielded metal arc welding process (GMAW): the on-site welding of the final joint of steam generators, and the coating of a tubing flare. In the first case, the authors analyze not only the compliance with specified technical requirements, but also outline the need to support the process with new verification methods in real time, associated development and validation efforts, and organisational and decisional measures to guarantee a good implementation of the process on site. In the second case, they analyze the process ability to meet technical specifications requiring dilution control, a perfect reproducibility, as well a good control of the welding bath. The authors outline that these two applications which are both using the same term (gas shielded metal arc welding with fusible electrode wire), implement two different transfer regimes and processes. They also discuss operational constraints, and technical opportunities and constraints of fusible electrode wire

  18. Multi-channel motor evoked potential monitoring during anterior cervical discectomy and fusion

    Directory of Open Access Journals (Sweden)

    Dong-Gun Kim

    Full Text Available Objectives: Anterior cervical discectomy and fusion (ACDF surgery is the most common surgical procedure for the cervical spine with low complication rate. Despite the potential prognostic benefit, intraoperative neurophysiological monitoring (IONM, a method for detecting impending neurological compromise, is not routinely used in ACDF surgery. The present study aimed to identify the potential benefits of monitoring multi-channel motor evoked potentials (MEPs during ACDF surgery. Methods: We retrospectively reviewed 200 consecutive patients who received IONM with multi-channel MEPs and somatosensory evoked potentials (SSEPs. On average, 9.2 muscles per patient were evaluated under MEP monitoring. Results: The rate of MEP change during surgery in the multi-level ACDF group was significantly higher than the single-level group. Two patients from the single-level ACDF group (1.7% and four patients from the multi-level ACDF group (4.9% experienced post-operative motor deficits. Multi-channel MEPs monitoring during single and multi-level ACDF surgery demonstrated higher sensitivity, specificity, positive predictive and negative predictive value than SSEP monitoring. Conclusions: Multi-channel MEP monitoring might be beneficial for the detection of segmental injury as well as long tract injury during single- and multi-level ACDF surgery. Significance: This is first large scale study to identify the usefulness of multi-channel MEPs in monitoring ACDF surgery. Keywords: Disc disease, Somatosensory evoked potentials, Intraoperative neurophysiological monitoring, Motor evoked potentials, Anterior cervical discectomy and fusion

  19. The Time Division Multi-Channel Communication Model and the Correlative Protocol Based on Quantum Time Division Multi-Channel Communication

    International Nuclear Information System (INIS)

    Liu Xiao-Hui; Pei Chang-Xing; Nie Min

    2010-01-01

    Based on the classical time division multi-channel communication theory, we present a scheme of quantum time-division multi-channel communication (QTDMC). Moreover, the model of quantum time division switch (QTDS) and correlative protocol of QTDMC are proposed. The quantum bit error rate (QBER) is analyzed and the QBER simulation test is performed. The scheme shows that the QTDS can carry out multi-user communication through quantum channel, the QBER can also reach the reliability requirement of communication, and the protocol of QTDMC has high practicability and transplantable. The scheme of QTDS may play an important role in the establishment of quantum communication in a large scale in the future. (general)

  20. Software filtering method to suppress spike pulse interference in multi-channel scaler

    International Nuclear Information System (INIS)

    Huang Shun; Zhao Xiuliang; Li Zhiqiang; Zhao Yanhui

    2008-01-01

    In the test on anti-jamming function of a multi-channel scaler, we found that the spike pulse interference on the second level counter caused by the motor start-stop operations brings a major count error. There are resolvable characteristics between effective signal and spike pulse interference, and multi-channel hardware filtering circuit is too huge and can't filter thoroughly, therefore we designed a software filtering method. In this method based on C8051F020 MCU, we dynamically store sampling values of one channel in only a one-byte variable and distinguish the rise-trail edge of a signal and spike pulse interference because of value changes of the variable. Test showed that the filtering software method can solve the error counting problem of the multi-channel scaler caused by the motor start-stop operations. The flow chart and source codes of the method were detailed in this paper. (authors)

  1. A multi-channel isolated power supply in non-equipotential circuit

    Science.gov (United States)

    Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da

    2018-04-01

    A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.

  2. Fast wire-mesh sensors for gas-liquid flows - Visualisation with up to 10 000 frames per second

    International Nuclear Information System (INIS)

    Prasser, H.M.; Zschau, J.; Peters, D.; Pietzsch, G.; Taubert, W.; Trepte, M.

    2002-01-01

    A wire-mesh sensor developed by the Forschungszentrum Rossendorf produces sequences of instantaneous gas fraction distributions in a cross section at a rate of up to 10 000 frames per second and a spatial resolution of about 2-3 mm. This sensor was applied to an upwards air-liquid flow in a vertical pipe of 51.2 mm diameter. After a brief introduction of the functioning of the sensor, the paper presents results obtained in a at vertical pipe operated with an air-water mixture. Two wire-mesh sensors with a measuring matrix of 24 x 24 points (resolution 2 mm) were placed in a small axial distance behind each other. They were used to study the flow structure in the transition region from bubble to slug flow at an imaging frequency of 2 500 Hz. The two available measuring planes allowed to obtain velocity profiles of the gaseous phase. A sensor with 16 x 16 points (resolution 3 mm) was applied to visualize the transition from bubbly via churn turbulent to annular flow with 10 000 frames per second. In the churn flow region, periodic plug-like structures were found. In the annular flow the sensor is able to resolve wispy structures. (authors)

  3. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  4. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires

    International Nuclear Information System (INIS)

    Villaret, V.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Chovet, C.; Petit, B.; Faivre, L.

    2013-01-01

    Highlights: • New metal cored filler wires for welding 444 grade stainless steel are manufactured. • The effect of Nb and Ti minor elements on the fusion zone properties is investigated. • The relation between composition of fusion zone and grain structure is investigated. • Oxidation rates of fusion zones and base metal are compared. • High temperature behavior of the welded samples are studied. - Abstract: Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel dedicated to automotive exhaust manifold applications. The patented grade is know under APERAM trade name K44X and has been developed to present improved high temperature fatigue properties. All filler wires investigated contained 19% Cr and 1.8% Mo, equivalent to the base metal K44X chemistry, but various titanium and niobium contents. Chemical analyses and microstructural observations of fusion zones revealed the need of a minimum Ti content of 0.15% to obtain a completely equiaxed grain structure. This structure conferred on the fusion zone a good ductility even in the as-welded state at room temperature. Unfortunately, titanium additions decreased the oxidation resistance at 950 °C if no significant Nb complementary alloying was made. The combined high Ti and Nb additions made it possible to obtain for the welded structure, after optimized heat treatment, high temperature tensile strengths and ductility for the fusion zones and assemblies, rather close to those of the base metal. 950 °C aging heat treatment was necessary to restore significantly the ductility of the as welded structure. Both fusion zone and base metal presented rather homogenized properties. Finally, with the optimized composition of the cored filler wire – 0.3 Ti minimum (i.e. 0.15% in the fusion zone) and high Nb complementary additions, the properties

  6. Development of multi-channel gated integrator and PXI-DAQ system for nuclear detector arrays

    International Nuclear Information System (INIS)

    Kong Jie; Su Hong; Chen Zhiqiang; Dong Chengfu; Qian Yi; Gao Shanshan; Zhou Chaoyang; Lu Wan; Ye Ruiping; Ma Junbing

    2010-01-01

    A multi-channel gated integrator and PXI based data acquisition system have been developed for nuclear detector arrays with hundreds of detector units. The multi-channel gated integrator can be controlled by a programmable GI controller. The PXI-DAQ system consists of NI PXI-1033 chassis with several PXI-DAQ cards. The system software has a user-friendly GUI which is written in C language using LabWindows/CVI under Windows XP operating system. The performance of the PXI-DAQ system is very reliable and capable of handling event rate up to 40 kHz.

  7. A multi-channel humidity control system based on LabVIEW

    International Nuclear Information System (INIS)

    Zhang Aiwu; Xie Yuguang; Liu Hongbang; Liu Yingbiao; Cai Xiao; Yu Boxiang; Lu Junguang; Zhou Li

    2011-01-01

    A real time multi-channel humidity control system was designed based on LabVIEW, using the dry air branch of BESⅢ drying system. The hardware of this control system consist of mini humidity and temperature sensors, intelligent collection module, switch quantity controller and electromagnetic valves. The humidity can be controlled at arbitrary value from air humidity to 3% with accuracy better than 2%. Multi microenvironment with different humidity can be easily controlled and monitored in real time by this system. It can also be extended to hybrid control of multi channel humidity and temperature. (authors)

  8. The design and implementation of a PC based multi-channel scaler system

    International Nuclear Information System (INIS)

    Wang Qiang; Chinese Academy of Sciences, Beijing; Jin Dapeng; Liu Zhen'an; Zhao Dixin

    2007-01-01

    A multi-channel scaler system is designed for the system check and status monitoring of the BESIII trigger system. It is composed of a PC, two PCI interface multi-channel scaler cards, the corresponding drivers and user programs. Total 64 signals can be scaled and monitored in real time. The scaled data are recorded locally and some of them are distributed to the online system. In this paper, the hardware structure, software development and long time running stability of the system are introduced. (authors)

  9. The development of 128 ch fast multi channel pulse height analyzer for a tokamak plasmas

    International Nuclear Information System (INIS)

    Kawashima, Hisato; Matoba, Tohru; Ogawa, Toshihide; Kawakami, Tomohide

    1985-02-01

    A high counting rate multi channel pulse height analyzer was developed and tested to measure the detailed time evolution of X-ray energy spectrun radiated from a tokamak plasmas. Main developing objects of this analyzer are as follows. 1. The maximum counting rate and the minimum time resolution are 4 Mcps and 10 ms, respectively. 2. The energy resolution has ability to distinguish the characterisitic X-ray line. 3. Computer has to be used for operating system. This fast multi channel analyzer is using to measure the Soft X-ray spectrum on JFT-2M tokamak, and is confirmed to be useful for a practical measuring system. (author)

  10. Simultaneous acquisition of X-ray spectra using a multi-wire, position-sensitive gas flow detector

    International Nuclear Information System (INIS)

    Beaven, Peter A.; Marmotti, Mauro; Kampmann, Reinhard; Knoth, Joachim; Schwenke, Heinrich

    2003-01-01

    A multi-wire, gas-filled position-sensitive detector has been developed for the simultaneous recording of wavelength-dispersed X-ray signals that enables X-ray fluorescence spectrometry with a limited multi-element capability in the low Z element range. Details of the modular construction of the detector are given. The detector performance was characterized using Al-Kα radiation and a variable slit system. The detector has been applied in a laboratory spectrometer equipped with an electron source and a double multilayer mirror device as the wavelength-dispersing element. Spectra from Al and Si obtained in the simultaneous acquisition mode show good agreement with calculations performed using a ray-tracing model

  11. Synthesis and densification of Cu added Fe-based BMG composite powders by gas atomization and electrical explosion of wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.C., E-mail: jckimpml@ulsan.ac.k [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Ryu, H.J.; Kim, J.S. [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Kim, B.K.; Kim, Y.J. [Department of Powder Materials, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Kim, H.J. [Advanced Materials Division, Korea Institute of Industrial Technology, Incheon 406-130 (Korea, Republic of)

    2009-08-26

    In this study, the Fe-based (Fe-C-Si-B-P-Cr-Mo-Al) BMG powders were produced by the high pressure gas atomization process, and they were combined with the ductile Cu powders produced by the electrical explosion of wire (EEW). The Fe-based amorphous powders and Cu added BMG composite powders were compacted by the spark plasma sintering (SPS) processes into cylindrical shape. In the SPS press, the as-prepared powders were sintered at 793 K and 843 K. The relative density increased to 98% when the pressure increased up to 500 MPa by optimum control of the SPS process parameters. The micro-Vickers hardness was over 1100 Hv.

  12. Experiments with a Gas-Puff-On-Wire-Array Load on the GIT-12 Generator for Al K-shell Radiation Production at Microsecond Implosion Times

    International Nuclear Information System (INIS)

    Shishlov, Alexander V.; Baksht, Rina B.; Chaikovsky, Stanislav A.; Fedunin, Anatoly V.; Fursov, Fedor I.; Kovalchuk, Boris M.; Kokshenev, Vladimir A.; Kurmaev, Nikolai E.; Labetsky, Aleksey Yu.; Oreshkin, Vladimir I.; Rousskikh, Alexander G.; Lassalle, Francis; Bayol, Frederic

    2006-01-01

    Results of the experiments carried out on the GIT-12 generator at the current level of 3.5 MA and the Z-pinch implosion times from 700 ns to 1.1 μs are presented. A multi-shell (triple-shell) load configuration with the outer gas puffs (neon) and the inner wire array (aluminum) was used in the experiments. In the course of the research, implosion dynamics of the triple-shell z-pinch was studied, and the radiation yield in the spectral range of neon and aluminum K-lines have been measured. Optimization of the inner wire array parameters aimed at obtaining the maximum aluminum K-shell radiation yield has been carried out. As a result of optimization of the gas-puff-on-wire-array Z-pinch load, the aluminum K-shell radiation yield (hv> 1.55 keV) up to 4 kJ/cm in the radiation pulse with FWHM less than 30 ns has been obtained. Comparison of the experimental results with the results of preliminary 1D RMHD simulations allows a conclusion that at least 2/3 of the generator current is switched from a gas puff to an aluminum wire array. The radiation yield in the spectral range of neon K-lines (0.92-1.55 keV) increases considerably in the shots with the inner wire array in comparison with the shots carried out with the outer gas puffs only. The radiation yield in the spectral range above 1 keV registered in the experiments reached 10 kJ/cm. The presence of a high portion of the neon plasma inside an inner wire array can limit the radiation yield in the spectral range above 1.55 keV

  13. New-fashioned Multi-channel Analyzer Based on Bipartition Method

    International Nuclear Information System (INIS)

    Liu Mingjian; Zhang Yan; Yan Xuekun; Chen Ying

    2009-01-01

    A new-fashioned digital-analog converter (DAC) which can find the pulse-signal amplitude through dichotomy is devised. With this new DAC method, a 256-channel multi-channel pulse amplitude analyzer (MCA) is designed successfully, and its hardware and software are introduced in detail. This provides a new method for designing MCA. (authors)

  14. Personalized multi-channel headphone sound reproduction based on active noise cancellation

    NARCIS (Netherlands)

    Schobben, D.W.E.; Aarts, R.M.

    2005-01-01

    A system for headphone signal processing is discussed which gives a listener the same impression as listening to a multi-channel loudspeaker set-up. It is important that this processing is optimized for each individual listener. If this is not the case, large localization errors may occur. In the

  15. Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-09-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in WMNs. Previous studies have emphasized through- put maximization in such systems as the main design challenge and transmission power control treated as a secondary issue...

  16. Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2008-09-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in WMNs. Previous studies have emphasized throughput maximization in such systems as the main design challenge and transmission power control treated as a secondary issue...

  17. Multiple-state based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint...

  18. E-Fulfillment and Multi-Channel Distribution – A Review

    NARCIS (Netherlands)

    N.A.H. Agatz (Niels); M. Fleischmann (Moritz); J.A.E.E. van Nunen (Jo)

    2006-01-01

    textabstractThis review addresses the specific supply chain management issues of Internet fulfillment in a multi-channel environment. It provides a systematic overview of managerial planning tasks and reviews corresponding quantitative models. In this way, we aim to enhance the understanding of

  19. Exploiting the opportunities of Internet and multi-channel pricing : An exploratory research

    NARCIS (Netherlands)

    Sotgiu, Francesca; Ancarani, Fabio

    2004-01-01

    Smart firms are not worried about the impact of the Internet on pricing, but realise that they have the unique opportunity to exploit new options and improve their marketing performance. Multi-channel pricing is one of the most interesting opportunities firms can exploit in the digital economy.

  20. Range based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-08-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in Wireless Mesh Networks (WMNs). In this paper, researchers present a range based dynamic power control for MRMC WMNs. First, WMN is represented as a set of disjoint Unified...

  1. A multi-channel data acquisition system with high resolution based on microcomputer

    International Nuclear Information System (INIS)

    An Qi; Wang Yanfang; Xing Tao

    1995-01-01

    The paper introduces the principle of a multi-channel data acquisition system with high resolution based on the microcomputer.The system consists of five parts.They are analog-to-digital converter, data buffer area, trigger logic circuit, control circuit, and digital-to-analog converter

  2. The design of multi-channel pulse amplitude analyzer based on ARM micro controller

    International Nuclear Information System (INIS)

    Li Hai; Li Xiang; Liu Caixue

    2010-01-01

    It introduces the design of multi-channel pulse amplitude analyzer based on embedded ARM micro-controller. The embedded and real-time system μC/OS-II builds up the real-time and stability of the system and advances the integration. (authors)

  3. Multi-Channel Deconvolution for Forward-Looking Phase Array Radar Imaging

    Directory of Open Access Journals (Sweden)

    Jie Xia

    2017-07-01

    Full Text Available The cross-range resolution of forward-looking phase array radar (PAR is limited by the effective antenna beamwidth since the azimuth echo is the convolution of antenna pattern and targets’ backscattering coefficients. Therefore, deconvolution algorithms are proposed to improve the imaging resolution under the limited antenna beamwidth. However, as a typical inverse problem, deconvolution is essentially a highly ill-posed problem which is sensitive to noise and cannot ensure a reliable and robust estimation. In this paper, multi-channel deconvolution is proposed for improving the performance of deconvolution, which intends to considerably alleviate the ill-posed problem of single-channel deconvolution. To depict the performance improvement obtained by multi-channel more effectively, evaluation parameters are generalized to characterize the angular spectrum of antenna pattern or singular value distribution of observation matrix, which are conducted to compare different deconvolution systems. Here we present two multi-channel deconvolution algorithms which improve upon the traditional deconvolution algorithms via combining with multi-channel technique. Extensive simulations and experimental results based on real data are presented to verify the effectiveness of the proposed imaging methods.

  4. On the relationship between multi-channel envelope and temporal fine structure

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel; Decorsiere, Remi Julien Blaise; Dau, Torsten

    2011-01-01

    The envelope of a signal is broadly defined as the slow changes in time of the signal, where as the temporal fine structure (TFS) are the fast changes in time, i.e. the carrier wave(s) of the signal. The focus of this paper is on envelope and TFS in multi-channel systems. We discuss the differenc...

  5. A novel portable multi-channel analyzer based on high-speed microcontroller

    International Nuclear Information System (INIS)

    Lou Xinghua; Yi Hongchang; Wang Yuemin

    2005-01-01

    This paper introduces a novel portable multi-channel analyzer (MCA) based on high-speed microcontroller. The hardware implementation and the software scenario of the MCA are discussed. The MCA has features of high speed, small size and better performances. (authors)

  6. A Receiver-Initiated Collision-Avoidance Protocol for Multi-Channel Networks

    Science.gov (United States)

    2001-01-01

    00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE A Receiver-Initiated Collision-Avoidance Protocol for Multi-Channel Netowrks 5a. CONTRACT NUMBER...images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 10 19a. NAME OF RESPONSIBLE

  7. An optimal multi-channel memory controller for real-time systems

    NARCIS (Netherlands)

    Gomony, M.D.; Akesson, K.B.; Goossens, K.G.W.

    2013-01-01

    Optimal utilization of a multi-channel memory, such as Wide IO DRAM, as shared memory in multi-processor platforms depends on the mapping of memory clients to the memory channels, the granularity at which the memory requests are interleaved in each channel, and the bandwidth and memory capacity

  8. Objective ARX Model Order Selection for Multi-Channel Human Operator Identification

    NARCIS (Netherlands)

    Roggenkämper, N; Pool, D.M.; Drop, F.M.; van Paassen, M.M.; Mulder, M.

    2016-01-01

    In manual control, the human operator primarily responds to visual inputs but may elect to make use of other available feedback paths such as physical motion, adopting a multi-channel control strategy. Hu- man operator identification procedures generally require a priori selection of the model

  9. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    Science.gov (United States)

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  10. Digital baseline estimation method for multi-channel pulse height analyzing

    International Nuclear Information System (INIS)

    Xiao Wuyun; Wei Yixiang; Ai Xianyun

    2005-01-01

    The basic features of digital baseline estimation for multi-channel pulse height analysis are introduced. The weight-function of minimum-noise baseline filter is deduced with functional variational calculus. The frequency response of this filter is also deduced with Fourier transformation, and the influence of parameters on amplitude frequency response characteristics is discussed. With MATLAB software, the noise voltage signal from the charge sensitive preamplifier is simulated, and the processing effect of minimum-noise digital baseline estimation is verified. According to the results of this research, digital baseline estimation method can estimate baseline optimally, and it is very suitable to be used in digital multi-channel pulse height analysis. (authors)

  11. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm

    Science.gov (United States)

    Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En

    2015-01-01

    A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction. PMID:26287193

  12. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm.

    Science.gov (United States)

    Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En

    2015-08-13

    A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.

  13. Regret of Multi-Channel Bandit Game in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Ma Jun

    2016-01-01

    Full Text Available The problem of how to evaluate the rate of convergence to Nash equilibrium solutions in the process of channel selection under incomplete information is studied. In this paper, the definition of regret is used to reflect the convergence rates of online algorithms. The process of selecting an idle channel for each secondary user is modeled as a multi-channel bandit game. The definition of the maximal averaged regret is given. Two existing online learning algorithms are used to obtain the Nash equilibrium for each SU. The maximal averaged regrets are used to evaluate the performances of online algorithms. When there is a pure strategy Nash equilibrium in the multi-channel bandit game, the maximal averaged regrets are finite. A cooperation mechanism is also needed in the process of calculating the maximal averaged regrets. Simulation results show the maximal averaged regrets are finite and the online algorithm with greater convergence rate has less maximal averaged regrets.

  14. Multi-Channel Electronically Scanned Cryogenic Pressure Sensor And Method For Making Same

    Science.gov (United States)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Holloway, Nancy M. (Inventor)

    2001-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multi-element array. These dies are bonded at specific sites on a glass, pre-patterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  15. Asymptotically exact solution of the multi-channel resonant-level model

    International Nuclear Information System (INIS)

    Zhang Guangming; Su Zhaobin; Yu Lu.

    1994-01-01

    An asymptotically exact partition function of the multi-channel resonant-level model is obtained through Tomonaga-Luttinger bosonization. A Fermi-liquid vs. non-Fermi-liquid transition, resulting from a competition between the Kondo and X-ray edge physics, is elucidated explicitly via the renormalization group theory. In the strong-coupling limit, the model is renormalized to the Toulouse limit. (author). 20 refs, 1 fig

  16. Design of multi-channel amplitude analyzer base on LonWorks

    International Nuclear Information System (INIS)

    Zhang Ying; Zhao Lihong; Chen Aihua

    2008-01-01

    The paper introduces the multi-channel analyzer which adopts LonWorks technology. The system detects the pulse peak by hardware circuits and controls data acquisition and network communication by Micro Controller and Unit and Neuron chip. SCM is programmed by Keil C51; the communication between SCM and nerve cell is realized by Neron C language, and the computer program is written by VB language. Test results show that this analyzer is with fast conversion speed and low power consumption. (authors)

  17. An integrated analog O/E/O link for multi-channel laser neurons

    Energy Technology Data Exchange (ETDEWEB)

    Nahmias, Mitchell A., E-mail: mnahmias@princeton.edu; Tait, Alexander N.; Tolias, Leonidas; Chang, Matthew P.; Ferreira de Lima, Thomas; Shastri, Bhavin J.; Prucnal, Paul R. [Electrical Engineering Department, Princeton University, 41 Olden St, Princeton, New Jersey 08540 (United States)

    2016-04-11

    We demonstrate an analog O/E/O electronic link to allow integrated laser neurons to accept many distinguishable, high bandwidth input signals simultaneously. This device utilizes wavelength division multiplexing to achieve multi-channel fan-in, a photodetector to sum signals together, and a laser cavity to perform a nonlinear operation. Its speed outpaces accelerated-time neuromorphic electronics, and it represents a viable direction towards scalable networking approaches.

  18. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    OpenAIRE

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. ...

  19. Interference-aware power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-09-01

    Full Text Available are well known in [9], [6]. The operation of multi-radio multi-channel (MRMC) WMNs generally requires sustainable energy supply. Substantial deployments of WMNs have recently been witnessed in rural and remote communities [4]. In such applications...]. Power resources are dynamically adjusted by each NIC using intra and inter-subsystem (channel) states. Due to the decentralized nature, each MP assumes imperfect knowledge about the global network. Further we assume that there exists...

  20. The software for the USB-based multi-channel analyzer system

    International Nuclear Information System (INIS)

    Zhou Tong; Wei Yixiang

    2002-01-01

    A new type of multi-channel analyzer system is introduced, which takes advantage of Universal Serial Bus to communicate with computer and gets the merit of fast speed, universality and Plug and Play. The authors discussed the framework of the system, primary functions, display of spectrum date and the way of communication with hardware. The environment of the program is Visual Basic 6.0

  1. Study and realization of a multi channel analyzer for a per operator probe

    International Nuclear Information System (INIS)

    Yahyaoui, Sarra; Brini, Borhen

    2006-01-01

    The goal of this project is to study and produce a Multi Channel Analyzer (MCA) prototype based on a microcontroller PIC 16F877. This prototype comprises an amplification and a peak detection parts. The microcontroller provide the analog to numeric conversion and ensures the communication with PC. This MCA will be connected to a per operator probe containing a semiconductor detector CdTe. (author). 7 refs

  2. Research on development of multi-channel analyzer used for monitoring and warning radiation equipment

    International Nuclear Information System (INIS)

    Nguyen Van Sy; Dang Quang Thieu; Nguyen Thi Bao My

    2015-01-01

    The subject assigned to this paper presents research on development of multi-channel analyzer used for monitoring and warning environmental radiation equipment under the project KC.05.16/11-15 Research on manufacturing equipment monitoring and warning radiation. In this thematic we have two subjects that need to be resolved such as: i) Designing spectroscopy amplifier block (AMP) duty pulse signals obtained about few hundred millivolts output from scintillation detector preamplifier, amplified as a few volts and the standard Gaussian pulses shaped to connect to the analog-to-digital converter. The spectroscopy amplifier block can change the gain by digital control to respond to the problem of automatic spectrum stability for multi-channel analyzer systems. ii) Designing analog-to-digital converter block (ADC) in accordance with the actual conditions, such as high stability, fast conversion time, high throughput, and it consumes low energy. Selecting suitable microprocessor for fast connection ability, to operate reliably paired with the analog-to-digital converter into a multi-channel analyzer (MCA) serving analysis. (author)

  3. Development of refined MCNPX-PARET multi-channel model for transient analysis in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalcheva, S.; Koonen, E. [SCK-CEN, BR2 Reactor Dept., Boeretang 200, 2400 Mol (Belgium); Olson, A. P. [RERTR Program, Nuclear Engineering Div., Argonne National Laboratory, Cass Avenue, Argonne, IL 60439 (United States)

    2012-07-01

    Reactivity insertion transients are often analyzed (RELAP, PARET) using a two-channel model, representing the hot assembly with specified power distribution and an average assembly representing the remainder of the core. For the analysis of protected by the reactor safety system transients and zero reactivity feedback coefficients this approximation proves to give adequate results. However, a more refined multi-channel model representing the various assemblies, coupled through the reactivity feedback effects to the whole reactor core is needed for the analysis of unprotected transients with excluded over power and period trips. In the present paper a detailed multi-channel PARET model has been developed which describes the reactor core in different clusters representing typical BR2 fuel assemblies. The distribution of power and reactivity feedback in each cluster of the reactor core is obtained from a best-estimate MCNPX calculation using the whole core geometry model of the BR2 reactor. The sensitivity of the reactor response to power, temperature and energy distributions is studied for protected and unprotected reactivity insertion transients, with zero and non-zero reactivity feedback coefficients. The detailed multi-channel model is compared vs. simplified fewer-channel models. The sensitivities of transient characteristics derived from the different models are tested on a few reactivity insertion transients with reactivity feedback from coolant temperature and density change. (authors)

  4. Simulation study on vertically distributed multi-channel tangential interferometry for KSTAR

    International Nuclear Information System (INIS)

    Nam, Y U; Juhn, J W

    2012-01-01

    Interferometry is powerful and reliable diagnostics which measures line-integrated electron density. Since this technique only measures an averaged value over whole probing line, a multi-channel scheme is used for an analysis for spatial distribution and variation of electron density. Typical setups of the multi-channel measurement are schemes of radially distributed vertical lines, vertically distributed horizontal lines and horizontally distributed tangential lines. In Korea Superconducting Tokamak Advanced Research, a vertically distributed multi-channel tangential interferometry is planned instead of above typical schemes due to limitation of complex in-vessel geometry and narrow diagnostics port through cryostat. Total 5-channels will be vertically placed as symmetric with the mid-plain. One of the characteristic features of the vertically distributed channels is that each channel is viewing different poloidal angle, while the horizontally distributed channels are viewing different toroidal angle. This scheme also can be used on an investigation of the up-down asymmetry and the vertical oscillation of plasma. Simulation has been performed and the result will be discussed to verify the possibility and the estimated effectiveness of the scheme on this paper.

  5. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2016-07-01

    Full Text Available With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC. The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  6. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    KAUST Repository

    Yong Wan,

    2009-11-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist\\'s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.

  7. Energy reduction using multi-channels optical wireless communication based OFDM

    Science.gov (United States)

    Darwesh, Laialy; Arnon, Shlomi

    2017-10-01

    In recent years, an increasing number of data center networks (DCNs) have been built to provide various cloud applications. Major challenges in the design of next generation DC networks include reduction of the energy consumption, high flexibility and scalability, high data rates, minimum latency and high cyber security. Use of optical wireless communication (OWC) to augment the DC network could help to confront some of these challenges. In this paper we present an OWC multi channels communication method that could lead to significant energy reduction of the communication equipment. The method is to convert a high speed serial data stream to many slower and parallel streams and vies versa at the receiver. We implement this concept of multi channels using optical orthogonal frequency division multiplexing (O-OFDM) method. In our scheme, we use asymmetrically clipped optical OFDM (ACO-OFDM). Our results show that the realization of multi channels OFDM (ACO-OFDM) methods reduces the total energy consumption exponentially, as the number of channels transmitted through them rises.

  8. Evaluation of Multi-Channel ADCs for Gamma-Ray Spectroscopy

    Science.gov (United States)

    Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson

    2013-04-01

    As nuclear physicists increasingly design large scale experiments with hundreds or thousands of detector channels, there are growing needs for high density readout electronics with good timing and energy resolution that at the same time offer lower cost per channel compared to existing commercial solutions. Recent improvements in the design of commercial analog to digital converters (ADCs) have resulted in a variety of multi-channel ADCs that are natural choice for designing such high density readout modules. However, multi-channel ADCs typically are designed for medical imaging/ultrasound applications and therefore are not rated for their spectroscopic characteristics. In this work, we evaluated the gamma-ray spectroscopic performance of several multi-channel ADCs, including their energy resolution, nonlinearity, and timing resolution. Some of these ADCs demonstrated excellent energy resolution, 2.66% FWHM at 662 keV with a LaBr3 or 1.78 keV FWHM at 1332.5 keV with a high purity germanium (HPGe) detector, and sub-nanosecond timing resolution with LaBr 3. We present results from these measurements to illustrate their suitability for gamma-ray spectroscopy.

  9. Propagation velocity of an avalanche along the anode wire in a Geiger-Mueller counter filled with Q-gas at 1 ATM

    International Nuclear Information System (INIS)

    Matsuda, Kazunori; Sanada, Junpei

    1990-01-01

    Simple methods were applied to investigate the characteristics of a Geiger-Mueller counter with Q-gas flowing at 1 atm. The propagation velocity of the photon-aided avalanche along the anode wire depends linearly on the strength of the electric field in the counter. Its fluctuation (FWHM) as a function of distance between the source position and the end point is discussed. (orig.)

  10. Experimental analysis of heat transfer between a heated wire and a rarefied gas in an annular gap with high diameter ratio

    International Nuclear Information System (INIS)

    Chalabi, H; Lorenzini, M; Morini, G L; Buchina, O; Valougeorgis, D; Saraceno, L

    2012-01-01

    In this paper a first experimental attempt is performed to measure heat conduction through rarefied air at rest contained between two concentric cylinders. The heat transfer between a heated platinum wire having a diameter (d) of 0.15 mm, disposed along the axis of a cylindrical shell in stainless steel having an inner diameter (D) of 100 mm, and a surrounded rarefied gas has been studied experimentally and numerically. The ratio between the outer and inner diameter of the annular region filled by the gas is large (D/d=667). In the annular region filled with air the pressure was varied by using a vacuum pump from atmospheric value down to 10 −3 mbar. Temperature differences between the wire and the external stainless steel wall in the range 50-125 K were imposed and the heat power transferred from the wire to the surround was measured as a function of the gas pressure starting from air at atmospheric conditions down to 10 −3 mbar. The experimental results obtained in these tests were compared with the numerical results obtained by using the linear and nonlinear Shakhov kinetic models.

  11. Multi-channel control circuit for real-time control of events in Aditya tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Edappala, Praveenlal, E-mail: praveen@ipr.res.in; Shah, Minsha; Rajpal, Rachana; Tanna, R.L.; Ghosh, Joydeep; Chattopadhyay, P.K.; Jha, R.

    2016-11-15

    Highlights: • Low cost microcontroller based control circuit. • The control hardware can be programmed/configured very easily for different applications. • Microcontroller programming is done in assembly language so that precise timing can be achieved with micro seconds resolution. • Successful implementation of this circuit in noisy tokamak environment. • Efficient noise and burst elimination. • Can be integrated in to the other subsystems. • Low cost solution for implementing feedback control in small and medium size tokamaks and other experiments requiring feedback control. - Abstract: Tokamak plasma is prone to many random events having potential for causing severe damages to the machine, such as disruptions, production and elimination of high-energy runaway electrons etc. These events can be mitigated by obtaining pre-cursor signal leading to these events and then taking proper measures just before their onset to avoid their happenings, like disruptions can be mitigated by massive gas injection or putting a bias voltage on an electrode placed inside the plasma, the runaways can be mitigated by gas injection and by applying specific magnetic fields. Hence for real time control of these events, the pre-cursors should be electronically recorded and the mitigation techniques should be initiated by sending triggers to their individual operational systems. To implement these methodologies of real-time controlling of events in Aditya Tokamak, a low cost multi-channel Micro-Controller based timing circuit is designed and developed in-house. This circuit first compares the precursor signals fed into it with the pre-set values and gives a trigger output whenever the signals overshoot the pre-set values. The circuit readies itself for operation along with start of the tokamak discharge and waits up to an initial pre-determined delay and then initiates a trigger at the time of overshooting of precursor signal. The circuit is fully integrated and assembled in

  12. Advanced Modular, Multi-Channel, High Speed Fiber Optic Sensing System for Acoustic Emissions Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes to prove the feasibility of innovations based on ultra-light-weight, ultra-high-speed, multi-channel,...

  13. Effects of the use of a flat wire electrode in gas metal arc welding and fuzzy logic model for the prediction of weldment shape profile

    Energy Technology Data Exchange (ETDEWEB)

    Karuthapandi, Sripriyan; Thyla, P. R. [PSG College of Technology, Coimbatore (India); Ramu, Murugan [Amrita University, Ettimadai (India)

    2017-05-15

    This paper describes the relationships between the macrostructural characteristics of weld beads and the welding parameters in Gas metal arc welding (GMAW) using a flat wire electrode. Bead-on-plate welds were produced with a flat wire electrode and different combinations of input parameters (i.e., welding current, welding speed, and flat wire electrode orientation). The macrostructural characteristics of the weld beads, namely, deposition, bead width, total bead width, reinforcement height, penetration depth, and depth of HAZ were investigated. A mapping technique was employed to measure these characteristics in various segments of the weldment zones. Results show that the use of a flat wire electrode improves the depth-to-width (D/W) ratio by 16.5 % on average compared with the D/W ratio when a regular electrode is used in GMAW. Furthermore, a fuzzy logic model was established to predict the effects of the use of a flat electrode on the weldment shape profile with varying input parameters. The predictions of the model were compared with the experimental results.

  14. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    Science.gov (United States)

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The impact of the multi-channel retail mix on online store choice: Does online experience matter?

    OpenAIRE

    Melis, Kristina; Campo, Katia; Breugelmans, Els; Lamey, Lien

    2015-01-01

    More and more grocery retailers are becoming multi-channel retailers, as they are opening an online alternative next to their traditional offline supermarkets. While the number of multi-channel grocery shoppers is also expanding at a fast growth rate, there are still large differences in online shopping frequency, and as a result, in the levels of experience with buying in the online grocery channel. This study wants to (i) identify the underlying drivers of online store choice and (ii) explo...

  16. Performance of wire-type Rn detectors operated with gas gain in ambient air in view of its possible application to early earthquake predictions

    CERN Document Server

    Charpak, Georges; Breuil, P; Nappi, E; Martinengo, P; Peskov, V

    2010-01-01

    We describe a detector of alpha particles based on wire type counters (single-wire and multiwire) operating in ambient air at high gas gains (100-1000). The main advantages of these detectors are: low cost, robustness and ability to operate in humid air. The minimum detectable activity achieved with the multiwire detector for an integration time of 1 min is 140 Bq per m3, which is comparable to that featured by commercial devices. Owing to such features the detector is suited for massive application, for example for continuous monitoring of Rn or Po contaminations or, as discussed in the paper, its use in a network of Rn counters in areas affected by earth-quakes in order to verify, on a solid statistical basis, the envisaged correlation between the sudden Rn appearance and a forthcoming earthquake.

  17. A high-throughput, multi-channel photon-counting detector with picosecond timing

    Science.gov (United States)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  18. A high-throughput, multi-channel photon-counting detector with picosecond timing

    International Nuclear Information System (INIS)

    Lapington, J.S.; Fraser, G.W.; Miller, G.M.; Ashton, T.J.R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  19. Analysis of flow distribution instability in parallel thin rectangular multi-channel system

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G.L. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China); Su, G.H., E-mail: ghsu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Peng, M.J. [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China)

    2016-08-15

    Highlights: • Flow distribution instability in parallel thin rectangular multi-channel system is studied using RELAP5 codes. • Flow excursion may bring parallel heating channel into the density wave oscillations region. • Flow distribution instability is more likely to happen at low power/flow ratio conditions. • The increase of channel number will not affect the flow distribution instability boundary. • Asymmetry inlet throttling and heating will make system more unstable. - Abstract: The flow distribution instability in parallel thin rectangular multi-channel system has been researched in the present study. The research model of parallel channel system is established by using RELAP5/MOD3.4 codes. The transient process of flow distribution instability is studied at imposed inlet mass flow rate and imposed pressure drop conditions. The influence of heating power, mass flow rate, system pressure and channel number on flow distribution instability are analyzed. Furthermore, the flow distribution instability of parallel two-channel system under asymmetric inlet throttling and heating power is studied. The results show that, if multi-channel system operates at the negative slope region of channel ΔP–G curve, small disturbance in pressure drop will lead to flow redistribution between parallel channels. Flow excursion may bring the operating point of heating channel into the density-wave oscillations region, this will result in out-phase or in-phase flow oscillations. Flow distribution instability is more likely to happen at low power/flow ratio conditions, the stability of parallel channel system increases with system pressure, the channel number has a little effect on system stability, but the asymmetry inlet throttling or heating power will make the system more unstable.

  20. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    Science.gov (United States)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical

  1. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin; Zhang Qi; Zheng Futang

    2000-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images are presented. The software for object separating, mass calculating, 3D positioning, speed determining and cavity reconstruction are described

  2. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin

    2003-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images of terminal ballistics are presented. The software for object separating, profile calculating and 3D cavity reconstruction are described

  3. Design of multi-channel analyzer's monitoring system based on embedded system

    International Nuclear Information System (INIS)

    Yang Tao; Wei Yixiang

    2007-01-01

    A new Multi-Channel Analyzer's Monitoring system based on ARM9 Embedded system is introduced in this paper. Some solutions to problem are also discussed during the procedure of design, installation and debugging on Linux system. The Monitoring system is developed by using MiniGUI and Linux software system API, with the functions of collecting, displaying and I/O data controlling 1024 channels datum. They are all realized in real time, with the merits of low cost, small size and portability. All these lay the foundation of developing homemade Digital and Portable nuclear spectrometers. (authors)

  4. Maximum likelihood based multi-channel isotropic reverberation reduction for hearing aids

    DEFF Research Database (Denmark)

    Kuklasiński, Adam; Doclo, Simon; Jensen, Søren Holdt

    2014-01-01

    We propose a multi-channel Wiener filter for speech dereverberation in hearing aids. The proposed algorithm uses joint maximum likelihood estimation of the speech and late reverberation spectral variances, under the assumption that the late reverberant sound field is cylindrically isotropic....... The dereverberation performance of the algorithm is evaluated using computer simulations with realistic hearing aid microphone signals including head-related effects. The algorithm is shown to work well with signals reverberated both by synthetic and by measured room impulse responses, achieving improvements...

  5. Multi-channel time-division integrator in HL-2A

    International Nuclear Information System (INIS)

    Yan Ji

    2008-01-01

    HL-2A is China's first Tokamak device with divertor configuration (magnetic confinement controlled nuclear fusion device). To find out the details of on-going fusion reaction at different times is of important significance in achieving controlled nuclear fusion. We developed a new type multi-channel time-division integrator for HL-2A. It has functions of automatic cutting off negative pulse of the input signals, optional integrating time division spacing 0.2-1 ms, TTL starting trigger signal, automatic regularly work 20 s, and integrating 10 channel at the same time. (authors)

  6. Independent multi-channel analyzer with the color display and microcomputer in the CAMAC standard

    International Nuclear Information System (INIS)

    Gyunter, Z.; Elizarov, O.I.; Zhukov, G.P.; Mikhaehlis, B.; Shul'tts, K.Kh.

    1983-01-01

    An independent multi-channel time-of-flight analyzer developed for a spectrometer of polarised neutrons and used in experiments with the IBR-2 pulse reactor is described. Different cyclic modes of measuring are realized in the analyzer, 4 kwords of analyzer momory being assigned for each mode. The spectra are displayed on a colour screen during measurements. Simultaneous displaying of up to 8 spectra is possible. A microcomputer transfers the spectra from the buffer analyzer memory to the microcomputer memory. The accumulated information is transferred to the PDP-11/70 central computer

  7. Spectrum analysis with indoor multi-channels gamma-rays spectrometer (NaI(Tl))

    International Nuclear Information System (INIS)

    Hou Shengli; Fan Weihua

    2005-01-01

    Two calculational methods for analyzing the spectrum which measured by indoor low background multi-channels gamma-rays spectrometer (Na(Tl)) to get the specific activity of 226 Ra, 232 Th and 40 K of the sample are discussed, they are the spectrum analysis method and the characteristic energy peak method (inverse matrix method) respectively. The sample spectrum are analyzed with the program designed according to the two methods, and compared with the results by HPGe gamma-rays spectrometer, showing that the relative deviation is ≤10% with the two methods. (authors)

  8. A multi-channel photometric detector for multi-component analysis in flow injection analysis.

    Science.gov (United States)

    Tan, A; Huang, J; Geng, L; Xu, J; Zhao, X

    1994-01-01

    The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors.

  9. Characteristics of crosstalk in the reproduced output of a newly developed multi-channel MR head

    International Nuclear Information System (INIS)

    Machida, K.; Hayashi, N.; Yoneda, Y.; Numazawa, J.; Kohro, M.; Tanabe, T.

    2001-01-01

    We prepared the multi-channel magnetoresistive head with a simple structural design and it has the advantages of high-density recording and ultra-high transfer rate. Characteristics of crosstalk in the reproduced output of our head have been estimated by a micromagnetic calculation using the Landau-Lifshitz-Gilbert (LLG) equation, while the specimen head was fabricated and evaluated. As a result, by applying a magnetic field of 40 Oe only between adjacent channels, the crosstalk was much decreased without reducing the reproduced output

  10. Pre-experiment testing of the Multi Channel Systems 16-channel preamplifier CPA16

    International Nuclear Information System (INIS)

    Patin, J B; Stoyer, M A; Moody, K J; Friensehner, A V

    2003-01-01

    The 16-channel preamplifier model CPA16 from Multi Channel Systems was studied. The CPA16 preamplifier/amplifier module is a candidate to be used as the preamplifiers and amplifiers for the focal plane detectors of the Mass Analyzer of Super Heavy Atoms (MASHA). The equipment used to test the CPA16, the results of testing the CPA16 with a pulser, a mixed 229 Th/ 148 Gd source and a 252 Cf source, and a summary of the results will be presented

  11. A high resolution 16 k multi-channel analyzer PC add-on card

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Paulson, Molly; Vaidya, P.P.

    2001-01-01

    This paper describes the system details of a 16 K channel resolution Multi-Channel Analyzer (MCA) developed at Electronics Division, BARC, which is used in high resolution nuclear spectroscopy systems for pulse height analysis. The high resolution data acquisition PC add-on card is architectured using a state of the art digital circuit design technology which makes use of a Field Programmable Gate Array (FPGA), and some of the most modern and advanced analog counterparts like low power, high speed and high precision comparators, Op-amps, ADCs and DACs etc. The 16 K MCA card gives an economic, compact, and low power alternative for nuclear pulse spectroscopy use. (author)

  12. Reprocessing of multi-channel seismic-reflection data collected in the Chukchi Sea

    Science.gov (United States)

    Agena, W.F.; Lee, M.W.; Hart, P.E.

    2001-01-01

    Contained on this set of two CD-ROMs are stacked and migrated multi-channel seismic-reflection data for 44 lines recorded in the Chukchi Sea, northern Alaska, by the United States Geological Survey in 1977, 1978, and 1980. All data were reprocessed by the USGS in 2000 using updated methods. The resulting final data have both increased temporal and spatial resolution thus providing improved interpretability. An added benefit of these CD-ROMs is that they are a more stable, long-term archival medium for the data.

  13. Electro-optic tunable multi-channel filter in two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Fu, Yulan; Zhang, Jiaxiang; Hu, Xiaoyong; Gong, Qihuang

    2010-01-01

    An electro-optic tunable multi-channel filter is presented, which is based on a two-dimensional ferroelectric photonic crystal made of barium titanate. The filtering properties of the photonic crystal filter can be tuned by an applied voltage or by adjusting the structural parameters. The channel shifts about 30 nm under excitation of an applied voltage of 54.8 V. The influences of the structural disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  14. Flexible Method for the Automated Offline-Detection of Artifacts in Multi-Channel Electroencephalogram Recordings

    DEFF Research Database (Denmark)

    Waser, Markus; Garn, Heinrich; Benke, Thomas

    2017-01-01

    . However, these preprocessing steps do not allow for complete artifact correction. We propose a method for the automated offline-detection of remaining artifacts after preprocessing in multi-channel EEG recordings. In contrast to existing methods it requires neither adaptive parameters varying between...... recordings nor a topography template. It is suited for short EEG segments and is flexible with regard to target applications. The algorithm was developed and tested on 60 clinical EEG samples of 20 seconds each that were recorded both in resting state and during cognitive activation to gain a realistic...

  15. Applying a CPLD for Refurbishment of a Multi-channel Pulse Height Analyzer

    International Nuclear Information System (INIS)

    Leetragunpichitchai, Supalerk; Thong-Aram, Decho; Ploykrachang, Kamontip

    2007-08-01

    Full text: This research applied a CPLD for construction of a 100 MHz, 2048 channel, Wilkinson type analog to digital converter (ADC) circuits for refurbishment of an original multi-channel pulse height analyzer (PHA) ADC. Introduction of the CPLD could reduce the complexity of the circuits, equipment size and also the power consumption while the operation speed was increased. The linearity test of the ADC was found to be excellent with an R2 = 0.9995 and a maximum pulse rate of 48.828 k cps could be converted in this system. Therefore the developed system was appropriate for replacing the original ADC

  16. On a multi-channel transportation loss system with controlled input and controlled service

    Directory of Open Access Journals (Sweden)

    Jewgeni Dshalalow

    1987-01-01

    Full Text Available A multi-channel loss queueing system is investigated. The input stream is a controlled point process. The service in each of m parallel channels depends on the state of the system at certain moments of time when input and service may be controlled. To obtain explicitly the limiting distribution of the main process (Zt (the number of busy channels in equilibrium, an auxiliary three dimensional process with two additional components (one of them is a semi-Markov process is treated as semi-regenerative process. An optimization problem is discussed. Simple expressions for an objective function are derived.

  17. Investigation of ultra wideband multi-channel dichroic beamsplitters from 0.3 to 52 microns

    Science.gov (United States)

    Zhang, K. Q.; Hunneman, R.; Seeley, J. S.; Hawkins, G. J.

    1990-01-01

    The development of a set of multi-channel dichroics which includes a 6 channel dichroic operating over the wavelength region from 0.3 to 52 microns is described. In order to achieve the optimum performance, the optical constraints of PbTe, Ge, and CdTe coatings in the strongly absorptive region have been determined by use of a new iterative method using normal incidence reflectance measurement of the multilayer together with initial values of energy gap and infinite refractive index for the semiconductor model. The design and manufacture of the dichroics is discussed and the final results are presented.

  18. Development of a novel fast frequency modulation scheme for the JET multi-channel reflectometer

    International Nuclear Information System (INIS)

    Deliyanakis, N.

    1999-10-01

    A novel frequency modulation scheme has been developed for the multi-channel reflectometer used to measure density profiles and density fluctuations on the JET tokamak. This reflectometer normally uses slow frequency sweeping, combined with fixed-frequency operation, to measure the group delay, as well as plasma fluctuations, at 10 different microwave frequencies. The novel scheme uses continuous frequency modulation on a time-scale much faster than that of plasma fluctuations, the main aim being to make the group delay measurement more robust against plasma fluctuations. This paper discusses the theoretical background of the scheme, gives a detailed description of the system, and presents results from plasma measurements. (author)

  19. A Portable Multi-Channel γ Spectrometer Based on Bluetooth and PDA

    International Nuclear Information System (INIS)

    Yu Xinhua; Lai Wanchang; Zhang Zhen; Chen Xiaoqiang; Wang Guangxi; Yang Qiang

    2009-01-01

    Introduces an embedded GPS portable multi-channel γ spectrometer based on PDA and blue-tooth. PDA use HP iPAQ rx5700, it has GPS and bluetooth, the position accuracy of GPS isn't more than 5 m and the transmission rate of bluetooth can reach 1 MB/s, its communication distance is up to 10 m. The instrument detection limits of U, Th and K are 1.0 ppm. 1.8 ppm. 0.17%, respectively. The result of experiment proves γ spectrometer based on bluetooth and PDA has low-power, strong anti-interference capability and good portable capability. (authors)

  20. Multi-channel normal speed gated integrator in the measurement of the laser scattering light energy

    International Nuclear Information System (INIS)

    Yang Dong; Yu Xiaoqi; Hu Yuanfeng

    2005-01-01

    With the method of integration in a limited time, a Multi-channel normal speed gated integrator based on VXI system has been developed for measuring the signals with changeable pulse width in laser scattering light experiment. It has been tested with signal sources in ICF experiment. In tests, the integral nonlinearity between the integral results of the gated integrator and that of an oscilloscope is less than 1%. In the ICF experiments the maximum error between the integral results of the gated integrator and that of oscilloscope is less than 3% of the full scale range of the gated integrator. (authors)

  1. Development of a USB-based multi-channel time division scaler for HL-2A

    International Nuclear Information System (INIS)

    Liang Ping

    2008-01-01

    HL-2A is China's first Tokamak device with divertor configuration. Mastering the process and plasma parameter changes with time are of great significance to achieve controlled nuclear fusion. In the recent upgrading of HL-2A, for which a higher and faster electronic equipment was required, we developed a new type USB multi-channel time division scaler for HL-2A including functions: USB interface, PC graphical user interface, simultaneously calibrating more than five channel signals, optional time division spacing 2-50 ms, count rate up to over 2 MHz, accessing all the information 20 s after a activated signal, and processing data and displaying off-line. (authors)

  2. Study on the dissociative recombination of HeH+ by multi-channel quantum defect theory

    Directory of Open Access Journals (Sweden)

    Takagi Hidekazu

    2015-01-01

    Full Text Available The dissociative recombination of HeH+ is studied using multi-channel quantum defect theory. We investigated how the partial waves of incident electrons affect the DR cross section. The DR cross section depends on the position of the center of partial wave expansion for the adiabatic S-matrix of electron scattering. When the Rydberg states correlate with the Rydberg states of the hydrogen atom at large internuclear distances, the center should be on the hydrogen atom for a better convergence of the expansion.

  3. Rayleigh waves ellipticity and mode mis-identification in multi-channel analysis of surface waves

    DEFF Research Database (Denmark)

    Boaga, Jacopo; Cassiani, Giorgio; Strobbia, Claudio

    dispersion curve which is then inverted. Typically, single component vertical and multi channel receivers are used. In most cases the inversion of the dispersion properties is carried out assuming that the experimental dispersion curve corresponds to a single mode, mostly the fundamental Rayleigh mode...... to each other reaching similar Rayleigh velocity. It is known ‘osculation’ happens generally in presence of strong velocity contrasts, typically with a fast bedrock underlying loose sediments. The practical limitations of the acquired data affect the spectral and modal resolution, making it often...

  4. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  5. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm

    Directory of Open Access Journals (Sweden)

    Ying-Lun Chen

    2015-08-01

    Full Text Available A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO, and the feature extraction is carried out by the generalized Hebbian algorithm (GHA. To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.

  6. Scene text detection by leveraging multi-channel information and local context

    Science.gov (United States)

    Wang, Runmin; Qian, Shengyou; Yang, Jianfeng; Gao, Changxin

    2018-03-01

    As an important information carrier, texts play significant roles in many applications. However, text detection in unconstrained scenes is a challenging problem due to cluttered backgrounds, various appearances, uneven illumination, etc.. In this paper, an approach based on multi-channel information and local context is proposed to detect texts in natural scenes. According to character candidate detection plays a vital role in text detection system, Maximally Stable Extremal Regions(MSERs) and Graph-cut based method are integrated to obtain the character candidates by leveraging the multi-channel image information. A cascaded false positive elimination mechanism are constructed from the perspective of the character and the text line respectively. Since the local context information is very valuable for us, these information is utilized to retrieve the missing characters for boosting the text detection performance. Experimental results on two benchmark datasets, i.e., the ICDAR 2011 dataset and the ICDAR 2013 dataset, demonstrate that the proposed method have achieved the state-of-the-art performance.

  7. Salt intrusion in multi-channel estuaries: a case study in the Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    A. D. Nguyen

    2006-01-01

    Full Text Available There is a well-tested theory for the computation of salt intrusion in alluvial estuaries that is fully analytical and predictive. The theory uses analytical equations to predict the mixing behaviour of the estuary based on measurable quantities, such as channel topography, river discharge and tidal characteristics. It applies to single-channel topographies and estuaries that demonstrate moderate tidal damping. The Mekong delta is a multi-channel estuary where the tide is damped due to a relatively strong river discharge (in the order of 2000 m3/s, even during the dry season. As a result the Mekong is a strongly riverine estuary. This paper aims to test if the theory can be applied to such a riverine multi-channel estuary, and to see if possible adjustments or generalisations need to be made. The paper presents salt intrusion measurements that were done by moving boat in 2005, to which the salt intrusion model was calibrated. The theory has been expanded to cater for tidal damping. Subsequently the model has been validated with observations made at fixed locations over the years 1998 and 1999. Finally it has been tested whether the Mekong calibration fits the overall predictive equations derived in other estuaries. The test has been successful and led to a slight adjustment of the predictive equation to cater for estuaries that experience a sloping bottom.

  8. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals.

    Science.gov (United States)

    Xiong, Jiping; Cai, Lisang; Wang, Fei; He, Xiaowei

    2017-03-03

    Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  9. Hand Motion Classification Using a Multi-Channel Surface Electromyography Sensor

    Directory of Open Access Journals (Sweden)

    Dong Sun

    2012-01-01

    Full Text Available The human hand has multiple degrees of freedom (DOF for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  10. Hand motion classification using a multi-channel surface electromyography sensor.

    Science.gov (United States)

    Tang, Xueyan; Liu, Yunhui; Lv, Congyi; Sun, Dong

    2012-01-01

    The human hand has multiple degrees of freedom (DOF) for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG) sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  11. Analysis and compensation of synchronous measurement error for multi-channel laser interferometer

    International Nuclear Information System (INIS)

    Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong

    2017-01-01

    Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s −1 , the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay. (paper)

  12. Wireless acquisition of multi-channel seismic data using the Seismobile system

    Science.gov (United States)

    Isakow, Zbigniew

    2017-11-01

    This paper describes the wireless acquisition of multi-channel seismic data using a specialized mobile system, Seismobile, designed for subsoil diagnostics for transportation routes. The paper presents examples of multi-channel seismic records obtained during system tests in a configuration with 96 channels (4 landstreamers of 24-channel) and various seismic sources. Seismic waves were generated at the same point using different sources: a 5-kg hammer, a Gisco's source with a 90-kg pile-driver, and two other the pile-drivers of 45 and 70 kg. Particular attention is paid to the synchronization of source timing, the measurement of geometry by autonomous GPS systems, and the repeatability of triggering measurements constrained by an accelerometer identifying the seismic waveform. The tests were designed to the registration, reliability, and range of the wireless transmission of survey signals. The effectiveness of the automatic numbering of measuring modules was tested as the system components were arranged and fixed to the streamers. After measurements were completed, the accuracy and speed of data downloading from the internal memory (SDHC 32GB WiFi) was determined. Additionally, the functionality of automatic battery recharging, the maximum survey duration, and the reliability of battery discharge signalling were assessed.

  13. Metasurface for multi-channel terahertz beam splitters and polarization rotators

    Science.gov (United States)

    Zang, XiaoFei; Gong, HanHong; Li, Zhen; Xie, JingYa; Cheng, QingQing; Chen, Lin; Shkurinov, Alexander P.; Zhu, YiMing; Zhuang, SongLin

    2018-04-01

    Terahertz beam splitters and polarization rotators are two typical devices with wide applications ranging from terahertz communication to system integration. However, they are faced with severe challenges in manipulating THz waves in multiple channels, which is desirable for system integration and device miniaturization. Here, we propose a method to design ultra-thin multi-channel THz beam splitters and polarization rotators simultaneously. The reflected beams are divided into four beams with nearly the same density under illumination of linear-polarized THz waves, while the polarization of reflected beams in each channel is modulated with a rotation angle or invariable with respect to the incident THz waves, leading to the multi-channel polarization rotator (multiple polarization rotation in the reflective channels) and beam splitter, respectively. Reflective metasurfaces, created by patterning metal-rods with different orientations on a polyimide film, were fabricated and measured to demonstrate these characteristics. The proposed approach provides an efficient way of controlling polarization of THz waves in various channels, which significantly simplifies THz functional devices and the experimental system.

  14. Galvanically Decoupled Current Source Modules for Multi-Channel Bioimpedance Measurement Systems

    Directory of Open Access Journals (Sweden)

    Roman Kusche

    2017-10-01

    Full Text Available Bioimpedance measurements have become a useful technique in the past several years in biomedical engineering. Especially, multi-channel measurements facilitate new imaging and patient monitoring techniques. While most instrumentation research has focused on signal acquisition and signal processing, this work proposes the design of an excitation current source module that can be easily implemented in existing or upcoming bioimpedance measurement systems. It is galvanically isolated to enable simultaneous multi-channel bioimpedance measurements with a very low channel-coupling. The system is based on a microcontroller in combination with a voltage-controlled current source circuit. It generates selectable sinusoidal excitation signals between 0.12 and 1.5 mA in a frequency range from 12 to 250 kHz, whereas the voltage compliance range is ±3.2 V. The coupling factor between two current sources, experimentally galvanically connected with each other, is measured to be less than −48 dB over the entire intended frequency range. Finally, suggestions for developments in the future are made.

  15. Opacity annotation of diffuse lung diseases using deep convolutional neural network with multi-channel information

    Science.gov (United States)

    Mabu, Shingo; Kido, Shoji; Hashimoto, Noriaki; Hirano, Yasushi; Kuremoto, Takashi

    2018-02-01

    This research proposes a multi-channel deep convolutional neural network (DCNN) for computer-aided diagnosis (CAD) that classifies normal and abnormal opacities of diffuse lung diseases in Computed Tomography (CT) images. Because CT images are gray scale, DCNN usually uses one channel for inputting image data. On the other hand, this research uses multi-channel DCNN where each channel corresponds to the original raw image or the images transformed by some preprocessing techniques. In fact, the information obtained only from raw images is limited and some conventional research suggested that preprocessing of images contributes to improving the classification accuracy. Thus, the combination of the original and preprocessed images is expected to show higher accuracy. The proposed method realizes region of interest (ROI)-based opacity annotation. We used lung CT images taken in Yamaguchi University Hospital, Japan, and they are divided into 32 × 32 ROI images. The ROIs contain six kinds of opacities: consolidation, ground-glass opacity (GGO), emphysema, honeycombing, nodular, and normal. The aim of the proposed method is to classify each ROI into one of the six opacities (classes). The DCNN structure is based on VGG network that secured the first and second places in ImageNet ILSVRC-2014. From the experimental results, the classification accuracy of the proposed method was better than the conventional method with single channel, and there was a significant difference between them.

  16. A wireless multi-channel bioimpedance measurement system for personalized healthcare and lifestyle.

    Science.gov (United States)

    Ramos, Javier; Ausín, José Luis; Lorido, Antonio Manuel; Redondo, Francisco; Duque-Carrillo, Juan Francisco

    2013-01-01

    Miniaturized, noninvasive, wearable sensors constitute a fundamental prerequisite for pervasive, predictive, and preventive healthcare systems. In this sense, this paper presents the design, realization, and evaluation of a wireless multi-channel measurement system based on a cost-effective high-performance integrated circuit for electrical bioimpedance (EBI) measurements in the frequency range from 1 kHz to 1 MHz. The resulting on-chip spectrometer provides high measuring EBI capabilities and together with a low-cost, commercially available radio frequency transceiver device. It provides reliable wireless communication, constitutes the basic node to build EBI wireless sensor networks (EBI-WSNs). The proposed EBI-WSN behaves as a high-performance wireless multi-channel EBI spectrometer, where the number of channels is completely scalable and independently configurable to satisfy specific measurement requirements of each individual. A prototype of the EBI node leads to a very small printed circuit board of approximately 8 cm2 including chip-antenna, which can operate several years on one 3-V coin cell battery and make it suitable for long-term preventive healthcare monitoring.

  17. Analysis and compensation of synchronous measurement error for multi-channel laser interferometer

    Science.gov (United States)

    Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong

    2017-05-01

    Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s-1, the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay.

  18. Application of a multi-channel system for continuous monitoring and an early warning system.

    Science.gov (United States)

    Lee, J H; Song, C H; Kim, B C; Gu, M B

    2006-01-01

    A multi-channel continuous toxicity monitoring system developed in our laboratory, based on two-stage mini-bioreactors, was successfully implemented in the form of computer-based data acquisition. The multi-channel system consists of a series of a two-stage minibioreactor systems connected by a fiber optic probe to a luminometer, and uses genetically engineered bioluminescent bacteria for the detection of the potential toxicity from the soluble chemicals. This system can be stably and continuously operated due to the separation of the culture reactor from the test reactor and accomplish easy and long-term monitoring without system shut down by abrupt inflows of severe polluting chemicals. Four different recombinant bioluminescent bacteria were used in different channels so that the modes of the samples toxicities can be reasonably identified and evaluated based upon the response signature of each channel. The bioluminescent signatures were delivered from four channels by switching one at once, while the data is automatically logged to an IBM compatible computer. We also achieved the enhancement of the system through the manipulation of the dilution rate and the use of thermo-lux fusion strains. Finally, this system is now being implemented to a drinking water reservoir and river for remote sensing as an early warning system.

  19. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals

    Directory of Open Access Journals (Sweden)

    Jiping Xiong

    2017-03-01

    Full Text Available Although wrist-type photoplethysmographic (hereafter referred to as WPPG sensor signals can measure heart rate quite conveniently, the subjects’ hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  20. The designing principle and implementation of multi-channel intelligence isotope thickness gauge based on multifunction card PCI-1710

    International Nuclear Information System (INIS)

    Zhang Bin; Zhao Shujun; Guo Maotian; He Jintian

    2006-01-01

    The designing principle, the constitution of system and the implementation of multi-channel intelligence isotope thickness gauge are introduced in the paper in detail, which are based on multifunction card PCI-1710. The paper also discusses the primaryprinciple of isotope thickness gauge, correct factor in measurement and complication of calibration. In the following, the whole frame of multi-channel intelligence isotope thickness gauge is given. The functions, the characteristics and the usage of multifunction card PCI-1710 are described. Furthermore, the developing process and the function modules of software are presented. Finally, the real prototype of multi-channel intelligence isotope thickness gauge is introduced, using 241 Am as a radioactive element. (authors)

  1. Robust, highly customizable, and economical multi-channel electrode for chronic multi-unit recording in behaving animals.

    Science.gov (United States)

    Tateyama, Yukina; Oyama, Kei; Shiraishi, Masaru; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2017-12-01

    Multi-unit recording has been one of the most widely used techniques to investigate the correlation between multiple neuronal activities and behavior. However, a common problem of currently used multi-channel electrodes is their physical weakness. In this study, we developed a novel multi-channel electrode with sufficient physical strength to penetrate a thickened dura mater. This electrode consists of low-cost materials and is easily fabricated, and it enables recording without removing dura mater, thereby reducing the risk of inflammation, infection, or brain herniation. The low-cost multi-channel electrode developed in this study would be a useful tool for chronic recording in behaving animals. Copyright © 2017. Published by Elsevier B.V.

  2. Multi-channel electrical impedance tomography for regional tissue hydration monitoring

    International Nuclear Information System (INIS)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-01-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ∼35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in

  3. Double Fillet Welding of Carbon Steel T-Joint by Double Channel Shielding Gas Metal Arc Welding Method Using Metal Cored Wire

    Directory of Open Access Journals (Sweden)

    Mert T.

    2017-06-01

    Full Text Available Low carbon steel material and T-joints are frequently used in ship building and steel constructions. Advantages such as high deposition rates, high quality and smooth weld metals and easy automation make cored wires preferable in these industries. In this study, low carbon steel materials with web and flange thicknesses of 6 mm, 8 mm and 10 mm were welded with conventional GMAW and double channel shielding gas metal arc welding (DMAG method to form double fillet T-joints using metal cored wire. The difference between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, weld bead and HAZ geometry of the joints and thermal camera temperature measurements. When weld bead and HAZ geometries are focused, it was seen filler metal molten area increased and base metal molten area decreased in DMAG of low carbon steel. When compared with traditional GMAW, finer and acicular structures in weld metal and more homogenous and smaller grains in HAZ are obtained with double channel shielding gas metal arc welding.

  4. Compact and cost-effective multi-channel optical spectrometer for fine FBG sensing in IoT technology

    Science.gov (United States)

    Konishi, Tsuyoshi; Yamasaki, Yu

    2018-02-01

    Optical fiber sensor networks have attracted much attention in IoT technology and a fiber Bragg grating is one of key sensor devices there because of their advantages in a high affinity for optical fiber networks, compactness, immunity to electromagnetic interference and so on. Nevertheless, its sensitivity is not always satisfactory so as to be usable together with widespread cost-effective multi-channel spectrometers. In this paper, we introduce a new cost-effective approach for a portable multi-channel spectrometer with high spectral resolution and demonstrates some preliminary experimental results for fine FBG sensing.

  5. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    Science.gov (United States)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  6. Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System

    Science.gov (United States)

    Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang

    2018-03-01

    In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.

  7. Selecting participants for listening tests of multi-channel reproduced sound

    DEFF Research Database (Denmark)

    Wickelmaier, Florian; Choisel, Sylvain

    2005-01-01

    A selection procedure was devised in order to select listeners for experiments in which their main task will be to judge multi-channel reproduced sound. 91 participants filled in a web-based questionnaire. 78 of them took part in an assessment of their hearing thresholds, their spatial hearing......, and their verbal production abilities. The listeners displayed large individual differences in their performance. 40 subjects were selected based on the test results. The self-assessed listening habits and experience in the web questionnaire could not predict the results of the selection procedure. Further......, the hearing thresholds did not correlate with the spatial-hearing test. This leads to the conclusion that task-specific performance tests might be the preferable means of selecting a listening panel....

  8. Investigations of Orchestra Auralizations Using the Multi-Channel Multi-Source Auralization Technique

    DEFF Research Database (Denmark)

    Vigeant, Michelle; Wang, Lily M.; Rindel, Jens Holger

    2008-01-01

    a multi-channel multi-source auralization technique, involving individual five-channel anechoic recordings of each instrumental part of two symphonies. In the first study, these auralizations were subjectively compared to orchestra auralizations made using (a) a single omni-directional source, (b......) a surface source, and (c) single-channel multi-source method. Results show that the multi-source auralizations were rated to be more realistic than the surface source ones and to have larger source width than the single omni-directional source auralizations. No significant differences were found between......Room acoustics computer modeling is a tool for generating impulse responses and auralizations from modeled spaces. The auralizations are commonly made from a single-channel anechoic recording of solo instruments. For this investigation, auralizations of an entire orchestra were created using...

  9. Design of a novel multi channel photonic crystal fiber polarization beam splitter

    Science.gov (United States)

    Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun

    2017-10-01

    A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.

  10. A customizable multi-channel loudness compensation method based on WDRC for digital hearing aids

    Science.gov (United States)

    Hu, Jiebin; Wang, Mingjiang; Ma, Min

    2017-08-01

    Loudness compensation is the most significant signal processing algorithm in digital hearing aids at present. An algorithm of multi-channel loudness compensation for embedded system has been put forward in this paper. The number of channels is customizable in this algorithm. The algorithm can set different number and different width of channels for each patient based on frequency domain wide dynamic range compression. First, according to the requirement of patient to divide the frequency domain into multiple unequal frequency bands. And then calculate the gain of each channel according to the input-output curve of sound pressure level. Finally, the time-domain impulse response of gain is computed from Mel filter banks. It is used in conjunction with speech enhancement processing in hearing aids. Simulation results show that the algorithm can effectively enhance the loudness for different frequencies.

  11. Development of a multi-channel horn mixer array for microwave imaging plasma diagnostics

    International Nuclear Information System (INIS)

    Ito, Naoki; Kuwahara, Daisuke; Nagayama, Yoshio

    2015-01-01

    Microwave to millimeter-wave diagnostics techniques, such as interferometry, reflectometry, scattering, and radiometry, have been powerful tools for diagnosing magnetically confined plasmas. The resultant measurements have clarified several physics issues, including instability, wave phenomena, and fluctuation-induced transport. Electron cyclotron emission imaging has been an important tool in the investigation of temperature fluctuations, while reflectometry has been employed to measure plasma density profiles and their fluctuations. We have developed a horn-antenna mixer array (HMA), a 50 - 110 GHz 1D antenna array, which can be easily stacked as a 2D array. This article describes an upgrade to the horn mixer array that combines well-characterized mixers, waveguide-to-microstrip line transitions, intermediate frequency amplifiers, and internal local oscillator modules using a monolithic microwave integrated circuit technology to improve system performance. We also report on the use of a multi-channel HMA system. (author)

  12. A low delay transmission method of multi-channel video based on FPGA

    Science.gov (United States)

    Fu, Weijian; Wei, Baozhi; Li, Xiaobin; Wang, Quan; Hu, Xiaofei

    2018-03-01

    In order to guarantee the fluency of multi-channel video transmission in video monitoring scenarios, we designed a kind of video format conversion method based on FPGA and its DMA scheduling for video data, reduces the overall video transmission delay.In order to sace the time in the conversion process, the parallel ability of FPGA is used to video format conversion. In order to improve the direct memory access (DMA) writing transmission rate of PCIe bus, a DMA scheduling method based on asynchronous command buffer is proposed. The experimental results show that this paper designs a low delay transmission method based on FPGA, which increases the DMA writing transmission rate by 34% compared with the existing method, and then the video overall delay is reduced to 23.6ms.

  13. A high-throughput, multi-channel photon-counting detector with picosecond timing

    CERN Document Server

    Lapington, J S; Miller, G M; Ashton, T J R; Jarron, P; Despeisse, M; Powolny, F; Howorth, J; Milnes, J

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchanne...

  14. [Analysis of the Muscle Fatigue Based on Band Spectrum Entropy of Multi-channel Surface Electromyography].

    Science.gov (United States)

    Liu, Jian; Zou, Renling; Zhang, Dongheng; Xu, Xiulin; Hu, Xiufang

    2016-06-01

    Exercise-induced muscle fatigue is a phenomenon that the maximum voluntary contraction force or power output of muscle is temporarily reduced due to muscular movement.If the fatigue is not treated properly,it will bring about a severe injury to the human body.With multi-channel collection of lower limb surface electromyography signals,this article analyzes the muscle fatigue by adoption of band spectrum entropy method which combined electromyographic signal spectral analysis and nonlinear dynamics.The experimental result indicated that with the increase of muscle fatigue,muscle signal spectrum began to move to low frequency,the energy concentrated,the system complexity came down,and the band spectrum entropy which reflected the complexity was also reduced.By monitoring the entropy,we can measure the degree of muscle fatigue,and provide an indicator to judge fatigue degree for the sports training and clinical rehabilitation training.

  15. The interaction between room and musical instruments studied by multi-channel auralization

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Otondo, Felipe

    2005-01-01

    in the anechoic recording. With this technique the variations in sound radiation from the musical instrument during the performance e.g. due to changes in level or movements can be reproduced with the influence of the surrounding room surfaces. Examples include a grand piano and a clarinet.......The directivity of musical instruments is very complicated and typically changes from one tone to the next. So, instead of measuring the average directivity, a multi-channel auralization method has been developed, which allows a highly accurate and realistic sounding auralization of musical...... instruments in rooms. Anechoic recordings have been made with 5 and 13 evenly distributed microphones around the musical instrument. The reproduction is made with a room acoustics simulation software using a compound source, which is in fact a number of highly directive sources, one for each of the channels...

  16. Multi-channel, passive, short-range anti-aircraft defence system

    Science.gov (United States)

    Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew

    2018-01-01

    The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.

  17. Study of multi-channel readout ASIC and its discrete module for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Fan Lei; Zhang Shengjun; Li Xian

    2013-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout systems, it is the key part for the whole system. This project designed a multi-channel readout ASIC for general detectors. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured and tested. The discrete modules work well, and the 6-channel chip NPRE 6 is ready for test in some particle detection system. (authors)

  18. FPGA based high-performance multi-channel analyzer with local histogram memory

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.

    2004-01-01

    Modern nuclear spectroscopy systems demand for a Multi-Channel Analyzer (MCA) with higher resolution, faster speed and other advanced features. The MCA described here is targeted for such demanding applications. The MCA has an in-built local histogram memory and a memory management unit integrated in an FPGA (Field Programmable Gate Array) chip. In addition to the integrated low power digital circuitry, the system utilizes state of the art advanced analog circuits like low power, high speed and high precision comparators, op-amps, ADC and DAC. The operating resolution is selectable from 256 channels to 16384 channels for pulse height analysis. It supports high count rate applications (typically 100 KHz) without significant dead time penalty. It can have an USB bus interface with simple changes. In general, the MCA gives a high performance, compact and low power alternative for portable and battery operated systems as well as for high end laboratory instruments. (author)

  19. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    Science.gov (United States)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  20. Satellite rainfall monitoring over Africa for food security, using multi-channel MSG data

    Science.gov (United States)

    Chadwick, R.; Grimes, D.; Saunders, R.; Blackmore, T.; Francis, P.

    2009-04-01

    Near real-time rainfall estimates are crucial in sub-Saharan Africa for a variety of humanitarian and agricultural purposes. However, for economic and infrastructural reasons, regularly reporting rain-gauges are sparse and precipitation radar networks extremely rare. Satellite rainfall estimates, particularly from geostationary satellites such as Meteosat Second Generation (MSG), present one method of filling this information gap, as they produce data at high temporal and spatial resolution. An algorithm has been developed to produce rainfall estimates for Africa from multi-channel MSG data. The algorithm is calibrated using precipitation radar data collected in Niamey, Niger as part of the African Monsoon Multidisciplinary Analyses (AMMA) project in 2006, and is based on an algorithm used operationally over Europe by the UK Met Office. Contingency tables are used to establish a statistical relationship between multi-channel MSG data and probability of rainfall at several different rain-rate magnitudes as sensed by the radar. Rain-rate estimates can then be produced at a variety of spatial and temporal scales, with MSG scan length (15 minutes) and pixel size (3-4km) as the lower limit. Results will be presented of a validation of this algorithm over the Sahel region of Africa. Rainfall estimates from this algorithm, processed for 2004, will be validated against gridded rain-gauge data at a 0.5 degree and 10 day timescale suitable for drought monitoring purposes. A comparison will also be made against rainfall estimates from the TAMSAT algorithm, which uses single channel IR data from MSG, and has been shown to perform well in the Sahel region.

  1. Scale-free brain quartet: artistic filtering of multi-channel brainwave music.

    Science.gov (United States)

    Wu, Dan; Li, Chaoyi; Yao, Dezhong

    2013-01-01

    To listen to the brain activities as a piece of music, we proposed the scale-free brainwave music (SFBM) technology, which translated scalp EEGs into music notes according to the power law of both EEG and music. In the present study, the methodology was extended for deriving a quartet from multi-channel EEGs with artistic beat and tonality filtering. EEG data from multiple electrodes were first translated into MIDI sequences by SFBM, respectively. Then, these sequences were processed by a beat filter which adjusted the duration of notes in terms of the characteristic frequency. And the sequences were further filtered from atonal to tonal according to a key defined by the analysis of the original music pieces. Resting EEGs with eyes closed and open of 40 subjects were utilized for music generation. The results revealed that the scale-free exponents of the music before and after filtering were different: the filtered music showed larger variety between the eyes-closed (EC) and eyes-open (EO) conditions, and the pitch scale exponents of the filtered music were closer to 1 and thus it was more approximate to the classical music. Furthermore, the tempo of the filtered music with eyes closed was significantly slower than that with eyes open. With the original materials obtained from multi-channel EEGs, and a little creative filtering following the composition process of a potential artist, the resulted brainwave quartet opened a new window to look into the brain in an audible musical way. In fact, as the artistic beat and tonal filters were derived from the brainwaves, the filtered music maintained the essential properties of the brain activities in a more musical style. It might harmonically distinguish the different states of the brain activities, and therefore it provided a method to analyze EEGs from a relaxed audio perspective.

  2. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  3. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  4. Effect of flow rate distribution at the inlet on hydrodynamic mixing in narrow rectangular multi-channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Chen Bingde; Wang Xiaojun

    2008-01-01

    Flow and heat transfer in the narrow rectangular multi-channel is widely en- countered in the engineering application, hydrodynamic mixing in the narrow rectangular multi-channel is one of the important concerns. With the help of the Computational Fluid Dynamics code CFX, the effect of flow rate distribution of the main channel at the inlet on hydrodynamic mixing in the narrow rectangular multi-channel is numerical simulated. The results show that the flow rate distributions at the inlet have a great effect on hydrodynamics mixing in multi-channel, the flow rate in the main channel doesn't change with increasing the axial mixing section when the average flow rate at the inlet is set. Hydrodynamic mixing will arise in the mixing section when the different ratio of the flow rate distribution at the inlet is set, and hydrodynamic mixing increases with the difference of the flow rate distribution at the inlet increase. The trend of the flow rate distribution of the main channel is consistent during the whole axial mixing section, and hydrodynamic mixing in former 4 mixing section is obvious. (authors)

  5. Surface Clutter Suppression Techniques Applied to P-band Multi-Channel SAR Ice Sounder Data from East Antarctica

    DEFF Research Database (Denmark)

    Lin, Chung-Chi; Bekaert, David; Gebert, Nicolas

    ., Lausanne, developed and built the radiator-elements of the enhanced POLARIS. Several datasets were acquired in the multi-channel configuration during the Feb. 2011 campaign over East Antarctica. The POLARIS instrument will be briefly introduced, followed by an overview of the sounding campaign. Finally...

  6. A Novel Spectrally Efficient Asynchronous Multi-Channel MAC Using a Half-Duplex Transceiver for Wireless Networks

    Directory of Open Access Journals (Sweden)

    Abdullah Devendiran

    2018-01-01

    Full Text Available Multi-channel medium access control (MAC protocols maximize network performance by enabling concurrent wireless transmissions over non-interfering channels. Despite physical layer advancements, the underlying IEEE 802.11 MAC standard cannot fully exploit features and support high-performance applications. In this work, we propose the novel spectrally efficient asynchronous multi-channel MAC (SA-MMAC protocol for wireless networks using a single half-duplex transceiver. A full-duplex mode of operation on data channels reduces the signaling overhead and boosts the spectrum efficiency. A revamped contention mechanism of IEEE 802.11 addresses the multi-channel hidden terminal problem, and a jamming signal from the receiver addresses the collisions in control signals. Furthermore, the control channel is used for data transmissions to increase the bandwidth utilization but under a restricted half-duplex mode to avoid causing a bottleneck situation. The simulator is tested for correctness. The results suggest that the protocol can work well on 3, 4, or 12 concurrent channels with high node density, providing about 12.5 times more throughput than IEEE 802.11 and 18% to 95% more throughput than its multi-channel variants under saturated traffic conditions.

  7. Feasibility study of applying a multi-channel analysis model to on-line core monitoring system

    International Nuclear Information System (INIS)

    In, W. K.; Yoo, Y. J.; Hwang, D. H.; Jun, T. H.

    1998-01-01

    A feasibility study was performed to evaluate the effect of implementing a multi-channel analysis model in on-line core monitoring system. A simplified thermal-hydraulic model has been used in the on-line core monitoring system of digital PWR. The design procedure, core thermal margin and computation time were investigated in case of replacing the simplified model with the multi-channel analysis model. For the given ranges of limiting conditions for operation in Yonggwang Unit 3 Cycle 1, the minimum DNBR of the simplified thermal-hydraulic code CETOP-D was compared to that of the multi-channel analysis code MATRA. A CETOP-D tuning is additionally required to ensure the accurate and conservative DNBR calculation but the MATRA tuning is not necessary. MATRA appeared to increase the DNBR overpower margin from 2.5% to 6% over the CETOP-D margin. MATRA took approximately 1 second to compute DNBR on the HP9000 workstation system, which is longer than the DNBR computation time of CETOP-D. It is, however, fast enough to perform the on-line monitoring of DNBR. It can be therefore concluded that the application of the multi-channel analysis model MATRA in the on-line core monitoring system is feasible

  8. Analysis of multi-channel seismic reflection and magnetic data along 13 degrees N latitude across the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.G.; Bhattacharya, G.C.; Ramana, M.V.; Subrahmanyam, V.; Ramprasad, T.; Krishna, K.S.; Chaubey, A.K.; Murty, G.P.S.; Srinivas, K.; Desa, M.; Reddy, S.I.; Ashalata, B.; Subrahmanyam, C.; Mital, G.S.; Drolia, R.K.; rai, S.N.; Ghosh, S.K.; Singh, R.N.; Majumdar, M.

    Analysis of the multi-channel seismic reflection, magnetic and bathymetric data collected along a transect, 1110 km long parallel to 13 degrees N lat. across the Bay of Bengal was made. The transect is from the continental shelf off Madras...

  9. Development of gas-liquid two-phase flow measurement technique in narrow channel. Application of micro wire-mesh sensor to the flow between parallel plates

    International Nuclear Information System (INIS)

    Ito, Daisuke; Kikura, Hiroshige; Aritomi, Masanori

    2009-01-01

    A novel two-phase flow measuring technique based on local electrical conductivity measurement was developed for clarifications of three-dimensional flow structure in gas-liquid two-phase flow in a narrow channel. The measuring method applies the principle of conventional wire-mesh tomography, which can measure the instantaneous void fraction distributions in a cross-section of a flow channel. In this technique, the electrodes are fixed on the inside of the walls facing each other, and the local void fractions were obtained by the electrical conductivity measurement between electrodes arranged on each wall. Therefore, the flow structure and the bubble behavior can be investigated by three-dimensional void fraction distributions in the channel with narrow gap. In this paper, a micro Wire-Mesh Sensor (μWMS) which has the gap of 3 mm was developed, and the instantaneous void fraction distributions were measured. From the measured distributions, three-dimensional bubble distributions were reconstructed, and bubble volumes and bubble velocities were estimated. (author)

  10. EFFICIENCY OF REDUNDANT QUERY EXECUTION IN MULTI-CHANNEL SERVICE SYSTEMS

    Directory of Open Access Journals (Sweden)

    V. A. Bogatyrev

    2016-03-01

    Full Text Available Subject of Research.The paper deals with analysis of the effectiveness of redundant queries based on untrusted computing in computer systems, represented by multi-channel queuing systems with a common queue. The objective of research is the possibility of increasing the efficiency of service requests while performing redundant copies of requests in different devices of a multi-channel system under conditions of calculations unreliability. The redundant service of requests requires the infallibility of its implementation at least in one of the devices.Method. We have considered estimation of the average time spent in the system with and without the use of redundant requests at the presentation of a simple queuing model of the M / M / n type to analyze the effectiveness of redundant service of requests. Presented evaluation of the average waiting time in the redundant queries is the upper one, since it ignores the possibility of reducing the average waiting time as a result of the spread of the probability of time querying at different devices. The integrated efficiency of redundant service of requests is defined based on the multiplicative index that takes into account the infallibility of calculations and the average time allowance with respect to the maximum tolerated delay of service. Evaluation of error-free computing at reserved queries is received at the requirement of faultless execution of at least one copy of the request. Main Results. We have shown that the reservation of requests gives the gain in efficiency of the system at low demand rate (load. We have defined the boundaries of expediency (efficiency for redundant service of requests. We have shown the possibility of the effectiveness increasing of the adaptive changes in the multiplicity of the reservation of requests, depending on the intensity of the flow of requests. We have found out that the choice of service discipline in information service systems is largely determined by

  11. Optimization of multi-channel neutron focusing guides for extreme sample environments

    International Nuclear Information System (INIS)

    Di Julio, D D; Lelièvre-Berna, E; Andersen, K H; Bentley, P M; Courtois, P

    2014-01-01

    In this work, we present and discuss simulation results for the design of multichannel neutron focusing guides for extreme sample environments. A single focusing guide consists of any number of supermirror-coated curved outer channels surrounding a central channel. Furthermore, a guide is separated into two sections in order to allow for extension into a sample environment. The performance of a guide is evaluated through a Monte-Carlo ray tracing simulation which is further coupled to an optimization algorithm in order to find the best possible guide for a given situation. A number of population-based algorithms have been investigated for this purpose. These include particle-swarm optimization, artificial bee colony, and differential evolution. The performance of each algorithm and preliminary results of the design of a multi-channel neutron focusing guide using these methods are described. We found that a three-channel focusing guide offered the best performance, with a gain factor of 2.4 compared to no focusing guide, for the design scenario investigated in this work.

  12. TRANTHAC-1: transient thermal-hydraulic analysis code for HTGR core of multi-channel model

    International Nuclear Information System (INIS)

    Sato, Sadao; Miyamoto, Yoshiaki

    1980-08-01

    The computer program TRANTHAC-1 is for predicting thermal-hydraulic transient behavior in HTGR's core of pin-in-block type fuel elements, taking into consideration of the core flow distribution. The program treats a multi-channel model, each single channel representing the respective column composed of fuel elements. The fuel columns are grouped in flow control regions; each region is provided with an orifice assembly. In the region, all channels are of the same shape except one channel. Core heat is removed by downward flow of the control through the channel. In any transients, for given time-dependent power, total core flow, inlet coolant temperature and coolant pressure, the thermal response of the core can be determined. In the respective channels, the heat conduction in radial and axial direction are represented. And the temperature distribution in each channel with the components is calculated. The model and usage of the program are described. The program is written in FORTRAN-IV for computer FACOM 230-75 and it is composed of about 4,000 cards. The required core memory is about 75 kilowords. (author)

  13. A multi-channel time-to-digital converter chip for drift chamber readout

    International Nuclear Information System (INIS)

    Santos, D.M.; Chau, A.; DeBusshere, D.; Dow, S.; Flasck, J.; Levi, M.; Kirsten, F.; Su, E.

    1995-12-01

    A complete, multi-channel, timing and amplitude measurement IC for use in drift chamber applications is described. By targeting specific resolutions, i.e. 6-bits of resolution for both time and amplitude, area and power can be minimized while achieving the proper level of measurement accuracy. Time is digitized using one eight channel TDC comprised of a delay locked loop and eight sets of latches and encoders. Amplitude (for dE/dx) is digitized using a dual-range FADC for each channel. Eight bits of dynamic range with six bits of accuracy are achieved with the dual-range. The timing and amplitude information is multiplexed into one DRAM (Dynamic Random Access Memory) trigger latency buffer. Interesting events are then transferred into an SRAM (Static Random Access Memory) readout buffer before the latency time has expired. The design has been optimized to achieve the requisite resolution using the smallest area and lowest power. The circuit has been implemented in a 0.8μ triple metal CMOS process. The TDC sub-element has been measured to have better than 135 ps time resolution and 35 ps jitter. The DRAM has a measured cycle time of 80 MHz

  14. Stochastic geometry model for multi-channel fog radio access networks

    KAUST Repository

    Emara, Mostafa

    2017-06-29

    Cache-enabled base station (BS) densification, denoted as a fog radio access network (F-RAN), is foreseen as a key component of 5G cellular networks. F-RAN enables storing popular files at the network edge (i.e., BS caches), which empowers local communication and alleviates traffic congestions at the core/backhaul network. The hitting probability, which is the probability of successfully transmitting popular files request from the network edge, is a fundamental key performance indicator (KPI) for F-RAN. This paper develops a scheduling aware mathematical framework, based on stochastic geometry, to characterize the hitting probability of F-RAN in a multi-channel environment. To this end, we assess and compare the performance of two caching distribution schemes, namely, uniform caching and Zipf caching. The numerical results show that the commonly used single channel environment leads to pessimistic assessment for the hitting probability of F-RAN. Furthermore, the numerical results manifest the superiority of the Zipf caching scheme and quantify the hitting probability gains in terms of the number of channels and cache size.

  15. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter

    Science.gov (United States)

    Somers, Ben; Francart, Tom; Bertrand, Alexander

    2018-06-01

    Objective. The electroencephalogram (EEG) is an essential neuro-monitoring tool for both clinical and research purposes, but is susceptible to a wide variety of undesired artifacts. Removal of these artifacts is often done using blind source separation techniques, relying on a purely data-driven transformation, which may sometimes fail to sufficiently isolate artifacts in only one or a few components. Furthermore, some algorithms perform well for specific artifacts, but not for others. In this paper, we aim to develop a generic EEG artifact removal algorithm, which allows the user to annotate a few artifact segments in the EEG recordings to inform the algorithm. Approach. We propose an algorithm based on the multi-channel Wiener filter (MWF), in which the artifact covariance matrix is replaced by a low-rank approximation based on the generalized eigenvalue decomposition. The algorithm is validated using both hybrid and real EEG data, and is compared to other algorithms frequently used for artifact removal. Main results. The MWF-based algorithm successfully removes a wide variety of artifacts with better performance than current state-of-the-art methods. Significance. Current EEG artifact removal techniques often have limited applicability due to their specificity to one kind of artifact, their complexity, or simply because they are too ‘blind’. This paper demonstrates a fast, robust and generic algorithm for removal of EEG artifacts of various types, i.e. those that were annotated as unwanted by the user.

  16. Automatic seizure detection based on the combination of newborn multi-channel EEG and HRV information

    Science.gov (United States)

    Mesbah, Mostefa; Balakrishnan, Malarvili; Colditz, Paul B.; Boashash, Boualem

    2012-12-01

    This article proposes a new method for newborn seizure detection that uses information extracted from both multi-channel electroencephalogram (EEG) and a single channel electrocardiogram (ECG). The aim of the study is to assess whether additional information extracted from ECG can improve the performance of seizure detectors based solely on EEG. Two different approaches were used to combine this extracted information. The first approach, known as feature fusion, involves combining features extracted from EEG and heart rate variability (HRV) into a single feature vector prior to feeding it to a classifier. The second approach, called classifier or decision fusion, is achieved by combining the independent decisions of the EEG and the HRV-based classifiers. Tested on recordings obtained from eight newborns with identified EEG seizures, the proposed neonatal seizure detection algorithms achieved 95.20% sensitivity and 88.60% specificity for the feature fusion case and 95.20% sensitivity and 94.30% specificity for the classifier fusion case. These results are considerably better than those involving classifiers using EEG only (80.90%, 86.50%) or HRV only (85.70%, 84.60%).

  17. Multi-channel non-invasive fetal electrocardiography detection using wavelet decomposition

    Science.gov (United States)

    Almeida, Javier; Ruano, Josué; Corredor, Germán.; Romo-Bucheli, David; Navarro-Vargas, José Ricardo; Romero, Eduardo

    2017-11-01

    Non-invasive fetal electrocardiography (fECG) has attracted the medical community because of the importance of fetal monitoring. However, its implementation in clinical practice is challenging: the fetal signal has a low Signal- to-Noise-Ratio and several signal sources are present in the maternal abdominal electrocardiography (AECG). This paper presents a novel method to detect the fetal signal from a multi-channel maternal AECG. The method begins by applying filters and signal detrending the AECG signals. Afterwards, the maternal QRS complexes are identified and subtracted. The residual signals are used to detect the fetal QRS complex. Intervals of these signals are analyzed by using a wavelet decomposition. The resulting representation feds a previously trained Random Forest (RF) classifier that identifies signal intervals associated to fetal QRS complex. The method was evaluated on a public available dataset: the Physionet2013 challenge. A set of 50 maternal AECG records were used to train the RF classifier. The evaluation was carried out in signals intervals extracted from additional 25 maternal AECG. The proposed method yielded an 83:77% accuracy in the fetal QRS complex classification task.

  18. The Research of China's Civil Aviation Passenger Multi-Channel Service Technology Platform

    Science.gov (United States)

    Zhibing, Xue; Xinming, Wang

    IATA is promoting Simplifying the Business. The traditional passenger services and business process, such as ticketing, airport counters, had a great influence. The airlines have the passenger service and convenience as the next product development requirements. With civil aviation industry and their company's products construction, the authors propose a solution of passenger multi-channel service product platform. The solution is to streamline the business as the breakthrough point, around the convenience of passengers travel services to travelers as the center, using the current mainstream and the latest IT technology to establish passenger service product platform. The solution will promote DCS e-ticketing business development and service channel diversity. In this paper, the research results have been applied in the product platform construction of the authors' company. The practice shows that through traditional business with the latest IT technologies, traditional passenger services into the emerging service model, passenger service product platform has strong advantages and characteristics. Based on the platform, various types of service products is growing rapidly.

  19. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    Science.gov (United States)

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  20. A multi-channel model for an α plus {sup 6}He nucleus cluster

    Energy Technology Data Exchange (ETDEWEB)

    Amos, K.; Karataglidis, S. [University of Melbourne, School of Physics, Victoria (Australia); University of Johannesburg, Department of Physics, Auckland Park (South Africa); Canton, L. [Istituto Nazionale di Fisica Nucleare, Padova (Italy); Fraser, P.R. [Curtin University, Department of Physics, Astronomy and Medical Radiation Sciences, Perth (Australia); Svenne, J.P. [Department of Physics and Astronomy, University of Manitoba, and Winnipeg Institute for Theoretical Physics, Winnipeg, MB (Canada); Van der Knijff, D. [University of Melbourne, School of Physics, Victoria (Australia)

    2017-04-15

    A multi-channel algebraic scattering (MCAS) method has been used to solve coupled sets of Lippmann-Schwinger equations for the α + {sup 6}He cluster system, so finding a model spectrum for {sup 10}Be to more than 10MeV excitation. Three states of {sup 6}He were included and the resonance character of the two excited states taken into account in finding solutions. A model Hamiltonian has been found that gives very good agreement with the known bound states and with some low-lying resonances of {sup 10}Be. More resonance states are predicted than those which have been observed as yet. The method also yields S-matrices which we have used to evaluate low-energy {sup 6}He-α scattering cross sections. Reasonable reproduction of low-energy differential cross sections and of energy variation of cross sections measured at fixed scattering angles have been found. Enlarging the channel space by including two higher energy states of {sup 6}He, assuming values for their spin-parities, leads to an enlarged spectrum for {sup 10}Be in which the number and distribution of resonances show similarity to the known spectrum. (orig.)

  1. Multi-Channel Amplifier-Discriminator for Highly Time-Resolved Detection

    CERN Document Server

    Despeisse, M; Lapington, J; Jarron, P

    2011-01-01

    A low-power multi-channel amplifier-discriminator was developed for application in highly time-resolved detection systems. The proposed circuit architecture, so-called Nino, is based on a time-over-threshold approach and shows a high potential for time-resolved readout of solid-state photo-detectors and of detectors based on vacuum technologies. The Irpics circuit was designed in a 250 nm CMOS technology, implementing 32 channels of a Nino version optimized to achieve high-time resolution on the output low-voltage differential signals (LVDS) while keeping a low power consumption of 10 mW per channel. Electrical characterizations of the circuit demonstrate a very low intrinsic time jitter on the output pulse leading edge, measured below 10 ps rms for each channel for high input signal charges (100 fC) and below 25 ps rms for low input signal charges (20-100 fC). The read-out architecture moreover permits to retrieve the input signal charge from the timing measurements, while a calibration procedure was develop...

  2. Superpixel-based segmentation of muscle fibers in multi-channel microscopy.

    Science.gov (United States)

    Nguyen, Binh P; Heemskerk, Hans; So, Peter T C; Tucker-Kellogg, Lisa

    2016-12-05

    Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice. We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with "ground-truth" segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher. Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.

  3. Measurements of void fraction by an improved multi-channel conductance void meter

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Chung, Moon Ki; No, Hee Cheon

    1998-01-01

    An improved multi-channel Conductance Void Meter (CVM) was developed to measure a void fraction. Its measuring principle is basically based upon the differences of electrical conductance of a two-phase mixture due to the variation of void fraction around a sensor. The sensor is designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. It is emphasized that the guard electrodes are electrically shielded in order not to affect the measurements of two-phase mixture conductance, but to make the electric fields evenly distributed in a measuring volume. Void fraction is measured for bubbly and slug flow regimes in a vertical air-water loop, and statistical signal processing techniques are applied to show that CVM has a good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel. (author)

  4. Concept and Development Status of the Digital Upgrade of the Mini Multi-Channel Analyser (DMCA)

    International Nuclear Information System (INIS)

    Brutscher, J.; Birnbaum, A.; Keubler, J.; Jung, S.; Koestlbauer, M.; Richter, B.; Schwalbach, P.; Zweidorf, A. von

    2010-01-01

    The Mini Multi Channel Analyser (MMCA) is a portable electronics module used for neutron and gamma ray Non-Destructive Assay (NDA) of nuclear material. The MMCA is widely used in nuclear safeguards to perform certain classes of verification activities on nuclear material. For more than a decade, an important but non-exclusive area of application has been low- and medium-resolution gamma spectroscopy and attribute testing. To make use of advances in digital technology, communication protocols and standardisation, display technology, and user interaction paradigms, while preserving the main functionality and compatibility with the existing MMCA, a digital upgrade of the MMCA (DMCA) is being developed in the frame of the German Support Programme to the International Atomic Energy Agency (IAEA) with cooperation of the European Commission. The DMCA is dubbed MCA-527. At the same time, a data acquisition and analysis software interface optimized for in-field use is being developed (''MCAtouch''). In this paper, development status and performance parameters of the digital MCA-527 as well as the software interface MCAtouch are discussed in the context of safeguards requirements for typical in-field applications. (author)

  5. Subjective evaluation of auralizations created from multi-channel anechoic recordings of a talker in motion

    Science.gov (United States)

    Vigeant, Michelle C.; Wang, Lily M.

    2005-04-01

    A high degree of speech intelligibility is very important in educational environments. When designing such spaces, like classrooms, auralizations can be used to subjectively assess the degree of speech intelligibility and clarity. Auralizations are most commonly made by convolving the impulse response (IR) of an omni-directional source with a single channel anechoic speech recording. This paper explores the idea of using multi-channel recordings to create the auralizations, using a female talker in motion. An omni-directional source is split into quadrants and the IR is calculated for each section. These IR's are convolved with the appropriate channel of the anechoic recording and then the four auralizations are mixed to create one final auralization. The auralizations were made using four-channel anechoic recordings of a person walking on a platform while talking. Subjective tests were conducted to determine the ease with which subjects could identify the direction of the movement of the source in rooms with varying amounts of absorption. This method can be used to create more realistic classroom auralizations, as teachers typically move around the room as they teach. [Work supported by the National Science Foundation.

  6. Multi-channel integrated circuits for the detection and measurement of ionizing radiation

    International Nuclear Information System (INIS)

    Engel, G.L.; Duggireddi, N.; Vangapally, V.; Elson, J.M.; Sobotka, L.G.; Charity, R.J.

    2011-01-01

    The Integrated Circuits (IC) Design Research Laboratory at Southern Illinois University Edwardsville (SIUE) has collaborated with the Nuclear Reactions Group at Washington University (WU) to develop a family of multi-channel integrated circuits. To date, the collaboration has successfully produced two micro-chips. The first was an analog shaped and peak sensing chip with on-board constant-fraction discriminators and sparsified readout. This chip is known as Heavy-Ion Nuclear Physics-16 Channel (HINP16C). The second chip, christened PSD8C, was designed to logically complement (in terms of detector types) the HINP16C chip. Pulse Shape Discrimination-8 Channel (PSD8C), featuring three settable charge integration windows per channel, performs pulse shape discrimination (PSD). This paper summarizes the design, capabilities, and features of the HINP16C and PSD8C ICs. It proceeds to discuss the modifications, made to the ICs and their associated systems, which have attempted to improve ease of use, increase performance, and extend capabilities. The paper concludes with a brief discussion of what may be the next chip (employing a multi-sampling scheme) to be added to our CMOS ASIC 'tool box' for radiation detection instrumentation.

  7. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    Directory of Open Access Journals (Sweden)

    Kenjirou Fujii

    2015-09-01

    Full Text Available A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters. A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system.

  8. Reprocessing of multi-channel seismic-reflection data collected in the Beaufort Sea

    Science.gov (United States)

    Agena, W.F.; Lee, Myung W.; Hart, P.E.

    2000-01-01

    Contained on this set of two CD-ROMs are stacked and migrated multi-channel seismic-reflection data for 65 lines recorded in the Beaufort Sea by the United States Geological Survey in 1977. All data were reprocessed by the USGS using updated processing methods resulting in improved interpretability. Each of the two CD-ROMs contains the following files: 1) 65 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 65 lines in standard SEG-P1 format; 3) an ASCII text file with cross-reference information for relating the sequential trace numbers on each line to cdp numbers and shotpoint numbers; 4) 2 small scale graphic images (stacked and migrated) of a segment of line 722 in Adobe Acrobat (R) PDF format; 5) a graphic image of the location map, generated from the navigation file; 6) PlotSeis, an MS-DOS Application that allows PC users to interactively view the SEG-Y files; 7) a PlotSeis documentation file; and 8) an explanation of the processing used to create the final seismic sections (this document).

  9. Multi-Channel RF System for MRI-Guided Transurethral Ultrasound Thermal Therapy

    Science.gov (United States)

    Yak, Nicolas; Asselin, Matthew; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    MRI-guided transurethral ultrasound thermal therapy is an approach to treating localized prostate cancer which targets precise deposition of thermal energy within a confined region of the gland. This treatment requires a system incorporating a heating applicator with multiple planar ultrasound transducers and associated RF electronics to control individual elements independently in order to achieve accurate 3D treatment. We report the design, construction, and characterization of a prototype multi-channel system capable of controlling 16 independent RF signals for a 16-element heating applicator. The main components are a control computer, microcontroller, and a 16-channel signal generator with 16 amplifiers, each incorporating a low-pass filter and transmitted/reflected power detection circuit. Each channel can deliver from 0.5 to 10 W of electrical power and good linearity from 3 to 12 MHz. Harmonic RF signals near the Larmor frequency of a 1.5 T MRI were measured to be below -30 dBm and heating experiments within the 1.5 T MR system showed no significant decrease in SNR of the temperature images. The frequency and power for all 16 channels could be changed in less than 250 ms, which was sufficiently rapid for proper performance of the control algorithms. A common backplane design was chosen which enabled an inexpensive, modular approach for each channel resulting in an overall system with minimal footprint.

  10. A multi-channel magnetic induction tomography measurement system for human brain model imaging

    International Nuclear Information System (INIS)

    Xu, Zheng; Luo, Haijun; He, Wei; He, Chuanhong; Song, Xiaodong; Zahng, Zhanglong

    2009-01-01

    This paper proposes a multi-channel magnetic induction tomography measurement system for biological conductivity imaging in a human brain model. A hemispherical glass bowl filled with a salt solution is used as the human brain model; meanwhile, agar blocks of different conductivity are placed in the solution to simulate the intracerebral hemorrhage. The excitation and detection coils are fixed co-axially, and the axial gradiometer is used as the detection coil in order to cancel the primary field. On the outer surface of the glass bowl, 15 sensor units are arrayed in two circles as measurement parts, and a single sensor unit for canceling the phase drift is placed beside the glass bowl. The phase sensitivity of our system is 0.204°/S m −1 with the excitation frequency of 120 kHz and the phase noise is in the range of −0.03° to +0.05°. Only the coaxial detection coil is available for each excitation coil; therefore, 15 phase data are collected in each measurement turn. Finally, the two-dimensional images of conductivity distribution are obtained using an interpolation algorithm. The frequency-varying experiment indicates that the imaging quality becomes better as the excitation frequency is increased

  11. Automated Filtering of Common Mode Artifacts in Multi-Channel Physiological Recordings

    Science.gov (United States)

    Kelly, John W.; Siewiorek, Daniel P.; Smailagic, Asim; Wang, Wei

    2014-01-01

    The removal of spatially correlated noise is an important step in processing multi-channel recordings. Here, a technique termed the adaptive common average reference (ACAR) is presented as an effective and simple method for removing this noise. The ACAR is based on a combination of the well-known common average reference (CAR) and an adaptive noise canceling (ANC) filter. In a convergent process, the CAR provides a reference to an ANC filter, which in turn provides feedback to enhance the CAR. This method was effective on both simulated and real data, outperforming the standard CAR when the amplitude or polarity of the noise changes across channels. In many cases the ACAR even outperformed independent component analysis (ICA). On 16 channels of simulated data the ACAR was able to attenuate up to approximately 290 dB of noise and could improve signal quality if the original SNR was as high as 5 dB. With an original SNR of 0 dB, the ACAR improved signal quality with only two data channels and performance improved as the number of channels increased. It also performed well under many different conditions for the structure of the noise and signals. Analysis of contaminated electrocorticographic (ECoG) recordings further showed the effectiveness of the ACAR. PMID:23708770

  12. Multi-channel Spiral Twist Extrusion (MCSTE): A Novel Severe Plastic Deformation Technique for Grain Refinement

    Science.gov (United States)

    El-Garaihy, W. H.; Fouad, D. M.; Salem, H. G.

    2018-04-01

    Multi-channel Spiral Twist Extrusion (MCSTE) is introduced as a novel severe plastic deformation (SPD) technique for producing superior mechanical properties associated with ultrafine grained structure in bulk metals and alloys. The MCSTE design is based on inserting a uniform square cross-sectioned billet within stacked disks that guarantee shear strain accumulation. In an attempt to validate the technique and evaluate its plastic deformation characteristics, a series of experiments were conducted. The influence of the number of MCSTE passes on the mechanical properties and microstructural evolution of AA1100 alloy were investigated. Four passes of MCSTE, at a relatively low twisting angle of 30 deg, resulted in increasing the strength and hardness coupled with retention of ductility. Metallographic observations indicated a significant grain size reduction of 72 pct after 4 passes of MCSTE compared with the as-received (AR) condition. Moreover, the structural uniformity increased with the number of passes, which was reflected in the hardness distribution from the peripheries to the center of the extrudates. The current study showed that the MCSTE technique could be an effective, adaptable SPD die design with a promising potential for industrial applications compared to its counterparts.

  13. The Over-Barrier Resonant States and Multi-Channel Scattering in Multiple Quantum Wells

    Directory of Open Access Journals (Sweden)

    A Polupanov

    2016-09-01

    Full Text Available We demonstrate an explicit numerical method for accurate calculation of the scattering matrix and its poles, and apply this method to describe the multi-channel scattering in the multiple quantum-wells structures. The S-matrix is continued analytically to the unphysical region of complex energy values. Results of calculations show that there exist one or more S-matrix poles, corresponding to the over-barrier resonant states critical for the effect of the absolute reflection of holes in the energy range where only the heavy ones may propagate over barriers in a structure. Light- and heavy-hole states are described by the Luttinger Hamiltonian matrix. In contrast to the single quantum-well case, at some parameters of a multiple quantum-wells structure the number of S-matrix poles may exceed that of the absolute reflection peaks, and at different values of parameters the absolute reflection peak corresponds to different resonant states. The imaginary parts of the S-matrix poles and hence the lifetimes of resonant states as well as the widths of resonant peaks of absolute reflection depend drastically on the quantum-well potential depth. In the case of shallow quantum wells there is in fact a long-living over-barrier resonant hole state.

  14. A multi-channel time-to-digital converter chip for drift chamber readout

    International Nuclear Information System (INIS)

    Chau, A.; DeBusschere, D.; Dow, S.F.; Flasck, J.; Levi, M.E.; Kirsten, F.; Su, E.; Santos, D.M.

    1996-01-01

    A complete, multi-channel, timing and amplitude measurement IC for use in drift chamber applications is described. By targeting specific resolutions, i.e., 6-bits of resolution for both time and amplitude, area and power can be minimized while achieving the proper level of measurement accuracy. Time is digitized using an TDC comprised of a delay locked loop, latch and encoder. Amplitude (for dE/dx) is digitized using a dual-range FADC for each channel. Eight bits of dynamic range with six bits of accuracy are achieved with the dual-range. Eight complete channels of timing and amplitude information are multiplexed into one DRAM (Dynamic Random Access Memory) trigger latency buffer. Interesting events are subsequently transferred into an SRAM (Static Random Access Memory) readout buffer before the latency time has expired. The design has been optimized to achieve the requisite resolution using the smallest area and lowest power. The circuit has been implemented in an 0.8 microm triple metal CMOS process. The measured results indicate that the differential non-linearities of the TDC and the FADC are 200 ps and 10 mV, respectively. The integral nonlinearities of the TDC and the FADC are 230 ps and 9 mV, respectively

  15. Development of a Multi-Channel Piezoelectric Acoustic Sensor Based on an Artificial Basilar Membrane

    Directory of Open Access Journals (Sweden)

    Youngdo Jung

    2013-12-01

    Full Text Available In this research, we have developed a multi-channel piezoelectric acoustic sensor (McPAS that mimics the function of the natural basilar membrane capable of separating incoming acoustic signals mechanically by their frequency and generating corresponding electrical signals. The McPAS operates without an external energy source and signal processing unit with a vibrating piezoelectric thin film membrane. The shape of the vibrating membrane was chosen to be trapezoidal such that different locations of membrane have different local resonance frequencies. The length of the membrane is 28 mm and the width of the membrane varies from 1 mm to 8 mm. Multiphysics finite element analysis (FEA was carried out to predict and design the mechanical behaviors and piezoelectric response of the McPAS model. The designed McPAS was fabricated with a MEMS fabrication process based on the simulated results. The fabricated device was tested with a mouth simulator to measure its mechanical and piezoelectrical frequency response with a laser Doppler vibrometer and acoustic signal analyzer. The experimental results show that the as fabricated McPAS can successfully separate incoming acoustic signals within the 2.5 kHz–13.5 kHz range and the maximum electrical signal output upon acoustic signal input of 94 dBSPL was 6.33 mVpp. The performance of the fabricated McPAS coincided well with the designed parameters.

  16. The development of a digital multi-channel pulse height analysis

    International Nuclear Information System (INIS)

    Huang Shanshan; Sang Ziru; Liang Futian; Chen Lian; Liang Hao; Jin Ge

    2012-01-01

    A kind of digital multi-channel analyzer which was developed for Nuclear and Particle Experiment of Undergraduate Student in university was introduced. The input signal is digitalized with a high speed ADC, and feed to a FPGA for seeking peak, recording, spectrometer processing and displaying automatically. The principle of digital searching peck was given in the paper. In order to improve the capability of anti-noise, a dual digital thresholds and dual buffer memories was designed. Aiming at the influence of nonlinear of ADC to the system, a revised algorithm was designed to ensure the channel width uniformity. Since the huge sampling and storaging data of MCA, a method of parallel work of double memory was used, just separated empty transmit data and stored count, reduced the dead time and data overflowing. The host computer can set up and monitor MCA real-time, read and write data from MCA by an USB interface. Contrasts commercial MCA, the MCA has a good result in function and price. (authors)

  17. Binaural unmasking of multi-channel stimuli in bilateral cochlear implant users.

    Science.gov (United States)

    Van Deun, Lieselot; van Wieringen, Astrid; Francart, Tom; Büchner, Andreas; Lenarz, Thomas; Wouters, Jan

    2011-10-01

    Previous work suggests that bilateral cochlear implant users are sensitive to interaural cues if experimental speech processors are used to preserve accurate interaural information in the electrical stimulation pattern. Binaural unmasking occurs in adults and children when an interaural delay is applied to the envelope of a high-rate pulse train. Nevertheless, for speech perception, binaural unmasking benefits have not been demonstrated consistently, even with coordinated stimulation at both ears. The present study aimed at bridging the gap between basic psychophysical performance on binaural signal detection tasks on the one hand and binaural perception of speech in noise on the other hand. Therefore, binaural signal detection was expanded to multi-channel stimulation and biologically relevant interaural delays. A harmonic complex, consisting of three sinusoids (125, 250, and 375 Hz), was added to three 125-Hz-wide noise bands centered on the sinusoids. When an interaural delay of 700 μs was introduced, an average BMLD of 3 dB was established. Outcomes are promising in view of real-life benefits. Future research should investigate the generalization of the observed benefits for signal detection to speech perception in everyday listening situations and determine the importance of coordination of bilateral speech processors and accentuation of envelope cues.

  18. Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d

    Science.gov (United States)

    Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.

    This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.

  19. Super-pixel extraction based on multi-channel pulse coupled neural network

    Science.gov (United States)

    Xu, GuangZhu; Hu, Song; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun

    2018-04-01

    Super-pixel extraction techniques group pixels to form over-segmented image blocks according to the similarity among pixels. Compared with the traditional pixel-based methods, the image descripting method based on super-pixel has advantages of less calculation, being easy to perceive, and has been widely used in image processing and computer vision applications. Pulse coupled neural network (PCNN) is a biologically inspired model, which stems from the phenomenon of synchronous pulse release in the visual cortex of cats. Each PCNN neuron can correspond to a pixel of an input image, and the dynamic firing pattern of each neuron contains both the pixel feature information and its context spatial structural information. In this paper, a new color super-pixel extraction algorithm based on multi-channel pulse coupled neural network (MPCNN) was proposed. The algorithm adopted the block dividing idea of SLIC algorithm, and the image was divided into blocks with same size first. Then, for each image block, the adjacent pixels of each seed with similar color were classified as a group, named a super-pixel. At last, post-processing was adopted for those pixels or pixel blocks which had not been grouped. Experiments show that the proposed method can adjust the number of superpixel and segmentation precision by setting parameters, and has good potential for super-pixel extraction.

  20. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  1. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    Science.gov (United States)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  2. Evolution of the two-phase flow in a vertical tube-decomposition of gas fraction profiles according to bubble size classes using wire-mesh sensors

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.; Krepper, E.; Lucas, D. [Forschungszentrum Rossendorf e.V., Dresden (Germany)

    2002-01-01

    The wire-mesh sensor developed by the Forschungszentrum Rossendorf produces sequences of instantaneous gas fraction distributions in a cross section with a time resolution of 1200 frames per second and a spatial resolution of about 2-3 mm. At moderate flow velocities (up to 1-2 m.s{sup -1}), bubble size distributions can be obtained, since each individual bubble is mapped in several successive distributions. The method was used to study the evolution of the bubble size distribution in a vertical two-phase flow. For this purpose, the sensor was placed downstream of an air injector, the distance between air injection and sensor was varied. The bubble identification algorithm allows to select bubbles of a given range of the effective diameter and to calculate partial gas fraction profiles for this diameter range. In this way, the different behaviour of small and large bubbles in respect to the action of the lift force was observed in a mixture of small and large bubbles. (authors)

  3. A strategy for determination of test intervals of k-out-of-n multi-channel systems

    International Nuclear Information System (INIS)

    Cho, S.; Jiang, J.

    2007-01-01

    State space models for determination of the optimal test frequencies for k-out-of-n multi channel systems are developed in this paper. The analytic solutions for the optimal surveillance test frequencies are derived using the Markov process technique. The solutions show that an optimal test frequency which maximizes the target probability can be determined by decomposing the system states to 3 states based on the system configuration and success criteria. Examples of quantification of the state probabilities and the optimal test frequencies of a three-channel system and a four-channel system with different success criteria are presented. The strategy for finding the optimal test frequency developed in this paper can generally be applicable to any k-out-of-n multi-channel standby systems that involve complex testing schemes. (author)

  4. Operational Criteria for the Design of Front-Office Processes in Multi-Channel Service Delivery Systems

    OpenAIRE

    Sousa, Rui; Amorim, Marlene

    2010-01-01

    This paper identifies relevant operational factors that affect the design of front-office processes in Multi-Channel Service Delivery Systems. Based on two in-depth case studies in banking and telecommunications, we distinguish four operational factors: i) characteristics of the inputs and outputs of the service activities; ii) characteristics of the transformation taking place; iii) the expected utilization; iv) the economics of developing the activities in the channels. Building on these re...

  5. Vibration of signal wires in wire detectors under irradiation

    International Nuclear Information System (INIS)

    Bojko, I.R.; Shelkov, G.A.; Dodonov, V.I.; Ignatenko, M.A.; Nikolenko, M.Yu.

    1995-01-01

    Radiation-induced vibration of signal wires in wire detectors is found and explained. The phenomenon is based on repulsion of a signal wire with a positive potential and a cloud of positive ions that remains after neutralization of the electron part of the avalanche formed in the course of gas amplification. Vibration with a noticeable amplitude may arise from fluctuations of repulsive forces, which act on the wire and whose sources are numerous ion clusters. A formula is obtained which allows wire oscillations to be estimated for all types of wire detectors. Calculation shows that oscillations of signal wires can be substantial for the coordinate accuracy of a detector working in the limited streamer mode at fluxes over 10 5 particles per second per wire. In the proportional mode an average oscillation amplitude can be as large as 20-30 μm at some detector parameters and external radiation fluxes over 10 5 . The experimental investigations show that the proposed model well describes the main features of the phenomenon. 6 refs., 8 figs

  6. Distributed capillary adiabatic tissue homogeneity model in parametric multi-channel blind AIF estimation using DCE-MRI.

    Science.gov (United States)

    Kratochvíla, Jiří; Jiřík, Radovan; Bartoš, Michal; Standara, Michal; Starčuk, Zenon; Taxt, Torfinn

    2016-03-01

    One of the main challenges in quantitative dynamic contrast-enhanced (DCE) MRI is estimation of the arterial input function (AIF). Usually, the signal from a single artery (ignoring contrast dispersion, partial volume effects and flow artifacts) or a population average of such signals (also ignoring variability between patients) is used. Multi-channel blind deconvolution is an alternative approach avoiding most of these problems. The AIF is estimated directly from the measured tracer concentration curves in several tissues. This contribution extends the published methods of multi-channel blind deconvolution by applying a more realistic model of the impulse residue function, the distributed capillary adiabatic tissue homogeneity model (DCATH). In addition, an alternative AIF model is used and several AIF-scaling methods are tested. The proposed method is evaluated on synthetic data with respect to the number of tissue regions and to the signal-to-noise ratio. Evaluation on clinical data (renal cell carcinoma patients before and after the beginning of the treatment) gave consistent results. An initial evaluation on clinical data indicates more reliable and less noise sensitive perfusion parameter estimates. Blind multi-channel deconvolution using the DCATH model might be a method of choice for AIF estimation in a clinical setup. © 2015 Wiley Periodicals, Inc.

  7. Experimental researches and comparison on aerodynamic parameters and cleaning efficiency of multi-level multi-channel cyclone

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2015-10-01

    Full Text Available Multi-level multi-channel cyclone – the lately designed air cleaning device that can remove ultra-fine 20 μm particulatematter (PM from dusted air and reach over 95% of the overall cleaning efficiency. Multi-channel cyclone technology is based on centrifugal forces and has the resulting additional filtering process operation. Multi-level structure of cyclone allows to achieve higher air flow cleaning capacity at the same dimensions of the device, thus saving installation space required for the job, production and operating costs. Studies have examined the air flow parameters change in one–, two– and three–levels multichannel cyclone. These constructions differ according to the productivity of cleaned air under the constant peripheral and transitional (50/50 case air flow relations. Accordance with the results of air flow dynamics – velocity distribution of multi-channel cyclone, aerodynamic resistance and efficiency can be judged on the flow turbulence, the flow channel cross-section and select the most appropriate application. Cleaning efficiency studies were carried out using fine granite and wood ashes PM. The maximum cleaning efficiency was 93.3%, at an average of 4.5 g/m3, the aerodynamic resistance was equal to 1525 Pa.

  8. Development of multi-channel optical-fiber feed through for ITER

    International Nuclear Information System (INIS)

    Sugie, Tatsuo; Kasai, Satoshi; Toriya, Tomoaki

    1998-08-01

    A multi-channel fiber feed through has been developed for visible and IR transmission lines through secondary vacuum boundary (cryostat boundary) of ITER. In the first phase, a scale down test-module which has ten fiber feed through in the vacuum flange was manufactured and tested. The vacuum seal was realized by soldering gold plated fibers to a vacuum flange with high temperature solder. The capacity to resist inner pressure rise of 5 atm, the acceleration resistant of 15g and the temperature resistant from 20degC-200degC were achieved by the test module. The connecting loss and the uniformity of transmission losses among each channels of the feed through were not well. Concerning the connecting loss, the best value was 2.2 dB and the worst one was 13.5 dB. In the second phase, the full performance test-module which has 57 fiber feed through was manufactured and tested. The feed through was improved in order to achieve a good transmission and the uniformity among each channels by using a optical fiber implanted in a center of a quartz rod very accurately. The capacity to resist inner pressure rise of 5 atm, the acceleration resistant of 15g and the temperature resistant from 40degC-200degC (Temperature ramp rate: >20degC/hr) were achieved by the full performance test-module. The connecting losses of the feed through were less than 3 dB, and the uniformity of transmission losses among each channels of the feed through was larger than 60%. The requirements for an optical-fiber feed through were almost satisfied with the full performance test-module. Further developments will be necessary for the remote handling method. (author)

  9. Time-varying bispectral analysis of visually evoked multi-channel EEG

    Science.gov (United States)

    Chandran, Vinod

    2012-12-01

    Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.

  10. MULTI-CHANNEL VOLUME SPHYGMOGRAPHY IN CARDIOANGIOLOGICAL SCREENING OF THE ADULT POPULATION

    Directory of Open Access Journals (Sweden)

    R. A. Khokhlov

    2015-01-01

    Full Text Available Aim. To study the possibilities of using multi-channel volume sphygmography (MCVS in prophylactic medical examination of the population.Material and methods. Simultaneous examination of 522 individuals older than 18 years was performed. Along with standard procedures provided by the prophylactic medical examination program synchronous registration of blood pressure (BP on four extremities by MCVS was performed. At that a difference in systolic BP between arms (ΔSBParm and legs (ΔSBPleg and ankle-brachial index (ABI were automatically calculated. Values of │ΔSBParm│ or │ΔSBPleg│≥15 mm Hg or ABI≤0.9 were considered as markers of atherosclerotic vascular disease.Results. Signs of peripheral arterial atherosclerotic lesions among patients ≥40 years old were found in 14.7% of the cases (95% confidence interval [CI] 11.7-18.4. Relative risks of atherosclerotic lesions in arteries increase 1.71-fold (95% CI 1.06-2.74 in arterial hypertension, 1.70-fold (95% CI 1.08-2.68 – in obesity, 1.91 fold (95% CI 1.17-3.12 – in diabetes, as well as with the increasing levels of cardiovascular risk. In patients with ischemic heart disease and a history of cerebral stroke MCVS can detect signs of multifocal atherosclerosis in 21% (95% CI 14-32 and 22% (95% CI 9-46 of the cases, respectively.Conclusion. MCVS with the determination of ΔSBParm, ΔSBPleg and ABI may be regarded as the basis for low-cost and efficient system of cardioangiological screening.

  11. MULTI-CHANNEL VOLUME SPHYGMOGRAPHY IN CARDIOANGIOLOGICAL SCREENING OF THE ADULT POPULATION

    Directory of Open Access Journals (Sweden)

    R. A. Khokhlov

    2015-09-01

    Full Text Available Aim. To study the possibilities of using multi-channel volume sphygmography (MCVS in prophylactic medical examination of the population.Material and methods. Simultaneous examination of 522 individuals older than 18 years was performed. Along with standard procedures provided by the prophylactic medical examination program synchronous registration of blood pressure (BP on four extremities by MCVS was performed. At that a difference in systolic BP between arms (ΔSBParm and legs (ΔSBPleg and ankle-brachial index (ABI were automatically calculated. Values of │ΔSBParm│ or │ΔSBPleg│≥15 mm Hg or ABI≤0.9 were considered as markers of atherosclerotic vascular disease.Results. Signs of peripheral arterial atherosclerotic lesions among patients ≥40 years old were found in 14.7% of the cases (95% confidence interval [CI] 11.7-18.4. Relative risks of atherosclerotic lesions in arteries increase 1.71-fold (95% CI 1.06-2.74 in arterial hypertension, 1.70-fold (95% CI 1.08-2.68 – in obesity, 1.91 fold (95% CI 1.17-3.12 – in diabetes, as well as with the increasing levels of cardiovascular risk. In patients with ischemic heart disease and a history of cerebral stroke MCVS can detect signs of multifocal atherosclerosis in 21% (95% CI 14-32 and 22% (95% CI 9-46 of the cases, respectively.Conclusion. MCVS with the determination of ΔSBParm, ΔSBPleg and ABI may be regarded as the basis for low-cost and efficient system of cardioangiological screening.

  12. Pacemaker wires

    International Nuclear Information System (INIS)

    Fransson, S.G.

    1993-01-01

    Evaluation of pacemaker wires were performed by comparing Advanced Multiple Beam Equalization Radiography (AMBER) with conventional chest radiography. The scanning equalization technique of the AMBER unit makes it superior to conventional technique in the depiction of different structures in the mediastinum or in the pleural sinuses. So far motion artifacts have not been considered clinically important. The longer exposure time, however, may impair the assessment of pacemaker wires. The motion artifact described may not only make adequate evaluation impossible but may even give a false impression of a lead fracture. The difference between the two systems was significant. (orig.)

  13. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  14. Take time to make time : What to consider when managing multi-channel sales systems with the objective to increase sales efficiency

    OpenAIRE

    ALM, RAGNAR; KYRÖNLAHTI, RUDY

    2016-01-01

    Traditional sales systems have been disrupted by technological developments. In order to  adapt, companies are changing the way they interact with their customers in business-to-business markets. In the last three decades, multi-channel strategies have spurred the proliferation of different sales channels and new ways of managing sales systems. The purpose of this research was to investigate what should be considered when managing multi-channel sales systems with the objective of increasing s...

  15. Tungsten wire and tubing joined by nickel brazing

    Science.gov (United States)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  16. Multi-channel programmable power supply with temperature compensation for silicon sensors

    International Nuclear Information System (INIS)

    Shukla, R. A.; Achanta, V. G.; Dugad, S. R.; Kurup, A. M.; Lokhandwala, S. S.; Prabhu, S. S.; Freeman, J.; Los, S.; Garde, C. S.; Khandekar, P. D.; Gupta, S. K.; Rakshe, P. S.

    2016-01-01

    Silicon Photo-Multipliers (SiPMs) are increasingly becoming popular for discrete photon counting applications due to the wealth of advantages they offer over conventional photo-detectors such as photo-multiplier tubes and hybrid photo-diodes. SiPMs are used in variety of applications ranging from high energy physics and nuclear physics experiments to medical diagnostics. The gain of a SiPM is directly proportional to the difference between applied and breakdown voltage of the device. However, the breakdown voltage depends critically on the ambient temperature and has a large temperature co-efficient in the range of 40-60 mV/°C resulting in a typical gain variation of 3%-5%/°C [Dinu et al., in IEEE Nuclear Science Symposium, Medical Imaging Conference and 17th Room Temperature Semiconductor Detector Workshop (IEEE, 2010), p. 215]. We plan to use the SiPM as a replacement for PMT in the cosmic ray experiment (GRAPES-3) at Ooty [Gupta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 540, 311 (2005)]. There the SiPMs will be operated in an outdoor environment subjected to temperature variation of about 15 °C over a day. A gain variation of more than 50% was observed for such large variations in the temperature. To stabilize the gain of the SiPM under such operating conditions, a low-cost, multi-channel programmable power supply (0-90 V) was designed that simultaneously provides the bias voltage to 16 SiPMs. The programmable power supply (PPS) was designed to automatically adjust the operating voltage for each channel with a built-in closed loop temperature feedback mechanism. The PPS provides bias voltage with a precision of 6 mV and measures the load current with a precision of 1 nA. Using this PPS, a gain stability of 0.5% for SiPM (Hamamatsu, S10931-050P) has been demonstrated over a wide temperature range of 15 °C. The design methodology of the PPS system, its validation, and the results of the tests carried out on the SiPM is presented in this

  17. Seismarmara experiment: results from reprocessing of selected multi-channel seismic reflection profiles

    Science.gov (United States)

    Cetin, S.; Voogd, B.; Carton, H.; Laigle, M.; Becel, A.; Saatcilar, R.; Singh, S.; Hirn, A.

    2003-04-01

    The North Anatolian Fault (NAF) has been responsible for the earthquakes of Izmit and Duzce in 1999. The occurrence of these earthquakes has drawn scientific attention into the Sea of Marmara since the NAF enters into the Sea of Marmara where the latest Izmit earthquake rupture stopped. The SEISMARMARA-2001 survey is a combined seismic reflection, refraction and earthquake experiment carried out in 2001 in the Marmara Region in Turkey by French-Turkish scientific cooperation. The objectives of this survey were to image the various branches of the NAF and related other fault systems. R/V Le Nadir was equipped with a 4.5 km long streamer with 360 channels and a large airgun source. During Leg 1, a grid of large regional lines encompassing the whole Marmara trough was shot. For part of them a strong 8100 cu.in. source for deepest penetration was used, with a 150 m shot interval giving a 15-fold coverage. Another part was shot for a higher resolution with a 2900 cu. in. array at a 50m or 38 m interval to give a 45 or 60-fold coverage. The latter acquisition parameters were used for Leg 2 that was devoted to a very dense grid of lines in the Cinarcik Basin Reprocessing of the multi-channel seismic data is currently being undertaken in several Institutions using different seismic processing softwares (GeoVecteur, ProMAX, Focus), to take advantage of the diverse acquisitions and cope with their limitations, for instance high fold-order for Leg 2 and strength of signal but loose spatial sampling for the bigger source. The main objectives of the reprocessing of the selected profiles are to do a detailed velocity analysis and stacking after deconvolution, filtering to remove or suppress deep sea bottom multiples and out of plane reflections, and time-migration and depth conversion and thus reveal both the shallow and deeper reflection image of the crust in the Sea of Marmara. We show that choosing an appropriate processing sequence for different sources and acquisition

  18. Multi-channel programmable power supply with temperature compensation for silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, R. A.; Achanta, V. G.; Dugad, S. R., E-mail: dugad@cern.ch; Kurup, A. M.; Lokhandwala, S. S.; Prabhu, S. S. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Freeman, J.; Los, S. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Garde, C. S.; Khandekar, P. D. [Vishwakarma Institute of Information Technology, Pune 411048 (India); Gupta, S. K. [Tata Institute of Fundamental Research, Mumbai 400005 (India); GRAPES-3 Experiment, Cosmic Ray Laboratory, Raj Bhavan, Ooty 643001 (India); Rakshe, P. S. [Vishwakarma Institute of Information Technology, Pune 411048 (India); GRAPES-3 Experiment, Cosmic Ray Laboratory, Raj Bhavan, Ooty 643001 (India)

    2016-01-15

    Silicon Photo-Multipliers (SiPMs) are increasingly becoming popular for discrete photon counting applications due to the wealth of advantages they offer over conventional photo-detectors such as photo-multiplier tubes and hybrid photo-diodes. SiPMs are used in variety of applications ranging from high energy physics and nuclear physics experiments to medical diagnostics. The gain of a SiPM is directly proportional to the difference between applied and breakdown voltage of the device. However, the breakdown voltage depends critically on the ambient temperature and has a large temperature co-efficient in the range of 40-60 mV/°C resulting in a typical gain variation of 3%-5%/°C [Dinu et al., in IEEE Nuclear Science Symposium, Medical Imaging Conference and 17th Room Temperature Semiconductor Detector Workshop (IEEE, 2010), p. 215]. We plan to use the SiPM as a replacement for PMT in the cosmic ray experiment (GRAPES-3) at Ooty [Gupta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 540, 311 (2005)]. There the SiPMs will be operated in an outdoor environment subjected to temperature variation of about 15 °C over a day. A gain variation of more than 50% was observed for such large variations in the temperature. To stabilize the gain of the SiPM under such operating conditions, a low-cost, multi-channel programmable power supply (0-90 V) was designed that simultaneously provides the bias voltage to 16 SiPMs. The programmable power supply (PPS) was designed to automatically adjust the operating voltage for each channel with a built-in closed loop temperature feedback mechanism. The PPS provides bias voltage with a precision of 6 mV and measures the load current with a precision of 1 nA. Using this PPS, a gain stability of 0.5% for SiPM (Hamamatsu, S10931-050P) has been demonstrated over a wide temperature range of 15 °C. The design methodology of the PPS system, its validation, and the results of the tests carried out on the SiPM is presented in this

  19. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guangkai [Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China and Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Gao, Yaozong; Wu, Guorong [Department of Computer Science, Department of Radiology, and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Wu, Ligang [Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 02841 (Korea, Republic of)

    2016-02-15

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI-LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the

  20. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    International Nuclear Information System (INIS)

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang

    2016-01-01

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI-LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the

  1. Nonlocal atlas-guided multi-channel forest learning for human brain labeling.

    Science.gov (United States)

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang

    2016-02-01

    It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. The authors have comprehensively evaluated their method on both public LONI_LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the dice similarity coefficient

  2. Masses and widths of scalar–isoscalar multi-channel resonances from data analysis

    International Nuclear Information System (INIS)

    Surovtsev, Yurii S; Bydžovský, Petr; Kamiński, Robert; Lyubovitskij, Valery E; Nagy, Miroslav

    2014-01-01

    The peculiarities of obtaining parameters for broad multi-channel resonances from data are discussed, analyzing the experimental data on processes ππ→ππ,K K-bar in the I G J PC = 0 + 0 ++ channel in a model-independent approach based on analyticity and unitarity, and using an uniformization procedure. We show that it is possible to obtain a good description of the ππ scattering data from the threshold to 1.89 GeV with parameters of resonances cited in the Particle Data Group tables as preferred. However, in this case, first, the representation of the ππ background is unsatisfactory; second, the data on the coupled process ππ→K K-bar are not well described even qualitatively above 1.15 GeV when using the resonance parameters from only the ππ scattering analysis. The combined analysis of these coupled processes is needed, and is carried out satisfactorily. Then, both of the above-indicated issues related to the analysis of ππ scattering only are overcome. The most remarkable change of parameters with respect to the values of the ππ scattering only analysis appears for the mass of the f 0 (600), which is now in some accordance with the Weinberg prediction on the basis of mended symmetry and with an analysis using the large-N c consistency conditions between the unitarization and resonance saturation. The obtained ππ scattering length a 0 0 , in the case where we are restricted to the analysis of the ππ scattering or where we consider the so-called A-solution (with a lower mass and width of f 0 (600) meson), agrees well with the prediction of the chiral perturbation theory and with data extracted at CERN by the NA48/2 collaboration from the analysis of the K e4 decay and by the DIRAC collaboration from the measurement of the π + π − lifetime. (paper)

  3. Multi-channel counter-current chromatography for high-throughput fractionation of natural products for drug discovery.

    Science.gov (United States)

    Wu, Shihua; Yang, Lu; Gao, Yuan; Liu, Xiaoyue; Liu, Feiyan

    2008-02-08

    A multi-channel counter-current chromatography (CCC) method has been designed and fabricated for the high-throughput fractionation of natural products without complications sometimes encountered with other conventional chromatographic systems, such as irreversible adsorptive constituent losses and deactivation, tailing of solute peaks and contamination. It has multiple independent CCC channels and each channel connects independent separation column(s) by parallel flow tubes, and thus the multi-channel CCC apparatus can achieve simultaneously two or more independent chromatographic processes. Furthermore, a high-throughput CCC fractionation method for natural products has been developed by a combination of a new three-channel CCC apparatus and conventional parallel chromatographic devices including pumps, sample injectors, effluent detectors and collectors, and its performance has been displayed on the fractionation of ethyl acetate extracts of three natural materials Solidago canadensis, Suillus placidus, and Trichosanthes kirilowii, which are found to be potent cytotoxic to tumor cell lines in the course of screening the antitumor candidates. By combination of biological screening programs and preparative high-performance liquid chromatography (HPLC) purification, 22.8 mg 6 beta-angeloyloxykolavenic acid and 29.4 mg 6 beta-tigloyloxykolavenic acid for S. canadensis, 25.3mg suillin for S. placidus, and 6.8 mg 23,24-dihydrocucurbitacin B for T. Kirilowii as their major cytotoxic principles were isolated from each 1000 mg crude ethyl acetate extract. Their chemical structures were characterized by electrospray ionization mass spectrometry, one- and two-dimensional nuclear magnetic resonance. The overall results indicate the multi-channel CCC is very useful for high-throughput fractionation of natural products for drug discovery in spite of the solvent balancing requirement and the lower resolution of the shorter CCC columns.

  4. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning.

    Science.gov (United States)

    Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui

    2015-10-30

    Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. ON SCALAR MESONS FROM THE COMBINED ANALYSIS OF MULTI-CHANNEL pi pi SCATTERING AND J/psi DECAYS

    Czech Academy of Sciences Publication Activity Database

    Surovtsev, Yu .S.; Bydžovský, Petr; Gutsche, T.; Lyubovitskij, V. E.

    2011-01-01

    Roč. 26, 3-4 (2011), s. 610-612 ISSN 0217-751X. [11th International Workshop on Meson Production , Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/08/0984 Institutional research plan: CEZ:AV0Z10480505 Keywords : Multi-channel pion-pion scattering * scalar-isoscalar resonances * multichannel analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  6. Multi-channel up-conversion infrared spectrometer and method of detecting a spectral distribution of light

    DEFF Research Database (Denmark)

    2015-01-01

    A multi-channel infrared spectrometer for detecting an infrared spectrum of light received from an object. The spectrometer comprises a wavelength converter system comprising a nonlinear material and having an input side and an output side. The wavelength converter system comprises at least a first...... on the first side into light in a second output wavelength range output on the second side. The spectrometer further comprises a demultiplexer configured for demultiplexing light in the first up-conversion channel and light in the second up-conversion channel. The demultiplexer is located on the first side...

  7. Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography

    DEFF Research Database (Denmark)

    Kazantsev, Daniil; Jørgensen, Jakob Sauer; Andersen, Martin S

    2018-01-01

    peaks. The acquired energy-binned data, however, suffer from low signal-to-noise ratio, acquisition artifacts, and frequently angular undersampled conditions. New regularized iterative reconstruction methods have the potential to produce higher quality images and since energy channels are mutually...... to encourage joint smoothing directions. In particular, the method selects reference channels from which to propagate structure in an adaptive and stochastic way while preferring channels with a high data signal-to-noise ratio. The method is compared with current state-of-the-art multi-channel reconstruction...

  8. Distributed capillary adiabatic tissue homogeneity model in parametric multi-channel blind AIF estimation using DCE-MRI

    Czech Academy of Sciences Publication Activity Database

    Kratochvíla, Jiří; Jiřík, Radovan; Bartoš, M.; Standara, M.; Starčuk jr., Zenon; Taxt, T.

    2016-01-01

    Roč. 75, č. 3 (2016), s. 1355-1365 ISSN 0740-3194 R&D Projects: GA ČR GAP102/12/2380; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : dynamic contrast-enhanced magnetic resonance imaging * multi-channel blind deconvolution * arterial input function * impulse residue function * renal cell carcinoma Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.924, year: 2016

  9. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    International Nuclear Information System (INIS)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L; Joshi, L M; Nangru, S C

    2010-01-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  10. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Joshi, L M; Nangru, S C, E-mail: pramod@ipr.res.i [Central Electronics Engineering Research Institute, Pilani, Rajasthan 333 031 (India)

    2010-02-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  11. Evaluation of K x-ray escape and crosstalk in CdTe detectors and multi-channel detectors

    International Nuclear Information System (INIS)

    Ohtsuchi, Tetsuro; Ohmori, Koichi; Tsutsui, Hiroshi; Baba, Sueki

    1995-01-01

    The simple structure of CdTe semiconductor detectors facilitates their downsizing, and their possible application to radiographic sensors has been studied. The escape of K X-rays from these detectors increases with reduction of their dimensions and affects the measurements of X- and gamma-ray spectra. K X-rays also produce crosstalk in multi-channel detectors with adjacent channels. Therefore, K X-rays which escape from the detector elements degrade both the precision of energy spectra and spatial resolution. The ratios of escape peak integrated counts to total photon counts for various sizes of CdTe single detectors were calculated for gamma rays using the Monte Carlo method. Also, escape and crosstalk ratios were simulated for the CdTe multi-channel detectors. The theoretical results were tested experimentally for 59.54-keV gamma rays from a 241 Am radioactive source. Results showed that escape ratios for single detectors were strongly dependent on element size and thickness. The escape and crosstalk ratios increased with closer channel pitch. The calculated results showed a good agreement with the experimental data. The calculations made it clear that K X-rays which escaped to neighboring channels induced crosstalk more frequently at smaller channel pitch in multichannel detectors. A radiation shielding grid which blocked incident photons between the boundary channels was also tested by experiment and by calculation. It was effective in reducing the probability of escape and crosstalk

  12. Multiplex multivariate recurrence network from multi-channel signals for revealing oil-water spatial flow behavior.

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Yang, Yu-Xuan; Cai, Qing

    2017-03-01

    The exploration of the spatial dynamical flow behaviors of oil-water flows has attracted increasing interests on account of its challenging complexity and great significance. We first technically design a double-layer distributed-sector conductance sensor and systematically carry out oil-water flow experiments to capture the spatial flow information. Based on the well-established recurrence network theory, we develop a novel multiplex multivariate recurrence network (MMRN) to fully and comprehensively fuse our double-layer multi-channel signals. Then we derive the projection networks from the inferred MMRNs and exploit the average clustering coefficient and the spectral radius to quantitatively characterize the nonlinear recurrent behaviors related to the distinct flow patterns. We find that these two network measures are very sensitive to the change of flow states and the distributions of network measures enable to uncover the spatial dynamical flow behaviors underlying different oil-water flow patterns. Our method paves the way for efficiently analyzing multi-channel signals from multi-layer sensor measurement system.

  13. Autonomous miniaturised device with USB interface for pulse height analysis and multi-channel scaling (TUKAN-8K-USB)

    International Nuclear Information System (INIS)

    Guzik, Z.; Borsuk, S.; Plominski, M.; Traczyk, K.

    2005-01-01

    We present autonomous a 8K-channel miniature device designed for spectroscopy or intensity vs. time measurements. The device (TUKAN-8K-USB) is based on the USB interface, and is contained in a screened separate box - it can be proved either directly from the USB port or from an external DC source (wall adapter of battery). The device may work in two independent operational modes: Multi-Channel Analysis (MCA) and Multi-Channel Scaling (MCS). The crucial MCA component - Peak detect and Hold circuitry - is featuring a novel architecture based on a diamond transistor. Its analog stage can accept analog pulses with front edges down to 100 ns and has a differential linearity below 0.5% (full scale sliding scale averaging). Automatic stops on count in Region-Of-Interest (ROI) and on preset live or real time are implemented. The MCS works at medium speed counting rates (up to 8 MHz), with preset dwell time, number of channels and multi-sweep mode. Each these parameters can also be controlled externally. Digital interfacing is based on four used configurable logical I/O lines. A single CYCLONE EP1C3 Altera FPGA provides all control functions. The USB communication is based on FYDI FIFO controller. The analyzer is equipped with advanced, user-friendly software, which is subjected of another publication. )author)

  14. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2016-11-01

    Full Text Available All-optical signal processing based on nonlinear optical effects allows for the realization of important functions in telecommunications including wavelength conversion, optical multiplexing/demultiplexing, Fourier transformation, and regeneration, amongst others, on ultrafast time scales to support high data rate transmission. In integrated photonic subsystems, the majority of all-optical signal processing systems demonstrated to date typically process only a single channel at a time or perform a single processing function, which imposes a serious limitation on the functionality of integrated solutions. Here, we demonstrate how nonlinear optical effects can be harnessed in a mode-selective manner to perform simultaneous multi-channel (two and multi-functional optical signal processing (i.e., regenerative wavelength conversion in an integrated silicon photonic device. This approach, which can be scaled to a higher number of channels, opens up a new degree of freedom for performing a broad range of multi-channel nonlinear optical signal processing functions using a single integrated photonic device.

  15. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  16. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  17. Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar

    Directory of Open Access Journals (Sweden)

    S. Westermann

    2010-11-01

    Full Text Available Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted in gravelly soil over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded in sediments on Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated.

    The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the

  18. Highly Efficient Multi Channel Packet Forwarding with Round Robin Intermittent Periodic Transmit for Multihop Wireless Backhaul Networks

    Science.gov (United States)

    Furukawa, Hiroshi

    2017-01-01

    Round Robin based Intermittent Periodic Transmit (RR-IPT) has been proposed which achieves highly efficient multi-hop relays in multi-hop wireless backhaul networks (MWBN) where relay nodes are 2-dimensionally deployed. This paper newly investigates multi-channel packet scheduling and forwarding scheme for RR-IPT. Downlink traffic is forwarded by RR-IPT via one of the channels, while uplink traffic and part of downlink are accommodated in the other channel. By comparing IPT and carrier sense multiple access with collision avoidance (CSMA/CA) for uplink/downlink packet forwarding channel, IPT is more effective in reducing packet loss rate whereas CSMA/CA is better in terms of system throughput and packet delay improvement. PMID:29137164

  19. Multi Channels PWM Controller for Thermoelectric Cooler Using a Programmable Logic Device and Lab-Windows CVI

    Directory of Open Access Journals (Sweden)

    Eli FLAXER

    2008-09-01

    Full Text Available We present a complete design of a multi channels PID controller for Thermoelectric Cooler (TEC using a pulse width modulation (PWM technique implemented by a dedicated programmable logic device (PLD programmed by VHDL. The PID control loop is implemented by software written by National Instrument Lab-Windows CVI. Due to the fact that the implementation is by a VHDL and PLD the design is modular, as a result, the circuit is very compact in size and very low cost as compared to any commercial product. In addition, since the control loop is implemented by software running on a personal computer (PC using a C language, it is easy to adjust the controller to various environmental conditions and for a width range of sensors like: a thermo couple (TC, thermistor, resistance temperature detectors (RTD etc. We demonstrate the performance of this circuit as a controller for a small incubator using thermistor as the temperature sensor.

  20. Leveraging multi-channel x-ray detector technology to improve quality metrics for industrial and security applications

    Science.gov (United States)

    Jimenez, Edward S.; Thompson, Kyle R.; Stohn, Adriana; Goodner, Ryan N.

    2017-09-01

    Sandia National Laboratories has recently developed the capability to acquire multi-channel radio- graphs for multiple research and development applications in industry and security. This capability allows for the acquisition of x-ray radiographs or sinogram data to be acquired at up to 300 keV with up to 128 channels per pixel. This work will investigate whether multiple quality metrics for computed tomography can actually benefit from binned projection data compared to traditionally acquired grayscale sinogram data. Features and metrics to be evaluated include the ability to dis- tinguish between two different materials with similar absorption properties, artifact reduction, and signal-to-noise for both raw data and reconstructed volumetric data. The impact of this technology to non-destructive evaluation, national security, and industry is wide-ranging and has to potential to improve upon many inspection methods such as dual-energy methods, material identification, object segmentation, and computer vision on radiographs.

  1. New approach to information fusion for Lipschitz classifiers ensembles: Application in multi-channel C-OTDR-monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Andrey V.; Egorov, Dmitry V. [LPP “EqualiZoom”, Astana, 010000 (Kazakhstan)

    2016-06-08

    This paper presents new results concerning selection of an optimal information fusion formula for an ensemble of Lipschitz classifiers. The goal of information fusion is to create an integral classificatory which could provide better generalization ability of the ensemble while achieving a practically acceptable level of effectiveness. The problem of information fusion is very relevant for data processing in multi-channel C-OTDR-monitoring systems. In this case we have to effectively classify targeted events which appear in the vicinity of the monitored object. Solution of this problem is based on usage of an ensemble of Lipschitz classifiers each of which corresponds to a respective channel. We suggest a brand new method for information fusion in case of ensemble of Lipschitz classifiers. This method is called “The Weighing of Inversely as Lipschitz Constants” (WILC). Results of WILC-method practical usage in multichannel C-OTDR monitoring systems are presented.

  2. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection

    International Nuclear Information System (INIS)

    Yang, Ruitao; Pollinger, Florian; Meiners-Hagen, Karl; Krystek, Michael; Bosse, Harald; Tan, Jiubin

    2015-01-01

    We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10 −7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications. (paper)

  3. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection

    Science.gov (United States)

    Yang, Ruitao; Pollinger, Florian; Meiners-Hagen, Karl; Krystek, Michael; Tan, Jiubin; Bosse, Harald

    2015-08-01

    We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10-7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications.

  4. A Read-out and Data Acquisition System for the Outputs of Multi-channel Spectroscopy Amplifiers

    International Nuclear Information System (INIS)

    Kong Jie; Qian Yi; Su Hong; Dong Chengfu

    2009-01-01

    A read-out and data acquisition system for the outputs of multi-channel spectroscopy amplifiers is introduced briefly in this paper. The 16-channel gating integrator/multiplexer developed by us and PXI-DAQ card are used to construct this system. A virtual instrument system for displaying, indicating,measuring and recording of output waveform is accomplished by integrating the PC, hardware, software together flexibly based on the Lab Windows/CVI platform in our read-out and data acquisition system. In this system, an ADC can face the 16 outputs of 16-channel spectroscopy amplifiers, which can improve the system integration and reduce the cost of data acquisition system. The design provided a new way for building the read-out and data acquisition system using the normal modules and spectroscopy amplifiers. This system has been tested and demonstrated that it is intelligent, reliable, real-time and low cost. (authors)

  5. Development of hybrid micro circuit based multi-channel programmable HV supply for BARC-pelletron experimental facility

    International Nuclear Information System (INIS)

    Manna, A.; Thombare, S.; Moitra, S.; Kuswarkar, M.; Punna, M.; Nair, P.M.; Diwakar, M.P.; Pithawa, C.K.

    2013-01-01

    Electronics Division, BARC has developed a Multi channel programmable HV bias supply system for charge particle detector array for use in BARC-TIFR Pelletron-LINAC facility. The HV supplies are compact in size due to use of hybrid micro-circuits developed indigenously and are modular in construction to achieve versatility, scalability and serviceability. All programming operations and monitoring are performed remotely through PC over Ethernet. Each supply has a built-in over voltage, over current and thermal overload protections for safe operation and employs a Zero Voltage Switching (ZVS) technique to reduce thermal stress on the inverter switches. This article describes salient design aspects and performance of the HV supply system. (author)

  6. Benchmarking and qualification of the nufreq-npw code for best estimate prediction of multi-channel core stability margins

    International Nuclear Information System (INIS)

    Taleyarkhan, R.; McFarlane, A.F.; Lahey, R.T. Jr.; Podowski, M.Z.

    1988-01-01

    The work described in this paper is focused on the development, verification and benchmarking of the NUFREQ-NPW code at Westinghouse, USA for best estimate prediction of multi-channel core stability margins in US BWRs. Various models incorporated into NUFREQ-NPW are systematically compared against the Westinghouse channel stability analysis code MAZDA, which the Mathematical Model was developed in an entirely different manner. The NUFREQ-NPW code is extensively benchmarked against experimental stability data with and without nuclear reactivity feedback. Detailed comparisons are next performed against nuclear-coupled core stability data. A physically based algorithm is developed to correct for the effect of flow development on subcooled boiling. Use of this algorithm (to be described in the full paper) captures the peak magnitude as well as the resonance frequency with good accuracy

  7. Development of a Multi-Channel Ultrasonic Testing System for Automated Ultrasonic Pipe Inspection of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Hee Jong; Cho, Chan Hee; Cho, Hyun Joon

    2009-01-01

    Currently almost all in-service-inspection techniques, applied in domestic nuclear power plants, are partial to field inspection technique. These kinds of techniques are related to managing nuclear power plants by the operation of foreign-produced inspection devices. There have been so many needs for development of native in-service-inspection device because there is no native diagnosis device for nuclear power plant inspection yet in Korea. In this research, we developed several core techniques to make an automated ultrasonic pipe inspection system for nuclear power plants. A high performance multi-channel ultrasonic pulser/receiver module, an A/D converter module and a digital main CPU module were developed and the performance of the developed modules was verified. The S/N ratio, noise level and signal acquisition performance of the developed modules showed proper level as we designed in the beginning.

  8. The dynamic time-over-threshold method for multi-channel APD based gamma-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Orita, T., E-mail: orita.tadashi@jaea.go.jp [Japan Atomic Energy Agency, Fukushima (Japan); Shimazoe, K.; Takahashi, H. [Department of Nuclear Management and Engineering, The University of Tokyo, Bunkyō (Japan)

    2015-03-01

    t– Recent advances in manufacturing technology have enabled the use of multi-channel pixelated detectors in gamma-ray imaging applications. When obtaining gamma-ray measurements, it is important to obtain pulse height information in order to avoid unnecessary events such as scattering. However, as the number of channels increases, more electronics are needed to process each channel's signal, and the corresponding increases in circuit size and power consumption can result in practical problems. The time-over-threshold (ToT) method, which has recently become popular in the medical field, is a signal processing technique that can effectively avoid such problems. However, ToT suffers from poor linearity and its dynamic range is limited. We therefore propose a new ToT technique called the dynamic time-over-threshold (dToT) method [4]. A new signal processing system using dToT and CR-RC shaping demonstrated much better linearity than that of a conventional ToT. Using a test circuit with a new Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (GAGG) scintillator and an avalanche photodiode, the pulse height spectra of {sup 137}Cs and {sup 22}Na sources were measured with high linearity. Based on these results, we designed a new application-specific integrated circuit (ASIC) for this multi-channel dToT system, measured the spectra of a {sup 22}Na source, and investigated the linearity of the system.

  9. TUKAN—An 8K Pulse Height Analyzer and Multi-Channel Scaler With a PCI or a USB Interface

    Science.gov (United States)

    Guzik, Z.; Borsuk, S.; Traczyk, K.; Plominski, M.

    2006-02-01

    In this paper we present two types of 8K-channel analyzers designed for spectroscopy and intensity versus time measurements. The first type (Tukan-8K-PCI) incorporates a PCI interface and is designed to be plugged into a PCI slot of a normal PC. The second type (Tukan-8K-USB) incorporates a USB interface. It is mounted in a separate screened box and can be powered either directly from the USB port or from an external dc source (wall adapter or battery). Each type of device may operate in either of two independent operational modes: Multi Channel Analysis (MCA) and Multi-Channel Scaling (MCS). The most crucial component for the MCA mode-the Peak Detect and Hold circuit-is featuring a novel architecture based on a diamond transistor. Its analog stage can accept analog pulses with rise times as short as 100 ns and has a differential linearity below 1% with sliding scale averaging over the full scale. The functionality includes automatic stop on a programmable count in the Region-Of-Interest (ROI) and on preset live- or real time. The MCS mode works at medium counting rates of up to 8 MHz. The dwell time, the number of channels and single or multi-sweep mode may be preset. Each of these parameters can also be controlled externally via four user configurable logical I/O lines. A single Altera FLEX 10KE30 FPGA provides all control functions and incorporates PCI interface. The USB interface is based on FTDI FIFO controller. Advanced and user-friendly software has been developed for the analyzer

  10. The Study the Vibration Condition of the Blade of the Gas Turbine Engine with an All-metal Wire Rope Damper in the Area Mount of the Blade to the Disk

    Science.gov (United States)

    Melentjev, Vladimir S.; Gvozdev, Alexander S.

    2018-01-01

    Improving the reliability of modern turbine engines is actual task. This is achieved due to prevent a vibration damage of the operating blades. On the department of structure and design of aircraft engines have accumulated a lot of experimental data on the protection of the blades of the gas turbine engine from a vibration. In this paper we proposed a method for calculating the characteristics of wire rope dampers in the root attachment of blade of a gas turbine engine. The method is based on the use of the finite element method and transient analysis. Contact interaction (Lagrange-Euler method) between the compressor blade and the disc of the rotor has been taken into account. Contribution of contact interaction between details in damping of the system was measured. The proposed method provides a convenient way for the iterative selection of the required parameters the wire rope elastic-damping element. This element is able to provide the necessary protection from the vibration for the blade of a gas turbine engine.

  11. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  12. Adaptive multi-channel downlink assignment for overloaded spectrum-shared multi-antenna overlaid cellular networks

    KAUST Repository

    Radaydeh, Redha Mahmoud

    2012-10-19

    Overlaid cellular technology has been considered as a promising candidate to enhance the capacity and extend the coverage of cellular networks, particularly indoors. The deployment of small cells (e.g. femtocells and/or picocells) in an overlaid setup is expected to reduce the operational power and to function satisfactorily with the existing cellular architecture. Among the possible deployments of small-cell access points is to manage many of them to serve specific spatial locations, while reusing the available spectrum universally. This contribution considers the aforementioned scenario with the objective to serve as many active users as possible when the available downlink spectrum is overloaded. The case study is motivated by the importance of realizing universal resource sharing in overlaid networks, while reducing the load of distributing available resources, satisfying downlink multi-channel assignment, controlling the aggregate level of interference, and maintaining desired design/operation requirements. These objectives need to be achieved in distributed manner in each spatial space with as low processing load as possible when the feedback links are capacity-limited, multiple small-cell access points can be shared, and data exchange between access points can not be coordinated. This contribution is summarized as follows. An adaptive downlink multi-channel assignment scheme when multiple co-channel and shared small-cell access points are allocated to serve active users is proposed. It is assumed that the deployed access points employ isotropic antenna arrays of arbitrary sizes, operate using the open-access strategy, and transmit on shared physical channels simultaneously. Moreover, each active user can be served by a single transmit channel per each access point at a time, and can sense the concurrent interference level associated with each transmit antenna channel non-coherently. The proposed scheme aims to identify a suitable subset of transmit channels

  13. Development and field example of multi channel surface wave data acquisition and processing system (SWS-1); Multi channel hyomenha data shutoku shori system (SWS-1) no kaihatsu to jikkenrei

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y [Huashui Institute of Geophysical Exploration, (China); Wang, Z [Bureauof Engineering MGMR, (China); Zhang, Z [STG Corp., (China); Tanaka, Y

    1996-05-01

    A report is given here about the use of a newly-developed multi-channel surface wave data acquisition and processing system different from the conventional surface wave exploration device. This system enables the on-site pickup of a dispersion curve out of the multi-component surface wave data and, in the analysis of underground structure, performs the forward modeling and inversion. The system, furthermore, acquires and analyzes the data obtained from reflection earthquake exploration and constant microtremor observation. During a survey conducted along the highway from Port Ren-un to Xuzhou, China, estimation of the basement boundary was made by use of dynamite, and what was obtained agreed with the result of boring though with an error of 3m. In addition, this system could probe levels deeper than 100m using the instantaneous Rayleigh wave exploration method. This system and the conventional surface exploration device were compared in a soft ground in Fukui Prefecture, the former using a 10kg hammer and the latter using a 350kg exciter, when it was verified that the results produced by both techniques excellently agree with the geologic columnar section and changes in the N-value. 4 refs., 4 figs.

  14. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  15. Multi-channel Langmuir-probe and H[alpha]-measurements of edge fluctuations on ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Niedermeyer, H; Carlson, A; Endler, M; Giannone, L.; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    The anomalous transport observed in tokamaks is caused by turbulent fluctuations, the nature of which is still poorly understood. Diagnostic difficulties are one major reason for this lack of understanding, at least with respect to the bulk plasma. The plasma edge, however, is accessible by several diagnostics permitting localized measurements of different parameters with good spatial and temporal resolution. For this reason one can hope to obtain enough information about edge fluctuations to permit the development of theoretical models. Different ranges of plasma parameters and the lack of closed magnetic surfaces distinguish this plasma zone from the bulk plasma. Edge turbulence might well involve other mechanisms than the turbulence in the bulk. Although transport in the bulk plasma receives more attention transport in the edge plasma and edge physics are very relevant for reactor design. The realistic hope to find a solution and the importance of the problem for the next step in fusion research are reasons for the strong effort in this field on many tokamaks. Like in many limiter tokamaks Langmuir probes were used in the ASDEX divertor device for measurements of the floating potential and of the ion saturation current. Under certain assumptions the electron density and the plasma potential can be derived from these data. Observation of the H[alpha]-light emitted from the edge in the vicinity of a neutral gas source yields information about the electron density. While probe measurements are more suitable for quantitative evaluations including the calculation of the local particle flux the H[alpha]-method is not calibrated and integrates radially over the edge. It is however applicable in situations where probes fail because of excessive heat load. With 16-channel arrays both methods permit spatial correlations and wavenumber spectra to be determined without any further assumptions. (author) 4 refs., 2 figs.

  16. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  17. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  18. Reduced-complexity adaptive multi-channel assignment for shared access points in over-loaded small-cell networks

    KAUST Repository

    Radaydeh, Redha Mahmoud

    2013-06-01

    This paper proposes a reduced-complexity downlink multi-channel assignment scheme when feedback links are capacity-limited. The system model treats the case when multiple access points are allocated to serve scheduled users in over-loaded (i.e. dense) pico/femtocell networks. It assumes that the deployed access points can be shared simultaneously and employ isotropic antenna arrays of arbitrary sizes. Moreover, they transmit their data on a common physical channel and can not coordinate their transmissions. On the other hand, each scheduled user can be served by single transmit channel from each active access point at a time, and it lacks coordination with concurrent active users. The scheme operates according to the occupancy of available transmit channels, wherein extensively occupied access points are avoided adaptively, while reducing the load of processing. The operation is linked to a target performance via controlling the observed aggregate interference from the projected set of serving points. Through the analysis, results for the scheduled user outage performance, and the average number of active access points are presented. Numerical and simulations studies clarify the gains of the proposed scheme for different operating conditions. © 2013 IEEE.

  19. Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography

    Science.gov (United States)

    Kazantsev, Daniil; Jørgensen, Jakob S.; Andersen, Martin S.; Lionheart, William R. B.; Lee, Peter D.; Withers, Philip J.

    2018-06-01

    Rapid developments in photon-counting and energy-discriminating detectors have the potential to provide an additional spectral dimension to conventional x-ray grayscale imaging. Reconstructed spectroscopic tomographic data can be used to distinguish individual materials by characteristic absorption peaks. The acquired energy-binned data, however, suffer from low signal-to-noise ratio, acquisition artifacts, and frequently angular undersampled conditions. New regularized iterative reconstruction methods have the potential to produce higher quality images and since energy channels are mutually correlated it can be advantageous to exploit this additional knowledge. In this paper, we propose a novel method which jointly reconstructs all energy channels while imposing a strong structural correlation. The core of the proposed algorithm is to employ a variational framework of parallel level sets to encourage joint smoothing directions. In particular, the method selects reference channels from which to propagate structure in an adaptive and stochastic way while preferring channels with a high data signal-to-noise ratio. The method is compared with current state-of-the-art multi-channel reconstruction techniques including channel-wise total variation and correlative total nuclear variation regularization. Realistic simulation experiments demonstrate the performance improvements achievable by using correlative regularization methods.

  20. Vehicular Networking Enhancement And Multi-Channel Routing Optimization, Based on Multi-Objective Metric and Minimum Spanning Tree

    Directory of Open Access Journals (Sweden)

    Peppino Fazio

    2013-01-01

    Full Text Available Vehicular Ad hoc NETworks (VANETs represent a particular mobile technology that permits the communication among vehicles, offering security and comfort. Nowadays, distributed mobile wireless computing is becoming a very important communications paradigm, due to its flexibility to adapt to different mobile applications. VANETs are a practical example of data exchanging among real mobile nodes. To enable communications within an ad-hoc network, characterized by continuous node movements, routing protocols are needed to react to frequent changes in network topology. In this paper, the attention is focused mainly on the network layer of VANETs, proposing a novel approach to reduce the interference level during mobile transmission, based on the multi-channel nature of IEEE 802.11p (1609.4 standard. In this work a new routing protocol based on Distance Vector algorithm is presented to reduce the delay end to end and to increase packet delivery ratio (PDR and throughput in VANETs. A new metric is also proposed, based on the maximization of the average Signal-to-Interference Ratio (SIR level and the link duration probability between two VANET nodes. In order to relieve the effects of the co-channel interference perceived by mobile nodes, transmission channels are switched on a basis of a periodical SIR evaluation. A Network Simulator has been used for implementing and testing the proposed idea.

  1. Reduced-complexity adaptive multi-channel assignment for shared access points in over-loaded small-cell networks

    KAUST Repository

    Radaydeh, Redha Mahmoud; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2013-01-01

    This paper proposes a reduced-complexity downlink multi-channel assignment scheme when feedback links are capacity-limited. The system model treats the case when multiple access points are allocated to serve scheduled users in over-loaded (i.e. dense) pico/femtocell networks. It assumes that the deployed access points can be shared simultaneously and employ isotropic antenna arrays of arbitrary sizes. Moreover, they transmit their data on a common physical channel and can not coordinate their transmissions. On the other hand, each scheduled user can be served by single transmit channel from each active access point at a time, and it lacks coordination with concurrent active users. The scheme operates according to the occupancy of available transmit channels, wherein extensively occupied access points are avoided adaptively, while reducing the load of processing. The operation is linked to a target performance via controlling the observed aggregate interference from the projected set of serving points. Through the analysis, results for the scheduled user outage performance, and the average number of active access points are presented. Numerical and simulations studies clarify the gains of the proposed scheme for different operating conditions. © 2013 IEEE.

  2. New geological interpretation of multi-channel seismic profiles from the Pacific Margin of the Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    Okoń Jan

    2016-06-01

    Full Text Available The Polish Geophysical Expedition to West Antarctica in 1979–1980 was carried out by the Institute of Geophysics, Polish Academy of Sciences. Beside deep seismic soundings, 12 multi-channel seismic profiles, with a total length of ca 1000 km have been recorded north and east of the South Shetland Islands and in the Bransfield Strait, but they have never before been completely interpreted and published. All profiles have been processed with modern processing flow including time migration. Profiles crossing the South Shetland Trench revealed distinct reflector inside continental slope, which has been interpreted as border between buried accretionary prism and overlying slope sediments of glacial-marine origin. Profiles in the Bransfield Strait show traces of the Last Glacial Maximum (LGM in the form of glacial foreground valleys, with some of them used as weak spots for young age volcanic intrusions. This paper is the first comprehensive geological interpretation of collected dataset and differences between results from other expeditions are discussed.

  3. BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration

    Science.gov (United States)

    Gao, Mingyong; Lu, Paul; Lynam, Dan; Bednark, Bridget; Campana, W. Marie; Sakamoto, Jeff; Tuszynski, Mark

    2016-12-01

    Objective. We combined implantation of multi-channel templated agarose scaffolds with growth factor gene delivery to examine whether this combinatorial treatment can enhance peripheral axonal regeneration through long sciatic nerve gaps. Approach. 15 mm long scaffolds were templated into highly organized, strictly linear channels, mimicking the linear organization of natural nerves into fascicles of related function. Scaffolds were filled with syngeneic bone marrow stromal cells (MSCs) secreting the growth factor brain derived neurotrophic factor (BDNF), and lentiviral vectors expressing BDNF were injected into the sciatic nerve segment distal to the scaffold implantation site. Main results. Twelve weeks after injury, scaffolds supported highly linear regeneration of host axons across the 15 mm lesion gap. The incorporation of BDNF-secreting cells into scaffolds significantly increased axonal regeneration, and additional injection of viral vectors expressing BDNF into the distal segment of the transected nerve significantly enhanced axonal regeneration beyond the lesion. Significance. Combinatorial treatment with multichannel bioengineered scaffolds and distal growth factor delivery significantly improves peripheral nerve repair, rivaling the gold standard of autografts.

  4. Spectrum-efficient multi-channel design for coexisting IEEE 802.15.4 networks: A stochastic geometry approach

    KAUST Repository

    Elsawy, Hesham

    2014-07-01

    For networks with random topologies (e.g., wireless ad-hoc and sensor networks) and dynamically varying channel gains, choosing the long term operating parameters that optimize the network performance metrics is very challenging. In this paper, we use stochastic geometry analysis to develop a novel framework to design spectrum-efficient multi-channel random wireless networks based on the IEEE 802.15.4 standard. The proposed framework maximizes both spatial and time domain frequency utilization under channel gain uncertainties to minimize the number of frequency channels required to accommodate a certain population of coexisting IEEE 802.15.4 networks. The performance metrics are the outage probability and the self admission failure probability. We relax the single channel assumption that has been used traditionally in the stochastic geometry analysis. We show that the intensity of the admitted networks does not increase linearly with the number of channels and the rate of increase of the intensity of the admitted networks decreases with the number of channels. By using graph theory, we obtain the minimum required number of channels to accommodate a certain intensity of coexisting networks under a self admission failure probability constraint. To this end, we design a superframe structure for the coexisting IEEE 802.15.4 networks and a method for time-domain interference alignment. © 2002-2012 IEEE.

  5. Ab initio R-matrix/Multi-channel Quantum Defect Theory applied to Molecular Core Excitation and Ionization

    International Nuclear Information System (INIS)

    Hiyama, M.; Kosugi, N.

    2004-01-01

    Full text: Ab initio R-matrix/MQDT approach, which is a combination of ab initio R-matrix techniques and the multi channel quantum defect theory (MQDT), has recently been developed by one of the present authors (MH) and Child, to successfully obtain the potential energy curves of Rydberg states converging to not only the lowest but also the higher ionized states. This approach is also applied to estimate the valence state interaction with Rydberg and continuum (ionization) channels. Very recently we have made an original ab initio polyatomic R-matrix/MQDT program package, GSCF4R based on Gaussian type basis functions for the bound and continuum states, to extensively study molecular excitation and ionization in the X-ray region as well as in the VUV region. We are going to report the results for core excitation and ionization of diatomic molecules such as NO and O 2 to show that the R-matrix/MQDT method is indispensable to describe the core-to-Rydberg states with the higher quantum number and the continuum states. These results lead us to the conclusion that the close-coupling approximation augmented with the correlation term within the R-matrix/MQDT formalism is powerful to calculate the Rydberg-valence mixing and the interchannel coupling between several core-ionized states

  6. 'Too much, too late': mixed methods multi-channel video recording study of computerized decision support systems and GP prescribing.

    Science.gov (United States)

    Hayward, James; Thomson, Fionagh; Milne, Heather; Buckingham, Susan; Sheikh, Aziz; Fernando, Bernard; Cresswell, Kathrin; Williams, Robin; Pinnock, Hilary

    2013-06-01

    Computerized decision support systems (CDSS) are commonly deployed to support prescribing, although over-riding of alerts by prescribers remains a concern. We aimed to understand how general practitioners (GPs) interact with prescribing CDSS in order to inform deliberation on how better to support prescribing decisions in primary care. Quantitative and qualitative analysis of interactions between GPs, patients, and computer systems using multi-channel video recordings of 112 primary care consultations with eight GPs in three UK practices. 132 prescriptions were issued in the course of 73 of the consultations, of which 81 (61%) attracted at least one alert. Of the total of 117 alerts, only three resulted in the GP checking, but not altering, the prescription. CDSS provided information and safety alerts at the point of generating a prescription. This was 'too much, too late' as the majority of the 'work' of prescribing occurred prior to using the computer. By the time an alert appeared, the GP had formulated the problem(s), potentially spent several minutes considering, explaining, negotiating, and reaching agreement with the patient about the proposed treatment, and had possibly given instructions and printed an information leaflet. CDSS alerts do not coincide with the prescribing workflow throughout the whole GP consultation. Current systems interrupt to correct decisions that have already been taken, rather than assisting formulation of the management plan. CDSS are likely to be more acceptable and effective if the prescribing support is provided much earlier in the process of generating a prescription.

  7. Research on multi - channel interactive virtual assembly system for power equipment under the “VR+” era

    Science.gov (United States)

    Ren, Yilong; Duan, Xitong; Wu, Lei; He, Jin; Xu, Wu

    2017-06-01

    With the development of the “VR+” era, the traditional virtual assembly system of power equipment has been unable to satisfy our growing needs. In this paper, based on the analysis of the traditional virtual assembly system of electric power equipment and the application of VR technology in the virtual assembly system of electric power equipment in our country, this paper puts forward the scheme of establishing the virtual assembly system of power equipment: At first, we should obtain the information of power equipment, then we should using OpenGL and multi texture technology to build 3D solid graphics library. After the completion of three-dimensional modeling, we can use the dynamic link library DLL package three-dimensional solid graphics generation program to realize the modularization of power equipment model library and power equipment model library generated hidden algorithm. After the establishment of 3D power equipment model database, we set up the virtual assembly system of 3D power equipment to separate the assembly operation of the power equipment from the space. At the same time, aiming at the deficiency of the traditional gesture recognition algorithm, we propose a gesture recognition algorithm based on improved PSO algorithm for BP neural network data glove. Finally, the virtual assembly system of power equipment can really achieve multi-channel interaction function.

  8. A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise

    Directory of Open Access Journals (Sweden)

    Abdullah Alzahrani

    2015-10-01

    Full Text Available This study presents the use of a multi-channel opto-electronic sensor (OEPS to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA, and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05; a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001; the bias of BAA 0.85 bpm, the standard deviation (SD 9.20 bpm, and the limits of agreement (LOA from −17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001; the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from −15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate.

  9. Sum Utilization of Spectrum with Spectrum Handoff and Imperfect Sensing in Interweave Multi-Channel Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Waqas Khalid

    2018-05-01

    Full Text Available Fifth-generation (5G heterogeneous network deployment poses new challenges for 5G-based cognitive radio networks (5G-CRNs as the primary user (PU is required to be more active because of the small cells, random user arrival, and spectrum handoff. Interweave CRNs (I-CRNs improve spectrum utilization by allowing opportunistic spectrum access (OSA for secondary users (SUs. The sum utilization of spectrum, i.e., joint utilization of spectrum by the SU and PU, depends on the spatial and temporal variations of PU activities, sensing outcomes, transmitting conditions, and spectrum handoff. In this study, we formulate and analyze the sum utilization of spectrum with different sets of channels under different PU and SU co-existing network topologies. We consider realistic multi-channel scenarios for the SU, with each channel licensed to a PU. The SU, aided by spectrum handoff, is authorized to utilize the channels on the basis of sensing outcomes and PU interruptions. The numerical evaluation of the proposed work is presented under different network and sensing parameters. Moreover, the sum utilization gain is investigated to analyze the sensitivities of different sensing parameters. It is demonstrated that different sets of channels, PU activities, and sensing outcomes have a significant impact on the sum utilization of spectrum associated with a specific network topology.

  10. Evaluation of the potential of soil remediation by direct multi-channel pulsed corona discharge in soil.

    Science.gov (United States)

    Wang, Tie Cheng; Qu, Guangzhou; Li, Jie; Liang, Dongli

    2014-01-15

    A novel approach, named multi-channel pulsed corona discharge in soil, was developed for remediating organic pollutants contaminated soil, with p-nitrophenol (PNP) as the model pollutant. The feasibility of PNP degradation in soil was explored by evaluating effects of pulse discharge voltage, air flow rate and soil moisture on PNP degradation. Based on roles of chemically active species and evolution of degradation intermediates, PNP degradation processes were discussed. Experimental results showed that about 89.4% of PNP was smoothly degraded within 60min of discharge treatment at pulse discharge voltage 27kV, soil moisture 5% and air flow rate 0.8Lmin(-1), and the degradation process fitted the first-order kinetic model. Increasing pulse discharge voltage was found to be favorable for PNP degradation, but not for energy yield. There existed appropriate air flow rate and soil moisture for obtaining gratifying PNP degradation efficacy. Roles of radical scavenger and measurement of active species suggested that ozone, H2O2, and OH radicals played very important roles in PNP degradation. CN bond in PNP molecule was cleaved, and the main intermediate products such as hydroquinone, benzoquinone, catechol, phenol, acetic acid, formic acid, oxalic acid, NO2(-) and NO3(-) were identified. Possible pathway of PNP degradation in soil in such a system was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Benchmarking and qualification of the NUFREQ-NPW code for best estimate prediction of multi-channel core stability margins

    International Nuclear Information System (INIS)

    Taleyarkhan, R.; Lahey, R.T. Jr.; McFarlane, A.F.; Podowski, M.Z.

    1988-01-01

    The NUFREQ-NPW code was modified and set up at Westinghouse, USA for mixed fuel type multi-channel core-wide stability analysis. The resulting code, NUFREQ-NPW, allows for variable axial power profiles between channel groups and can handle mixed fuel types. Various models incorporated into NUFREQ-NPW were systematically compared against the Westinghouse channel stability analysis code MAZDA-NF, for which the mathematical model was developed, in an entirely different manner. Excellent agreement was obtained which verified the thermal-hydraulic modeling and coding aspects. Detailed comparisons were also performed against nuclear-coupled reactor core stability data. All thirteen Peach Bottom-2 EOC-2/3 low flow stability tests were simulated. A key aspect for code qualification involved the development of a physically based empirical algorithm to correct for the effect of core inlet flow development on subcooled boiling. Various other modeling assumptions were tested and sensitivity studies performed. Good agreement was obtained between NUFREQ-NPW predictions and data. Moreover, predictions were generally on the conservative side. The results of detailed direct comparisons with experimental data using the NUFREQ-NPW code; have demonstrated that BWR core stability margins are conservatively predicted, and all data trends are captured with good accuracy. The methodology is thus suitable for BWR design and licensing purposes. 11 refs., 12 figs., 2 tabs

  12. Leveraging accelerated testing of LED drivers to model the reliability of two-stage and multi-channel drivers

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Lynn; Perkins, Curtis; Smith, Aaron; Clark, Terry; Mills, Karmann

    2017-05-30

    The next wave of LED lighting technology is likely to be tunable white lighting (TWL) devices which can adjust the colour of the emitted light between warm white (~ 2700 K) and cool white (~ 6500 K). This type of lighting system uses LED assemblies of two or more colours each controlled by separate driver channels that independently adjust the current levels to achieve the desired lighting colour. Drivers used in TWL devices are inherently more complex than those found in simple SSL devices, due to the number of electrical components in the driver required to achieve this level of control. The reliability of such lighting systems can only be studied using accelerated stress tests (AST) that accelerate the aging process to time frames that can be accommodated in laboratory testing. This paper describes AST methods and findings developed from AST data that provide insights into the lifetime of the main components of one-channel and multi-channel LED devices. The use of AST protocols to confirm product reliability is necessary to ensure that the technology can meet the performance and lifetime requirements of the intended application.

  13. Chemistry of radiation damage to wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1992-08-01

    Proportional counters are used to study aspects of radiation damage to wire chambers (wire aging). Principles of low-pressure, rf plasma chemistry are used to predict the plasma chemistry in electron avalanches (1 atm, dc). (1) Aging is studied in CF 4 /iC 4 H 10 gas mixtures. Wire deposits are analyzed by Auger electron spectroscopy. An apparent cathode aging process resulting in loss of gain rather than in a self-sustained current is observed in CF 4 -rich gases. A four-part model considering plasma polymerization of the hydrocarbon, etching of wire deposits by CF 4 , acceleration of deposition processes in strongly etching environments, and reactivity of the wire surface is developed to understand anode wire aging in CF 4 /iC 4 H 10 gases. Practical guidelines suggested by the model are discussed. (2) Data are presented to suggest that trace amounts of Freons do not affect aging rates in either dimethyl ether or Ar/C 2 H 6 . Apparent loss of gain is explained by attachment of primary electrons to a continuously increasing concentration of Freon 11 (CCl 3 F) in the counter gas. An increase in the concentration of Freon 11 in dimethyl ether is caused by a distillation process in the gas supply bottle and is a natural consequence of the unequal volatilities of the two compounds

  14. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  15. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  16. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  17. A new Implementation of the multi-channel analysis in the dosimetry through radiochromic films; Una nueva implementacion del analisis multicanal en la dosimetria mediante peliculas radiocromicas

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Rodriguez, C.; Martin Martin, G.; Bermudez Luna, R.; Lopez Fernandez, A.; Torres Olombrada, M. V. de; Garcia Canibano, T.; Caballero Guerra, P.

    2013-07-01

    The objectives of this study are to implement multi-channel analysis algorithm using open source tools, extend the application of the same to a scanner other than the supported by Micke, generate maps of dose absorbed in compatible format with the PTW Verisoft quality control program and to quantify the improvement in the results of the gamma index as to what would be obtained by applying a conventional single-channel analysis. (Author)

  18. Multi-Channel Electroencephalogram (EEG) Signal Acquisition and its Effective Channel selection with De-noising Using AWICA for Biometric System

    OpenAIRE

    B.Sabarigiri; D.Suganyadevi

    2014-01-01

    the embedding of low cost electroencephalogram (EEG) sensors in wireless headsets gives improved authentication based on their brain wave signals has become a practical opportunity. In this paper signal acquisition along with effective multi-channel selection from a specific area of the brain and denoising using AWICA methods are proposed for EEG based personal identification. At this point, to develop identification system the steps are as follows. (i) the high-quality device with the least ...

  19. Multi-channel and porous SiO@N-doped C rods as anodes for high-performance lithium-ion batteries

    Science.gov (United States)

    Huang, Xiao; Li, Mingqi

    2018-05-01

    To improve the cycling stability and rate capability of SiO electrodes, multi-channel and porous SiO@N-doped C (mp-SiO@N-doped C) rods are fabricated by the combination of electrospinning and heat treatment with the assistance of poly(methyl methacrylate) (PMMA). During annealing, in-situ PMMA degradation and gasification lead to the formation of multi-channel structure and more pores. As anodes for lithium ion batteries, the mp-SiO@N-doped C rods exhibit excellent cycling stability. At a current density of 400 mA g-1, a discharge capacity of 806 mAh g-1 can be kept after 250 cycles, the retention of which is over than 100% versus the initial reversible capacity. Compared with the SiO@N-doped C rods synthesized without the help of PMMA, the mp-SiO@N-doped C rods exhibit more excellent rate capability. The excellent electrochemical performance is attributed to the special structure of the mp-SiO@N-doped C rods. In addition to the conductivity improved by carbon fibers, the multi-channel and porous structures not only make ions/electrons transfer and electrolyte diffusion easier, but also contribute to the structural stability of the electrodes.

  20. Exploring the complementarity of THz pulse imaging and DCE-MRIs: Toward a unified multi-channel classification and a deep learning framework.

    Science.gov (United States)

    Yin, X-X; Zhang, Y; Cao, J; Wu, J-L; Hadjiloucas, S

    2016-12-01

    We provide a comprehensive account of recent advances in biomedical image analysis and classification from two complementary imaging modalities: terahertz (THz) pulse imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The work aims to highlight underlining commonalities in both data structures so that a common multi-channel data fusion framework can be developed. Signal pre-processing in both datasets is discussed briefly taking into consideration advances in multi-resolution analysis and model based fractional order calculus system identification. Developments in statistical signal processing using principal component and independent component analysis are also considered. These algorithms have been developed independently by the THz-pulse imaging and DCE-MRI communities, and there is scope to place them in a common multi-channel framework to provide better software standardization at the pre-processing de-noising stage. A comprehensive discussion of feature selection strategies is also provided and the importance of preserving textural information is highlighted. Feature extraction and classification methods taking into consideration recent advances in support vector machine (SVM) and extreme learning machine (ELM) classifiers and their complex extensions are presented. An outlook on Clifford algebra classifiers and deep learning techniques suitable to both types of datasets is also provided. The work points toward the direction of developing a new unified multi-channel signal processing framework for biomedical image analysis that will explore synergies from both sensing modalities for inferring disease proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  2. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    Science.gov (United States)

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  3. Life-threatening false alarm rejection in ICU: using the rule-based and multi-channel information fusion method.

    Science.gov (United States)

    Liu, Chengyu; Zhao, Lina; Tang, Hong; Li, Qiao; Wei, Shoushui; Li, Jianqing

    2016-08-01

    False alarm (FA) rates as high as 86% have been reported in intensive care unit monitors. High FA rates decrease quality of care by slowing staff response times while increasing patient burdens and stresses. In this study, we proposed a rule-based and multi-channel information fusion method for accurately classifying the true or false alarms for five life-threatening arrhythmias: asystole (ASY), extreme bradycardia (EBR), extreme tachycardia (ETC), ventricular tachycardia (VTA) and ventricular flutter/fibrillation (VFB). The proposed method consisted of five steps: (1) signal pre-processing, (2) feature detection and validation, (3) true/false alarm determination for each channel, (4) 'real-time' true/false alarm determination and (5) 'retrospective' true/false alarm determination (if needed). Up to four signal channels, that is, two electrocardiogram signals, one arterial blood pressure and/or one photoplethysmogram signal were included in the analysis. Two events were set for the method validation: event 1 for 'real-time' and event 2 for 'retrospective' alarm classification. The results showed that 100% true positive ratio (i.e. sensitivity) on the training set were obtained for ASY, EBR, ETC and VFB types, and 94% for VTA type, accompanied by the corresponding true negative ratio (i.e. specificity) results of 93%, 81%, 78%, 85% and 50% respectively, resulting in the score values of 96.50, 90.70, 88.89, 92.31 and 64.90, as well as with a final score of 80.57 for event 1 and 79.12 for event 2. For the test set, the proposed method obtained the score of 88.73 for ASY, 77.78 for EBR, 89.92 for ETC, 67.74 for VFB and 61.04 for VTA types, with the final score of 71.68 for event 1 and 75.91 for event 2.

  4. On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI

    Science.gov (United States)

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2017-06-01

    The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.

  5. Automatic extraction and processing of small RNAs on a multi-well/multi-channel (M&M) chip.

    Science.gov (United States)

    Zhong, Runtao; Flack, Kenneth; Zhong, Wenwan

    2012-12-07

    The study of the regulatory roles in small RNAs can be accelerated by techniques that permit simple, low-cost, and rapid extraction of small RNAs from a small number of cells. In order to ensure highly specific and sensitive detection, the extracted RNAs should be free of the background nucleic acids and present stably in a small volume. To meet these criteria, we designed a multi-well/multi-channel (M&M) chip to carry out automatic and selective isolation of small RNAs via solid-phase extraction (SPE), followed by reverse-transcription (RT) to convert them to the more stable cDNAs in a final volume of 2 μL. Droplets containing buffers for RNA binding, washing, and elution were trapped in microwells, which were connected by one channel, and suspended in mineral oil. The silica magnetic particles (SMPs) for SPE were moved along the channel from well to well, i.e. in between droplets, by a fixed magnet and a translation stage, allowing the nucleic acid fragments to bind to the SMPs, be washed, and then be eluted for RT reaction within 15 minutes. RNAs shorter than 63 nt were selectively enriched from cell lysates, with recovery comparable to that of a commercial kit. Physical separation of the droplets on our M&M chip allowed the usage of multiple channels for parallel processing of multiple samples. It also permitted smooth integration with on-chip RT-PCR, which simultaneously detected the target microRNA, mir-191, expressed in fewer than 10 cancer cells. Our results have demonstrated that the M&M chip device is a valuable and cost-saving platform for studying small RNA expression patterns in a limited number of cells with reasonable sample throughput.

  6. Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI

    Science.gov (United States)

    Mangalathu-Arumana, Jain; Liebenthal, Einat; Beardsley, Scott A.

    2018-01-01

    Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied. Here, the sensitivity of jICA for recovering neural sources in individual data was evaluated as a function of imaging SNR, number of independent representations of the ERP/fMRI data, relationship between instantiations of the joint ERP/fMRI activity (linear, non-linear, uncoupled), and type of sources (varying parametrically and non-parametrically across representations of the data), using computer simulations. Neural sources were simulated with spatiotemporal and noise attributes derived from experimental data. The best performance, maximizing both cross-modal data fusion and the separation of brain sources, occurred with a moderate number of representations of the ERP/fMRI data (10–30), as in a mixed block/event related experimental design. Importantly, the type of relationship between instantiations of the ERP/fMRI activity, whether linear, non-linear or uncoupled, did not in itself impact jICA performance, and was accurately recovered in the common profiles (i.e., mixing coefficients). Thus, jICA provides an unbiased way to characterize the relationship between ERP and fMRI activity across brain regions, in individual data, rendering it potentially useful for characterizing pathological conditions in which neurovascular coupling is adversely affected. PMID:29410611

  7. A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator.

    Science.gov (United States)

    Martinek, Radek; Kelnar, Michal; Koudelka, Petr; Vanus, Jan; Bilik, Petr; Janku, Petr; Nazeran, Homer; Zidek, Jan

    2016-02-01

    This paper describes the design, construction, and testing of a multi-channel fetal electrocardiogram (fECG) signal generator based on LabVIEW. Special attention is paid to the fetal heart development in relation to the fetus' anatomy, physiology, and pathology. The non-invasive signal generator enables many parameters to be set, including fetal heart rate (FHR), maternal heart rate (MHR), gestational age (GA), fECG interferences (biological and technical artifacts), as well as other fECG signal characteristics. Furthermore, based on the change in the FHR and in the T wave-to-QRS complex ratio (T/QRS), the generator enables manifestations of hypoxic states (hypoxemia, hypoxia, and asphyxia) to be monitored while complying with clinical recommendations for classifications in cardiotocography (CTG) and fECG ST segment analysis (STAN). The generator can also produce synthetic signals with defined properties for 6 input leads (4 abdominal and 2 thoracic). Such signals are well suited to the testing of new and existing methods of fECG processing and are effective in suppressing maternal ECG while non-invasively monitoring abdominal fECG. They may also contribute to the development of a new diagnostic method, which may be referred to as non-invasive trans-abdominal CTG +  STAN. The functional prototype is based on virtual instrumentation using the LabVIEW developmental environment and its associated data acquisition measurement cards (DAQmx). The generator also makes it possible to create synthetic signals and measure actual fetal and maternal ECGs by means of bioelectrodes.

  8. An Improved Cloud Classification Algorithm for China's FY-2C Multi-Channel Images Using Artificial Neural Network.

    Science.gov (United States)

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.

  9. An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Chun-Xiang Shi

    2009-07-01

    Full Text Available The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C data. First, the capabilities of six widely-used Artificial Neural Network (ANN methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA and a Support Vector Machine (SVM, using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm imagery. The result shows that: (1 ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2 among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM and Probabilistic Neural Network (PNN. Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.

  10. Investigation of verbal and visual working memory by multi-channel time-resolved functional near-infrared spectroscopy

    Science.gov (United States)

    Contini, D.; Caffini, M.; Re, R.; Zucchelli, L.; Spinelli, L.; Basso Moro, S.; Bisconti, S.; Ferrari, M.; Quaresima, V.; Cutini, S.; Torricelli, A.

    2013-03-01

    Working memory (WM) is fundamental for a number of cognitive processes, such as comprehension, reasoning and learning. WM allows the short-term maintenance and manipulation of the information selected by attentional processes. The goal of this study was to examine by time-resolved fNIRS neural correlates of the verbal and visual WM during forward and backward digit span (DF and DB, respectively) tasks, and symbol span (SS) task. A neural dissociation was hypothesised between the maintenance and manipulation processes. In particular, a dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) recruitment was expected during the DB task, whilst a lateralised involvement of Brodmann Area (BA) 10 was expected during the execution of the DF task. Thirteen subjects were monitored by a multi-channel, dual-wavelength (690 and 829 nm) time-resolved fNIRS system during 3 minutes long DF and DB tasks and 4 minutes long SS task. The participants' mean memory span was calculated for each task: DF: 6.46+/-1.05 digits; DB: 5.62+/-1.26 digits; SS: 4.69+/-1.32 symbols. No correlation was found between the span level and the heart rate data (measured by pulse oximeter). As expected, DB elicited a broad activated area, in the bilateral VLPFC and the right DLPFC, whereas a more localised activation was observed over the right hemisphere during either DF (BA 10) or SS (BA 10 and 44). The robust involvement of the DLPFC during DB, compared to DF, is compatible with previous findings and with the key role of the central executive subserving in manipulating processes.

  11. Use of a Flexible Inflatable Multi-Channel Applicator for Vaginal Brachytherapy in the Management of Gynecologic Cancer

    Directory of Open Access Journals (Sweden)

    Samuel M Shin

    2015-09-01

    Full Text Available Introduction: Evaluate use of novel multi-channel applicator (MC CapriTM to improve vaginal disease coverage achievable by single-channel applicator (SC and comparable to Syed plan simulation. Material and Methods: 28 plans were evaluated from 4 patients with primary or recurrent gynecologic cancer in the vagina. Each received whole pelvis radiation, followed by 3 weekly treatments using HDR brachytherapy with a 13-channel MC. Upper vagina was treated to 5 mm depth to 1500 cGy/3 fractions with a simultaneous integrated boost totaling 2100 cGy/3 fractions to tumor. Modeling of SC and Syed plans was performed using MC scans for each patient. Dosimetry for MC and SC plans was evaluated for PTV700 cGy coverage, maximum dose to 2cm3 to bladder, rectum as well as mucosal surface points. Dosimetry for Syed plans was calculated for PTV700 cGy coverage. Patients were followed for treatment response and toxicity.Results: Dosimetric analysis between MC and SC plans demonstrated increased tumor coverage (PTV700 cGy, with decreased rectal, bladder, and contralateral vaginal mucosa dose in favor of MC. These differences were significant (p<0.05. Comparison of MC and Syed plans demonstrated increased tumor coverage in favor of Syed plans which were not significant (p=0.71. Patients treated with MC had no cancer recurrence or ≥ grade 3 toxicity.Conclusion: Use of MC was efficacious and safe, providing superior coverage of tumor volumes ≤1cm depth compared to SC and comparable to Syed implant. MC avoids excess dose to surrounding organs compared to SC, and potentially less morbidity than Syed implants. For tumors extending ≤1cm depth, use of MC represents an alternative to an interstitial implant.

  12. Multiple-animal MR imaging using a 3T clinical scanner and multi-channel coil for volumetric analysis in a mouse tumor model

    International Nuclear Information System (INIS)

    Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Fujii, Hirofumi; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru

    2011-01-01

    Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8 x 4 one-cm 2 grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195 x 0.195 x 1 mm 3 ). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm 3 , and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm 3 by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research. (author)

  13. Preparation of nanosize carbon powders by pulsed wire discharge

    Energy Technology Data Exchange (ETDEWEB)

    Minami, C.; Kinemuchi, Y.; Suzuki, T.; Suematsu, H.; Jiang, W.; Yatsui, K. [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan); Hirata, T.; Hatakeyama, R. [Tohoku Univ., Graduate School of Engineering, Sendai, Miyagi (Japan)

    2002-06-01

    Nanosize powders of carbons were tried to be synthesized by pulsed discharge of graphite wires in several kinds of ambient gases. When the wire was discharged in N{sub 2} gas, nanosize powders have been successfully produced. The result of X-ray diffraction analysis indicated that nanosize powders produced in N{sub 2} gas at 750 Torr were amorphous carbon containing glassy carbons, while mass-spectrum analysis demonstrated the production of fullerenes at 600 Torr. If the wire is discharged in Ar gas, dielectric breakdown takes place between electrodes, producing no carbon powders. (author)

  14. Redundancy or heterogeneity in the electric activity of the biceps brachii muscle? Added value of PCA-processed multi-channel EMG muscle activation estimates in a parallel-fibered muscle

    NARCIS (Netherlands)

    Staudenmann, D.; Stegeman, D.F.; van Dieen, J.H.

    2013-01-01

    Conventional bipolar EMG provides imprecise muscle activation estimates due to possibly heterogeneous activity within muscles and due to improper alignment of the electrodes with the muscle fibers. Principal component analysis (PCA), applied on multi-channel monopolar EMG yielded substantial

  15. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  16. 26 CFR 49.4252-7 - Wire and equipment service.

    Science.gov (United States)

    2010-04-01

    ... of illegal entry, fire, leakage, etc. (2) Wire lines or channels furnished between a point of origin... subscriber may obtain information as to a given condition at the remote point, such as water level, water pressure, gas pressure, etc. (4) Remote control wire lines or channels furnished between a remote point and...

  17. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  18. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    Science.gov (United States)

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  19. The first experience with LHC beam gas ionization monitor

    CERN Document Server

    Sapinski, M; Dehning, B; Guerrero, A; Patecki, M; Versteegen, R

    2012-01-01

    The Beam Gas Ionization Monitors (BGI) are used to measure beam emittance on LHC. This paper describes the detectors and their operation and discusses the issues met during the commissioning. It also discusses the various calibration procedures used to correct for non-uniformity of Multi-Channel plates and to correct the beam size for effects affecting the electron trajectory after ionization.

  20. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  1. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  2. GIFT-Grab: Real-time C++ and Python multi-channel video capture, processing and encoding API

    Directory of Open Access Journals (Sweden)

    Dzhoshkun Ismail Shakir

    2017-10-01

    Full Text Available GIFT-Grab is an open-source API for acquiring, processing and encoding video streams in real time. GIFT-Grab supports video acquisition using various frame-grabber hardware as well as from standard-compliant network streams and video files. The current GIFT-Grab release allows for multi-channel video acquisition and encoding at the maximum frame rate of supported hardware – 60 frames per second (fps. GIFT-Grab builds on well-established highly configurable multimedia libraries including FFmpeg and OpenCV. GIFT-Grab exposes a simplified high-level API, aimed at facilitating integration into client applications with minimal coding effort. The core implementation of GIFT-Grab is in C++11. GIFT-Grab also features a Python API compatible with the widely used scientific computing packages NumPy and SciPy. GIFT-Grab was developed for capturing multiple simultaneous intra-operative video streams from medical imaging devices. Yet due to the ubiquity of video processing in research, GIFT-Grab can be used in many other areas. GIFT-Grab is hosted and managed on the software repository of the Centre for Medical Image Computing (CMIC at University College London, and is also mirrored on GitHub. In addition it is available for installation from the Python Package Index (PyPI via the pip installation tool. Funding statement: This work was supported through an Innovative Engineering for Health award by the Wellcome Trust [WT101957], the Engineering and Physical Sciences Research Council (EPSRC [NS/A000027/1] and a National Institute for Health Research Biomedical Research Centre UCLH/UCL High Impact Initiative. Sébastien Ourselin receives funding from the EPSRC (EP/H046410/1, EP/J020990/1, EP/K005278 and the MRC (MR/J01107X/1. Luis C. García-Peraza-Herrera is supported by the EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging (EP/L016478/1.

  3. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  4. Wire chamber degradation at the Argonne ZGS

    International Nuclear Information System (INIS)

    Haberichter, W.; Spinka, H.

    1986-01-01

    Experience with multiwire proportional chambers at high rates at the Argonne Zero Gradient Synchrotron is described. A buildup of silicon on the sense wires was observed where the beam passed through the chamber. Analysis of the chamber gas indicated that the density of silicon was probably less than 10 ppM

  5. Cutting bubbles with a single wire

    NARCIS (Netherlands)

    Baltussen, M.W.; Segers, Q.I.E.; Kuipers, J.A.M.; Deen, N.G.

    2017-01-01

    Many gas-liquid-solid contactors, such as trickle bed and bubble slurry columns, suffer from heat and mass transfer limitations. To overcome these limitations, new micro-structured bubble column reactor is proposed. In this reactor, a catalyst coated wire mesh is introduced in a bubble column to cut

  6. Commercial and Industrial Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  7. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Pu, Minhao

    2010-01-01

    We comprehensively analyze multiple WDM channels RZ-to- NRZ format conversion using a single microring resonator. The scheme relies on simultaneous suppression of the first order harmonic components in the spectra of all the RZ channels. An optimized silicon microring resonator with free spectral...... range of 100 GHz and Q value of 7900 is designed and fabricated for this purpose. Multi-channel RZ-to-NRZ format conversion is demonstrated experimentally at 50 Gbit/s for WDM channels with 200 GHz channel spacing using the fabricated device. Bit error rate (BER)measurements show very good conversion...

  8. On the Efficiency of the Multi-Channel Analysis of Surface Wave Method for Shallow and Semi-Deep Loose Soil Layers

    Directory of Open Access Journals (Sweden)

    Kasgin Khaheshi Banab

    2010-01-01

    Full Text Available The multi-channel analysis of surface waves (MASWs method was used to obtain the shear wave velocity variations through near surface (depth 2,300 m/s is very large. The MASW velocity results compared with those of other geophysical approaches, such as seismic reflection/refraction methods and borehole data, where available, mostly confirming the capability of the MASW method to distinguish the high shear wave velocity contrast in the study area. We have found that, of the inversion procedures of MASW data, the random search inversion technique provides better results than the analytical generalized inversion method.

  9. Single Wire Detector Performance Over One Year of Operation

    CERN Document Server

    Hervas Aguilar, David Alberto

    2014-01-01

    Abstract When ionizing radiation passes through gas chambers in single wire detectors gas molecules separate into ions and electrons. By applying a strong localized electric field near the single wire an avalanche of electrons is created and it can be collected. The current produced in the wire is then proportional to the energy of the particle detected. Nevertheless, many factors can contribute to detector aging effects which are visible in a loss of gain caused by deposition of contaminants on the collecting wire. This study consists on novel data analysis techniques used to process large amounts of data produced by two simultaneously running single wire detectors. Aging effects are analyzed while environmental fluctuations are corrected for. A series of scripts carry out data filtering, data matching, corrections, and finally trend plotting by using ROOT’s extensive libraries developed at CERN.

  10. Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    Directory of Open Access Journals (Sweden)

    Koiprasert, H.

    2005-01-01

    Full Text Available Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings.

  11. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  13. Multi-channel ground-penetrating radar to explore spatial variations in thaw depth and moisture content in the active layer of a permafrost site

    Directory of Open Access Journals (Sweden)

    U. Wollschläger

    2010-08-01

    Full Text Available Multi-channel ground-penetrating radar (GPR was applied at a permafrost site on the Tibetan Plateau to investigate the influence of surface properties and soil texture on the late-summer thaw depth and average soil moisture content of the active layer. Measurements were conducted on an approximately 85 × 60 m2 sized area with surface and soil textural properties that ranged from medium to coarse textured bare soil to finer textured, sparsely vegetated areas covered with fine, wind blown sand, and it included the bed of a gravel road. The survey allowed a clear differentiation of the various units. It showed (i a shallow thaw depth and low average soil moisture content below the sand-covered, vegetated area, (ii an intermediate thaw depth and high average soil moisture content along the gravel road, and (iii an intermediate to deep thaw depth and low to intermediate average soil moisture content in the bare soil terrain. From our measurements, we found hypotheses for the permafrost processes at this site leading to the observed late-summer thaw depth and soil moisture conditions. The study clearly indicates the complicated interactions between surface and subsurface state variables and processes in this environment. Multi-channel GPR is an operational technology to efficiently study such a system at scales varying from a few meters to a few kilometers.

  14. Continuous Estimates of Surface Density and Annual Snow Accumulation with Multi-Channel Snow/Firn Penetrating Radar in the Percolation Zone, Western Greenland Ice Sheet

    Science.gov (United States)

    Meehan, T.; Marshall, H. P.; Bradford, J.; Hawley, R. L.; Osterberg, E. C.; McCarthy, F.; Lewis, G.; Graeter, K.

    2017-12-01

    A priority of ice sheet surface mass balance (SMB) prediction is ascertaining the surface density and annual snow accumulation. These forcing data can be supplied into firn compaction models and used to tune Regional Climate Models (RCM). RCMs do not accurately capture subtle changes in the snow accumulation gradient. Additionally, leading RCMs disagree among each other and with accumulation studies in regions of the Greenland Ice Sheet (GrIS) over large distances and temporal scales. RCMs tend to yield inconsistencies over GrIS because of sparse and outdated validation data in the reanalysis pool. Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) implemented multi-channel 500 MHz Radar in multi-offset configuration throughout two traverse campaigns totaling greater than 3500 km along the western percolation zone of GrIS. The multi-channel radar has the capability of continuously estimating snow depth, average density, and annual snow accumulation, expressed at 95% confidence (+-) 0.15 m, (+-) 17 kgm-3, (+-) 0.04 m w.e. respectively, by examination of the primary reflection return from the previous year's summer surface.

  15. Development of slew-rate-limited time-over-threshold (ToT) ASIC for a multi-channel silicon-based ion detector

    Science.gov (United States)

    Uenomachi, M.; Orita, T.; Shimazoe, K.; Takahashi, H.; Ikeda, H.; Tsujita, K.; Sekiba, D.

    2018-01-01

    High-resolution Elastic Recoil Detection Analysis (HERDA), which consists of a 90o sector magnetic spectrometer and a position-sensitive detector (PSD), is a method of quantitative hydrogen analysis. In order to increase sensitivity, a HERDA system using a multi-channel silicon-based ion detector has been developed. Here, as a parallel and fast readout circuit from a multi-channel silicon-based ion detector, a slew-rate-limited time-over-threshold (ToT) application-specific integrated circuit (ASIC) was designed, and a new slew-rate-limited ToT method is proposed. The designed ASIC has 48 channels and each channel consists of a preamplifier, a slew-rate-limited shaping amplifier, which makes ToT response linear, and a comparator. The measured equivalent noise charges (ENCs) of the preamplifier, the shaper, and the ToT on no detector capacitance were 253±21, 343±46, and 560±56 electrons RMS, respectively. The spectra from a 241Am source measured using a slew-rate-limited ToT ASIC are also reported.

  16. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  17. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  18. HAI: A novel airborne multi-channel hygrometer for fast multi-phase H2O quantification: Performance of the HAI instrument during the first flights on the German HALO aircraft

    Science.gov (United States)

    Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.

    2014-12-01

    Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.

  19. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  20. Multi-DSP and FPGA based Multi-channel Direct IF/RF Digital receiver for atmospheric radar

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Kamaraj, Pandian; Durga rao, Meka; Thriveni, A.

    2016-07-01

    Modern phased array radars depend highly on digital signal processing (DSP) to extract the echo signal information and to accomplish reliability along with programmability and flexibility. The advent of ASIC technology has made various digital signal processing steps to be realized in one DSP chip, which can be programmed as per the application and can handle high data rates, to be used in the radar receiver to process the received signal. Further, recent days field programmable gate array (FPGA) chips, which can be re-programmed, also present an opportunity to utilize them to process the radar signal. A multi-channel direct IF/RF digital receiver (MCDRx) is developed at NARL, taking the advantage of high speed ADCs and high performance DSP chips/FPGAs, to be used for atmospheric radars working in HF/VHF bands. Multiple channels facilitate the radar t be operated in multi-receiver modes and also to obtain the wind vector with improved time resolution, without switching the antenna beam. MCDRx has six channels, implemented on a custom built digital board, which is realized using six numbers of ADCs for simultaneous processing of the six input signals, Xilinx vertex5 FPGA and Spartan6 FPGA, and two ADSPTS201 DSP chips, each of which performs one phase of processing. MCDRx unit interfaces with the data storage/display computer via two gigabit ethernet (GbE) links. One of the six channels is used for Doppler beam swinging (DBS) mode and the other five channels are used for multi-receiver mode operations, dedicatedly. Each channel has (i) ADC block, to digitize RF/IF signal, (ii) DDC block for digital down conversion of the digitized signal, (iii) decoding block to decode the phase coded signal, and (iv) coherent integration block for integrating the data preserving phase intact. ADC block consists of Analog devices make AD9467 16-bit ADCs, to digitize the input signal at 80 MSPS. The output of ADC is centered around (80 MHz - input frequency). The digitized data is fed

  1. Optimization of arc-start performance by wire-feeding control for GMA welding

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jong Gu; Ryu, Gyeong Su; Rhee, Se Hun [Hanyang University, Seoul (Korea, Republic of); Kim, Dong Cheol; Kang, Mun Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Park, Young Whan [Pukyong National University, Busan (Korea, Republic of)

    2013-02-15

    The wire feeding system for gas metal arc welding usually consists of a wire feeder and a torch. In many industries, the distance between the wire feeder and the torch is generally 3 m to 5 m. In a conventional wire feeder, a direct current (DC) motor is used for wire feeding. However, a significant problem with this system is the impossibility of feedback control because of inner or outer impedance. In this paper, a digital wire feeder was developed by using a DC encoder motor and a push-pull torch. An optimized wire-feeding system was also developed by experiment. The welding process was observed using a high-speed camera. The resulting wire-feeding system exhibits low spatter generation and arc stability.

  2. A simple and highly selective 2,2-diferrocenylpropane-based multi-channel ion pair receptor for Pb(2+) and HSO4(-).

    Science.gov (United States)

    Wan, Qian; Zhuo, Ji-Bin; Wang, Xiao-Xue; Lin, Cai-Xia; Yuan, Yao-Feng

    2015-03-28

    A structurally simple, 2,2-diferrocenylpropane-based ion pair receptor 1 was synthesized and characterized by (1)H NMR, (13)C NMR, HRMS, elemental analyses, and single-crystal X-ray diffraction. The ion pair receptor 1 showed excellent selectivity and sensitivity towards Pb(2+) with multi-channel responses: a fluorescence enhancement (more than 42-fold), a notable color change from yellow to red, redox anodic shift (ΔE1/2 = 151 mV), while HSO4(-) promoted fluorescence enhancement when Pb(2+) or Zn(2+) was bonded to the cation binding-site. (1)H NMR titration and density functional theory were performed to reveal the sensing mechanism based on photo-induced electron transfer (PET).

  3. Investigating the astrophysical 22Ne(p, γ23Na and 22Mg(p, γ23Al reactions with a multi-channel scattering formalism

    Directory of Open Access Journals (Sweden)

    Fraser P. R.

    2014-03-01

    Full Text Available The reaction 22Ne(p, γ23Na is key to the NeNa cycle of stellar nucleogenesis, and better understanding of the 22Mg(p, γ23Al reaction is needed to understand the 22Na puzzle in ONe white dwarf novae. We aim to study these reactions using a multi-channel algebraic scattering (MCAS formalism for low-energy nucleon-nucleus scattering, recently expanded to investigate radiative capture. As a first step towards this goal, we here calculate the energy levels of the mass-23 (Ne, Mg, Na, Al nuclei. This is not only because the resonant structure of these nuclei are related to the astrophysical -rates of interest, but also because the interaction parameters determined for describing the energy levels are an integral part of the future calculation of the astrophysical reactions when using the MCAS scheme.

  4. The investigation of multi-channel splitters and big-bend waveguides based on 2D sunflower-typed photonic crystals

    Science.gov (United States)

    Liu, Wei; Sun, XiaoHong; Fan, QingBin; Wang, Shuai; Qi, YongLe

    2016-12-01

    Different kinds of multi-channel splitters and big-bend waveguides have been designed and investigated by using sunflower-typed photonic crystals. By comparing the transmission spectra of two kinds of 4-channels beam splitters, we find that "C" type splitter has a relative uniform splitting ratio for different channels in a certain wavelength range. Furthermore three types of waveguides with different bending degrees have been investigated. Except for a little loss in the short wavelength with the increase of the bending degrees, they have almost the same transmission spectra structures. The result can be extended to big-bend waveguides with arbitrary bending degrees. This research is valuable for developing new-typed integrated optical communication devices.

  5. Encoding of rat working memory by power of multi-channel local field potentials via sparse non-negative matrix factorization

    Institute of Scientific and Technical Information of China (English)

    Xu Liu; Tiao-Tiao Liu; Wen-Wen Bai; Hu Yi; Shuang-Yan Li; Xin Tian

    2013-01-01

    Working memory plays an important role in human cognition.This study investigated how working memory was encoded by the power of multi-channel local field potentials (LFPs) based on sparse nonnegative matrix factorization (SNMF).SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four Sprague-Dawley rats during a memory task in a Y maze,with 10 trials for each rat.Then the power-increased LFP components were selected as working memory-related features and the other components were removed.After that,the inverse operation of SNMF was used to study the encoding of working memory in the timefrequency domain.We demonstrated that theta and gamma power increased significantly during the working memory task.The results suggested that postsynaptic activity was simulated well by the sparse activity model.The theta and gamma bands were meaningful for encoding working memory.

  6. Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device

    KAUST Repository

    Ma, W.

    2013-04-01

    Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution. © 2013 IEEE.

  7. Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device

    KAUST Repository

    Ma, W.; Liu, D.; Shagoshtasbi, H.; Shukla, A.; Nugroho, E. S.; Zohar, Y.; Lee, Y.-K.

    2013-01-01

    Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution. © 2013 IEEE.

  8. Gaseous discharge display panel including pilot electrodes and radioactive wire

    International Nuclear Information System (INIS)

    Edwards, R.J.; Hairabedian, B.Z.; Poley, N.M.

    1975-01-01

    In a plasma display panel consisting of gas enclosed between adjacent insulating members, a light source is used to supply charged particles in the gas to permit firing of the gas when coordinate conductors identifying a site location are energized. The use of such pilot lamps facilitates ignition in firing with uniform selection and firing potentials within all sites of the display panel. To eliminate the difficulty in achieving firing during cold starts a radioactive source comprised of a copper wire electroplated with nickel 63 and overcoated with a protective coat of nickel is placed within the gas panel to provide a source of free electrons. The wire is held in place by friction against the inside walls of the panel. Since the wire emits only beta radiation, no radiation hazard exists externally to the panel

  9. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  10. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives

    Science.gov (United States)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall

    2017-06-01

    Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real

  11. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton.

    Science.gov (United States)

    Grimm, Florian; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement.

  12. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton

    Science.gov (United States)

    Grimm, Florian; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement. PMID:27445658

  13. Effects on humans elicited by inhaling the fragrance of essential oils: sensory test, multi-channel thermometric study and forehead surface potential wave measurement on basil and peppermint.

    Science.gov (United States)

    Satoh, Tomoko; Sugawara, Yoshiaki

    2003-01-01

    The effects on humans inhaling the fragrance of essential oils were examined in terms of a sensory test, a multi-channel skin thermometer study and a portable forehead surface electroencephalographic (IBVA-EEG) measurement. The essential oils examined in this study were those of basil and peppermint, because our previous sensory test had indicated an opposite effect of these essential oils when mental work was undertaken; the inhalation of basil produced a more favorable impression after work than before work, whereas peppermint produced an unfavorable impression under these circumstances. For subjects administered basil or peppermint before and after mental work using an inhalator, a series of multi-channel skin thermometer studies and IBVA-EEG measurements were conducted. Using such paired odorants, our results showed that when compared between before and after mental work assigned to subjects: (1) the inhalation of basil, in which a favorable impression was predominant on the whole in terms of the sensory evaluation spectrum, was shown to be associated upward tendency in finger-tip skin temperature; (2) whereas these situations were opposite in the case of peppermint, in which the reversed (unfavorable) feature in sensory profiling was accompanied by a decrease in the magnitude of beta waves and a decrease in the finger-tip skin temperature both based on Welch's method, even at p < 0.01, implying a decreasing propensity of the aroused state and of the arousal response. The elucidation of such sensory and physiological endpoints of paired odorants would be of primary importance for human chemoreception science, because these are only rarely recorded during the same experiments, and this paradigm is highly informative about non-verbal responses to odorants.

  14. SU-G-TeP2-07: Dosimetric Characterization of a New HDR Multi-Channel Esophageal Applicator for Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, A; Gao, S; Greskovich, J; Wilkinson, D [Cleveland Clinic, Cleveland, OH (United States); Diener, T [Cleveland State University, Cleveland, OH (United States)

    2016-06-15

    Purpose: To characterize the dose distribution of a new multi-channel esophageal applicator for brachytherapy HDR treatment, and particularly the effect of the presence of air or water in the applicator’s expansion balloon. Methods: A new multi-channel (6) inflatable applicator for esophageal HDR has been developed in house and tested in a simple water phantom. CT image sets were obtained under several balloon expansions (80ml of air, 50 cc of water), and channel loadings and used with the Oncentra (Elekta) planning system based on TG43 formalism. 400 cGy was prescribed to a plane 1cm away from the applicator. Planar dose distributions were measured for that plane and one next to the applicator using Gafchromic EBT3 film and scanned by a Vidar VXR-12 film digitizer. Film and TPS generated dose distributions of film were sent to OmniPro I’mRT (iba DOSIMETRY) for analysis. 2D dose profiles in both X and Y directions were compared and gamma analysis performed. Results: Film dose measurement of the air-inflated applicator is lower than the TPS calculated dose by as much as 60%. Only 80.8% of the pixels passed the gamma criteria (3%/3mm). For the water-inflated applicator, the measured film dose is fairly close to the TPS calculated dose (typically within <3%). 99.84% of the pixels passed the gamma criteria (3%/3mm). Conclusion: TG43 based calculations worked well when water was used in the expansion balloon. However, when air is present in that balloon, the neglect of heterogeneity corrections in the TG43 calculation results in large differences between calculated and measured doses. This could result in severe underdosing when used in a patient. This study illustrates the need for a TPS with an advanced algorithm which can account for heterogeneity. Supported by Innovations Department, Cleveland Clinic.

  15. Reduced but broader prefrontal activity in patients with schizophrenia during n-back working memory tasks: a multi-channel near-infrared spectroscopy study.

    Science.gov (United States)

    Koike, Shinsuke; Takizawa, Ryu; Nishimura, Yukika; Kinou, Masaru; Kawasaki, Shingo; Kasai, Kiyoto

    2013-09-01

    Caudal regions of the prefrontal cortex, including the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex, are involved in essential cognitive functions such as working memory. In contrast, more rostral regions, such as the frontopolar cortex (FpC), have integrative functions among cognitive functions and thereby contribute crucially to real-world social activity. Previous functional magnetic resonance imaging studies have shown patients with schizophrenia had different DLPFC activity pattern in response to cognitive load changes compared to healthy controls; however, the spatial relationship between the caudal and rostral prefrontal activation has not been evaluated under less-constrained conditions. Twenty-six patients with schizophrenia and 26 age-, sex-, and premorbid-intelligence-matched healthy controls participated in this study. Hemodynamic changes during n-back working memory tasks with different cognitive loads were measured using multi-channel near-infrared spectroscopy (NIRS). Healthy controls showed significant task-related activity in the bilateral VLPFC and significant task-related decreased activity in the DLPFC, with greater signal changes when the task required more cognitive load. In contrast, patients with schizophrenia showed activation in the more rostral regions, including bilateral DLPFC and FpC. Neither decreased activity nor greater activation in proportion to elevated cognitive load occurred. This multi-channel NIRS study demonstrated that activation intensity did not increase in patients with schizophrenia associated with cognitive load changes, suggesting hypo-frontality as cognitive impairment in schizophrenia. On the other hand, patients had broader prefrontal activity in areas such as the bilateral DLPFC and FpC regions, thus suggesting a hyper-frontality compensatory response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Visible emission from exploding wire in water

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Prukner, Václav; Schmidt, Jiří; Koláček, Karel; Štraus, Jaroslav; Frolov, Oleksandr

    2007-01-01

    Roč. 53, č. 10 (2007), s. 53-53 ISSN 0003-0503. [The 61st Annual Gaseous Electronic Conference. Dallas,Texas, 13.10.2008-17.10.2008] R&D Projects: GA ČR GA202/06/1324 Institutional research plan: CEZ:AV0Z20430508 Keywords : Exploding wire * emission Subject RIV: BL - Plasma and Gas Discharge Physics

  17. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  18. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  19. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  20. Hot wire TIG temper bead welding for nuclear repairs

    International Nuclear Information System (INIS)

    Lambert, J.A.; Gilston, P.F.

    1989-08-01

    A preliminary assessment has been carried out to determine the suitability of the hot wire tungsten inert gas (TIG) welding process for the repair of thick section, ferritic steel nuclear pressure vessels. The objective has been to identify a hot wire TIG temper bead procedure, suitable for repairs without post weld heat treatment. This procedure involves depositing two weld layers with carefully selected welding parameters such that overlapping thermal cycles produce a refined and tempered heat affected zone, HAZ, microstructure. (author)

  1. Wired vs. Wireless.

    Science.gov (United States)

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  2. A World without Wires

    Science.gov (United States)

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  3. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  4. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  5. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  6. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  7. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  8. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber

    Science.gov (United States)

    Gundersen, Cynthia; Hoffman, Christopher; Munoz, Bruno; Steohenson, Timothy; Thomas, Walter

    2008-01-01

    In support of the GPS for the SAM instrument suite built by GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr wire, 0.0056 inches in diameter, for use as a heater element for the carbon dioxide scrubber. The wire would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The wire also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni-20Cr in low pressure CO2, together with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the wire reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  9. Preliminary Interpretations of Multi-Channel Seismic Reflection and Magnetic Data on North Anatolian Fault (NAF) in the Eastern Marmara Region, Turkey

    Science.gov (United States)

    Gözde Okut Toksoy, Nigar; Kurt, Hülya; İşseven, Turgay

    2017-04-01

    The North Anatolian Fault (NAF) is 1600 km long, right lateral strike-slip fault nearly E-W elongated between Karlıova in the east and Saros Gulf in the west. NAF splays into two major strands near the west of Bolu city as Northern and Southern strands. Northern strand passes Sapanca Lake and extends towards west and reaches Marmara Sea through the Gulf of Izmit. The area has high seismicity; 1999 Kocaeli (Mw=7.4) and 1999 Düzce (Mw=7.2) earthquakes caused approximately 150 km long surface rupture between the Gulf of Izmit and Bolu. The rupture has four distinct fault segments as Gölcük, Sapanca, Sakarya, and Karadere from west to east. In this study multi-channel seismic and magnetic data are collected for the first time on the Sapanca Segment to investigate the surficial and deeper geometry of the NAF. Previously, the NAF in the eastern Marmara region is investigated using by paleo-seismological data from trenches on the surface rupture of fault or the geomorphological data (Lettis et al., 2000; Dikbaş and Akyüz, 2010) which have shallower depth targets. Crustal structure and seismic velocities for Central Anatolia and eastern Marmara regions are obtained from deeper targeted refraction data (Gürbüz et al., 1992). However, their velocity models do not have the spatial resolution to determine details of the fault zone structure. Multi-channel seismic and magnetic data in this study were acquired on two N-S directed profiles crossing NAF perpendicularly near Kartepe on the western part of the Sapanca Lake in October 2016. The receiver interval is 5 m, shot interval is 5-10 m, and the total length of the profiles are approximately 1400 m. Buffalo Gun is used as a seismic source for deeper penetration. Conventional seismic reflection processing steps are applied to the data. These are geometry definition, editing, filtering, static correction, velocity analysis and deconvolution, stacking and migration. Echos seismic software package in Geophysical Department

  10. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  11. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  12. Twisting wire scanner

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-15

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  13. Twisting wire scanner

    International Nuclear Information System (INIS)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-01

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  14. Development of halogen-free, heat-resistant, low-voltage wire for automotive use

    International Nuclear Information System (INIS)

    Ueno, Keiji; Suzuki, Sizuo; Takahagi, Masatoshi; Uda, Ikujiro

    1995-01-01

    The environmental load of our motorized society is of major concern, and includes considerations of recycling of automotive parts as the industrial wastes. The total average length of AV, AVX (electrical wire insulated with PVC, cross-linked PVC), and AEX (electrical wire insulated with cross-linked polyolefin) wires required for the harnesses in modern automobiles is approximately 2,000-3,000 meters per unit. However these electrical wires contain a large amount of halogen, which can generate the smoke and corrosive gas. In response to this problem the authors have developed the electron beam irradiated halogen-free, heat-resistant, low-voltage electrical wire which does not contain any halogen based polymer or flame retardants. The developed wire features the reliability equivalent to AEX wire with minimum environmental load. (Author)

  15. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  16. Submerged-arc wire electrodes with nickel-plated surfaces

    International Nuclear Information System (INIS)

    Hagen, H. vom.

    1976-01-01

    The article reports on the development of SANWELD welding rods at GARHYTTAN's which is a wire free of impurities, copper, and hydrogen with a nickel surface. It is producted according to the SANBOND process. The wire has an optimum of mechanical quality grades depending on the powder used for welding, especially an improvement of notch impact strength. The elongation, especially the long-time values, are improved, hydrogen cracks are excluded depending on the correct powder or protective gas, and the low-temparature values are improved. An attendant phenomenon, which is not unimportant, is that the wires are practically corrosion-resistant in the non-welded state. The wire is suitable for submerged-arc welding in steam boilers and pressure vessels. (IHoe) [de

  17. Preliminary Single-Phase Mixing Test using Wire Mesh System in a wire-wrapped 37-rod Bundle

    International Nuclear Information System (INIS)

    Bae, Hwang; Kim, Hyungmo; Lee, Dong Won; Choi, Hae Seob; Choi, Sun Rock; Chang, Seokkyu; Kim, Seok; Euh, Dongjin; Lee, Hyeongyeon

    2014-01-01

    In this paper, preliminary tests of the wire-mesh sensor are introduced before measuring of mixing coefficient in the wire-wrapped 37-pin fuel assembly for a sodium-cooled fast reactor. Through this preliminary test, it was confirmed that city water can be used as a tracer for demineralized water as a base. A simple test was performed to evaluate the characteristics of a wire mesh with of a short pipe shape. The conductivity of de-mineralized water and city water is linearly increased for the limited temperature ranges as the temperature is increased. The reliability of the wire mesh sensor was estimated based on the averages and standard deviations of the plane image using the cross points. A wire mesh sensor is suitable to apply to a single-phase flow measurement for a mixture with de-mineralized water and city water. A wire mesh sensor and system have been traditionally used to measure the void fraction of a two-phase flow field with gas and liquid. Recently, Ylonen et al. successfully designed and commissioned a measurement system for a single-phase flow using a wire mesh sensor

  18. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-01-01

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO 2 ) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO 2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO 2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P 2 and tHb

  19. A multi-channel low-power system-on-chip for single-unit recording and narrowband wireless transmission of neural signal.

    Science.gov (United States)

    Bonfanti, A; Ceravolo, M; Zambra, G; Gusmeroli, R; Spinelli, A S; Lacaita, A L; Angotzi, G N; Baranauskas, G; Fadiga, L

    2010-01-01

    This paper reports a multi-channel neural recording system-on-chip (SoC) with digital data compression and wireless telemetry. The circuit consists of a 16 amplifiers, an analog time division multiplexer, an 8-bit SAR AD converter, a digital signal processor (DSP) and a wireless narrowband 400-MHz binary FSK transmitter. Even though only 16 amplifiers are present in our current die version, the whole system is designed to work with 64 channels demonstrating the feasibility of a digital processing and narrowband wireless transmission of 64 neural recording channels. A digital data compression, based on the detection of action potentials and storage of correspondent waveforms, allows the use of a 1.25-Mbit/s binary FSK wireless transmission. This moderate bit-rate and a low frequency deviation, Manchester-coded modulation are crucial for exploiting a narrowband wireless link and an efficient embeddable antenna. The chip is realized in a 0.35- εm CMOS process with a power consumption of 105 εW per channel (269 εW per channel with an extended transmission range of 4 m) and an area of 3.1 × 2.7 mm(2). The transmitted signal is captured by a digital TV tuner and demodulated by a wideband phase-locked loop (PLL), and then sent to a PC via an FPGA module. The system has been tested for electrical specifications and its functionality verified in in-vivo neural recording experiments.

  20. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    Science.gov (United States)

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  1. Imaging observations of nighttime mid-latitude F-region field-aligned irregularities by an MU radar ultra-multi-channel system

    Directory of Open Access Journals (Sweden)

    S. Saito

    2008-08-01

    Full Text Available Mid-latitude F-region field-aligned irregularities (FAIs were studied by using the middle-and-upper atmosphere (MU radar ultra-multi-channel system with the radar imaging technique. On 12 June 2006, F-region FAI echoes with a period of about one hour were observed intermittently. These echoes were found to be embedded in medium-scale traveling ionospheric disturbances (MSTIDs observed as variations of total electron content (TEC. The echoes drifting away from (toward the radar were observed in the depletion (enhancement phase of the MSTID. The Doppler velocity of the echoes is consistent with the range rates in the the range-time-intensity (RTI maps. Fine scale structures with a spatial scale of 10 km or less were found by the radar imaging analysis. Those structures with positive Doppler velocities (moving away from the radar appeared to drift north- (up- westward, and those with negative Doppler velocities south- (down- eastward approximately along the wavefronts of the MSTID. FAIs with positive Doppler velocities filling TEC depletion regions were observed.

  2. The EarthScope Array Network Facility: application-driven low-latency web-based tools for accessing high-resolution multi-channel waveform data

    Science.gov (United States)

    Newman, R. L.; Lindquist, K. G.; Clemesha, A.; Vernon, F. L.

    2008-12-01

    Since April 2004 the EarthScope USArray seismic network has grown to over 400 broadband stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. Providing secure, yet open, access to real-time and archived data for a broad range of audiences is best served by a series of platform agnostic low-latency web-based applications. We present a framework of tools that interface between the world wide web and Boulder Real Time Technologies Antelope Environmental Monitoring System data acquisition and archival software. These tools provide audiences ranging from network operators and geoscience researchers, to funding agencies and the general public, with comprehensive information about the experiment. This ranges from network-wide to station-specific metadata, state-of-health metrics, event detection rates, archival data and dynamic report generation over a stations two year life span. Leveraging open source web-site development frameworks for both the server side (Perl, Python and PHP) and client-side (Flickr, Google Maps/Earth and jQuery) facilitates the development of a robust extensible architecture that can be tailored on a per-user basis, with rapid prototyping and development that adheres to web-standards.

  3. Segmentation and profiling consumers in a multi-channel environment using a combination of self-organizing maps (SOM method, and logistic regression

    Directory of Open Access Journals (Sweden)

    Seyed Ali Akbar Afjeh

    2014-05-01

    Full Text Available Market segmentation plays essential role on understanding the behavior of people’s interests in purchasing various products and services through various channels. This paper presents an empirical investigation to shed light on consumer’s purchasing attitude as well as gathering information in multi-channel environment. The proposed study of this paper designed a questionnaire and distributed it among 800 people who were at least 18 years of age and had some experiences on purchasing goods and services on internet, catalog or regular shopping centers. Self-organizing map, SOM, clustering technique was performed based on consumer’s interest in gathering information as well as purchasing products through internet, catalog and shopping centers and determined four segments. There were two types of questions for the proposed study of this paper. The first group considered participants’ personal characteristics such as age, gender, income, etc. The second group of questions was associated with participants’ psychographic characteristics including price consciousness, quality consciousness, time pressure, etc. Using multinominal logistic regression technique, the study determines consumers’ behaviors in each four segments.

  4. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: design and optimization of bioluminescent bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Thomas; Durand, Marie-Jose; Jouanneau, Sulivan; Thouand, Gerald [UMR CNRS 6144 GEPEA, CBAC, Nantes University, PRES UNAM, Campus de la Courtaisiere-IUT, La Roche-sur-Yon cedex (France); Dion, Michel [UMR CNRS 6204, Nantes University, PRES UNAM, Biotechnologie, Biocatalyse, Bioregulation, 2, Rue de la Houssiniere, BP 92208, Nantes cedex 3 (France); Pernetti, Mimma; Poncelet, Denis [ONIRIS-ENITIAA, UMR CNRS GEPEA, Rue de la Geraudiere, BP 82225, Nantes cedex 3 (France)

    2011-05-15

    This study describes the construction of inducible bioluminescent strains via genetic engineering along with their characterization and optimization in the detection of heavy metals. Firstly, a preliminary comparative study enabled us to select a suitable carbon substrate from pyruvate, glucose, citrate, diluted Luria-Bertani, and acetate. The latter carbon source provided the best induction ratios for comparison. Results showed that the three constructed inducible strains, Escherichia coli DH1 pBzntlux, pBarslux, and pBcoplux, were usable when conducting a bioassay after a 14-h overnight culture at 30 C. Utilizing these sensors gave a range of 12 detected heavy metals including several cross-detections. Detection limits for each metal were often close to and sometimes lower than the European standards for water pollution. Finally, in order to maintain sensitive bacteria within the future biosensor-measuring cell, the agarose immobilization matrix was compared to polyvinyl alcohol (PVA). Agarose was selected because the detection limits of the bioluminescent strains were not affected, in contrast to PVA. Specific detection and cross-detection ranges determined in this study will form the basis of a multiple metals detection system by the new multi-channel Lumisens3 biosensor. (orig.)

  5. Biodegradation of a commercial mixture of the herbicides atrazine and S-metolachlor in a multi-channel packed biofilm reactor.

    Science.gov (United States)

    Cabrera-Orozco, Alberto; Galíndez-Nájera, Silvia Patricia; Ruiz-Ordaz, Nora; Galíndez-Mayer, Juvencio; Martínez-Jerónimo, Fernando

    2017-11-01

    Atrazine and S-metolachlor are two of the most widely used herbicides for agricultural purposes; consequently, residues of both compounds and their metabolites had been detected in ground and superficial waters. Unlike atrazine, the complete degradation of metolachlor has not been achieved. Hence, the purpose of this research is to study the biodegradation of a commercial mixture of atrazine and S-metolachlor in a prototype of a multi-channel packed-bed-biofilm reactor (MC-PBR) designed with the aim of solving the problems of pressure drop and oxygen transfer, typically found on this type of bioreactors.Because the removal efficiency of the herbicides was increased when Candida tropicalis was added to the original microbial community isolated, the reactor was inoculated with this enriched community. The operational conditions tested in batch and continuous mode did not affect the removal efficiency of atrazine; however, this was not the case for S-metolachlor. The removal rates and efficiencies showed a notable variation along the MC-PBR operation.

  6. 12.5 Gb/s multi-channel broadcasting transmission for free-space optical communication based on the optical frequency comb module.

    Science.gov (United States)

    Tan, Jun; Zhao, Zeping; Wang, Yuehui; Zhang, Zhike; Liu, Jianguo; Zhu, Ninghua

    2018-01-22

    A wide-spectrum, ultra-stable optical frequency comb (OFC) module with 100 GHz frequency intervals based on a quantum dot mode locked (QDML) laser is fabricated by our lab, and a scheme with 12.5 Gb/s multi-channel broadcasting transmission for free-space optical (FSO) communication is proposed based on the OFC module. The output power of the OFC is very stable, with the specially designed circuit and the flatness of the frequency comb over the span of 6 nm, which can be limited to 1.5 dB. Four channel wavelengths are chosen to demonstrate one-to-many channels for FSO communication, like optical wireless broadcast. The outdoor experiment is established to test the bit error rate (BER) and eye diagrams with 12.5 Gb/s on-off keying (OOK). The indoor experiment is used to test the highest traffic rate, which is up to 21 Gb/s for one-hop FSO communication. To the best of our knowledge, this scheme is the first to propose the realization of one-to-many broadcasting transmission for FSO communication based on the OFC module. The advantages of integration, miniaturization, channelization, low power consumption, and unlimited bandwidth of one-to-many broadcasting communication scheme, shows promising results on constructing the future space-air-ground-ocean (SAGO) FSO communication networks.

  7. The design of the layout of faceted multi-channel electro-optical spatial coordinates measuring instrument for point-like bright objects

    Science.gov (United States)

    Repin, Vladislav A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2017-06-01

    For many applied problems it is necessary to obtain information about the situation in a wide angular field in order to measure various parameters of objects: their spatial coordinates, instantaneous velocities, and so on. In this case, one interesting bionic approach can be used - a mosaic (or discrete, otherwise, facet) angular field. Such electro-optical system constructively imitates the visual apparatus of insects: many photodetectors like ommatidia (elements of the facet eye structure) are located on a non-planar surface. Such devices can be used in photogrammetry and aerial photography systems (if the space is sufficient), in the transport sector as vehicle orientation organs, as systems for monitoring in unmanned aerial vehicles, in endoscopy for obtaining comprehensive information on the state of various cavities, in intelligent robotic systems. In this manuscript discusses the advantages and disadvantages of multi-channeled optoelectronic systems with a mosaic angular field, presents possible options for their use, and discusses some of the design procedures performed when developing a layout of a coordinate measuring device.

  8. Right wire in orthodontics: a review

    OpenAIRE

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  9. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  10. Evidence for length-dependent wire expansion, filament dedensification and consequent degradation of critical current density in Ag-alloy sheathed Bi-2212 wires

    International Nuclear Information System (INIS)

    Malagoli, A; Lee, P J; Jiang, J; Trociewitz, U P; Hellstrom, E E; Larbalestier, D C; Ghosh, A K; Scheuerlein, C; Di Michiel, M

    2013-01-01

    It is well known that longer Bi-2212 conductors have significantly lower critical current density (J c ) than shorter ones, and recently it has become clear that a major cause of this reduction is internal gas pressure generated during heat treatment, which expands the wire diameter and dedensifies the Bi-2212 filaments. Here we report on the length-dependent expansion of 5–240 cm lengths of state-of-the-art, commercial Ag alloy sheathed Bi-2212 wire after full and some partial heat treatments. Detailed image analysis along the wire length shows that the wire diameter increases with distance from the ends, longer samples often showing evident damage and leaks provoked by the internal gas pressure. Comparison of heat treatments carried out just below the melting point and with the usual melt process makes it clear that melting is crucial to developing high internal pressure. The decay of J c away from the ends is directly correlated to the local wire diameter increase, which decreases the local Bi-2212 filament mass density and lowers J c , often by well over 50%. It is clear that control of the internal gas pressure is crucial to attaining the full J c of these very promising round wires and that the very variable properties of Bi-2212 wires are due to the fact that this internal gas pressure has so far not been well controlled. (paper)

  11. Wire communication engineering

    International Nuclear Information System (INIS)

    Son, Byeong Tae

    1997-02-01

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  12. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  13. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  14. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  15. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  16. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  17. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  18. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  19. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  20. SCOTCH: a program for solution of the one-dimensional, two-group, space-time neutron diffusion equations with temperature feedback of multi-channel fluid dynamics for HTGR cores

    International Nuclear Information System (INIS)

    Ezaki, Masahiro; Mitake, Susumu; Ozawa, Tamotsu

    1979-06-01

    The SCOTCH program solves the one-dimensional (R or Z), two-group reactor kinetics equations with multi-channel temperature transients and fluid dynamics. Sub-program SCOTCH-RX simulates the space-time neutron diffusion in radial direction, and sub-program SCOTCH-AX simulates the same in axial direction. The program has about 8,000 steps of FORTRAN statement and requires about 102 kilo-words of computer memory. (author)

  1. Plated nickel wire mesh makes superior catalyst bed

    Science.gov (United States)

    Sill, M.

    1965-01-01

    Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.

  2. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Thomas; Thouand, Gerald [UMR CNRS 6144 GEPEA, CBAC, Nantes University, PRES UNAM, Campus de la Courtaisiere-IUT, La Roche-sur-Yon cedex (France); Chapeau, Cyrille [Biolumine, Biokar Diagnostic, Rue des Quarante Mines ZAC de Ther-Allonne, Beauvais Cedex (France); Bendria, Loubna; Daniel, Philippe [UMR CNRS 6087 LPEC, Universite du Maine, Av Olivier Messiaen, Le Mans cedex 9 (France); Picart, Pascal [UMR CNRS 6613 IAM-LAUM, Ecole Nationale des Ingenieurs du Mans, Universite du Maine, Le Mans Cedex 9 (France)

    2011-05-15

    This research study deals with the on-line detection of heavy metals and toxicity within the context of environmental pollution monitoring. It describes the construction and the proof of concept of a multi-channel bioluminescent bacterial biosensor in immobilized phase: Lumisens3. This new versatile device, designed for the non-stop analysis of water pollution, enables the insertion of any bioluminescent strains (inducible or constitutive), immobilized in a multi-well removable card. The technical design of Lumisens3 has benefited from both a classical and a robust approach and includes four main parts: (1) a dedicated removable card contains 64 wells, 3 mm in depth, arranged in eight grooves within which bacteria are immobilized, (2) this card is incubated on a Pelletier block with a CCD cooled camera on top for bioluminescence monitoring, (3) a fluidic network feeds the card with the sample to be analyzed and finally (4) a dedicated computer interface, BIOLUX 1.0, controls all the elements of the biosensor, allowing it to operate autonomously. The proof of concept of this biosensor was performed using a set of four bioluminescent bacteria (Escherichia coli DH1 pBzntlux, pBarslux, pBcoplux, and E. coli XL1 pBfiluxCDABE) in the on-line detection of CdCl{sub 2} 0.5 {mu}M and As{sub 2}O{sub 3} 5 {mu}M from an influent. When considering metals individually, the ''fingerprints'' from the biosensor were as expected. However, when metals were mixed together, cross reaction and synergistic effects were detected. This biosensor allowed us to demonstrate the simultaneous on-line cross detection of one or several heavy metals as well as the measurement of the overall toxicity of the sample. (orig.)

  3. Acquisition and preliminary analysis of multi-channel seismic reflection data, acquired during the oceanographic cruises of the TOMO-ETNA experiment

    Directory of Open Access Journals (Sweden)

    Marco Firetto Carlino

    2016-09-01

    Full Text Available The TOMO-ETNA experiment was performed in the framework of the FP7 “MED-SUV” (MEDiterranean SUpersite Volcanoes in order to gain a detailed geological and structural model of the continental and oceanic crust concerning Etna and Aeolian Islands volcanoes (Sicily, Italy, by means of active and passive seismic exploration methodologies. Among all data collected, some 1410 km of marine multi-channel seismic (MCS reflection profiles were acquired in the Ionian and Tyrrhenian Seas during two of the three oceanographic cruises of the TOMO-ETNA experiment, in July and November 2014, with the aim of shading light to deep, intermediate and shallow stratigraphy and crustal structure of the two above mentioned areas. The MCS sections, targeted to deep exploration, were acquired during the oceanographic cruise on board the R/V “Sarmiento de Gamboa”, using an active seismic source of 16 air-guns, for a total volume of 4340 cu. in., and a 3000 m long, 240-channels digital streamer as receiving system. High-resolution seismic profiles were instead collected through the R/V “Aegaeo”, using two smaller air-guns (overall 270 cu. in. volume and a 96 channels, 300 m long digital streamer. This paper provides a detailed description of the acquisition parameters and main processing steps adopted for the MCS data. Some processed lines are shown and preliminarily interpreted, to highlight the overall good quality and the high potential of the MCS sections collected during the TOMO-ETNA experiment.

  4. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system.

    Science.gov (United States)

    Bombelli, Paolo; Zarrouati, Marie; Thorne, Rebecca J; Schneider, Kenneth; Rowden, Stephen J L; Ali, Akin; Yunus, Kamran; Cameron, Petra J; Fisher, Adrian C; Ian Wilson, D; Howe, Christopher J; McCormick, Alistair J

    2012-09-21

    Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all

  5. Enhancement of absorption and resistance of motion utilizing a multi-channel opto-electronic sensor to effectively monitor physiological signs during sport exercise

    Science.gov (United States)

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente; Barrett, Laura; Esliger, Dale; Hayes, Matthew; Akbare, Shafique; Achart, Jérôme; Kuoch, Sylvain

    2015-03-01

    This study presents an effective engineering approach for human vital signs monitoring as increasingly demanded by personal healthcare. The aim of this work is to study how to capture critical physiological parameters efficiently through a well-constructed electronic system and a robust multi-channel opto-electronic patch sensor (OEPS), together with a wireless communication. A unique design comprising multi-wavelength illumination sources and a rapid response photo sensor with a 3-axis accelerometer enables to recover pulsatile features, compensate motion and increase signal-to-noise ratio. An approved protocol with designated tests was implemented at Loughborough University a UK leader in sport and exercise assessment. The results of sport physiological effects were extracted from the datasets of physical movements, i.e. sitting, standing, waking, running and cycling. t-test, Bland-Altman and correlation analysis were applied to evaluate the performance of the OEPS system against Acti-Graph and Mio-Alpha.There was no difference in heart rate measured using OEPS and both Acti-Graph and Mio-Alpha (both p<0.05). Strong correlations were observed between HR measured from the OEPS and both the Acti-graph and Mio-Alpha (r = 0.96, p<0.001). Bland-Altman analysis for the Acti-Graph and OEPS found the bias 0.85 bpm, the standard deviation 9.20 bpm, and the limits of agreement (LOA) -17.18 bpm to +18.88 bpm for lower and upper limits of agreement respectively, for the Mio-Alpha and OEPS the bias is 1.63 bpm, standard deviation SD8.62 bpm, lower and upper limits of agreement, - 15.27 bpm and +18.58 bpm respectively. The OEPS demonstrates a real time, robust and remote monitoring of cardiovascular function.

  6. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  7. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  8. Visualizing multi-channel networks

    DEFF Research Database (Denmark)

    Antemijczuk, Paweł; Magiera, Marta; Jørgensen, Sune Lehmann

    2014-01-01

    In this paper, we propose a visualization to illustrate social interactions, built from multiple distinct channels of communication. The visualization displays a summary of dense personal information in a compact graphical notation. The starting point is an abstract drawing of a spider’s web. Below...

  9. Control wiring diagrams

    International Nuclear Information System (INIS)

    McCauley, T.M.; Eskinazi, M.; Henson, L.L.

    1989-01-01

    This paper discusses the changes in electrical document requirements that occur when construction is complete and a generating station starts commercial operation. The needs of operations and maintenance (O and M) personnel are analyzed and contrasted with those of construction to illustrate areas in which the construction documents (drawings, diagrams, and databases) are difficult to use for work at an operating station. The paper discusses the O and M electrical documents that the Arizona Nuclear Power Project (ANPP) believes are most beneficial for the three operating units at Palo Verde; these are control wiring diagrams and an associated document cross-reference list. The benefits offered by these new, station O and M-oriented documents are weighted against the cost of their creation and their impact on drawing maintenance

  10. Electroplated superconducting wire

    International Nuclear Information System (INIS)

    Peger, C.H.

    1991-01-01

    A hard chromium solution has been considered the least efficient of all plating solutions. This is not exactly true if the correct plating conditions are used. The accepted efficiency is only 12% but that is only true for the parameters that were used long ago to make the determination. At 12% efficiency it would be impossible to plate Superconductor wire. The world's chromium plating shops have been plating at a .001 (.025u) per hour rate since the turn of the century. Shops in the Cleveland, Ohio area have been limiting their plating rate to .006 (152u) since 1935. A few have used .012 (304u) to .030 (762u) per hour for specialized jobs. These figures would indicate the apparent efficiency of the old 100 to 1 chromium, sulfate solution can be higher than 60%. The industry uses a 3 bus bar tank with wide spacing between anode and cathode. This results in high solution resistance and high heat generation and consequently slow plating rates. The Reversible Rack 2 Bus Bar System uses very close anode to cathode spacings. This results in the high plating rates with improved quality deposits. When first asked to chromium plate pure nickel wire reel to reel in long lengths, companies making reel to reel machines were asked if chromium plating was practical. In every case, the answer was it couldn't be done. Gold, tin and zinc plating was being done reel to reel. Using the same parameters that were used to determine a chromium solution efficiency was only 12%, these other metal solutions check out close to 100%

  11. Breakdown processes in wire chambers, prevention and rate capability

    International Nuclear Information System (INIS)

    Atac, M.

    1983-01-01

    Breakdowns were optically and electronically observed in drift tubes and drift chambers. They occur at a critical gain for given intensity in a gas mixture when ultraviolet photons are not completely quenched. It was observed that the breakdowns depended critically on average current for a given gas mixture independent of the size of the drift tubes used. Using 4.6% ethyl alcohol vapor mixed into 50/50 argon ethane gas, breakdown are eliminated up to 7 /sub μ/A average current drawn by pulses on a 1 cm section of an anode wire under an intense source. Pulses with an avalanche size of 10 6 electron rates above 10 6 pulses per centimeter per wire may be obtained with the elimination of breakdowns

  12. Breakdown processes in wire chambers, prevention and rate capability

    International Nuclear Information System (INIS)

    Atac, M.

    1982-01-01

    Breakdowns were optically and electronically observed in drift tubes and drift chambers. They occur at a critical gain for given intensity in a gas mixture when ultraviolet photons are not completely quenched. It was observed that the breakdowns depended critically on average current for a given gas mixture independent of the size of the drift tubes used. Using 4.6% ethyl alcohol vapor mixed into 50/50 argon ethane gas, breakdowns are eliminated up to 7 μA average current drawn by pulses on a 1 cm section of an anode wire under an intense source. Pulses with an avalanche size of 10 6 electron rates above 10 6 pulses per centimeter per wire may be obtained with the elimination of breakdowns

  13. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    Science.gov (United States)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in

  14. Modeling birds on wires.

    Science.gov (United States)

    Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B

    2017-02-21

    In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suite Gas Processing System (GPS) Carbon Dioxide Scrubber

    Science.gov (United States)

    Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy

    2008-01-01

    In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  16. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  17. Curved anode wire chambers for x-ray diffraction applications

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Wiedenbeck, P.; Wagner, C.N.J.; Woelfel, E.

    1983-01-01

    Curved position sensitive proportional detectors are described. The first has a radius of curvature of 135 mm and a 60 0 angular range. The second has a radius of curvature of 360 mm and a 45 0 angular range. For high quantum efficiency for x-ray energies up to 60 keV, a relatively large x-ray path and high gas pressure are required. The anode wires are suspended in circular arcs by the interaction of a current flowing through them and a magnetic field provided by two permanent magnets placed above and below the wire running parallel to it over the full length of the curved chambers. Anode wire stability under the combined action of the magnetic and electrostatic forces is discussed

  18. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  19. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  20. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  1. Wire Scanner Motion Control Card

    CERN Document Server

    Forde, S E

    2006-01-01

    Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...

  2. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  3. Ignition and spread of electrical wire fires

    OpenAIRE

    Huang, Xinyan

    2012-01-01

    Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...

  4. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites.

    Science.gov (United States)

    Florián-Algarín, David; Marrero, Raúl; Li, Xiaochun; Choi, Hongseok; Suárez, Oscar Marcelo

    2018-03-10

    This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl₂O₃ nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl₂O₃ nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al-γAl₂O₃ nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires' electrical conductivity compared with that of pure aluminum and aluminum-copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  5. Torque resistance of different stainless steel wires commonly used for fixed retainers in orthodontics.

    Science.gov (United States)

    Arnold, Dario T; Dalstra, Michel; Verna, Carlalberta

    2016-06-01

    Movements of teeth splinted by fixed retention wires after orthodontic treatment have been observed. The aetiological factors for these movements are unknown. The aim of this in vitro study was to compare the resistance to torque of different stainless steel wires commonly used for fixed retainers in orthodontics. Torquing moments acting on a retainer wire were measured in a mechanical force testing system by applying buccal crown torque to an upper lateral incisor in both a 3-teeth and in a 2-teeth setup. Seven stainless steel wires with different shape, type (plain, braided, coaxial, or chain) and dimensions were selected for this study. For a torquing angle of 16.2° in the 3-teeth setup torsion moments can vary between 390 cNmm and 3299 cNmm depending on the retainer wire. For the 2-teeth setup the torsion moments are much smaller. Exposure to the flame of a butane-gas torch for 10 seconds to anneal the wire reduces the stiffness of the retainer wire. Clinicians must select wires for fixed retainers very carefully since the difference in resistance to torque is large. A high level of torque control can be achieved with a plain 0.016 × 0.016-inch or a braided 0.016 × 0.022-inch stainless steel wire. A tooth attached by a retainer wire to only one neighbouring tooth is less resistant to torque than a tooth connected to two neighbouring teeth. Annealing a retainer wire with a flame reduces the stiffness of the wire markedly and can lead to a non-uniform and non-reproducible effect.

  6. Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity

    Science.gov (United States)

    Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi

    2003-01-01

    Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.

  7. Technical innovation: Wire guided ductography

    International Nuclear Information System (INIS)

    Aslam, Muhammad Ovais; Ramadan, Salwa; Al-Adwani, Muneera

    2012-01-01

    To introduce an easy and improved technique for performing ductography using inexpensive easily available intravenous cannula. Guide wire: Prolene/Surgipro 3-0 (Polypropylene mono filament non-absorbable surgical suture). A plastic 26 G intravenous cannula. Disposable syringe 2 ml. Non-ionic contrast (low density like Omnipaque 240 mg I/I). The guide wire (Prolene 3-0) is introduced into the orifice of the duct heaving discharge and 26 G intravenous plastic cannula is then passed over the guide wire. The cannula is advanced in the duct over guide wire by spinning around it. When the cannula is in place the guide wire is removed. Any air bubbles present in the hub of the cannula can be displaced by filling the hub from bottom upwards with needle attached to contrast filled syringe. 0.2–0.4 ml non-ionic contrast is gently injected. Injection is stopped if the patient has pain or burning. Magnified cranio-caudal view is obtained with cannula tapped in place and gentle compression is applied with the patient sitting. If duct filling is satisfactory a 90* lateral view is obtained. A successful adaptation of the technique for performing ductography is presented. The materials required for the technique are easily available in most radiology departments and are inexpensive, thus making the procedure comfortable for the patient and radiologist with considerable cost effectiveness.

  8. Californium Recovery from Palladium Wire

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  9. Four Channel Mini Wire Chamber to Study Cosmic Rays

    Science.gov (United States)

    Felix, J.; Rodriguez, G. J.

    2018-01-01

    Multiwire proportional chamber is a conventional technique to study radiation in general, and cosmic rays in particular. To study cosmic rays, it was planned, designed, constructed, characterized, and tested a four channel mini wire chamber, based on two 3 cm × 3 cm × 0.6 cm Aluminum frames, two 3 cm × 3 cm × 0.6 cm plastic frames, two 3 cm × 3 cm × 0.3 cm Aluminum frames, two electronic planes each with two Tungsten Gold plated 1 mil diameter wires, parallel and 1 cm apart each other at 25 g stretched-each plane was 90° rotated each other in the final assemble- and two Aluminum foil window to define the gas volume; it was operated with Argon 90%-CH4 10% gas mixture at 1 atmosphere and ambient temperature (20°C in the average). It is presented technical details, results on characterization, and preliminary results on cosmic rays detection.

  10. Development of CRID [Cerenkov Ring Imaging Detector] single electron wire detector

    International Nuclear Information System (INIS)

    Aston, D.; Bean, A.; Bienz, T.

    1989-02-01

    We describe the R and D effort to define the design parameters, method of construction and experimental results from the single electron wire detectors. These detectors will be used for particle identification using the Cerenkov Ring Imaging techniques in the SLD experiment at SLAC. We present measurements of pulse heights for several gases as a function of gas gain, charge division performance on a single electron signal using both 7 μm and 33 μm diameter carbon wires, photon feedback in TMAE laden gas, average pulse shape, and its comparison with the predicted shape and cross-talk. In addition, we present results of wire aging tests, and other tests associated with construction of this unusual type of wire chamber. 12 refs., 9 figs

  11. Second coordinate readout in drift chambers by timing of the electromagnetic wave propagating along the anode wire

    International Nuclear Information System (INIS)

    Boie, R.A.; Radeka, V.; Rehak, P.; Xi, D.M.

    1980-11-01

    The feasibility of using an anode wire and surrounding electrodes in drift chambers as a transmission line for second coordinate readout has been studied. The method is based on propagation of the electromagnetic wave along the anode wire is determined by measurement, in an optimized electronic readout system, of the time difference between the arrivals of the signal to the ends of the wire. The resolution obtained on long wires (approx. 2 meters) is about 2 cm FWHM for minimum ionizing particles at a gas gain of approx. = 10 5

  12. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    OpenAIRE

    Tušek, Janez

    2001-01-01

    The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and highalloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-off depends mainly on the type of shielding gas used and the arc length, i.e., from the arc voltage. The manganese burn-off ...

  13. Transparency in nanophotonic quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)

    2009-03-28

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  14. Transparency in nanophotonic quantum wires

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2009-01-01

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  15. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  16. [Mechanics analysis of fracture of orthodontic wires].

    Science.gov (United States)

    Wang, Yeping; Sun, Xiaoye; Zhang, Longqi

    2003-03-01

    Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.

  17. Electrodeposition of self-assembled poly(3,4-ethylenedioxythiophene) @gold nanoparticles on stainless steel wires for the headspace solid-phase microextraction and gas chromatographic determination of several polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Yang, Liu; Zhang, Jie; Zhao, Faqiong; Zeng, Baizhao

    2016-11-04

    In this work, a novel poly(3,4-ethylenedioxythiophene)@Au nanoparticles (PEDOT@AuNPs) hybrid coating was prepared and characterized. Firstly, the monomer 3,4-ethylenedioxythiophene was self-assembled on AuNPs, and then electropolymerization was performed on a stainless steel wire by cyclic voltammetry. The obtained PEDOT@AuNPs coating was rough and showed cauliflower-like micro-structure with thickness of ∼40μm. It displayed high thermal stability (up to 330°C) and mechanical stability and could be used for at least 160 times of solid phase microextraction (SPME) without decrease of extraction performance. The coating exhibited high extraction capacity for some environmental pollutants (e.g. naphthalene, 2-methylnaphthalene, acenaphthene, fluorene and phenathrene) due to the hydrophobic interaction between the analytes and PEDOT and the additional physicochemical affinity between polycyclic aromatic hydrocarbons and AuNPs. Through coupling with GC detection, good linearity (correlation coefficients higher than 0.9894), wide linear range (0.01-100μgL -1 ), low limits of detection (2.5-25ngL -1 ) were achieved for these analytes. The reproducibility (defined as RSD) was 1.1-4.0% and 5.8-9.9% for single fiber (n=5) and fiber-to-fiber (n=5), respectively. The SPME-GC method was successfully applied for the determination of three real samples, and the recoveries for standards added were 89.9-106% for lake water, 95.7-112% for rain water and 93.2-109% for soil saturated water, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The...

  19. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  20. Detection of a buried wire with two resistively loaded wire antennas

    NARCIS (Netherlands)

    Vossen, S.H.J.A.; Tijhuis, A.G.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2002-01-01

    The use of two identical straight thin-wire antennas for the detection of a buried wire is analyzed with the aid of numerical calculations. The buried wire is located below an interface between two homogeneous half-spaces. The detection setup, which is formed by a transmitting and a receiving wire,

  1. One century of Kirschner wires and Kirschner wire insertion techniques : A historical review

    NARCIS (Netherlands)

    Franssen, Bas B. G. M.; Schuurman, Arnold H.; Van der Molen, Aebele Mink; Kon, Moshe

    A century ago, in 1909, Martin Kirschner (1879-942) introduced a smooth pin, presently known as the Kirschner wire (K-wire). The K-wire was initiallly used for skeletal traction and is now currently used for many different goals. The development of the K-wire and its insertion devices were mainly

  2. Pre-wired systems prove their worth.

    Science.gov (United States)

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  3. 49 CFR 393.28 - Wiring systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  4. Getting "Wired" for McLuhan's Cyberculture.

    Science.gov (United States)

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and…

  5. Spontaneous and Directional Bubble Transport on Porous Copper Wires with Complex Shapes in Aqueous Media.

    Science.gov (United States)

    Li, Wenjing; Zhang, Jingjing; Xue, Zhongxin; Wang, Jingming; Jiang, Lei

    2018-01-24

    Manipulation of gas bubble behaviors is crucial for gas bubble-related applications. Generally, the manipulation of gas bubble behaviors generally takes advantage of their buoyancy force. It is very difficult to control the transportation of gas bubbles in a specific direction. Several approaches have been developed to collect and transport bubbles in aqueous media; however, most reliable and effective manipulation of gas bubbles in aqueous media occurs on the interfaces with simple shapes (i.e., cylinder and cone shapes). Reliable strategies for spontaneous and directional transport of gas bubbles on interfaces with complex shapes remain enormously challenging. Herein, a type of 3D gradient porous network was constructed on copper wire interfaces, with rectangle, wave, and helix shapes. The superhydrophobic copper wires were immersed in water, and continuous and stable gas films then formed on the interfaces. With the assistance of the Laplace pressure gradient between two bubbles, gas bubbles (including microscopic gas bubbles) in the aqueous media were subsequently transported, continuously and directionally, on the copper wires with complex shapes. The small gas bubbles always moved to the larger ones.

  6. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Florián-Algarín

    2018-03-01

    Full Text Available This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas welding of aluminum. A206 (Al-4.5Cu-0.25Mg master nanocomposites with 5 wt % γAl2O3 nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl2O3 nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al–γAl2O3 nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires’ electrical conductivity compared with that of pure aluminum and aluminum–copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  7. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  8. Energy Deposition in a Septum Wire

    CERN Document Server

    Ferioli, G; Knaus, P; Koopman, J; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The present note describes a machine development (MD) aimed to confirm experimentally the need for protection of the extraction wire septum ZS in SPS long straight section LSS6 during LHC operation. Single wires identical to the ones mounted on the extraction septum were fixed on a fast wire scanner and put into the beam path. The beam heated the wire until it broke after a measured number of turns. The maximum single shot intensity the septum wires could withstand was thus calculated and compared with simulation results.

  9. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  10. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    Science.gov (United States)

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  11. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  12. EDITORIAL More than a wire More than a wire

    Science.gov (United States)

    Demming, Anna

    2010-10-01

    Nanowires are the natural evolution of the connections in circuits when scaled down to nanometre sizes. On closer inspection, of course, the role of nanowires in developing new technologies is much more than just a current-bearing medium. By sizing the diameters of these objects down to the nanoscale, their properties become increasingly sensitive to factors such as the gas composition, temperature and incident light of their surrounding environment, as well as defects and variations in diameter. What becomes important in modern electronics innovations is not just what is connected, but how. Nanowires had already begun to attract the attention of researchers in the early 1990s as advances in imaging and measurement devices invited researchers to investigate the properties of these one-dimensional structures [1, 2]. This interest has sparked ingenious ways of fabricating nanowires such as the use of a DNA template. A collaboration of researchers at Louisiana Tech University in the US hs provided an overview of various methods to assemble conductive nanowires on a DNA template, including a summary of different approaches to stretching and positioning the templates [3]. Work in this area demonstrates a neat parallel for the role of DNA molecules as the building blocks of life and the foundations of nanoscale device architectures. Scientists at HP Labs in California are using nanowires to shrink the size of logic arrays [4]. One aspect of electronic interconnects that requires particular attention at nanoscale sizes is the effect of defects. The researchers at HP Labs demonstrate that their approach, which they name FPNI (field-programmable nanowire interconnect), is extremely tolerant of the high defect rates likely to be found in these nanoscale structures, and allows reduction in size and power without significantly sacrificing the clock rate. Another issue in scaling down electronics is the trend for an increasing resistivity with decreasing wire width. Researchers

  13. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  14. Modifications in straight wire treatment.

    Science.gov (United States)

    Cardona, Alvin

    2010-01-01

    Orthodontic treatments have been modified with each new generation of clinicians. Today the emphasis is on facial esthetics and healthy temporomandibular joints. With orthopedic treatment, we can develop dental arches to get the necessary space to align the teeth and we can reach adequate function and esthetics, all within relatively good stability. By combining two-phase treatment with low friction fixed orthodontics and super elastic wires we produce light but continuous forces and we can provide better treatment than before. These types of forces cause physiological and functional orthopedic orthodontic reactions. The purpose of this article is to demonstrate our fixed orthopedic and orthodontic approach called "Modified Straight Wire" or "Physiologic Arch Technique." This technique is very successful with our patients because it can exert slow and continuous forces with minimal patient cooperation.

  15. Vibrating wire for beam profile scanning

    Directory of Open Access Journals (Sweden)

    S. G. Arutunian

    1999-12-01

    Full Text Available A method that measures the transverse profile (emittance of the bunch by detecting radiation arising at the scattering of the bunch on scanning wire is widely used. In this work information about bunch scattering is obtained by measuring the oscillation frequency of the tightened scanning wire. In such a way, the system of radiation (or secondary particles extraction and measurement can be removed. The entire unit consists of a compact fork with tightened wire and a scanning system. Normal oscillation frequency of a wire depends on wire tension, its geometric parameters, and, in a second approximation, its elastic characteristics. Normal oscillations are generated by interaction of an alternating current through the wire with magnetic field of a permanent magnet. In this case, it is suggested that the magnetic field of the accelerator (field of dipole magnets or quadrupole magnets be used for excitation of oscillations. The dependence of oscillation frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam and influence of beam self-field. Preliminary calculations show that the influence of wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, and niobium zirconium alloys. A scheme of normal oscillation generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. A special method of wire fixation and elimination of transverse degrees of freedom allows us to achieve relative stability better than 10^{-5} during several days at a relative resolution of 10^{-6}. Experimental results and estimates of wire heating of existing scanners show that the wire heats up to a few hundred grades, which is enough for measurements. The usage of wire of micrometer thickness diminishes the problem of wire thermalization speed during the scanning of the bunch.

  16. Pin Wire Coating Trip Report

    International Nuclear Information System (INIS)

    Spellman, G P

    2004-01-01

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there

  17. Models of the plasma corona formation and stratification of exploding micro-wires

    International Nuclear Information System (INIS)

    Volkov, N.B.; Sarkisov, G.S.; Struve, K.W.; McDaniel, D.H.

    2005-01-01

    There are proposed the models pf plasma corona formation and stratification of a gas-plasma core of exploding micro-wire. The opportunity of use for the description of physical processes in a formed plasma corona of an electronic magnetohydrodynamics is generalized in view of change of particle number as a result of evaporation, ionization and a leaving of electrons on a wire surface. Necessity of the account of influence of a hot plasma corona on stratification of a gas-plasma core was grounded [ru

  18. Research on Mechanisms and Controlling Methods of Macro Defects in TC4 Alloy Fabricated by Wire Additive Manufacturing.

    Science.gov (United States)

    Ji, Lei; Lu, Jiping; Tang, Shuiyuan; Wu, Qianru; Wang, Jiachen; Ma, Shuyuan; Fan, Hongli; Liu, Changmeng

    2018-06-28

    Wire feeding additive manufacturing (WFAM) has broad application prospects because of its advantages of low cost and high efficiency. However, with the mode of lateral wire feeding, including wire and laser additive manufacturing, gas tungsten arc additive manufacturing etc., it is easy to generate macro defects on the surface of the components because of the anisotropy of melted wire, which limits the promotion and application of WFAM. In this work, gas tungsten arc additive manufacturing with lateral wire feeding is proposed to investigate the mechanisms of macro defects. The results illustrate that the defect forms mainly include side spatters, collapse, poor flatness, and unmelted wire. It was found that the heat input, layer thickness, tool path, and wire curvature can have an impact on the macro defects. Side spatters are the most serious defects, mainly because the droplets cannot be transferred to the center of the molten pool in the lateral wire feeding mode. This research indicates that the macro defects can be controlled by optimizing the process parameters. Finally, block parts without macro defects were fabricated, which is meaningful for the further application of WFAM.

  19. Experimental Study on EHD Flow Transition in a Small Scale Wire-plate ESP

    Directory of Open Access Journals (Sweden)

    Wang Chuan

    2016-06-01

    Full Text Available The electrohydrodynamic (EHD flow induced by the corona discharge was experimentally investigated in an electrostatic precipitator (ESP. The ESP was a narrow horizontal Plexiglas box (1300 mm×60 mm×60 mm. The electrode set consisted of a single wire discharge electrode and two collecting aluminum plate electrodes. Particle Image Velocimetry (PIV method was used to visualize the EHD flow characteristics inside the ESP seeded with fine oil droplets. The influence of applied voltage (from 8 kV to 10 kV and primary gas flow (0.15 m/s, 0.2 m/s, 0.4 m/s on the EHD flow transition was elucidated through experimental analysis. The formation and transition of typical EHD flows from onset to the fully developed were described and explained. Experimental results showed that the EHD flow patterns change depends on the gas velocity and applied voltage. EHD flow starts with flow streamlines near collecting plates bending towards the wire electrode, forming two void regions. An oscillating jet forming the downstream appeared and moved towards the wire electrode as voltage increased. For higher velocities (≥0.2 m/s, the EHD transition became near wire phenomenon with a jet-like flow structure near the wire, forming a void region behind the wire and expanding as voltage increased. Fully developed EHD secondary flow in the form of counter-rotating vortices appeared upstream with high applied voltage.

  20. Pulsed wire discharge apparatus for mass production of copper nanopowders.

    Science.gov (United States)

    Suematsu, H; Nishimura, S; Murai, K; Hayashi, Y; Suzuki, T; Nakayama, T; Jiang, W; Yamazaki, A; Seki, K; Niihara, K

    2007-05-01

    A pulsed wire discharge (PWD) apparatus for the mass production of nanopowders has been developed. The apparatus has a continuous wire feeder, which is operated in synchronization with a discharging circuit. The apparatus is designed for operation at a maximum repetition rate of 1.4 Hz at a stored energy of 160 J. In the present study, Cu nanopowder was synthesized using the PWD apparatus and the performance of the apparatus was examined. Cu nanopowder of 2.0 g quantity was prepared in N(2) gas at 100 kPa for 90 s. The particle size distribution of the Cu nanopowder was analyzed by transmission electron microscopy and the mean surface diameter was determined to be 65 nm. The ratio of the production mass of the powder to input energy was 362 g/kW h.