WorldWideScience

Sample records for mouse respiratory system

  1. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S

    2016-11-28

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.

  2. Respiratory guiding system for respiratory motion management in respiratory gated radiotherapy

    International Nuclear Information System (INIS)

    Kang, Seong Hee; Kim, Dong Su; Kim, Tae Ho; Suh, Tae Suk

    2013-01-01

    Respiratory guiding systems have been shown to improve the respiratory regularity. This, in turn, improves the efficiency of synchronized moving aperture radiation therapy, and it reduces the artifacts caused by irregular breathing in imaging techniques such as four-dimensional computed tomography (4D CT), which is used for treatment planning in RGRT. We have previously developed a respiratory guiding system that incorporates an individual-specific guiding waveform, which is easy to follow for each volunteer, to improve the respiratory regularity. The present study evaluates the application of this system to improve the respiratory regularity for respiratory-gated radiation therapy (RGRT). In this study, we evaluated the effectiveness of an in-house-developed respiratory guiding system incorporating an individual specific guiding waveform to improve the respiratory regularity for RGRT. Most volunteers showed significantly less residual motion at each phase during guided breathing owing to the improvement in respiratory regularity. Therefore, the respiratory guiding system can clearly reduce the residual, or respiratory, motion in each phase. From the result, the CTV and the PTV margins during RGRT can be reduced by using the respiratory guiding system, which reduces the residual motions, thus improving the accuracy of RGRT

  3. A low cost, simplified, and scaleable pneumotachograph and face mask for neonatal mouse respiratory measurements.

    Science.gov (United States)

    Sun, Jenny J; Nanu, Roshan; Ray, Russell S

    2017-07-01

    Neonatal respiratory disorders are a leading cause of perinatal mortality due to complications resulting from premature births and prenatal exposure to drugs of abuse, but optimal treatments for these symptoms are still unclear due to a variety of confounds and risk factors. Mouse models present an opportunity to study the underlying mechanisms and efficacy of potential treatments of these conditions with controlled variables. However, measuring respiration in newborn mice is difficult and commercial components are expensive and often require modification, creating a barrier and limiting our understanding of the short and long-term effects of birth complications on respiratory function. Here, we present an inexpensive and simple flow through pneumotachograph and face mask design that can be easily scaled for parallel, high-throughput assays measuring respiration in neonatal mouse pups. The final apparatus consists of three main parts: a water-jacketed chamber, an integrated support tray for the pup, and a pneumotachograph consisting of a two side-arm air channel that is attached to a pressure transducer. The pneumotach showed a linear response and clean, steady respiratory traces in which apneas and sighs were clearly visible. Administration of caffeine in P0.5 CD1 wildtype neonates resulted in an increase in tidal volume, minute ventilation, and minute ventilation normalized to oxygen consumption as well as a decrease in periodic instability. The described methods offer a relatively simple and inexpensive approach to constructing a pneumotachograph for non-invasive measurements of neonatal mouse respiration, enhancing accessibility and enabling the high-throughput and parallel characterizations of neonatal respiratory disorders and potential pharmacological therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Lungs and Respiratory System

    Science.gov (United States)

    ... Videos for Educators Search English Español Lungs and Respiratory System KidsHealth / For Parents / Lungs and Respiratory System ... ll have taken at least 600 million breaths. Respiratory System Basics All of this breathing couldn't ...

  5. Respiratory system

    Science.gov (United States)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  6. Avian respiratory system disorders

    Science.gov (United States)

    Olsen, Glenn H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  7. Evaluation of exercise-respiratory system modifications and preliminary respiratory-circulatory system integration scheme

    Science.gov (United States)

    Gallagher, R. R.

    1974-01-01

    The respiratory control system, functioning as an independent system, is presented with modifications of the exercise subroutine. These modifications illustrate an improved control of ventilation rates and arterial and compartmental gas tensions. A very elementary approach to describing the interactions of the respiratory and circulatory system is presented.

  8. Effect of CPAP in a Mouse Model of Hyperoxic Neonatal Lung Injury

    Science.gov (United States)

    Reyburn, Brent; Fiore, Juliann M. Di; Raffay, Thomas; Martin, Richard J.; Y.S., Prakash; Jafri, Anjum; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure [CPAP] and supplemental oxygen have become the mainstay of neonatal respiratory support in preterm infants. Although oxygen therapy is associated with respiratory morbidities including bronchopulmonary dysplasia [BPD], the long-term effects of CPAP on lung function are largely unknown. We used a hyperoxia-induced mouse model of BPD to explore the effects of daily CPAP during the first week of life on later respiratory system mechanics. Objective To test the hypothesis that daily CPAP in a newborn mouse model of BPD improves longer term respiratory mechanics. Methods Mouse pups from C57BL/6 pregnant dams were exposed to room air [RA] or hyperoxia [50% O2, 24hrs/day] for the first postnatal week with or without exposure to daily CPAP [6cmH2O, 3hrs/day]. Respiratory system resistance [Rrs] and compliance [Crs] were measured following a subsequent 2 week period of room RA recovery. Additional measurements included radial alveolar counts and macrophage counts. Results Mice exposed to hyperoxia had significantly elevated Rrs, decreased Crs, reduced alveolarization, and increased macrophage counts at three weeks compared to RA treated mice. Daily CPAP treatment significantly improved Rrs, Crs and alveolarization, and decreased lung macrophage infiltration in hyperoxia-exposed pups. Conclusions We have demonstrated that daily CPAP had a longer term benefit on baseline respiratory system mechanics in a neonatal mouse model of BPD. We speculate that this beneficial effect of CPAP was the consequence of a decrease in the inflammatory response and resultant alveolar injury associated with hyperoxic newborn lung injury. PMID:26394387

  9. Respiratory care management information systems.

    Science.gov (United States)

    Ford, Richard M

    2004-04-01

    Hospital-wide computerized information systems evolved from the need to capture patient information and perform billing and other financial functions. These systems, however, have fallen short of meeting the needs of respiratory care departments regarding work load assessment, productivity management, and the level of outcome reporting required to support programs such as patient-driven protocols. The respiratory care management information systems (RCMIS) of today offer many advantages over paper-based systems and hospital-wide computer systems. RCMIS are designed to facilitate functions specific to respiratory care, including assessing work demand, assigning and tracking resources, charting, billing, and reporting results. RCMIS incorporate mobile, point-of-care charting and are highly configurable to meet the specific needs of individual respiratory care departments. Important and substantial benefits can be realized with an RCMIS and mobile, wireless charting devices. The initial and ongoing costs of an RCMIS are justified by increased charge capture and reduced costs, by way of improved productivity and efficiency. It is not unusual to recover the total cost of an RCMIS within the first year of its operation. In addition, such systems can facilitate and monitor patient-care protocols and help to efficiently manage the vast amounts of information encountered during the practitioner's workday. Respiratory care departments that invest in RCMIS have an advantage in the provision of quality care and in reducing expenses. A centralized respiratory therapy department with an RCMIS is the most efficient and cost-effective way to monitor work demand and manage the hospital-wide allocation of respiratory care services.

  10. Sildenafil reduces respiratory muscle weakness and fibrosis in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Percival, Justin M; Whitehead, Nicholas P; Adams, Marvin E; Adamo, Candace M; Beavo, Joseph A; Froehner, Stanley C

    2012-09-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy caused by mutations in the dystrophin gene. Loss of dystrophin initiates a progressive decline in skeletal muscle integrity and contractile capacity which weakens respiratory muscles including the diaphragm, culminating in respiratory failure, the leading cause of morbidity and mortality in DMD patients. At present, corticosteroid treatment is the primary pharmacological intervention in DMD, but has limited efficacy and adverse side effects. Thus, there is an urgent need for new safe, cost-effective, and rapidly implementable treatments that slow disease progression. One promising new approach is the amplification of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signalling pathways with phosphodiesterase 5 (PDE5) inhibitors. PDE5 inhibitors serve to amplify NO signalling that is attenuated in many neuromuscular diseases including DMD. We report here that a 14-week treatment of the mdx mouse model of DMD with the PDE5 inhibitor sildenafil (Viagra(®), Revatio(®)) significantly reduced mdx diaphragm muscle weakness without impacting fatigue resistance. In addition to enhancing respiratory muscle contractility, sildenafil also promoted normal extracellular matrix organization. PDE5 inhibition slowed the establishment of mdx diaphragm fibrosis and reduced matrix metalloproteinase-13 (MMP-13) expression. Sildenafil also normalized the expression of the pro-fibrotic (and pro-inflammatory) cytokine tumour necrosis factor α (TNFα). Sildenafil-treated mdx diaphragms accumulated significantly less Evans Blue tracer dye than untreated controls, which is also indicative of improved diaphragm muscle health. We conclude that sildenafil-mediated PDE5 inhibition significantly reduces diaphragm respiratory muscle dysfunction and pathology in the mdx mouse model of Duchenne muscular dystrophy. This study provides new insights into the therapeutic utility of targeting defects in NO

  11. Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy

    Directory of Open Access Journals (Sweden)

    Petrica-Adrian Panaite

    2013-05-01

    Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1. Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding

  12. Region-Specific Defects of Respiratory Capacities in the Ndufs4(KO Mouse Brain.

    Directory of Open Access Journals (Sweden)

    Ernst-Bernhard Kayser

    Full Text Available Lack of NDUFS4, a subunit of mitochondrial complex I (NADH:ubiquinone oxidoreductase, causes Leigh syndrome (LS, a progressive encephalomyopathy. Knocking out Ndufs4, either systemically or in brain only, elicits LS in mice. In patients as well as in KO mice distinct regions of the brain degenerate while surrounding tissue survives despite systemic complex I dysfunction. For the understanding of disease etiology and ultimately for the development of rationale treatments for LS, it appears important to uncover the mechanisms that govern focal neurodegeneration.Here we used the Ndufs4(KO mouse to investigate whether regional and temporal differences in respiratory capacity of the brain could be correlated with neurodegeneration. In the KO the respiratory capacity of synaptosomes from the degeneration prone regions olfactory bulb, brainstem and cerebellum was significantly decreased. The difference was measurable even before the onset of neurological symptoms. Furthermore, neither compensating nor exacerbating changes in glycolytic capacity of the synaptosomes were found. By contrast, the KO retained near normal levels of synaptosomal respiration in the degeneration-resistant/resilient "rest" of the brain. We also investigated non-synaptic mitochondria. The KO expectedly had diminished capacity for oxidative phosphorylation (state 3 respiration with complex I dependent substrate combinations pyruvate/malate and glutamate/malate but surprisingly had normal activity with α-ketoglutarate/malate. No correlation between oxidative phosphorylation (pyruvate/malate driven state 3 respiration and neurodegeneration was found: Notably, state 3 remained constant in the KO while in controls it tended to increase with time leading to significant differences between the genotypes in older mice in both vulnerable and resilient brain regions. Neither regional ROS damage, measured as HNE-modified protein, nor regional complex I stability, assessed by blue native

  13. Evaluation of the Usefulness of the Respiratory Guidance System in the Respiratory Gating Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Cheol; Kim, Sun Myung; Do, Gyeong Min; Park, Geun Yong; Kim, Gun Oh; Kim, Young Bum [Dept. of Radiation Oncology, Guro Hospital, Korea Univeristy, Seoul (Korea, Republic of)

    2012-09-15

    The respiration is one of the most important factors in respiratory gating radiation therapy (RGRT). We have developed an unique respiratory guidance system using an audio-visual system in order to support and stabilize individual patient's respiration and evaluated the usefulness of this system. Seven patients received the RGRT at our clinic from June 2011 to April 2012. After breathing exercise standard deviations by the superficial contents of respiratory cycles and functions, and analyzed them to examine changes in their breathing before and with the audio-visual system, we measured their spontaneous respiration and their respiration with the audio-visual system respectively. With the measured data, we yielded after the therapy. The PTP (peak to peak) of the standard deviations of the free breathing, the audio guidance system, and the respiratory guidance system were 0.343, 0.148, and 0.078 respectively. The respiratory cycles were 0.645, 0.345, and 0.171 respectively and the superficial contents of the respiratory functions were 2.591, 1.008, and 0.877 respectively. The average values of the differences in the standard deviations among the whole patients at the CT room and therapy room were 0.425 for the PTP, 1.566 for the respiratory cycles, and 3.671 for the respiratory superficial contents. As for the standard deviations before and after the application of the PTP respiratory guidance system, that of the PTP was 0.265, that of the respiratory cycles was 0.474, and that of the respiratory superficial contents. The results of t-test of the values before and after free breathing and the audio-visual guidance system showed that the P-value of the PTP was 0.035, that of the cycles 0.009, and that of the respiratory superficial contents 0.010. The respiratory control could be one of the most important factors in the RGRT which determines the success or failure of a treatment. We were able to get more stable breathing with the audio-visual respiratory

  14. Evaluation of the Usefulness of the Respiratory Guidance System in the Respiratory Gating Radiation Therapy

    International Nuclear Information System (INIS)

    Lee, Yeong Cheol; Kim, Sun Myung; Do, Gyeong Min; Park, Geun Yong; Kim, Gun Oh; Kim, Young Bum

    2012-01-01

    The respiration is one of the most important factors in respiratory gating radiation therapy (RGRT). We have developed an unique respiratory guidance system using an audio-visual system in order to support and stabilize individual patient's respiration and evaluated the usefulness of this system. Seven patients received the RGRT at our clinic from June 2011 to April 2012. After breathing exercise standard deviations by the superficial contents of respiratory cycles and functions, and analyzed them to examine changes in their breathing before and with the audio-visual system, we measured their spontaneous respiration and their respiration with the audio-visual system respectively. With the measured data, we yielded after the therapy. The PTP (peak to peak) of the standard deviations of the free breathing, the audio guidance system, and the respiratory guidance system were 0.343, 0.148, and 0.078 respectively. The respiratory cycles were 0.645, 0.345, and 0.171 respectively and the superficial contents of the respiratory functions were 2.591, 1.008, and 0.877 respectively. The average values of the differences in the standard deviations among the whole patients at the CT room and therapy room were 0.425 for the PTP, 1.566 for the respiratory cycles, and 3.671 for the respiratory superficial contents. As for the standard deviations before and after the application of the PTP respiratory guidance system, that of the PTP was 0.265, that of the respiratory cycles was 0.474, and that of the respiratory superficial contents. The results of t-test of the values before and after free breathing and the audio-visual guidance system showed that the P-value of the PTP was 0.035, that of the cycles 0.009, and that of the respiratory superficial contents 0.010. The respiratory control could be one of the most important factors in the RGRT which determines the success or failure of a treatment. We were able to get more stable breathing with the audio-visual respiratory guidance

  15. Evaluation of exercise-respiratory system modifications and integration schemes for physiological systems

    Science.gov (United States)

    Gallagher, R. R.

    1974-01-01

    Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.

  16. Effects of Aging on the Respiratory System.

    Science.gov (United States)

    Levitzky, Michael G.

    1984-01-01

    Relates alterations in respiratory system functions occurring with aging to changes in respiratory system structure during the course of life. Main alterations noted include loss of alveolar elastic recoil, alteration in chest wall structure and decreased respiratory muscle strength, and loss of surface area and changes in pulmonary circulation.…

  17. Investigations of respiratory control systems simulation

    Science.gov (United States)

    Gallagher, R. R.

    1973-01-01

    The Grodins' respiratory control model was investigated and it was determined that the following modifications were necessary before the model would be adaptable for current research efforts: (1) the controller equation must be modified to allow for integration of the respiratory system model with other physiological systems; (2) the system must be more closely correlated to the salient physiological functionings; (3) the respiratory frequency and the heart rate should be expanded to illustrate other physiological relationships and dependencies; and (4) the model should be adapted to particular individuals through a better defined set of initial parameter values in addition to relating these parameter values to the desired environmental conditions. Several of Milhorn's respiratory control models were also investigated in hopes of using some of their features as modifications for Grodins' model.

  18. Dynamics of human respiratory system mycoflora

    Directory of Open Access Journals (Sweden)

    Anna Biedunkiewicz

    2014-08-01

    Full Text Available The study aimed at determing the prevalence of individual species of fungi in the respiratory systems of women and men, analysis of the dynamics of the fungi in individual sections of the respiratory system as concerns their quantity and identification of phenology of the isolated fungi coupled with an attempt at identifying their possible preferences for appearing during specific seasons of thc year. During 10 years of studies (1989- 1998. 29 species of fungi belonging: Candida, Geolrichum, Saccharomyces, Saccharomycopsis, Schizosaccharomyces, Torulopsis, Trichosporon and Aspergillus were isolated from the ontocenoses of the respiratory systems of patients at the Independent Public Center for Pulmonology and Oncology in Olsztyn. Candida albicans was a clearly dominating fungus. Individual species appeared individually, in twos or threes in a single patient, they were isolated more frequently in the spring and autumn, less frequently during the winter and summer. The largest number of fungi species were isolated from sputum (29 species, bronchoscopic material (23 species and pharyngeal swabs (15 species. Sacchoromycopsis capsularis and Trichosporon beigelii should be treated as new for the respiratory system. Biodiversity of fungi, their numbers and continous fluctuations in frequency indicate that the respiratory system ontocenose offers the optimum conditions for growth and development of the majority of the majority of yeasts - like fungi.

  19. Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers.

    Science.gov (United States)

    Lemieux, Hélène; Blier, Pierre U; Gnaiger, Erich

    2017-06-06

    Fuel substrate supply and oxidative phosphorylation are key determinants of muscle performance. Numerous studies of mammalian mitochondria are carried out (i) with substrate supply that limits electron flow, and (ii) far below physiological temperature. To analyze potentially implicated biases, we studied mitochondrial respiratory control in permeabilized mouse myocardial fibers using high-resolution respirometry. The capacity of oxidative phosphorylation at 37 °C was nearly two-fold higher when fueled by physiological substrate combinations reconstituting tricarboxylic acid cycle function, compared with electron flow measured separately through NADH to Complex I or succinate to Complex II. The relative contribution of the NADH pathway to physiological respiratory capacity increased with a decrease in temperature from 37 to 25 °C. The apparent excess capacity of cytochrome c oxidase above physiological pathway capacity increased sharply under hypothermia due to limitation by NADH-linked dehydrogenases. This mechanism of mitochondrial respiratory control in the hypothermic mammalian heart is comparable to the pattern in ectotherm species, pointing towards NADH-linked mt-matrix dehydrogenases and the phosphorylation system rather than electron transfer complexes as the primary drivers of thermal sensitivity at low temperature. Delineating the link between stress and remodeling of oxidative phosphorylation is important for understanding metabolic perturbations in disease evolution and cardiac protection.

  20. Systemic signature of the lung response to respiratory syncytial virus infection.

    Directory of Open Access Journals (Sweden)

    Jeroen L A Pennings

    Full Text Available Respiratory Syncytial Virus is a frequent cause of severe bronchiolitis in children. To improve our understanding of systemic host responses to RSV, we compared BALB/c mouse gene expression responses at day 1, 2, and 5 during primary RSV infection in lung, bronchial lymph nodes, and blood. We identified a set of 53 interferon-associated and innate immunity genes that give correlated responses in all three murine tissues. Additionally, we identified blood gene signatures that are indicative of acute infection, secondary immune response, and vaccine-enhanced disease, respectively. Eosinophil-associated ribonucleases were characteristic for the vaccine-enhanced disease blood signature. These results indicate that it may be possible to distinguish protective and unfavorable patient lung responses via blood diagnostics.

  1. 38 CFR 4.97 - Schedule of ratings-respiratory system.

    Science.gov (United States)

    2010-07-01

    ...-respiratory system. 4.97 Section 4.97 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Respiratory System § 4.97 Schedule of ratings—respiratory system. Rating DISEASES OF THE NOSE AND THROAT 6502Septum, nasal, deviation of: Traumatic only...

  2. Skeletal, cardiac, and respiratory muscle function and histopathology in the P448Lneo- mouse model of FKRP-deficient muscular dystrophy.

    Science.gov (United States)

    Yu, Qing; Morales, Melissa; Li, Ning; Fritz, Alexander G; Ruobing, Ren; Blaeser, Anthony; Francois, Ershia; Lu, Qi-Long; Nagaraju, Kanneboyina; Spurney, Christopher F

    2018-04-06

    Fukutin-related protein (FKRP) mutations are the most common cause of dystroglycanopathies known to cause both limb girdle and congenital muscular dystrophy. The P448Lneo- mouse model has a knock-in mutation in the FKRP gene and develops skeletal, respiratory, and cardiac muscle disease. We studied the natural history of the P448Lneo- mouse model over 9 months and the effects of twice weekly treadmill running. Forelimb and hindlimb grip strength (Columbus Instruments) and overall activity (Omnitech Electronics) assessed skeletal muscle function. Echocardiography was performed using VisualSonics Vevo 770 (FujiFilm VisualSonics). Plethysmography was performed using whole body system (ADInstruments). Histological evaluations included quantification of inflammation, fibrosis, central nucleation, and fiber size variation. P448Lneo- mice had significantly increased normalized tissue weights compared to controls at 9 months of age for the heart, gastrocnemius, soleus, tibialis anterior, quadriceps, and triceps. There were no significant differences seen in forelimb or hindlimb grip strength or activity monitoring in P448Lneo- mice with or without exercise compared to controls. Skeletal muscles demonstrated increased inflammation, fibrosis, central nucleation, and variation in fiber size compared to controls (p muscular dystrophies.

  3. Effects of nasal or pulmonary delivered treatments with an adenovirus vectored interferon (mDEF201 on respiratory and systemic infections in mice caused by cowpox and vaccinia viruses.

    Directory of Open Access Journals (Sweden)

    Donald F Smee

    Full Text Available An adenovirus 5 vector encoding for mouse interferon alpha, subtype 5 (mDEF201 was evaluated for efficacy against lethal cowpox (Brighton strain and vaccinia (WR strain virus respiratory and systemic infections in mice. Two routes of mDEF201 administration were used, nasal sinus (5-µl and pulmonary (50-µl, to compare differences in efficacy, since the preferred treatment of humans would be in a relatively small volume delivered intranasally. Lower respiratory infections (LRI, upper respiratory infections (URI, and systemic infections were induced by 50-µl intranasal, 10-µl intranasal, and 100-µl intraperitoneal virus challenges, respectively. mDEF201 treatments were given prophylactically either 24 h (short term or 56d (long-term prior to virus challenge. Single nasal sinus treatments of 10(6 and 10(7 PFU/mouse of mDEF201 protected all mice from vaccinia-induced LRI mortality (comparable to published studies with pulmonary delivered mDEF201. Systemic vaccinia infections responded significantly better to nasal sinus delivered mDEF201 than to pulmonary treatments. Cowpox LRI infections responded to 10(7 mDEF201 treatments, but a 10(6 dose was only weakly protective. Cowpox URI infections were equally treatable by nasal sinus and pulmonary delivered mDEF201 at 10(7 PFU/mouse. Dose-responsive prophylaxis with mDEF201, given one time only 56 d prior to initiating a vaccinia virus LRI infection, was 100% protective from 10(5 to 10(7 PFU/mouse. Improvements in lung hemorrhage score and lung weight were evident, as were decreases in liver, lung, and spleen virus titers. Thus, mDEF201 was able to treat different vaccinia and cowpox virus infections using both nasal sinus and pulmonary treatment regimens, supporting its development for humans.

  4. Verification and compensation of respiratory motion using an ultrasound imaging system

    International Nuclear Information System (INIS)

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2015-01-01

    Purpose: The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. Methods: This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. Results: The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81–2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm

  5. Fas activity mediates airway inflammation during mouse adenovirus type 1 respiratory infection.

    Science.gov (United States)

    Adkins, Laura J; Molloy, Caitlyn T; Weinberg, Jason B

    2018-06-13

    CD8 T cells play a key role in clearance of mouse adenovirus type 1 (MAV-1) from the lung and contribute to virus-induced airway inflammation. We tested the hypothesis that interactions between Fas ligand (FasL) and Fas mediate the antiviral and proinflammatory effects of CD8 T cells. FasL and Fas expression were increased in the lungs of C57BL/6 (B6) mice during MAV-1 respiratory infection. Viral replication and weight loss were similar in B6 and Fas-deficient (lpr) mice. Histological evidence of pulmonary inflammation was similar in B6 and lpr mice, but lung mRNA levels and airway proinflammatory cytokine concentrations were lower in MAV-1-infected lpr mice compared to infected B6 mice. Virus-induced apoptosis in lungs was not affected by Fas deficiency. Our results suggest that the proinflammatory effects of CD8 T cells during MAV-1 infection are mediated in part by Fas activation and are distinct from CD8 T cell antiviral functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    NARCIS (Netherlands)

    Kneyber, Martin C. J.; van Heerde, Marc; Twisk, Jos W. R.; Plotz, Frans B.; Markhors, Dick G.

    2009-01-01

    Introduction Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  7. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    NARCIS (Netherlands)

    Kneijber, M.C.J.; van Heerde, M.; Twisk, J.W.R.; Plotz, F.; Markhorst, D.G.

    2009-01-01

    Introduction: Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  8. [Development of expert diagnostic system for common respiratory diseases].

    Science.gov (United States)

    Xu, Wei-hua; Chen, You-ling; Yan, Zheng

    2014-03-01

    To develop an internet-based expert diagnostic system for common respiratory diseases. SaaS system was used to build architecture; pattern of forward reasoning was applied for inference engine design; ASP.NET with C# from the tool pack of Microsoft Visual Studio 2005 was used for website-interview medical expert system.The database of the system was constructed with Microsoft SQL Server 2005. The developed expert system contained large data memory and high efficient function of data interview and data analysis for diagnosis of various diseases.The users were able to perform this system to obtain diagnosis for common respiratory diseases via internet. The developed expert system may be used for internet-based diagnosis of various respiratory diseases,particularly in telemedicine setting.

  9. Accesion number Protein name ENOA_MOUSE Alpha-enolase ...

    Indian Academy of Sciences (India)

    Sandra Feijoo Bandin

    Mitochondrial inner membrane protein. CMC1_MOUSE. Calcium-binding mitochondrial carrier protein Aralar1. CMC2_MOUSE. Calcium-binding mitochondrial carrier protein Aralar2. Biological process. Metabolic process. Glycolysis. Lipid metabolism. Respiratory electron transport chain. Others. Calcium ion homeostasis.

  10. Absence of respiratory inflammatory reaction of elemental sulfur using the California Pesticide Illness Database and a mouse model.

    Science.gov (United States)

    Lee, Kiyoung; Smith, Jodi L; Last, Jerold A

    2005-01-01

    Elemental sulfur, a natural substance, is used as a fungicide. Elemental sulfur is the most heavily used agricultural chemical in California. In 2003, annual sulfur usage in California was about 34% of the total weight of pesticide active ingredient used in production agriculture. Even though sulfur is mostly used in dust form, the respiratory health effects of elemental sulfur are not well documented. The purpose of this paper is to address the possible respiratory effect of elemental sulfur using the California Pesticide Illness Database and laboratory experiments with mice. We analyzed the California Pesticide Illness Database between 1991 and 2001. Among 127 reports of definite, probable, and possible illness involving sulfur, 21 cases (16%) were identified as respiratory related. A mouse model was used to examine whether there was an inflammatory or fibrotic response to elemental sulfur. Dust solutions were injected intratracheally into ovalbumin sensitized mice and lung damage was evaluated. Lung inflammatory response was analyzed via total lavage cell counts and differentials, and airway collagen content was analyzed histologically and biochemically. No significant differences from controls were seen in animals exposed to sulfur particles. The findings suggest that acute exposure of elemental sulfur itself may not cause an inflammatory reaction. However, further studies are needed to understand the possible health effects of chronic sulfur exposure and environmental weathering of sulfur dust.

  11. Real-time system for respiratory-cardiac gating in positron tomography

    International Nuclear Information System (INIS)

    Klein, G.J.; Reutter, B.W.; Ho, M.H.; Huesman, R.H.; Reed, J.H.

    1998-01-01

    A Macintosh-based signal processing system has been developed to support simultaneous respiratory and cardiac gating on the ECAT EXACT HR PET scanner. Using the Lab-View real-time software environment, the system reads analog inputs from a pneumatic respiratory bellows and an EGG monitor to compute an appropriate histogram memory location for the PET data. Respiratory state is determined by the bellows signal amplitude; cardiac state is based on the time since the last R-wave. These two states are used in a 2D lookup table to determine a combined respiratory-cardiac state. A 4-bit address encoding the selected histogram is directed from the system to the ECAT scanner, which dynamically switches the destination of tomograph events as respiratory-cardiac state changes. to Test the switching efficiency of the combined Macintosh/ECAT system, a rotating emission phantom was built. Acquisitions with 25 msec states while the phantom was rotating at 240 rpm demonstrate the system could effectively stop motion at this rate, with approximately 5 msec switching time between states

  12. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    OpenAIRE

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-01-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The...

  13. Influence of indoor formaldehyde pollution on respiratory system ...

    African Journals Online (AJOL)

    Some adults surveyed complained of common respiratory system disorders, including coughing (11.8%), nasal irritation (39.2%), Heterosmia (14.51%), and throat irritation (25.27%); 12% of children suffered from asthma. The analysis identified formaldehyde pollution and ventilation frequency as risk factors for respiratory ...

  14. Numerical simulation of volume-controlled mechanical ventilated respiratory system with 2 different lungs.

    Science.gov (United States)

    Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas

    2017-09-01

    Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease.

    Science.gov (United States)

    Douglas, Madeline G; Kocher, Jacob F; Scobey, Trevor; Baric, Ralph S; Cockrell, Adam S

    2018-04-01

    We recently established a mouse model (288-330 +/+ ) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 10 6 PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 10 3 and 10 5 PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Computational Fluid and Particle Dynamics in the Human Respiratory System

    CERN Document Server

    Tu, Jiyuan; Ahmadi, Goodarz

    2013-01-01

    Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researcher...

  17. Respiratory analysis system and method

    Science.gov (United States)

    Liu, F. F. (Inventor)

    1973-01-01

    A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.

  18. Respiratory system dynamical mechanical properties: modeling in time and frequency domain.

    Science.gov (United States)

    Carvalho, Alysson Roncally; Zin, Walter Araujo

    2011-06-01

    The mechanical properties of the respiratory system are important determinants of its function and can be severely compromised in disease. The assessment of respiratory system mechanical properties is thus essential in the management of some disorders as well as in the evaluation of respiratory system adaptations in response to an acute or chronic process. Most often, lungs and chest wall are treated as a linear dynamic system that can be expressed with differential equations, allowing determination of the system's parameters, which will reflect the mechanical properties. However, different models that encompass nonlinear characteristics and also multicompartments have been used in several approaches and most specifically in mechanically ventilated patients with acute lung injury. Additionally, the input impedance over a range of frequencies can be assessed with a convenient excitation method allowing the identification of the mechanical characteristics of the central and peripheral airways as well as lung periphery impedance. With the evolution of computational power, the airway pressure and flow can be recorded and stored for hours, and hence continuous monitoring of the respiratory system mechanical properties is already available in some mechanical ventilators. This review aims to describe some of the most frequently used models for the assessment of the respiratory system mechanical properties in both time and frequency domain.

  19. Timely diagnosis of dairy calf respiratory disease using a standardized scoring system.

    Science.gov (United States)

    McGuirk, Sheila M; Peek, Simon F

    2014-12-01

    Respiratory disease of young dairy calves is a significant cause of morbidity, mortality, economic loss, and animal welfare concern but there is no gold standard diagnostic test for antemortem diagnosis. Clinical signs typically used to make a diagnosis of respiratory disease of calves are fever, cough, ocular or nasal discharge, abnormal breathing, and auscultation of abnormal lung sounds. Unfortunately, routine screening of calves for respiratory disease on the farm is rarely performed and until more comprehensive, practical and affordable respiratory disease-screening tools such as accelerometers, pedometers, appetite monitors, feed consumption detection systems, remote temperature recording devices, radiant heat detectors, electronic stethoscopes, and thoracic ultrasound are validated, timely diagnosis of respiratory disease can be facilitated using a standardized scoring system. We have developed a scoring system that attributes severity scores to each of four clinical parameters; rectal temperature, cough, nasal discharge, ocular discharge or ear position. A total respiratory score of five points or higher (provided that at least two abnormal parameters are observed) can be used to distinguish affected from unaffected calves. This can be applied as a screening tool twice-weekly to identify pre-weaned calves with respiratory disease thereby facilitating early detection. Coupled with effective treatment protocols, this scoring system will reduce post-weaning pneumonia, chronic pneumonia, and otitis media.

  20. SU-G-JeP3-09: Tumor Location Prediction Using Natural Respiratory Volume for Respiratory Gated Radiation Therapy (RGRT): System Verification Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; Jung, J; Yoon, D; Shin, H; Kim, S; Suh, T [The catholic university of Korea, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Respiratory gated radiation therapy (RGRT) gives accurate results when a patient’s breathing is stable and regular. Thus, the patient should be fully aware during respiratory pattern training before undergoing the RGRT treatment. In order to bypass the process of respiratory pattern training, we propose a target location prediction system for RGRT that uses only natural respiratory volume, and confirm its application. Methods: In order to verify the proposed target location prediction system, an in-house phantom set was used. This set involves a chest phantom including target, external markers, and motion generator. Natural respiratory volume signals were generated using the random function in MATLAB code. In the chest phantom, the target takes a linear motion based on the respiratory signal. After a four-dimensional computed tomography (4DCT) scan of the in-house phantom, the motion trajectory was derived as a linear equation. The accuracy of the linear equation was compared with that of the motion algorithm used by the operating motion generator. In addition, we attempted target location prediction using random respiratory volume values. Results: The correspondence rate of the linear equation derived from the 4DCT images with the motion algorithm of the motion generator was 99.41%. In addition, the average error rate of target location prediction was 1.23% for 26 cases. Conclusion: We confirmed the applicability of our proposed target location prediction system for RGRT using natural respiratory volume. If additional clinical studies can be conducted, a more accurate prediction system can be realized without requiring respiratory pattern training.

  1. SU-E-J-192: Comparative Effect of Different Respiratory Motion Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y; Kadoya, N; Ito, K; Kanai, T; Jingu, K [Tohoku University School of Medicine, Sendai, Miyagi (Japan); Kida, S [Tohoku University Hospital, Sendai City, Miyagi (Japan); Kishi, K; Sato, K [Tohoku University Hospital, Sendai, Miyagi (Japan); Dobashi, S; Takeda, K [Tohoku University, Sendai, Miyagi (Japan)

    2015-06-15

    Purpose: Irregular breathing can influence the outcome of four-dimensional computed tomography imaging for causing artifacts. Audio-visual biofeedback systems associated with patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches), representing simpler visual coaching techniques without guiding waveform are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching to reduce respiratory irregularities by comparing two respiratory management systems. Methods: We collected data from eleven healthy volunteers. Bar and wave models were used as audio-visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. Results: All coaching techniques improved respiratory variation, compared to free breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86, and 0.98 ± 0.47 mm for free breathing, Abches, bar model, and wave model, respectively. Free breathing and wave model differed significantly (p < 0.05). Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18, and 0.17 ± 0.05 s for free breathing, Abches, bar model, and wave model, respectively. Free breathing and all coaching techniques differed significantly (p < 0.05). For variation in both displacement and period, wave model was superior to free breathing, bar model, and Abches. The average reduction in displacement and period RMSE compared with wave model were 27% and 47%, respectively. Conclusion: The efficacy of audio-visual biofeedback to reduce respiratory irregularity compared with Abches. Our results showed that audio-visual biofeedback combined with a wave model can potentially provide clinical benefits in respiratory management

  2. SU-E-J-192: Comparative Effect of Different Respiratory Motion Management Systems

    International Nuclear Information System (INIS)

    Nakajima, Y; Kadoya, N; Ito, K; Kanai, T; Jingu, K; Kida, S; Kishi, K; Sato, K; Dobashi, S; Takeda, K

    2015-01-01

    Purpose: Irregular breathing can influence the outcome of four-dimensional computed tomography imaging for causing artifacts. Audio-visual biofeedback systems associated with patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches), representing simpler visual coaching techniques without guiding waveform are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching to reduce respiratory irregularities by comparing two respiratory management systems. Methods: We collected data from eleven healthy volunteers. Bar and wave models were used as audio-visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. Results: All coaching techniques improved respiratory variation, compared to free breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86, and 0.98 ± 0.47 mm for free breathing, Abches, bar model, and wave model, respectively. Free breathing and wave model differed significantly (p < 0.05). Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18, and 0.17 ± 0.05 s for free breathing, Abches, bar model, and wave model, respectively. Free breathing and all coaching techniques differed significantly (p < 0.05). For variation in both displacement and period, wave model was superior to free breathing, bar model, and Abches. The average reduction in displacement and period RMSE compared with wave model were 27% and 47%, respectively. Conclusion: The efficacy of audio-visual biofeedback to reduce respiratory irregularity compared with Abches. Our results showed that audio-visual biofeedback combined with a wave model can potentially provide clinical benefits in respiratory management

  3. A new laboratory-based surveillance system (Respiratory DataMart System) for influenza and other respiratory viruses in England: results and experience from 2009 to 2012.

    Science.gov (United States)

    Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R

    2014-01-23

    During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.

  4. Evaluation of the new respiratory gating system

    Science.gov (United States)

    Shi, Chengyu; Tang, Xiaoli; Chan, Maria

    2018-01-01

    Objective The newly released Respiratory Gating for Scanners (RGSC; Varian Medical Systems, Palo Alto, CA, USA) system has limited existing quality assurance (QA) protocols and pertinent publications. Herein, we report our experiences of the RGSC system acceptance and QA. Methods The RGSC system integration was tested with peripheral equipment, spatial reproducibility, and dynamic localization accuracy for regular and irregular breathing patterns, respectively. A QUASAR Respiratory Motion Phantom and a mathematical fitting method were used for data acquisition and analysis. Results The results showed that the RGSC system could accurately measure regular motion periods of 3–10 s. For irregular breathing patterns, differences from the existing Real-time Position Management (RPM; Varian Medical Systems, Palo Alto, CA) system were observed. For dynamic localization measurements, the RGSC system showed 76% agreement with the programmed test data within ±5% tolerance in terms of fitting period. As s comparison, the RPM system showed 66% agreement within ±5% tolerance, and 65% for the RGSC versus RPM measurements. Conclusions New functions and positioning accuracy improve the RGSC system’s ability to achieve higher dynamic treatment precision. A 4D phantom is helpful for the QA tests. Further investigation is required for the whole RGSC system performance QA. PMID:29722356

  5. Mouse Saliva Inhibits Transit of Influenza Virus to the Lower Respiratory Tract by Efficiently Blocking Influenza Virus Neuraminidase Activity.

    Science.gov (United States)

    Gilbertson, Brad; Ng, Wy Ching; Crawford, Simon; McKimm-Breschkin, Jenny L; Brown, Lorena E

    2017-07-15

    We previously identified a novel inhibitor of influenza virus in mouse saliva that halts the progression of susceptible viruses from the upper to the lower respiratory tract of mice in vivo and neutralizes viral infectivity in MDCK cells. Here, we investigated the viral target of the salivary inhibitor by using reverse genetics to create hybrid viruses with some surface proteins derived from an inhibitor-sensitive strain and others from an inhibitor-resistant strain. These viruses demonstrated that the origin of the viral neuraminidase (NA), but not the hemagglutinin or matrix protein, was the determinant of susceptibility to the inhibitor. Comparison of the NA sequences of a panel of H3N2 viruses with differing sensitivities to the salivary inhibitor revealed that surface residues 368 to 370 (N2 numbering) outside the active site played a key role in resistance. Resistant viruses contained an EDS motif at this location, and mutation to either EES or KDS, found in highly susceptible strains, significantly increased in vitro susceptibility to the inhibitor and reduced the ability of the virus to progress to the lungs when the viral inoculum was initially confined to the upper respiratory tract. In the presence of saliva, viral strains with a susceptible NA could not be efficiently released from the surfaces of infected MDCK cells and had reduced enzymatic activity based on their ability to cleave substrate in vitro This work indicates that the mouse has evolved an innate inhibitor similar in function, though not in mechanism, to what humans have created synthetically as an antiviral drug for influenza virus. IMPORTANCE Despite widespread use of experimental pulmonary infection of the laboratory mouse to study influenza virus infection and pathogenesis, to our knowledge, mice do not naturally succumb to influenza. Here, we show that mice produce their own natural form of neuraminidase inhibitor in saliva that stops the virus from reaching the lungs, providing a

  6. Effect of Mouse Strain in a Model of Chemical-induced Respiratory Allergy

    OpenAIRE

    Nishino, Risako; Fukuyama, Tomoki; Watanabe, Yuko; Kurosawa, Yoshimi; Ueda, Hideo; Kosaka, Tadashi

    2014-01-01

    The inhalation of many types of chemicals is a leading cause of allergic respiratory diseases, and effective protocols are needed for the detection of environmental chemical–related respiratory allergies. In our previous studies, we developed a method for detecting environmental chemical–related respiratory allergens by using a long-term sensitization–challenge protocol involving BALB/c mice. In the current study, we sought to improve our model by characterizing strain-associated differences ...

  7. Mobilisation of toxic elements in the human respiratory system

    International Nuclear Information System (INIS)

    Pinheiro, T.; Alves, L.C.; Palhano, M.J.; Bugalho de Almeida, A.

    2001-01-01

    The fate of respired particles in the respiratory system is inferred through the chemical characterisation of individual particles at the tracheal and bronchial mucosas, and the accumulation of toxic elements in lung alveoli and lymph nodes. The particles and tissue elemental distributions were identified and characterised using micro-PIXE elemental mapping of thin frozen sections using the ITN Nuclear Microprobe facility. Significant particle deposits are found at the distal respiratory tract. Al, Si, Ti, V, Cr, Fe, Ni, Cu and Zn are elements detected at these accumulation areas. The elemental distributions in the different cellular environments of lymph nodes vary. The major compartments for Al, Si, Ti, Fe and Cr are the phagocytic cells and capsule of lymph nodes, while V and Ni are in the cortex and paracortex medullar areas which retain more than 70% of these two elements, suggesting high solubility of the latter in the cellular milieu. The elemental mobilisation from particles or deposits to surrounding tissues at the respiratory ducts evidences patterns of diffusion and removal that are different than those for elements in the respiratory tract. Mobilisation of elements such as V, Cr and Ni is more relevant at alveoli areas where gaseous exchange takes place. The apparent high solubility of V and Ni in the respiratory tract tissue points towards a deviation of the lymphatic system filtering efficiency for these elements when compared to others

  8. Endocan and the respiratory system: a review

    Directory of Open Access Journals (Sweden)

    Kechagia M

    2016-12-01

    Full Text Available Maria Kechagia,1,2 Ioannis Papassotiriou,2 Konstantinos I Gourgoulianis1 1Respiratory Medicine Department, University of Thessaly Medical School, Larissa, 2Department of Clinical Biochemistry, Aghia Sophia Children’s Hospital, Athens, Greece Abstract: Endocan, formerly called endothelial cell-specific molecule 1, is an endothelial cell-associated proteoglycan that is preferentially expressed by renal and pulmonary endothelium. It is upregulated by proangiogenic molecules as well as by pro-inflammatory cytokines, and since it reflects endothelial activation and dysfunction, it is regarded as a novel tissue and blood-based relevant biomarker. As such, it is increasingly being researched and evaluated in a wide spectrum of healthy and disease pathophysiological processes. Here, we review the present scientific knowledge on endocan, with emphasis on the evidence that underlines its possible clinical value as a prognostic marker in several malignant, inflammatory and obstructive disorders of the respiratory system. Keywords: endocan, endothelial dysfunction, inflammation, respiratory disorders

  9. Human respiratory tract model for radiological protection: A revision of the ICRP Dosimetric Model for the Respiratory System

    International Nuclear Information System (INIS)

    Bair, W.J.

    1989-01-01

    In 1984, the International Commission on Radiological Protection (ICRP) appointed a task group of Committee 2 to review and revise, as necessary, the ICRP Dosimetric Model for the Respiratory System. The model was originally published in 1966, modified slightly in Publication No. 19, and again in Publication No. 30 (in 1979). The task group concluded that research during the past 20 y suggested certain deficiencies in the ICRP Dosimetric Model for the Respiratory System. Research has also provided sufficient information for a revision of the model. The task group's approach has been to review, in depth, morphology and physiology of the respiratory tract; deposition of inhaled particles in the respiratory tract; clearance of deposited materials; and the nature and specific sites of damage to the respiratory tract caused by inhaled radioactive substances. This review has led to a redefinition of the regions of the respiratory tract for dosimetric purposes. The redefinition has a morphologic and physiological basis and is consistent with observed deposition and clearance of particles and with resultant pathology. Regions, as revised, are the extrathoracic (E-T) region, comprising the nasal and oral regions, the pharynx, larynx, and upper part of the trachea; the fast-clearing thoracic region (T[f]), comprising the remainder of the trachea and bronchi; and the slow-clearing thoracic region (T[s]), comprising the bronchioles, alveoli, and thoracic lymph nodes. A task group report will include models for calculating radiation doses to these regions of the respiratory tract following inhalation of representative alpha-, beta-, and gamma-emitting particulate and gaseous radionuclides. The models may be implemented as a package of computer codes available to a wide range of users

  10. Creatine and creatine pyruvate reduce hypoxia-induced effects on phrenic nerve activity in the juvenile mouse respiratory system.

    Science.gov (United States)

    Scheer, Monika; Bischoff, Anna M; Kruzliak, Peter; Opatrilova, Radka; Bovell, Douglas; Büsselberg, Dietrich

    2016-08-01

    Adequate concentrations of ATP are required to preserve physiological cell functions and protect tissue from hypoxic damage. Decreased oxygen concentration results in ATP synthesis relying increasingly on the presence of phosphocreatine. The lack of ATP through hypoxic insult to neurons that generate or regulate respiratory function, would lead to the cessation of breathing (apnea). It is not clear whether creatine plays a role in maintaining respiratory phrenic nerve (PN) activity during hypoxic challenge. The aim of the study was to test the effects of exogenously applied creatine or creatine pyruvate in maintaining PN induced respiratory rhythm against the deleterious effects of severe hypoxic insult using Working Heart-Brainstem (WHB) preparations of juvenile Swiss type mice. WHB's were perfused with control perfusate or perfusate containing either creatine [100μM] or creatine pyruvate [100μM] prior to hypoxic challenge and PN activity recorded throughout. Results showed that severe hypoxic challenge resulted in an initial transient increase in PN activity, followed by a reduction in that activity leading to respiratory apnea. The results demonstrated that perfusing the WHB preparation with creatine or creatine pyruvate, significantly reduced the onset of apnea compared to control conditions, with creatine pyruvate being the more effective substance. Overall, creatine and creatine pyruvate each produced time-dependent degrees of protection against severe hypoxic-induced disturbances of PN activity. The underlying protective mechanisms are unknown and need further investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effect of mouse strain in a model of chemical-induced respiratory allergy.

    Science.gov (United States)

    Nishino, Risako; Fukuyama, Tomoki; Watanabe, Yuko; Kurosawa, Yoshimi; Ueda, Hideo; Kosaka, Tadashi

    2014-01-01

    The inhalation of many types of chemicals is a leading cause of allergic respiratory diseases, and effective protocols are needed for the detection of environmental chemical-related respiratory allergies. In our previous studies, we developed a method for detecting environmental chemical-related respiratory allergens by using a long-term sensitization-challenge protocol involving BALB/c mice. In the current study, we sought to improve our model by characterizing strain-associated differences in respiratory allergic reactions to the well-known chemical respiratory allergen glutaraldehyde (GA). According to our protocol, BALB/c, NC/Nga, C3H/HeN, C57BL/6N, and CBA/J mice were sensitized dermally with GA for 3 weeks and then challenged with intratracheal or inhaled GA at 2 weeks after the last sensitization. The day after the final challenge, all mice were euthanized, and total serum IgE levels were assayed. In addition, immunocyte counts, cytokine production, and chemokine levels in the hilar lymph nodes (LNs) and bronchoalveolar lavage fluids (BALF) were also assessed. In conclusion, BALB/c and NC/Nga mice demonstrated markedly increased IgE reactions. Inflammatory cell counts in BALF were increased in the treated groups of all strains, especially BALB/c, NC/Nga, and CBA/J strains. Cytokine levels in LNs were increased in all treated groups except for C3H/HeN and were particularly high in BALB/c and NC/Nga mice. According to our results, we suggest that BALB/c and NC/Nga are highly susceptible to respiratory allergic responses and therefore are good candidates for use in our model for detecting environmental chemical respiratory allergens.

  12. [Aging of the respiratory system: anatomical changes and physiological consequences].

    Science.gov (United States)

    Ketata, W; Rekik, W K; Ayadi, H; Kammoun, S

    2012-10-01

    The respiratory system undergoes progressive involution with age, resulting in anatomical and functional changes that are exerted on all levels. The rib cage stiffens and respiratory muscles weaken. Distal bronchioles have reduced diameter and tend to be collapsed. Mobilized lung volumes decrease with age while residual volume increases. Gas exchanges are modified with a linear decrease of PaO(2) up to the age of 70 years and a decreased diffusing capacity of carbon monoxide. Ventilatory responses to hypercapnia, hypoxia and exercise decrease in the elderly. Knowledge of changes in the respiratory system related to advancing age is a medical issue of great importance in order to distinguish the effects of aging from those of diseases. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Respiratory allergen from house dust mite is present in human milk and primes for allergic sensitization in a mouse model of asthma.

    Science.gov (United States)

    Macchiaverni, P; Rekima, A; Turfkruyer, M; Mascarell, L; Airouche, S; Moingeon, P; Adel-Patient, K; Condino-Neto, A; Annesi-Maesano, I; Prescott, S L; Tulic, M K; Verhasselt, V

    2014-03-01

    There is an urgent need to identify environmental risk and protective factors in early life for the prevention of allergy. Our study demonstrates the presence of respiratory allergen from house dust mite, Der p 1, in human breast milk. Der p 1 in milk is immunoreactive, present in similar amounts as dietary egg antigen, and can be found in breast milk from diverse regions of the world. In a mouse model of asthma, oral exposure to Der p through breast milk strongly promotes sensitization rather than protect the progeny as we reported with egg antigen. These data highlight that antigen administration to the neonate through the oral route may contribute to child allergic sensitization and have important implications for the design of studies assessing early oral antigen exposure for allergic disease prevention. The up-to-now unknown worldwide presence of respiratory allergen in maternal milk allows new interpretation and design of environmental control epidemiological studies for allergic disease prevention. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Impact of cement dust pollution on respiratory systems of Lafarge ...

    African Journals Online (AJOL)

    In this investigation, the impact of cement dust pollution on respiratory systems of Lafarge cement workers was evaluated. A total of 120 respondents; 60 from the factory workers and 60 (controls) from Ifo, a nearby village 22 km NE of the factory were interviewed in 2014 using a modified respiratory symptom score ...

  15. Evaluation of the MEMS based portable respiratory training system with a tactile sensor for respiratory-gated radiotherapy

    Science.gov (United States)

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2017-10-01

    In respiratory-gated radiotherapy, it is important to maintain the regular respiratory cycles of patients. If patients undergo respiration training, their regular breathing pattern is affected. Therefore, we developed a respiratory training system based on a micro electromechanical system (MEMS) and evaluated the feasibility of the MEMS in radiotherapy. By comparing the measured signal before and after radiation exposure, we confirmed the effects of radiation. By evaluating the period of the electric signal emitted by a tactile sensor and its constancy, the performance of the tactile sensor was confirmed. Moreover, by comparing the delay between the motion of the MEMS and the electric signal from the tactile sensor, we confirmed the reaction time of the tactile sensor. The results showed that a baseline shift occurred for an accumulated dose of 400 Gy in the sensor, and both the amplitude and period changed. The period of the signal released by the tactile sensor was 5.39 and its standard deviation was 0.06. Considering the errors from the motion phantom, a standard deviation of 0.06 was desirable. The delay time was within 0.5 s and not distinguishable by a patient. We confirmed the performance of the MEMS and concluded that MEMS could be applied to patients for respiratory-gated radiotherapy.

  16. Investigating parameters participating in the infant respiratory control system attractor.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2008-01-01

    Theoretically, any participating parameter in a non-linear system represents the dynamics of the whole system. Taken's time delay embedding theory provides the fundamental basis for allowing non-linear analysis to be performed on physiological, time-series data. In practice, only one measurable parameter is required to be measured to convey an accurate representation of the system dynamics. In this paper, the infant respiratory control system is represented using three variables-a digitally sampled respiratory inductive plethysmography waveform, and the derived parameters tidal volume and inter-breath interval time series data. For 14 healthy infants, these data streams were analysed using recurrence plot analysis across one night of sleep. The measured attractor size of these variables followed the same qualitative trends across the nights study. Results suggest that the attractor size measures of the derived IBI and tidal volume are representative surrogates for the raw respiratory waveform. The extent to which the relative attractor sizes of IBI and tidal volume remain constant through changing sleep state could potentially be used to quantify pathology, or maturation of breathing control.

  17. Respiratory system. Part 2: Gaseous exchange.

    Science.gov (United States)

    McLafferty, Ella; Johnstone, Carolyn; Hendry, Charles; Farley, Alistair

    This article, which isthe last in the life sciences series and the second of two articles on the respiratory system, describes gaseous exchange in the lungs, transport of oxygen and carbon dioxide, and internal and external respiration. The article concludes with a brief consideration of two conditions that affect gas exchange and transport: carbon monoxide poisoning and chronic obstructive pulmonary disease.

  18. Auscultation of the respiratory system

    Science.gov (United States)

    Sarkar, Malay; Madabhavi, Irappa; Niranjan, Narasimhalu; Dogra, Megha

    2015-01-01

    Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion. PMID:26229557

  19. Auscultation of the respiratory system

    Directory of Open Access Journals (Sweden)

    Malay Sarkar

    2015-01-01

    Full Text Available Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion.

  20. Doping and respiratory system.

    Science.gov (United States)

    Casali, L; Pinchi, G; Puxeddu, E

    2007-03-01

    Historically many different drugs have been used to enhance sporting performances. The magic elixir is still elusive and the drugs are still used despite the heavy adverse effects. The respiratory system is regularly involved in this research probably because of its central location in the body with several connections to the cardiovascular system. Moreover people are aware that O2 consumption and its delivery to mitochondria firstly depend on ventilation and on the respiratory exchanges. The second step consists in the tendency to increase V'O2 max and to prolong its availability with the aim of improving the endurance time and to relieve the fatigue. Many methods and substances had been used in order to gain an artificial success. Additional oxygen, autologous and homologous transfusion and erythropoietin, mainly the synthetic type, have been administered with the aim of increasing the amount of oxygen being delivered to the tissues. Some compounds like stimulants and caffeine are endowed of excitatory activity on the CNS and stimulate pulmonary ventilation. They did not prove to have any real activity in supporting the athletic performances. Beta-adrenergic drugs, particularly clenbuterol, when administered orally or parenterally develop a clear illicit activity on the myosin fibres and on the muscles as a whole. Salbutamol, terbutaline, salmeterol and formoterol are legally admitted when administrated by MDI in the treatment of asthma. The prevalence of asthma and bronchial hyperactivity is higher in athletes than amongst the general population. This implies that clear rules must be provided to set a correct diagnosis of asthma in the athletes and a correct therapy to align with the actual guidelines according to the same rights of the "other" asthmatic patients.

  1. Respiratory

    Science.gov (United States)

    The words "respiratory" and "respiration" refer to the lungs and breathing. ... Boron WF. Organization of the respiratory system. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 26.

  2. Effect of ultraviolet exposure on mitochondrial respiratory system

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K [Kurume Univ., Fukuoka (Japan). School of Medicine

    1975-09-01

    To find the photodynamic effect of ultraviolet light on the mitochondrial respiratory chain, mitochondria were obtained from rat livers, and the suspension was exposed to an extensive ultraviolet light. The oxygen consumption was measured polarographically with a Clark oxygen electrode. The effect of ultraviolet exposure on the five states of respiratory control (Chance and Williams), the P/O ratio, and the respiratory control index in mitochondria was discussed. The ultraviolet light with a dose of 9.6 x 10/sup 6/ erg/cm/sup 2/ caused the oxidative phosphorylation in mitochondria to uncouple. The 2nd phosphorylation site of the respiratory chain was susceptible to ultraviolet exposure. The stimulation of latent ATPase activity in mitochondria following exposure was observed by increasing exposure of ultraviolet light. However, DNP-stimulated ATPase was found to be stable in activity. The uncoupling of the respiratory chain by ultraviolet exposure was not detected if the mitochondrial suspension was preincubated with bovine serum albumin before exposure. The changes in light absorption of the mitochondrial suspension were followed at 520 nm after exposure. A close correlation was found between the ultraviolet exposure and swelling in mitochondria. But, the reversing contraction was observed by adding ATP to the swelled mitochondria. The peroxide compound was formed in mitochondria irradiated with ultraviolet light. The amount of compounds formed was dependent on the radiant energy of ultraviolet light. The possible mechanisms involved in the photodynamic effect of ultraviolet light to the mitochondrial respiration system were discussed.

  3. Methyl methacrylate and respiratory sensitization: A Critical review

    Science.gov (United States)

    Borak, Jonathan; Fields, Cheryl; Andrews, Larry S; Pemberton, Mark A

    2011-01-01

    Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants.The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer. PMID:21401327

  4. Decerebrate mouse model for studies of the spinal cord circuits

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Mayr, Kyle A; Manuel, Marin

    2017-01-01

    The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor be......, which is ample time to perform most short-term procedures. These protocols can be modified for those interested in cardiovascular or respiratory function in addition to motor function and can be performed by trainees with some previous experience in animal surgery....

  5. Breath pacing system and method for pacing the respiratory activity of a subject

    NARCIS (Netherlands)

    2016-01-01

    To provide a breath pacing system and a corresponding method for pacing the respiratory activity of a subject that provide the possibility to adapt the output signal to the respiration characteristics of the subject automatically and effectively a breath pacing system (10) for pacing the respiratory

  6. Activity of respiratory system during laser irradiation of brain structures

    Science.gov (United States)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  7. Physiological system integrations with emphasis on the respiratory-cardiovascular system

    Science.gov (United States)

    Gallagher, R. R.

    1975-01-01

    The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.

  8. Saccharomyces cerevisiae-derived virus-like particle parvovirus B19 vaccine elicits binding and neutralizing antibodies in a mouse model for sickle cell disease.

    Science.gov (United States)

    Penkert, Rhiannon R; Young, Neal S; Surman, Sherri L; Sealy, Robert E; Rosch, Jason; Dormitzer, Philip R; Settembre, Ethan C; Chandramouli, Sumana; Wong, Susan; Hankins, Jane S; Hurwitz, Julia L

    2017-06-22

    Parvovirus B19 infections are typically mild in healthy individuals, but can be life threatening in individuals with sickle cell disease (SCD). A Saccharomyces cerevisiae-derived B19 VLP vaccine, now in pre-clinical development, is immunogenic in wild type mice when administered with the adjuvant MF59. Because SCD alters the immune response, we evaluated the efficacy of this vaccine in a mouse model for SCD. Vaccinated mice with SCD demonstrated similar binding and neutralizing antibody responses to those of heterozygous littermate controls following a prime-boost-boost regimen. Due to the lack of a mouse parvovirus B19 challenge model, we employed a natural mouse pathogen, Sendai virus, to evaluate SCD respiratory tract responses to infection. Normal mucosal and systemic antibody responses were observed in these mice. Results demonstrate that mice with SCD can respond to a VLP vaccine and to a respiratory virus challenge, encouraging rapid development of the B19 vaccine for patients with SCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. ACUTE RESPIRATORY DISEASE AS THE DEBUT OF SYSTEMIC LUPUS ERYTHEMATOSUS

    Directory of Open Access Journals (Sweden)

    A. Yu. Ischenko

    2015-01-01

    Full Text Available Systemic lupus erythematosus — a chronic autoimmune disease that is often associated with infectious processes. The paper presents two clinical cases of systemic lupus erythematosus , debuted with acute respiratory infection.

  10. Stimulation of Respiratory Motor Output and Ventilation in a Murine Model of Pompe Disease by Ampakines.

    Science.gov (United States)

    ElMallah, Mai K; Pagliardini, Silvia; Turner, Sara M; Cerreta, Anthony J; Falk, Darin J; Byrne, Barry J; Greer, John J; Fuller, David D

    2015-09-01

    Pompe disease results from a mutation in the acid α-glucosidase gene leading to lysosomal glycogen accumulation. Respiratory insufficiency is common, and the current U.S. Food and Drug Administration-approved treatment, enzyme replacement, has limited effectiveness. Ampakines are drugs that enhance α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor responses and can increase respiratory motor drive. Recent work indicates that respiratory motor drive can be blunted in Pompe disease, and thus pharmacologic stimulation of breathing may be beneficial. Using a murine Pompe model with the most severe clinical genotype (the Gaa(-/-) mouse), our primary objective was to test the hypothesis that ampakines can stimulate respiratory motor output and increase ventilation. Our second objective was to confirm that neuropathology was present in Pompe mouse medullary respiratory control neurons. The impact of ampakine CX717 on breathing was determined via phrenic and hypoglossal nerve recordings in anesthetized mice and whole-body plethysmography in unanesthetized mice. The medulla was examined using standard histological methods coupled with immunochemical markers of respiratory control neurons. Ampakine CX717 robustly increased phrenic and hypoglossal inspiratory bursting and reduced respiratory cycle variability in anesthetized Pompe mice, and it increased inspiratory tidal volume in unanesthetized Pompe mice. CX717 did not significantly alter these variables in wild-type mice. Medullary respiratory neurons showed extensive histopathology in Pompe mice. Ampakines stimulate respiratory neuromotor output and ventilation in Pompe mice, and therefore they have potential as an adjunctive therapy in Pompe disease.

  11. Nonspecific airway reactivity in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  12. 3-D Model of the Human Respiratory System

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  13. Comparison of visual biofeedback system with a guiding waveform and abdomen-chest motion self-control system for respiratory motion management

    International Nuclear Information System (INIS)

    Nakajima, Yujiro; Kadoya, Noriyuki; Kanai, Takayuki; Ito, Kengo; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Ishikawa, Yojiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2016-01-01

    Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities

  14. The Respiratory System. Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    Science.gov (United States)

    National Evaluation Systems, Inc., Amherst, MA.

    This instructional modular unit with instructor's guide provides materials on aspects of one of the major systems of the human body--the respiratory system. Its purpose is to introduce the student to the structures and functions of the human respiratory system--and the interrelationships of the two--and to famlliarize the student with some of the…

  15. Lost life years due to premature mortality caused by diseases of the respiratory system.

    Science.gov (United States)

    Maniecka-Bryła, Irena; Paciej-Gołębiowska, Paulina; Dziankowska-Zaborszczyk, Elżbieta; Bryła, Marek

    2018-06-04

    In Poland, as in most other European countries, diseases of the respiratory system are the 4th leading cause of mortality; they are responsible for about 8% of all deaths in the European Union (EU) annually. To assess the socio-economic aspects of mortality, it has become increasingly common to apply potential measures rather than conventionally used ratios. The aim of this study was to analyze years of life lost due to premature deaths caused by diseases of the respiratory system in Poland from 1999 to 2013. The study was based on a dataset of 5,606,516 records, obtained from the death certificates of Polish residents who died between 1999 and 2013. The information on deaths caused by diseases of the respiratory system, i.e., coded as J00-J99 according to the International Statistical Classification of Diseases and Related Health Problems, 10th revision (ICD-10), was analyzed. The Standard Expected Years of Life Lost (SEYLL) indicator was used in the study. In the years 1999-2013, the Polish population suffered 280,519 deaths caused by diseases of the respiratory system (4.69% of all deaths). In the period analyzed, a gradual decrease in the standardized death rate was observed - from 46.31 per 100,000 inhabitants in 1999 to 41.02 in 2013. The dominant causes of death were influenza and pneumonia (J09-J18) and chronic lower respiratory diseases (J40-J47). Diseases of the respiratory system were the cause of 4,474,548.92 lost life years. The Standard Expected Years of Life Lost per person (SEYLLp) was 104.72 per 10,000 males and 52.85 per 10,000 females. The Standard Expected Years of Life Lost per death (SEYLLd) for people who died due to diseases of the respiratory system was 17.54 years of life on average for men and 13.65 years on average for women. The use of the SEYLL indicator provided significant information on premature mortality due to diseases of the respiratory system, indicating the fact that they play a large role in the health status of the Polish

  16. Comparison of three mouse strains by radiosensitivity of hemato-immune system

    International Nuclear Information System (INIS)

    Li, Deguan; Wu, Hongying; Wang, Yong; Zhang, Junling; Wang, Yueying; Lu, Lu; Meng, Aimin

    2008-01-01

    IRM-2, developed in our Lab, is an inbred strain mouse created by cross of a ICR/JCL female and 615 male mouse. Compared to the parent strains, the IRM-2 mouse exhibit increased resistance to radiation. We examine the damage of hemato-immune system induced by radiation in IRM-2, ICR and 615 mice in order to elucidate the radiation resistant mechanism of IRM-2 mouse. The hemato-immune function and radiosensitivities of three mouse strains (IRM-2, ICR/JCL, 615) have been compared using the following parameters: the white blood cells (WBC) in peripheral blood (PB), the bone marrow nucleated cells (BMC) per femur. Percent of phagocytosis of peritoneal macrophage (PM) was checked by chicken red blood cells. Lymphocyte phenotype in PB were analyzed by flow cytometry. Damage induced by radiation were analysed in the bone marrows cells, splenocytes and thymocyte exposed to irradiation in vitro by cell viability assay (ATP Bioluminescence assay) and apoptosis assay (Annexin V/PI). The WBC and BMC of IRM-2 mice were significantly higher than those in ICR mice and 615 mice, respectively (P<0.01). The ratio of CD4/CD8 in PB of IRM-2 mouse was lower than those in ICR and 615, P<0.01. Cell viability showed difference after 18 hs incubation post radiation in three mouse strains. The results of our primary study suggest that the hemato-immune function in IRM-2 mouse is different to its parent strains. The IRM-2 mouse provides an animal model to conducted further investigation to explore the role of hemato-immune system in radiation resistance. (author)

  17. Cancer epidemiology in respiratory system among uranium miners

    International Nuclear Information System (INIS)

    Moraes, A.

    1976-11-01

    A summary of some published papers about cancer in respiratory system among uranium miners is presented. A comparative table relating cancer cases among uranium miners is shown. A table relating cases among miners in Checoslovaquia and cumulative exposure levels due to radon daughter products is also given [pt

  18. The microbiota of the respiratory tract : Gatekeeper to respiratory health

    NARCIS (Netherlands)

    Man, Wing Ho; De Steenhuijsen Piters, Wouter A.A.; Bogaert, Debby

    2017-01-01

    The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts

  19. Role of fluorographic examinations in diagnosis of respiratory system diseases

    International Nuclear Information System (INIS)

    Vil'derman, A.M.; Tsurkan, E.P.; Moskovchuk, A.F.

    1984-01-01

    Materials are considered on the role of fluorography in diagnosis of posttuberculous changes and chromic respiratory system diseases during total epidemiologic examination of 7791 adults from urban and rural population. A scheme is developed that characterize diagnosed pathology of respiratory organs with references to medical establishments rendering medical supervision and forms of supervision. It is shown that fluorograhic examination of the population provide an early diagnosis of both tuberculosis, neoplastic diseases and nonspecific pulmonary diseases that have no visible clinical symptomatology

  20. A mouse model of mitochondrial complex III dysfunction induced by myxothiazol

    Energy Technology Data Exchange (ETDEWEB)

    Davoudi, Mina [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Kallijärvi, Jukka; Marjavaara, Sanna [Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Kotarsky, Heike; Hansson, Eva [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Levéen, Per [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Fellman, Vineta, E-mail: Vineta.Fellman@med.lu.se [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki 00029 (Finland)

    2014-04-18

    Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIII inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.

  1. Integration of mouse and human genome-wide association data identifies KCNIP4 as an asthma gene

    NARCIS (Netherlands)

    Himes, Blanca E.; Sheppard, Keith; Berndt, Annerose; Leme, Adriana S.; Myers, Rachel A.; Gignoux, Christopher R.; Levin, Albert M.; Gauderman, W. James; Yang, James J.; Mathias, Rasika A.; Romieu, Isabelle; Torgerson, Dara G.; Roth, Lindsey A.; Huntsman, Scott; Eng, Celeste; Klanderman, Barbara; Ziniti, John; Senter-Sylvia, Jody; Szefler, Stanley J.; Lemanske, Robert F.; Zeiger, Robert S.; Strunk, Robert C.; Martinez, Fernando D.; Boushey, Homer; Chinchilli, Vernon M.; Israel, Elliot; Mauger, David; Koppelman, Gerard H.; Postma, Dirkje S.; Nieuwenhuis, Maartje A. E.; Vonk, Judith M.; Lima, John J.; Irvin, Charles G.; Peters, Stephen P.; Kubo, Michiaki; Tamari, Mayumi; Nakamura, Yusuke; Litonjua, Augusto A.; Tantisira, Kelan G.; Raby, Benjamin A.; Bleecker, Eugene R.; Meyers, Deborah A.; London, Stephanie J.; Barnes, Kathleen C.; Gilliland, Frank D.; Williams, L. Keoki; Burchard, Esteban G.; Nicolae, Dan L.; Ober, Carole; DeMeo, Dawn L.; Silverman, Edwin K.; Paigen, Beverly; Churchill, Gary; Shapiro, Steve D.; Weiss, Scott

    2013-01-01

    Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR). The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify

  2. Respiratory protective device design using control system techniques

    Science.gov (United States)

    Burgess, W. A.; Yankovich, D.

    1972-01-01

    The feasibility of a control system analysis approach to provide a design base for respiratory protective devices is considered. A system design approach requires that all functions and components of the system be mathematically identified in a model of the RPD. The mathematical notations describe the operation of the components as closely as possible. The individual component mathematical descriptions are then combined to describe the complete RPD. Finally, analysis of the mathematical notation by control system theory is used to derive compensating component values that force the system to operate in a stable and predictable manner.

  3. The feasibility of the auto tuning respiratory compensation system with ultrasonic image tracking technique.

    Science.gov (United States)

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Nieh, Shu-Kan; Tien, Der-Chi

    2015-01-01

    The purpose of this study is to assess the feasibility of using the analytical technique of ultrasound images in combination with an auto tumor localization system. During respiration, the activity of breathing in and out causes organs displacement at the lower lobe of the lung, and the maximum displacement range happens in the Superior-Inferior (SI) direction. Therefore, in this study all the tumor positioning is in SI direction under respiratory compensation, in which the compensations are carried out to the organs at the lower lobe and adjacent to the lower lobe of lung.In this research, due to the processes of ultrasound imaging generation, image analysis and signal transmission, when the captured respiratory signals are sent to auto tumor localization system, there was a signal time delay. The total delay time of the entire signal transmission process was 0.254 ± 0.023 seconds (with the lowest standard deviation) after implementing a series of analyses. To compensate for this signal delay time (0.254 ± 0.023 sec), a phase lead compensator (PLC) was designed and built into the auto tumor localization system. By analyzing the impact of the delay time and the respiratory waveforms under different frequencies on the phase lead compensator, an overall system delay time can be configured. Results showed as the respiratory frequency increased, variable value ``a'' and the subsequent gain ``k'' in the controller becomes larger. Moreover, value ``a'' and ``k'' increased as the system delay time increased when the respiratory frequency was fixed. The relationship of value ``a'' and ``k'' to the respiratory frequency can be obtained by using the curve fitting method to compensate for the respiratory motion for tumor localization. Through the comparison of the uncompensated signal and the compensated signal performed by the auto tumor localization system on the simulated respiratory signal, the feasibility of using ultrasound image analysis technology combined with the

  4. Histological and reference system for the analysis of mouse intervertebral disc.

    Science.gov (United States)

    Tam, Vivian; Chan, Wilson C W; Leung, Victor Y L; Cheah, Kathryn S E; Cheung, Kenneth M C; Sakai, Daisuke; McCann, Matthew R; Bedore, Jake; Séguin, Cheryle A; Chan, Danny

    2018-01-01

    A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Computational 3-D Model of the Human Respiratory System

    Science.gov (United States)

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  6. Evaluation and reduction of respiratory motion artifacts in small animal SPECT with GATE

    International Nuclear Information System (INIS)

    Lee, C.-L.; Park, S.-J.; Kim, H.-J.

    2015-01-01

    The degradation of image quality caused by respiration is a major impediment to accurate lesion detection in single photon emission computed tomography (SPECT) imaging. This study was performed to evaluate the effects of lung motion on image quantification. A small animal SPECT system with NaI(Tl) was modeled in the Geant4 application for tomographic emission (GATE) simulation for a lung lesion using a 4D mouse whole-body phantom. SPECT images were obtained using 120 projection views acquired from 0 o to 360 o with a 3 o step. Slices were reconstructed using ordered subsets expectation maximization (OS-EM) without attenuation correction with five iterations and four subsets. Image quality was compared between the static mode without respiratory motion, and dynamic mode with respiratory motion in terms of spatial resolution was measured by the full width at half maximum (FWHM), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The FWHM of the non-gated image and the respiratory gated image were also compared. Spatial resolution improved as activity increased and lesion diameter decreased in the static and dynamic modes. The SNR and CNR increased significantly as lesion activity increased and lesion diameter decreased. Our results show that respiratory motion leads to reduced contrast and quantitative accuracy and that image quantification depends on both the amplitude and the pattern of the respiratory motion. We verified that respiratory motion can have a major effect on the accuracy of measurement of lung lesions and that respiratory gating can reduce activity smearing on SPECT images

  7. Instrumentation for the analysis of respiratory system disorders during sleep: Design and application

    Science.gov (United States)

    de Melo, Pedro Lopes; de Andrade Lemes, Lucas Neves

    2002-11-01

    Sleep breathing disorders are estimated to be present in 2%-4% of middle-aged adults. Serious adverse consequences, such as systemic arterial hypertension, myocardial infraction, and cerebrovascular disease, can be related to these conditions. Intellectual deficits associated with attention, memory, and problem-solving have also been associated with a poor quality of sleep. The main causes of these disorders are obstructions resulting from repetitive narrowing and closure of the pharyngeal airway, which have been monitored by indirect measurements of temperature, displacement, and other highly invasive procedures. The measurement of mechanical impedance of the respiratory system by the forced oscillation technique (FOT) has recently been suggested to quantify the respiratory obstruction during sleep. It is claimed that the noninvasive and dynamic characteristics of this technique would allow a noninvasive and accurate analysis of these events. In spite of this high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this study was twofold: (1) describe the development of a new computer-based system for identification of the mechanical impedance of the respiratory system during sleep by the FOT and (2) evaluate the performance of this device in the description of respiratory events in conditions including no, mild, serious disease, and therapeutic procedures. These evaluations confirmed the desirable features achieved in laboratory tests and the high scientific and clinical potential of this system.

  8. Respiratory gating in cardiac PET

    DEFF Research Database (Denmark)

    Lassen, Martin Lyngby; Rasmussen, Thomas; Christensen, Thomas E

    2017-01-01

    BACKGROUND: Respiratory motion due to breathing during cardiac positron emission tomography (PET) results in spatial blurring and erroneous tracer quantification. Respiratory gating might represent a solution by dividing the PET coincidence dataset into smaller respiratory phase subsets. The aim...... of our study was to compare the resulting imaging quality by the use of a time-based respiratory gating system in two groups administered either adenosine or dipyridamole as the pharmacological stress agent. METHODS AND RESULTS: Forty-eight patients were randomized to adenosine or dipyridamole cardiac...... stress (82)RB-PET. Respiratory rates and depths were measured by a respiratory gating system in addition to registering actual respiratory rates. Patients undergoing adenosine stress showed a decrease in measured respiratory rate from initial to later scan phase measurements [12.4 (±5.7) vs 5.6 (±4...

  9. A Novel Parametric Model For The Human Respiratory System

    Directory of Open Access Journals (Sweden)

    Clara Mihaela IONESCU

    2003-12-01

    Full Text Available The purpose of this work is to present some recent results in an ongoing research project between Ghent University and Chess Medical Technology Company Belgium. The overall aim of the project is to provide a fast method for identification of the human respiratory system in order to allow for an instantaneously diagnosis of the patient by the medical staff. A novel parametric model of the human respiratory system as well as the obtained experimental results is presented in this paper. A prototype apparatus developed by the company, based on the forced oscillation technique is used to record experimental data from 4 patients in this paper. Signal processing is based on spectral analysis and is followed by the parametric identification of a non-linear mechanistic model. The parametric model is equivalent to the structure of a simple electrical RLC-circuit, containing a non-linear capacitor. These parameters have a useful and easy-to-interpret physical meaning for the medical staff members.

  10. Morphogenesis of the rhea (Rhea americana respiratory system in different embryonic and foetal stages

    Directory of Open Access Journals (Sweden)

    Renata P. Sousa

    Full Text Available ABSTRACT: The rhea (Rhea americana is an important wild species that has been highlighted in national and international livestock. This research aims to analyse embryo-foetal development in different phases of the respiratory system of rheas. Twenty-three embryos and foetuses were euthanized, fixed and dissected. Fragments of the respiratory system, including the nasal cavity, larynx, trachea, syrinx, bronchi and lungs, were collected and processed for studies using light and scanning electron microscopy. The nasal cavity presented cubic epithelium in the early stages of development. The larynx exhibited typical respiratory epithelium between 27 and 31 days. The trachea showed early formation of hyaline cartilage after 15 days. Syrinx in the mucous membrane of 18-day foetuses consisted of ciliated epithelium in the bronchial region. The main bronchi had ciliated epithelium with goblet cells in the syringeal region. In the lung, the parabronchial stage presented numerous parabronchi between 15 and 21 days. This study allowed the identification of normal events that occur during the development of the rhea respiratory system, an important model that has not previously been described. The information generated here will be useful for the diagnosis of pathologies that affect this organic system, aimed at improving captive production systems.

  11. A Review on Human Respiratory Modeling.

    Science.gov (United States)

    Ghafarian, Pardis; Jamaati, Hamidreza; Hashemian, Seyed Mohammadreza

    2016-01-01

    Input impedance of the respiratory system is measured by forced oscillation technique (FOT). Multiple prior studies have attempted to match the electromechanical models of the respiratory system to impedance data. Since the mechanical behavior of airways and the respiratory system as a whole are similar to an electrical circuit in a combination of series and parallel formats some theories were introduced according to this issue. It should be noted that, the number of elements used in these models might be less than those required due to the complexity of the pulmonary-chest wall anatomy. Various respiratory models have been proposed based on this idea in order to demonstrate and assess the different parts of respiratory system related to children and adults data. With regard to our knowledge, some of famous respiratory models in related to obstructive, restrictive diseases and also Acute Respiratory Distress Syndrome (ARDS) are reviewed in this article.

  12. Consideration of the accuracy by variation of respiration in real-time position management respiratory gating system

    International Nuclear Information System (INIS)

    Na, Jun Young; Kang, Tae Young; Beak, Geum Mun; Kwon, Gyeong Tae

    2013-01-01

    Respiratory Gated Radiation Therapy (RGRT) has been carried out using RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, varian, USA) in Asan Medical Center. This study was to analyze and evaluate the accuracy of Respiratory Gated Radiation Therapy (RGRT) according to variation of respiration. Making variation of respiration using Motion Phantom:QUASAR Programmable Respiratory Motion Phantom (Moudus Medical Device Inc. CANADA) able to adjust respiration pattern randomly was varying period, amplitude and baseline by analyze 50 patient's respiration of lung and liver cancer. One of the variations of respiration is baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. The other variation of respiration is baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm. Experiments were performed in the same way that is used RPM Respiratory Gating System (phase gating, usually 30-70% gating) in Asan Medical Center. It was all exposed radiation under one of the conditions of baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. Under the other condition of baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm equally radiation was exposed. The variations of baseline shifts didn't accurately reflect on phase gating in RPM Respiratory Gating System. This inexactitude makes serious uncertainty in Respiratory Gated Radiation Therapy. So, Must be stabilized breathing of patient before conducting Respiratory Gated Radiation Therapy. also must be monitored breathing of patient in the middle of treatment. If you observe considerable changes of breathing when conducting Respiratory Gated Radiation Therapy. Stopping treatment immediately and then must be need to recheck treatment site using fluoroscopy. If patient's respiration rechecked using fluoroscopy restabilize, it is possible to restart Respiratory Gated Radiation Therapy

  13. Late-onset Radiologic Findings of Respiratory System Following Sulfur Mustard Exposure

    Directory of Open Access Journals (Sweden)

    Mahnaz Amini

    2013-06-01

    Full Text Available Background: Sulfur mustard (SM as a chemical warfare agent, increases permeability of bronchial vessels and damages airway epithelium. SM exposure causes debilitating respiratory complications. This study was designed to evaluate clinical respiratory manifestations, and to compare chest X ray (CXR and high resolution computed tomography (HRCT scan of chest in SM exposed patients with respiratory complaints. Methods:All patients with history of SM exposure who visited Imam Reza Specialized Clinic of Respiratory Diseases from September 2001 to March 2011 were included. Patients with other comorbidities which affect respiratory system were excluded. CXR and chest HRCT scan were performed on the same day and were repeated after 5 years. Clinical and radiologic findings were collected and were compared with each other. Results: In total, 62 male patients with mean age of 53 (6.9, 41-65 were studied. Dyspnea (61 cases; 100%, dry cough (40 cases; 66%, hemoptysis (21 cases; 35% and productive cough (20 cases; 33% were the most common respiratory manifestations. Pulmonary infiltration (51; 83%, pleural thickening (25; 40% and emphysema (16; 26% were the most common findings on CXR. According to HRCT scan, pulmonary infiltration (53; 85%, bronchiolitis obliterans (38; 61% and pleural thickening (36; 58% were the most common findings (Table 2. Repeated radiologic assessments after 5 years showed a few additional findings in HRCT scan, while in about one fifth of CXRs, new pathologic findings were found. Conclusion: Patients with SM exposure experience debilitating respiratory disorders in long term. Repeating CXR in patients who present with subjective symptoms may show new findings; however, repeating HRCT scan is probably not necessary.

  14. Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems.

    Science.gov (United States)

    Komatsu, Riyo; Okazaki, Tatsuma; Ebihara, Satoru; Kobayashi, Makoto; Tsukita, Yoko; Nihei, Mayumi; Sugiura, Hisatoshi; Niu, Kaijun; Ebihara, Takae; Ichinose, Masakazu

    2018-05-22

    Repetition of the onset of aspiration pneumonia in aged patients is common and causes chronic inflammation. The inflammation induces proinflammatory cytokine production and atrophy in the muscles. The proinflammatory cytokines induce muscle proteolysis by activating calpains and caspase-3, followed by further degradation by the ubiquitin-proteasome system. Autophagy is another pathway of muscle atrophy. However, little is known about the relationship between aspiration pneumonia and muscle. For swallowing muscles, it is not clear whether they produce cytokines. The main objective of this study was to determine whether aspiration pneumonia induces muscle atrophy in the respiratory (the diaphragm), skeletal (the tibialis anterior, TA), and swallowing (the tongue) systems, and their possible mechanisms. We employed a mouse aspiration pneumonia model and computed tomography (CT) scans of aged pneumonia patients. To induce aspiration pneumonia, mice were inoculated with low dose pepsin and lipopolysaccharide solution intra-nasally 5 days a week. The diaphragm, TA, and tongue were isolated, and total RNA, proteins, and frozen sections were stored. Quantitative real-time polymerase chain reaction determined the expression levels of proinflammatory cytokines, muscle E3 ubiquitin ligases, and autophagy related genes. Western blot analysis determined the activation of the muscle proteolysis pathway. Frozen sections determined the presence of muscle atrophy. CT scans were used to evaluate the muscle atrophy in aged aspiration pneumonia patients. The aspiration challenge enhanced the expression levels of proinflammatory cytokines in the diaphragm, TA, and tongue. Among muscle proteolysis pathways, the aspiration challenge activated caspase-3 in all the three muscles examined, whereas calpains were activated in the diaphragm and the TA but not in the tongue. Activation of the ubiquitin-proteasome system was detected in all the three muscles examined. The aspiration challenge

  15. SU-D-17A-07: Development and Evaluation of a Prototype Ultrasonography Respiratory Monitoring System for 4DCT Reconstruction

    International Nuclear Information System (INIS)

    Yan, P; Cheng, S; Chao, C; Jain, A

    2014-01-01

    Purpose: Respiratory motion artifacts are commonly seen in the abdominal and thoracic CT images. A Real-time Position Management (RPM) system is integrated with CT simulator using abdominal surface as a surrogate for tracking the patient respiratory motion. The respiratory-correlated four-dimensional computed tomography (4DCT) is then reconstructed by GE advantage software. However, there are still artifacts due to inaccurate respiratory motion detecting and sorting methods. We developed an Ultrasonography Respiration Monitoring (URM) system which can directly monitor diaphragm motion to detect respiratory cycles. We also developed a new 4DCT sorting and motion estimation method to reduce the respiratory motion artifacts. The new 4DCT system was compared with RPM and the GE 4DCT system. Methods: Imaging from a GE CT scanner was simultaneously correlated with both the RPM and URM to detect respiratory motion. A radiation detector, Blackcat GM-10, recorded the X-ray on/off and synchronized with URM. The diaphragm images were acquired with Ultrasonix RP system. The respiratory wave was derived from diaphragm images and synchronized with CT scanner. A more precise peaks and valleys detection tool was developed and compared with RPM. The motion is estimated for the slices which are not in the predefined respiratory phases by using block matching and optical flow method. The CT slices were then sorted into different phases and reconstructed, compared with the images reconstructed from GE Advantage software using respiratory wave produced from RPM system. Results: The 4DCT images were reconstructed for eight patients. The discontinuity at the diaphragm level due to an inaccurate identification of phases by the RPM was significantly improved by URM system. Conclusion: Our URM 4DCT system was evaluated and compared with RPM and GE 4DCT system. The new system is user friendly and able to reduce motion artifacts. It also has the potential to monitor organ motion during

  16. A computer-aided audit system for respiratory therapy consult evaluations: description of a method and early results.

    Science.gov (United States)

    Kester, Lucy; Stoller, James K

    2013-05-01

    Use of respiratory therapist (RT)-guided protocols enhances allocation of respiratory care. In the context that optimal protocol use requires a system for auditing respiratory care plans to assure adherence to protocols and expertise of the RTs generating the care plan, a live audit system has been in longstanding use in our Respiratory Therapy Consult Service. Growth in the number of RT positions and the need to audit more frequently has prompted development of a new, computer-aided audit system. The number and results of audits using the old and new systems were compared (for the periods May 30, 2009 through May 30, 2011 and January 1, 2012 through May 30, 2012, respectively). In contrast to the original, live system requiring a patient visit by the auditor, the new system involves completion of a respiratory therapy care plan using patient information in the electronic medical record, both by the RT generating the care plan and the auditor. Completing audits in the new system also uses an electronic respiratory therapy management system. The degrees of concordance between the audited RT's care plans and the "gold standard" care plans using the old and new audit systems were similar. Use of the new system was associated with an almost doubling of the rate of audits (ie, 11 per month vs 6.1 per month). The new, computer-aided audit system increased capacity to audit more RTs performing RT-guided consults while preserving accuracy as an audit tool. Ensuring that RTs adhere to the audit process remains the challenge for the new system, and is the rate-limiting step.

  17. Port d’Entrée for Respiratory Infections – Does the Influenza A Virus Pave the Way for Bacteria?

    Directory of Open Access Journals (Sweden)

    Nikolai Siemens

    2017-12-01

    Full Text Available Bacterial and viral co-infections of the respiratory tract are life-threatening and present a global burden to the global community. Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes are frequent colonizers of the upper respiratory tract. Imbalances through acquisition of seasonal viruses, e.g., Influenza A virus, can lead to bacterial dissemination to the lower respiratory tract, which in turn can result in severe pneumonia. In this review, we summarize the current knowledge about bacterial and viral co-infections of the respiratory tract and focus on potential experimental models suitable for mimicking this disease. Transmission of IAV and pneumonia is mainly modeled by mouse infection. Few studies utilizing ferrets, rats, guinea pigs, rabbits, and non-human primates are also available. The knowledge gained from these studies led to important discoveries and advances in understanding these infectious diseases. Nevertheless, mouse and other infection models have limitations, especially in translation of the discoveries to humans. Here, we suggest the use of human engineered lung tissue, human ex vivo lung tissue, and porcine models to study respiratory co-infections, which might contribute to a greater translation of the results to humans and improve both, animal and human health.

  18. A versatile hydraulically operated respiratory servo system for ventilation and lung function testing.

    Science.gov (United States)

    Meyer, M; Slama, H

    1983-09-01

    A description is given of the design and performance of a microcomputer-controlled respiratory servo system that incorporates the characteristics of a mechanical ventilator and also allows the performance of a multitude of test procedures required for assessment of pulmonary function in paralyzed animals. The device consists of a hydraulically operated cylinder-piston assembly and solenoid valves that direct inspiratory and expiratory gas flow and also enable switching to different test gas sources. The system operates as a volume-flow-preset ventilator but may be switched to other operational cycling modes. Gas flow rates may be constant or variable. The system operates as an assister-controller and, combined with a gas analyzer, can function as a "demand" ventilator allowing for set-point control of end-tidal PCO2 and PO2. Complex breathing maneuvers for a variety of single- and multiple-breath lung function tests are automatically performed. Because of the flexibility in selection and timing of respiratory parameters, the system is particularly suitable for respiratory gas studies.

  19. Methods of in-vivo mouse lung micro-CT

    Science.gov (United States)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  20. Development of a home screening system for pediatric respiratory sleep studies.

    Science.gov (United States)

    Foo, Jong Yong Abdiel; Lim, Chu Sing

    2006-12-01

    To develop a simple and portable home screening monitor for sleep-disordered breathing (SDB) in children. In such a system, identifying the respiratory events and occurrences of motional artifacts are two essential elements that can affect the accuracy of the study. Moreover, such a system needs to be easy to set up and user friendly. The proposed system includes the following: electrocardiogram, pulse oximeter, microcontroller-based computation device, and a tri-axial accelerometer. Three physiologic parameters derived with this device were used to identify central (CE) and obstructive (OE) respiratory events. The criteria used were based on documented evidence and compared against corresponding standard polysomnographic scorings. In addition, a module was constructed in conjunction with a RS232 chip to transmit the recorded data to a personal computer. The accelerometer was used as a motion artifact detector. Detectable signals were acquired from the accelerometer when artifacts were induced on the photoplethysmography by motions in three regulated test activities lasting at least 30 seconds each. In classifying respiratory events, the combined use of oxygen saturation, heart rate, and pulse transit time to produce a complex classification (logic OR) showed promise. For OE, the sensitivity and specificity were 0.828 and 0.859, respectively. For CE, these values were 0.868 and 0.762, respectively. The proposed system potentially fulfils the criterion as a home screening tool and can form an indispensable addition to the SDB investigation in the pediatric population.

  1. Systemic dermatitis and obstructive respiratory syndrome following occupational sensitization to trichloroethylene.

    Science.gov (United States)

    Raşcu, Agripina; Bucur, Letiţia; Naghi, Eugenia; Drăghici, B

    2003-01-01

    We present a derma-respiratory syndrome in a patient occupationally exposed to trichloroethylene (TCE). At the beginning of its industrial use trichloroethylene was considered harmless. But, in time it showed a high noxious capacity. It produces an important and various pathology, which evolves as acute or chronic disease. The case we present shows that trichloroethylene can induce cutaneous pathology that excels contact dermatitis. It also proves that trichloroethylene can produce systemic effects (obstructive respiratory syndrome). The particularity of the case is based on the succession of the events, first the cutaneous and then the respiratory effects. A long period of time was necessary for the installation of the symptoms (for cutaneous and bronchial sensitization to take place). The case presented is the proof that trichloroethylene's great toxicity cannot be doubted and that the clinical forms due to sensitization to trichloroethylene can be dramatic.

  2. SPECIFIC DISORDERS OF THE RESPIRATORY SYSTEM IN CYSTIC FIBROSIS. CLINICAL EFFICACY OF THERAPY WITH DORNASE ALFA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    T.V. Simanova

    2010-01-01

    Full Text Available The article is devoted to specific disorders of the respiratory system in cystic fibrosis. 64 patients with cystic fibrosis (CF aged 2 months to 32 years and residing in the Udmurtian Republic were studied. Epidemiological and genetic specifics of this disease in the mentioned region of the RF were examined. Clinical, X-ray, functional and microbiological studies of the CF patients’ respiratory system were conducted. It was found that genotype delF508 and chronic infection Pseudomonas aeruginosa, Staphylococcus aureus cause severe structural changes to the bronchopulmonary system more often. The obtained data suggest the advisability of identifying the groups of CF patients at the highest risk of severe respiratory system disorders in order to optimise therapeutic efforts. The article provides indicators of clinical efficacy of a dornase alfa therapy in CF children.Key words: cystic fibrosis, genotype, delF508 mutation, respiratory organs, pseudomonas aeruginosa infection, staphylococcal infection, respiratory function, mucolytic function, dornase alfa. (Pediatric Pharmacology. – 2010; 7(6:44-48

  3. Reductions in the variations of respiration signals for respiratory-gated radiotherapy when using the video-coaching respiration guiding system

    Science.gov (United States)

    Lee, Hyun Jeong; Yea, Ji Woon; Oh, Se An

    2015-07-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT by using a video-coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by using a realtime position management (RPM) respiratory gating system (Varian, USA), and the patients were trained using the video-coaching respiration guiding system. The patients performed free breathing and guided breathing, and the respiratory cycles were acquired for ~5 min. Then, Microsoft Excel 2010 software was used to calculate the mean and the standard deviation for each phase. The standard deviation was computed in order to analyze the improvement in the respiratory regularity with respect to the period and the displacement. The standard deviation of the guided breathing decreased to 48.8% in the inhale peak and 24.2% in the exhale peak compared with the values for the free breathing of patient 6. The standard deviation of the respiratory cycle was found to be decreased when using the respiratory guiding system. The respiratory regularity was significantly improved when using the video-coaching respiration guiding system. Therefore, the system is useful for improving the accuracy and the efficiency of RGRT.

  4. Development of Non-contact Respiratory Monitoring System for Newborn Using a FG Vision Sensor

    Science.gov (United States)

    Kurami, Yoshiyuki; Itoh, Yushi; Natori, Michiya; Ohzeki, Kazuo; Aoki, Yoshimitsu

    In recent years, development of neonatal care is strongly hoped, with increase of the low-birth-weight baby birth rate. Especially respiration of low-birth-weight baby is incertitude because central nerve and respiratory function is immature. Therefore, a low-birth-weight baby often causes a disease of respiration. In a NICU (Neonatal Intensive Care Unit), neonatal respiration is monitored using cardio-respiratory monitor and pulse oximeter at all times. These contact-type sensors can measure respiratory rate and SpO2 (Saturation of Peripheral Oxygen). However, because a contact-type sensor might damage the newborn's skin, it is a real burden to monitor neonatal respiration. Therefore, we developed the respiratory monitoring system for newborn using a FG (Fiber Grating) vision sensor. FG vision sensor is an active stereo vision sensor, it is possible for non-contact 3D measurement. A respiratory waveform is calculated by detecting the vertical motion of the thoracic and abdominal region with respiration. We attempted clinical experiment in the NICU, and confirmed the accuracy of the obtained respiratory waveform was high. Non-contact respiratory monitoring of newborn using a FG vision sensor enabled the minimally invasive procedure.

  5. [Characteristics of the sympathoadrenal system response to psychoemotional stress under hypoxic conditions in aged people with physiological and accelerated aging of the respiratory system].

    Science.gov (United States)

    Asanov, E O; Os'mak, Ie D; Kuz'mins'ka, L A

    2013-01-01

    The peculiarities of the response of the sympathoadrenal system to psychoemotional and hypoxic stress in healthy young people and in aged people with physiological and accelerated aging of respiratory system were studied. It was shown that in aging a more pronounced response of the sympathoadrenal system to psychoemotional stress. At the same time, elderly people with different types of aging of the respiratory system did not demonstrate a difference in the response of the sympathoadrenal system to psychoemotional stress. Unlike in young people, in aged people, combination of psychoemotional and hypoxic stresses resulted in further activation of the sympathoadrenal system. The reaction of the sympathoadrenal system was more expressed in elderly people with accelerated ageing of the respiratory system.

  6. Development of a robust and cost-effective 3D respiratory motion monitoring system using the kinect device: Accuracy comparison with the conventional stereovision navigation system.

    Science.gov (United States)

    Bae, Myungsoo; Lee, Sangmin; Kim, Namkug

    2018-07-01

    To develop and validate a robust and cost-effective 3D respiratory monitoring system based on a Kinect device with a custom-made simple marker. A 3D respiratory monitoring system comprising the simple marker and the Microsoft Kinect v2 device was developed. The marker was designed for simple and robust detection, and the tracking algorithm was developed using the depth, RGB, and infra-red images acquired from the Kinect sensor. A Kalman filter was used to suppress movement noises. The major movements of the marker attached to the four different locations of body surface were determined from the initially collected tracking points of the marker while breathing. The signal level of respiratory motion with the tracking point was estimated along the major direction vector. The accuracy of the results was evaluated through a comparison with those of the conventional stereovision navigation system (NDI Polaris Spectra). Sixteen normal volunteers were enrolled to evaluate the accuracy of this system. The correlation coefficients between the respiratory motion signal from the Kinect device and conventional navigation system ranged from 0.970 to 0.999 and from 0.837 to 0.995 at the abdominal and thoracic surfaces, respectively. The respiratory motion signal from this system was obtained at 27-30 frames/s. This system with the Kinect v2 device and simple marker could be used for cost-effective, robust and accurate 3D respiratory motion monitoring. In addition, this system is as reliable for respiratory motion signal generation and as practically useful as the conventional stereovision navigation system and is less sensitive to patient posture. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy

    International Nuclear Information System (INIS)

    Kang, Dong Im; Jung, Sang Hoon; Kim, Chul Jong; Park, Hee Chul; Choi, Byung Ki

    2015-01-01

    External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40%-60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (0.71 sec), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). This study is

  8. A Wearable Respiratory Biofeedback System Based on Generalized Body Sensor Network

    Science.gov (United States)

    Liu, Guan-Zheng; Huang, Bang-Yu

    2011-01-01

    Abstract Wearable medical devices have enabled unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. This article describes a wearable respiratory biofeedback system based on a generalized body sensor network (BSN) platform. The compact BSN platform was tailored for the strong requirements of overall system optimizations. A waist-worn biofeedback device was designed using the BSN. Extensive bench tests have shown that the generalized BSN worked as intended. In-situ experiments with 22 subjects indicated that the biofeedback device was discreet, easy to wear, and capable of offering wearable respiratory trainings. Pilot studies on wearable training patterns and resultant heart rate variability suggested that paced respirations at abdominal level and with identical inhaling/exhaling ratio were more appropriate for decreasing sympathetic arousal and increasing parasympathetic activities. PMID:21545293

  9. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    International Nuclear Information System (INIS)

    Chan, Chung; Sinusas, Albert J; Liu, Chi; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa

    2014-01-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory–cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory–cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased

  10. Contraindications to Athletic Participation. Cardiac, Respiratory, and Central Nervous System Conditions.

    Science.gov (United States)

    Moeller, James L.

    1996-01-01

    Discusses contraindications to athletic participation, examining the cardiac, respiratory, and central nervous system conditions that warrant activity disqualification. Provides guidelines about when it is safe for individuals to participate, and discusses the physician's responsibility. (SM)

  11. Virtual respiratory system for interactive e-learning of spirometry

    Directory of Open Access Journals (Sweden)

    W. Tomalak

    2008-04-01

    Full Text Available Progress in computer simulation technology offers new possibilities for modern medicine. On one hand – virtual organs can help to create animal or human models for research, on the other hand – e-learning or distant learning through Internet is now possible. The aim of our work was to create a system for interactive learning of spirometry (SILS, enabling students or physicians to observe spirometric measurements (flow-volume modified by setting level and kind of abnormalities within the respiratory system. SILS is based on a virtual respiratory system presented previously in several papers. Its main features are: separation of the lungs and chest; anatomical division of the lungs; division of airway resistance into transmural pressure dependent (Rp and lung volume dependent (Rv parts. The one mathematical formula that represents Rp describes both flow limitation (forced expiration and dependence of Raw on lungs volume (small airflows. The output of system are spirometric parameters (as FEV1, FVC, FEV1%FVC and a flow–volume loop constructed according to results of simulation of forced expiration for the chosen abnormality kind and level. As a result – this system may be used in teaching process in medical schools and postgraduate education. We offer access to a basic version of SILS for students and physicians at: www.spirometry.ibib.waw.pl and www.zpigichp.edu.pl. As we expect feedback from users, it is possible to modify user interface or model features to comply with users' requests.

  12. A System Approach to Navy Medical Education and Training. Appendix 37. Competency Curricula for Respiratory Therapy Assistant and Respiratory Therapy Technician.

    Science.gov (United States)

    1974-08-31

    instruction. The training aids, like strategies, extend from the traditional references and handout material in the form of a student syllabus to...on careers; select students ; and identify and select faculty. The System Threa sub-systems, as described, comprise the proposed system for Education...of Intermittent Positive Pressure Breathing Treatment . . . . . . . . ... 13 5. Chest Physiotherapy ...... . .. . . . . . 14 6. Respiratory Exercises

  13. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    Science.gov (United States)

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-03-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system.

  14. Neurological Respiratory Failure

    Directory of Open Access Journals (Sweden)

    Mohan Rudrappa

    2018-01-01

    Full Text Available West Nile virus infection in humans is mostly asymptomatic. Less than 1% of neuro-invasive cases show a fatality rate of around 10%. Acute flaccid paralysis of respiratory muscles leading to respiratory failure is the most common cause of death. Although the peripheral nervous system can be involved, isolated phrenic nerve palsy leading to respiratory failure is rare and described in only two cases in the English literature. We present another case of neurological respiratory failure due to West Nile virus-induced phrenic nerve palsy. Our case reiterates the rare, but lethal, consequences of West Nile virus infection, and the increase of its awareness among physicians.

  15. The respiratory system in equations

    CERN Document Server

    Maury, Bertrand

    2013-01-01

    The book proposes an introduction to the mathematical modeling of the respiratory system. A detailed introduction on the physiological aspects makes it accessible to a large audience without any prior knowledge on the lung. Different levels of description are proposed, from the lumped models with a small number of parameters (Ordinary Differential Equations), up to infinite dimensional models based on Partial Differential Equations. Besides these two types of differential equations, two chapters are dedicated to resistive networks, and to the way they can be used to investigate the dependence of the resistance of the lung upon geometrical characteristics. The theoretical analysis of the various models is provided, together with state-of-the-art techniques to compute approximate solutions, allowing comparisons with experimental measurements. The book contains several exercises, most of which are accessible to advanced undergraduate students.

  16. Human nasal turbinates as a viable source of respiratory epithelial cells using co-culture system versus dispase-dissociation technique.

    Science.gov (United States)

    Noruddin, Nur Adelina Ahmad; Saim, Aminuddin B; Chua, Kien Hui; Idrus, Ruszymah

    2007-12-01

    To compare a co-culture system with a conventional dispase-dissociation method for obtaining functional human respiratory epithelial cells from the nasal turbinates for tissue engineering application. Human respiratory epithelial cells were serially passaged using a co-culture system and a conventional dispase-dissociation technique. The growth kinetics and gene expression levels of the cultured respiratory epithelial cells were compared. Four genes were investigated, namely cytokeratin-18, a marker for ciliated and secretory epithelial cells; cytokeratin-14, a marker for basal epithelial cells; MKI67, a proliferation marker; and MUC5B, a marker for mucin secretion. Immunocytochemical analysis was performed using monoclonal antibodies against the high molecular-weight cytokeratin 34 beta E12, cytokeratin 18, and MUC5A to investigate the protein expression from cultured respiratory epithelial cells. Respiratory epithelial cells cultured using both methods maintained polygonal morphology throughout the passages. At passage 1, co-cultured respiratory epithelial showed a 2.6-times higher growth rate compared to conventional dispase dissociation technique, and 7.8 times higher at passage 2. Better basal gene expression was observed by co-cultured respiratory epithelial cells compared to dispase dissociated cells. Immunocytochemical analyses were positive for the respiratory epithelial cells cultured using both techniques. Co-culture system produced superior quality of cultured human respiratory epithelial cells from the nasal turbinates as compared to dispase dissociation technique.

  17. A new respiratory monitoring and processing system based on Wii remote: proof of principle.

    Science.gov (United States)

    Peng, Y; Vedam, S; Gao, S; Balter, P

    2013-07-01

    To create a patient respiratory management system and patient self-practice tool using the Wii remote, a widely available consumer hardware product. The Wii remote (Wiimote) (Nintendo, Redmond, WA) contains an infrared (IR) camera that can track up to four spots whose coordinates are reported to a host computer via Bluetooth. The Wiimote is capable of tracking a fiducial box currently used by a commercial monitoring system [Real-time Position Management(TM) (RPM) system, Varian Associates, Palo Alto, CA], if the correct IR source is used. The authors validated the Wiimote tracking by comparing the amplitude and frequency of signals among those reported by Wiimote with known movements from an inhouse servo-driven respiratory simulator, as well as with those measured using the RPM. The simulator comparison was done using standard sinusoid signals with amplitude of 2.0 cm as well as recorded patient respiratory traces. The RPM comparisons were done by simultaneously recording the RPM reflective box position with the Wiimote and the RPM. Timing was compared between these two systems by using the digital beam-on signal from the CT scanner, for the 4DCT to synchronize these acquisitions. The data acquisition rate from the Wiimote was 100.0 ± 0.4 Hz with a version 2.1 Bluetooth adaptor. The standard deviation of the height of the motion extrema was 0.06 and 1.1 mm when comparing those measured by the Wiimote and the servomotor encoder for standard sinusoid signal and prerecorded patient respiratory signal, respectively. The standard deviation of the amplitude of motion extrema between the Wiimote and RPM was 0.9 mm and the timing difference was 253 ms. The performance of Wiimote shows promise for respiratory monitoring for its faster sampling rate as well as the potential optical and GPU abilities. If used with care it can deliver reasonable spatial and temporal accuracy.

  18. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    International Nuclear Information System (INIS)

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh; Ohno, Hideki; Takemasa, Tohru

    2008-01-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1α and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1α protein, but the other was not. Administration of SB203580 (SB), an inhibitor of p38 MAPK, suppressed the increase in PGC-1α expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1α and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions

  19. Dysrhythmias of the respiratory oscillator

    Science.gov (United States)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  20. Upper respiratory tract (image)

    Science.gov (United States)

    The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...

  1. Respiratory monitoring with an acceleration sensor

    International Nuclear Information System (INIS)

    Ono, Tomohiro; Takegawa, Hideki; Ageishi, Tatsuya; Takashina, Masaaki; Numasaki, Hodaka; Matsumoto, Masao; Teshima, Teruki

    2011-01-01

    Respiratory gating radiotherapy is used to irradiate a local area and to reduce normal tissue toxicity. There are certain methods for the detection of tumor motions, for example, using internal markers or an external respiration signal. However, because some of these respiratory monitoring systems require special or expensive equipment, respiratory monitoring can usually be performed only in limited facilities. In this study, the feasibility of using an acceleration sensor for respiratory monitoring was evaluated. The respiratory motion was represented by means of a platform and measured five times with the iPod touch (registered) at 3, 4 and 5 s periods of five breathing cycles. For these three periods of the reference waveform, the absolute means ± standard deviation (SD) of displacement were 0.45 ± 0.34 mm, 0.33 ± 0.24 mm and 0.31 ± 0.23 mm, respectively. On the other hand, the corresponding absolute means ± SD for the periods were 0.04 ± 0.09 s, 0.04 ± 0.02 s and 0.06 ± 0.04 s. The accuracy of respiratory monitoring using the acceleration sensor was satisfactory in terms of the absolute means ± SD. Using the iPod touch (registered) for respiratory monitoring does not need special equipment and makes respiratory monitoring easier. For these reasons, this system is a viable alternative to other respiratory monitoring systems.

  2. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    International Nuclear Information System (INIS)

    Wohlman, Irene M.; Composto, Gabriella M.; Heck, Diane E.; Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D.; Casillas, Robert P.; Croutch, Claire R.; Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B.; Laskin, Jeffrey D.

    2016-01-01

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  3. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Wohlman, Irene M.; Composto, Gabriella M. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Casillas, Robert P.; Croutch, Claire R. [MRIGlobal, Kansas City, MO (United States); Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ (United States)

    2016-07-15

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  4. Amyloidosis involving the respiratory system: 5-year′s experience of a multi-disciplinary group′s activity

    Directory of Open Access Journals (Sweden)

    Raffaele Scala

    2015-01-01

    Full Text Available Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients′ clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma. It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice.

  5. Characterization of the CD8(+)T cell responses directed against respiratory syncytial virus during primary and secondary infection in C57BL/6 mice

    NARCIS (Netherlands)

    Lukens, M.V.; Claassen, E.A.W.; Graaff, de P.M.A.; Dijk, van M.E.A.; Hoogerhout, P.; Toebes, M.; Schumacher, T.N.; Most, van der R.G.; Kimpen, J.L.L.; Bleek, van G.M.

    2006-01-01

    The BALB/c mouse model for human respiratory syncytial virus infection has contributed significantly to our understanding of the relative role for CD4+ and CD8+ T cells to immune protection and pathogenic immune responses. To enable comparison of RSV-specific T cell responses in different mouse

  6. Contactless respiratory monitoring system for magnetic resonance imaging applications using a laser range sensor

    Directory of Open Access Journals (Sweden)

    Krug Johannes W.

    2016-09-01

    Full Text Available During a magnetic resonance imaging (MRI exam, a respiratory signal can be required for different purposes, e.g. for patient monitoring, motion compensation or for research studies such as in functional MRI. In addition, respiratory information can be used as a biofeedback for the patient in order to control breath holds or shallow breathing. To reduce patient preparation time or distortions of the MR imaging system, we propose the use of a contactless approach for gathering information about the respiratory activity. An experimental setup based on a commercially available laser range sensor was used to detect respiratory induced motion of the chest or abdomen. This setup was tested using a motion phantom and different human subjects in an MRI scanner. A nasal airflow sensor served as a reference. For both, the phantom as well as the different human subjects, the motion frequency was precisely measured. These results show that a low cost, contactless, laser-based approach can be used to obtain information about the respiratory motion during an MRI exam.

  7. Quality assurance of 137Cs Photons for Vivo Mouse Irradiation System

    International Nuclear Information System (INIS)

    Noh, S. J.; Kim, H. J.; Jeong, D. H.; Yang, K. M.; Son, T. G.; Kang, Y. R.; Shin, S. G.; Kye, Y. U.

    2014-01-01

    The multi-purpose irradiation apparatus using a 137 Cs, which can be used for the blood test, can be affected by the other components of the experiments such as the size and shape of the beaker and the maximum variation of more than 35% has been reported. The mount of the absorbed dose is determined by the distance between irradiation target and the source and the irradiation time with the irradiator (Gamma Irradiator, Chiyoda Technol Co, Japan) for this experiment. The low-dose irradiation has been used in this study is advantageous for irradiating the cell culture vessel or the small animal. However, radiation is performed by placing the 3-5 mice in each mouse cage (polycarbonate cage). In this case, overlapping often happens to the target during irradiation. Irradiating without considering the geometrical aspect of the irradiation device can occur as well. To solve the problems, the mouse apartment with the 45 mouse cages is built and the device is assessed by being compared with the conventional method in 2 different ways. Firstly, the glass dosimeters were inserted into the head and the body of the lab mice for 2 methods. Secondly, MCNP simulation was performed for absorbed dose and air kerma measurements in each mouse apartment chamber. In this study, the system that allows the accurate irradiation using the 137 Cs gamma irradiator mainly used in Radiation Biology was developed and the accuracy of the system has been confirmed by the experiments. The dose delivery using the conventional system had the variation of 42% at most whereas the variation was less than 6% for the mouse apartment. From the MCNP simulation, the difference between each chamber was less than 0.1% and 0.4% for the air kerma and the absorbed dose respectively. Considering the statistical error of MCNP and the assumption from the simulation, the accuracy of the simulation was matched well with the measurements with the glass dosimeters

  8. Effectiveness of the Respiratory Gating System for Stereotectic Radiosurgery of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Heung Kwon; Kwon, Kyung Tae; Park, Cheol Su; Yang, Oh Nam; Kim, Min Su; Kim, Jeong Man [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2005-09-15

    For stereotactic radiosurgery (SRS) of a tumor in the region whose movement due to respiration is significant, like Lung lower lobe, the gated therapy, which delivers radiation dose to the selected respiratory phases when tumor motion is small, was performed using the Respiratory gating system and its clinical effectiveness was evaluated. For two SRS patients with a tumor in Lung lower lobe, a marker block (infrared reflector) was attached on the abdomen. While patient' respiratory cycle was monitored with Real-time Position Management (RPM, Varian, USA), 4D CT was performed (10 phases per a cycle). Phases in which tumor motion did not change rapidly were decided as treatment phases. The treatment volume was contoured on the CT images for selected treatment phases using maximum intensity projection (MIP) method. In order to verify setup reproducibility and positional variation, 4D CT was repeated. Gross tumor volume (GTV) showed maximum movement in superior-inferior direction. For patient no 1, motion of GTV was reduced to 2.6 mm in treatment phases (30-60%), while that was 9.4 mm in full phases (0-90%) and for patient no 2, it was reduced to 2.3 mm in treatment phases (30-70%), while it was 11.7 mm in full phases (0-90%). When comparing two sets of CT images, setup errors in all the directions were within 3 mm. Since tumor motion was reduced less than 5 mm, the Respiratory gating system for SRS of Lung lower lobe is useful.

  9. Hypothalamic neurosecretory and circadian vasopressinergic neuronal systems in the blind cone-rod homeobox knock out mouse (Crx(-/-) ) and the 129sv wild type mouse

    DEFF Research Database (Denmark)

    Rovsing, Louise; Rath, Martin Fredensborg; Møller, Morten

    2013-01-01

    circadian AVP-rhythm. We have in this study of the brown 129sv mouse and the visual blind cone-rod homeobox gene knock out mouse (Crx(-/-) ) with degeneration of the retinal rods and cones, but a preserved non-image forming optic system, studied the temporal Avp-expression in both the neurosecretory...

  10. Motavizumab, A Neutralizing Anti-Respiratory Syncytial Virus (Rsv Monoclonal Antibody Significantly Modifies The Local And Systemic Cytokine Responses Induced By Rsv In The Mouse Model

    Directory of Open Access Journals (Sweden)

    Jafri Hasan S

    2007-10-01

    Full Text Available Abstract Motavizumab (MEDI-524 is a monoclonal antibody with enhanced neutralizing activity against RSV. In mice, motavizumab suppressed RSV replication which resulted in significant reduction of clinical parameters of disease severity. We evaluated the effect of motavizumab on the local and systemic immune response induced by RSV in the mouse model. Balb/c mice were intranasally inoculated with 106.5 PFU RSV A2 or medium. Motavizumab was given once intraperitoneally (1.25 mg/mouse as prophylaxis, 24 h before virus inoculation. Bronchoalveolar lavage (BAL and serum samples were obtained at days 1, 5 (acute and 28 (long-term post inoculation and analyzed with a multiplex assay (Beadlyte Upstate, NY for simultaneous quantitation of 18 cytokines: IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, KC (similar to human IL-8, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, TNF-α, MCP-1, RANTES, IFN-γ and GM-CSF. Overall, cytokine concentrations were lower in serum than in BAL samples. By day 28, only KC was detected in BAL specimens at low concentrations in all groups. Administration of motavizumab significantly reduced (p

  11. MicroRNA expression in the adult mouse central nervous system

    DEFF Research Database (Denmark)

    Bak, Mads; Silahtaroglu, Asli; Møller, Morten

    2008-01-01

    distinct areas of the adult mouse central nervous system (CNS). Microarray profiling in combination with real-time RT-PCR and LNA (locked nucleic acid)-based in situ hybridization uncovered 44 miRNAs displaying more than threefold enrichment in the spinal cord, cerebellum, medulla oblongata, pons......RNA-related gene regulatory networks in the mammalian central nervous system. Udgivelsesdato: 2008-Mar...

  12. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    Directory of Open Access Journals (Sweden)

    Yaroslav I Molkov

    Full Text Available Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2 exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient

  13. On the respiratory mechanics measured by forced oscillation technique in patients with systemic sclerosis.

    Directory of Open Access Journals (Sweden)

    Ingrid Almeida Miranda

    Full Text Available BACKGROUND: Pulmonary complications are the most common cause of death and morbidity in systemic sclerosis (SSc. The forced oscillation technique (FOT offers a simple and detailed approach to investigate the mechanical properties of the respiratory system. We hypothesized that SSc may introduce changes in the resistive and reactive properties of the respiratory system, and that FOT may help the diagnosis of these abnormalities. METHODOLOGY/PRINCIPAL FINDINGS: We tested these hypotheses in controls (n = 30 and patients with abnormalities classified using spirometry (n = 52 and pulmonary volumes (n = 29. Resistive data were interpreted with the zero-intercept resistance (Ri and the slope of the resistance (S as a function of frequency. Reactance changes were evaluated by the mean reactance between 4 and 32 Hz (Xm and the dynamic compliance (Crs,dyn. The mechanical load was evaluated using the absolute value of the impedance in 4 Hz (Z4Hz. A compartmental model was used to obtain central (R and peripheral (Rp resistances, and alveolar compliance (C. The clinical usefulness was evaluated by investigating the area under the receiver operating characteristic curve (AUC. The presence of expiratory flow limitation (EFL was also evaluated. For the groups classified using spirometry, SSc resulted in increased values in Ri, R, Rp and Z4Hz (p0.90. In groups classified by pulmonary volume, SSc resulted in reductions in S, Xm, C and Crs,dyn (p0.80. It was also observed that EFL is not common in patients with SSc. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that the respiratory resistance and reactance are changed in SSc. This analysis provides a useful description that is of particular significance for understanding respiratory pathophysiology and to ease the diagnosis of respiratory abnormalities in these patients.

  14. 76 FR 62164 - VASRD Improvement Forum-Updating Disability Criteria for the Respiratory System, Cardiovascular...

    Science.gov (United States)

    2011-10-06

    ... Respiratory System, Cardiovascular System, Hearing Impairment, and Ear, Nose and Throat Diseases AGENCY... System, Cardiovascular System, Hearing Impairment, and Ear, Nose and Throat Diseases. The purpose of this...) the Cardiovascular System (38 CFR 4.100-4.104), (3) the Impairment of Auditory Acuity (38 CFR 4.85 and...

  15. Evaluation of respiratory parameters in minimally processed lettuce grown under organic or conventional system

    Directory of Open Access Journals (Sweden)

    Júlio César Mello

    2010-12-01

    Full Text Available The increased preference for minimally processed vegetables has been attributed to the health benefits associated with fresh produce and the demand for ready-to-eat salads. In this paper, lettuce (Lactuca sativa L. was evaluated for the effects of different cropping systems on the respiratory properties. Lettuce was packaged in low density polyethylene bags and stored in a refrigerator at 4 ºC. The concentration of carbon dioxide and oxygen inside the package was monitored during the storage at zero, three, six, eight, ten and twelve days by gas chromatography. Dry matter variation was measured gravimetrically up to day fourteen of storage. Values of respiratory rate for conventional lettuce increased from day 1 to 3 and remained low, while respiratory rate of the organic lettuce increased three-fold up to day 8, stabilizing at a high level. Variation in dry matter during storage also resulted from differences between the two cultivation systems. The highest content of dry matter was achieved by organic lettuce.

  16. Experimental verification of a two-dimensional respiratory motion compensation system with ultrasound tracking technique in radiation therapy.

    Science.gov (United States)

    Ting, Lai-Lei; Chuang, Ho-Chiao; Liao, Ai-Ho; Kuo, Chia-Chun; Yu, Hsiao-Wei; Zhou, Yi-Liang; Tien, Der-Chi; Jeng, Shiu-Chen; Chiou, Jeng-Fong

    2018-05-01

    This study proposed respiratory motion compensation system (RMCS) combined with an ultrasound image tracking algorithm (UITA) to compensate for respiration-induced tumor motion during radiotherapy, and to address the problem of inaccurate radiation dose delivery caused by respiratory movement. This study used an ultrasound imaging system to monitor respiratory movements combined with the proposed UITA and RMCS for tracking and compensation of the respiratory motion. Respiratory motion compensation was performed using prerecorded human respiratory motion signals and also sinusoidal signals. A linear accelerator was used to deliver radiation doses to GAFchromic EBT3 dosimetry film, and the conformity index (CI), root-mean-square error, compensation rate (CR), and planning target volume (PTV) were used to evaluate the tracking and compensation performance of the proposed system. Human respiratory pattern signals were captured using the UITA and compensated by the RMCS, which yielded CR values of 34-78%. In addition, the maximum coronal area of the PTV ranged from 85.53 mm 2 to 351.11 mm 2 (uncompensated), which reduced to from 17.72 mm 2 to 66.17 mm 2 after compensation, with an area reduction ratio of up to 90%. In real-time monitoring of the respiration compensation state, the CI values for 85% and 90% isodose areas increased to 0.7 and 0.68, respectively. The proposed UITA and RMCS can reduce the movement of the tracked target relative to the LINAC in radiation therapy, thereby reducing the required size of the PTV margin and increasing the effect of the radiation dose received by the treatment target. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. [Measurement of the passive compliance of the total respiratory system in newborn after respiratory insufficiency for risk assessment of respiratory disorders during the first 6 month of life].

    Science.gov (United States)

    Olechowski, Wiesław; Majorek-Olechowska, Bernadetta

    2010-01-01

    To evaluate the relationships between postnatal passive respiratory compliance (Crs) and development of respiratory disorders during the first 6 month of life in preterm and full-term infants after respiratory insufficiency. The purpose of this study was to investigate whether other relevant neonatal factors, like degree of prematurity, birth weigh, ventilatory conditions, sepsis, and respiratory disease severity affected this relationship. The passive respiratory compliance was measured by the single occlusion technique in 73 preterm infants after respiratory distress syndrome (RDS), 19 full-term infants after congenital pneumonia and 33 healthy full-term infants. Respiratory function measurements were performed by single occlusion technique, during natural sleep, after acute phase of illness, before discharge from neonatal department. Crs was significantly lower in premature newborns newborns who have suffered from a congenital pneumonia (p = 0.0411), than in healthy full-term newborn infants. Premature infants who have undergone sepsis have significantly decreased Crs in relationship with those who did not have this complication (p = 0.0334). Preterm newborns who have suffered pneumonia during treatment of RDS have significantly frequent respiratory problems during the first 6 month of age (p = 0.043). Full-term infants after congenital pneumonia have more but not significantly frequent respiratory problems than healthy term newborns (p = 0.055) in this period. Decreased neonatal Crs wasn't significantly related to respiratory disorders in age of 6 month of life. Prematurity under 36 week of gestational age, low birth weight and suffering from sepsis in premature infants significantly decreased Crs in newborn. Decreased neonatal Crs in premature and full term infants after respiratory insufficiency wasn't significantly related to respiratory disorders during first 6 month of life. This study has showed significantly increase of respiratory problems in this

  18. Field Programmable Gate Array (FPGA Respiratory Monitoring System Using a Flow Microsensor and an Accelerometer

    Directory of Open Access Journals (Sweden)

    Mellal Idir

    2017-04-01

    Full Text Available This paper describes a non-invasive system for respiratory monitoring using a Micro Electro Mechanical Systems (MEMS flow sensor and an IMU (Inertial Measurement Unit accelerometer. The designed system is intended to be wearable and used in a hospital or at home to assist people with respiratory disorders. To ensure the accuracy of our system, we proposed a calibration method based on ANN (Artificial Neural Network to compensate the temperature drift of the silicon flow sensor. The sigmoid activation functions used in the ANN model were computed with the CORDIC (COordinate Rotation DIgital Computer algorithm. This algorithm was also used to estimate the tilt angle in body position. The design was implemented on reconfigurable platform FPGA.

  19. Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus.

    Directory of Open Access Journals (Sweden)

    Guangyu Zhao

    Full Text Available The Middle East Respiratory Syndrome Coronavirus (MERS-CoV causes severe acute respiratory failure and considerable extrapumonary organ dysfuction with substantial high mortality. For the limited number of autopsy reports, small animal models are urgently needed to study the mechanisms of MERS-CoV infection and pathogenesis of the disease and to evaluate the efficacy of therapeutics against MERS-CoV infection. In this study, we developed a transgenic mouse model globally expressing codon-optimized human dipeptidyl peptidase 4 (hDPP4, the receptor for MERS-CoV. After intranasal inoculation with MERS-CoV, the mice rapidly developed severe pneumonia and multi-organ damage, with viral replication being detected in the lungs on day 5 and in the lungs, kidneys and brains on day 9 post-infection. In addition, the mice exhibited systemic inflammation with mild to severe pneumonia accompanied by the injury of liver, kidney and spleen with neutrophil and macrophage infiltration. Importantly, the mice exhibited symptoms of paralysis with high viral burden and viral positive neurons on day 9. Taken together, this study characterizes the tropism of MERS-CoV upon infection. Importantly, this hDPP4-expressing transgenic mouse model will be applicable for studying the pathogenesis of MERS-CoV infection and investigating the efficacy of vaccines and antiviral agents designed to combat MERS-CoV infection.

  20. Automated respiratory therapy system based on the ARDSNet protocol with systemic perfusion control

    Directory of Open Access Journals (Sweden)

    Pomprapa Anake

    2015-09-01

    Full Text Available A medical expert system of automatic artificial ventilation is set up in a star topology with additional closed-loop hemodynamic control. Arterial blood pressure (MAP is controlled by noradrenaline (NA as a controlling variable. The overall patient-in-the-loop expert system can intensively and intelligently perform a long-term treatment based on the Acute Respiratory Distress Syndrome Network (ARDSNet protocol. Three main goals are actively carried out, namely the stabilization and regulation of oxygenation, plateau pressure and blood pH value. The developed system shows a distinctive experimental result based on a 31.5-kg pig, in order to fulfil the ventilatory goals and to ensure proper systemic perfusion. Hence, this system has enormous potentials to realize a commercial system for individual patient with ARDS.

  1. From Head to Toe: Respiratory, Circulatory, and Skeletal Systems. Book 3.

    Science.gov (United States)

    Wiebe, Arthur, Ed.; And Others

    Designed to supplement curricular programs dealing with the human body, this booklet offers an activity-based, student-oriented approach for middle school teachers and students. Twelve activities focus on principles and skills related to the respiratory, circulatory, and skeletal systems. Each activity consists of student sheets and a teacher's…

  2. Respiratory Depression Caused by Heroin Use

    Directory of Open Access Journals (Sweden)

    Kadir Hakan Cansiz

    2012-04-01

    Full Text Available Summary Heroin is a semisynthetic narcotic analgesic and heroin abuse is common due to its pleasure-inducing effect. For the last 30 years heroin abuse has become an important worldwide public health problem. Heroin can be administered in many different ways as preferred. Heroin affects many systems including respiratory system, cardiovascular system and particulary the central nervous system. Overdose use of heroin intravenously can be fatal due to respiratory depression. In this letter, we wanted to engage attention to respiratory depression caused by heroin abuse and potential benefits of using naloxone. [TAF Prev Med Bull 2012; 11(2.000: 248-250

  3. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol.

    Science.gov (United States)

    Serra, Daniel Silveira; Evangelista, Janaína Serra Azul Monteiro; Zin, Walter Araujo; Leal-Cardoso, José Henrique; Cavalcante, Francisco Sales Ávila

    2017-08-01

    The combustion of residual glycerol to generate heat in industrial processes has been suggested as a cost-effective solution for disposal of this environmental liability. Thus, we investigated the effects of exposure to the exhaust gases of glycerol combustion in the rat respiratory system. We used 2 rats groups, one exposed to the exhaust gases from glycerol combustion (Glycerol), and the other exposed to ambient air (Control). Exposure occurred 5h a day, 5days a week for 13 weeks. We observed statistically changes in all parameters of respiratory system mechanics in vivo. This results was supported by histological analysis and morphometric data, confirming narrower airways and lung parenchimal changes. Variables related to airway resistance (ΔR N ) and elastic properties of the tissue (ΔH), increased after challenge with methacholine. Finally, analysis of lung tissue micromechanics showed statistically increases in all parameters (R, E and hysteresivity). In conclusion, exhaust gases from glycerol combustion were harmful to the respiratory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Harmonisation of the acute respiratory infection reporting system in the Czech Republic with the European community networks.

    NARCIS (Netherlands)

    Kyncl, J.; Paget, W.J.; Havlickova, M.; Kriz, B.

    2005-01-01

    Respiratory virus activity is detected in Europe each winter, yet the precise timing and size of this activity is highly unpredictable. The impact of influenza infection and/or acute respiratory infection in European countries is continuously monitored through a variety of surveillance systems. All

  5. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    DEFF Research Database (Denmark)

    Korreman, S.S.; Boyer, A.L.; Juhler-Nøttrup, Trine

    2008-01-01

    PURPOSE/OBJECTIVE: In radiotherapy of targets moving with respiration, beam gating is offered as a means of reducing the target motion. The purpose of this study is to evaluate the safe magnitude of margin reduction for respiratory gated beam delivery. MATERIALS/METHODS: The study is based on data...... for 17 lung cancer patients in separate protocols at Rigshospitalet and Stanford Cancer Center. Respiratory curves for external optical markers and implanted fiducials were collected using equipment based on the RPM system (Varian Medical Systems). A total of 861 respiratory curves represented external...... measurements over 30 fraction treatment courses for 10 patients, and synchronous external/internal measurements in single sessions for seven patients. Variations in respiratory amplitude (simulated coaching) and external/internal phase shifts were simulated by perturbation with realistic values. Variations...

  6. Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency.

    Science.gov (United States)

    Bates, J H; Milic-Emili, J

    1993-01-01

    We hypothesized that the viscoelastic properties of the respiratory system should have significant implications for the energetically optimal frequency of breathing, in view of the fact that these properties cause marked dependencies of overall system resistance and elastance on frequency. To test our hypothesis we simulated two models of canine and human respiratory system mechanics during sinusoidal breathing and calculated the inspiratory work (WI) and pressure-time integral (PTI) per minute under both resting and exercise conditions. The two models were a two-compartment viscoelastic model and a single-compartment model. Requiring minute alveolar ventilation to be fixed, we found that both models predicted almost identical optimum breathing frequencies. The calculated PTI was very insensitive to increases in breathing frequency above the optimal frequencies, while WI was found to increase slowly with frequency above its optimum. In contrast, both WI and PTI increased sharply as frequency decreased below their respective optima. A sensitivity analysis showed that the model predictions were very insensitive to the elastance and resistance values chosen to characterize tissue viscoelasticity. We conclude that the WI criterion for choosing the frequency of breathing is compatible with observations in nature, whereas the optimal frequency predictions of the PTI are rather too high. Both criteria allow for a fairly wide margin of choice in frequency above the optimum values without incurring excessive additional energy expenditure. Furthermore, contrary to our expectations, the viscoelastic properties of the respiratory system tissues do not pose a noticeable problem to the respiratory controller in terms of energy expenditure.

  7. Understanding mammalian genetic systems: the challenge of phenotyping in the mouse.

    Directory of Open Access Journals (Sweden)

    Steve D M Brown

    2006-08-01

    Full Text Available Understanding mammalian genetic systems is predicated on the determination of the relationship between genetic variation and phenotype. Several international programmes are under way to deliver mutations in every gene in the mouse genome. The challenge for mouse geneticists is to develop approaches that will provide comprehensive phenotype datasets for these mouse mutant libraries. Several factors are critical to success in this endeavour. It will be important to catalogue assay and environment and where possible to adopt standardised procedures for phenotyping tests along with common environmental conditions to ensure comparable datasets of phenotypes. Moreover, the scale of the task underlines the need to invest in technological development improving both the speed and cost of phenotyping platforms. In addition, it will be necessary to develop new informatics standards that capture the phenotype assay as well as other factors, genetic and environmental, that impinge upon phenotype outcome.

  8. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    Science.gov (United States)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  9. Quality assurance of {sup 137}Cs Photons for Vivo Mouse Irradiation System

    Energy Technology Data Exchange (ETDEWEB)

    Noh, S. J. [Inje Univ., Kimhae (Korea, Republic of); Kim, H. J.; Jeong, D. H.; Yang, K. M.; Son, T. G.; Kang, Y. R. [Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Shin, S. G.; Kye, Y. U. [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2014-10-15

    The multi-purpose irradiation apparatus using a {sup 137}Cs, which can be used for the blood test, can be affected by the other components of the experiments such as the size and shape of the beaker and the maximum variation of more than 35% has been reported. The mount of the absorbed dose is determined by the distance between irradiation target and the source and the irradiation time with the irradiator (Gamma Irradiator, Chiyoda Technol Co, Japan) for this experiment. The low-dose irradiation has been used in this study is advantageous for irradiating the cell culture vessel or the small animal. However, radiation is performed by placing the 3-5 mice in each mouse cage (polycarbonate cage). In this case, overlapping often happens to the target during irradiation. Irradiating without considering the geometrical aspect of the irradiation device can occur as well. To solve the problems, the mouse apartment with the 45 mouse cages is built and the device is assessed by being compared with the conventional method in 2 different ways. Firstly, the glass dosimeters were inserted into the head and the body of the lab mice for 2 methods. Secondly, MCNP simulation was performed for absorbed dose and air kerma measurements in each mouse apartment chamber. In this study, the system that allows the accurate irradiation using the {sup 137}Cs gamma irradiator mainly used in Radiation Biology was developed and the accuracy of the system has been confirmed by the experiments. The dose delivery using the conventional system had the variation of 42% at most whereas the variation was less than 6% for the mouse apartment. From the MCNP simulation, the difference between each chamber was less than 0.1% and 0.4% for the air kerma and the absorbed dose respectively. Considering the statistical error of MCNP and the assumption from the simulation, the accuracy of the simulation was matched well with the measurements with the glass dosimeters.

  10. Predicting nosocomial lower respiratory tract infections by a risk index based system

    NARCIS (Netherlands)

    Chen, Yong; Shan, Xue; Zhao, Jingya; Han, Xuelin; Tian, Shuguang; Chen, Fangyan; Su, Xueting; Sun, Yansong; Huang, Liuyu; Grundmann, Hajo; Wang, Hongyuan; Han, Li

    2017-01-01

    Although belonging to one of the most common type of nosocomial infection, there was currently no simple prediction model for lower respiratory tract infections (LRTIs). This study aims to develop a risk index based system for predicting nosocomial LRTIs based on data from a large point-prevalence

  11. Respiratory neuroplasticity - Overview, significance and future directions.

    Science.gov (United States)

    Fuller, David D; Mitchell, Gordon S

    2017-01-01

    Neuroplasticity is an important property of the neural system controlling breathing. However, our appreciation for its importance is still relatively new, and we have much to learn concerning different forms of plasticity, their underlying mechanisms, and their biological and clinical significance. In this brief review, we discuss several well-studied models of respiratory plasticity, including plasticity initiated by inactivity in the respiratory system, intermittent and sustained hypoxia, and traumatic injury to the spinal cord. Other aspects of respiratory plasticity are considered in other contributions to this special edition of Experimental Neurology on respiratory plasticity. Finally, we conclude with discussions concerning the biological and clinical significance of respiratory motor plasticity, and areas in need of future research effort. Copyright © 2016. Published by Elsevier Inc.

  12. Assessing Mitochondrial Bioenergetics in Isolated Mitochondria from Various Mouse Tissues Using Seahorse XF96 Analyzer.

    Science.gov (United States)

    Iuso, Arcangela; Repp, Birgit; Biagosch, Caroline; Terrile, Caterina; Prokisch, Holger

    2017-01-01

    Working with isolated mitochondria is the gold standard approach to investigate the function of the electron transport chain in tissues, free from the influence of other cellular factors. In this chapter, we outline a detailed protocol to measure the rate of oxygen consumption (OCR) with the high-throughput analyzer Seahorse XF96. More importantly, this protocol wants to provide practical tips for handling many different samples at once, and take a real advantage of using a high-throughput system. As a proof of concept, we have isolated mitochondria from brain, heart, liver, muscle, kidney, and lung of a wild-type mouse, and measured basal respiration (State II), ADP-stimulated respiration (State III), non-ADP-stimulated respiration (State IV o ), and FCCP-stimulated respiration (State III u ) using respiratory substrates specific to the respiratory chain complex I (RCCI) and complex II (RCCII). Mitochondrial purification and Seahorse runs were performed in less than eight working hours.

  13. Cellular defense of the avian respiratory system: effects of Pasteurella multocida on respiratory burst activity of avian respiratory tract phagocytes.

    Science.gov (United States)

    Ochs, D L; Toth, T E; Pyle, R H; Siegel, P B

    1988-12-01

    The respiratory tract of healthy chickens contain few free-residing phagocytic cells. Intratracheal inoculation with Pasteurella multocida stimulated a significant (P less than 0.05) migration of cells to the lungs and air sacs of White Rock chickens within 2 hours after inoculation. We found the maximal number of avian respiratory tract phagocytes (22.9 +/- 14.0 x 10(6] at 8 hours after inoculation. Flow cytometric analysis of these cells revealed 2 populations on the basis of cell-size and cellular granularity. One of these was similar in size and granularity to those of blood heterophils. Only this population was capable of generating oxidative metabolites in response to phorbol myristate acetate. The ability of the heterophils to produce hydrogen peroxide, measured as the oxidation of intracellularly loaded 2',7'-dichlorofluorescein, decreased with time after inoculation. These results suggest that the migration of heterophils, which are capable of high levels of oxidative metabolism, to the lungs and air sacs may be an important defense mechanism of poultry against bacterial infections of the respiratory tract.

  14. Evaluation of the educational value of YouTube videos about physical examination of the cardiovascular and respiratory systems.

    Science.gov (United States)

    Azer, Samy A; Algrain, Hala A; AlKhelaif, Rana A; AlEshaiwi, Sarah M

    2013-11-13

    A number of studies have evaluated the educational contents of videos on YouTube. However, little analysis has been done on videos about physical examination. This study aimed to analyze YouTube videos about physical examination of the cardiovascular and respiratory systems. It was hypothesized that the educational standards of videos on YouTube would vary significantly. During the period from November 2, 2011 to December 2, 2011, YouTube was searched by three assessors for videos covering the clinical examination of the cardiovascular and respiratory systems. For each video, the following information was collected: title, authors, duration, number of viewers, and total number of days on YouTube. Using criteria comprising content, technical authority, and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-useful videos. A total of 1920 videos were screened. Only relevant videos covering the examination of adults in the English language were identified (n=56). Of these, 20 were found to be relevant to cardiovascular examinations and 36 to respiratory examinations. Further analysis revealed that 9 provided useful information on cardiovascular examinations and 7 on respiratory examinations: scoring mean 14.9 (SD 0.33) and mean 15.0 (SD 0.00), respectively. The other videos, 11 covering cardiovascular and 29 on respiratory examinations, were not useful educationally, scoring mean 11.1 (SD 1.08) and mean 11.2 (SD 1.29), respectively. The differences between these two categories were significant (P.86. A small number of videos about physical examination of the cardiovascular and respiratory systems were identified as educationally useful; these videos can be used by medical students for independent learning and by clinical teachers as learning resources. The scoring system utilized by this study is simple, easy to apply, and could be used by other researchers on similar topics.

  15. A neuroanatomical and physiological study of the non-image forming visual system of the cone-rod homeobox gene (Crx) knock out mouse

    DEFF Research Database (Denmark)

    Rovsing, Louise; Rath, Martin F; Lund-Andersen, Casper

    2010-01-01

    The anatomy and physiology of the non-image forming visual system was investigated in a visually blind cone-rod homeobox gene (Crx) knock-out mouse (Crx(-)(/)(-)), which lacks the outer segments of the photoreceptors. We show that the suprachiasmatic nuclei (SCN) in the Crx(-/-) mouse exhibit...... melanopsin neurons or the SCN may be necessary for a normal function of the non-image forming system of the mouse. However, a change in the SCN of the Crx(-/-) mouse might also explain the observed circadian differences between the knock out mouse and wild type mouse....

  16. Obesity and respiratory diseases

    Directory of Open Access Journals (Sweden)

    Christopher Zammit

    2010-10-01

    Full Text Available Christopher Zammit, Helen Liddicoat, Ian Moonsie, Himender MakkerSleep and Ventilation Unit, Department of Respiratory Medicine, North Middlesex University Hospital, London, UKAbstract: The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ producing systemic inflammation and effecting central respiratory control. Obesity plays a key role in the development of obstructive sleep apnea and obesity hypoventilation syndrome. Asthma is more common and often harder to treat in the obese population, and in this study, we review the effects of obesity on airway inflammation and respiratory mechanics. We also discuss the compounding effects of obesity on chronic obstructive pulmonary disease (COPD and the paradoxical interaction of body mass index and COPD severity. Many practical challenges exist in caring for obese patients, and we highlight the complications faced by patients undergoing surgical procedures, especially given the increased use of bariatric surgery. Ultimately, a greater understanding of the effects of obesity on the respiratory disease and the provision of adequate health care resources is vital in order to care for this increasingly important patient population.Keywords: obesity, lung function, obstructive sleep apnea, obesity hypoventilation syndrome, anesthesia

  17. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)

    International Nuclear Information System (INIS)

    Kakar, Manish; Nystroem, Haakan; Aarup, Lasse Rye; Noettrup, Trine Jakobi; Olsen, Dag Rune

    2005-01-01

    The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude

  18. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)

    Energy Technology Data Exchange (ETDEWEB)

    Kakar, Manish [Department of Radiation Biology, Norwegian Radium Hospital, Montebello, 0310 Oslo (Norway); Nystroem, Haakan [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Aarup, Lasse Rye [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Noettrup, Trine Jakobi [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Olsen, Dag Rune [Department of Radiation Biology, Norwegian Radium Hospital, Montebello, 0310 Oslo (Norway); Department of Medical Physics and Technology, Norwegian Radium Hospital, Oslo (Norway); Department of Physics, University of Oslo (Norway)

    2005-10-07

    The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude.

  19. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    International Nuclear Information System (INIS)

    Korreman, Stine S.; Juhler-Nottrup, Trine; Boyer, Arthur L.

    2008-01-01

    Purpose/objective: In radiotherapy of targets moving with respiration, beam gating is offered as a means of reducing the target motion. The purpose of this study is to evaluate the safe magnitude of margin reduction for respiratory gated beam delivery. Materials/methods: The study is based on data for 17 lung cancer patients in separate protocols at Rigshospitalet and Stanford Cancer Center. Respiratory curves for external optical markers and implanted fiducials were collected using equipment based on the RPM system (Varian Medical Systems). A total of 861 respiratory curves represented external measurements over 30 fraction treatment courses for 10 patients, and synchronous external/internal measurements in single sessions for seven patients. Variations in respiratory amplitude (simulated coaching) and external/internal phase shifts were simulated by perturbation with realistic values. Variations were described by medians and standard deviations (SDs) of position distributions of the markers. Gating windows (35% duty cycle) were retrospectively applied to the respiratory data for each session, mimicking the use of commercially available gating systems. Medians and SDs of gated data were compared to those of ungated data, to assess potential margin reductions. Results: External respiratory data collected over entire treatment courses showed SDs from 1.6 to 8.1 mm, the major part arising from baseline variations. The gated data had SDs from 1.5 to 7.7 mm, with a mean reduction of 0.3 mm (6%). Gated distributions were more skewed than ungated, and in a few cases a marginal miss of gated respiration would be found even if no margin reduction was applied. Regularization of breathing amplitude to simulate coaching did not alter these results significantly. Simulation of varying phase shifts between internal and external respiratory signals showed that the SDs of gated distributions were the same as for the ungated or smaller, but the median values were markedly shifted

  20. BreathSens: A Continuous On-Bed Respiratory Monitoring System With Torso Localization Using an Unobtrusive Pressure Sensing Array.

    Science.gov (United States)

    Liu, Jason J; Huang, Ming-Chun; Xu, Wenyao; Zhang, Xiaoyi; Stevens, Luke; Alshurafa, Nabil; Sarrafzadeh, Majid

    2015-09-01

    The ability to continuously monitor respiration rates of patients in homecare or in clinics is an important goal. Past research showed that monitoring patient breathing can lower the associated mortality rates for long-term bedridden patients. Nowadays, in-bed sensors consisting of pressure sensitive arrays are unobtrusive and are suitable for deployment in a wide range of settings. Such systems aim to extract respiratory signals from time-series pressure sequences. However, variance of movements, such as unpredictable extremities activities, affect the quality of the extracted respiratory signals. BreathSens, a high-density pressure sensing system made of e-Textile, profiles the underbody pressure distribution and localizes torso area based on the high-resolution pressure images. With a robust bodyparts localization algorithm, respiratory signals extracted from the localized torso area are insensitive to arbitrary extremities movements. In a study of 12 subjects, BreathSens demonstrated its respiratory monitoring capability with variations of sleep postures, locations, and commonly tilted clinical bed conditions.

  1. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study

    Directory of Open Access Journals (Sweden)

    Jeanette Janaina Jaber Lucato

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C, a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.

  2. The AgI/II family adhesin AspA is required for respiratory infection by Streptococcus pyogenes.

    Directory of Open Access Journals (Sweden)

    Linda Franklin

    Full Text Available Streptococcus pyogenes (GAS is a human pathogen that causes pharyngitis and invasive diseases such as toxic shock syndrome and sepsis. The upper respiratory tract is the primary reservoir from which GAS can infect new hosts and cause disease. The factors involved in colonisation are incompletely known however. Previous evidence in oral streptococci has shown that the AgI/II family proteins are involved. We hypothesized that the AspA member of this family might be involved in GAS colonization. We describe a novel mouse model of GAS colonization of the nasopharynx and lower respiratory tract to elucidate these interactions. We used two clinical M serotypes expressing AspA, and their aspA gene deletant isogenic mutants in experiments using adherence assays to respiratory epithelium, macrophage phagocytosis and neutrophil killing assays and in vivo models of respiratory tract colonisation and infection. We demonstrated the requirement for AspA in colonization of the respiratory tract. AspA mutants were cleared from the respiratory tract and were deficient in adherence to epithelial cells, and susceptible to phagocytosis. Expression of AspA in the surrogate host Lactococcus lactis protected bacteria from phagocytosis. Our results suggest that AspA has an essential role in respiratory infection, and may function as a novel anti-phagocytic factor.

  3. The twitcher mouse. Central nervous system pathology after bone marrow transplantation

    NARCIS (Netherlands)

    Suzuki, K.; Hoogerbrugge, P. M.; Poorthuis, B. J.; Bekkum, D. W.

    1988-01-01

    Effects of bone marrow transplantation (BMT) on the pathology of the central nervous system were evaluated, at light and electron microscope levels, in the homozygous twitcher mouse (twi/twi), an authentic murine model of globoid cell leukodystrophy (GLD, Krabbe disease) in humans. In the twitcher

  4. Evaluation of respiratory pattern during respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    Dobashi, Suguru; Mori, Shinichiro

    2014-01-01

    The respiratory cycle is not strictly regular, and generally varies in amplitude and period from one cycle to the next. We evaluated the characteristics of respiratory patterns acquired during respiratory gating treatment in more than 300 patients. A total 331 patients treated with respiratory-gated carbon-ion beam therapy were selected from a group of patients with thoracic and abdominal conditions. Respiratory data were acquired for a total of 3,171 fractions using an external respiratory sensing monitor and evaluated for respiratory cycle, duty cycle, magnitude of baseline drift, and intrafractional/interfractional peak inhalation/exhalation positional variation. Results for the treated anatomical sites and patient positioning were compared. Mean ± SD respiratory cycle averaged over all patients was 4.1 ± 1.3 s. Mean ± SD duty cycle averaged over all patients was 36.5 ± 7.3 %. Two types of baseline drift were seen, the first decremental and the second incremental. For respiratory peak variation, the mean intrafractional variation in peak-inhalation position relative to the amplitude in the first respiratory cycle (15.5 ± 9.3 %) was significantly larger than that in exhalation (7.5 ± 4.6 %). Interfractional variations in inhalation (17.2 ± 18.5 %) were also significantly greater than those in exhalation (9.4 ± 10.0 %). Statistically significant differences were observed between patients in the supine position and those in the prone position in mean respiratory cycle, duty cycle, and intra-/interfractional variations. We quantified the characteristics of the respiratory curve based on a large number of respiratory data obtained during treatment. These results might be useful in improving the accuracy of respiratory-gated treatment.

  5. Quality assurance for respiratory-gated stereotactic body radiation therapy in lung using real-time position management system

    International Nuclear Information System (INIS)

    Nakaguchi, Yuji; Maruyama, Masato; Araki, Fujio; Kouno, Tomohiro

    2012-01-01

    In this study, we investigated comprehensive quality assurance (QA) for respiratory-gated stereotactic body radiation therapy (SBRT) in the lungs using a real-time position management system (RPM). By using the phantom study, we evaluated dose liberality and reproducibility, and dose distributions for low monitor unite (MU), and also checked the absorbed dose at isocenter and dose profiles for the respiratory-gated exposure using RPM. Furthermore, we evaluated isocenter dose and dose distributions for respiratory-gated SBRT plans in the lungs using RPM. The maximum errors for the dose liberality were 4% for 2 MU, 1% for 4-10 MU, and 0.5% for 15 MU and 20 MU. The dose reproducibility was 2% for 1 MU and within 0.1% for 5 MU or greater. The accuracy for dose distributions was within 2% for 2 MU or greater. The dose error along a central axis for respiratory cycles of 2, 4, and 6 sec was within 1%. As for geometric accuracy, 90% and 50% isodose areas for the respiratory-gated exposure became almost 1 mm and 2 mm larger than without gating, respectively. For clinical lung-SBRT plans, the point dose at isocenter agreed within 2.1% with treatment planning system (TPS). And the pass rates of all plans for TPS were more than 96% in the gamma analysis (3 mm/3%). The geometrical accuracy and the dose accuracy of TPS calculation algorithm are more important for the dose evaluation at penumbra region for respiratory-gated SBRT in lung using RPM. (author)

  6. Respiratory monitoring system based on fiber optic macro bending

    Science.gov (United States)

    Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry

    2018-02-01

    We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.

  7. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms

    Science.gov (United States)

    Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  8. MEchatronic REspiratory System SImulator for Neonatal Applications (MERESSINA project: a novel bioengineering goal

    Directory of Open Access Journals (Sweden)

    Scaramuzzo RT

    2013-08-01

    Full Text Available Rosa T Scaramuzzo,1,2 Massimiliano Ciantelli,1 Ilaria Baldoli,3 Lisa Bellanti,3 Marzia Gentile,1 Francesca Cecchi,3 Emilio Sigali,1 Selene Tognarelli,3 Paolo Ghirri,1–4 Stefano Mazzoleni,3 Arianna Menciassi,3 Armando Cuttano,1 Antonio Boldrini,1–4 Cecilia Laschi,3 Paolo Dario3 1Centro di Formazione e Simulazione Neonatale "NINA," UO Neonatologia, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy; 2Istituto di Scienze della Vita, 3The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; 4Università di Pisa, Pisa, Italy Abstract: Respiratory function is mandatory for extrauterine life, but is sometimes impaired in newborns due to prematurity, congenital malformations, or acquired pathologies. Mechanical ventilation is standard care, but long-term complications, such as bronchopulmonary dysplasia, are still largely reported. Therefore, continuous medical education is mandatory to correctly manage devices for assistance. Commercially available breathing function simulators are rarely suitable for the anatomical and physiological realities. The aim of this study is to develop a high-fidelity mechatronic simulator of neonatal airways and lungs for staff training and mechanical ventilator testing. The project is divided into three different phases: (1 a review study on respiratory physiology and pathophysiology and on already available single and multi-compartment models; (2 the prototyping phase; and (3 the on-field system validation. Keywords: simulation, lung, newborn, continuous medical education, respiratory system

  9. Efficacy of a Respiratory Training System on the Regularity of Breathing

    International Nuclear Information System (INIS)

    Shin, Eun Hyuk; Park, Hee Chul; Han, Young Yih; Ju, Sang Gyu; Shin, Jung Suk; Ahn, Yong Chan

    2008-01-01

    In order to enhance the efficiency of respiratory gated 4-dimensional radiation therapy for more regular and stable respiratory period and amplitude, a respiration training system was designed, and its efficacy was evaluated. Materials and Methods: The experiment was designed to measure the difference in respiration regularity following the use of a training system. A total of 11 subjects (9 volunteers and 2 patients) were included in the experiments. Three different breathing signals, including free breathing (free-breathing), guided breathing that followed training software (guided-breathing), and free breathing after the guided-breathing (post guided-breathing), were consecutively recorded in each subject. The peak-to-peak (PTP) period of the breathing signal, standard deviation (SD), peak-amplitude and its SD, area of the one cycle of the breathing wave form, and its root mean square (RMS) were measured and computed. Results: The temporal regularity was significantly improved in guided-breathing since the SD of breathing period reduced (free-breathing 0.568 vs guided-breathing 0.344, p=0.0013). The SD of the breathing period representing the post guided-breathing was also reduced, but the difference was not statistically significant (free-breathing 0.568 vs. guided-breathing 0.512, p=ns). Also the SD of measured amplitude was reduced in guided-breathing (free-breathing 1.317 vs. guided-breathing 1.068, p=0.187), although not significant. This indicated that the tidal volume for each breath was kept more even in guided-breathing compared to free-breathing. There was no change in breathing pattern between free-breathing and guided-breathing. The average area of breathing wave form and its RMS in postguided-breathing, however, was reduced by 7% and 5.9%, respectively. Conclusion: The guided-breathing was more stable and regular than the other forms of breathing data. Therefore, the developed respiratory training system was effective in improving the temporal

  10. INTERACTION BETWEEN DELTA OPIOID RECEPTORS AND BENZODIAZEPINES IN CO2- INDUCED RESPIRATORY RESPONSES IN MICE

    Science.gov (United States)

    Borkowski, Anne H.; Barnes, Dylan C.; Blanchette, Derek R.; Castellanos, F. Xavier; Klein, Donald F.; Wilson, Donald A.

    2011-01-01

    The false-suffocation hypothesis of panic disorder (Klein, 1993) suggested δ-opioid receptors as a possible source of the respiratory dysfunction manifested in panic attacks occurring in panic disorder (Preter and Klein, 2008). This study sought to determine if a lack of δ-opioid receptors in a mouse model affects respiratory response to elevated CO2, and whether the response is modulated by benzodiazepines, which are widely used to treat panic disorder. In a whole-body plethysmograph, respiratory responses to 5% CO2 were compared between δ-opioid receptor knockout mice and wild-type mice after saline, diazepam (1 mg/kg), and alprazolam (0.3 mg/kg) injection. The results show that lack of δ-opioid receptors does not affect normal response to elevated CO2, but does prevent benzodiazepines from modulating that response. Thus, in the presence of benzodiazepine agonists, respiratory responses to elevated CO2 were enhanced in δ-opioid receptor knockout mice compared to wild-type mice. This suggests an interplay between benzodiazepine receptors and δ-opioid receptors in regulating the respiratory effects of elevated CO2, which might be related to CO2 induced panic. PMID:21561601

  11. Lung volume recruitment acutely increases respiratory system compliance in individuals with severe respiratory muscle weakness

    Directory of Open Access Journals (Sweden)

    Yannick Molgat-Seon

    2017-03-01

    Full Text Available The aim of the present study was to determine whether lung volume recruitment (LVR acutely increases respiratory system compliance (Crs in individuals with severe respiratory muscle weakness (RMW. Individuals with RMW resulting from neuromuscular disease or quadriplegia (n=12 and healthy controls (n=12 underwent pulmonary function testing and the measurement of Crs at baseline, immediately after, 1 h after and 2 h after a single standardised session of LVR. The LVR session involved 10 consecutive supramaximal lung inflations with a manual resuscitation bag to the highest tolerable mouth pressure or a maximum of 50 cmH2O. Each LVR inflation was followed by brief breath-hold and a maximal expiration to residual volume. At baseline, individuals with RMW had lower Crs than controls (37±5 cmH2O versus 109±10 mL·cmH2O−1, p0.05. LVR had no significant effect on measures of pulmonary function at any time point in either group (all p>0.05. During inflations, mean arterial pressure decreased significantly relative to baseline by 10.4±2.8 mmHg and 17.3±3.0 mmHg in individuals with RMW and controls, respectively (both p<0.05. LVR acutely increases Crs in individuals with RMW. However, the high airway pressures during inflations cause reductions in mean arterial pressure that should be considered when applying this technique.

  12. Assessment of plasminogen synthesis in vitro by mouse tumor cells using a competition radioimmunoassay for mouse plasminogen

    International Nuclear Information System (INIS)

    Roblin, R.O.; Bell, T.E.; Young, P.L.

    1978-01-01

    A sensitive, specific competition radioimmunoassay for mouse plasmin(ogen) has been developed in order to determine whether mouse tumor cells can synthesize plasminogen in vitro. The rabbit anti-BALB/c mouse plasminogen antibodies used in the assay react with the plasminogen present in serum from BALB/c, C3H, AKR and C57BL/6 mice, and also recognized mouse plasmin. The competition radiommunoassay can detect as little as 50 ng of mouse plasminogen. No competition was observed with preparations of fetal calf, human and rabbit plasminogens. A variety of virus-transformed and mouse tumor cell lines were all found to contain less than 100 ng mouse plasminogen/mg of cell extract protein. Thus, if the plasminogen activator/plasmin system is important in the growth or movement of this group of tumor cells, the cells will be dependent upon the circulatory system of the host for their plasminogen supply. (Auth.)

  13. The four-dimensional mouse whole-body phantoms and its application in medical imaging research

    International Nuclear Information System (INIS)

    Li Chongguo; Wu Dake

    2012-01-01

    Medical imaging simulation is a powerful tool for characterizing,evaluating,and optimizing medical imaging devices and techniques. A vital aspect of simulation is to have a realistic phantom or model of the subject's anatomy. Four-dimensional mouse whole-body phantoms provide realistic models of the mouse anatomy and physiology for imaging studies. When combined with accurate models for the imaging process,are capable of providing a wealth of realistic imaging data from subjects with various anatomies and motions (cardiac and respiratory) in health and disease. With this ability, the four-dimensional mouse whole-body phantoms have enormous potential to study the effects of anatomical, physiological and physical factors on medical and small animal imaging and to research new instrumentation, image acquisition strategies, image processing, reconstruction methods, image visualization and interpretation techniques. (authors)

  14. Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing

    International Nuclear Information System (INIS)

    Posgai, Ryan; Ahamed, Maqusood; Hussain, Saber M.; Rowe, John J.; Nielsen, Mark G.

    2009-01-01

    The growth of the nanotechnology industry and subsequent proliferation of nanoparticle types present the need to rapidly assess nanoparticle toxicity. We present a novel, simple and cost-effective nebulizer-based method to deliver nanoparticles to the Drosophila melanogaster respiratory system, for the purpose of toxicity testing. FluoSpheres (registered) , silver, and CdSe/ZnS nanoparticles of different sizes were effectively aerosolized, showing the system is capable of functioning with a wide range of nanoparticle types and sizes. Red fluorescent CdSe/ZnS nanoparticles were successfully delivered to the fly respiratory system, as visualized by fluorescent microscopy. Silver coated and uncoated nanoparticles were delivered in a toxicity test, and induced Hsp70 expression in flies, confirming the utility of this model in toxicity testing. This is the first method developed capable of such delivery, provides the advantage of the Drosophila health model, and can serve as a link between tissue culture and more expensive mammalian models in a tiered toxicity testing strategy.

  15. Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing

    Energy Technology Data Exchange (ETDEWEB)

    Posgai, Ryan; Ahamed, Maqusood [Department of Biology, University of Dayton, Dayton, OH, 45469-2320 (United States); Hussain, Saber M. [Applied Biotechnology Branch, Human Effectiveness Directorate Air Force Research Laboratory/RHBP, Wright-Patterson Air Force Base, OH, 45433 (United States); Rowe, John J. [Department of Biology, University of Dayton, Dayton, OH, 45469-2320 (United States); Nielsen, Mark G., E-mail: Mark.Nielsen@notes.udayton.edu [Department of Biology, University of Dayton, Dayton, OH, 45469-2320 (United States)

    2009-12-20

    The growth of the nanotechnology industry and subsequent proliferation of nanoparticle types present the need to rapidly assess nanoparticle toxicity. We present a novel, simple and cost-effective nebulizer-based method to deliver nanoparticles to the Drosophila melanogaster respiratory system, for the purpose of toxicity testing. FluoSpheres (registered) , silver, and CdSe/ZnS nanoparticles of different sizes were effectively aerosolized, showing the system is capable of functioning with a wide range of nanoparticle types and sizes. Red fluorescent CdSe/ZnS nanoparticles were successfully delivered to the fly respiratory system, as visualized by fluorescent microscopy. Silver coated and uncoated nanoparticles were delivered in a toxicity test, and induced Hsp70 expression in flies, confirming the utility of this model in toxicity testing. This is the first method developed capable of such delivery, provides the advantage of the Drosophila health model, and can serve as a link between tissue culture and more expensive mammalian models in a tiered toxicity testing strategy.

  16. Color structured light system of chest wall motion measurement for respiratory volume evaluation

    Science.gov (United States)

    Chen, Huijun; Cheng, Yuan; Liu, Dongdong; Zhang, Xiaodong; Zhang, Jue; Que, Chengli; Wang, Guangfa; Fang, Jing

    2010-03-01

    We present a structured light system to dynamically measure human chest wall motion for respiratory volume estimation. Based on a projection of an encoded color pattern and a few active markers attached to the trunk, respiratory volumes are obtained by evaluating the 3-D topographic changes of the chest wall in an anatomically consistent measuring region during respiration. Three measuring setups are established: a single-sided illuminating-recording setup for standing posture, an inclined single-sided setup for supine posture, and a double-sided setup for standing posture. Results are compared with the pneumotachography and show good agreement in volume estimations [correlation coefficient: R>0.99 (Pvolume during the isovolume maneuver (standard deviationpulmonary functional differences between the diseased and the contralateral sides of the thorax, and subsequent improvement of this imbalance after drainage. These results demonstrate the proposed optical method is capable of not only whole respiratory volume evaluation with high accuracy, but also regional pulmonary function assessment in different chest wall behaviors, with the advantage of whole-field measurement.

  17. Gated listmode acquisition with the QuadHIDAC animal PET to image mouse hearts

    International Nuclear Information System (INIS)

    Schaefers, K.P.; Lang, N.; Stegger, L.; Schober, O.; Schaefers, M.

    2006-01-01

    Purpose: the aim of this study was to develop ECG and respiratory gating in combination with listmode acquisition for the quadHIDAC small-animal PET scanner. Methods: ECG and respiratory gating was realized with the help of an external trigger device (BioVET) synchronized with the listmode acquisition. Listmode data of a mouse acquisition (injected with 6.5 MBq of 18 F-FDG) were sorted according to three different gating definitions: 12 cardiac gates, 8 respiratory gates and a combination of 8 cardiac and 8 respiratory gates. Images were reconstructed with filtered back-projection (ramp filter), and parameters like left ventricular wall thickness (WT), wall-to-wall separation (WS) and blood to myocardium activity ratios (BMR) were calculated. Results: cardiac gated images show improvement of all parameters (WT 2.6 mm, WS 4.1 mm, BRM 2.3) in diastole compared to ungated images (WT 3.0 mm, WS 3.4 mm, BMR 1.3). Respiratory gating had little effect on calculated parameters. Conclusion: ECG gating with the quadHIDAC can improve myocardial image quality in mice. This could have a major impact on the calculation of an image-derived input function for kinetic modelling. (orig.)

  18. Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts' Proliferation and Differentiation.

    Science.gov (United States)

    Tang, Wei; Tian, Jingjing; Zheng, Qiang; Yan, Lin; Wang, Jiangxue; Li, Zhou; Wang, Zhong Lin

    2015-08-25

    Bone remodeling or orthodontic treatment is usually a long-term process. It is highly desirable to speed up the process for effective medical treatment. In this work, a self-powered low-level laser cure system for osteogenesis is developed using the power generated by the triboelectric nanogenerator. It is found that the system significantly accelerated the mouse embryonic osteoblasts' proliferation and differentiation, which is essential for bone and tooth healing. The system is further demonstrated to be driven by a living creature's motions, such as human walking or a mouse's breathing, suggesting its practical use as a portable or implantable clinical cure for bone remodeling or orthodontic treatment.

  19. Respiratory syncytial virus, pneumonia virus of mice, and influenza A virus differently affect respiratory allergy in mice

    NARCIS (Netherlands)

    Barends, M.; de Rond, L. G. H.; Dormans, J.; van Oosten, M.; Boelen, A.; Neijens, H. J.; Osterhaus, A. D. M. E.; Kimman, T. G.

    2004-01-01

    Respiratory viral infections in early childhood may interact with the immune system and modify allergen sensitization and/or allergic manifestations. In mice, respiratory syncytial virus (RSV) infection during allergic provocation aggravates the allergic T helper (Th) 2 immune response,

  20. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  1. Respiratory cancer database: An open access database of respiratory cancer gene and miRNA.

    Science.gov (United States)

    Choubey, Jyotsna; Choudhari, Jyoti Kant; Patel, Ashish; Verma, Mukesh Kumar

    2017-01-01

    Respiratory cancer database (RespCanDB) is a genomic and proteomic database of cancer of respiratory organ. It also includes the information of medicinal plants used for the treatment of various respiratory cancers with structure of its active constituents as well as pharmacological and chemical information of drug associated with various respiratory cancers. Data in RespCanDB has been manually collected from published research article and from other databases. Data has been integrated using MySQL an object-relational database management system. MySQL manages all data in the back-end and provides commands to retrieve and store the data into the database. The web interface of database has been built in ASP. RespCanDB is expected to contribute to the understanding of scientific community regarding respiratory cancer biology as well as developments of new way of diagnosing and treating respiratory cancer. Currently, the database consist the oncogenomic information of lung cancer, laryngeal cancer, and nasopharyngeal cancer. Data for other cancers, such as oral and tracheal cancers, will be added in the near future. The URL of RespCanDB is http://ridb.subdic-bioinformatics-nitrr.in/.

  2. New Combined Scoring System for Predicting Respiratory Failure in Iraqi Patients with Guillain-Barré Syndrome

    Directory of Open Access Journals (Sweden)

    Zaki Noah Hasan

    2010-09-01

    Full Text Available The Guillain-Barré syndrome (GBS is an acute post-infective autoimmune polyradiculoneuropathy, it is the commonest peripheral neuropathy causing respiratory failure. The aim of the study is to use the New Combined Scoring System in anticipating respiratory failure in order to perform elective measures without waiting for emergency situations to occur.
    Patients and methods: Fifty patients with GBS were studied. Eight clinical parameters (including progression of patients to maximum weakness, respiratory rate/minute, breath holding
    count (the number of digits the patient can count in holding his breath, presence of facial muscle weakness (unilateral or bilateral, presence of weakness of the bulbar muscle, weakness of the neck flexor muscle, and limbs weakness were assessed for each patient and a certain score was given to
    each parameter, a designed combined score being constructed by taking into consideration all the above mentioned clinical parameters. Results and discussion: Fifteen patients (30% that were enrolled in our study developed respiratory failure. There was a highly significant statistical association between the development of respiratory failure and the lower grades of (bulbar muscle weakness score, breath holding count scores, neck muscle weakness score, lower limbs and upper limbs weakness score , respiratory rate score and the total sum score above 16 out of 30 (p-value=0.000 . No significant statistical difference was found regarding the progression to maximum weakness (p-value=0.675 and facial muscle weakness (p-value=0.482.
    Conclusion: The patients who obtained a combined score (above 16’30 are at great risk of having respiratory failure.

  3. Evaluation of Chest Ultrasound Integrated Teaching of Respiratory System Physiology to Medical Students

    Science.gov (United States)

    Paganini, Matteo; Bondì, Michela; Rubini, Alessandro

    2017-01-01

    Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term…

  4. Obesity and respiratory diseases

    OpenAIRE

    Zammit, Christopher; Liddicoat, Helen; Moonsie, Ian; Makker, Himender

    2010-01-01

    Christopher Zammit, Helen Liddicoat, Ian Moonsie, Himender MakkerSleep and Ventilation Unit, Department of Respiratory Medicine, North Middlesex University Hospital, London, UKAbstract: The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ produ...

  5. Nanotechnology in respiratory medicine.

    Science.gov (United States)

    Omlor, Albert Joachim; Nguyen, Juliane; Bals, Robert; Dinh, Quoc Thai

    2015-05-29

    Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.

  6. Particle deposition due to turbulent diffusion in the upper respiratory system

    Science.gov (United States)

    Hamill, P.

    1979-01-01

    Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.

  7. Systems for the management of respiratory disease in primary care - an international series: Australia.

    Science.gov (United States)

    Glasgow, Nicholas

    2008-03-01

    Australia has a complex health system with policy and funding responsibilities divided across federal and state/territory boundaries and service provision split between public and private providers. General practice is largely funded through the federal government. Other primary health care services are provided by state/territory public entities and private allied health practitioners. Indigenous health services are specifically funded by the federal government through a series of Aboriginal Community Controlled Organisations. NATIONAL POLICY AND MODELS: The dominant primary health care model is federally-funded private "small business" general practices. Medicare reimbursement items have incrementally changed over the last decade to include increasing support for chronic disease care with both generic and disease specific items as incentives. Asthma has received a large amount of national policy attention. Other respiratory diseases have not had similar policy emphasis. Australia has a high prevalence of asthma. Respiratory-related encounters in general practice, including acute and chronic respiratory illness and influenza immunisations, account for 20.6% of general practice activity. Lung cancer is a rare disease in general practice. Tuberculosis is uncommon and most often found in people born outside of Australia. Aboriginal and Torres Strait Islanders have higher rates of asthma, smoking and tuberculosis. Access to care is positively influenced by substantial public funding underpinning both the private and public sectors through Medicare. Access to general practice care is negatively influenced by workforce shortages, the ongoing demands of acute care, and the incremental way in which system redesign is occurring in general practice. Most general practice operates from privately-owned rooms. The Australian Government requires general practice facilities to be accredited against certain standards in order for the practice to receive income from a number of

  8. Enterovirus serotypes in patients with central nervous system and respiratory infections in Viet Nam 1997-2010.

    Science.gov (United States)

    B'Krong, Nguyen Thi Thuy Chinh; Minh, Ngo Ngoc Quang; Qui, Phan Tu; Chau, Tran Thi Hong; Nghia, Ho Dang Trung; Do, Lien Anh Ha; Nhung, Nguyen Ngoc; Van Vinh Chau, Nguyen; Thwaites, Guy; Van Tan, Le; van Doorn, H Rogier; Thanh, Tran Tan

    2018-04-12

    Enteroviruses are the most common causative agents of human illness. Enteroviruses have been associated with regional and global epidemics, recently, including with severe disease (Enterovirus A71 and D68), and are of interest as emerging viruses. Here, we typed Enterovirus A-D (EV) from central nervous system (CNS) and respiratory infections in Viet Nam. Data and specimens from prospective observational clinical studies conducted between 1997 and 2010 were used. Species and serotypes were determined using type-specific RT-PCR and viral protein 1 or 4 (VP1, VP4) sequencing. Samples from patients with CNS infection (51 children - 10 CSF and 41 respiratory/rectal swabs) and 28 adults (28 CSF) and respiratory infection (124 children - 124 respiratory swabs) were analysed. Twenty-six different serotypes of the four Enterovirus species (A-D) were identified, including EV-A71 and EV-D68. Enterovirus B was associated with viral meningitis in children and adults. Hand, foot and mouth disease associated Enteroviruses A (EV-A71 and Coxsackievirus [CV] A10) were detected in children with encephalitis. Diverse serotypes of all four Enterovirus species were found in respiratory samples, including 2 polio-vaccine viruses, but also 8 CV-A24 and 8 EV-D68. With the exception of EV-D68, the relevance of these viruses in respiratory infection remains unknown. We describe the diverse spectrum of enteroviruses from patients with CNS and respiratory infections in Viet Nam between 1997 and 2010. These data confirm the global circulation of Enterovirus genera and their associations and are important for clinical diagnostics, patient management, and outbreak response.

  9. Efficacy of a low-cost bubble CPAP system in treatment of respiratory distress in a neonatal ward in Malawi.

    Directory of Open Access Journals (Sweden)

    Kondwani Kawaza

    Full Text Available Respiratory failure is a leading cause of neonatal mortality in the developing world. Bubble continuous positive airway pressure (bCPAP is a safe, effective intervention for infants with respiratory distress and is widely used in developed countries. Because of its high cost, bCPAP is not widely utilized in low-resource settings. We evaluated the performance of a new bCPAP system to treat severe respiratory distress in a low resource setting, comparing it to nasal oxygen therapy, the current standard of care.We conducted a non-randomized convenience sample study to test the efficacy of a low-cost bCPAP system treating newborns with severe respiratory distress in the neonatal ward of Queen Elizabeth Central Hospital, in Blantyre, Malawi. Neonates weighing >1,000 g and presenting with severe respiratory distress who fulfilled inclusion criteria received nasal bCPAP if a device was available; if not, they received standard care. Clinical assessments were made during treatment and outcomes compared for the two groups.87 neonates (62 bCPAP, 25 controls were recruited. Survival rate for neonates receiving bCPAP was 71.0% (44/62 compared with 44.0% (11/25 for controls. 65.5% (19/29 of very low birth weight neonates receiving bCPAP survived to discharge compared to 15.4% (1/13 of controls. 64.6% (31/48 of neonates with respiratory distress syndrome (RDS receiving bCPAP survived to discharge, compared to 23.5% (4/17 of controls. 61.5% (16/26 of neonates with sepsis receiving bCPAP survived to discharge, while none of the seven neonates with sepsis in the control group survived.Use of a low-cost bCPAP system to treat neonatal respiratory distress resulted in 27% absolute improvement in survival. The beneficial effect was greater for neonates with very low birth weight, RDS, or sepsis. Implementing appropriate bCPAP devices could reduce neonatal mortality in developing countries.

  10. Efficacy of a low-cost bubble CPAP system in treatment of respiratory distress in a neonatal ward in Malawi.

    Science.gov (United States)

    Kawaza, Kondwani; Machen, Heather E; Brown, Jocelyn; Mwanza, Zondiwe; Iniguez, Suzanne; Gest, Al; Smith, E O'Brian; Oden, Maria; Richards-Kortum, Rebecca R; Molyneux, Elizabeth

    2014-01-01

    Respiratory failure is a leading cause of neonatal mortality in the developing world. Bubble continuous positive airway pressure (bCPAP) is a safe, effective intervention for infants with respiratory distress and is widely used in developed countries. Because of its high cost, bCPAP is not widely utilized in low-resource settings. We evaluated the performance of a new bCPAP system to treat severe respiratory distress in a low resource setting, comparing it to nasal oxygen therapy, the current standard of care. We conducted a non-randomized convenience sample study to test the efficacy of a low-cost bCPAP system treating newborns with severe respiratory distress in the neonatal ward of Queen Elizabeth Central Hospital, in Blantyre, Malawi. Neonates weighing >1,000 g and presenting with severe respiratory distress who fulfilled inclusion criteria received nasal bCPAP if a device was available; if not, they received standard care. Clinical assessments were made during treatment and outcomes compared for the two groups. 87 neonates (62 bCPAP, 25 controls) were recruited. Survival rate for neonates receiving bCPAP was 71.0% (44/62) compared with 44.0% (11/25) for controls. 65.5% (19/29) of very low birth weight neonates receiving bCPAP survived to discharge compared to 15.4% (1/13) of controls. 64.6% (31/48) of neonates with respiratory distress syndrome (RDS) receiving bCPAP survived to discharge, compared to 23.5% (4/17) of controls. 61.5% (16/26) of neonates with sepsis receiving bCPAP survived to discharge, while none of the seven neonates with sepsis in the control group survived. Use of a low-cost bCPAP system to treat neonatal respiratory distress resulted in 27% absolute improvement in survival. The beneficial effect was greater for neonates with very low birth weight, RDS, or sepsis. Implementing appropriate bCPAP devices could reduce neonatal mortality in developing countries.

  11. Research Summary 3-D Computational Fluid Dynamics (CFD) Model Of The Human Respiratory System

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  12. Respiratory Effects and Systemic Stress Response Following ...

    Science.gov (United States)

    Previous studies have demonstrated that exposure to the pulmonary irritant ozone causes myriad systemic metabolic and pulmonary effects attributed to sympathetic and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically impaired models. We examined respiratory and systemic effects following exposure to a sensory irritant acrolein to elucidate the systemic and pulmonary consequences in healthy and diabetic rat models. Male Wistar and Goto Kakizaki (GK) rats, a nonobese type II diabetic Wistar-derived model, were exposed by inhalation to 0, 2, or 4 ppm acrolein, 4 h/d for 1 or 2 days. Exposure at 4 ppm significantly increased pulmonary and nasal inflammation in both strains with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also caused metabolic impairment by inducing hyperglycemia and glucose intolerance (GK > Wistar). Serum total cholesterol (GKs only), low-density lipoprotein (LDL) cholesterol (both strains), and free fatty acids (GK > Wistar) levels increased; however, no acrolein-induced changes were noted in branched-chain amino acid or insulin levels. These responses corresponded with a significant increase in corticosterone and modest but insignificant increases in adrenaline in both strains, suggesting activation of the HPA axis. Collectively, these data demonstrate that acrolein exposure has a profound effect on nasal and pulmonary inflammation, as well as glucose and lipid metabolis

  13. Respiratory Effects and Systemic Stress Response Following ...

    Science.gov (United States)

    Previous studies have demonstrated that exposure to ozone, a pulmonary irritant, causes myriad systemic metabolic and pulmonary effects that are attributed to neuronal and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically-impaired models. In order to elucidate the systemic consequences and the contribution of the HPA axis in mediating metabolic and respiratory effects of acrolein, a sensory irritant, we examined pulmonary, nasal, and systemic effects in rats following exposure. Male, 10 week old Wistar and Goto Kakizaki (GK) rats, a non-obese type II diabetic Wistar-derived model, were exposed to 0, 2 or 4 ppm acrolein, 4h/day for 1 or 2 days. Acrolein exposure at 4 ppm significantly increased pulmonary and nasal damage in both strains as demonstrated by increased inspiratory and expiratory times indicating labored breathing, elevated biomarkers of injury, and neutrophilic inflammation. Overall, at both time points acrolein exposure caused noticeably more damage in the nasal passages as opposed to the lung with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also led to metabolic impairment by inducing hyperglycemia and glucose intolerance (GK>Wistar) as indicated by glucose tolerance testing. In addition, serum total cholesterol (GKs only), LDL cholesterol (both strains), and free fatty acids (GK>Wistar) levels increased; however, no acrolein-induced changes were noted in branched-c

  14. Diverse and Tissue Specific Mitochondrial Respiratory Response in A Mouse Model of Sepsis-Induced Multiple Organ Failure

    DEFF Research Database (Denmark)

    Karlsson, Michael; Hara, Naomi; Morata, Saori

    2016-01-01

    control ratio was also significantly increased. Maximal Protonophore-induced respiratory (uncoupled) capacity was similar between the two treatment groups.The present study suggests a diverse and tissue specific mitochondrial respiratory response to sepsis. The brain displayed an early impaired...... C57BL/6 mice were analyzed at either 6 hours or 24 hours. ROS-production was simultaneously measured in brain samples using fluorometry.Septic brain tissue exhibited an early increased uncoupling of respiration. Temporal changes between the two time points were diminutive and no difference in ROS...

  15. MEchatronic REspiratory System SImulator for Neonatal Applications (MERESSINA) project: a novel bioengineering goal

    Science.gov (United States)

    Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Baldoli, Ilaria; Bellanti, Lisa; Gentile, Marzia; Cecchi, Francesca; Sigali, Emilio; Tognarelli, Selene; Ghirri, Paolo; Mazzoleni, Stefano; Menciassi, Arianna; Cuttano, Armando; Boldrini, Antonio; Laschi, Cecilia; Dario, Paolo

    2013-01-01

    Respiratory function is mandatory for extrauterine life, but is sometimes impaired in newborns due to prematurity, congenital malformations, or acquired pathologies. Mechanical ventilation is standard care, but long-term complications, such as bronchopulmonary dysplasia, are still largely reported. Therefore, continuous medical education is mandatory to correctly manage devices for assistance. Commercially available breathing function simulators are rarely suitable for the anatomical and physiological realities. The aim of this study is to develop a high-fidelity mechatronic simulator of neonatal airways and lungs for staff training and mechanical ventilator testing. The project is divided into three different phases: (1) a review study on respiratory physiology and pathophysiology and on already available single and multi-compartment models; (2) the prototyping phase; and (3) the on-field system validation. PMID:23966804

  16. Inhaled Antibiotic Therapy in Chronic Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Diego J. Maselli

    2017-05-01

    Full Text Available The management of patients with chronic respiratory diseases affected by difficult to treat infections has become a challenge in clinical practice. Conditions such as cystic fibrosis (CF and non-CF bronchiectasis require extensive treatment strategies to deal with multidrug resistant pathogens that include Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Burkholderia species and non-tuberculous Mycobacteria (NTM. These challenges prompted scientists to deliver antimicrobial agents through the pulmonary system by using inhaled, aerosolized or nebulized antibiotics. Subsequent research advances focused on the development of antibiotic agents able to achieve high tissue concentrations capable of reducing the bacterial load of difficult-to-treat organisms in hosts with chronic respiratory conditions. In this review, we focus on the evidence regarding the use of antibiotic therapies administered through the respiratory system via inhalation, nebulization or aerosolization, specifically in patients with chronic respiratory diseases that include CF, non-CF bronchiectasis and NTM. However, further research is required to address the potential benefits, mechanisms of action and applications of inhaled antibiotics for the management of difficult-to-treat infections in patients with chronic respiratory diseases.

  17. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  18. Immune sensitization to methylene diphenyl diisocyanate (MDI resulting from skin exposure: albumin as a carrier protein connecting skin exposure to subsequent respiratory responses

    Directory of Open Access Journals (Sweden)

    Redlich Carrie A

    2011-03-01

    Full Text Available Abstract Background Methylene diphenyl diisocyanate (MDI, a reactive chemical used for commercial polyurethane production, is a well-recognized cause of occupational asthma. The major focus of disease prevention efforts to date has been respiratory tract exposure; however, skin exposure may also be an important route for inducing immune sensitization, which may promote subsequent airway inflammatory responses. We developed a murine model to investigate pathogenic mechanisms by which MDI skin exposure might promote subsequent immune responses, including respiratory tract inflammation. Methods Mice exposed via the skin to varying doses (0.1-10% w/v of MDI diluted in acetone/olive oil were subsequently evaluated for MDI immune sensitization. Serum levels of MDI-specific IgG and IgE were measured by enzyme-linked immunosorbant assay (ELISA, while respiratory tract inflammation, induced by intranasal delivery of MDI-mouse albumin conjugates, was evaluated based on bronchoalveolar lavage (BAL. Autologous serum IgG from "skin only" exposed mice was used to detect and guide the purification/identification of skin proteins antigenically modified by MDI exposure in vivo. Results Skin exposure to MDI resulted in specific antibody production and promoted subsequent respiratory tract inflammation in animals challenged intranasally with MDI-mouse albumin conjugates. The degree of (secondary respiratory tract inflammation and eosinophilia depended upon the (primary skin exposure dose, and was maximal in mice exposed to 1% MDI, but paradoxically limited in mice receiving 10-fold higher doses (e.g. 10% MDI. The major antigenically-modified protein at the local MDI skin exposure site was identified as albumin, and demonstrated biophysical changes consistent with MDI conjugation. Conclusions MDI skin exposure can induce MDI-specific immune sensitivity and promote subsequent respiratory tract inflammatory responses and thus, may play an important role in MDI asthma

  19. Effects of bedding systems selected by manual muscle testing on sleep and sleep-related respiratory disturbances.

    Science.gov (United States)

    Tsai, Ling-Ling; Liu, Hau-Min

    2008-03-01

    In this study, we investigated the feasibility of applying manual muscle testing (MMT) for bedding selection and examined the bedding effect on sleep. Four lay testers with limited training in MMT performed muscle tests for the selection of the bedding systems from five different mattresses and eight different pillows for 14 participants with mild sleep-related respiratory disturbances. For each participant individually, two bedding systems-one inducing stronger muscle forces and the other inducing weaker forces-were selected. The tester-participant pairs showed 85% and 100% agreement, respectively, for the selection of mattresses and pillows that induced the strongest muscle forces. The firmness of the mattress and the height of the pillow were significantly correlated with the body weight and body mass index of the participants for the selected strong bedding system but not for the weak bedding system. Finally, differences were observed between the strong and the weak bedding systems with regard to sleep-related respiratory disturbances and the percentage of slow-wave sleep. It was concluded that MMT can be performed by inexperienced testers for the selection of bedding systems.

  20. The Effects of Leucine, Zinc, and Chromium Supplements on Inflammatory Events of the Respiratory System in Type 2 Diabetic Rats

    OpenAIRE

    Kolahian, Saeed; Sadri, Hassan; Shahbazfar, Amir Ali; Amani, Morvarid; Mazadeh, Anis; Mirani, Mehdi

    2015-01-01

    Diabetes mellitus is a major cause of serious micro- and macrovascular diseases that affect nearly every system in the body, including the respiratory system. Non-enzymatic protein glycation due to hyperglycaemic stress has fundamental implications due to the large capillary network and amount of connective tissue in the lung. The current study was designed to determine whether leucine, zinc, and chromium supplementations influence the function and histological structure of the respiratory tr...

  1. Mathematical modelling of a human external respiratory system

    Science.gov (United States)

    1977-01-01

    A closed system of algebraic and common differential equations solved by computer is investigated. It includes equations which describe the activity pattern of the respiratory center, the phrenic nerve, the thrust produced by the diaphragm as a function of the lung volume and discharge frequency of the phrenic nerve, as well as certain relations of the lung stretch receptors and chemoreceptors on various lung and blood characteristics, equations for lung biomechanics, pulmonary blood flow, alveolar gas exchange and capillary blood composition equations to determine various air and blood flow and gas exchange parameters, and various gas mixing and arterial and venous blood composition equations, to determine other blood, air and gas mixing characteristics. Data are presented by means of graphs and tables, and some advantages of this model over others are demonstrated by test results.

  2. SU-E-J-190: Development of Abdominal Compression & Respiratory Guiding System Using Gas Pressure Sensor

    International Nuclear Information System (INIS)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Suh, T; Kim, S

    2015-01-01

    Purpose: Abdominal compression is known to be effective but, often makes external-marker-based monitoring of breathing motion not feasible. In this study, we developed and evaluated a system that enables both abdominal compression and monitoring of residual abdominal motion simultaneously. The system can also provide visual-biofeedback capability. Methods: The system developed consists of a compression belt, an abdominal motion monitoring sensor (gas pressure sensor) and a visual biofeedback device. The compression belt was designed to be able to compress the frontal side of the abdomen. The pressure level of the belt is controlled by air volume and monitored in real time using the gas pressure sensor. The system displays not only the real-time monitoring curve but also a guiding respiration model (e.g., a breath hold or shallow breathing curve) simultaneously on the head mounted display to help patients keep their breathing pattern as consistent as possible. Three healthy volunteers were enrolled in this pilot study and respiratory signals (pressure variations) were obtained both with and without effective abdominal compression to investigate the feasibility of the developed system. Two guidance patterns, breath hold and shallow breathing, were tested. Results: All volunteers showed smaller abdominal motion with compression (about 40% amplitude reduction compared to without compression). However, the system was able to monitor residual abdominal motion for all volunteers. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed abdominal compression & respiratory guiding system was feasible for residual abdominal motion management. It is considered that the system can be used for a respiratory motion involved radiation therapy while maintaining the merit of abdominal compression. This work was supported by the Radiation Technology R

  3. SU-E-J-190: Development of Abdominal Compression & Respiratory Guiding System Using Gas Pressure Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States)

    2015-06-15

    Purpose: Abdominal compression is known to be effective but, often makes external-marker-based monitoring of breathing motion not feasible. In this study, we developed and evaluated a system that enables both abdominal compression and monitoring of residual abdominal motion simultaneously. The system can also provide visual-biofeedback capability. Methods: The system developed consists of a compression belt, an abdominal motion monitoring sensor (gas pressure sensor) and a visual biofeedback device. The compression belt was designed to be able to compress the frontal side of the abdomen. The pressure level of the belt is controlled by air volume and monitored in real time using the gas pressure sensor. The system displays not only the real-time monitoring curve but also a guiding respiration model (e.g., a breath hold or shallow breathing curve) simultaneously on the head mounted display to help patients keep their breathing pattern as consistent as possible. Three healthy volunteers were enrolled in this pilot study and respiratory signals (pressure variations) were obtained both with and without effective abdominal compression to investigate the feasibility of the developed system. Two guidance patterns, breath hold and shallow breathing, were tested. Results: All volunteers showed smaller abdominal motion with compression (about 40% amplitude reduction compared to without compression). However, the system was able to monitor residual abdominal motion for all volunteers. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed abdominal compression & respiratory guiding system was feasible for residual abdominal motion management. It is considered that the system can be used for a respiratory motion involved radiation therapy while maintaining the merit of abdominal compression. This work was supported by the Radiation Technology R

  4. Respiratory acidosis

    Science.gov (United States)

    Ventilatory failure; Respiratory failure; Acidosis - respiratory ... Causes of respiratory acidosis include: Diseases of the airways (such as asthma and COPD ) Diseases of the lung tissue (such as ...

  5. High frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

    Science.gov (United States)

    Hadden, Hélène

    2013-01-15

    We tested the hypothesis that high frequency ventilation affects respiratory system mechanical functions in C57BL/6J and BALB/c mice. We measured respiratory mechanics by the forced oscillation technique over 1h in anesthetized, intubated, ventilated BALB/c and C57BL/6J male mice. We did not detect any change in airway resistance, Rn, tissue damping, G, tissue elastance, H and hysteresivity, eta in BALB/c mice during 1h of ventilation at 150 or at 450 breaths/min; nor did we find a difference between BALB/c mice ventilated at 150 breaths/min compared with 450 breaths/min. Among C57BL/6J mice, except for H, all parameters remained unchanged over 1h of ventilation in mice ventilated at 150 breaths/min. However, after 10 and 30 min of ventilation at 450 breaths/min, Rn, and respiratory system compliance were lower, and eta was higher, than their starting value. We conclude that high frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Effects of Long-Term Dust Exposure on Human Respiratory System Health in Minqin County, China.

    Science.gov (United States)

    Wang, Jinyu; Li, Sheng; Wang, Shigong; Shang, Kezheng

    2015-01-01

    The aim of this study was to assess the effects of long-term sand dust exposure on human respiratory health. Dust events break out frequently in Minqin County, northwest China, whereas Pingliang City, northwest China, is rarely influenced by dust events. Therefore, Minqin and Pingliang were selected as sand dust exposure region and control area, respectively. The incidence of respiratory system diseases and symptoms was determined through a structured respiratory health questionnaire (ATS-DLD-78-A) and personal interviews. The subjects comprised 728 farmers (Minqin, 424; Pingliang, 304) aged 40 years or older, who had nondocumented occupational history to industrial dust exposure. Prevalences (odds ratio [OR], 95% confidence interval [CI]) of chronic rhinitis, chronic bronchitis, and chronic cough increased 9.6% (3.141, 1.776-5.555), 7.5% (2.468, 1.421-4.286), and 10.2% (1.787, 1.246-2.563) in Minqin comparison with Pingliang, respectively, and the differences were significant (p <.01).

  7. Non-invasive measure of respiratory mechanics and conventional respiratory parameters in conscious large animals by high frequency Airwave Oscillometry.

    Science.gov (United States)

    Bassett, Leanne; Troncy, Eric; Robichaud, Annette; Schuessler, Thomas F; Pouliot, Mylène; Ascah, Alexis; Authier, Simon

    2014-01-01

    A number of drugs in clinical trials are discontinued due to potentially life-threatening airway obstruction. As some drugs may not cause changes in core battery parameters such as tidal volume (Vt), respiratory rate (RR) or minute ventilation (MV), including measurements of respiratory mechanics in safety pharmacology studies represents an opportunity for design refinement. The present study aimed to test a novel non-invasive methodology to concomitantly measure respiratory system resistance (Rrs) and conventional respiratory parameters (Vt, RR, MV) in conscious Beagle dogs and cynomolgus monkeys. An Airwave Oscillometry system (tremoFlo; THORASYS Inc., Montreal, Canada) was used to concomitantly assess Rrs and conventional respiratory parameters before and after intravenous treatment with a bronchoactive agent. Respiratory mechanics measurements were performed by applying a short (i.e. 16s) single high frequency (19Hz) waveform at the subject's airway opening via a face mask. During measurements, pressure and flow signals were recorded. After collection of baseline measurements, methacholine was administered intravenously to Beagle dogs (n=6) and cynomolgus monkeys (n=4) at 8 and 68μg/kg, respectively. In dogs, methacholine induced significant increases in Vt, RR and MV while in monkeys, it only augmented RR. A significant increase in Rrs was observed after methacholine administration in both species with mean percentage peak increases from baseline of 88 (53)% for dogs and 28 (16)% for cynomolgus monkeys. Airwave Oscillometry appears to be a promising non-invasive methodology to enable respiratory mechanics measurements in conscious large animals, a valuable refinement in respiratory safety pharmacology. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Chronic Dosing with Membrane Sealant Poloxamer 188 NF Improves Respiratory Dysfunction in Dystrophic Mdx and Mdx/Utrophin-/- Mice.

    Directory of Open Access Journals (Sweden)

    Bruce E Markham

    Full Text Available Poloxamer 188 NF (national formulary (NF grade of P-188 improves cardiac muscle function in the mdx mouse and golden retriever muscular dystrophy models. However in vivo effects on skeletal muscle have not been reported. We postulated that P-188 NF might protect diaphragm muscle membranes from contraction-induced injury in mdx and mdx/utrophin-/- (dko muscular dystrophy models. In the first study 7-month old mdx mice were treated for 22 weeks with subcutaneous (s.c. injections of saline or P-188 NF at 3 mg/Kg. In the second, dkos were treated with saline or P-188 NF (1 mg/Kg for 8 weeks beginning at age 3 weeks. Prednisone was the positive control in both studies. Respiratory function was monitored using unrestrained whole body plethysmography. P-188 NF treatment affected several respiratory parameters including tidal volume/BW and minute volume/BW in mdx mice. In the more severe dko model, P-188 NF (1 mg/Kg significantly slowed the decline in multiple respiratory parameters compared with saline-treated dko mice. Prednisone's effects were similar to those seen with P-188 NF. Diaphragms from P-188 NF or prednisone treated mdx and dko mice showed signs of muscle fiber protection including less centralized nuclei, less variation in fiber size, greater fiber density, and exhibited a decreased amount of collagen deposition. P-188 NF at 3 mg/Kg s.c. also improved parameters of systolic and diastolic function in mdx mouse hearts. These results suggest that P-188 NF may be useful in treating respiratory and cardiac dysfunction, the leading causes of death in Duchenne muscular dystrophy patients.

  9. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato

    NARCIS (Netherlands)

    Bultema, Jelle B.; Braun, Hans-Peter; Boekema, Egbert J.; Kouřil, Roman

    The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes 1 to V) specifically interact and form defined supramolecular structures, the so-called "respiratory supercomplexes". Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a

  10. Mouse Vocal Communication System: Are Ultrasounds Learned or Innate?

    Science.gov (United States)

    Arriaga, Gustavo; Jarvis, Erich D.

    2013-01-01

    Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production.…

  11. Quality verification for respiratory gated proton therapy

    International Nuclear Information System (INIS)

    Kim, Eun Sook; Jang, Yo Jong; Park, Ji Yeon; Kang, Dong Yun; Yeom, Doo Seok

    2013-01-01

    To verify accuracy of respiratory gated proton therapy by measuring and analyzing proton beam delivered when respiratory gated proton therapy is being performed in our institute. The plan data of 3 patients who took respiratory gated proton therapy were used to deliver proton beam from proton therapy system. The manufactured moving phantom was used to apply respiratory gating system to reproduce proton beam which was partially irradiated. The key characteristics of proton beam, range, spreat-out Bragg peak (SOBP) and output factor were measured 5 times and the same categories were measured in the continuous proton beam which was not performed with respiratory gating system. Multi-layer ionization chamber was used to measure range and SOBP, and Scanditronix Wellhofer and farmer chamber was used to measure output factor. The average ranges of 3 patients (A, B, C), who had taken respiratory gated proton therapy or not, were (A) 7.226, 7.230, (B) 12.216, 12.220 and (C) 19.918, 19.920 g/cm 2 and average SOBP were (A) 4.950, 4.940, (B) 6.496, 6.512 and (C) 8.486, 8.490 g/cm 2 . And average output factor were (A) 0.985, 0.984 (B) 1.026, 1.027 and (C) 1.138, 1.136 cGy/MU. The differences of average range were -0.004, -0.004, -0.002 g/cm 2 , that of SOBP were 0.010, -0.016, -0.004 g/cm 2 and that of output factor were 0.001, -0.001, 0.002 cGy/MU. It is observed that the range, SOBP and output factor of proton beam delivered when respiratory gated proton therapy is being performed have the same beam quality with no significant difference compared to the proton beam which was continuously irradiated. Therefore, this study verified the quality of proton beam delivered when respiratory gated proton therapy and confirmed the accuracy of proton therapy using this

  12. A Transgenic Tri-Modality Reporter Mouse

    OpenAIRE

    Yan, Xinrui; Ray, Pritha; Paulmurugan, Ramasamy; Tong, Ricky; Gong, Yongquan; Sathirachinda, Ataya; Wu, Joseph C.; Gambhir, Sanjiv S.

    2013-01-01

    Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This "Tri-Modality Reporter Mouse" system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent...

  13. Isolation and identification of antibiotic resistance genes in Staphylococcus aureus isolates from respiratory system infections in shahrekord, Iran

    Directory of Open Access Journals (Sweden)

    Maryam Reisi

    2014-07-01

    Full Text Available   Introduction : Staphylococcus aureus is considered as one of pathogenic agents in humans, that engages different body parts including respiratory system and causes to spend lots of costs and extending patient’s treatment period. This study which is performed to separate and investigate the pattern of antibiotic resistance in Staphylococcus aureus isolates from upper respiratory system infections in Shahrekord.   Materials and methods: This study was done by sectional-descriptive method On 200 suspicious persons to the upper respiratory system infections who were referred to the Imam Ali clinic in Shahrekord in 2012. After isolation of Staphylococcus aureus from cultured nose discharges, antibiotic resistance genes were identified by polymerase chain reaction (PCR by using defined primer pairs .   Results : Among 200 investigated samples in 60 cases (30% Staphylococcus aureus infection (by culturing and PCR method was determined. Isolates showed the lowest amount of antibiotic resistance to vancomycin (0.5% and the highest amount of resistance to the penicillin G and cefotaxime (100%. mecA gene (encoding methicillin resistance with frequency of 85.18% and aacA-D gene (encoding resistance to aminoglycosides with frequency of 28.33% showed the highest and lowest frequency of antibiotic resistance genes coding in Staphylococcus aureus isolates respectively .   Discussion and conclusion : Notable prevalence of resistant Staphylococcus aureus isolates in community acquired respiratory infections, recommend continuous control necessity to impede the spreading of these bacteria and their infections.  

  14. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model

    International Nuclear Information System (INIS)

    Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Nikolov, Manasi; La Maestra, S.; Micale, Rosanna T.; Steele, Vernon E.; De Flora, Silvio

    2016-01-01

    Highlights: • Cigarette smoke and ethanol are known to synergize in the upper aerodigestive tract. • Their interactions in the lower respiratory tract have poorly been explored. • Prenatal and postnatal treatments of mice with ethanol caused pulmonary alterations. • However, ethanol attenuated smoke-induced preneoplastic and neoplastic lesions in lung. • The interaction between smoke and alcohol depends on life stage and target tissue. - Abstract: Both ethanol and cigarette smoke are classified as human carcinogens. They can synergize, especially in tissues of the upper aerodigestive tract that are targeted by both agents. The main objective of the present study was to evaluate the individual and combined effects of ethanol and smoke in the respiratory tract, either following transplacental exposure and/or postnatal exposure. We designed two consecutive studies in mouse models by exposing Swiss H mice to oral ethanol and/or inhaled mainstream cigarette smoke for up to 4 months, at various prenatal and postnatal life stages. Clastogenic effects and histopathological alterations were evaluated after 4 and 8 months, respectively. Ethanol was per se devoid of clastogenic effects in mouse peripheral blood erythrocytes. However, especially in mice exposed both transplacentally throughout pregnancy and in the postnatal life, ethanol administration was associated not only with liver damage but also with pro-angiogenetic effects in the lung by stimulating the proliferation of blood vessels. In addition, these mice developed pulmonary emphysema, alveolar epithelial hyperplasias, microadenomas, and benign tumors. On the other hand, ethanol interfered in the lung carcinogenesis process resulting from the concomitant exposure of mice to smoke. In fact, ethanol significantly attenuated some smoke-related preneoplastic and neoplastic lesions in the respiratory tract, such as alveolar epithelial hyperplasia, microadenomas, and even malignant tumors. In addition, ethanol

  15. Connective Tissue Growth Factor Transgenic Mouse Develops Cardiac Hypertrophy, Lean Body Mass and Alopecia.

    Science.gov (United States)

    Nuglozeh, Edem

    2017-07-01

    Connective Tissue Growth Factor (CTGF/CCN2) is one of the six members of cysteine-rich, heparin-binding proteins, secreted as modular protein and recognised to play a major function in cell processes such as adhesion, migration, proliferation and differentiation as well as chondrogenesis, skeletogenesis, angiogenesis and wound healing. The capacity of CTGF to interact with different growth factors lends an important role during early and late development, especially in the anterior region of the embryo. CTGF Knockout (KO) mice have several craniofacial defects and bone miss shaped due to an impairment of the vascular system development during chondrogenesis. The aim of the study was to establish an association between multiple modular functions of CTGF and the phenotype and cardiovascular functions in transgenic mouse. Bicistronic cassette was constructed using pIRES expressing vector (Clontech, Palo Alto, CA). The construct harbours mouse cDNA in tandem with LacZ cDNA as a reporter gene under the control of Cytomegalovirus (CMV) promoter. The plasmid was linearised with NotI restriction enzyme, and 50 ng of linearised plasmid was injected into mouse pronucleus for the chimaera production. Immunohistochemical methods were used to assess the colocalisation renin and CTGF as well as morphology and rheology of the cardiovascular system. The chimeric mice were backcrossed against the wild-type C57BL/6 to generate hemizygous (F1) mouse. Most of the offsprings died as a result of respiratory distress and those that survived have low CTGF gene copy number, approximately 40 molecules per mouse genome. The copy number assessment on the dead pups showed 5×10 3 molecules per mouse genome explaining the threshold of the gene in terms of toxicity. Interestingly, the result of this cross showed 85% of the progenies to be positive deviating from Mendelian first law. All F2 progenies died excluding the possibility of establishing the CTGF transgenic mouse line, situation that

  16. Anaerobic respiration of Escherichia coli in the mouse intestine.

    Science.gov (United States)

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  17. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/ MDA5 activation.

    Science.gov (United States)

    Ding, Zhen; Fang, Liurong; Yuan, Shuangling; Zhao, Ling; Wang, Xunlei; Long, Siwen; Wang, Mohan; Wang, Dang; Foda, Mohamed Frahat; Xiao, Shaobo

    2017-07-25

    Coronaviruses (CoVs) are a huge threat to both humans and animals and have evolved elaborate mechanisms to antagonize interferons (IFNs). Nucleocapsid (N) protein is the most abundant viral protein in CoV-infected cells, and has been identified as an innate immunity antagonist in several CoVs, including mouse hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV. However, the underlying molecular mechanism(s) remain unclear. In this study, we found that MHV N protein inhibited Sendai virus and poly(I:C)-induced IFN-β production by targeting a molecule upstream of retinoic acid-induced gene I (RIG-I) and melanoma differentiation gene 5 (MDA5). Further studies showed that both MHV and SARS-CoV N proteins directly interacted with protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein that can bind to RIG-I and MDA5 to activate IFN production. The N-PACT interaction sequestered the association of PACT and RIG-I/MDA5, which in turn inhibited IFN-β production. However, the N proteins from porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV), which are also classified in the order Nidovirales, did not interact and counteract with PACT. Taken together, our present study confirms that both MHV and SARS-CoV N proteins can perturb the function of cellular PACT to circumvent the innate antiviral response. However, this strategy does not appear to be used by all CoVs N proteins.

  18. Respiratory alkalosis

    Science.gov (United States)

    Alkalosis - respiratory ... leads to shortness of breath can also cause respiratory alkalosis (such as pulmonary embolism and asthma). ... Treatment is aimed at the condition that causes respiratory alkalosis. Breathing into a paper bag -- or using ...

  19. Potential toxicity and safety evaluation of nanomaterials for the respiratory system and lung cancer

    Directory of Open Access Journals (Sweden)

    Vlachogianni T

    2013-11-01

    Full Text Available Thomais Vlachogianni,1 Konstantinos Fiotakis,1 Spyridon Loridas,1 Stamatis Perdicaris,2 Athanasios Valavanidis1 1Department of Chemistry, Free Radicals Research Group, 2Faculty of Pharmacy, Department of Pharmacognosy and Natural Product Chemistry, University of Athens, Athens, Greece Abstract: Engineered nanomaterials (ENMs are a diverse group of materials finding increasing use in manufacturing, computing, food, pharmaceuticals, and biomedicine due to their very small size and exceptional properties. Health and safety concerns for ENMs have forced regulatory agencies to consider preventive measures and regulations for workers’ health and safety protection. Respiratory system toxicity from inhalable ENMs is the most important concern to health specialists. In this review, we focus on similarities and differences between conventional microparticles (diameters in mm and µm, which have been previously studied, and nanoparticles (sizes between 1 and 100 nm in terms of size, composition, and mechanisms of action in biological systems. In past decades, respirable particulate matter (PM, asbestos fibers, crystalline silicate, and various amorphous dusts have been studied, and epidemiological evidence has shown how dangerous they are to human health, especially from exposure in working environments. Scientific evidence has shown that there is a close connection between respirable PM and pulmonary oxidative stress through the generation of reactive oxygen species (ROS and reactive nitrogen species (RNS. There is a close connection between oxidative stress in the cell and the elicitation of an inflammatory response via pro-inflammatory gene transcription. Inflammatory processes increase the risk for lung cancer. Studies in vitro and in vivo in the last decade have shown that engineered nanoparticles (ENPs at various doses can cause ROS generation, oxidative stress, and pro-inflammatory gene expression in the cell. It is assumed that ENPs have the

  20. COPD management as a model for all chronic respiratory conditions: report of the 4th Consensus Conference in Respiratory Medicine.

    Science.gov (United States)

    Nardini, Stefano; De Benedetto, Fernando; Sanguinetti, Claudio M; Bellofiore, Salvatore; Carlone, Stefano; Privitera, Salvatore; Sagliocca, Luciano; Tupputi, Emmanuele; Baccarani, Claudio; Caiffa, Gennaro; Calabrese, Maria Consiglia; Capuozzo, Antonio; Cauchi, Salvatore; Conio, Valentina; Coratella, Giuseppe; Crismancich, Franco; Dal Negro, Roberto W; Dellarole, Franco; Delucchi, Maurizio; Favaretti, Carlo; Forte, Silvia; Gallo, Franca Matilde; Giuliano, Riccardo; Grandi, Marco; Grillo, Antonino; Gualano, Maria Rosaria; Guffanti, Enrico; Locicero, Salvatore; Lombardo, Francesco Paolo; Mantero, Marco; Marasso, Roberto; Martino, Laura; Mastroberardino, Michele; Mereu, Carlo; Messina, Roberto; Neri, Margherita; Novelletto, Bruno Franco; Parente, Paolo; Pasquinucci, Sergio; Pistolesi, Massimo; Polverino, Mario; Posca, Agnese; Richeldi, Luca; Roccia, Fernando; Giustini, Ettore Saffi; Salemi, Michelangelo; Santacroce, Salvatore; Schisano, Mario; Schisano, Matteo; Selvi, Eleonora; Silenzi, Andrea; Soverina, Patrizio; Taranto, Claudio; Ugolini, Marta; Visaggi, Piero; Zanasi, Alessandro

    2017-01-01

    Non-communicable diseases (NCDs) kill 40 million people each year. The management of chronic respiratory NCDs such as chronic obstructive pulmonary disease (COPD) is particularly critical in Italy, where they are widespread and represent a heavy burden on healthcare resources. It is thus important to redefine the role and responsibility of respiratory specialists and their scientific societies, together with that of the whole healthcare system, in order to create a sustainable management of COPD, which could become a model for other chronic respiratory conditions. These issues were divided into four main topics (Training, Organization, Responsibilities, and Sustainability) and discussed at a Consensus Conference promoted by the Research Center of the Italian Respiratory Society held in Rome, Italy, 3-4 November 2016. Regarding training, important inadequacies emerged regarding specialist training - both the duration of practical training courses and teaching about chronic diseases like COPD. A better integration between university and teaching hospitals would improve the quality of specialization. A better organizational integration between hospital and specialists/general practitioners (GPs) in the local community is essential to improve the diagnostic and therapeutic pathways for chronic respiratory patients. Improving the care pathways is the joint responsibility of respiratory specialists, GPs, patients and their caregivers, and the healthcare system. The sustainability of the entire system depends on a better organization of the diagnostic-therapeutic pathways, in which also other stakeholders such as pharmacists and pharmaceutical companies can play an important role.

  1. Respiratory diseases and their effects on respiratory function and exercise capacity.

    Science.gov (United States)

    Van Erck-Westergren, E; Franklin, S H; Bayly, W M

    2013-05-01

    Given that aerobic metabolism is the predominant energy pathway for most sports, the respiratory system can be a rate-limiting factor in the exercise capacity of fit and healthy horses. Consequently, respiratory diseases, even in mild forms, are potentially deleterious to any athletic performance. The functional impairment associated with a respiratory condition depends on the degree of severity of the disease and the equestrian discipline involved. Respiratory abnormalities generally result in an increase in respiratory impedance and work of breathing and a reduced level of ventilation that can be detected objectively by deterioration in breathing mechanics and arterial blood gas tensions and/or lactataemia. The overall prevalence of airway diseases is comparatively high in equine athletes and may affect the upper airways, lower airways or both. Diseases of the airways have been associated with a wide variety of anatomical and/or inflammatory conditions. In some instances, the diagnosis is challenging because conditions can be subclinical in horses at rest and become clinically relevant only during exercise. In such cases, an exercise test may be warranted in the evaluation of the patient. The design of the exercise test is critical to inducing the clinical signs of the problem and establishing an accurate diagnosis. Additional diagnostic techniques, such as airway sampling, can be valuable in the diagnosis of subclinical lower airway problems that have the capacity to impair performance. As all these techniques become more widely used in practice, they should inevitably enhance veterinarians' diagnostic capabilities and improve their assessment of treatment effectiveness and the long-term management of equine athletes. © 2013 EVJ Ltd.

  2. SU-G-JeP1-08: Dual Modality Verification for Respiratory Gating Using New Real- Time Tumor Tracking Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Shiinoki, T; Hanazawa, H; Shibuya, K [Yamaguchi University, Ube, Yamaguchi (Japan); Kawamura, S; Koike, M; Yuasa, Y; Uehara, T; Fujimoto, K [Yamaguchi University Hospital, Ube, Yamaguchi (Japan)

    2016-06-15

    Purpose: The respirato ry gating system combined the TrueBeam and a new real-time tumor-tracking radiotherapy system (RTRT) was installed. The RTRT system consists of two x-ray tubes and color image intensifiers. Using fluoroscopic images, the fiducial marker which was implanted near the tumor was tracked and was used as the internal surrogate for respiratory gating. The purposes of this study was to develop the verification technique of the respiratory gating with the new RTRT using cine electronic portal image device images (EPIDs) of TrueBeam and log files of the RTRT. Methods: A patient who underwent respiratory gated SBRT of the lung using the RTRT were enrolled in this study. For a patient, the log files of three-dimensional coordinate of fiducial marker used as an internal surrogate were acquired using the RTRT. Simultaneously, the cine EPIDs were acquired during respiratory gated radiotherapy. The data acquisition was performed for one field at five sessions during the course of SBRT. The residual motion errors were calculated using the log files (E{sub log}). The fiducial marker used as an internal surrogate into the cine EPIDs was automatically extracted by in-house software based on the template-matching algorithm. The differences between the the marker positions of cine EPIDs and digitally reconstructed radiograph were calculated (E{sub EPID}). Results: Marker detection on EPID using in-house software was influenced by low image contrast. For one field during the course of SBRT, the respiratory gating using the RTRT showed the mean ± S.D. of 95{sup th} percentile E{sub EPID} were 1.3 ± 0.3 mm,1.1 ± 0.5 mm,and those of E{sub log} were 1.5 ± 0.2 mm, 1.1 ± 0.2 mm in LR and SI directions, respectively. Conclusion: We have developed the verification method of respiratory gating combined TrueBeam and new real-time tumor-tracking radiotherapy system using EPIDs and log files.

  3. SU-E-T-247: Determinations of the Optimal Phase for Respiratory Gated Radiotherapy From Statistical Analysis Using a Visible Guidance System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S; Yea, J; Kang, M; Lee, H; Kim, S [Yeungnam University Medical Center, Daegu, Daegu (Korea, Republic of)

    2015-06-15

    Purpose: Respiratory gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung cancer patients. Determination of the optimal point in the respiratory phase of a patient is important in RGRT but it is not easy. The goal of the present study was to see if a visible guidance system is helpful in determining the optimal phase in respiratory gated therapy. Methods: The breathing signals of 23 lung cancer patients were recorded with a Real-time Position Management (RPM) respiratory gating system (Varian, USA). The patients underwent breathing training with our visible guidance system, after which their breathing signals were recorded during 5 min of free breathing and 5 min of guided breathing. The breathing signals recorded between 3 and 5 min before and after training were compared. We performed statistical analysis of the breathing signals to find the optimal duty cycle in guided breathing for RGRT. Results: The breathing signals aided by the visible guidance system had more regular cycles over time and smaller variations in the positions of the marker block than the free breathing signals. Of the 23 lung cancer patients, 19 showed statistically significant differences by time when the values obtained before and after breathing were compared (p < 0.05); 30% and 40% of the duty cycle, respectively, was determined to be the most effective, and the corresponding phases were 30 60% (duty cycle, 30%; p < 0.05) and 30 70% (duty cycle, 40%; p < 0.05). Conclusion: Respiratory regularity was significantly improved with the use of the RPM with our visible guiding system; therefore, it would help improve the accuracy and efficiency of RGRT.

  4. Patient training in respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    Kini, Vijay R.; Vedam, Subrahmanya S.; Keall, Paul J.; Patil, Sumukh; Chen, Clayton; Mohan, Radhe

    2003-01-01

    Respiratory gating is used to counter the effects of organ motion during radiotherapy for chest tumors. The effects of variations in patient breathing patterns during a single treatment and from day to day are unknown. We evaluated the feasibility of using patient training tools and their effect on the breathing cycle regularity and reproducibility during respiratory-gated radiotherapy. To monitor respiratory patterns, we used a component of a commercially available respiratory-gated radiotherapy system (Real Time Position Management (RPM) System, Varian Oncology Systems, Palo Alto, CA 94304). This passive marker video tracking system consists of reflective markers placed on the patient's chest or abdomen, which are detected by a wall-mounted video camera. Software installed on a PC interfaced to this camera detects the marker motion digitally and records it. The marker position as a function of time serves as the motion signal that may be used to trigger imaging or treatment. The training tools used were audio prompting and visual feedback, with free breathing as a control. The audio prompting method used instructions to 'breathe in' or 'breathe out' at periodic intervals deduced from patients' own breathing patterns. In the visual feedback method, patients were shown a real-time trace of their abdominal wall motion due to breathing. Using this, they were asked to maintain a constant amplitude of motion. Motion traces of the abdominal wall were recorded for each patient for various maneuvers. Free breathing showed a variable amplitude and frequency. Audio prompting resulted in a reproducible frequency; however, the variability and the magnitude of amplitude increased. Visual feedback gave a better control over the amplitude but showed minor variations in frequency. We concluded that training improves the reproducibility of amplitude and frequency of patient breathing cycles. This may increase the accuracy of respiratory-gated radiation therapy

  5. The Role and Immunobiology of Eosinophils in the Respiratory System: a Comprehensive Review.

    Science.gov (United States)

    Eng, Stephanie S; DeFelice, Magee L

    2016-04-01

    The eosinophil is a fully delineated granulocyte that disseminates throughout the bloodstream to end-organs after complete maturation in the bone marrow. While the presence of eosinophils is not uncommon even in healthy individuals, these granulocytes play a central role in inflammation and allergic processes. Normally appearing in smaller numbers, higher levels of eosinophils in the peripheral blood or certain tissues typically signal a pathologic process. Eosinophils confer a beneficial effect on the host by enhancing immunity against molds and viruses. However, tissue-specific elevation of eosinophils, particularly in the respiratory system, can cause a variety of short-term symptoms and may lead to long-term sequelae. Eosinophils often play a role in more commonly encountered disease processes, such as asthma and allergic responses in the upper respiratory tract. They are also integral in the pathology of less common diseases including eosinophilic pneumonia, allergic bronchopulmonary aspergillosis, hypersensitivity pneumonitis, and drug reaction with eosinophilia and systemic symptoms. They can be seen in neoplastic disorders or occupational exposures as well. The involvement of eosinophils in pulmonary disease processes can affect the method of diagnosis and the selection of treatment modalities. By analyzing the complex interaction between the eosinophil and its environment, which includes signaling molecules and tissues, different therapies have been discovered and created in order to target disease processes at a cellular level. Innovative treatments such as mepolizumab and benralizumab will be discussed. The purpose of this article is to further explore the topic of eosinophilic presence, activity, and pathology in the respiratory tract, as well as discuss current and future treatment options through a detailed literature review.

  6. Bone histological correlates for air sacs and their implications for understanding the origin of the dinosaurian respiratory system.

    Science.gov (United States)

    Lambertz, Markus; Bertozzo, Filippo; Sander, P Martin

    2018-01-01

    Air sacs are an important component of the avian respiratory system, and corresponding structures also were crucial for the evolution of sauropod dinosaur gigantism. Inferring the presence of air sacs in fossils so far is restricted to bones preserving internal pneumatic cavities and foramina as osteological correlates. We here present bone histological correlates for air sacs as a new potential identification tool for these elements of the respiratory system. The analysis of several avian and non-avian dinosaur samples revealed delicate fibres in secondary trabecular and secondary endosteal bone that in the former case (birds) is known or in the latter (non-avian dinosaurs) assumed to have been in contact with air sacs, respectively. The bone histology of this 'pneumosteal tissue' is markedly different from those regions where muscles attached presenting classical Sharpey's fibres. The pneumatized bones of several non-dinosaurian taxa do not exhibit the characteristics of this 'pneumosteum'. Our new histology-based approach thus can be instrumental in reconstructing the origin of air sacs among dinosaurs and hence for our understanding of this remarkable evolutionary novelty of the respiratory system. © 2018 The Author(s).

  7. Effect of a Health Care System Respiratory Fluoroquinolone Restriction Program To Alter Utilization and Impact Rates of Clostridium difficile Infection.

    Science.gov (United States)

    Shea, Katherine M; Hobbs, Athena L V; Jaso, Theresa C; Bissett, Jack D; Cruz, Christopher M; Douglass, Elizabeth T; Garey, Kevin W

    2017-06-01

    Fluoroquinolones are one of the most commonly prescribed antibiotic classes in the United States despite their association with adverse consequences, including Clostridium difficile infection (CDI). We sought to evaluate the impact of a health care system antimicrobial stewardship-initiated respiratory fluoroquinolone restriction program on utilization, appropriateness of quinolone-based therapy based on institutional guidelines, and CDI rates. After implementation, respiratory fluoroquinolone utilization decreased from a monthly mean and standard deviation (SD) of 41.0 (SD = 4.4) days of therapy (DOT) per 1,000 patient days (PD) preintervention to 21.5 (SD = 6.4) DOT/1,000 PD and 4.8 (SD = 3.6) DOT/1,000 PD posteducation and postrestriction, respectively. Using segmented regression analysis, both education (14.5 DOT/1,000 PD per month decrease; P = 0.023) and restriction (24.5 DOT/1,000 PD per month decrease; P cost of moxifloxacin, the formulary respiratory fluoroquinolone, was observed postrestriction compared to preintervention within the health care system ($123,882 versus $12,273; P = 0.002). Implementation of a stewardship-initiated respiratory fluoroquinolone restriction program can increase appropriate use while reducing overall utilization, acquisition cost, and CDI rates within a health care system. Copyright © 2017 American Society for Microbiology.

  8. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    Science.gov (United States)

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  9. Respiratory problems in foals.

    Science.gov (United States)

    Beech, J

    1985-04-01

    Despite major advances in our knowledge and ability to treat respiratory diseases in neonatal foals, neonatal respiratory medicine is still in its infancy. It is hoped that this article may serve as a guideline for diagnosis and treatment. Specific antibiotic regimens and emergency procedures are covered in other articles in this symposium. Because management factors play a critical role in the pathogenesis of respiratory disease, education of clients as to their importance would help both prophylactically and therapeutically. The necessity of very careful monitoring of neonates, which is critical to early detection of disease, should be stressed. As respiratory diseases can be fulminant and rapidly fatal, it is imperative not to delay diagnosis and therapy. Thorough examination and implementation of appropriate diagnostic techniques, as well as prompt early referral to a more sophisticated facility when indicated, would prevent many deaths. Although sophisticated support systems are vital for survival of some of these foals, good basic intensive nursing care combined with selection of appropriate drug therapy very early in the course of the disease is all that many foals require and can significantly improve survival rates.

  10. Ventilatory chemosensory drive is blunted in the mdx mouse model of Duchenne Muscular Dystrophy (DMD.

    Directory of Open Access Journals (Sweden)

    Matias Mosqueira

    Full Text Available Duchenne Muscular Dystrophy (DMD is caused by mutations in the DMD gene resulting in an absence of dystrophin in neurons and muscle. Respiratory failure is the most common cause of mortality and previous studies have largely concentrated on diaphragmatic muscle necrosis and respiratory failure component. Here, we investigated the integrity of respiratory control mechanisms in the mdx mouse model of DMD. Whole body plethysmograph in parallel with phrenic nerve activity recordings revealed a lower respiratory rate and minute ventilation during normoxia and a blunting of the hypoxic ventilatory reflex in response to mild levels of hypoxia together with a poor performance on a hypoxic stress test in mdx mice. Arterial blood gas analysis revealed low PaO2 and pH and high PaCO2 in mdx mice. To investigate chemosensory respiratory drive, we analyzed the carotid body by molecular and functional means. Dystrophin mRNA and protein was expressed in normal mice carotid bodies however, they are absent in mdx mice. Functional analysis revealed abnormalities in Dejours test and the early component of the hypercapnic ventilatory reflex in mdx mice. Together, these results demonstrate a malfunction in the peripheral chemosensory drive that would be predicted to contribute to the respiratory failure in mdx mice. These data suggest that investigating and monitoring peripheral chemosensory drive function may be useful for improving the management of DMD patients with respiratory failure.

  11. The effect of artichoke (Cynara scolymus L.) extract on respiratory chain system activity in rat liver mitochondria.

    Science.gov (United States)

    Juzyszyn, Z; Czerny, B; Myśliwiec, Z; Pawlik, A; Droździk, M

    2010-06-01

    The effect of artichoke extract on mitochondrial respiratory chain (MRC) activity in isolated rat liver mitochondria (including reaction kinetics) was studied. The effect of the extract on the activity of isolated cytochrome oxidase was also studied. Extract in the range of 0.68-2.72 microg/ml demonstrated potent and concentration-dependent inhibitory activity. Concentrations > or =5.4 microg/ml entirely inhibited MRC activity. The succinate oxidase system (MRC complexes II-IV) was the most potently inhibited, its activity at an extract concentration of 1.36 microg/ml being reduced by 63.3% compared with the control (p artichoke extracts may rely in part on the effects of their active compounds on the activity of the mitochondrial respiratory chain system.

  12. The respiratory microbiome and respiratory infections

    NARCIS (Netherlands)

    Unger, Stefan A.; Bogaert, Debby

    2017-01-01

    Despite advances over the past ten years lower respiratory tract infections still comprise around a fifth of all deaths worldwide in children under five years of age with the majority in low- and middle-income countries. Known risk factors for severe respiratory infections and poor chronic

  13. Combined electrocardiography- and respiratory-triggered CT of the lung to reduce respiratory misregistration artifacts between imagining slabs in free-breathing children: Initial experience

    International Nuclear Information System (INIS)

    Goo, Hyun Woo; Allmendinger, Thomas

    2017-01-01

    Cardiac and respiratory motion artifacts degrade the image quality of lung CT in free-breathing children. The aim of this study was to evaluate the effect of combined electrocardiography (ECG) and respiratory triggering on respiratory misregistration artifacts on lung CT in free-breathing children. In total, 15 children (median age 19 months, range 6 months–8 years; 7 boys), who underwent free-breathing ECG-triggered lung CT with and without respiratory-triggering were included. A pressure-sensing belt of a respiratory gating system was used to obtain the respiratory signal. The degree of respiratory misregistration artifacts between imaging slabs was graded on a 4-point scale (1, excellent image quality) on coronal and sagittal images and compared between ECG-triggered lung CT studies with and without respiratory triggering. A p value < 0.05 was considered significant. Lung CT with combined ECG and respiratory triggering showed significantly less respiratory misregistration artifacts than lung CT with ECG triggering only (1.1 ± 0.4 vs. 2.2 ± 1.0, p = 0.003). Additional respiratory-triggering reduces respiratory misregistration artifacts on ECG-triggered lung CT in free-breathing children

  14. Combined electrocardiography- and respiratory-triggered CT of the lung to reduce respiratory misregistration artifacts between imagining slabs in free-breathing children: Initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Allmendinger, Thomas [Siemens Healthcare, GmbH, Computed Tomography Division, Forchheim (Germany)

    2017-09-15

    Cardiac and respiratory motion artifacts degrade the image quality of lung CT in free-breathing children. The aim of this study was to evaluate the effect of combined electrocardiography (ECG) and respiratory triggering on respiratory misregistration artifacts on lung CT in free-breathing children. In total, 15 children (median age 19 months, range 6 months–8 years; 7 boys), who underwent free-breathing ECG-triggered lung CT with and without respiratory-triggering were included. A pressure-sensing belt of a respiratory gating system was used to obtain the respiratory signal. The degree of respiratory misregistration artifacts between imaging slabs was graded on a 4-point scale (1, excellent image quality) on coronal and sagittal images and compared between ECG-triggered lung CT studies with and without respiratory triggering. A p value < 0.05 was considered significant. Lung CT with combined ECG and respiratory triggering showed significantly less respiratory misregistration artifacts than lung CT with ECG triggering only (1.1 ± 0.4 vs. 2.2 ± 1.0, p = 0.003). Additional respiratory-triggering reduces respiratory misregistration artifacts on ECG-triggered lung CT in free-breathing children.

  15. Is recurrent respiratory infection associated with allergic respiratory disease?

    Science.gov (United States)

    de Oliveira, Tiago Bittencourt; Klering, Everton Andrei; da Veiga, Ana Beatriz Gorini

    2018-03-13

    Respiratory infections cause high morbidity and mortality worldwide. This study aims to estimate the relationship between allergic respiratory diseases with the occurrence of recurrent respiratory infection (RRI) in children and adolescents. The International Study of Asthma and Allergies in Childhood questionnaire and a questionnaire that provides data on the history of respiratory infections and the use of antibiotics were used to obtain data from patients. The relationship between the presence of asthma or allergic rhinitis and the occurrence of respiratory infections in childhood was analyzed. We interviewed the caregivers of 531 children aged 0 to 15 years. The average age of participants was 7.43 years, with females accounting for 52.2%. This study found significant relationship between: presence of asthma or allergic rhinitis with RRI, with prevalence ratio (PR) of 2.47 (1.51-4.02) and 1.61 (1.34-1.93), respectively; respiratory allergies with use of antibiotics for respiratory problems, with PR of 5.32 (2.17-13.0) for asthma and of 1.64 (1.29-2.09) for allergic rhinitis; asthma and allergic rhinitis with diseases of the lower respiratory airways, with PR of 7.82 (4.63-13.21) and 1.65 (1.38-1.96), respectively. In contrast, no relationship between upper respiratory airway diseases and asthma and allergic rhinitis was observed, with PR of 0.71 (0.35-1.48) and 1.30 (0.87-1.95), respectively. RRI is associated with previous atopic diseases, and these conditions should be considered when treating children.

  16. Respiratory system model for quasistatic pulmonary pressure-volume (P-V) curve: inflation-deflation loop analyses.

    Science.gov (United States)

    Amini, R; Narusawa, U

    2008-06-01

    A respiratory system model (RSM) is developed for the deflation process of a quasistatic pressure-volume (P-V) curve, following the model for the inflation process reported earlier. In the RSM of both the inflation and the deflation limb, a respiratory system consists of a large population of basic alveolar elements, each consisting of a piston-spring-cylinder subsystem. A normal distribution of the basic elements is derived from Boltzmann statistical model with the alveolar closing (opening) pressure as the distribution parameter for the deflation (inflation) process. An error minimization by the method of least squares applied to existing P-V loop data from two different data sources confirms that a simultaneous inflation-deflation analysis is required for an accurate determination of RSM parameters. Commonly used terms such as lower inflection point, upper inflection point, and compliance are examined based on the P-V equations, on the distribution function, as well as on the geometric and physical properties of the basic alveolar element.

  17. Mouse Activity across Time Scales: Fractal Scenarios

    Science.gov (United States)

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  18. Assessment of a volume-dependent dynamic respiratory system compliance in ALI/ARDS by pooling breathing cycles

    International Nuclear Information System (INIS)

    Zhao, Zhanqi; Möller, Knut; Guttmann, Josef

    2012-01-01

    New methods were developed to calculate the volume-dependent dynamic respiratory system compliance (C rs ) in mechanically ventilated patients. Due to noise in respiratory signals and different characteristics of the methods, their results can considerably differ. The aim of the study was to establish a practical procedure to validate the estimation of intratidal dynamic C rs . A total of 28 patients from intensive care units of eight German university hospitals with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) were studied retrospectively. Dynamic volume-dependent C rs was determined during ongoing mechanical ventilation with the SLICE method, dynostatic algorithm and adaptive slice method. Conventional two-point compliance C 2P was calculated for comparison. A number of consecutive breathing cycles were pooled to reduce noise in the respiratory signals. C rs -volume curves produced with different methods converged when the number of pooling cycles increased (n ≥ 7). The mean volume-dependent C rs of 20 breaths was highly correlated with mean C 2P (C 2P,mean = 0.945 × C rs,mean − 0.053, r 2 = 0.968, p < 0.0001). The Bland–Altman analysis indicated that C 2P,mean was lower than C rs,mean (−2.4 ± 6.4 ml cm −1 H 2 O, mean bias ± 2 SD), but not significant according to the paired t-test (p > 0.05). Methods for analyzing dynamic respiratory mechanics are sensitive to noise and will converge to a unique solution when the number of pooled cycles increases. Under steady-state conditions, assessment of the volume-dependent C rs in ALI/ARDS patients can be validated by pooling respiratory data of consecutive breaths regardless of which method is applied. Confidence in dynamic C rs determination may be increased with the proposed pooling. (note)

  19. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation.

    Science.gov (United States)

    Renukaradhya, Gourapura J; Narasimhan, Balaji; Mallapragada, Surya K

    2015-12-10

    Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Respiratory system mechanics during laparoscopic cholecystectomy.

    Science.gov (United States)

    Rizzotti, L; Vassiliou, M; Amygdalou, A; Psarakis, Ch; Rasmussen, T R; Laopodis, V; Behrakis, P

    2002-04-01

    The influence of laparoscopic cholecystectomy (LC) on the mechanical properties of the respiratory system (RS) was examined using multiple regression analysis (MRA). Measurements of airway pressure (PaO) and flow (V') were obtained from 32 patients at four distinct stages of the LC procedure: 1) Immediately before the application of pneumoperitoneum (PP) at supine position, 2) 5 min after the induction of PP at Trendelenburg position, 3) 5 min after the patients position at reverse Trendelenburg, and 4) 5 min after the end ofthe surgical procedure with the patient again in supine position. Evaluated parameters were the RS elastance (Ers), resistance (Rrs), impedance (Zrs), the angle theta indicating the balance between the elastic and resistive components of the impedance, as well as the end-expiratory elastic recoil pressure (EEP). Ers and Zrs increased considerably during PP and remained elevated immediately after abolishing PP Rrs, on the contrary, returned to pre-operative levels right after the operation. Change of body position from Trendelenburg (T) to reverseTrendelenburg (rT) mainly induced a significant change in theta, thus indicating an increased dominance of the elastic component of Zrs on changing fromT to rT. There was no evidence of increased End-Expiratory Pressure during PP

  1. Clinical Accuracy of the Respiratory Tumor Tracking System of the CyberKnife: Assessment by Analysis of Log Files

    International Nuclear Information System (INIS)

    Hoogeman, Mischa; Prevost, Jean-Briac; Nuyttens, Joost; Poell, Johan; Levendag, Peter; Heijmen, Ben

    2009-01-01

    Purpose: To quantify the clinical accuracy of the respiratory motion tracking system of the CyberKnife treatment device. Methods and Materials: Data in log files of 44 lung cancer patients treated with tumor tracking were analyzed. Errors in the correlation model, which relates the internal target motion with the external breathing motion, were quantified. The correlation model error was compared with the geometric error obtained when no respiratory tracking was used. Errors in the prediction method were calculated by subtracting the predicted position from the actual measured position after 192.5 ms (the time lag to prediction in our current system). The prediction error was also measured for a time lag of 115 ms and a new prediction method. Results: The mean correlation model errors were less than 0.3 mm. Standard deviations describing intrafraction variations around the whole-fraction mean error were 0.2 to 1.9 mm for cranio-caudal, 0.1 to 1.9 mm for left-right, and 0.2 to 2.5 mm for anterior-posterior directions. Without the use of respiratory tracking, these variations would have been 0.2 to 8.1 mm, 0.2 to 5.5 mm, and 0.2 to 4.4 mm. The overall mean prediction error was small (0.0 ± 0.0 mm) for all directions. The intrafraction standard deviation ranged from 0.0 to 2.9 mm for a time delay of 192.5 ms but was halved by using the new prediction method. Conclusions: Analyses of the log files of real clinical cases have shown that the geometric error caused by respiratory motion is substantially reduced by the application of respiratory motion tracking.

  2. Respiratory mechanics to understand ARDS and guide mechanical ventilation.

    Science.gov (United States)

    Mauri, Tommaso; Lazzeri, Marta; Bellani, Giacomo; Zanella, Alberto; Grasselli, Giacomo

    2017-11-30

    As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.

  3. Spinal Metaplasticity in Respiratory Motor Control

    Directory of Open Access Journals (Sweden)

    Gordon S Mitchell

    2015-02-01

    Full Text Available A hallmark feature of the neural system controlling breathing is its ability to exhibit plasticity. Less appreciated is the ability to exhibit metaplasticity, a change in the capacity to express plasticity (ie. plastic plasticity. Recent advances in our understanding of cellular mechanisms giving rise to respiratory motor plasticity lay the groundwork for (ongoing investigations of metaplasticity. This detailed understanding of respiratory metaplasticity will be essential as we harness metaplasticity to restore breathing capacity in clinical disorders that compromise breathing, such as cervical spinal injury, motor neuron disease and other neuromuscular diseases. In this brief review, we discuss key examples of metaplasticity in respiratory motor control, and our current understanding of mechanisms giving rise to spinal plasticity and metaplasticity in phrenic motor output; particularly after pre-conditioning with intermittent hypoxia. Progress in this area has led to the realization that similar mechanisms are operative in other spinal motor networks, including those governing limb movement. Further, these mechanisms can be harnessed to restore respiratory and non-respiratory motor function after spinal injury.

  4. Regulatory peptides in the upper respiratory system and oral cavity of man. An immunocytochemical and radioimmunological study

    International Nuclear Information System (INIS)

    Hauser-Kronberger, C.

    1992-01-01

    In the present study a dense network of peptide-immunoreactive nerve fibres in the upper respiratory system and the oral cavity of man was investigated. The occurrence, distribution and concentrations of regulatory peptide immunoreactivities in human nasal mucosa, soft palate, ventricular fold, vocal cord, epiglottis, subglottis, glandula submandibularis and glandula parotis were investigated using highly efficient immunocytochemical and radio-immunological methods. In the tissues investigated vasoactive intestinal polypeptide (VIP) and other derivatives from the VIP-precursor (peptide histidine methionine = PHM), prepro VIP (111-122)), neuropeptide tyrosine (NPY) and its C-flanking peptide (CPON), calcitonin gene-related peptide (CGRP), substance P, neurokinin A, bombesin-flanking peptide and somatostatin were detected. The regulatory peptides demonstrated also included the recently isolated peptides helospectin and pituitary adenylate cyclase activating peptide (PACAP). Single endocrine-like cells were for the first time demonstrated within the respiratory epithelium and in the lamina propria of the nasal mucosa and soft palate and in groups within ducts. Ultrastructural immunelectronmicroscopy was performed using an ABC-pre-embedding method. In addition, semithin Epon resin sections were immunostained. The concentrations of VIP, NPY, CGRP, substance P and neurokinin A were measured using radioimmunological methods. The peptide immunoreactivities demonstrated in a dense network of neuronal structures and endocrine cells give indication for the presence of a complex regulatory system with potent physiological mechanisms in the upper respiratory system and allocated tissues of man

  5. Climate change and respiratory disease: European Respiratory Society position statement.

    Science.gov (United States)

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.

  6. A solid phase micro-radioimmunoassay to detect minute amounts of Ig class specific anti-viral antibody in a mouse model system

    International Nuclear Information System (INIS)

    Charlton, D.; Blandford, G.; Toronto Univ., Ontario

    1975-01-01

    A simple and rapid micro-radioimmunoassay was developed to detect and quantitate class specific mouse anti-sendai virus antibodies. Two different 125 I-labelled indicator systems were studied. After incubation of test serum with antigen one system used 125 I-rabbit anti-mouse IgG (RIA 1) and the second employed rabbit anti-mouse IgG, IgA or IgM followed by 125 I-sheep anti-rabbit immunoglobulin reagent (RIA 2). The RIA 2 method was adopted for routine use as it was more sensitive, gave better discrimination between sample and back-ground counts and eliminated the need for several labelled rabbit anti-mouse Ig class specific antisera. The technique was found to be about 100 times more sensitive than conventional HI tests, specific, reliable and economical of reagents and time

  7. Partnering for optimal respiratory home care: physicians working with respiratory therapists to optimally meet respiratory home care needs.

    Science.gov (United States)

    Spratt, G; Petty, T L

    2001-05-01

    The need for respiratory care services continues to increase, reimbursement for those services has decreased, and cost-containment measures have increased the frequency of home health care. Respiratory therapists are well qualified to provide home respiratory care, reduce misallocation of respiratory services, assess patient respiratory status, identify problems and needs, evaluate the effect of the home setting, educate the patient on proper equipment use, monitor patient response to and complications of therapy, monitor equipment functioning, monitor for appropriate infection control procedures, make recommendations for changes to therapy regimen, and adjust therapy under the direction of the physician. Teamwork benefits all parties and offers cost and time savings, improved data collection and communication, higher job satisfaction, and better patient monitoring, education, and quality of life. Respiratory therapists are positioned to optimize treatment efficacy, maximize patient compliance, and minimize hospitalizations among patients receiving respiratory home care.

  8. Ghrelin-related peptides do not modulate vasodilator nitric oxide production or superoxide levels in mouse systemic arteries.

    Science.gov (United States)

    Ku, Jacqueline M; Sleeman, Mark W; Sobey, Christopher G; Andrews, Zane B; Miller, Alyson A

    2016-04-01

    The ghrelin gene is expressed in the stomach where it ultimately encodes up to three peptides, namely, acylated ghrelin, des-acylated ghrelin and obestatin, which all have neuroendocrine roles. Recently, the authors' reported that these peptides have important physiological roles in positively regulating vasodilator nitric oxide (NO) production in the cerebral circulation, and may normally suppress superoxide production by the pro-oxidant enzyme, Nox2-NADPH oxidase. To date, the majority of studies using exogenous peptides infer that they may have similar roles in the systemic circulation. Therefore, this study examined whether exogenous and endogenous ghrelin-related peptides modulate NO production and superoxide levels in mouse mesenteric arteries and/or thoracic aorta. Using wire myography, it was found that application of exogenous acylated ghrelin, des-acylated ghrelin or obestatin to mouse thoracic aorta or mesenteric arteries failed to elicit a vasorelaxation response, whereas all three peptides elicited vasorelaxation responses of rat thoracic aorta. Also, none of the peptides modulated mouse aortic superoxide levels as measured by L-012-enhanced chemiluminescence. Next, it was found that NO bioactivity and superoxide levels were unaffected in the thoracic aorta from ghrelin-deficient mice when compared with wild-type mice. Lastly, using novel GHSR-eGFP reporter mice in combination with double-labelled immunofluorescence, no evidence was found for the growth hormone secretagogue receptor (GHSR1a) in the throracic aorta, which is the only functional ghrelin receptor identified to date. Collectively these findings demonstrate that, in contrast to systemic vessels of other species (e.g. rat and human) and mouse cerebral vessels, ghrelin-related peptides do not modulate vasodilator NO production or superoxide levels in mouse systemic arteries. © 2016 John Wiley & Sons Australia, Ltd.

  9. Gene editing as a promising approach for respiratory diseases.

    Science.gov (United States)

    Bai, Yichun; Liu, Yang; Su, Zhenlei; Ma, Yana; Ren, Chonghua; Zhao, Runzhen; Ji, Hong-Long

    2018-03-01

    Respiratory diseases, which are leading causes of mortality and morbidity in the world, are dysfunctions of the nasopharynx, the trachea, the bronchus, the lung and the pleural cavity. Symptoms of chronic respiratory diseases, such as cough, sneezing and difficulty breathing, may seriously affect the productivity, sleep quality and physical and mental well-being of patients, and patients with acute respiratory diseases may have difficulty breathing, anoxia and even life-threatening respiratory failure. Respiratory diseases are generally heterogeneous, with multifaceted causes including smoking, ageing, air pollution, infection and gene mutations. Clinically, a single pulmonary disease can exhibit more than one phenotype or coexist with multiple organ disorders. To correct abnormal function or repair injured respiratory tissues, one of the most promising techniques is to correct mutated genes by gene editing, as some gene mutations have been clearly demonstrated to be associated with genetic or heterogeneous respiratory diseases. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) systems are three innovative gene editing technologies developed recently. In this short review, we have summarised the structure and operating principles of the ZFNs, TALENs and CRISPR/Cas9 systems and their preclinical and clinical applications in respiratory diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Mouse forward genetics in the study of the peripheral nervous system and human peripheral neuropathy

    Science.gov (United States)

    Douglas, Darlene S.; Popko, Brian

    2009-01-01

    Forward genetics, the phenotype-driven approach to investigating gene identity and function, has a long history in mouse genetics. Random mutations in the mouse transcend bias about gene function and provide avenues towards unique discoveries. The study of the peripheral nervous system is no exception; from historical strains such as the trembler mouse, which led to the identification of PMP22 as a human disease gene causing multiple forms of peripheral neuropathy, to the more recent identification of the claw paw and sprawling mutations, forward genetics has long been a tool for probing the physiology, pathogenesis, and genetics of the PNS. Even as spontaneous and mutagenized mice continue to enable the identification of novel genes, provide allelic series for detailed functional studies, and generate models useful for clinical research, new methods, such as the piggyBac transposon, are being developed to further harness the power of forward genetics. PMID:18481175

  11. Targeted inactivation of the murine Abca3 gene leads to respiratory failure in newborns with defective lamellar bodies

    International Nuclear Information System (INIS)

    Hammel, Markus; Michel, Geert; Hoefer, Christina; Klaften, Matthias; Mueller-Hoecker, Josef; Angelis, Martin Hrabe de; Holzinger, Andreas

    2007-01-01

    Mutations in the human ABCA3 gene, encoding an ABC-transporter, are associated with respiratory failure in newborns and pediatric interstitial lung disease. In order to study disease mechanisms, a transgenic mouse model with a disrupted Abca3 gene was generated by targeting embryonic stem cells. While heterozygous animals developed normally and were fertile, individuals homozygous for the altered allele (Abca3-/-) died within one hour after birth from respiratory failure, ABCA3 protein being undetectable. Abca3-/- newborns showed atelectasis of the lung in comparison to a normal gas content in unaffected or heterozygous littermates. Electron microscopy demonstrated the absence of normal lamellar bodies in type II pneumocytes. Instead, condensed structures with apparent absence of lipid content were found. We conclude that ABCA3 is required for the formation of lamellar bodies and lung surfactant function. The phenotype of respiratory failure immediately after birth corresponds to the clinical course of severe ABCA3 mutations in human newborns

  12. Transmissibility of the monkeypox virus clades via respiratory transmission: investigation using the prairie dog-monkeypox virus challenge system.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox virus (MPXV is endemic within Africa where it sporadically is reported to cause outbreaks of human disease. In 2003, an outbreak of human MPXV occurred in the US after the importation of infected African rodents. Since the eradication of smallpox (caused by an orthopoxvirus (OPXV related to MPXV and cessation of routine smallpox vaccination (with the live OPXV vaccinia, there is an increasing population of people susceptible to OPXV diseases. Previous studies have shown that the prairie dog MPXV model is a functional animal model for the study of systemic human OPXV illness. Studies with this model have demonstrated that infected animals are able to transmit the virus to naive animals through multiple routes of exposure causing subsequent infection, but were not able to prove that infected animals could transmit the virus exclusively via the respiratory route. Herein we used the model system to evaluate the hypothesis that the Congo Basin clade of MPXV is more easily transmitted, via respiratory route, than the West African clade. Using a small number of test animals, we show that transmission of viruses from each of the MPXV clade was minimal via respiratory transmission. However, transmissibility of the Congo Basin clade was slightly greater than West African MXPV clade (16.7% and 0% respectively. Based on these findings, respiratory transmission appears to be less efficient than those of previous studies assessing contact as a mechanism of transmission within the prairie dog MPXV animal model.

  13. [Immunomodulators in Therapy of Respiratory Infections].

    Science.gov (United States)

    Isakov, V A; Isakov, D V

    2014-01-01

    Viral infections provoke dysbalance in the interferon system and inhibition of the cellular and phagocytic responses of the host. Long-term persistence of pathogenic viruses and bacteria induce atopy and could aggravate chronic respiratory diseases. The up-to-date classification of immunomodulators is described. High efficacy of interferon inductors, such as cycloferon and some others as auxiliary means in therapy or prophylaxis (immunorehabilitation) of viral respiratory infections in adults and children was shown.

  14. Surfactant Protein D in Respiratory and Non-Respiratory Diseases

    Science.gov (United States)

    Sorensen, Grith L.

    2018-01-01

    Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases

  15. Sulfur mustard and respiratory diseases.

    Science.gov (United States)

    Tang, Feng Ru; Loke, Weng Keong

    2012-09-01

    Victims exposed to sulfur mustard (HD) in World War I and Iran-Iraq war, and those suffered occupational or accidental exposure have endured discomfort in the respiratory system at early stages after exposure, and marked general physical deterioration at late stages due to pulmonary fibrosis, bronchiolitis obliterans or lung cancer. At molecule levels, significant changes of cytokines and chemokines in bronchoalveolar lavage and serum, and of selectins (in particular sE-selectin) and soluble Fas ligand in the serum have been reported in recent studies of patients exposed to HD in Iran-Iraq war, suggesting that these molecules may be associated with the pathophysiological development of pulmonary diseases. Experimental studies in rodents have revealed that reactive oxygen and nitrogen species, their product peroxynitrite (ONOO(-)), nitric oxide synthase, glutathione, poly (adenosine diphosphate-ribose) polymerase, activating protein-1 signaling pathway are promising drug targets for preventing HD-induced toxicity, whereas N-acetyl cysteine, tocopherols, melatonin, aprotinin and many other molecules have been proved to be effective in prevention of HD-induced damage to the respiratory system in different animal models. In this paper, we will systemically review clinical and pathophysiological changes of respiratory system in victims exposed to HD in the last century, update clinicians and researchers on the mechanism of HD-induced acute and chronic lung damages, and on the relevant drug targets for future development of antidotes for HD. Further research directions will also be proposed.

  16. Functional Impairment of Mononuclear Phagocyte System by the Human Respiratory Syncytial Virus

    Directory of Open Access Journals (Sweden)

    Karen Bohmwald

    2017-11-01

    Full Text Available The mononuclear phagocyte system (MPS comprises of monocytes, macrophages (MΦ, and dendritic cells (DCs. MPS is part of the first line of immune defense against a wide range of pathogens, including viruses, such as the human respiratory syncytial virus (hRSV. The hRSV is an enveloped virus that belongs to the Pneumoviridae family, Orthopneumovirus genus. This virus is the main etiological agent causing severe acute lower respiratory tract infection, especially in infants, children and the elderly. Human RSV can cause bronchiolitis and pneumonia and it has also been implicated in the development of recurrent wheezing and asthma. Monocytes, MΦ, and DCs significantly contribute to acute inflammation during hRSV-induced bronchiolitis and asthma exacerbation. Furthermore, these cells seem to be an important component for the association between hRSV and reactive airway disease. After hRSV infection, the first cells encountered by the virus are respiratory epithelial cells, alveolar macrophages (AMs, DCs, and monocytes in the airways. Because AMs constitute the predominant cell population at the alveolar space in healthy subjects, these cells work as major innate sentinels for the recognition of pathogens. Although adaptive immunity is crucial for viral clearance, AMs are required for the early immune response against hRSV, promoting viral clearance and controlling immunopathology. Furthermore, exposure to hRSV may affect the phagocytic and microbicidal capacity of monocytes and MΦs against other infectious agents. Finally, different studies have addressed the roles of different DC subsets during infection by hRSV. In this review article, we discuss the role of the lung MPS during hRSV infection and their involvement in the development of bronchiolitis.

  17. Respiratory mechanics

    CERN Document Server

    Wilson, Theodore A

    2016-01-01

    This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...

  18. High Throughput Microplate Respiratory Measurements Using Minimal Quantities Of Isolated Mitochondria

    Science.gov (United States)

    Rogers, George W.; Brand, Martin D.; Petrosyan, Susanna; Ashok, Deepthi; Elorza, Alvaro A.; Ferrick, David A.; Murphy, Anne N.

    2011-01-01

    Recently developed technologies have enabled multi-well measurement of O2 consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1–10 µg of mitochondrial protein per well). Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples. PMID:21799747

  19. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria.

    Directory of Open Access Journals (Sweden)

    George W Rogers

    Full Text Available Recently developed technologies have enabled multi-well measurement of O(2 consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1-10 µg of mitochondrial protein per well. Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples.

  20. Simultaneous Video-EEG-ECG Monitoring to Identify Neurocardiac Dysfunction in Mouse Models of Epilepsy.

    Science.gov (United States)

    Mishra, Vikas; Gautier, Nicole M; Glasscock, Edward

    2018-01-29

    In epilepsy, seizures can evoke cardiac rhythm disturbances such as heart rate changes, conduction blocks, asystoles, and arrhythmias, which can potentially increase risk of sudden unexpected death in epilepsy (SUDEP). Electroencephalography (EEG) and electrocardiography (ECG) are widely used clinical diagnostic tools to monitor for abnormal brain and cardiac rhythms in patients. Here, a technique to simultaneously record video, EEG, and ECG in mice to measure behavior, brain, and cardiac activities, respectively, is described. The technique described herein utilizes a tethered (i.e., wired) recording configuration in which the implanted electrode on the head of the mouse is hard-wired to the recording equipment. Compared to wireless telemetry recording systems, the tethered arrangement possesses several technical advantages such as a greater possible number of channels for recording EEG or other biopotentials; lower electrode costs; and greater frequency bandwidth (i.e., sampling rate) of recordings. The basics of this technique can also be easily modified to accommodate recording other biosignals, such as electromyography (EMG) or plethysmography for assessment of muscle and respiratory activity, respectively. In addition to describing how to perform the EEG-ECG recordings, we also detail methods to quantify the resulting data for seizures, EEG spectral power, cardiac function, and heart rate variability, which we demonstrate in an example experiment using a mouse with epilepsy due to Kcna1 gene deletion. Video-EEG-ECG monitoring in mouse models of epilepsy or other neurological disease provides a powerful tool to identify dysfunction at the level of the brain, heart, or brain-heart interactions.

  1. Incremental exercise test performance with and without a respiratory ...

    African Journals Online (AJOL)

    Incremental exercise test performance with and without a respiratory gas collection system. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Industrial- type mask wear is thought to impair exercise performance through increased respiratory dead space, flow ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  2. Incidence of respiratory viruses in Peruvian children with acute respiratory infections.

    Science.gov (United States)

    del Valle Mendoza, Juana; Cornejo-Tapia, Angela; Weilg, Pablo; Verne, Eduardo; Nazario-Fuertes, Ronald; Ugarte, Claudia; del Valle, Luis J; Pumarola, Tomás

    2015-06-01

    Acute respiratory infections are responsible for high morbi-mortality in Peruvian children. However, the etiological agents are poorly identified. This study, conducted during the pandemic outbreak of H1N1 influenza in 2009, aims to determine the main etiological agents responsible for acute respiratory infections in children from Lima, Peru. Nasopharyngeal swabs collected from 717 children with acute respiratory infections between January 2009 and December 2010 were analyzed by multiplex RT-PCR for 13 respiratory viruses: influenza A, B, and C virus; parainfluenza virus (PIV) 1, 2, 3, and 4; and human respiratory syncytial virus (RSV) A and B, among others. Samples were also tested with direct fluorescent-antibodies (DFA) for six respiratory viruses. RT-PCR and DFA detected respiratory viruses in 240 (33.5%) and 85 (11.9%) cases, respectively. The most common etiological agents were RSV-A (15.3%), followed by influenza A (4.6%), PIV-1 (3.6%), and PIV-2 (1.8%). The viruses identified by DFA corresponded to RSV (5.9%) and influenza A (1.8%). Therefore, respiratory syncytial viruses (RSV) were found to be the most common etiology of acute respiratory infections. The authors suggest that active surveillance be conducted to identify the causative agents and improve clinical management, especially in the context of possible circulation of pandemic viruses. © 2015 Wiley Periodicals, Inc.

  3. Didactic tools for understanding respiratory physiology

    International Nuclear Information System (INIS)

    Kehoe, P Donnelly; Bratovich, C; Perrone, Ms; Castells, L Mendez

    2007-01-01

    The challenges in Bioengineering are not only the application of engineering knowledge to the measurement of physiological variables, but also the simulation of biological systems. Experience has shown that the physiology of the respiratory system involves a set of concepts that cannot be effectively taught without the help of a group of didactic tools that contribute to the measurement of characteristic specific variables and to the simulation of the system itself. This article describes a series of tools designed to optimize the teaching of the respiratory system, including the use of spirometers and software developed entirely by undergraduate Bioengineering students from Universidad Nacional de Entre Rios (UNER). The impact these resources have caused on the understanding of the topic and how each of them has facilitated the interpretation of the concepts by the students is also discussed

  4. Respiratory Home Health Care

    Science.gov (United States)

    ... Us Home > Healthy Living > Living With Lung Disease > Respiratory Home Health Care Font: Aerosol Delivery Oxygen Resources ... Teenagers Living With Lung Disease Articles written by Respiratory Experts Respiratory Home Health Care Respiratory care at ...

  5. Optimization of a retrospective technique for respiratory-gated high speed micro-CT of free-breathing rodents

    International Nuclear Information System (INIS)

    Ford, Nancy L; Wheatley, Andrew R; Holdsworth, David W; Drangova, Maria

    2007-01-01

    The objective of this study was to develop a technique for dynamic respiratory imaging using retrospectively gated high-speed micro-CT imaging of free-breathing mice. Free-breathing C57Bl6 mice were scanned using a dynamic micro-CT scanner, comprising a flat-panel detector mounted on a slip-ring gantry. Projection images were acquired over ten complete gantry rotations in 50 s, while monitoring the respiratory motion in synchrony with projection-image acquisition. Projection images belonging to a selected respiratory phase were retrospectively identified and used for 3D reconstruction. The effect of using fewer gantry rotations-which influences both image quality and the ability to quantify respiratory function-was evaluated. Images reconstructed using unique projections from six or more gantry rotations produced acceptable images for quantitative analysis of lung volume, CT density, functional residual capacity and tidal volume. The functional residual capacity (0.15 ± 0.03 mL) and tidal volumes (0.08 ± 0.03 mL) measured in this study agree with previously reported measurements made using prospectively gated micro-CT and at higher resolution (150 μm versus 90 μm voxel spacing). Retrospectively gated micro-CT imaging of free-breathing mice enables quantitative dynamic measurement of morphological and functional parameters in the mouse models of respiratory disease, with scan times as short as 30 s, based on the acquisition of projection images over six gantry rotations

  6. Optimization of a retrospective technique for respiratory-gated high speed micro-CT of free-breathing rodents

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Nancy L [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Wheatley, Andrew R [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada); Holdsworth, David W [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada); Drangova, Maria [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada)

    2007-09-21

    The objective of this study was to develop a technique for dynamic respiratory imaging using retrospectively gated high-speed micro-CT imaging of free-breathing mice. Free-breathing C57Bl6 mice were scanned using a dynamic micro-CT scanner, comprising a flat-panel detector mounted on a slip-ring gantry. Projection images were acquired over ten complete gantry rotations in 50 s, while monitoring the respiratory motion in synchrony with projection-image acquisition. Projection images belonging to a selected respiratory phase were retrospectively identified and used for 3D reconstruction. The effect of using fewer gantry rotations-which influences both image quality and the ability to quantify respiratory function-was evaluated. Images reconstructed using unique projections from six or more gantry rotations produced acceptable images for quantitative analysis of lung volume, CT density, functional residual capacity and tidal volume. The functional residual capacity (0.15 {+-} 0.03 mL) and tidal volumes (0.08 {+-} 0.03 mL) measured in this study agree with previously reported measurements made using prospectively gated micro-CT and at higher resolution (150 {mu}m versus 90 {mu}m voxel spacing). Retrospectively gated micro-CT imaging of free-breathing mice enables quantitative dynamic measurement of morphological and functional parameters in the mouse models of respiratory disease, with scan times as short as 30 s, based on the acquisition of projection images over six gantry rotations.

  7. Respiratory disorders in patients with polymyositis/dermatomyositis

    Directory of Open Access Journals (Sweden)

    Olga Alekseyevna Antelava

    2014-01-01

    Full Text Available Idiopathic inflammatory myopathies (IIM are rare disorders characterized by inflammatory lesions in skeletal muscles. These diseases include polymyositis (PM, dermatomyositis (DM, and inclusion body myositis, which exhibit clinicoimmunological heterogeneity and give different response to therapy. The most frequent manifestation in PM/DM patients is respiratory system dysfunction. The developing respiratory disorders are varied and may outpace the presentation of muscle pathology.

  8. Influence of chemoreflexes on respiratory variability in healthy subjects

    NARCIS (Netherlands)

    van den Aardweg, Joost G.; Karemaker, John M.

    2002-01-01

    The background of this study was the hypothesis that respiratory variability is influenced by chemoreflex regulation, In search for periodicities in the variability due to instability of the respiratory control system, spectral analysis was applied to breath-to-breath variables in 19 healthy

  9. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    Science.gov (United States)

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  10. Human immune system mouse models of Ebola virus infection.

    Science.gov (United States)

    Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F

    2017-08-01

    Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.

  11. Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Champagnat, J; Denavit-Saubié, M

    1996-01-01

    neurons located in the rostral ventrolateral part of the slice. 2. Bath-applied TRH (1 microM) decreased the time between inspiratory discharges recorded on the XII nerve from 12.3 +/- 3.3 s to 4.9 +/- 1.1 s (n = 28; means +/- SD), i.e., caused an approximate threefold increase in the respiratory...... frequency. The coefficient of variation of the time between the inspiratory discharges decreased by one-half. Thus the respiratory output became more stable in response to TRH. The duration of the inspiratory discharges increased from 474 +/- 108 ms to 679 +/- 114 ms, and the amplitude decreased by 24...... in a thick brain stem slice preparation from the newborn mouse. The action of TRH on the respiratory output from the slice was investigated by recordings from the XII nerve. Cellular responses to TRH were investigated using whole cell recordings from hypoglossal motoneurons and three types of inspiratory...

  12. Mechanism and Clinical Importance of Respiratory Failure Induced by Anticholinesterases

    Directory of Open Access Journals (Sweden)

    Ivosevic Anita

    2017-12-01

    Full Text Available Respiratory failure is the predominant cause of death in humans and animals poisoned with anticholinesterases. Organophosphorus and carbamate anticholinesterases inhibit acetylcholinesterase irreversibly and reversibly, respectively. Some of them contain a quaternary atom that makes them lipophobic, limiting their action at the periphery, i.e. outside the central nervous system. They impair respiratory function primarily by inducing a desensitization block of nicotinic receptors in the neuromuscular synapse. Lipophilic anticholinesterases inhibit the acetylcholinesterase both in the brain and in other tissues, including respiratory muscles. Their doses needed for cessation of central respiratory drive are significantly less than doses needed for paralysis of the neuromuscular transmission. Antagonist of muscarinic receptors atropine blocks both the central and peripheral muscarinic receptors and effectively antagonizes the central respiratory depression produced by anticholinesterases. To manage the peripheral nicotinic receptor hyperstimulation phenomena, oximes as acetylcholinesterase reactivators are used. Addition of diazepam is useful for treatment of seizures, since they are cholinergic only in their initial phase and can contribute to the occurrence of central respiratory depression. Possible involvement of central nicotinic receptors as well as the other neurotransmitter systems – glutamatergic, opioidergic – necessitates further research of additional antidotes.

  13. Retrospective data-driven respiratory gating for PET/CT

    International Nuclear Information System (INIS)

    Schleyer, Paul J; O'Doherty, Michael J; Barrington, Sally F; Marsden, Paul K

    2009-01-01

    Respiratory motion can adversely affect both PET and CT acquisitions. Respiratory gating allows an acquisition to be divided into a series of motion-reduced bins according to the respiratory signal, which is typically hardware acquired. In order that the effects of motion can potentially be corrected for, we have developed a novel, automatic, data-driven gating method which retrospectively derives the respiratory signal from the acquired PET and CT data. PET data are acquired in listmode and analysed in sinogram space, and CT data are acquired in cine mode and analysed in image space. Spectral analysis is used to identify regions within the CT and PET data which are subject to respiratory motion, and the variation of counts within these regions is used to estimate the respiratory signal. Amplitude binning is then used to create motion-reduced PET and CT frames. The method was demonstrated with four patient datasets acquired on a 4-slice PET/CT system. To assess the accuracy of the data-derived respiratory signal, a hardware-based signal was acquired for comparison. Data-driven gating was successfully performed on PET and CT datasets for all four patients. Gated images demonstrated respiratory motion throughout the bin sequences for all PET and CT series, and image analysis and direct comparison of the traces derived from the data-driven method with the hardware-acquired traces indicated accurate recovery of the respiratory signal.

  14. The effect of environmental pollution on the respiratory system of lignite miners: a diachronic study.

    Science.gov (United States)

    Sichletidis, L; Tsiotsios, I; Chloros, D; Daskalopoulou, E; Ziomas, I; Michailidis, K; Kottakis, I; Konstantinidis, T H; Palladas, P

    2004-01-01

    It is not known whether working in surface lignite mines can cause x-ray lesions or disorders of respiratory function. The aim of the study was to investigate the diachronic impact of environmental pollution on the respiratory system of lignite miners at mines in Eordea, Greece. Cases of 199 workers (Group A) residing permanently in the Eordea valley and 151 (Group B) living outside the Eordea valley were studied during Phase I and then re-examined after three years (Phase II). These cases were compared to those of 71 office workers living in Eordea valley (Group C) and to 96 living in Grevena, a region without pollution (Group D). The study included the completion of the MRC questionnaire for the detection of respiratory diseases, pulmonary function tests, measurement of diffusion capacity, otorhinolaryngologic examination, rhinomanonetry as well as chest and paranasal cavity X-rays. Chronic bronchitis was reported by 26.8%, 24.8%, 17.9% and 10.6% respectively of the subjects of groups A, B, C and D according to the answers of the questionnaire (pmines under conditions of excessive pollution by airborne contaminants have a high prevalence of atrophic rhinitis and, in addition to other standard examinations, should undergo rhinomanometry testing and X-ray imaging of the paranasal cavities.

  15. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Science.gov (United States)

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  16. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Steve P. Crampton

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.

  17. Critical Thinking in Respiratory Therapy Students: Comparing Baccalaureate and Associate Degree Students

    Science.gov (United States)

    Clark, Myava C.

    2012-01-01

    Respiratory care is an allied health discipline that specializes in cardiopulmonary function and health. Respiratory therapists apply scientific principles to prevent, identify, and treat acute and chronic dysfunction of the cardiopulmonary system. Respiratory care specifically focuses on the assessment, treatment, management, control, diagnostic…

  18. [The changes of physiological reactivity of cardiorespiratory system to respiratory homeostasis with the use of complex stimulation of special work capacity].

    Science.gov (United States)

    Lysenko, O M

    2012-01-01

    We present the influence of the program of special additional stimulation of work capacity of high-performance athletes on the sensitivity of cardiorespiratory system to hypercapnic and hypoxic shifts in respiratory homeostasis. We found that under the influence of the pre-start complex a decrease in the sensitivity of ventilator responses to CO2-H+ stimuli in combination with a reduction in the thresholds of the reaction take place. This creates conditions for increased mobilization properties of the cardiorespiratory system and economization of its reaction under conditions of changes of respiratory homeostasis characteristic of intense training and competitive loads in the sport.

  19. Pointright: a system to redirect mouse and keyboard control among multiple machines

    Science.gov (United States)

    Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  20. Respiratory Failure

    Science.gov (United States)

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  1. Predictive Factors of Respiratory Failure in Children with Guillain-Barre Syndrome

    Directory of Open Access Journals (Sweden)

    Nemat Bilan

    2015-03-01

    Full Text Available Introduction:Guillain-Barre Syndrome(GBS is the most common cause of acute flaccid paralysis. Respiratory failure is the most serious short-term complication of GBS and invasive mechanical ventilation is required in 30% of patients.moreover,60% of those who are intubated develop major complications including pnemonia,sepsis,GI bleeding and pulmonary embolism. Thus respiratory failure prediction is crucial. the aim of this study was to determine clinical predictors of respiratory failure to avoid respiratory distress and aspiration.Methods and materials: in a cross sectional and analytical study 140 patients with clinically diagnosis of Guillain-Barre Syndrome were enrolled in study,from october 2008 to october 2014. .demographic data,nerologic examination,cranial nerve and autonomic nervous system involvement, and respiratory failure were recorded prospectively.Results:15 out of 140 patients(10,7% developed respiratory failure and underwent mechanical ventilation.the male/female ratio in patients with respiratory failure and patients without respiratory involvement were (53%/(47% and (54%/(46% respectively(p-value:0.4.the mean age in these two groups were 2,7±1,9 and 5,5±3,2(p-value:0,003.cranial nerve involvement (7,9,10 was recorded in patients with respiratory failure and without respiratory failure54% and25% respectively (p-value:0,03.absent upper limb deep tendon reflexes in these two groups were 70% and 44% respectively.(p-value:0,03 and autonomic nervous system involvement 24% vs. 14%(p-value:0,3.conclusion : our study suggests that younger age , cranial nerve involvement and absent upper limb deep tendon reflexes are predictive factors of respiratory failure in patients with Guillain-Barre Syndrome(GBS.

  2. Dotriacontane-16,17-14C distribution pattern in the respiratory system of two hamster species after passive exposure to radioactive labelled smoke

    International Nuclear Information System (INIS)

    Kmoch, N.; Mohr, U.

    1974-01-01

    The quantitative and qualitative distribution of 14 C labeled dotriacontane (DOT- 14 C) determined by liquid scintillation counting and autoradiography in the respiratory system, the digestive tract, liver and kidneys of Syrian golden and European hamsters, males and females, is described after they had been exposed to radioactive labeled cigarette smoke. The different DOT- 14 C distributions are discussed in detail with special attention given to the respiratory tract, related species differences and the topographic subdivisions of apex nasi, fundus nasi, pharynx, larynx, trachea, and lungs. It is apparent that the absolute amount of activity in the respiratory tract related to body size of the Syrian golden hamster is greater than in the European hamster but that the percentual distribution exhibits a greater filtering action of the upper respiratory tract of Syrian golden hamster than of the European hamster so that a larger percentual amount of total inhaled particulate matter reaches the lungs. The European hamster might be a more useful model for the investigation of respiratory tract carcinogenesis due to the possibility of a longer life time exposure and a higher sensitivity to respiratory tract carcinogens

  3. Respiratory variability preceding and following sighs: a resetter hypothesis.

    Science.gov (United States)

    Vlemincx, Elke; Van Diest, Ilse; Lehrer, Paul M; Aubert, André E; Van den Bergh, Omer

    2010-04-01

    Respiratory behavior is characterized by complex variability with structured and random components. Assuming that both a lack of variability and too much randomness represent suboptimal breathing regulation, we hypothesized that sighing acts as a resetter inducing structured variability. Spontaneous breathing was measured in healthy persons (N=42) during a 20min period of quiet sitting using the LifeShirt(®) System. Four blocks of 10 breaths with a 50% window overlap were determined before and after spontaneous sighs. Total respiratory variability of minute ventilation was measured using the coefficient of variation and structured (correlated) variability was quantified using autocorrelation. Towards a sigh, total variability gradually increased without concomittant changes in correlated variability, suggesting that randomness increased. After a sigh, correlated variability increased. No changes in variability were found in comparable epochs without intermediate sighs. We conclude that a sigh resets structured respiratory variability, enhancing information processing in the respiratory system. Copyright © 2009 Elsevier B.V. All rights reserved.

  4. Extracorporeal respiratory support in adult patients

    Directory of Open Access Journals (Sweden)

    Thiago Gomes Romano

    Full Text Available ABSTRACT In patients with severe respiratory failure, either hypoxemic or hypercapnic, life support with mechanical ventilation alone can be insufficient to meet their needs, especially if one tries to avoid ventilator settings that can cause injury to the lungs. In those patients, extracorporeal membrane oxygenation (ECMO, which is also very effective in removing carbon dioxide from the blood, can provide life support, allowing the application of protective lung ventilation. In this review article, we aim to explore some of the most relevant aspects of using ECMO for respiratory support. We discuss the history of respiratory support using ECMO in adults, as well as the clinical evidence; costs; indications; installation of the equipment; ventilator settings; daily care of the patient and the system; common troubleshooting; weaning; and discontinuation.

  5. Development of patient-controlled respiratory gating system based on visual guidance for magnetic-resonance image-guided radiation therapy.

    Science.gov (United States)

    Kim, Jung-In; Lee, Hanyoung; Wu, Hong-Gyun; Chie, Eui Kyu; Kang, Hyun-Cheol; Park, Jong Min

    2017-09-01

    The aim of this study is to develop a visual guidance patient-controlled (VG-PC) respiratory gating system for respiratory-gated magnetic-resonance image-guided radiation therapy (MR-IGRT) and to evaluate the performance of the developed system. The near-real-time cine planar MR image of a patient acquired during treatment was transmitted to a beam projector in the treatment room through an optical fiber cable. The beam projector projected the cine MR images inside the bore of the ViewRay system in order to be visible to a patient during treatment. With this visual information, patients voluntarily controlled their respiration to put the target volume into the gating boundary (gating window). The effect of the presence of the beam projector in the treatment room on the image quality of the MRI was investigated by evaluating the signal-to-noise ratio (SNR), uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity with the VG-PC gating system. To evaluate the performance of the developed system, we applied the VG-PC gating system to a total of seven patients; six patients received stereotactic ablative radiotherapy (SABR) and one patient received conventional fractionated radiation therapy. The projected cine MR images were visible even when the room light was on. No image data loss or additional time delay during delivery of image data were observed. Every indicator representing MRI quality, including SNR, uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity exhibited values higher than the tolerance levels of the manufacturer with the VG-PC gating system; therefore, the presence of the VG-PC gating system in the treatment room did not degrade the MR image quality. The average beam-off times due to respiratory gating with and without the VG-PC gating system were 830.3 ± 278.2 s and 1264.2 ± 302.1 s respectively (P = 0.005). Consequently, the total treatment times excluding

  6. Respiratory Viruses in Febrile Neutropenic Patients with Respiratory Symptoms

    Directory of Open Access Journals (Sweden)

    Mohsen Meidani

    2018-01-01

    Full Text Available Background: Respiratory infections are a frequent cause of fever in neutropenic patients, whereas respiratory viral infections are not frequently considered as a diagnosis, which causes high morbidity and mortality in these patients. Materials and Methods: This prospective study was performed on 36 patients with neutropenia who admitted to hospital were eligible for inclusion with fever (single temperature of >38.3°C or a sustained temperature of >38°C for more than 1 h, upper and lower respiratory symptoms. Sampling was performed from the throat of the patient by the sterile swab. All materials were analyzed by quantitative real-time multiplex polymerase chain reaction covering the following viruses; influenza, parainfluenza virus (PIV, rhinovirus (RV, human metapneumovirus, and respiratory syncytial virus (RSV. Results: RV was the most frequently detected virus and then RSV was the most. PIV was not present in any of the tested samples. Furthermore, no substantial differences in the distribution of specific viral species were observed based on age, sex, neutropenia duration, hematological disorder, and respiratory tract symptoms and signs (P > 0.05. Conclusion: Our prospective study supports the hypothesis that respiratory viruses play an important role in the development of neutropenic fever, and thus has the potential to individualize infection treatment and to reduce the extensive use of antibiotics in immunocompromised patients with neutropenia.

  7. Respiratory Management in the Patient with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Rita Galeiras Vázquez

    2013-01-01

    Full Text Available Spinal cord injuries (SCIs often lead to impairment of the respiratory system and, consequently, restrictive respiratory changes. Paresis or paralysis of the respiratory muscles can lead to respiratory insufficiency, which is dependent on the level and completeness of the injury. Respiratory complications include hypoventilation, a reduction in surfactant production, mucus plugging, atelectasis, and pneumonia. Vital capacity (VC is an indicator of overall pulmonary function; patients with severely impaired VC may require assisted ventilation. It is best to proceed with intubation under controlled circumstances rather than waiting until the condition becomes an emergency. Mechanical ventilation can adversely affect the structure and function of the diaphragm. Early tracheostomy following short orotracheal intubation is probably beneficial in selected patients. Weaning should start as soon as possible, and the best modality is progressive ventilator-free breathing (PVFB. Appropriate candidates can sometimes be freed from mechanical ventilation by electrical stimulation. Respiratory muscle training regimens may improve patients’ inspiratory function following a SCI.

  8. Increased airway reactivity in a neonatal mouse model of Continuous Positive Airway Pressure (CPAP)

    OpenAIRE

    Mayer, Catherine A.; Martin, Richard J.; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure (CPAP) is a primary form of respiratory support used in the intensive care of preterm infants, but its long-term effects on airway (AW) function are unknown. Methods We developed a neonatal mouse model of CPAP treatment to determine whether it modifies later AW reactivity. Un-anesthetized spontaneously breathing mice were fitted with a mask to deliver CPAP (6cmH2O, 3hrs/day) for 7 consecutive days starting at postnatal day 1. Airway reactivity to...

  9. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse.

    Science.gov (United States)

    Law, MeiYee; Shaw, David R

    2018-01-01

    Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.

  10. Middle East Respiratory Syndrome

    Centers for Disease Control (CDC) Podcasts

    2014-07-07

    This podcast discusses Middle East Respiratory Syndrome, or MERS, a viral respiratory illness caused by Middle East Respiratory Syndrome Coronavirus—MERS-CoV.  Created: 7/7/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 7/7/2014.

  11. Response localization of the pharmacological agents histamine and salbutamol along the respiratory system by forced oscillations in asthmatic subjects.

    Science.gov (United States)

    Wouters, E F; Polko, A H; Visser, B F

    1989-01-01

    The bronchodilating effect of 1 mg and 0.4 mg salbutamol on the impedance of the respiratory system was studied in 25 asthmatic subjects after histamine-induced bronchoconstriction. Histamine caused an increase of respiratory resistance (Rrs) at lower frequencies and a frequency dependence of Rrs. Respiratory reactance (Xrs) decreased at all frequencies after histamine challenge. These changes can be explained by peripheral airway obstruction. Impedance measurements performed 5 min after inhalation of 1 mg and 0.4 mg salbutamol showed a decrease of Rrs values at lower frequencies, a disappearance of the frequency dependence of Rrs, and a significant increase of Xrs values. No significant differences in absolute changes of Rrs and Xrs are observed between the salbutamol regimens. These changes after inhalation of salbutamol can be explained by supposing a predominant action on the peripheral airways.

  12. Respiratory Monitoring by Porphyrin Modified Quartz Crystal Microbalance Sensors

    Directory of Open Access Journals (Sweden)

    Seung-Woo Lee

    2011-01-01

    Full Text Available A respiratory monitoring system based on a quartz crystal microbalance (QCM sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl-21H,23H-porphine (TSPP and 5,10,15,20-tetrakis-(4-sulfophenyl-21H, 23H-porphine manganese (III chloride (MnTSPP used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride (PDDA. Films were deposited on the QCM resonators using layer-by-layer method in order to develop the sensor. The developed system, in which the sensor response reflects lung movements, was able to track human respiration providing respiratory rate (RR and respiratory pattern (RP. The sensor system was tested on healthy volunteers to compare RPs and calculate RRs. The operation principle of the proposed system is based on the fast adsorption/desorption behavior of water originated from human breath into the sensor films deposited on the QCM electrode.

  13. Synchrony - Cyberknife Respiratory Compensation Technology

    International Nuclear Information System (INIS)

    Ozhasoglu, Cihat; Saw, Cheng B.; Chen Hungcheng; Burton, Steven; Komanduri, Krishna; Yue, Ning J.; Huq, Saiful M.; Heron, Dwight E.

    2008-01-01

    Studies of organs in the thorax and abdomen have shown that these organs can move as much as 40 mm due to respiratory motion. Without compensation for this motion during the course of external beam radiation therapy, the dose coverage to target may be compromised. On the other hand, if compensation of this motion is by expansion of the margin around the target, a significant volume of normal tissue may be unnecessarily irradiated. In hypofractionated regimens, the issue of respiratory compensation becomes an important factor and is critical in single-fraction extracranial radiosurgery applications. CyberKnife is an image-guided radiosurgery system that consists of a 6-MV LINAC mounted to a robotic arm coupled through a control loop to a digital diagnostic x-ray imaging system. The robotic arm can point the beam anywhere in space with 6 degrees of freedom, without being constrained to a conventional isocenter. The CyberKnife has been recently upgraded with a real-time respiratory tracking and compensation system called Synchrony. Using external markers in conjunction with diagnostic x-ray images, Synchrony helps guide the robotic arm to move the radiation beam in real time such that the beam always remains aligned with the target. With the aid of Synchrony, the tumor motion can be tracked in three-dimensional space, and the motion-induced dosimetric change to target can be minimized with a limited margin. The working principles, advantages, limitations, and our clinical experience with this new technology will be discussed

  14. Estimate of the real-time respiratory simulation system in cyberknife image-guided radiosurgery

    International Nuclear Information System (INIS)

    Min, Chul Kee; Chung, Weon Kuu; Lee, Suk

    2010-01-01

    The purpose of this study was to evaluate the target accuracy according to the movement with respiration of an actual patient in a quantitative way by developing a real-time respiratory simulation system (RRSS), including a patient customized 3D moving phantom. The real-time respiratory simulation system (RRSS) consists of two robots in order to implement both the movement of body surfaces and the movement of internal organs caused by respiration. The quantitative evaluation for the 3D movement of the RRSS was performed using a real-time laser displacement sensor for each axis. The average difference in the static movement of the RRSS was about 0.01 ∼ 0.06 mm. Also, in the evaluation of the dynamic movement by producing a formalized sine wave with the phase of four seconds per cycle, the difference between the measured and the calculated values for each cycle length in the robot that was in charge of body surfaces and the robot that was in charge of the movement of internal tumors showed 0.10 ∼ 0.55 seconds, and the correlation coefficients between the calculated and the measured values were 0.998 ∼ 0.999. The differences between the maximum and the minimum amplitudes were 0.01 ∼ 0.06 mm, and the reproducibility was within ±0.5 mm. In the case of the application and non-application of respiration, the target errors were -0.05 ∼ 1.05 mm and -0.13 ∼ 0.74 mm, respectively, and the entire target errors were 1.30 mm and 0.79 mm, respectively. Based on the accuracy in the RRSS system, various respiration patterns of patients can be reproduced in real-time. Also, this system can be used as an optimal tool for applying patient customized accuracy management in image-guided radiosurgery.

  15. Estimate of the real-time respiratory simulation system in cyberknife image-guided radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Min, Chul Kee [Konyang Univ. Hospital, Daejeon (Korea, Republic of); Kyonggi University, Seoul (Korea, Republic of); Chung, Weon Kuu [Konyang Univ. Hospital, Daejeon (Korea, Republic of); Lee, Suk [Korea University, Seoul (Korea, Republic of); and others

    2010-01-15

    The purpose of this study was to evaluate the target accuracy according to the movement with respiration of an actual patient in a quantitative way by developing a real-time respiratory simulation system (RRSS), including a patient customized 3D moving phantom. The real-time respiratory simulation system (RRSS) consists of two robots in order to implement both the movement of body surfaces and the movement of internal organs caused by respiration. The quantitative evaluation for the 3D movement of the RRSS was performed using a real-time laser displacement sensor for each axis. The average difference in the static movement of the RRSS was about 0.01 {approx} 0.06 mm. Also, in the evaluation of the dynamic movement by producing a formalized sine wave with the phase of four seconds per cycle, the difference between the measured and the calculated values for each cycle length in the robot that was in charge of body surfaces and the robot that was in charge of the movement of internal tumors showed 0.10 {approx} 0.55 seconds, and the correlation coefficients between the calculated and the measured values were 0.998 {approx} 0.999. The differences between the maximum and the minimum amplitudes were 0.01 {approx} 0.06 mm, and the reproducibility was within {+-}0.5 mm. In the case of the application and non-application of respiration, the target errors were -0.05 {approx} 1.05 mm and -0.13 {approx} 0.74 mm, respectively, and the entire target errors were 1.30 mm and 0.79 mm, respectively. Based on the accuracy in the RRSS system, various respiration patterns of patients can be reproduced in real-time. Also, this system can be used as an optimal tool for applying patient customized accuracy management in image-guided radiosurgery.

  16. Protective roles of free avian respiratory macrophages in captive birds

    Directory of Open Access Journals (Sweden)

    Mbuvi P. Mutua

    Full Text Available In the mammalian lung, respiratory macrophages provide front line defense against invading pathogens and particulate matter. In birds, respiratory macrophages are known as free avian respiratory macrophages (FARM and a dearth of the cells in the avian lung has been purported to foreordain a weak first line of pulmonary defense, a condition associated with high mortality of domestic birds occasioned by respiratory inflictions. Avian pulmonary mechanisms including a three tiered aerodynamic filtration system, tight epithelial junctions and an efficient mucociliary escalator system have been known to supplement FARM protective roles. Current studies, however, report FARM to exhibit an exceptionally efficient phagocytic capacity and are effective in elimination of invading pathogens. In this review, we also report on effects of selective synthetic peroxisome proliferator activated receptor gamma (PPAR γ agonists on non phlogistic phagocytic properties in the FARM. To develop effective therapeutic interventions targeting FARM in treatment and management of respiratory disease conditions in the poultry, further studies are required to fully understand the role of FARM in innate and adaptive immune responses.

  17. SU-E-J-48: Development of An Abdominal Compression Device for Respiratory Correlated Radiation Therapy

    International Nuclear Information System (INIS)

    Kim, T; Kang, S; Kim, D; Suh, T; Kim, S

    2014-01-01

    Purpose: The aim of this study is to develop the abdominal compression device which could control pressure level according to the abdominal respiratory motion and evaluate its feasibility. Methods: In this study, we focused on developing the abdominal compression device which could control pressure level at any point of time so the developed device is possible to use a variety of purpose (gating technique or respiratory training system) while maintaining the merit of the existing commercial device. The compression device (air pad form) was designed to be able to compress the front and side of abdomen and the pressure level of the abdomen is controlled by air flow. Pressure level of abdomen (air flow) was determined using correlation data between external abdominal motion and respiratory volume signal measured by spirometer. In order to verify the feasibility of the device, it was necessary to confirm the correlation between the abdominal respiratory motion and respiratory volume signal and cooperation with respiratory training system also checked. Results: In the previous study, we could find that the correlation coefficient ratio between diaphragm and respiratory volume signal measured by spirometer was 0.95. In this study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion measured by belt-transducer (correlation coefficient ratio was 0.92) and used the correlated respiratory volume data as an abdominal pressure level. It was possible to control the pressure level with negligible time delay and respiratory volume data based guiding waveforms could be properly inserted into the respiratory training system. Conclusion: Through this feasibility study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion. Also initial assessment of the device and its compatibility with the respiratory training system were verified. Further study on application in respiratory gated

  18. Obesity and common respiratory diseases in children.

    Science.gov (United States)

    Xanthopoulos, Melissa; Tapia, Ignacio E

    2017-06-01

    Obesity has become an important public health problem worldwide that disproportionally affects the underserved. Obesity has been associated with many diseases and unfortunately has not spared the respiratory system. Specifically, the prevalence of common respiratory problems, such as asthma and obstructive sleep apnoea, is higher in obese children. Further, the treatment outcomes of these frequent conditions is also worse in obese children compared to lean controls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Human herpesviruses respiratory infections in patients with acute respiratory distress (ARDS).

    Science.gov (United States)

    Bonizzoli, Manuela; Arvia, Rosaria; di Valvasone, Simona; Liotta, Francesco; Zakrzewska, Krystyna; Azzi, Alberta; Peris, Adriano

    2016-08-01

    Acute respiratory distress syndrome (ARDS) is today a leading cause of hospitalization in intensive care unit (ICU). ARDS and pneumonia are closely related to critically ill patients; however, the etiologic agent is not always identified. The presence of human herpes simplex virus 1, human cytomegalovirus and Epstein-Barr virus in respiratory samples of critically ill patients is increasingly reported even without canonical immunosuppression. The main aim of this study was to better understand the significance of herpesviruses finding in lower respiratory tract of ARDS patients hospitalized in ICU. The presence of this group of herpesviruses, in addition to the research of influenza viruses and other common respiratory viruses, was investigated in respiratory samples from 54 patients hospitalized in ICU, without a known microbiological causative agent. Moreover, the immunophenotype of each patient was analyzed. Herpesviruses DNA presence in the lower respiratory tract seemed not attributable to an impaired immunophenotype, whereas a significant correlation was observed between herpesviruses positivity and influenza virus infection. A higher ICU mortality was significantly related to the presence of herpesvirus infection in the lower respiratory tract as well as to impaired immunophenotype, as patients with poor outcome showed severe lymphopenia, affecting in particular T (CD3+) cells, since the first days of ICU hospitalization. In conclusion, these results indicate that herpesviruses lower respiratory tract infection, which occurs more frequently following influenza virus infection, can be a negative prognostic marker. An independent risk factor for ICU patients with ARDS is an impaired immunophenotype.

  20. The impact of the environmental and socio-economic factors to the occurrence of symptoms and diseases of the respiratory system in school children from Sosnowiec

    Directory of Open Access Journals (Sweden)

    Magda Skiba

    2012-12-01

    Full Text Available Background: Objective of the study was to assess the impact of environmental and socio-economic factors to the occurrence of symptoms and diseases of the respiratory system in school children from Sosnowiec, based on the questionnaire data. Materials and methods: The crosssectional epidemiological questionnaire study was performed in the years 2005–2006. Parents of 709 primary school children aged 7–12 years took part in the study. Questionnaire was completed by parents to collect information on children health status, particularly respiratory symptoms, chronic diseases of respiratory system, allergic diseases, use of medical services, children dietary habits and family socio-economic status. Results: In the study group the statistical significance was found for the incidence of respiratory symptoms in children and housing conditions, i.e.: the number of people sleeping together with a child in the same room and dampness in the dwelling. Results of the study showed, that incidence of whizzing differed statistically significantly in the groups of different professional status of the parents. It is difficult to estimate if this is only the influence of socio-economic conditions or any other environmental factors as well. Conclusions: Results of the study demonstrated statistical significance between the status of respiratory system in children and housing occupancy rate (the number of people sleeping together with a child in the same room and dampness in the dwelling. Relation between respiratory symptoms in children, parents education and professional status was analyzed, but findings of the conducted studies do not give explicit evidence of such a relation.

  1. Prospective respiratory-gated micro-CT of free breathing rodents

    International Nuclear Information System (INIS)

    Ford, Nancy L.; Nikolov, Hristo N.; Norley, Chris J.D.; Thornton, Michael M.; Foster, Paula J.; Drangova, Maria; Holdsworth, David W.

    2005-01-01

    Microcomputed tomography (Micro-CT) has the potential to noninvasively image the structure of organs in rodent models with high spatial resolution and relatively short image acquisition times. However, motion artifacts associated with the normal respiratory motion of the animal may arise when imaging the abdomen or thorax. To reduce these artifacts and the accompanying loss of spatial resolution, we propose a prospective respiratory gating technique for use with anaesthetized, free-breathing rodents. A custom-made bed with an embedded pressure chamber was connected to a pressure transducer. Anaesthetized animals were placed in the prone position on the bed with their abdomens located over the chamber. During inspiration, the motion of the diaphragm caused an increase in the chamber pressure, which was converted into a voltage signal by the transducer. An output voltage was used to trigger image acquisition at any desired time point in the respiratory cycle. Digital radiographic images were acquired of anaesthetized, free-breathing rats with a digital radiographic system to correlate the respiratory wave form with respiration-induced organ motion. The respiratory wave form was monitored and recorded simultaneously with the x-ray radiation pulses, and an imaging window was defined, beginning at end expiration. Phantom experiments were performed to verify that the respiratory gating apparatus was triggering the micro-CT system. Attached to the distensible phantom were 100 μm diameter copper wires and the measured full width at half maximum was used to assess differences in image quality between respiratory-gated and ungated imaging protocols. This experiment allowed us to quantify the improvement in the spatial resolution, and the reduction of motion artifacts caused by moving structures, in the images resulting from respiratory-gated image acquisitions. The measured wire diameters were 0.135 mm for the stationary phantom image, 0.137 mm for the image gated at end

  2. Consecutive Food and Respiratory Allergies Amplify Systemic and Gut but Not Lung Outcomes in Mice.

    Science.gov (United States)

    Bouchaud, Gregory; Gourbeyre, Paxcal; Bihouée, Tiphaine; Aubert, Phillippe; Lair, David; Cheminant, Marie-Aude; Denery-Papini, Sandra; Neunlist, Michel; Magnan, Antoine; Bodinier, Marie

    2015-07-22

    Epidemiological data suggest a link between food allergies and the subsequent development of asthma. Although this progression may result from the additional effects of exposure to multiple allergens, whether both allergies amplify each other's effects remains unknown. This study investigated whether oral exposure to food allergens influences the outcomes of subsequent respiratory exposure to an asthma-inducing allergen. Mice were sensitized and orally challenged with wheat (FA) and then exposed to house dust mite (HDM) extract (RA). Immunoglobulin (Ig), histamine, and cytokine levels were assayed by ELISA. Intestinal and lung physiology was assessed. Ig levels, histamine release, and cytokine secretion were higher after exposure to both allergens than after separate exposure to each. Intestinal permeability was higher, although airway hyper-responsiveness and lung inflammation remained unchanged. Exposure to food and respiratory allergens amplifies systemic and gut allergy-related immune responses without any additional effect on lung function and inflammation.

  3. Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Chae, Chanhee

    2016-06-01

    Porcine respiratory disease is a multifactorial and complex disease caused by a combination of infectious pathogens, environmental stressors, differences in production systems, and various management practices; hence the name porcine respiratory disease complex (PRDC) is used. Porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneumoniae are considered to be the most important pathogens that cause PRDC. Although interactions among the three major respiratory pathogens are well documented, it is also necessary to understand the interaction between vaccines and the three major respiratory pathogens. PRRSV and M. hyopneumoniae are well known to potentiate PCV2-associated lesions; however, PRRSV and mycoplasmal vaccines can both enhance PCV2 viraemia regardless of the effects of the actual PRRSV or M. hyopneumoniae infection. On the other hand, M. hyopneumoniae potentiates the severity of pneumonia induced by PRRSV, and vaccination against M. hyopneumoniae alone is also able to decrease PRRSV viraemia and PRRSV-induced lung lesions in dually infected pigs. This review focuses on (1) interactions between PCV2, PRRSV, and M. hyopneumoniae; and (2) interactions between vaccines and the three major respiratory pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Numerical Simulation of Hemodynamic and Physiological Responses of Human Cardiovascular and Respiratory System under Drugs Administration

    Czech Academy of Sciences Publication Activity Database

    Převorovská, Světlana; Maršík, František

    2004-01-01

    Roč. 4, č. 4 (2004), s. 295-304 ISSN 1567-8822 R&D Projects: GA ČR(CZ) GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z2076919 Keywords : human cardiovascular and respiratory system * baroreflex and chemoreflex control * physiologically based pharmacokinetic model Subject RIV: BK - Fluid Dynamics

  5. Renal acidification responses to respiratory acid-base disorders.

    Science.gov (United States)

    Madias, Nicolaos E

    2010-01-01

    Respiratory acid-base disorders are those abnormalities in acid-base equilibrium that are expressed as primary changes in the arterial carbon dioxide tension (PaCO2). An increase in PaCO2 (hypercapnia) acidifies body fluids and initiates the acid-base disturbance known as respiratory acidosis. By contrast, a decrease in PaCO2 (hypocapnia) alkalinizes body fluids and initiates the acid-base disturbance known as respiratory alkalosis. The impact on systemic acidity of these primary changes in PaCO2 is ameliorated by secondary, directional changes in plasma [HCO3¯] that occur in 2 stages. Acutely, hypercapnia or hypocapnia yields relatively small changes in plasma [HCO3¯] that originate virtually exclusively from titration of the body's nonbicarbonate buffers. During sustained hypercapnia or hypocapnia, much larger changes in plasma [HCO3¯] occur that reflect adjustments in renal acidification mechanisms. Consequently, the deviation of systemic acidity from normal is smaller in the chronic forms of these disorders. Here we provide an overview of the renal acidification responses to respiratory acid-base disorders. We also identify gaps in knowledge that require further research.

  6. The Clinical Utilisation of Respiratory Elastance Software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management.

    Science.gov (United States)

    Szlavecz, Akos; Chiew, Yeong Shiong; Redmond, Daniel; Beatson, Alex; Glassenbury, Daniel; Corbett, Simon; Major, Vincent; Pretty, Christopher; Shaw, Geoffrey M; Benyo, Balazs; Desaive, Thomas; Chase, J Geoffrey

    2014-09-30

    Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment. CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee. Using CURE Soft, patient's respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient's respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP. CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.

  7. An Automated Mouse Tail Vascular Access System by Vision and Pressure Feedback.

    Science.gov (United States)

    Chang, Yen-Chi; Berry-Pusey, Brittany; Yasin, Rashid; Vu, Nam; Maraglia, Brandon; Chatziioannou, Arion X; Tsao, Tsu-Chin

    2015-08-01

    This paper develops an automated vascular access system (A-VAS) with novel vision-based vein and needle detection methods and real-time pressure feedback for murine drug delivery. Mouse tail vein injection is a routine but critical step for preclinical imaging applications. Due to the small vein diameter and external disturbances such as tail hair, pigmentation, and scales, identifying vein location is difficult and manual injections usually result in poor repeatability. To improve the injection accuracy, consistency, safety, and processing time, A-VAS was developed to overcome difficulties in vein detection noise rejection, robustness in needle tracking, and visual servoing integration with the mechatronics system.

  8. Buying Time—The Immune System Determinants of the Incubation Period to Respiratory Viruses

    Directory of Open Access Journals (Sweden)

    Thomas M. Moran

    2010-11-01

    Full Text Available Respiratory viruses cause disease in humans characterized by an abrupt onset of symptoms. Studies in humans and animal models have shown that symptoms are not immediate and appear days or even weeks after infection. Since the initial symptoms are a manifestation of virus recognition by elements of the innate immune response, early virus replication must go largely undetected. The interval between infection and the emergence of symptoms is called the incubation period and is widely used as a clinical score. While incubation periods have been described for many virus infections the underlying mechanism for this asymptomatic phase has not been comprehensively documented. Here we review studies of the interaction between human pathogenic respiratory RNA viruses and the host with a particular emphasis on the mechanisms used by viruses to inhibit immunity. We discuss the concept of the “stealth phase”, defined as the time between infection and the earliest detectable inflammatory response. We propose that the “stealth phase” phenomenon is primarily responsible for the suppression of symptoms during the incubation period and results from viral antagonism that inhibits major pathways of the innate immune system allowing an extended time of unhindered virus replication.

  9. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system

    International Nuclear Information System (INIS)

    Li, X. Allen; Stepaniak, Christopher; Gore, Elizabeth

    2006-01-01

    This work introduces a gating technique that uses 4DCT to determine gating parameters and to plan gated treatment, and employs a Siemens linear accelerator to deliver the gated treatment. Because of technology incompatibility, the 4DCT scanner (LightSpeed, GE) and the Siemens accelerator require two different motion-monitoring systems. The motion monitoring system (AZ-773V, Anzai Med.) used for the gated delivery utilizes a pressure sensor to detect the external respiratory motion (pressure change) in real time. Another system (RPM, Varian) used for the 4DCT scanner (LightSpeed, GE) is based on an infrared camera to detect motion of external markers. These two motion monitoring systems (RPM and Anzai systems) were found to correlate well with each other. The depth doses and profile measured for gated delivery (with a duty cycle of 25% or 50%) were found to agree within 1.0% with those measured for ungated delivery, indicating that gating did not significantly alter beam characteristics. The measurement verified also that the MU linearity and beam output remained unchanged (within 0.3%). A practical method of using 4DCT to plan a gated treatment was developed. The duty cycle for either phase or amplitude gating can be determined based on 4DCT with consideration of set-up error and delivery efficiency. The close-loop measurement involving the entire gating process (imaging, planning, and delivery) showed that the measured isodose distributions agreed with those intended, validating the accuracy and reliability of the gating technique. Based these observations, we conclude that the gating technique introduced in this work, integrating Siemens linear accelerator and Anzai pressure sensor device with GE/Varian RPM 4DCT, is reliable and effective, and it can be used clinically to account for respiratory motion during radiation therapy

  10. Neonatal respiratory distress syndrome

    Science.gov (United States)

    Hyaline membrane disease (HMD); Infant respiratory distress syndrome; Respiratory distress syndrome in infants; RDS - infants ... improves slowly after that. Some infants with severe respiratory distress syndrome will die. This most often occurs ...

  11. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification

    Science.gov (United States)

    Wang, Shouyi; Bowen, Stephen R.; Chaovalitwongse, W. Art; Sandison, George A.; Grabowski, Thomas J.; Kinahan, Paul E.

    2014-02-01

    The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUVpeak) over lesions of interest. Relative differences in SUVpeak between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUVpeak values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation

  13. Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification

    International Nuclear Information System (INIS)

    Wang, Shouyi; Chaovalitwongse, W Art; Bowen, Stephen R; Kinahan, Paul E; Sandison, George A; Grabowski, Thomas J

    2014-01-01

    The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUV peak ) over lesions of interest. Relative differences in SUV peak between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUV peak values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion

  14. Effect of Delta-9-tetrahydrocannabinol on mouse resistance to systemic Candida albicans infection.

    Directory of Open Access Journals (Sweden)

    Gideon W Blumstein

    Full Text Available Delta-9-tetrahydrocannabinol (Δ9-THC, the psychoactive component of marijuana, is known to suppress the immune responses to bacterial, viral and protozoan infections, but its effects on fungal infections have not been studied. Therefore, we investigated the effects of chronic Δ9-THC treatment on mouse resistance to systemic Candida albicans (C. albicans infection. To determine the outcome of chronic Δ9-THC treatment on primary, acute systemic candidiasis, c57BL/6 mice were given vehicle or Δ9-THC (16 mg/kg in vehicle on days 1-4, 8-11 and 15-18. On day 19, mice were infected with 5×10(5 C. albicans. We also determined the effect of chronic Δ9-THC (4-64 mg/kg treatment on mice infected with a non-lethal dose of 7.5×10(4 C. albicans on day 2, followed by a higher challenge with 5×10(5 C. albicans on day 19. Mouse resistance to the infection was assessed by survival and tissue fungal load. Serum cytokine levels were determine to evaluate the immune responses. In the acute infection, chronic Δ9-THC treatment had no effect on mouse survival or tissue fungal load when compared to vehicle treated mice. However, Δ9-THC significantly suppressed IL-12p70 and IL-12p40 as well as marginally suppressed IL-17 versus vehicle treated mice. In comparison, when mice were given a secondary yeast infection, Δ9-THC significantly decreased survival, increased tissue fungal burden and suppressed serum IFN-γ and IL-12p40 levels compared to vehicle treated mice. The data showed that chronic Δ9-THC treatment decreased the efficacy of the memory immune response to candida infection, which correlated with a decrease in IFN-γ that was only observed after the secondary candida challenge.

  15. Systems for the management of respiratory disease in primary care--an international series: Pakistan.

    Science.gov (United States)

    Yusuf, Mohammed Osman

    2009-03-01

    Pakistan has a population exceeding 160 million. Communicable diseases remain the most important health problem in Pakistan, with non-communicable diseases and injuries comprising a quarter of all deaths. The government provides a multi-tiered healthcare system, from the Basic Health Unit at the village level, ranging up to the tertiary care teaching hospitals in the larger cities. These facilities are accessible to all, and are usually free or highly subsidised. Patients have the choice to see a private or government GP, a specialist, or an alternative medicine healer. The current National Health Policy focusses mainly on prevention of communicable diseases, as well as improving primary and secondary health care services. Only 6% of 13 to 14 year olds are medically diagnosed as having asthma, and more than half report symptoms of rhinitis. The prevalence of chronic bronchitis in patients over 65 is 14% and 6% in rural females and males, respectively, and 9% (with no sex difference) in urban areas. The higher rates of chronic bronchitis observed in females in rural areas may be attributed to high levels of indoor air pollution due to cooking over smoking fires. It is estimated that 36% of adult males, and 9% of females, smoke, and the cigarette consumption per person per year in Pakistan is among the highest in South Asia. Pakistan is ranked 7th among the 22 highest tuberculosis disease burden countries in the world. In 2006 the number of all TB cases was 76,668 compared to 97,245 in 2004. It is estimated that 70-80,000 people are infected with HIV, but only 3,000 AIDS cases have been reported so far. The incidence of acute respiratory infections in children varies, and is a common cause of morbidity. In adults, it is estimated that pneumonia may affect as many as 2.8 million Pakistanis. Patients usually can access their local GPs or alternative medical practitioners with relative ease. In villages in remote areas, access to government-run health care facilities

  16. Seasonal variations of respiratory viruses detected from children with respiratory tract infections in Riyadh, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Saad S. Albogami

    2018-03-01

    Full Text Available ARTIs have a huge impact in health systems in which 20–30% of all hospital admissions and 30–60% of practitioner visits are related to respiratory tract infections. The aim of this study is to determine the prevalence, age distribution, and seasonal variation of respiratory viruses. This study was descriptive retrospective study in which all patients 14 years of age and below who presented with signs and symptoms of ARTIs between January 2013 and December 2014 and had respiratory specimen tested by direct immunofluorescence assays for viruses identification were included in the study. During that period, a total of 4611 patients who presented with ARTIs from January 2013 to December 2014 were investigated, viruses were detected in 1115 (24%. RSV was associated with 97.4% of the total viral pathogens. Viruses were detected throughout all the two years with a peak in winter; Dec (n: 265, Jan (n: 418, Feb (n: 218, and Mar (n: 109. Viral pathogens are very important cause of ARTIs in our region. RSV was the most common virus detected with the highest detection rate in children who are two years old and below. A multi-center surveillance with more sensitive detection methods like PCR may help to provide a comprehensive understanding of virus distribution in our area, which may contribute implant an effective prevention approach for each virus. Keywords: Pediatrics, Infectious diseases, Respiratory infections, Respiratory syncytial virus, Saudi Arabia

  17. What Is Respiratory Distress Syndrome?

    Science.gov (United States)

    ... Home / Respiratory Distress Syndrome Respiratory Distress Syndrome Also known as What Is Respiratory ... This condition is called apnea (AP-ne-ah). Respiratory Distress Syndrome Complications Depending on the severity of ...

  18. Pediatric respiratory and systemic effects of chronic air pollution exposure: nose, lung, heart, and brain pathology.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William

    2007-01-01

    Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.

  19. Respiratory care manpower issues.

    Science.gov (United States)

    Mathews, Paul; Drumheller, Lois; Carlow, John J

    2006-03-01

    Although respiratory care is a relatively new profession, its practitioners are deeply involved in providing patient care in the critical care. In preparation for writing this article, we sought to explore the respiratory therapy manpower needs and activities designed to fulfill those needs in critical care practice. We began by delineating the historical development of respiratory care as a profession, the development of its education, and the professional credentialing system. We then conducted several literature reviews with few articles generated. We requested and received data from the American Association for Respiratory Care (AARC), The National Board for Respiratory Care (NBRC), and the Committee on Accreditation of Respiratory Care education (CoARC) relative to their membership, number of credentialed individuals, and educational program student and graduate data for 2000 through 2004. We then conducted two electronic surveys. Survey 1 was a six-item survey that examined the use of mandatory overtime in respiratory care departments. We used a convenience sample of 30 hospitals stratified by size (or=500 beds). Survey 2 was a five-item instrument distributed by blast E-mail to the Society of Critical Care Medicine's Respiratory Care Section members and members of the RC_World list serve. This survey elicited 51 usable and non-duplicative responses from geographically and size-varied institutions. We analyzed these data in several ways from distribution analysis to one-way analysis of variance procedure and appropriate post hoc analysis techniques. Where appropriate, a matched-pairs analysis was performed and these were compared across the variables intensive care unit (ICU) beds per actual number of respiratory care practitioners (RCPs) and ICU beds per preferred number of RCPs. The data gathered from the professional organizations indicated a relatively stable attrition rate (35.2%+/-1.7-3.1%), even in the face of varying enrollments (6,231 in 2004 vs. 4

  20. [Respiratory handicap. Recognition, evaluation and social benefits].

    Science.gov (United States)

    Marsac, J; Pujet, J C

    1983-01-01

    The medico-social aspects of respiratory handicap pose some perplexing problems, notably in their recognition, rigorous evaluation and in the granting of social security benefits. The clinical and respiratory function data should be standardised and classified according to type and significance of respiratory disease and also according to the degree of co-operation and understanding of the patient. The respiratory handicap should be evaluated after considering the functional disability engendered by the disorder and their socio-professional repercussions. The abnormality in the lungs should be measured by resting tests; the degree of disability by exercise studies; the socio-professional handicap by ergonometric tests to assess the scale of the demands and requirements of family and social and professional life, indeed the cultural and economic style of the individual concerned. Such combined studies would enable recognition of severe chronic respiratory handicap leading to decisions for exemption certificates, such as cases of severe respiratory failure in patients requiring supplementary treatment for oxygen therapy or assisted ventilation. The benefits and grants offered to those with respiratory handicaps would involve a number of rights relating to: care, work, costs of replacement of workers in the event of prolonged sick leave or the benefits of an invalidity pension. There will be other allowances such as invalidity cards, lodging special studies and other rights particularly relating to lodging and special equipment. The present scale is difficult to use both because of its lack of specificity and its ill-chosen terminology. For better balance between the handicap and the benefits offered, a common and more flexible system, with a printed table should be at hand for the doctor to use for certain decisions: long term illness, period of invalidity or early retirement because of medical incapacity. Within each table a sub-section should exist to allow for

  1. Respiratory correlated cone beam CT

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Zijp, Lambert; Remeijer, Peter; Herk, Marcel van

    2005-01-01

    A cone beam computed tomography (CBCT) scanner integrated with a linear accelerator is a powerful tool for image guided radiotherapy. Respiratory motion, however, induces artifacts in CBCT, while the respiratory correlated procedures, developed to reduce motion artifacts in axial and helical CT are not suitable for such CBCT scanners. We have developed an alternative respiratory correlated procedure for CBCT and evaluated its performance. This respiratory correlated CBCT procedure consists of retrospective sorting in projection space, yielding subsets of projections that each corresponds to a certain breathing phase. Subsequently, these subsets are reconstructed into a four-dimensional (4D) CBCT dataset. The breathing signal, required for respiratory correlation, was directly extracted from the 2D projection data, removing the need for an additional respiratory monitor system. Due to the reduced number of projections per phase, the contrast-to-noise ratio in a 4D scan reduced by a factor 2.6-3.7 compared to a 3D scan based on all projections. Projection data of a spherical phantom moving with a 3 and 5 s period with and without simulated breathing irregularities were acquired and reconstructed into 3D and 4D CBCT datasets. The positional deviations of the phantoms center of gravity between 4D CBCT and fluoroscopy were small: 0.13±0.09 mm for the regular motion and 0.39±0.24 mm for the irregular motion. Motion artifacts, clearly present in the 3D CBCT datasets, were substantially reduced in the 4D datasets, even in the presence of breathing irregularities, such that the shape of the moving structures could be identified more accurately. Moreover, the 4D CBCT dataset provided information on the 3D trajectory of the moving structures, absent in the 3D data. Considerable breathing irregularities, however, substantially reduces the image quality. Data presented for three different lung cancer patients were in line with the results obtained from the phantom study. In

  2. Severe acute respiratory syndrome (SARS)

    Science.gov (United States)

    SARS; Respiratory failure - SARS ... Complications may include: Respiratory failure Liver failure Heart failure ... 366. McIntosh K, Perlman S. Coronaviruses, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). ...

  3. Immediate and long-term effects in the hematopoietic system and the morphology of the respiratory system in experimental animals under chronic combined action of external gamma exposure and inhalation exposure.

    Science.gov (United States)

    Tatarkin, Sergey; Moukhamedieva, Lana; Aleksandr, Shafirkin; Barantseva, Maria; Ivanova, Svetlana

    The need to solve hygiene problems valuation of environmental factors in the implementation of the projected manned interplanetary missions, determined the relevance of studying the effect of external gamma-irradiation with inhalation of mixtures of chemicals on the parameters of major critical body systems: hematopoiesis and respiratory (morphological and morphometric parameters) in the short and long periods. The study conducted on 504 male mice F1 (CBA × C57BL6) under chronic fractional gamma-irradiation (within 10 weeks at a total dose 350sGr) and then under inhalation by mixtures of chemicals in low concentrations. Duration of the experiment (124 days) and 90 -day recovery period. Displaying adaptive reorganization in hematopoietic system, which was characterized by a tension of regulatory systems of animals and by a proliferation of bone marrow cells and by dynamic changes in amount of lymphoid cells in peripheral blood, elevated levels of the antioxidant activity of red blood cells, and morphological manifestations of "incomplete recovery " of the spleen, which are retained in the recovery period. Morphological changes in the respiratory organs of animals testified about immunogenesis activation and development of structural changes as a chronic inflammatory process. Increase of fibrous connective tissue in the walls of the trachea, bronchus and lung, against reduction of loose fibrous connective tissue (more pronounced in respiratory parts of the respiratory system) in experimental animals, which may indicate a reduction of the functional reserves of the body and increase the risk of adverse long-term effects.

  4. Decreased respiratory system compliance on the sixth day of mechanical ventilation is a predictor of death in patients with established acute lung injury

    Directory of Open Access Journals (Sweden)

    Matthay Michael A

    2011-04-01

    Full Text Available Abstract Background Multiple studies have identified single variables or composite scores that help risk stratify patients at the time of acute lung injury (ALI diagnosis. However, few studies have addressed the important question of how changes in pulmonary physiologic variables might predict mortality in patients during the subacute or chronic phases of ALI. We studied pulmonary physiologic variables, including respiratory system compliance, P/F ratio and oxygenation index, in a cohort of patients with ALI who survived more than 6 days of mechanical ventilation to see if changes in these variables were predictive of death and whether they are informative about the pathophysiology of subacute ALI. Methods Ninety-three patients with ALI who were mechanically ventilated for more than 6 days were enrolled in this prospective cohort study. Patients were enrolled at two medical centers in the US, a county hospital and a large academic center. Bivariate analyses were used to identify pulmonary physiologic predictors of death during the first 6 days of mechanical ventilation. Predictors on day 1, day 6 and the changes between day 1 and day 6 were compared in a multivariate logistic regression model. Results The overall mortality was 35%. In multivariate analysis, the PaO2/FiO2 (OR 2.09, p th day of acute lung injury. In addition, a decrease in respiratory system compliance between days 1 and days 6 (OR 2.14, p Conclusions A low respiratory system compliance on day 6 or a decrease in the respiratory system compliance between the 1st and 6th day of mechanical ventilation were associated with increased mortality in multivariate analysis of this cohort of patients with ALI. We suggest that decreased respiratory system compliance may identify a subset of patients who have persistent pulmonary edema, atelectasis or the fibroproliferative sequelae of ALI and thus are less likely to survive their hospitalization.

  5. The Mouse That Soared

    Science.gov (United States)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a

  6. Extraction and Analysis of Respiratory Motion Using Wearable Inertial Sensor System during Trunk Motion

    Directory of Open Access Journals (Sweden)

    Apoorva Gaidhani

    2017-12-01

    Full Text Available Respiratory activity is an essential vital sign of life that can indicate changes in typical breathing patterns and irregular body functions such as asthma and panic attacks. Many times, there is a need to monitor breathing activity while performing day-to-day functions such as standing, bending, trunk stretching or during yoga exercises. A single IMU (inertial measurement unit can be used in measuring respiratory motion; however, breathing motion data may be influenced by a body trunk movement that occurs while recording respiratory activity. This research employs a pair of wireless, wearable IMU sensors custom-made by the Department of Electrical Engineering at San Diego State University. After appropriate sensor placement for data collection, this research applies principles of robotics, using the Denavit-Hartenberg convention, to extract relative angular motion between the two sensors. One of the obtained relative joint angles in the “Sagittal” plane predominantly yields respiratory activity. An improvised version of the proposed method and wearable, wireless sensors can be suitable to extract respiratory information while performing sports or exercises, as they do not restrict body motion or the choice of location to gather data.

  7. Pathogenesis of H5N1 influenza virus infections in mice and ferret models differ between respiratory and digestive system exposure

    Science.gov (United States)

    Background. Epidemiological, clinical and laboratory data suggests H5N1 influenza viruses are transmitted through and predominantly affect the respiratory system of mammals. Some data suggests digestive system involvement. However, direct evidence of alimentary transmission and infection in mammal...

  8. Evaluation of irradiation position in respiratory-gated radiotherapy using a phantom system simulating patient respiration

    International Nuclear Information System (INIS)

    Oyama, Masaya; Ueda, Takashi; Kitoh, Satoshi; Tanaka, Takashi; Goka, Tomonori; Ogino, Takashi

    2006-01-01

    Respiratory-gated (RG) radiotherapy is useful for minimizing the irradiated volume of normal tissues resulting from the shifting of internal structures caused by respiratory movement. The present study was conducted to evaluate the treatment field in RG radiotherapy using a phantom system simulating patient respiration. A phantom system consisting of a 3-cm ball-shaped dummy tumor and film placed in a cork lung phantom was used (THK Co., Ltd.). RG radiotherapy was employed in the expiratory phase. The phantom movement distance was set to 2 cm, and the gating signals from a respiratory-gating system (AZ-733V, Anzai Medical) were varied. The settings used for irradiation were an X-ray energy of 6 MV (PRIMUS, Toshiba Medical Systems), treatment field of 5 cm x 7 cm, and X-ray dose of 100 MU. Images were acquired using an electric portal-imaging device (EPID, OPTIVUE 500), and the X-ray dose distribution was measured by the film method. In images acquired using the EPID, the tumor margins became less clear when the gating signals were increased, and the ITVs were determined to be 3.6 cm, 3.7 cm, 4.2 cm, and 5.1 cm at gating rates of 10%, 25%, 50%, and no gate, respectively. With regard to the X-ray dose distribution measured by the film method, the dose profile in the cephalocaudal direction was shifted toward the expiratory phase, and the degree of shift became greater when the gating signals were increased. In addition, the optimal treatment fields in the cephalocaudal direction were determined to be 5.2 cm, 5.2 cm, 5.6 cm, and 7.0 cm at gating rates of 10%, 25%, 50%, and no gating, respectively. Although RG radiotherapy is useful for improving the accuracy of radiotherapy, the characteristics of the RG radiotherapy technique and the radiotherapy system must be clearly understood when this method is to be employed in clinical practice. Image-guided radiotherapy (IGRT) is now assuming a central role in radiotherapy, and properly identifying internal margins is an

  9. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats.

    Science.gov (United States)

    Okada, Yasumasa; Masumiya, Haruko; Tamura, Yoshiyasu; Oku, Yoshitaka

    2007-11-01

    Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.

  10. Light microscopic autoradiographic localization of mu and delta opioid binding sites in the mouse central nervous system

    International Nuclear Information System (INIS)

    Moskowitz, A.S.; Goodman, R.R.

    1984-01-01

    Much work has been done on opioid systems in the rat CNS. Although the mouse is widely used in pharmacological studies of opioid action, little has been done to characterize opioid systems in this species. In the present study the distribution of mu and delta opioid binding sites in the mouse CNS was examined using a quantitative in vitro autoradiography procedure. Tritiated dihydromorphine was used to visualize mu sites and [3H-d-Ala2-d-Leu5]enkephalin with a low concentration of morphine was used to visualize delta sites. Mu and delta site localizations in the mouse are very similar to those previously described in the rat (Goodman, R.R., S.H. Snyder, M.J. Kuhar, and W.S. Young, 3d (1980) Proc. Natl. Acad. Sci. U.S.A. 77:6239-6243), with certain exceptions and additions. Mu and delta sites were observed in sensory processing areas, limbic system, extrapyramidal motor system, and cranial parasympathetic system. Differential distributions of mu and delta sites were noted in many areas. Mu sites were prominent in laminae I, IV, and VI of the neocortex, in patches in the striatum, and in the ventral pallidum, nucleus accumbens, medial and midline thalamic nuclei, medial habenular nucleus, interpeduncular nucleus, and laminae I and II of the spinal cord. In contrast, delta sites were prominent in all laminae of the neocortex, olfactory tubercle, diffusely throughout the striatum, and in the basal, lateral, and cortical nuclei of the amygdala. The determination of the differential distributions of opioid binding sites should prove useful in suggesting anatomical substrates for the actions of opiates and opioids

  11. The polymorphism of CYP2E1 Rsa I/Pst I gene and susceptibility to respiratory system cancer: a systematic review and meta-analysis of 34 studies.

    Science.gov (United States)

    Xu, Li; Yang, Mingyuan; Zhao, Tiejun; Jin, Hai; Xu, Zhiyun; Li, Ming; Chen, Hezhong

    2014-12-01

    The purpose of this articles is to determine whether the cytochrome P450 2E1 (CYP2E1) Rsa I/Pst I gene polymorphism is correlated with respiratory system cancers. Respiratory system cancers included lung cancer, laryngeal cancer, nasopharyngeal cancer, and cancers of other respiratory organs, which are the most common malignant tumors worldwide; the significant relationship between CYP2E1 Rsa I/Pst I gene polymorphism and some respiratory system cancer have been reported, but results of some other studies are controversial. The pooled odds ratio (OR) with 95% confidence interval (CI) was calculated to assess the association. PubMed, EMBASE, Cochrane Library Databases, China National Knowledge Infrastructure, and Wanfang Database (up to July 20, 2014) were searched for all case-control studies those mainly studied the relationship between CYP2E1 Rsa I/Pst I gene polymorphism and the susceptibility of respiratory system cancer. A total of 332 articles were collected, among which 34 studies that involved 7028 cases and 9822 controls fulfilled the inclusion criteria after being assessed by 2 reviewers. When stratified by cancer site, the C2/C2 polymorphism could increase the risk of nasopharyngeal cancer under the homozygote model (C2C2 vs C1C1: OR = 1.85, 95% CI = 1.20-2.85, P = 0.005) and recessive model (C2C2 vs C1C2/C1C1: OR = 1.89, 95% CI = 1.23-2.89, P = 0.003). Protection effect was found in lung cancer in heterozygote model (C1C2 vs C1C1: OR = 0.82, 95% CI = 0.74-0.91, P Rsa I/Pst I gene polymorphism may reduce the risk of respiratory system cancer. Furthermore, significant association was also found in Asian populations.

  12. Effect of transoral tracheal wash on respiratory mechanics in dogs with respiratory disease.

    Science.gov (United States)

    Vaught, Meghan E; Rozanski, Elizabeth A; deLaforcade, Armelle M

    2018-01-01

    The purpose of this study was to determine the impact of a transoral tracheal wash (TOTW) on respiratory mechanics in dogs and to describe the use of a critical care ventilator (CCV) to determine respiratory mechanics. Fourteen client-owned dogs with respiratory diseases were enrolled. Respiratory mechanics, including static compliance (C stat ) and static resistance (R stat ), were determined before and after TOTW. Pre- and post-wash results were compared, with a P -value of mechanics, as observed by a reduction in C stat , presumably due to airway flooding and collapse. While no long-lasting effects were noted in these clinical patients, this effect should be considered when performing TOTW on dogs with respiratory diseases. Respiratory mechanics testing using a CCV was feasible and may be a useful clinical testing approach.

  13. Omigapil treatment decreases fibrosis and improves respiratory rate in dy(2J mouse model of congenital muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Qing Yu

    Full Text Available Congenital muscular dystrophy is a distinct group of diseases presenting with weakness in infancy or childhood and no current therapy. One form, MDC1A, is the result of laminin alpha-2 deficiency and results in significant weakness, respiratory insufficiency and early death. Modification of apoptosis is one potential pathway for therapy in these patients.dy(2J mice were treated with vehicle, 0.1 mg/kg or 1 mg/kg of omigapil daily via oral gavage over 17.5 weeks. Untreated age matched BL6 mice were used as controls. Functional, behavioral and histological measurements were collected.dy(2J mice treated with omigapil showed improved respiratory rates compared to vehicle treated dy(2J mice (396 to 402 vs. 371 breaths per minute, p<0.03 and similar to control mice. There were no statistical differences in normalized forelimb grip strength between dy(2J and controls at baseline or after 17.5 weeks and no significant differences seen among the dy(2J treatment groups. At 30-33 weeks of age, dy(2J mice treated with 0.1 mg/kg omigapil showed significantly more movement time and less rest time compared to vehicle treated. dy(2J mice showed normal cardiac systolic function throughout the trial. dy(2J mice had significantly lower hindlimb maximal (p<0.001 and specific force (p<0.002 compared to the control group at the end of the trial. There were no statistically significant differences in maximal or specific force among treatments. dy(2J mice treated with 0.1 mg/kg/day omigapil showed decreased percent fibrosis in both gastrocnemius (p<0.03 and diaphragm (p<0.001 compared to vehicle, and in diaphragm (p<0.013 when compared to 1 mg/kg/day omigapil treated mice. Omigapil treated dy(2J mice demonstrated decreased apoptosis.Omigapil therapy (0.1 mg/kg improved respiratory rate and decreased skeletal and respiratory muscle fibrosis in dy(2J mice. These results support a putative role for the use of omigapil in laminin deficient congenital muscular dystrophy

  14. Respiratory mechanics in infants with severe bronchiolitis on controlled mechanical ventilation.

    Science.gov (United States)

    Cruces, Pablo; González-Dambrauskas, Sebastián; Quilodrán, Julio; Valenzuela, Jorge; Martínez, Javier; Rivero, Natalia; Arias, Pablo; Díaz, Franco

    2017-10-06

    Analysis of respiratory mechanics during mechanical ventilation (MV) is able to estimate resistive, elastic and inertial components of the working pressure of the respiratory system. Our aim was to discriminate the components of the working pressure of the respiratory system in infants on MV with severe bronchiolitis admitted to two PICU's. Infants younger than 1 year old with acute respiratory failure caused by severe bronchiolitis underwent neuromuscular blockade, tracheal intubation and volume controlled MV. Shortly after intubation studies of pulmonary mechanics were performed using inspiratory and expiratory breath hold. The maximum inspiratory and expiratory flow (QI and QE) as well as peak inspiratory (PIP), plateau (PPL) and total expiratory pressures (tPEEP) were measured. Inspiratory and expiratory resistances (RawI and RawE) and Time Constants (K TI and K TE ) were calculated. We included 16 patients, of median age 2.5 (1-5.8) months. Bronchiolitis due to respiratory syncytial virus was the main etiology (93.8%) and 31.3% had comorbidities. Measured respiratory pressures were PIP 29 (26-31), PPL 24 (20-26), tPEEP 9 [8-11] cmH2O. Elastic component of the working pressure was significantly higher than resistive and both higher than threshold (tPEEP - PEEP) (P mechanics of infants with severe bronchiolitis receiving MV shows that the elastic component of the working pressure of the respiratory system is the most important. The elastic and resistive components in conjunction with flow profile are characteristic of restrictive diseases. A better understanding of lung mechanics in this group of patients may lead to change the traditional ventilatory approach to severe bronchiolitis.

  15. Cytotoxicity of carbon nanohorns in different human cells of the respiratory system.

    Science.gov (United States)

    Schramm, Franziska; Lange, Martina; Hoppmann, Pia; Heutelbeck, Astrid

    2016-01-01

    One of the new synthetic carbon-based nanomaterials is carbon nanohorns (CNH). A potential risk for employees of production processes is an unintentional intake of these nanomaterials via inhalation. Once taken up, nanoparticles might interact with cells of different tissues as well as with intercellular substances. These interactions may have far-reaching consequences for human health. Currently, many gaps in available information on the CNH toxicological profile remain. The aim of this study was to determine the cytotoxicity of CNH particles on human epithelial cells of the respiratory system with special consideration given to different particle sizes. In all cell lines, cell viability was reduced after 24 h of exposure up to 60% and metabolic activity as evidenced by mitochondrial activity was lowered to 9% at a concentration of 1 g/L. The three respiratory cell lines differed in their sensitivity. The most robust cells were the bronchial epithelial cells. Further, particle size fractions induced different adverse effect strength, whereby no correlation between particle size fraction and toxicity was found. These findings demonstrate the need for further information regarding the behavior and effect strength of nanomaterial. To avoid the production of new harmful materials, a more comprehensive integration of results from toxicity studies in the development processes of engineered nanomaterials is recommended not only from an occupational viewpoint but also from an environmental perspective.

  16. Cultures of preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Streffer, C.; Molls, M.

    1987-01-01

    In the preimplantation mouse embryos the chromosomal damage develops through several postradiation cell cycles and mitoses. New chromosome aberrations are seen during the second and third postradiation mitoses. Also, more micronuclei appear during later postradiation interphases. This is in agreement with the assumption that unrepaired chromosomal radiation damage develops during the cell generation cycle to such a form (i.e. double-strand breaks in DNA) that chromosomal breaks occur. This proposition is strengthened by the observation that radiation-induced damage is more rapidly expressed after neutron exposure (first or second postradiation mitosis) than after exposure to X rays at the one- or two-cell stage. The preimplantation mouse embryo culture is an inviting system for additional studies at the molecular level, especially now that within the last few years more sensitive methods have been developed for study of DNA and protein structure, regulation, and synthesis. The results from these studies of cultures of preimplantation mouse embryos present a favorable case for the study of complex biological systems under very defined conditions in vitro for extrapolation to effects in vivo

  17. Brca1/p53 deficient mouse breast tumor hemodynamics during hyperoxic respiratory challenge monitored by a novel wide-field functional imaging (WiFI) system

    Science.gov (United States)

    Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Tromberg, Bruce; Cerussi, Albert; Choi, Bernard

    2009-02-01

    Current imaging modalities allow precise visualization of tumors but do not enable quantitative characterization of the tumor metabolic state. Such quantitative information would enhance our understanding of tumor progression and response to treatment, and to our overall understanding of tumor biology. To address this problem, we have developed a wide-field functional imaging (WiFI) instrument which combines two optical imaging modalities, spatially modulated imaging (MI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm × 5 cm) field of view. Using MI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are estimated using a Monte Carlo model. From the spatial maps of local absorption and reduced scattering coefficients, tissue composition information is extracted in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. Using LSI, the reflectance of a 785 nm laser speckle pattern on the tissue is acquired and analyzed to compute maps of blood perfusion in the tissue. Tissue metabolism state is estimated from the values of blood perfusion, volume and oxygenation state. We currently are employing the WiFI instrument to study tumor development in a BRCA1/p53 deficient mice breast tumor model. The animals are monitored with WiFI during hyperoxic respiratory challenge. At present, four tumors have been measured with WiFI, and preliminary data suggest that tumor metabolic changes during hyperoxic respiratory challenge can be determined.

  18. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    Science.gov (United States)

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Risk factors for and impact of respiratory failure on mortality in the early phase of acute pancreatitis

    DEFF Research Database (Denmark)

    Dombernowsky, Tilde; Kristensen, Marlene Østermark; Rysgaard, Sisse

    2016-01-01

    : Retrospective cohort study including 359 patients admitted with acute pancreatitis. Information was gathered from electronic patient records. We defined respiratory failure based on the modified Marshall scoring system in the revised Atlanta criteria. Predictors of respiratory failure were evaluated......, or pneumonia may develop respiratory failure, suggests that acute lung injury, possibly associated with systemic inflammation, may be important.......BACKGROUND: The incidence of respiratory failure and other respiratory complications in the early phase of acute pancreatitis (AP) is not well investigated. OBJECTIVE: To evaluate the incidence and risk factors of respiratory failure, and its impact on mortality in the early phase AP. METHODS...

  20. Computational Models and Emergent Properties of Respiratory Neural Networks

    Science.gov (United States)

    Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.

    2012-01-01

    Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564

  1. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file.

    Science.gov (United States)

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-21

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases.

  2. Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung

    Science.gov (United States)

    Ganzert, Steven; Guttmann, Josef; Steinmann, Daniel; Kramer, Stefan

    Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.

  3. Acute respiratory distress syndrome: epidemiology and management approaches

    Directory of Open Access Journals (Sweden)

    Walkey AJ

    2012-07-01

    Full Text Available Allan J Walkey,1 Ross Summer,1 Vu Ho,1 Philip Alkana21The Pulmonary Center, Boston University School of Medicine, Boston, MA, USA; 2Asthma Research Center, Brigham and Women's Hospital, Boston, MA, USAAbstract: Acute lung injury and the more severe acute respiratory distress syndrome represent a spectrum of lung disease characterized by the sudden onset of inflammatory pulmonary edema secondary to myriad local or systemic insults. The present article provides a review of current evidence in the epidemiology and treatment of acute lung injury and acute respiratory distress syndrome, with a focus on significant knowledge gaps that may be addressed through epidemiologic methods.Keywords: acute lung injury, acute respiratory distress syndrome, review, epidemiology

  4. Combined effects of leaks, respiratory system properties and upper airway patency on the performance of home ventilators: a bench study.

    Science.gov (United States)

    Zhu, Kaixian; Rabec, Claudio; Gonzalez-Bermejo, Jésus; Hardy, Sébastien; Aouf, Sami; Escourrou, Pierre; Roisman, Gabriel

    2017-11-21

    Combined effects of leaks, mechanical property of respiratory system and upper airway (UA) patency on patient-ventilator synchrony (PVA) and the level of clinically "tolerable" leaks are not well established in home ventilators. We comparatively assessed on a bench model, the highest leak level tolerated without inducing significant asynchrony ("critical leak") in three home ventilators (Astral 150, Trilogy 100 and Vivo 60; noted as A150, T100 and V60 respectively) subjected to three simulated diseased respiratory conditions: chronic obstructive pulmonary disease (COPD), obesity hypoventilation (OHS) and neuromuscular disorders (NMD), with both open and closed UA. Also, total leak values in the device reports were compared to the bench-measured values. With open UA, all ventilators were able to avoid asynchrony up to a 30 L/min leak and even to 55 L/min in some cases. UA closure and respiratory diseases especially OHS influenced PVA. With closed UA, the critical leak of A150 and T100 remained higher than 55 L/min in COPD and OHS, while for V60 decreased to 41 and 33 L/min respectively. In NMD with closed UA, only T100 reached a high critical leak of 69 L/min. Besides, inspiratory trigger sensitivity change was often necessary to avoid PVA. Home ventilators were able to avoid PVA in high-level leak conditions. However, asynchrony appeared in cases of abnormal mechanical properties of respiratory system or closed UA. In case of closed UA, the EPAP should be adjusted prior to the inspiratory trigger. Not applicable.

  5. An alternative respiratory sounds classification system utilizing artificial neural networks

    Directory of Open Access Journals (Sweden)

    Rami J Oweis

    2015-04-01

    Full Text Available Background: Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. Methods: This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs and adaptive neuro-fuzzy inference systems (ANFIS toolboxes. The methods have been applied to 10 different respiratory sounds for classification. Results: The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. Conclusions: The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  6. 4-D Micro-CT of the Mouse Heart

    Directory of Open Access Journals (Sweden)

    Cristian T. Badea

    2005-04-01

    Full Text Available Purpose: Demonstrate noninvasive imaging methods for in vivo characterization of cardiac structure and function in mice using a micro-CT system that provides high photon fluence rate and integrated motion control. Materials and Methods: Simultaneous cardiac- and respiratory-gated micro-CT was performed in C57BL/6 mice during constant intravenous infusion of a conventional iodinated contrast agent (Isovue-370, and after a single intravenous injection of a blood pool contrast agent (Fenestra VC. Multiple phases of the cardiac cycle were reconstructed with contrast to noise and spatial resolution sufficient for quantitative assessment of cardiac function. Results: Contrast enhancement with Isovue-370 increased over time with a maximum of ~500 HU (aorta and 900 HU (kidney cortex. Fenestra VC provided more constant enhancement over 3 hr, with maximum enhancement of ~620 HU (aorta and ~90 HU (kidney cortex. The maximum enhancement difference between blood and myocardium in the heart was ~250 HU for Isovue-370 and ~500 HU for Fenestra VC. In mice with Fenestra VC, volumetric measurements of the left ventricle were performed and cardiac function was estimated by ejection fraction, stroke volume, and cardiac output. Conclusion: Image quality with Fenestra VC was sufficient for morphological and functional studies required for a standardized method of cardiac phenotyping of the mouse.

  7. Adenosine A1 receptor mRNA expression and the effects of systemic theophylline administration on respiratory function 4 months after C2 hemisection.

    Science.gov (United States)

    Nantwi, Kwaku D; Basura, Gregory J; Goshgarian, Harry G

    2003-01-01

    Previous studies from our laboratory have demonstrated that in an animal model of acute cervical spinal cord injury (SCI), respiratory function can be restored by theophylline. We also have shown that respiratory recovery occurs spontaneously after prolonged postinjury survival periods when a hemidiaphragm is paralyzed by an ipsilateral upper cervical (C2) spinal cord hemisection. Theophylline mediates functional recovery by central nervous system adenosine A1 receptor antagonism; however, it is unclear whether adenosine receptors are altered after prolonged postinjury periods and whether theophylline can further enhance restored respiratory function that occurs spontaneously. To assess putative effects of systemic theophylline administration on further enhancing spontaneous respiratory muscle recovery 4 months after C2 hemisection in rats and to determine whether adenosine A1 receptor mRNA expression is altered in these animals. Electrophysiologic assessment of respiratory activity in the phrenic nerves was conducted in C2 hemisected rats 4 months after hemisection under standardized conditions. Immediately thereafter, rats were killed and the cervical spinal cords were prepared for adenosine A1 receptor mRNA expression by in situ hybridization. Spontaneous recovery of respiratory activity in the ipsilateral phrenic nerve was detected in a majority (15/20) of C2 hemisected animals and amounted to 44.06% +/- 2.38% when expressed as a percentage of activity in the homolateral phrenic nerve in noninjured animals. At the optimal dosage used in the acute studies, theophylline (15 mg/kg) did not enhance, but rather unexpectedly blocked, recovered respiratory activity in 4 out of 5 animals tested. At dosages of 5 mg/kg and 2.5 mg/kg, the drug blocked recovered respiratory activity in 3 out of 4 and 3 out of 5 animals tested, respectively. Quantitative analysis of adenosine A1 receptor mRNA expression did not reveal a significant difference between experimental animals

  8. Analysis of impulse oscillometric measures of lung function and respiratory system model parameters in small airway-impaired and healthy children over a 2-year period

    Directory of Open Access Journals (Sweden)

    Nava Pat

    2011-03-01

    Full Text Available Abstract Background Is Impulse Oscillometry System (IOS a valuable tool to measure respiratory system function in Children? Asthma (A is the most prevalent chronic respiratory disease in children. Therefore, early and accurate assessment of respiratory function is of tremendous clinical interest in diagnosis, monitoring and treatment of respiratory conditions in this subpopulation. IOS has been successfully used to measure lung function in children with a high degree of sensitivity and specificity to small airway impairments (SAI and asthma. IOS measures of airway function and equivalent electrical circuit models of the human respiratory system have been developed to quantify the severity of these conditions. Previously, we have evaluated several known respiratory models based on the Mead's model and more parsimonious versions based on fitting IOS data known as extended RIC (eRIC and augmented RIC (aRIC models have emerged, which offer advantages over earlier models. Methods IOS data from twenty-six children were collected and compared during pre-bronchodilation (pre-B and post- bronchodilation (post-B conditions over a period of 2 years. Results and Discussion Are the IOS and model parameters capable of differentiating between healthy children and children with respiratory system distress? Children were classified into two main categories: Healthy (H and Small Airway-Impaired (SAI. The IOS measures and respiratory model parameters analyzed differed consistently between H and SAI children. SAI children showed smaller trend of "growth" and larger trend of bronchodilator responses than H children. The two model parameters: peripheral compliance (Cp and peripheral resistance (Rp tracked IOS indices of small airway function well. Cp was a more sensitive index than Rp. Both eRIC and aRIC Cps and the IOS Reactance Area, AX, (also known as the "Goldman Triangle" showed good correlations. Conclusions What are the most useful IOS and model parameters? In

  9. Managing respiratory problems in athletes.

    Science.gov (United States)

    Hull, James H; Ansley, Les; Robson-Ansley, Paula; Parsons, Jonathan P

    2012-08-01

    Respiratory problems are common in athletes of all abilities and can significantly impact upon their health and performance. In this article, we provide an overview of respiratory physiology in athletes. We also discuss the assessment and management of common clinical respiratory conditions as they pertain to athletes, including airways disease, respiratory tract infection and pneumothorax. We focus on providing a pragmatic approach and highlight important caveats for the physician treating respiratory conditions in this highly specific population.

  10. A new paradigm in respiratory hygiene: modulating respiratory secretions to contain cough bioaerosol without affecting mucus clearance

    Directory of Open Access Journals (Sweden)

    Bonilla Gloria

    2007-08-01

    Full Text Available Abstract Background Several strategies and devices have been designed to protect health care providers from acquiring transmissible respiratory diseases while providing care. In modulating the physical characteristics of the respiratory secretions to minimize the aerosolization that facilitates transmission of airborne diseases, a fundamental premise is that the prototype drugs have no adverse effect on the first line of respiratory defense, clearance of mucus by ciliary action. Methods To assess and demonstrate the primary mechanism of our mucomodulators (XLs, we have built our evidence moving from basic laboratory studies to an ex-vivo model and then to an in-vivo large animal model. We exposed anesthetized dogs without hypersecretion to different dose concentrations of aerosolized XL "B", XL "D" and XL "S". We assessed: cardio-respiratory pattern, tracheal mucus clearance, airway patency, and mucus viscoelastic changes. Results Exposure of frog palate mucus to XLs did not affect the clearance of mucus by ciliary action. Dogs maintained normal cardio-respiratory pattern with XL administration. Tracheal mucociliary clearance in anesthetized dogs indicated a sustained 40% mean increase. Tracheal mucus showed increased filance, and there was no mucus retention in the airways. Conclusion The ex-vivo frog palate and the in-vivo mammalian models used in this study, appear to be appropriate and complement each other to better assess the effects that our mucomodulators exert on the mucociliary clearance defence mechanism. The physiological function of the mucociliary apparatus was not negatively affected in any of the two epithelial models. Airway mucus crosslinked by mucomodulators is better cleared from an intact airway and normally functioning respiratory system, either due to enhanced interaction with cilia or airflow-dependent mechanisms. Data obtained in this study allow us to assure that we have complied with the fundamental requirement

  11. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    Science.gov (United States)

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  12. Respiratory muscle training for multiple sclerosis

    NARCIS (Netherlands)

    Rietberg, Marc B.; Veerbeek, Janne M.; Gosselink, Rik; Kwakkel, Gert; van Wegen, Erwin E.H.

    2017-01-01

    Background: Multiple sclerosis (MS) is a chronic disease of the central nervous system, affecting approximately 2.5 million people worldwide. People with MS may experience limitations in muscular strength and endurance - including the respiratory muscles, affecting functional performance and

  13. Advanced Role of Neutrophils in Common Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Jinping Liu

    2017-01-01

    Full Text Available Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD, pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.

  14. Proton channel HVCN1 is required for effector functions of mouse eosinophils

    Science.gov (United States)

    2013-01-01

    Background Proton currents are required for optimal respiratory burst in phagocytes. Recently, HVCN1 was identified as the molecule required for the voltage-gated proton channel activity associated with the respiratory burst in neutrophils. Although there are similarities between eosinophils and neutrophils regarding their mechanism for respiratory burst, the role of proton channels in eosinophil functions has not been fully understood. Results In the present study, we first identified the expression of the proton channel HVCN1 in mouse eosinophils. Furthermore, using HVCN1-deficient eosinophils, we demonstrated important cell-specific effector functions for HVCN1. Similar to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils produced significantly less reactive oxygen species (ROS) upon phorbol myristate acetate (PMA) stimulation compared with WT eosinophils. In contrast to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils did not show impaired calcium mobilization or migration ability compared with wild-type (WT) cells. Uniquely, HVCN1-deficient eosinophils underwent significantly increased cell death induced by PMA stimulation compared with WT eosinophils. The increased cell death was dependent on NADPH oxidase activation, and correlated with the failure of HVCN1-deficient cells to maintain membrane polarization and intracellular pH in the physiological range upon activation. Conclusions Eosinophils require proton channel HVCN1 for optimal ROS generation and prevention of activation-induced cell death. PMID:23705768

  15. Increased Expression of FoxM1 Transcription Factor in Respiratory Epithelium Inhibits Lung Sacculation and Causes Clara Cell Hyperplasia

    Science.gov (United States)

    Wang, I-Ching; Zhang, Yufang; Snyder, Jonathan; Sutherland, Mardi J.; Burhans, Michael S.; Shannon, John M.; Park, Hyun Jung; Whitsett, Jeffrey A.; Kalinichenko, Vladimir V.

    2010-01-01

    Foxm1 is a member of the Forkhead Box (Fox) family of transcription factors. Foxm1 (previously called Foxm1b, HFH-11B, Trident, Win, or MPP2) is expressed in multiple cell types and plays important roles in cellular proliferation, differentiation and tumorigenesis. Genetic deletion of Foxm1 from mouse respiratory epithelium during initial stages of lung development inhibits lung maturation and causes respiratory failure after birth. However, the role of Foxm1 during postnatal lung morphogenesis remains unknown. In the present study, Foxm1 expression was detected in epithelial cells of conducting and peripheral airways and changing dynamically with lung maturation. To discern the biological role of Foxm1 in the prenatal and postnatal lung, a novel transgenic mouse line that expresses a constitutively active form of FoxM1 (FoxM1 N-terminal deletion mutant or FoxM1-ΔN) under the control of lung epithelial-specific SPC promoter was produced. Expression of the FoxM1-ΔN transgene during embryogenesis caused epithelial hyperplasia, inhibited lung sacculation and expression of the type II epithelial marker, pro-SPC. Expression of FoxM1-ΔN mutant during the postnatal period did not influence alveologenesis but caused focal airway hyperplasia and increased proliferation of Clara cells. Likewise, expression of FoxM1-ΔN mutant in conducting airways with Scgb1a1 promoter was sufficient to induce Clara cell hyperplasia. Furthermore, FoxM1-ΔN cooperated with activated K-Ras to induce lung tumor growth in vivo. Increased activity of Foxm1 altered lung sacculation, induced proliferation in the respiratory epithelium and accelerated lung tumor growth, indicating that precise regulation of Foxm1 is critical for normal lung morphogenesis and development of lung cancer. PMID:20816795

  16. Respiratory Syncytial Virus

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Respiratory Syncytial Virus (RSV) Credit: CDC This is the ... the United States. Why Is the Study of Respiratory Syncytial Virus (RSV) a Priority for NIAID? In ...

  17. Mouse Drawer System (MDS): An autonomous hardware for supporting mice space research

    Science.gov (United States)

    Liu, Y.; Biticchi, R.; Alberici, G.; Tenconi, C.; Cilli, M.; Fontana, V.; Cancedda, R.; Falcetti, G.

    2005-08-01

    For the scientific community the ability of flying mice under weightless conditions in space, compared to other rodents, offers many valuable advantages. These include the option of testing a wide range of wild-type and mutant animals, an increased animal number for flight, and a reduced demand on shuttle resources and crew time. In this study, we describe a spaceflight hardware for mice, the Mouse Drawer System (MDS). MDS can interface with Space Shuttle middeck and International Space Station Express Rack. It consists of Mice Chamber, Liquid Handling Subsystem, Food Delivery Subsystem, Air Conditioning Subsystem, Illumination Subsystem, Observation Subsystem and Payload Control Unit. It offers single or paired containment for 6-8 mice with a mean weight of 40 grams/mouse for a period of up to 3 months. Animal tests were conducted in a MDS breadboard to validate the biocompatibility of various subsystems. Mice survived in all tests of short and long duration. Results of blood parameters, histology and air/waste composition analysis showed that MDS subsystems meet the NIH guidelines for temperature, humidity, food and water access, air quality, odour and waste management.

  18. Respiratory physiology during early life.

    Science.gov (United States)

    Stocks, J

    1999-08-01

    Despite the rapid adaptation to extrauterine life, the respiratory system of an infant is not simply a miniaturized version of that of an adult, since the rapid somatic growth that occurs during the first year of life is accompanied by major developmental changes in respiratory physiology. The highly compliant chest wall of the infant results in relatively low transpulmonary pressures at end expiration with increased tendency of the small peripheral airways to close during tidal breathing. This not only impairs gas exchange and ventilation-perfusion balance, particularly in dependent parts of the lung, but, together with the small absolute size of the airways, renders the infant and young child particularly susceptible to airway obstruction. Premature airways are highly compliant structures compared with those of mature newborns or adults. This increased compliance can cause airway collapse, resulting in increased airways resistance, flow limitation, poor gas exchange and increased work of breathing. Although there is clear evidence that airway reactivity is present from birth, its role in wheezing lower respiratory tract illnesses in young infants may be overshadowed by pre-existing abnormalities of airway geometry and lung mechanics, or by pathological changes such as airway oedema and mucus hypersecretion. Attempts to assess age-related changes in airway reactivity or response to aerosol therapy in the very young is confounded by changes in breathing patterns and the fact that infants are preferential nose breathers. There is increasing evidence that pre-existing abnormalities of respiratory function, associated with adverse events during foetal life (including maternal smoking during pregnancy), and familial predisposition to wheezing are important determinants of wheezing illnesses during the first years of life. This emphasizes the need to identify and minimize any factors that threaten the normal development of the lung during this critical period if

  19. 4D atlas of the mouse embryo for precise morphological staging.

    Science.gov (United States)

    Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark

    2015-10-15

    After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.

  20. Centralized mouse repositories.

    Science.gov (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  1. Assessment of respiratory involvement in children with mucoplysaccharidosis using pulmonary function tests

    Directory of Open Access Journals (Sweden)

    Mona M. El Falaki

    2014-01-01

    Conclusions: Evaluation and follow up of patients with MPS using pulmonary function tests are essential to detect early involvement of respiratory system and hence start treatment for respiratory complications early in the course of the disease.

  2. Respiratory diagnostic possibilities during closed circuit anesthesia.

    Science.gov (United States)

    Verkaaik, A P; Erdmann, W

    1990-01-01

    An automatic feed back controlled totally closed circuit system (Physioflex) has been developed for quantitative practice of inhalation anesthesia and ventilation. In the circuit system the gas is moved unidirectionally around by a blower at 70 l/min. In the system four membrane chambers are integrated for ventilation. Besides end-expiratory feed back control of inhalation anesthetics, and inspiratory closed loop control of oxygen, the system offers on-line registration of flow, volume and respiratory pressures as well as a capnogram and oxygen consumption. Alveolar ventilation and static compliance can easily be derived. On-line registration of oxygen consumption has proven to be of value for determination of any impairment of tissue oxygen supply when the oxygen delivery has dropped to critical values. Obstruction of the upper or lower airways are immediately detected and differentiated. Disregulations of metabolism, e.g. in malignant hyperthermia, are seen in a pre-crisis phase (increase of oxygen consumption and of CO2 production), and therapy can be started extremely early and before a disastrous condition has developed. Registration of compliance is only one of the continuously available parameters that guarantee a better and adequate control of lung function (e.g. atalectasis is early detected). The newly developed sophisticated anesthesia device enlarges tremendously the monitoring and respiratory diagnostic possibilities of artificial ventilation, gives new insights in the (patho)physiology and detects disturbances of respiratory parameters and metabolism in an early stage.

  3. 10 CFR 850.28 - Respiratory protection.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Respiratory protection. 850.28 Section 850.28 Energy... Respiratory protection. (a) The responsible employer must establish a respiratory protection program that complies with the respiratory protection program requirements of 29 CFR 1910.134, Respiratory Protection...

  4. Respiratory viral infections in infancy and school age respiratory outcomes and healthcare costs.

    Science.gov (United States)

    MacBean, Victoria; Drysdale, Simon B; Yarzi, Muska N; Peacock, Janet L; Rafferty, Gerrard F; Greenough, Anne

    2018-03-01

    To determine the impact of viral lower respiratory tract infections (LRTIs) in infancy including rhinovirus (RV) and infancy respiratory syncytial virus (RSV), on school age pulmonary function and healthcare utilization in prematurely born children. School age respiratory outcomes would be worse and healthcare utilization greater in children who had viral LRTIs in infancy. Prospective study. A cohort of prematurely born children who had symptomatic LRTIs during infancy documented, was recalled. Pulmonary function was assessed at 5 to 7 years of age and health related costs of care from aged one to follow-up determined. Fifty-one children, median gestational age 33 +6 weeks, were assessed at a median (IQR) age 7.03 (6.37-7.26) years. Twenty-one children had no LRTI, 14 RV LRTI, 10 RSV LRTI, and 6 another viral LRTI (other LRTI). Compared to the no LRTI group, the RV group had a lower FEV 1 (P = 0.033) and the other LRTI group a lower FVC (P = 0.006). Non-respiratory medication costs were higher in the RV (P = 0.018) and RSV (P = 0.013) groups. Overall respiratory healthcare costs in the RV (£153/year) and RSV (£27/year) groups did not differ significantly from the no LRTI group (£56/year); the other LRTI group (£431/year) had higher respiratory healthcare costs (P = 0.042). In moderately prematurely born children, RV and RSV LRTIs in infancy were not associated with higher respiratory healthcare costs after infancy. Children who experienced LRTIs caused by other respiratory viruses (including RV) had higher respiratory healthcare costs and greater pulmonary function impairment. © 2018 Wiley Periodicals, Inc.

  5. Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana.

    Science.gov (United States)

    Kwofie, Theophilus B; Anane, Yaw A; Nkrumah, Bernard; Annan, Augustina; Nguah, Samuel B; Owusu, Michael

    2012-04-10

    Acute respiratory tract infections are one of the major causes of morbidity and mortality among young children in developing countries. Information on the viral aetiology of acute respiratory infections in developing countries is very limited. The study was done to identify viruses associated with acute lower respiratory tract infection among children less than 5 years. Nasopharyngeal samples and blood cultures were collected from children less than 5 years who have been hospitalized for acute lower respiratory tract infection. Viruses and bacteria were identified using Reverse Transcriptase Real-Time Polymerase Chain Reaction and conventional biochemical techniques. Out of 128 patients recruited, 33(25.88%%, 95%CI: 18.5% to 34.2%) were positive for one or more viruses. Respiratory Syncytial Virus (RSV) was detected in 18(14.1%, 95%CI: 8.5% to 21.3%) patients followed by Adenoviruses (AdV) in 13(10.2%, 95%CI: 5.5% to 16.7%), Parainfluenza (PIV type: 1, 2, 3) in 4(3.1%, 95%CI: 0.9% to 7.8%) and influenza B viruses in 1(0.8%, 95%CI: 0.0 to 4.3). Concomitant viral and bacterial co-infection occurred in two patients. There were no detectable significant differences in the clinical signs, symptoms and severity for the various pathogens isolated. A total of 61.1% (22/36) of positive viruses were detected during the rainy season and Respiratory Syncytial Virus was the most predominant. The study has demonstrated an important burden of respiratory viruses as major causes of childhood acute respiratory infection in a tertiary health institution in Ghana. The data addresses a need for more studies on viral associated respiratory tract infection.

  6. The respiratory physiotherapy causes pain in newborns? A systematic review

    Directory of Open Access Journals (Sweden)

    Camila Ferreira Zanelat

    Full Text Available Abstract Introduction: Neonatal respiratory physicaltherapy plays an important role in prevention and treatment of respiratory pathologies. In preterm neonates, immaturity of respiratory system can let development of various respiratory diseases. Meanwhile, it is discussed if respiratory physiotherapy can cause pain. Objective: Investigate presence of pain in neonates undergone to respiratory physiotherapy by a systematic review. Methods: Scientific search in electronic databases: Medline, Lilacs, Bireme, PEDro, Pubmed, Scielo and Capes thesis and dissertations base. Portuguese, English and Spanish, publication year from 2000 to 2012. Results: Thriteen studies were included, but one of them was excluded due to fulltext unavaiable. Therefore, twelve articles were included, nine (81,8% confirm pain in newborn (NB, from these, in eight (72,7% intervention was suction and in only one vibrocompression. Four articles studied term and premature newborns. Mechanical ventilatory assistance was used in seven of the studies analyzed. Conclusion: Results suggest that suction and vibrocompression were pain causers in NB. However, evidenced the necessity of well delineated methods to evaluate if physicaltherapy techniques can cause pain in neonates.

  7. Guidelines for respiratory motion management in radiation therapy

    International Nuclear Information System (INIS)

    Matsuo, Yukinori; Onishi, Hiroshi; Nakagawa, Keiichi

    2013-01-01

    Respiratory motion management (RMM) systems in external and stereotactic radiotherapies have been developed in the past two decades. Japanese medical service fee regulations introduced reimbursement for RMM from April 2012. Based on thorough discussions among the four academic societies concerned, these Guidelines have been developed to enable staff (radiation oncologists, radiological technologists, medical physicists, radiotherapy quality managers, radiation oncology nurses, and others) to apply RMM to radiation therapy for tumors subject to respiratory motion, safely and appropriately. (author)

  8. Preventive Activity against Influenza (H1N1 Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2015-09-01

    Full Text Available The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1 was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day for five days prior to infection demonstrated an antiviral activity (70% survival against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system.

  9. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Directory of Open Access Journals (Sweden)

    Hirotaka Yamamoto

    2016-01-01

    Full Text Available Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  10. The role of the local microbial ecosystem in respiratory health and disease.

    Science.gov (United States)

    de Steenhuijsen Piters, Wouter A A; Sanders, Elisabeth A M; Bogaert, Debby

    2015-08-19

    Respiratory tract infections are a major global health concern, accounting for high morbidity and mortality, especially in young children and elderly individuals. Traditionally, highly common bacterial respiratory tract infections, including otitis media and pneumonia, were thought to be caused by a limited number of pathogens including Streptococcus pneumoniae and Haemophilus influenzae. However, these pathogens are also frequently observed commensal residents of the upper respiratory tract (URT) and form-together with harmless commensal bacteria, viruses and fungi-intricate ecological networks, collectively known as the 'microbiome'. Analogous to the gut microbiome, the respiratory microbiome at equilibrium is thought to be beneficial to the host by priming the immune system and providing colonization resistance, while an imbalanced ecosystem might predispose to bacterial overgrowth and development of respiratory infections. We postulate that specific ecological perturbations of the bacterial communities in the URT can occur in response to various lifestyle or environmental effectors, leading to diminished colonization resistance, loss of containment of newly acquired or resident pathogens, preluding bacterial overgrowth, ultimately resulting in local or systemic bacterial infections. Here, we review the current body of literature regarding niche-specific upper respiratory microbiota profiles within human hosts and the changes occurring within these profiles that are associated with respiratory infections. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Impact of nasopharyngeal microbiota on the development of respiratory tract diseases.

    Science.gov (United States)

    Esposito, S; Principi, N

    2018-01-01

    Knowledge of whether and how respiratory microbiota composition can prime the immune system and provide colonisation resistance, limiting consecutive pathobiont overgrowth and infections, is essential to improving the prevention and therapy of respiratory disorders. Modulation of dysbiotic ecosystems or reconstitution of missing microbes might be a possible measure to reduce respiratory diseases. The aim of this review is to analyse the role of nasopharyngeal microbiota in the development of respiratory tract disease in paediatric-age subjects. PubMed was used to search for all studies published over the last 15 years using the following key words: "microbiota" or "microbioma" and "nasopharyngeal" or "respiratory" or "nasal" and "children" or "paediatric" or "infant". Analysis of the literature showed that respiratory microbiota can regulate health and disease development in the respiratory tract. Like the gut microbiota, the respiratory microbiota is established at birth, and early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Protective and dangerous bacteria have been identified, and this can be considered the base for developing new approaches to diseases that respond poorly to traditional interventions. Reconstitution of missing microbes can be achieved by the administration of pre- and probiotics. Modulation of respiratory microbiota by favouring colonisation of the upper respiratory tract by beneficial commensals can interfere with the proliferation and activity of resident pathobionts and is a possible new measure to reduce the risk of disease. However, further studies are needed because a deeper understanding of these and related issues can be transferred to clinical practice.

  12. Effects of air pollution on respiratory health

    Directory of Open Access Journals (Sweden)

    Hasan Bayram

    2015-01-01

    In conclusion, air pollutants can induce respiratory mortality and morbidity by leading to airway and lung inflammation and impairing the airway defence system against noxious agents and microorganisms such as mycobacteria TB.

  13. B lymphocyte lineage cells and the respiratory system

    Science.gov (United States)

    Kato, Atsushi; Hulse, Kathryn E.; Tan, Bruce K.; Schleimer, Robert P.

    2013-01-01

    Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, in tonsils and adenoid structures that make up Waldeyer’s Ring. Upon secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs such as lymph nodes that drain the upper and lower airways and further B cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease. PMID:23540615

  14. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file

    Science.gov (United States)

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-01

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases. This work was partly presented at the 58th Annual meeting of American Association of Physicists in Medicine.

  15. [Respiratory symptoms and atmospheric pollution and respiratory symptoms in the general population].

    Science.gov (United States)

    Simon, I; Charpin, D

    2010-06-01

    Epidemiological studies on air pollution have mainly been interested in the effects of short- or long-term exposure on patients suffering from respiratory illnesses. Fewer studies have addressed the acute effects of air pollution on respiratory symptoms in the general population. We conducted a review of the literature over the last 16years that has addressed the impact of atmospheric pollution on respiratory symptoms in the general population to estimate the magnitude of effect. The majority of studies demonstrated a significant association between exposure to air pollutants and the occurrence of respiratory symptoms, without any threshold. Although a link between atmospheric pollution and respiratory symptoms has been demonstrated, knowledge of the effects of specific air pollutants and the effect of pollution on particular vulnerable groups (infants, young children, the elderly) is still limited. There is a need for further studies in this area. Copyright 2010 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  16. School absence and treatment in school children with respiratory symptoms in the Netherlands: Data from the Child Health Monitoring System

    NARCIS (Netherlands)

    Spee-van Der Wekke, J.; Meulmeester, J.F.; Radder, J.J.; Verloove-Vanhorick, S.P.

    1998-01-01

    Study objective - To assess the prevalence of respiratory problems, and the relation of these problems with school attendance, medicine use, and medical treatment. Design - The Child Health Monitoring System. Setting - Nineteen public health services across the Netherlands. Participants - 5186

  17. Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana

    Directory of Open Access Journals (Sweden)

    Kwofie Theophilus B

    2012-04-01

    Full Text Available Abstract Background Acute respiratory tract infections are one of the major causes of morbidity and mortality among young children in developing countries. Information on the viral aetiology of acute respiratory infections in developing countries is very limited. The study was done to identify viruses associated with acute lower respiratory tract infection among children less than 5 years. Method Nasopharyngeal samples and blood cultures were collected from children less than 5 years who have been hospitalized for acute lower respiratory tract infection. Viruses and bacteria were identified using Reverse Transcriptase Real-Time Polymerase Chain Reaction and conventional biochemical techniques. Results Out of 128 patients recruited, 33(25.88%%, 95%CI: 18.5% to 34.2% were positive for one or more viruses. Respiratory Syncytial Virus (RSV was detected in 18(14.1%, 95%CI: 8.5% to 21.3% patients followed by Adenoviruses (AdV in 13(10.2%, 95%CI: 5.5% to 16.7%, Parainfluenza (PIV type: 1, 2, 3 in 4(3.1%, 95%CI: 0.9% to 7.8% and influenza B viruses in 1(0.8%, 95%CI: 0.0 to 4.3. Concomitant viral and bacterial co-infection occurred in two patients. There were no detectable significant differences in the clinical signs, symptoms and severity for the various pathogens isolated. A total of 61.1% (22/36 of positive viruses were detected during the rainy season and Respiratory Syncytial Virus was the most predominant. Conclusion The study has demonstrated an important burden of respiratory viruses as major causes of childhood acute respiratory infection in a tertiary health institution in Ghana. The data addresses a need for more studies on viral associated respiratory tract infection.

  18. Dose profile measurements during respiratory-gated lung stereotactic radiotherapy: A phantom study

    International Nuclear Information System (INIS)

    Jong, W L; Ung, N M; Wong, J H D; Ng, K H

    2016-01-01

    During stereotactic body radiotherapy, high radiation dose (∼60 Gy) is delivered to the tumour in small fractionation regime. In this study, the dosimetric characteristics were studied using radiochromic film during respiratory-gated and non-gated lung stereotactic body radiotherapy (SBRT). Specifically, the effect of respiratory cycle and amplitude, as well as gating window on the dosimetry were studied. In this study, the dose profiles along the irradiated area were measured. The dose profiles for respiratory-gated radiation delivery with different respiratory or tumour motion amplitudes, gating windows and respiratory time per cycle were in agreement with static radiation delivery. The respiratory gating system was able to deliver the radiation dose accurately (±1.05 mm) in the longitudinal direction. Although the treatment time for respiratory-gated SBRT was prolonged, this approach can potentially reduce the margin for internal tumour volume without compromising the tumour coverage. In addition, the normal tissue sparing effect can be improved. (paper)

  19. A Wireless Electronic Esophageal Stethoscope for Continuous Monitoring of Cardiovascular and Respiratory Systems during Anaesthesia

    Directory of Open Access Journals (Sweden)

    Parsaei H.

    2017-03-01

    Full Text Available Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan.

  20. A Wireless Electronic Esophageal Stethoscope for Continuous Monitoring of Cardiovascular and Respiratory Systems during Anaesthesia

    Science.gov (United States)

    Parsaei, H.; Vakily, A.; Shafiei, A.M.

    2017-01-01

    Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan. PMID:28451580

  1. Potential impact of fireworks on respiratory health

    Science.gov (United States)

    Gouder, Caroline; Montefort, Stephen

    2014-01-01

    The world-wide use of fireworks with their consequent detrimental effect on the air quality is widely recognized with elevated ambient air levels of particulate matter and its several metallic components and gases identified in several studies carried out during such events. Exposed individuals may be at risk following inhalation of such produced pollutants. This review focuses on the impact of fireworks on air quality and the potential effect of fireworks on the respiratory system of healthy individuals as well as those suffering from underlying respiratory diseases, particularly asthma and chronic obstructive pulmonary disease (COPD). This applies not only to spectators including children but also to pyrotechnicians themselves. An extensive Medline search revealed that a strong evidence of the impact of fireworks on respiratory health is lacking in susceptible as well as healthy individuals with no formal studies on COPD or asthma, other than a few case reports in the latter. The implementation of global strategies to control the use of fireworks and hence improve air quality could possibly reduce their likely detrimental effect on human respiratory health in exposed individuals, but clearly a more targeted research is needed. PMID:25378846

  2. Ocular Tropism of Respiratory Viruses

    Science.gov (United States)

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  3. Oligonucleotide Therapy for Obstructive and Restrictive Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Wupeng Liao

    2017-01-01

    Full Text Available Inhaled oligonucleotide is an emerging therapeutic modality for various common respiratory diseases, including obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD and restrictive airway diseases like idiopathic pulmonary fibrosis (IPF. The advantage of direct accessibility for oligonucleotide molecules to the lung target sites, bypassing systemic administration, makes this therapeutic approach promising with minimized potential systemic side effects. Asthma, COPD, and IPF are common chronic respiratory diseases, characterized by persistent airway inflammation and dysregulated tissue repair and remodeling, although each individual disease has its unique etiology. Corticosteroids have been widely prescribed for the treatment of asthma, COPD, and IPF. However, the effectiveness of corticosteroids as an anti-inflammatory drug is limited by steroid resistance in severe asthma, the majority of COPD cases, and pulmonary fibrosis. There is an urgent medical need to develop target-specific drugs for the treatment of these respiratory conditions. Oligonucleotide therapies, including antisense oligonucleotide (ASO, small interfering RNA (siRNA, and microRNA (miRNA are now being evaluated both pre-clinically and clinically as potential therapeutics. The mechanisms of action of ASO and siRNA are highly target mRNA specific, ultimately leading to target protein knockdown. miRNA has both biomarker and therapeutic values, and its knockdown by a miRNA antagonist (antagomir has a broader but potentially more non-specific biological outcome. This review will compile the current findings of oligonucleotide therapeutic targets, verified in various respiratory disease models and in clinical trials, and evaluate different chemical modification approaches to improve the stability and potency of oligonucleotides for the treatment of respiratory diseases.

  4. Detecting regional lung properties using audio transfer functions of the respiratory system.

    Science.gov (United States)

    Mulligan, K; Adler, A; Goubran, R

    2009-01-01

    In this study, a novel instrument has been developed for measuring changes in the distribution of lung fluid the respiratory system. The instrument consists of a speaker that inputs a 0-4kHz White Gaussian Noise (WGN) signal into a patient's mouth and an array of 4 electronic stethoscopes, linked via a fully adjustable harness, used to recover signals on the chest surface. The software system for processing the data utilizes the principles of adaptive filtering in order to obtain a transfer function that represents the input-output relationship for the signal as the volume of fluid in the lungs is varied. A chest phantom model was constructed to simulate the behavior of fluid related diseases within the lungs through the injection of varying volumes of water. Tests from the phantom model were compared to healthy subjects. Results show the instrument can obtain similar transfer functions and sound propagation delays between both human and phantom chests.

  5. Estimating intratidal nonlinearity of respiratory system mechanics: a model study using the enhanced gliding-SLICE method

    International Nuclear Information System (INIS)

    Schumann, Stefan; Burcza, Boris; Guttmann, Josef; Haberthür, Christoph; Lichtwarck-Aschoff, Michael

    2009-01-01

    In the clinical situation and in most research work, the analysis of respiratory system mechanics is limited to the estimation of single-value compliances during static or quasi-static conditions. In contrast, our SLICE method analyses intratidal nonlinearity under the dynamic conditions of mechanical ventilation by calculating compliance and resistance for six conjoined volume portions (slices) of the pressure–volume loop by multiple linear regression analysis. With the gliding-SLICE method we present a new approach to determine continuous intratidal nonlinear compliance. The performance of the gliding-SLICE method was tested both in computer simulations and in a physical model of the lung, both simulating different intratidal compliance profiles. Compared to the original SLICE method, the gliding-SLICE method resulted in smaller errors when calculating the compliance or pressure course (all p 2 O s L −1 to 0.8 ± 0.3 cmH 2 O s L −1 (mathematical model) and from 7.2 ± 3.9 cmH 2 O s L −1 to 0.4 ± 0.2 cmH 2 O s L −1 (physical model) (all p < 0.001). We conclude that the new gliding-SLICE method allows detailed assessment of intratidal nonlinear respiratory system mechanics without discontinuity error

  6. Effects on respiratory system due to exposure to wheat flour

    Directory of Open Access Journals (Sweden)

    Adel Mohammed Said

    2017-07-01

    Conclusions: Exposure to wheat flour increases the risk of developing respiratory symptoms; it also causes reduction in the pulmonary function parameters, as regards spirometry and DLCOSB. Exposure to wheat flour causes interstitial lung disease as detected by HRCT chest. Smoking augments the wheat flour induced lung disease.

  7. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system.

    Science.gov (United States)

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-09-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. © 2013 Anatomical Society.

  8. High-throughput mouse genotyping using robotics automation.

    Science.gov (United States)

    Linask, Kaari L; Lo, Cecilia W

    2005-02-01

    The use of mouse models is rapidly expanding in biomedical research. This has dictated the need for the rapid genotyping of mutant mouse colonies for more efficient utilization of animal holding space. We have established a high-throughput protocol for mouse genotyping using two robotics workstations: a liquid-handling robot to assemble PCR and a microfluidics electrophoresis robot for PCR product analysis. This dual-robotics setup incurs lower start-up costs than a fully automated system while still minimizing human intervention. Essential to this automation scheme is the construction of a database containing customized scripts for programming the robotics workstations. Using these scripts and the robotics systems, multiple combinations of genotyping reactions can be assembled simultaneously, allowing even complex genotyping data to be generated rapidly with consistency and accuracy. A detailed protocol, database, scripts, and additional background information are available at http://dir.nhlbi.nih.gov/labs/ldb-chd/autogene/.

  9. Chronic coffee consumption and respiratory disease: A systematic review.

    Science.gov (United States)

    Alfaro, Tiago M; Monteiro, Rita A; Cunha, Rodrigo A; Cordeiro, Carlos Robalo

    2018-03-01

    The widespread consumption of coffee means that any biological effects from its use can lead to significant public health consequences. Chronic pulmonary diseases are extremely prevalent and responsible for one of every six deaths on a global level. Major medical databases for studies reporting on the effects of coffee or caffeine consumption on a wide range of non-malignant respiratory outcomes, including incidence, prevalence, evolution or severity of respiratory disease in adults were searched. Studies on lung function and respiratory mortality were also considered. Fifteen studies, including seven cohort, six cross-sectional, one case control and one randomized control trial were found. Coffee consumption was generally associated with a reduction in prevalence of asthma. The association of coffee with natural honey was an effective treatment for persistent post-infectious cough. One case-control study found higher risk of chronic obstructive pulmonary disease (COPD) with coffee consumption. No association was found with the evolution of COPD or sarcoidosis. Coffee was associated with a reduction in respiratory mortality, and one study found improved lung function in coffee consumers. Smoking was a significant confounder in most studies. Coffee consumption was associated with some positive effects on the respiratory system. There was however limited available evidence, mostly from cross sectional and retrospective studies. The only prospective cohort studies were those reporting on respiratory mortality. These results suggest that coffee consumption may be a part of a healthy lifestyle leading to reduced respiratory morbidity. © 2017 John Wiley & Sons Ltd.

  10. RESPIRATORY GYMNASTICS AS A REHABILITATION MEANS FOR THE PRESCHOOL CHILDREN WITH THE RESPIRATORY PATHOLOGY

    Directory of Open Access Journals (Sweden)

    T.A. Shemyakina

    2007-01-01

    Full Text Available The researchers analyzed the efficacy of the new medical technology aimed at rehabilitation of the preschool children with the respiratory pathology. 177 children aged between 2 and 7 with recurrent respiratory diseases, bronchial asthma or chronic pathology of the end organs have been examined for 9 months. It was uncovered that among children (n = 90, who performed the sets of the therapeutic physical training and respiratory gymnastics according to the methods developed by the authors, the recurrence of the acute respiratory diseases and exacerbations of bronchial asthma was lower by 1,83 and 1,86 timers respectively. Besides, among children of this group the researchers noted the significant improvement of the physical qualities, spirometric indices and cytological picture of the substance removed from the nasal cavity if compared with the children from the screening group (n = 87, who performed the sets of the conventional gymnastics at the physical training lessons. Thus, the researchers proved the high efficacy of the proposed technology for the rehabilitation of the children, suffering from the chronic respiratory pathology.Key words: acute respiratory diseases, asthma, therapeutic physical training, respiratory gymnastics, children.

  11. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  12. [Study of etiologic factors of infectious diseases of respiratory tract in school-age children during period of remission of a respiratory disease].

    Science.gov (United States)

    Maĭorov, R V; Chereshneva, M V; Chereshnev, V A

    2013-01-01

    Detect features of microflora of upper respiratory tract on the example of flora of palatine tonsils and level of antibodies against intracellular parasites as markers of etiologic factors of respiratory infections in school-age children in remission period. 466 children from frequently and episodically ill groups were examined. Bacteriologic study of smears from the surface of palatine tonsils was carried out in all the children. By using EIA with the corresponding commercial test systems IgG level against Herpes simplex virus, Cytomegalovirus, Chlamydophila pneumoniae, Mycoplasma pneumoniae, Human respiratory syncytial virus was determined in blood sera according to instruction manual. During remission period of infectious process in the structure of microflora of upper respiratory tract in frequently ill children characteristic differences from their episodically ill peers were detected. In children with frequent respiratory infections a higher occurrence of antibodies against intracellular causative agents of these diseases was also detected. In the group of frequently ill, a direct correlation between frequency of infectious diseases of respiratory tract and occurrence of carriage of pathogenic and opportunistic microorgan isms as well as increase of antibodies against Herpesviridae, Cytomegalovirus, C. pneumoniae and M. pneumoniae was detected. Higher occurrence ofintra- and extra-cellular infectious agents as well as their associations may be considered as one of the reasons of insufficient effectiveness of prophylaxis measures in frequently ill children.

  13. Administration of Rhodiola kirilowii Extracts during Mouse Pregnancy and Lactation Stimulates Innate but Not Adaptive Immunity of the Offspring

    Directory of Open Access Journals (Sweden)

    Sławomir Lewicki

    2017-01-01

    Full Text Available The use of antibiotics during pregnancy and lactation is associated with an increased risk of developmental disorders. One of the natural medicinal plants—Rhodiola kirilowii, widely used as an immunostimulant in adults—might be a good alternative to antibiotic treatment. The aim of present study was to assess whether daily oral administration of 20 mg/kg of Rhodiola kirilowii aqueous (RKW or 50% hydroalcoholic (RKW-A extracts affected hematological and immunological parameters of 6-week-old mouse progeny. There was no significant change in hematological parameters of blood with the exception of hemoglobin, which was significantly higher (about 4% in RKW group. Offspring of mothers fed Rhodiola kirilowii extracts had increased percentage of granulocytes and decreased percentage of lymphocytes. These changes correlated with decreased percentage of CD3+/CD4+ T-cells (RKW and RKW-A, decrease of CD8+ cells, and increase percentage of NK cells in RKW group. In addition, both types of Rhodiola kirilowii extracts stimulated granulocyte phagocytosis and increased level of respiratory burst. In conclusion, the long-term supplementation of mouse mothers during pregnancy and lactation with RKW or RKW-A extracts affects the immune system of their progeny. These results should be taken into consideration before administration of Rhodiola kirilowii to pregnant and lactating women.

  14. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    Science.gov (United States)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  15. Management of the baseline shift using a new and simple method for respiratory-gated radiation therapy: Detectability and effectiveness of a flexible monitoring system

    International Nuclear Information System (INIS)

    Tachibana, Hidenobu; Kitamura, Nozomi; Ito, Yasushi; Kawai, Daisuke; Nakajima, Masaru; Tsuda, Akihisa; Shiizuka, Hisao

    2011-01-01

    Purpose: In respiratory-gated radiation therapy, a baseline shift decreases the accuracy of target coverage and organs at risk (OAR) sparing. The effectiveness of audio-feedback and audio-visual feedback in correcting the baseline shift in the breathing pattern of the patient has been demonstrated previously. However, the baseline shift derived from the intrafraction motion of the patient's body cannot be corrected by these methods. In the present study, the authors designed and developed a simple and flexible system. Methods: The system consisted of a web camera and a computer running our in-house software. The in-house software was adapted to template matching and also to no preimage processing. The system was capable of monitoring the baseline shift in the intrafraction motion of the patient's body. Another marker box was used to monitor the baseline shift due to the flexible setups required of a marker box for gated signals. The system accuracy was evaluated by employing a respiratory motion phantom and was found to be within AAPM Task Group 142 tolerance (positional accuracy <2 mm and temporal accuracy <100 ms) for respiratory-gated radiation therapy. Additionally, the effectiveness of this flexible and independent system in gated treatment was investigated in healthy volunteers, in terms of the results from the differences in the baseline shift detectable between the marker positions, which the authors evaluated statistically. Results: The movement of the marker on the sternum [1.599 ± 0.622 mm (1 SD)] was substantially decreased as compared with the abdomen [6.547 ± 0.962 mm (1 SD)]. Additionally, in all of the volunteers, the baseline shifts for the sternum [-0.136 ± 0.868 (2 SD)] were in better agreement with the nominal baseline shifts than was the case for the abdomen [-0.722 ± 1.56 mm (2 SD)]. The baseline shifts could be accurately measured and detected using the monitoring system, which could acquire the movement of the marker on the sternum. The

  16. A chest radiograph scoring system in patients with severe acute respiratory infection: a validation study

    International Nuclear Information System (INIS)

    Taylor, Emma; Haven, Kathryn; Reed, Peter; Bissielo, Ange; Harvey, Dave; McArthur, Colin; Bringans, Cameron; Freundlich, Simone; Ingram, R. Joan H.; Perry, David; Wilson, Francessa; Milne, David; Modahl, Lucy; Huang, Q. Sue; Gross, Diane; Widdowson, Marc-Alain; Grant, Cameron C.

    2015-01-01

    The term severe acute respiratory infection (SARI) encompasses a heterogeneous group of respiratory illnesses. Grading the severity of SARI is currently reliant on indirect disease severity measures such as respiratory and heart rate, and the need for oxygen or intensive care. With the lungs being the primary organ system involved in SARI, chest radiographs (CXRs) are potentially useful for describing disease severity. Our objective was to develop and validate a SARI CXR severity scoring system. We completed validation within an active SARI surveillance project, with SARI defined using the World Health Organization case definition of an acute respiratory infection with a history of fever, or measured fever of ≥ 38 °C; and cough; and with onset within the last 10 days; and requiring hospital admission. We randomly selected 250 SARI cases. Admission CXR findings were categorized as: 1 = normal; 2 = patchy atelectasis and/or hyperinflation and/or bronchial wall thickening; 3 = focal consolidation; 4 = multifocal consolidation; and 5 = diffuse alveolar changes. Initially, four radiologists scored CXRs independently. Subsequently, a pediatrician, physician, two residents, two medical students, and a research nurse independently scored CXR reports. Inter-observer reliability was determined using a weighted Kappa (κ) for comparisons between radiologists; radiologists and clinicians; and clinicians. Agreement was defined as moderate (κ > 0.4–0.6), good (κ > 0.6–0.8) and very good (κ > 0.8–1.0). Agreement between the two pediatric radiologists was very good (κ = 0.83, 95 % CI 0.65–1.00) and between the two adult radiologists was good (κ = 0.75, 95 % CI 0.57–0. 93). Agreement of the clinicians with the radiologists was moderate-to-good (pediatrician:κ = 0.65; pediatric resident:κ = 0.69; physician:κ = 0.68; resident:κ = 0.67; research nurse:κ = 0.49, medical students: κ = 0.53 and κ = 0.56). Agreement between clinicians was good-to-very good

  17. TH-E-17A-01: Internal Respiratory Surrogate for 4D CT Using Fourier Transform and Anatomical Features

    Energy Technology Data Exchange (ETDEWEB)

    Hui, C; Suh, Y; Robertson, D; Pan, T; Das, P; Crane, C; Beddar, S [MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: To develop a novel algorithm to generate internal respiratory signals for sorting of four-dimensional (4D) computed tomography (CT) images. Methods: The proposed algorithm extracted multiple time resolved features as potential respiratory signals. These features were taken from the 4D CT images and its Fourier transformed space. Several low-frequency locations in the Fourier space and selected anatomical features from the images were used as potential respiratory signals. A clustering algorithm was then used to search for the group of appropriate potential respiratory signals. The chosen signals were then normalized and averaged to form the final internal respiratory signal. Performance of the algorithm was tested in 50 4D CT data sets and results were compared with external signals from the real-time position management (RPM) system. Results: In almost all cases, the proposed algorithm generated internal respiratory signals that visibly matched the external respiratory signals from the RPM system. On average, the end inspiration times calculated by the proposed algorithm were within 0.1 s of those given by the RPM system. Less than 3% of the calculated end inspiration times were more than one time frame away from those given by the RPM system. In 3 out of the 50 cases, the proposed algorithm generated internal respiratory signals that were significantly smoother than the RPM signals. In these cases, images sorted using the internal respiratory signals showed fewer artifacts in locations corresponding to the discrepancy in the internal and external respiratory signals. Conclusion: We developed a robust algorithm that generates internal respiratory signals from 4D CT images. In some cases, it even showed the potential to outperform the RPM system. The proposed algorithm is completely automatic and generally takes less than 2 min to process. It can be easily implemented into the clinic and can potentially replace the use of external surrogates.

  18. TH-E-17A-01: Internal Respiratory Surrogate for 4D CT Using Fourier Transform and Anatomical Features

    International Nuclear Information System (INIS)

    Hui, C; Suh, Y; Robertson, D; Pan, T; Das, P; Crane, C; Beddar, S

    2014-01-01

    Purpose: To develop a novel algorithm to generate internal respiratory signals for sorting of four-dimensional (4D) computed tomography (CT) images. Methods: The proposed algorithm extracted multiple time resolved features as potential respiratory signals. These features were taken from the 4D CT images and its Fourier transformed space. Several low-frequency locations in the Fourier space and selected anatomical features from the images were used as potential respiratory signals. A clustering algorithm was then used to search for the group of appropriate potential respiratory signals. The chosen signals were then normalized and averaged to form the final internal respiratory signal. Performance of the algorithm was tested in 50 4D CT data sets and results were compared with external signals from the real-time position management (RPM) system. Results: In almost all cases, the proposed algorithm generated internal respiratory signals that visibly matched the external respiratory signals from the RPM system. On average, the end inspiration times calculated by the proposed algorithm were within 0.1 s of those given by the RPM system. Less than 3% of the calculated end inspiration times were more than one time frame away from those given by the RPM system. In 3 out of the 50 cases, the proposed algorithm generated internal respiratory signals that were significantly smoother than the RPM signals. In these cases, images sorted using the internal respiratory signals showed fewer artifacts in locations corresponding to the discrepancy in the internal and external respiratory signals. Conclusion: We developed a robust algorithm that generates internal respiratory signals from 4D CT images. In some cases, it even showed the potential to outperform the RPM system. The proposed algorithm is completely automatic and generally takes less than 2 min to process. It can be easily implemented into the clinic and can potentially replace the use of external surrogates

  19. Genetic deficiency of GABA differentially regulates respiratory and non-respiratory motor neuron development.

    Directory of Open Access Journals (Sweden)

    Matthew J Fogarty

    Full Text Available Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E day 13 and birth (postnatal day 0. Our previous work on mice lacking glycinergic transmission suggested that altered motor neuron activity levels correspondingly regulated motor neuron survival and muscle innervation for all respiratory and non respiratory motor neuron pools, during this period of development [1]. To determine if GABAergic transmission plays a similar role, we quantified motor neuron number and the extent of muscle innervation in four distinct regions of the brain stem and spinal cord; hypoglossal, phrenic, brachial and lumbar motor pools, in mice lacking the enzyme GAD67. These mice display a 90% drop in CNS GABA levels ( [2]; this study. For respiratory-based motor neurons (hypoglossal and phrenic motor pools, we have observed significant drops in motor neuron number (17% decline for hypoglossal and 23% decline for phrenic and muscle innervations (55% decrease. By contrast for non-respiratory motor neurons of the brachial lateral motor column, we have observed an increase in motor neuron number (43% increase and muscle innervations (99% increase; however for more caudally located motor neurons within the lumbar lateral motor column, we observed no change in either neuron number or muscle innervation. These results show in mice lacking physiological levels of GABA, there are distinct regional changes in motor neuron number and muscle innervation, which appear to be linked to their physiological function and to their rostral-caudal position within the developing spinal cord. Our results also suggest that for more caudal (lumbar regions of the spinal cord, the effect of GABA is less influential on motor neuron development compared to

  20. Modifications of the National Early Warning Score for patients with chronic respiratory disease

    DEFF Research Database (Denmark)

    Pedersen, N. E.; Rasmussen, L. S.; Petersen, J. A.

    2018-01-01

    System (CROS), the Chronic Respiratory Early Warning Score (CREWS) and the Salford NEWS (S-NEWS) affected NEWS total scores and NEWS performance. METHODS: In an observational study, we included patients with chronic respiratory disease. The frequency of use of CROS and the NEWS total score changes caused...... and specialist consultation' total score intervals to lower intervals. CONCLUSION: Capital Region of Denmark NEWS Override System was frequently used in patients with chronic respiratory disease. CROS, CREWS and S-NEWS reduced sensitivity for 48-h mortality and ICU admission. Using the methodology prevalent......BACKGROUND: The National Early Warning Score (NEWS) uses physiological variables to detect deterioration in hospitalized patients. However, patients with chronic respiratory disease may have abnormal variables not requiring interventions. We studied how the Capital Region of Denmark NEWS Override...

  1. Accuracy of pulmonary auscultation to detect abnormal respiratory mechanics: a cross-sectional diagnostic study.

    Science.gov (United States)

    Xavier, Glaciele Nascimento; Duarte, Antonio Carlos Magalhães; Melo-Silva, César Augusto; dos Santos, Carlos Eduardo Ventura Gaio; Amado, Veronica Moreira

    2014-12-01

    Pulmonary auscultation is a method used in clinical practice for the evaluation and detection of abnormalities relating to the respiratory system. This method has limitations, as it depends on the experience and hearing acuity of the examiner to determine adventitious sounds. In this context, it's important to analyze whether there is a correlation between auscultation of lung sounds and the behavior of the respiratory mechanical properties of the respiratory system in patients with immediate postoperative cardiac surgery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Respiratory muscle involvement in sarcoidosis.

    Science.gov (United States)

    Schreiber, Tina; Windisch, Wolfram

    2018-07-01

    In sarcoidosis, muscle involvement is common, but mostly asymptomatic. Currently, little is known about respiratory muscle and diaphragm involvement and function in patients with sarcoidosis. Reduced inspiratory muscle strength and/or a reduced diaphragm function may contribute to exertional dyspnea, fatigue and reduced health-related quality of life. Previous studies using volitional and non-volitional tests demonstrated a reduced inspiratory muscle strength in sarcoidosis compared to control subjects, and also showed that respiratory muscle function may even be significantly impaired in a subset of patients. Areas covered: This review examines the evidence on respiratory muscle involvement and its implications in sarcoidosis with emphasis on pathogenesis, diagnosis and treatment of respiratory muscle dysfunction. The presented evidence was identified by a literature search performed in PubMed and Medline for articles about respiratory and skeletal muscle function in sarcoidosis through to January 2018. Expert commentary: Respiratory muscle involvement in sarcoidosis is an underdiagnosed condition, which may have an important impact on dyspnea and health-related quality of life. Further studies are needed to understand the etiology, pathogenesis and extent of respiratory muscle involvement in sarcoidosis.

  3. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Miriam Kron

    2014-09-01

    Full Text Available Reduced levels of brain-derived neurotrophic factor (BDNF are thought to contribute to the pathophysiology of Rett syndrome (RTT, a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2. In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to

  4. SU-F-J-129: Verification of Geometric and Dosimetric Accuracy of Respiratory Management Systems Using Homemade Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Goksel, E; Kucucuk, H; Senkesen, O [Acibadem Kozyatgi Hospital, Istanbul (Turkey); Tezcanli, E [Acibadem University, Istanbul (Turkey)

    2016-06-15

    Purpose: Different placements of Infrared Cameras (IRC) in CT and treatment rooms can cause gating window level (GWL) variations leading to differences between GWL used for planning and treatments. Although, Varian Clinac DHX-OBI sytem and CT are equipped with the same kind of IRC, Truebeam STx (TB) has a different type of IRC known as banana type. In this study; geometric and dosimetric accuracy of respiratory management system (RPM) for different machines were investigated with a special homemade phantom. Methods: Special phantom was placed on the respiratory simulator machine and a CT data set was obtained at the end of the expirium phase (EOE). Conformal and IMRT plans were generated on the EOE CT image series for both DHX-OBI and TB LINACs while a VMAT plan was generated only for TB.The acquired respiratory graphs in the CT were directly sent to DHX-OBI system, and they were converted with software before sending to TB. EBT3 films were placed inside the phantom and were irradiated using RPM system with two machines for different plans. Planar dose distributions were compared with gamma analysis (GA) method (3mm, %3) to evaluate planned-measured dose differences. In addition, radio-opac marker was placed in the center of the phantom to evaluate the geometric accuracy of treatment field with gated flouroscopy (GF). Results: There were no shifts detected between planning and treeatment GWL for both DHX-OBI and TB. Difference on the GF image between digital graticule and radio-opac marker was <1mm for TB and 1mm for DHX-OBI. Although, GA agreement was 97% for conformal and IMRT techniques in TB, it was 96% for VMAT technique. While GA agreement was 98% for conformal technique in DHX-OBI, IMRT was 95%.ConclusionThis study showed that RPM can be used accurately in spite of different IRC placements or different types of ICR used.

  5. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  6. Respiratory monitor system for 4D CT image acquisition based on accelerometer. Design and implementation; Sistema de monitorizacion respiratoria para adquisicion de imagenes 4D de TC basado en un acelerometro. Diseno e implementacion

    Energy Technology Data Exchange (ETDEWEB)

    Llorente Manso, M.; Vivela Serrano, S.; Viera Jorge, J. C.; Garran del Rio, C.; Ferrer Gracia, C.; Carballo Gonzalez, N.

    2013-07-01

    The use of 4D CT images in Radiotherapy planning is increasing. Some commercial systems use abdominal movement to correlate images with respiratory phase. An in-house developed system based on an accelerometer to register patient's abdominal movement and a software to group 4D images in their corresponding respiratory phase is presented. A phantom test evaluates the capacity of the system to properly identify respiratory phases. A volunteers study compares breathing curves acquired by the accelerometer with those obtained using a commercial system. In the phantom images, maximum difference between real and calculated phase is 0.2 s. In the volunteer study, position of the curve maxima found by both systems differs, on average, around 2% (SD=2%) of the respiratory cycle period when volunteer's breathing is regular. Only when breathe is very irregular, differences of up to 10% in the phase assignment are found. (Author)

  7. [Analogies between heart and respiratory muscle failure. Importance to clinical practice].

    Science.gov (United States)

    Köhler, D

    2009-01-01

    Heart failure is an established diagnosis. Respiratory muscle or ventilatory pump failure, however, is less well known. The latter becomes obvious through hypercapnia, caused by hypoventilation. The respiratory centre tunes into hypercapnea in order to prevent the danger of respiratory muscle overload (hypercapnic ventilatory failure). Hypoventilation will consecutively cause hypoxemia but this will not be responsible for performance limitation. One therefore has to distinguish primary hypoxemia evolving from diseases in the lung parenchyma. Here hypoxemia is the key feature and compensatory hyperventilation usually decreases PaCO2 levels. The cardiac as well as the respiratory pump adapt to an inevitable burden caused by chronic disease. In either case organ muscle mass will increase. If the burden exceeds the range of possible physiological adaptation, compensatory mechanisms will set in that are similar in both instances. During periods of overload either muscle system is mainly fueled by muscular glycogen. In the recovery phase (e. g. during sleep) stores are replenished, which can be recognized by down-regulation of the blood pressure in case of the cardiac pumb or by augmentation of hypercapnia through hypoventilation in case of the respiratory pump. The main function of cardiac and respiratory pump is maintenance of oxygen transport. The human body has developed certain compensatory mechanisms to adapt to insufficient oxygen supply especially during periods of overload. These mechanisms include shift of the oxygen binding curve, expression of respiratory chain isoenzymes capable of producing ATP at lower partial pressures of oxygen and the development of polyglobulia. Medically or pharmacologically the cardiac pump can be unloaded with beta blockers, the respiratory pump by application of inspired oxygen. Newer forms of therapy augment the process of recovery. The heart can be supported through bypass surgery or intravascular pump systems, while respiratory

  8. The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus.

    Science.gov (United States)

    Xu, Lili; Bao, Linlin; Deng, Wei; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Yong, Weidong; Wei, Qiang; Zhang, Lianfeng; Qin, Chuan

    2013-08-08

    The current study was conducted to establish animal models (including mouse and ferret) for the novel avian-origin H7N9 influenza virus. A/Anhui/1/2013 (H7N9) virus was administered by intranasal instillation to groups of mice and ferrets, and animals developed typical clinical signs including body weight loss (mice and ferrets), ruffled fur (mice), sneezing (ferrets), and death (mice). Peak virus shedding from respiratory tract was observed on 2 days post inoculation (d.p.i.) for mice and 3-5 d.p.i. for ferrets. Virus could also be detected in brain, liver, spleen, kidney, and intestine from inoculated mice, and in heart, liver, and olfactory bulb from inoculated ferrets. The inoculation of H7N9 could elicit seroconversion titers up to 1280 in ferrets and 160 in mice. Leukopenia, significantly reduced lymphocytes but increased neutrophils were also observed in mouse and ferret models. The mouse and ferret model enables detailed studies of the pathogenesis of this illness and lay the foundation for drug or vaccine evaluation.

  9. Nitric oxide in health and disease of the respiratory system

    NARCIS (Netherlands)

    Ricciardolo, Fabio L. M.; Sterk, Peter J.; Gaston, Benjamin; Folkerts, Gert

    2004-01-01

    During the past decade a plethora of studies have unravelled the multiple roles of nitric oxide (NO) in airway physiology and pathophysiology. In the respiratory tract, NO is produced by a wide variety of cell types and is generated via oxidation of l-arginine that is catalyzed by the enzyme NO

  10. Respiratory and cardiac motion correction in dual gated PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi; Monnier, Florian [LaTIM, INSERM, UMR 1101, Brest (France); Odille, Freedy; Felblinger, Jacques [INSERM U947, University of Nancy, Nancy (France); Lamare, Frederic [INCIA, UMR5287, CNRS, CHU Bordeaux, Bordeaux (France); Visvikis, Dimitris [LaTIM, INSERM, UMR 1101, Brest (France)

    2015-05-18

    Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reconstruction by inversion of coupled systems (GRICS) approach, previously used for PET/MR respiratory motion correction, combined with a cardiac phase signal and a reconstruction incorporated PET motion correction approach in order to reconstruct motion free images from dual gated PET acquisitions. The GRICS method consists of formulating parallel MRI in the presence of patient motion as a coupled inverse problem. Its resolution, using a fixed-point method, allows the reconstructed image to be improved using a motion model constructed from the raw MR data and two respiratory belts. GRICS obtained respiratory displacements are interpolated using the cardiac phase derived from an ECG to model simultaneous cardiac and respiratory motion. Three different volunteer datasets (4DMR acquisitions) were used for evaluation. GATE was used to simulate 4DPET datasets corresponding to the acquired 4DMR images. Simulated data were subsequently binned using 16 cardiac phases (M1) vs diastole only (M2), in combination with 8 respiratory amplitude gates. Respiratory and cardiac motion corrected PET images using either M1 or M2 were compared to respiratory only corrected images and evaluated in terms of SNR and contrast improvement. Significant visual improvements were obtained when correcting simultaneously for respiratory and cardiac motion (using 16 cardiac phase or diastole only) compared to respiratory motion only compensation. Results were confirmed by an associated increased SNR and contrast. Results indicate that using GRICS is an efficient tool for respiratory and cardiac motion correction in dual gated PET/MR imaging.

  11. Short-term respiratory effects of cleaning exposures in female domestic cleaners.

    Science.gov (United States)

    Medina-Ramón, M; Zock, J P; Kogevinas, M; Sunyer, J; Basagaña, X; Schwartz, J; Burge, P S; Moore, V; Antó, J M

    2006-06-01

    Symptoms of obstructive lung disease in domestic cleaners have been related to the use of bleach and other irritant cleaning products. The short-term effects of cleaning exposures on respiratory symptoms and peak expiratory flow (PEF) were investigated in domestic cleaners with respiratory disorders. In a panel study, 43 female domestic cleaners with a recent history of asthma and/or chronic bronchitis completed a 2-week diary, collecting information on respiratory symptoms, PEF and cleaning exposures. Mixed regression models were used to assess daily changes in symptoms and PEF associated with specific cleaning exposures. The probability of having work-related asthma was individually assessed by a computerised diagnostic system and an occupational asthma expert. Lower respiratory tract symptoms were more common on working days and were predominantly associated with exposure to diluted bleach, degreasing sprays/atomisers and air fresheners. Associations with upper respiratory tract symptoms and PEF were less apparent. Eleven (30%) subjects scored positively for work-related asthma. It is concluded that exposure to certain irritant cleaning products aggravates lower respiratory tract symptoms in female domestic cleaners with asthma or chronic bronchitis.

  12. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    Science.gov (United States)

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Respiratory motion management using audio-visual biofeedback for respiratory-gated radiotherapy of synchrotron-based pulsed heavy-ion beam delivery

    International Nuclear Information System (INIS)

    He, Pengbo; Ma, Yuanyuan; Huang, Qiyan; Yan, Yuanlin; Li, Qiang; Liu, Xinguo; Dai, Zhongying; Zhao, Ting; Fu, Tingyan; Shen, Guosheng

    2014-01-01

    Purpose: To efficiently deliver respiratory-gated radiation during synchrotron-based pulsed heavy-ion radiotherapy, a novel respiratory guidance method combining a personalized audio-visual biofeedback (BFB) system, breath hold (BH), and synchrotron-based gating was designed to help patients synchronize their respiratory patterns with synchrotron pulses and to overcome typical limitations such as low efficiency, residual motion, and discomfort. Methods: In-house software was developed to acquire body surface marker positions and display BFB, gating signals, and real-time beam profiles on a LED screen. Patients were prompted to perform short BHs or short deep breath holds (SDBH) with the aid of BFB following a personalized standard BH/SDBH (stBH/stSDBH) guiding curve or their own representative BH/SDBH (reBH/reSDBH) guiding curve. A practical simulation was performed for a group of 15 volunteers to evaluate the feasibility and effectiveness of this method. Effective dose rates (EDRs), mean absolute errors between the guiding curves and the measured curves, and mean absolute deviations of the measured curves were obtained within 10%–50% duty cycles (DCs) that were synchronized with the synchrotron’s flat-top phase. Results: All maneuvers for an individual volunteer took approximately half an hour, and no one experienced discomfort during the maneuvers. Using the respiratory guidance methods, the magnitude of residual motion was almost ten times less than during nongated irradiation, and increases in the average effective dose rate by factors of 2.39–4.65, 2.39–4.59, 1.73–3.50, and 1.73–3.55 for the stBH, reBH, stSDBH, and reSDBH guiding maneuvers, respectively, were observed in contrast with conventional free breathing-based gated irradiation, depending on the respiratory-gated duty cycle settings. Conclusions: The proposed respiratory guidance method with personalized BFB was confirmed to be feasible in a group of volunteers. Increased effective dose

  14. Respiratory motion management using audio-visual biofeedback for respiratory-gated radiotherapy of synchrotron-based pulsed heavy-ion beam delivery

    Energy Technology Data Exchange (ETDEWEB)

    He, Pengbo; Ma, Yuanyuan; Huang, Qiyan; Yan, Yuanlin [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Qiang, E-mail: liqiang@impcas.ac.cn; Liu, Xinguo; Dai, Zhongying; Zhao, Ting; Fu, Tingyan; Shen, Guosheng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-11-01

    Purpose: To efficiently deliver respiratory-gated radiation during synchrotron-based pulsed heavy-ion radiotherapy, a novel respiratory guidance method combining a personalized audio-visual biofeedback (BFB) system, breath hold (BH), and synchrotron-based gating was designed to help patients synchronize their respiratory patterns with synchrotron pulses and to overcome typical limitations such as low efficiency, residual motion, and discomfort. Methods: In-house software was developed to acquire body surface marker positions and display BFB, gating signals, and real-time beam profiles on a LED screen. Patients were prompted to perform short BHs or short deep breath holds (SDBH) with the aid of BFB following a personalized standard BH/SDBH (stBH/stSDBH) guiding curve or their own representative BH/SDBH (reBH/reSDBH) guiding curve. A practical simulation was performed for a group of 15 volunteers to evaluate the feasibility and effectiveness of this method. Effective dose rates (EDRs), mean absolute errors between the guiding curves and the measured curves, and mean absolute deviations of the measured curves were obtained within 10%–50% duty cycles (DCs) that were synchronized with the synchrotron’s flat-top phase. Results: All maneuvers for an individual volunteer took approximately half an hour, and no one experienced discomfort during the maneuvers. Using the respiratory guidance methods, the magnitude of residual motion was almost ten times less than during nongated irradiation, and increases in the average effective dose rate by factors of 2.39–4.65, 2.39–4.59, 1.73–3.50, and 1.73–3.55 for the stBH, reBH, stSDBH, and reSDBH guiding maneuvers, respectively, were observed in contrast with conventional free breathing-based gated irradiation, depending on the respiratory-gated duty cycle settings. Conclusions: The proposed respiratory guidance method with personalized BFB was confirmed to be feasible in a group of volunteers. Increased effective dose

  15. Programming of respiratory health in childhood: influence of outdoor air pollution.

    Science.gov (United States)

    Wright, Rosalind J; Brunst, Kelly J

    2013-04-01

    This overview highlights recent experimental and epidemiological evidence for the programming effects of outdoor air pollution exposures during early development on lung function and chronic respiratory disorders, such as asthma and related allergic disorders. Air pollutants may impact anatomy and/or physiological functioning of the lung and interrelated systems. Programming effects may result from pollutant-induced shifts in a number of molecular, cellular, and physiological states and their interacting systems. Specific key regulatory systems susceptible to programming may influence lung development and vulnerability to respiratory diseases, including both central and peripheral components of neuroendocrine pathways and autonomic nervous system (ANS) functioning which, in turn, influence the immune system. Starting in utero, environmental factors, including air pollutants, may permanently organize these systems toward trajectories of enhanced pediatric (e.g., asthma, allergy) as well as adult disease risk (e.g., chronic obstructive pulmonary disease). Evidence supports a central role of oxidative stress in the toxic effects of air pollution. Additional research suggests xenobiotic metabolism and subcellular components, such as mitochondria are targets of ambient air pollution and play a role in asthma and allergy programming. Mechanisms operating at the level of the placenta are being elucidated. Epigenetic mechanisms may be at the roots of adaptive developmental programming. Optimal coordinated functioning of many complex processes and their networks of interaction are necessary for normal lung development and the maintenance of respiratory health. Outdoor air pollution may play an important role in early programming of respiratory health and is potentially amenable to intervention.

  16. Loss of CDKL5 disrupts respiratory function in mice.

    Science.gov (United States)

    Lee, Kun-Ze; Liao, Wenlin

    2018-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) is an X-linked gene encoding a serine-threonine kinase that is highly expressed in the central nervous system. Mutations in CDKL5 cause neurological and psychiatric symptoms, including early-onset seizures, motor dysfunction, autistic features and sleep breathing abnormalities in patients. It remains to be addressed whether loss of CDKL5 causes respiratory dysfunction in mice. Here, we examined the respiratory pattern of male Cdkl5 -/y mice at 1-3 months of age during resting breathing and respiratory challenge (i.e., hypoxia and hypercapnia) via whole body plethysmography. The results demonstrated that the resting respiratory frequency and tidal volume of Cdkl5 -/y mice was unaltered compared to that of WT mice at 1 month of age. However, these mutant mice exhibit transient reduction in tidal volume during respiratory challenge even the reduction was restored at 2 months of age. Notably, the sigh-breathing pattern was changed in Cdkl5 -/y mice, showing a transient reduction in sigh volume at 1-2 month of age and long-term attenuation of peak expiratory airflow from 1 to 3 month of age. Therefore, loss of CDKL5 causes breathing deficiency, supporting a CDKL5-mediated regulation of respiratory function in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Respiratory effort from the photoplethysmogram.

    Science.gov (United States)

    Addison, Paul S

    2017-03-01

    The potential for a simple, non-invasive measure of respiratory effort based on the pulse oximeter signal - the photoplethysmogram or 'pleth' - was investigated in a pilot study. Several parameters were developed based on a variety of manifestations of respiratory effort in the signal, including modulation changes in amplitude, baseline, frequency and pulse transit times, as well as distinct baseline signal shifts. Thirteen candidate parameters were investigated using data from healthy volunteers. Each volunteer underwent a series of controlled respiratory effort maneuvers at various set flow resistances and respiratory rates. Six oximeter probes were tested at various body sites. In all, over three thousand pleth-based effort-airway pressure (EP) curves were generated across the various airway constrictions, respiratory efforts, respiratory rates, subjects, probe sites, and the candidate parameters considered. Regression analysis was performed to determine the existence of positive monotonic relationships between the respiratory effort parameters and resulting airway pressures. Six of the candidate parameters investigated exhibited a distinct positive relationship (poximeter probe and an ECG (P2E-Effort) and the other using two pulse oximeter probes placed at different peripheral body sites (P2-Effort); and baseline shifts in heart rate, (BL-HR-Effort). In conclusion, a clear monotonic relationship was found between several pleth-based parameters and imposed respiratory loadings at the mouth across a range of respiratory rates and flow constrictions. The results suggest that the pleth may provide a measure of changing upper airway dynamics indicative of the effort to breathe. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  18. Economics and ethics of paediatric respiratory extra corporeal life support.

    Science.gov (United States)

    Callaghan, M; Doyle, Y; O'Hare, B; Healy, M; Nölke, L

    2013-09-01

    Extra corporeal membrane oxygenation (ECMO) is a form of life support, which facilitates gas exchange outside the body via an oxygenator and a centrifugal pumping system. A paediatric cardiac ECMO programme was established in 2005 at Our Lady's Children's Hospital, Crumlin (OLCHC) and to date 75 patients have received ECMO, the majority being post operative cardiac patients. The outcome data compares favourably with international figures. ECMO has been most successful in the treatment of newborn infants with life threatening respiratory failure from conditions such as meconium aspiration, respiratory distress syndrome and respiratory infections. There is no formal paediatric respiratory ECMO programme at OLCHC, or anywhere else in Ireland. Currently, neonates requiring respiratory ECMO are transferred to centres in Sweden or the UK at an average cost of 133,000 Euros/infant, funded by the Health Service Executive E112 treatment abroad scheme. There is considerable morbidity associated with the transfer of critically ill infants, as well as significant psycho-social impact on families. OLCHC is not funded to provide respiratory ECMO, although the equipment and expertise required are similar to cardiac ECMO and are currently in place. The average cost of an ECMO run at OLCHC is 65,000 Euros. There is now a strong argument for a fully funded single national cardiac and respiratory paediatric ECMO centre, similar to that for adult patients.

  19. Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion.

    Science.gov (United States)

    Soluri-Martins, André; Moraes, Lillian; Santos, Raquel S; Santos, Cintia L; Huhle, Robert; Capelozzi, Vera L; Pelosi, Paolo; Silva, Pedro L; de Abreu, Marcelo Gama; Rocco, Patricia R M

    2017-01-01

    Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV) has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV) in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1) ischemia-reperfusion (IR), in which the left pulmonary hilum was completely occluded and released after 30 min; and (2) Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured) and right (contralateral) lungs from 6 animals per group were removed, and served as non-ventilated group (NV) for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV ( n = 6/group) [tidal volume (V T ) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 2 cmH 2 O, fraction of inspired oxygen (FiO 2 ) = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated V T values ( n = 1200; mean V T = 6 mL/kg), with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final), respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH 2 0/ml and 2.0 ± 0.8 cmH 2 0/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9-33.1] and VV 5.4% [3.1-8.8], p = 0.04, respectively). In left lungs of IR animals, VCV increased the expression of interleukin-6 and

  20. Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Patricia R. M. Rocco

    2017-05-01

    Full Text Available Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1 ischemia-reperfusion (IR, in which the left pulmonary hilum was completely occluded and released after 30 min; and (2 Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured and right (contralateral lungs from 6 animals per group were removed, and served as non-ventilated group (NV for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV (n = 6/group [tidal volume (VT = 6 mL/kg, positive end-expiratory pressure (PEEP = 2 cmH2O, fraction of inspired oxygen (FiO2 = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated VT values (n = 1200; mean VT = 6 mL/kg, with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final, respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH20/ml and 2.0 ± 0.8 cmH20/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9–33.1] and VV 5.4% [3.1–8.8], p = 0.04, respectively. In left lungs of IR animals, VCV increased the expression of interleukin-6 and intercellular

  1. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  2. Effect of respiratory function training on respiratory function of patients with severe cerebrovascular disease

    Directory of Open Access Journals (Sweden)

    Ming GUO

    2017-07-01

    Full Text Available Objective To investigate the effect of respiratory function training on respiratory function and conscious state of patients with severe cerebrovascular disease (SCVD.  Methods A total of 27 patients with SCVD were divided into control group (N = 17 and observation group (N = 10. Control group received routine drug and rehabilitation treatment, and observation group was added respiratory function training based on routine treatment. The respiratory rate, tidal volume (TV, heart rate, blood pressure and artery oxygen saturation (SaO2 of patients were monitored by breathing machine before and after 4-week treatment. Meanwhile, arterial blood gas analysis was used to detect arterial partial pressure of oxygen (PaO2, oxygenation index, partial pressure of carbon dioxide (PaCO2 and pH value. At the same time, Glasgow Coma Scale (GCS was used to evaluate the conscious state of patients.  Results All patients successfully completed 4-week rehabilitation training, without asphyxia, arrhythmia or other adverse events. Compared with before training, the respiratory rate (P = 0.006 and pH value (P = 0.010 were significantly decreased, while SaO2 (P = 0.001, oxygenation index (P = 0.000 and GCS scores (P = 0.004, 0.017 were significantly increased in both groups of patients after training. There was no statistically significant difference between 2 groups on respiratory function indexes and GCS scores after training (P > 0.05, for all. Conclusions Respiratory function training did not significantly improve the respiratory function and conscious state of patients with SCVD, yet to be further studied. Randomized controlled clinical trials with larger, layered samples and long-term prognosis observation are needed. Examination method of respiratory function of SCVD patients is also a topic to be explored.  DOI: 10.3969/j.issn.1672-6731.2017.04.007

  3. Efficiency of respiratory-gated delivery of synchrotron-based pulsed proton irradiation

    International Nuclear Information System (INIS)

    Tsunashima, Yoshikazu; Vedam, Sastry; Dong, Lei; Bues, Martin; Balter, Peter; Smith, Alfred; Mohan, Radhe; Umezawa, Masumi; Sakae, Takeji

    2008-01-01

    Significant differences exist in respiratory-gated proton beam delivery with a synchrotron-based accelerator system when compared to photon therapy with a conventional linear accelerator. Delivery of protons with a synchrotron accelerator is governed by a magnet excitation cycle pattern. Optimal synchronization of the magnet excitation cycle pattern with the respiratory motion pattern is critical to the efficiency of respiratory-gated proton delivery. There has been little systematic analysis to optimize the accelerator's operational parameters to improve gated treatment efficiency. The goal of this study was to estimate the overall efficiency of respiratory-gated synchrotron-based proton irradiation through realistic simulation. Using 62 respiratory motion traces from 38 patients, we simulated respiratory gating for duty cycles of 30%, 20% and 10% around peak exhalation for various fixed and variable magnet excitation patterns. In each case, the time required to deliver 100 monitor units in both non-gated and gated irradiation scenarios was determined. Based on results from this study, the minimum time required to deliver 100 MU was 1.1 min for non-gated irradiation. For respiratory-gated delivery at a 30% duty cycle around peak exhalation, corresponding average delivery times were typically three times longer with a fixed magnet excitation cycle pattern. However, when a variable excitation cycle was allowed in synchrony with the patient's respiratory cycle, the treatment time only doubled. Thus, respiratory-gated delivery of synchrotron-based pulsed proton irradiation is feasible and more efficient when a variable magnet excitation cycle pattern is used

  4. Shedding light on restoring respiratory function after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Warren J Alilain

    2009-10-01

    Full Text Available Loss of respiratory function is one of the leading causes of death following spinal cord injury. Because of this, much work has been done in studying ways to restore respiratory function following SCI - including pharmacological and regeneration strategies. With the emergence of new and powerful tools from molecular neuroscience, new therapeutically relevant alternatives to these approaches have become available, including expression of light sensitive proteins called channelrhodopsins. In this article we briefly review the history of various attempts to restore breathing after C2 hemisection, and focus on our recent work using the activation of light sensitive channels to restore respiratory function after experimental spinal cord injury. We also discuss how such light induced activity can help shed light on the inner workings of the central nervous system respiratory circuitry that controls diaphragmatic function.

  5. Mathematical modeling and validation in physiology applications to the cardiovascular and respiratory systems

    CERN Document Server

    Bachar, Mostafa; Kappel, Franz

    2013-01-01

    This volume synthesizes theoretical and practical aspects of both the mathematical and life science viewpoints needed for modeling of the cardiovascular-respiratory system specifically and physiological systems generally.  Theoretical points include model design, model complexity and validation in the light of available data, as well as control theory approaches to feedback delay and Kalman filter applications to parameter identification. State of the art approaches using parameter sensitivity are discussed for enhancing model identifiability through joint analysis of model structure and data. Practical examples illustrate model development at various levels of complexity based on given physiological information. The sensitivity-based approaches for examining model identifiability are illustrated by means of specific modeling  examples. The themes presented address the current problem of patient-specific model adaptation in the clinical setting, where data is typically limited.

  6. 2'-5'-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1.

    Science.gov (United States)

    Dhar, Jayeeta; Cuevas, Rolando A; Goswami, Ramansu; Zhu, Jianzhong; Sarkar, Saumendra N; Barik, Sailen

    2015-10-01

    2'-5'-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Human metapneumovirus and respiratory syncytial virus in hospitalized danish children with acute respiratory tract infection

    DEFF Research Database (Denmark)

    von Linstow, Marie-Louise; Henrik Larsen, Hans; Koch, Anders

    2004-01-01

    The newly discovered human metapneumovirus (hMPV) has been shown to be associated with respiratory illness. We determined the frequencies and clinical features of hMPV and respiratory syncytial virus (RSV) infections in 374 Danish children with 383 episodes of acute respiratory tract infection...... children 1-6 months of age. Asthmatic bronchitis was diagnosed in 66.7% of hMPV and 10.6% of RSV-infected children (p respiratory support. hMPV is present in young...

  8. Systemic Foot-and-Mouth Disease Vaccination in Cattle Promotes Specific Antibody-Secreting Cells at the Respiratory Tract and Triggers Local Anamnestic Responses upon Aerosol Infection.

    Science.gov (United States)

    Pega, J; Di Giacomo, S; Bucafusco, D; Schammas, J M; Malacari, D; Barrionuevo, F; Capozzo, A V; Rodríguez, L L; Borca, M V; Pérez-Filgueira, M

    2015-09-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting biungulate species. Commercial vaccines, formulated with inactivated FMD virus (FMDV), are regularly used worldwide to control the disease. Here, we studied the generation of antibody responses in local lymphoid tissues along the respiratory system in vaccinated and further aerosol-infected cattle. Animals immunized with a high-payload monovalent FMD vaccine developed high titers of neutralizing antibodies at 7 days postvaccination (dpv), reaching a plateau at 29 dpv. FMDV-specific antibody-secreting cells (ASC), predominantly IgM, were evident at 7 dpv in the prescapular lymph node (LN) draining the vaccination site and in distal LN draining the respiratory mucosa, although in lower numbers. At 29 dpv, a significant switch to IgG1 was clear in prescapular LN, while FMDV-specific ASC were detected in all lymphoid tissues draining the respiratory tract, mostly as IgM-secreting cells. None of the animals (n = 10) exhibited FMD symptoms after oronasal challenge at 30 dpv. Three days postinfection, a large increase in ASC numbers and rapid isotype switches to IgG1 were observed, particularly in LN-draining virus replication sites already described. These results indicate for the first time that systemic FMD vaccination in cattle effectively promotes the presence of anti-FMDV ASC in lymphoid tissues associated with the respiratory system. Oronasal infection triggered an immune reaction compatible with a local anamnestic response upon contact with the replicating FMDV, suggesting that FMD vaccination induces the circulation of virus-specific B lymphocytes, including memory B cells that differentiate into ASC soon after contact with the infective virus. Over recent decades, world animal health organizations as well as national sanitary authorities have supported the use of vaccination as an essential component of the official FMD control programs in both endemic and disease-free settings. Very few

  9. The burden of seasonal respiratory infections on a national telehealth service in England.

    Science.gov (United States)

    Morbey, R A; Harcourt, S; Pebody, R; Zambon, M; Hutchison, J; Rutter, J; Thomas, H; Smith, G E; Elliot, A J

    2017-07-01

    Seasonal respiratory illnesses present a major burden on primary care services. We assessed the burden of respiratory illness on a national telehealth system in England and investigated the potential for providing early warning of respiratory infection. We compared weekly laboratory reports for respiratory pathogens with telehealth calls (NHS 111) between week 40 in 2013 and week 29 in 2015. Multiple linear regression was used to identify which pathogens had a significant association with respiratory calls. Children aged respiratory pathogens explained over 83% of the variation in cold/flu, cough and difficulty breathing calls. Based on the first two seasons available, the greatest burden was associated with respiratory syncytial virus (RSV) and influenza, with associations found in all age bands. The most sensitive signal for influenza was calls for 'cold/flu', whilst for RSV it was calls for cough. The best-fitting models showed calls increasing a week before laboratory specimen dates. Daily surveillance of these calls can provide early warning of seasonal rises in influenza and RSV, contributing to the national respiratory surveillance programme.

  10. Mouse allergen exposure and immunologic responses: IgE-mediated mouse sensitization and mouse specific IgG and IgG4 levels

    NARCIS (Netherlands)

    Matsui, Elizabeth C.; Krop, Esmeralda J. M.; Diette, Gregory B.; Aalberse, Rob C.; Smith, Abigail L.; Eggleston, Peyton A.

    2004-01-01

    Although there is evidence that contact with mice is associated with IgE-mediated mouse sensitization and mouse specific antibody responses, the exposure-response relationships remain unclear. To determine whether IgE-mediated mouse sensitization and mouse specific IgG (mIgG) and mIgG4 levels

  11. Impact of the Respiratory Microbiome on Host Responses to Respiratory Viral Infection

    Directory of Open Access Journals (Sweden)

    Maxime Pichon

    2017-11-01

    Full Text Available Viruses are responsible for most of both upper and lower acute respiratory infections (ARIs. The microbiome—the ecological community of microorganisms sharing the body space, which has gained considerable interest over the last decade—is modified in health and disease states. Even if most of these disturbances have been previously described in relation to chronic disorders of the gastrointestinal microbiome, after a short reminder of microbiome characteristics and methods of characterization, this review will describe the impact of the microbiome (mainly respiratory on host responses to viral ARIs. The microbiome has a direct environmental impact on the host cells but also an indirect impact on the immune system, by enhancing innate or adaptive immune responses. In microbial infections, especially in viral infections, these dramatic modifications could lead to a dramatic impact responsible for severe clinical outcomes. Studies focusing on the microbiome associated with transcriptomic analyses of the host response and deep characterization of the pathogen would lead to a better understanding of viral pathogenesis and open avenues for biomarker development and innovative therapeutics.

  12. Respiratory muscle training for cystic fibrosis.

    Science.gov (United States)

    Hilton, Nathan; Solis-Moya, Arturo

    2018-05-24

    Cystic fibrosis is the most common autosomal recessive disease in white populations, and causes respiratory dysfunction in the majority of individuals. Numerous types of respiratory muscle training to improve respiratory function and health-related quality of life in people with cystic fibrosis have been reported in the literature. Hence a systematic review of the literature is needed to establish the effectiveness of respiratory muscle training (either inspiratory or expiratory muscle training) on clinical outcomes in cystic fibrosis. This is an update of a previously published review. To determine the effectiveness of respiratory muscle training on clinical outcomes in people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials register comprising of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of most recent search: 17 April 2018.A hand search of the Journal of Cystic Fibrosis and Pediatric Pulmonology was performed, along with an electronic search of online trial databases up until 07 May 2018. Randomised controlled studies comparing respiratory muscle training with a control group in people with cystic fibrosis. Review authors independently selected articles for inclusion, evaluated the methodological quality of the studies, and extracted data. Additional information was sought from trial authors where necessary. The quality of the evidence was assessed using the GRADE system MAIN RESULTS: Authors identified 19 studies, of which nine studies with 202 participants met the review's inclusion criteria. There was wide variation in the methodological and written quality of the included studies. Four of the nine included studies were published as abstracts only and lacking concise details, thus limiting the information available. Seven studies were parallel studies and two of a cross-over design. Respiratory

  13. 33 CFR 142.39 - Respiratory protection.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Respiratory protection. 142.39... Respiratory protection. (a) Personnel in an atmosphere specified under ANSI Z88.2, requiring the use of respiratory protection equipment shall wear the type of respiratory protection equipment specified in ANSI Z88...

  14. Prolonged lateral steep position impairs respiratory mechanics during continuous lateral rotation therapy in respiratory failure.

    Science.gov (United States)

    Schellongowski, Peter; Losert, Heidrun; Locker, Gottfried J; Laczika, Klaus; Frass, Michael; Holzinger, Ulrike; Bojic, Andja; Staudinger, Thomas

    2007-04-01

    To establish whether prolonged lateral steep position during continuous rotation therapy leads to improvement on pulmonary gas exchange, respiratory mechanics and hemodynamics. Prospective observational study. Intensive care unit of a university hospital. Twelve consecutive patients suffering from acute lung injury or adult respiratory distress syndrome undergoing continuous rotation therapy. Blood gas analysis, static lung compliance, blood pressure, cardiac index and pulmonary shunt fraction were measured in supine as well as in left and right lateral steep position at 62 degrees during continuous rotation therapy (phase I). Rotation was then stopped for 30 min with the patients in supine position, left and right lateral steep position, and the same measurements were performed every 10 min (phase II). Phase I and II revealed no significant changes in PaO(2)/FiO(2) ratio, mean arterial blood pressure, pulmonary shunt fraction, or cardiac index. Significantly lower static compliance was observed in lateral steep position than in supine position (pposition than in left and right lateral steep position (ppositioning impairs the compliance of the respiratory system. Prolonged lateral steep position does not lead to benefits with respect to oxygenation or hemodynamics. Individual response to the different positions is unpredictable. The pauses in "extreme" positions should be as short as possible.

  15. Reference respiratory waveforms by minimum jerk model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anetai, Yusuke, E-mail: anetai@radonc.med.osaka-u.ac.jp; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita-shi, Osaka 565-0871 (Japan); Ota, Seiichi [Department of Medical Technology, Osaka University Hospital, Yamadaoka 2-15, Suita-shi, Osaka 565-0871 (Japan)

    2015-09-15

    Purpose: CyberKnife{sup ®} robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony{sup ®} mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife{sup ®}. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony{sup ®} mode, a tracking laser projection from CyberKnife{sup ®} was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy

  16. Reference respiratory waveforms by minimum jerk model analysis

    International Nuclear Information System (INIS)

    Anetai, Yusuke; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko; Ota, Seiichi

    2015-01-01

    Purpose: CyberKnife"® robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony"® mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife"®. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony"® mode, a tracking laser projection from CyberKnife"® was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy affected by respiratory

  17. Respiratory syncytial virus (RSV)

    Science.gov (United States)

    RSV; Palivizumab; Respiratory syncytial virus immune globulin; Bronchiolitis - RSV ... Crowe JE. Respiratory syncytial virus. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ...

  18. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults

    DEFF Research Database (Denmark)

    Gebistorf, Fabienne; Karam, Oliver; Wetterslev, Jørn

    2016-01-01

    BACKGROUND: Acute hypoxaemic respiratory failure (AHRF) and mostly acute respiratory distress syndrome (ARDS) are critical conditions. AHRF results from several systemic conditions and is associated with high mortality and morbidity in individuals of all ages. Inhaled nitric oxide (INO) has been...

  19. Radiological features of lower respiratory infection by respiratory syncytial virus in infants and young children

    International Nuclear Information System (INIS)

    Kim, Woo Sun; Kim, In One; Yeon, Kyung Mo; Jang, Seong Hee; Lee, Hoan Jong

    1992-01-01

    Respiratory syncytial virus is the most common cause of lower respiratory infection (bronchiolitis and pneumonia) of infancy and early childhood. We analyzed clinical and radiological features of 76 patients with lower respiratory infections by respiratory syncytial virus, which were diagnosed by indirect immunofluorescent test or culture of nasal aspirate in Hep-2-cell monolayer, during the period of January- December, 1991. There were peaks of incidences in March-May and November- December, accounting for 87% of eases. Sixty-two cases (82%) were under 1 year of age. Fifty cases (66%) had underlying diseases. Major radiographical findings were overaeration (83%), parahilar peribronchial infiltrates (67%), segmental or subsegmental atelectasis (32%), and segmental or lobar consolidation (16%). In 15 cases (20%), overaeration was the only radiological findings. There was no evidence of pleural effusion or lymph node enlargement in all cases. By considering clinical features (symptoms, age, underlying diseases, epidemic seasons) in addition to the radiological findings, radiologists would be familiar with lower respiratory infection by respiratory syncytial virus. Air space consolidation, which is generally thought to represent bacterial pneumonia, is also observed not infrequently in respiratory syncytial virus infection

  20. Metagenomic analysis of viral diversity in respiratory samples from patients with respiratory tract infections in Kuwait.

    Science.gov (United States)

    Madi, Nada; Al-Nakib, Widad; Mustafa, Abu Salim; Habibi, Nazima

    2018-03-01

    A metagenomic approach based on target independent next-generation sequencing has become a known method for the detection of both known and novel viruses in clinical samples. This study aimed to use the metagenomic sequencing approach to characterize the viral diversity in respiratory samples from patients with respiratory tract infections. We have investigated 86 respiratory samples received from various hospitals in Kuwait between 2015 and 2016 for the diagnosis of respiratory tract infections. A metagenomic approach using the next-generation sequencer to characterize viruses was used. According to the metagenomic analysis, an average of 145, 019 reads were identified, and 2% of these reads were of viral origin. Also, metagenomic analysis of the viral sequences revealed many known respiratory viruses, which were detected in 30.2% of the clinical samples. Also, sequences of non-respiratory viruses were detected in 14% of the clinical samples, while sequences of non-human viruses were detected in 55.8% of the clinical samples. The average genome coverage of the viruses was 12% with the highest genome coverage of 99.2% for respiratory syncytial virus, and the lowest was 1% for torque teno midi virus 2. Our results showed 47.7% agreement between multiplex Real-Time PCR and metagenomics sequencing in the detection of respiratory viruses in the clinical samples. Though there are some difficulties in using this method to clinical samples such as specimen quality, these observations are indicative of the promising utility of the metagenomic sequencing approach for the identification of respiratory viruses in patients with respiratory tract infections. © 2017 Wiley Periodicals, Inc.

  1. A Two-Dimensional Human Minilung System (Model for Respiratory Syncytial Virus Infections

    Directory of Open Access Journals (Sweden)

    Esmeralda Magro-Lopez

    2017-12-01

    Full Text Available Human respiratory syncytial virus (HRSV is a major cause of serious pediatric respiratory diseases that lacks effective vaccine or specific therapeutics. Although our understanding about HRSV biology has dramatically increased during the last decades, the need for adequate models of HRSV infection is compelling. We have generated a two-dimensional minilung from human embryonic stem cells (hESCs. The differentiation protocol yielded at least six types of lung and airway cells, although it is biased toward the generation of distal cells. We show evidence of HRSV replication in lung cells, and the induction of innate and proinflammatory responses, thus supporting its use as a model for the study of HRSV–host interactions.

  2. Organ motion study and dosimetric impact of respiratory gating radiotherapy for esophageal cancer

    International Nuclear Information System (INIS)

    Lorchel, F.

    2007-04-01

    Chemoradiotherapy is now the standard treatment for locally advanced or inoperable esophageal carcinoma. In this indication, conformal radiotherapy is generally used. However, prognosis remains poor for these patients. Respiratory gating radiotherapy can decrease healthy tissues irradiation and allows escalation dose in lung, liver and breast cancer. In order to improve radiotherapy technique, we propose to study the feasibility of respiratory gating for esophageal cancer. We will study the respiratory motions of esophageal cancer to optimize target volume delineation, especially the internal margin (I.M.). We will test the correlation between tumour and chest wall displacements to prove that esophageal cancer motions are induced by respiration. This is essential before using free breathing respiratory gating systems. We will work out the dosimetric impact of respiratory gating using various dosimetric analysis parameters. We will compare dosimetric plans at end expiration, end inspiration and deep inspiration with dosimetric plan in free-breathing condition. This will allow us to establish the best respiratory phase to irradiate for each gating system. This dosimetric study will be completed with linear quadratic equivalent uniform dose (E.U.D.) calculation for each volume of interest. Previously, we will do a theoretical study of histogram dose volume gradation to point up its use. (author)

  3. Assessing the effects of pharmacological agents on respiratory dynamics using time-series modeling.

    Science.gov (United States)

    Wong, Kin Foon Kevin; Gong, Jen J; Cotten, Joseph F; Solt, Ken; Brown, Emery N

    2013-04-01

    Developing quantitative descriptions of how stimulant and depressant drugs affect the respiratory system is an important focus in medical research. Respiratory variables-respiratory rate, tidal volume, and end tidal carbon dioxide-have prominent temporal dynamics that make it inappropriate to use standard hypothesis-testing methods that assume independent observations to assess the effects of these pharmacological agents. We present a polynomial signal plus autoregressive noise model for analysis of continuously recorded respiratory variables. We use a cyclic descent algorithm to maximize the conditional log likelihood of the parameters and the corrected Akaike's information criterion to choose simultaneously the orders of the polynomial and the autoregressive models. In an analysis of respiratory rates recorded from anesthetized rats before and after administration of the respiratory stimulant methylphenidate, we use the model to construct within-animal z-tests of the drug effect that take account of the time-varying nature of the mean respiratory rate and the serial dependence in rate measurements. We correct for the effect of model lack-of-fit on our inferences by also computing bootstrap confidence intervals for the average difference in respiratory rate pre- and postmethylphenidate treatment. Our time-series modeling quantifies within each animal the substantial increase in mean respiratory rate and respiratory dynamics following methylphenidate administration. This paradigm can be readily adapted to analyze the dynamics of other respiratory variables before and after pharmacologic treatments.

  4. Respiratory Issues in OI

    Science.gov (United States)

    Respiratory Issues in Osteogenesis Imperfecta \\ Introduction The respiratory system’s job is to bring oxygen into the body and remove carbon dioxide, the waste product of breathing. Because oxygen is the fuel ...

  5. Fluoxetine treatment abolishes the in vitro respiratory response to acidosis in neonatal mice.

    Science.gov (United States)

    Voituron, Nicolas; Shvarev, Yuri; Menuet, Clément; Bevengut, Michelle; Fasano, Caroline; Vigneault, Erika; El Mestikawy, Salah; Hilaire, Gérard

    2010-10-26

    To secure pH homeostasis, the central respiratory network must permanently adapt its rhythmic motor drive to environment and behaviour. In neonates, it is commonly admitted that the retrotrapezoid/parafacial respiratory group of neurons of the ventral medulla plays the primary role in the respiratory response to acidosis, although the serotonergic system may also contribute to this response. Using en bloc medullary preparations from neonatal mice, we have shown for the first time that the respiratory response to acidosis is abolished after pre-treatment with the serotonin-transporter blocker fluoxetine (25-50 µM, 20 min), a commonly used antidepressant. Using mRNA in situ hybridization and immunohistology, we have also shown the expression of the serotonin transporter mRNA and serotonin-containing neurons in the vicinity of the RTN/pFRG of neonatal mice. These results reveal that the serotonergic system plays a pivotal role in pH homeostasis. Although obtained in vitro in neonatal mice, they suggest that drugs targeting the serotonergic system should be used with caution in infants, pregnant women and breastfeeding mothers.

  6. Mortality, diarrhea and respiratory disease in Danish dairy heifer calves

    DEFF Research Database (Denmark)

    Reiten, M.; Rousing, T.; Thomsen, P. T.

    2018-01-01

    system (conventional/organic), season (summer/winter) and calf mortality risk, diarrhea, signs of respiratory disease and ocular discharge, respectively, for dairy heifer calves aged 0–180 days. Sixty Danish dairy herds, 30 conventional and 30 organic, were visited once during summer and once during......Diarrhea and respiratory disease are major health problems for dairy calves, often causing calf mortality. Previous studies have found calf mortality to be higher in organic dairy herds compared to conventional herds. The aim of this study was to investigate the association between production...... variables and in certain age groups, dependent on production system and season....

  7. Immunologic applications of conditional gene modification technology in the mouse.

    Science.gov (United States)

    Sharma, Suveena; Zhu, Jinfang

    2014-04-02

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. Copyright © 2014 John Wiley & Sons, Inc.

  8. Acute respiratory distress syndrome

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000103.htm Acute respiratory distress syndrome To use the sharing features on this page, please enable JavaScript. Acute respiratory distress syndrome (ARDS) is a life-threatening lung ...

  9. Investigations of the Cardiovascular and Respiratory Systems on Board the International Space Station: Experiments Puls and Pneumocard

    Science.gov (United States)

    Baranov, V. M.; Baevsky, R. M.; Drescher, J.; Tank, J.

    parameters describing the results of the function of these systems like heart rate, arterial pressure, cardiac output, or breathing frequency, concentration of O2 and CO2 , etc. Missing significant changes of these parameters during weightlessness supports the hypothesis that adaptational and compensatory mechanisms are sufficient and guarantee cardiovascular homeostasis under changing environmental conditions. characteristic changes of the vegetative balance and of the activity of different regulatory elements at the brainstem and subcortical level. This changes guaranteed the adaptation to long term weightlessness. However, it remains unclear to what extent the different levels are involved. Moreover, the criteria describing the efficacy of cardiorespiratory interaction for the different functional states are not defined yet. The investigation of this problems is highly relevant in order to improve the medical control, especially if considering that the disruption of regulatory systems mostly precedes dangerous destruction of homeostasis. cardiovascular and respiratory function on Board the International Space Station (ISS) aiming to obtain new insights into the interaction between different regulatory elements. "Puls" is measures ECG, photoplethysmogram (PPG), and the pneumotachogram (PTG). The ECG is used to measure time series of R-R intervals and to analyse HRV. PPG is used to define the pulse wave velocity, phases of the cardiac cycle, and an estimate of the filling of finger vessels. The variability of these parameters is also calculated and compared to HRV. The analysis of the PTG allows to describe the interaction of the regulatory parameters of the cardiovascular and respiratory systems. Hence, an important feature of the experiment "Puls" is the investigation of regulatory mechanisms rather than of cardiovascular homeostasis. cardiography) and left ventricular contractility (seismocardiography) will be obtained. This expansion is of major importance

  10. Understanding the use of continuous oscillating positive airway pressure (bubble CPAP) to treat neonatal respiratory disease: an engineering approach.

    Science.gov (United States)

    Manilal-Reddy, P I; Al-Jumaily, A M

    2009-01-01

    A continuous oscillatory positive airway pressure with pressure oscillations incidental to the mean airway pressure (bubble CPAP) is defined as a modified form of traditional continuous positive airway pressure (CPAP) delivery where pressure oscillations in addition to CPAP are administered to neonates with lung diseases. The mechanical effect of the pressure oscillations on lung performance is investigated by formulating mathematical models of a typical bubble CPAP device and a simple representation of a neonatal respiratory system. Preliminary results of the respiratory system's mechanical response suggest that bubble CPAP may improve lung performance by minimizing the respiratory system impedance and that the resonant frequency of the respiratory system may be a controlling factor. Additional steps in terms of clinical trials and a more complex respiratory system model are required to gain a deeper insight into the mechanical receptiveness of the respiratory system to pressure oscillations. However, the current results are promising in that they offer a deeper insight into the trends of variations that can be expected in future extended models as well as the model philosophies that need to be adopted to produce results that are compatible with experimental verification.

  11. New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs.

    Science.gov (United States)

    Cieri, Robert L; Craven, Brent A; Schachner, Emma R; Farmer, C G

    2014-12-02

    The generally accepted framework for the evolution of a key feature of the avian respiratory system, unidirectional airflow, is that it is an adaptation for efficiency of gas exchange and expanded aerobic capacities, and therefore it has historically been viewed as important to the ability of birds to fly and to maintain an endothermic metabolism. This pattern of flow has been presumed to arise from specific features of the respiratory system, such as an enclosed intrapulmonary bronchus and parabronchi. Here we show unidirectional airflow in the green iguana, a lizard with a strikingly different natural history from that of birds and lacking these anatomical features. This discovery indicates a paradigm shift is needed. The selective drivers of the trait, its date of origin, and the fundamental aerodynamic mechanisms by which unidirectional flow arises must be reassessed to be congruent with the natural history of this lineage. Unidirectional flow may serve functions other than expanded aerobic capacity; it may have been present in the ancestral diapsid; and it can occur in structurally simple lungs.

  12. A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    2005-09-01

    Full Text Available A computational model for the mitochondrial respiratory chain that appropriately balances mass, charge, and free energy transduction is introduced and analyzed based on a previously published set of data measured on isolated cardiac mitochondria. The basic components included in the model are the reactions at complexes I, III, and IV of the electron transport system, ATP synthesis at F1F0 ATPase, substrate transporters including adenine nucleotide translocase and the phosphate-hydrogen co-transporter, and cation fluxes across the inner membrane including fluxes through the K+/H+ antiporter and passive H+ and K+ permeation. Estimation of 16 adjustable parameter values is based on fitting model simulations to nine independent data curves. The identified model is further validated by comparison to additional datasets measured from mitochondria isolated from rat heart and liver and observed at low oxygen concentration. To obtain reasonable fits to the available data, it is necessary to incorporate inorganic-phosphate-dependent activation of the dehydrogenase activity and the electron transport system. Specifically, it is shown that a model incorporating phosphate-dependent activation of complex III is able to reasonably reproduce the observed data. The resulting validated and verified model provides a foundation for building larger and more complex systems models and investigating complex physiological and pathophysiological interactions in cardiac energetics.

  13. A Biophysical Model of the Mitochondrial Respiratory System and Oxidative Phosphorylation.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available A computational model for the mitochondrial respiratory chain that appropriately balances mass, charge, and free energy transduction is introduced and analyzed based on a previously published set of data measured on isolated cardiac mitochondria. The basic components included in the model are the reactions at complexes I, III, and IV of the electron transport system, ATP synthesis at F(1F(0 ATPase, substrate transporters including adenine nucleotide translocase and the phosphate-hydrogen co-transporter, and cation fluxes across the inner membrane including fluxes through the K/H antiporter and passive H and K permeation. Estimation of 16 adjustable parameter values is based on fitting model simulations to nine independent data curves. The identified model is further validated by comparison to additional datasets measured from mitochondria isolated from rat heart and liver and observed at low oxygen concentration. To obtain reasonable fits to the available data, it is necessary to incorporate inorganic-phosphate-dependent activation of the dehydrogenase activity and the electron transport system. Specifically, it is shown that a model incorporating phosphate-dependent activation of complex III is able to reasonably reproduce the observed data. The resulting validated and verified model provides a foundation for building larger and more complex systems models and investigating complex physiological and pathophysiological interactions in cardiac energetics.

  14. Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33.

    Directory of Open Access Journals (Sweden)

    Jordy Saravia

    2015-10-01

    Full Text Available Respiratory syncytial virus (RSV is the most common cause of infant hospitalizations and severe RSV infections are a significant risk factor for childhood asthma. The pathogenic mechanisms responsible for RSV induced immunopathophysiology remain elusive. Using an age-appropriate mouse model of RSV, we show that IL-33 plays a critical role in the immunopathogenesis of severe RSV, which is associated with higher group 2 innate lymphoid cells (ILC2s specifically in neonates. Infection with RSV induced rapid IL-33 expression and an increase in ILC2 numbers in the lungs of neonatal mice; this was not observed in adult mice. Blocking IL-33 with antibodies or using an IL-33 receptor knockout mouse during infection was sufficient to inhibit RSV immunopathogenesis (i.e., airway hyperresponsiveness, Th2 inflammation, eosinophilia, and mucus hyperproduction; whereas administration of IL-33 to adult mice during RSV infection was sufficient to induce RSV disease. Additionally, elevated IL-33 and IL-13 were observed in nasal aspirates from infants hospitalized with RSV; these cytokines declined during convalescence. In summary, IL-33 is necessary, either directly or indirectly, to induce ILC2s and the Th2 biased immunopathophysiology observed following neonatal RSV infection. This study provides a mechanism involving IL-33 and ILC2s in RSV mediated human asthma.

  15. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    Science.gov (United States)

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-09-08

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v. © 2016 The Authors.

  16. Acute respiratory failure as primary manifestation of antineutrophil cytoplasmic antibodies-associated vasculitis

    Directory of Open Access Journals (Sweden)

    Evdokia Sourla

    2014-07-01

    Full Text Available The systemic vasculitides are multifocal diseases characterized by the presence of blood vessel inflammation in multiple organ systems. Their clinical presentation is variable extending from self-limited illness to critical complications including diffuse alveolar hemorrhage and glomerulonephritis. Alveolar hemorrhage is a lifethreatening manifestation of pulmonary vasculitis that can rapidly progress into acute respiratory failure requiring ventilatory support. We present the case of a 74-year-old patient admitted to the Intensive Care Unit with severe hypoxic respiratory failure and diffuse alveolar infiltrates in chest imaging that was later diagnosed as antineutrophil cytoplasmic antibodies-associated vasculitis. The report highlights the importance of differentiate between alveolar hemorrhage and acute respiratory distress syndrome of other etiology because alveolar hemorrhage is reversible with prompt initiation of treatment.

  17. Astonishing advances in mouse genetic tools for biomedical research.

    Science.gov (United States)

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  18. Design of fiber optic based respiratory sensor for newborn incubator application

    Science.gov (United States)

    Dhia, Arika; Devara, Kresna; Abuzairi, Tomy; Poespawati, N. R.; Purnamaningsih, Retno W.

    2018-02-01

    This paper reports the design of respiratory sensor using fiber optic for newborn incubator application. The sensor works based on light intensity losses difference obtained due to thorax movement during respiration. The output of the sensor launched to support electronic circuits to be processed in Arduino Uno microcontroler such that the real-time respiratory rate (breath per minute) can be presented on LCD. Experiment results using thorax expansion of newborn simulator show that the system is able to measure respiratory rate from 10 up to 130 breaths per minute with 0.595% error and 0.2% hysteresis error.

  19. Maintaining Respiratory Health in Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    MR Modaresi

    2014-04-01

    Full Text Available Cystic fibrosis (CF is an inherited disease that primarily affects the lungs and the digestive system, however, it also affects a number of other organs and systems. More than 90% of mortality of  CF patients is due to lung complications.  Healthy lungs are important for a long life for people with CF, We will discuss two important topics for maintaining respiratory health. Chronic use of drugs for maintaining respiratory health There are a number of drugs available to keep CF lungs healthy. We will discuss the science behind the recommendations for use of: Inhaled antibiotics Dornase alfa Azithromycin Hypertonic saline High-dose ibuprofen Ivacaftor CF Airway Clearance Therapies Airway Clearance therapy is very important to keeping CF lungs healthy. Our discussions cover the following topics such as the: Daily airway clearance Different techniques of airway clearance Effect of aerobic exercise on airway clearance  

  20. Early life exposure to bisphenol A investigated in mouse models of airway allergy, food allergy and oral tolerance.

    Science.gov (United States)

    Nygaard, Unni Cecilie; Vinje, Nina Eriksen; Samuelsen, Mari; Andreassen, Monica; Groeng, Else-Carin; Bølling, Anette Kocbach; Becher, Rune; Lovik, Martinus; Bodin, Johanna

    2015-09-01

    The impact of early life exposure to bisphenol A (BPA) through drinking water was investigated in mouse models of respiratory allergy, food allergy and oral tolerance. Balb/c mice were exposed to BPA (0, 10 or 100 μg/ml), and the offspring were intranasally exposed to the allergen ovalbumin (OVA). C3H/HeJ offspring were sensitized with the food allergen lupin by intragastric gavage, after exposure to BPA (0, 1, 10 or 100 μg/ml). In separate offspring, oral tolerance was induced by gavage of 5 mg lupin one week before entering the protocol for the food allergy induction. In the airway allergy model, BPA (100 μg/ml) caused increased eosinophil numbers in bronchoalveolar lavage fluid (BALF) and a trend of increased OVA-specific IgE levels. In the food allergy and tolerance models, BPA did not alter the clinical anaphylaxis or antibody responses, but induced alterations in splenocyte cytokines and decreased mouse mast cell protease (MMCP)-1 serum levels. In conclusion, early life exposure to BPA through drinking water modestly augmented allergic responses in a mouse model of airway allergy only at high doses, and not in mouse models for food allergy and tolerance. Thus, our data do not support that BPA promotes allergy development at exposure levels relevant for humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Respiratory manifestations in endocrine diseases

    OpenAIRE

    LENCU, CODRU?A; ALEXESCU, TEODORA; PETRULEA, MIRELA; LENCU, MONICA

    2016-01-01

    The control mechanisms of respiration as a vital function are complex: voluntary ? cortical, and involuntary ? metabolic, neural, emotional and endocrine. Hormones and hypothalamic neuropeptides (that act as neurotrasmitters and neuromodulators in the central nervous system) play a role in the regulation of respiration and in bronchopulmonary morphology. This article presents respiratory manifestations in adult endocrine diseases that evolve with hormone deficit or hypersecretion. In hyperthy...

  2. Air ions and respiratory function outcomes: a comprehensive review

    Science.gov (United States)

    2013-01-01

    Background From a mechanistic or physical perspective there is no basis to suspect that electric charges on clusters of air molecules (air ions) would have beneficial or deleterious effects on respiratory function. Yet, there is a large lay and scientific literature spanning 80 years that asserts exposure to air ions affects the respiratory system and has other biological effects. Aims This review evaluates the scientific evidence in published human experimental studies regarding the effects of exposure to air ions on respiratory performance and symptoms. Methods We identified 23 studies (published 1933–1993) that met our inclusion criteria. Relevant data pertaining to study population characteristics, study design, experimental methods, statistical techniques, and study results were assessed. Where relevant, random effects meta-analysis models were utilized to quantify similar exposure and outcome groupings. Results The included studies examined the therapeutic benefits of exposure to negative air ions on respiratory outcomes, such as ventilatory function and asthmatic symptoms. Study specific sample sizes ranged between 7 and 23, and studies varied considerably by subject characteristics (e.g., infants with asthma, adults with emphysema), experimental method, outcomes measured (e.g., subjective symptoms, sensitivity, clinical pulmonary function), analytical design, and statistical reporting. Conclusions Despite numerous experimental and analytical differences across studies, the literature does not clearly support a beneficial role in exposure to negative air ions and respiratory function or asthmatic symptom alleviation. Further, collectively, the human experimental studies do not indicate a significant detrimental effect of exposure to positive air ions on respiratory measures. Exposure to negative or positive air ions does not appear to play an appreciable role in respiratory function. PMID:24016271

  3. Maternal and Fetal Recovery After Severe Respiratory Failure: A Case Report of Air Transportation of a Pregnant Woman on ECMO Using the CentriMag Transporter System.

    Science.gov (United States)

    Kaliyev, Rymbay; Kapyshev, Timur; Goncharov, Alex; Lesbekov, Timur; Pya, Yuri

    2015-01-01

    Use of extracorporeal membrane oxygenation (ECMO) for severe cardiopulmonary failure has increased because of improved outcomes. A specially designed ECMO transport system allows for safe transport of patients over long distances. We report a 28-year-old pregnant woman (26 weeks gestation) with acute respiratory distress syndrome in whom ECMO support was necessary for survival, and she was transported to another facility 1,155 km away with the aid of the portable ECMO system. Transport was uneventful, and the patient's condition remained stable. Acute respiratory distress syndrome improved gradually until the patient was discharged from the hospital with excellent maternal and fetal outcome.

  4. Management of respiratory symptoms in ALS.

    LENUS (Irish Health Repository)

    Hardiman, Orla

    2012-02-01

    Respiratory insufficiency is a frequent feature of ALS and is present in almost all cases at some stage of the illness. It is the commonest cause of death in ALS. FVC is used as important endpoint in many clinical trials, and in decision-making events for patients with ALS, although there are limitations to its predictive utility. There are multiple causes of respiratory muscle failure, all of which act to produce a progressive decline in pulmonary function. Diaphragmatic fatigue and weakness, coupled with respiratory muscle weakness, lead to reduced lung compliance and atelectasis. Increased secretions increase the risk of aspiration pneumonia, which further compromises respiratory function. Bulbar dysfunction can lead to nutritional deficiency, which in turn increases the fatigue of respiratory muscles. Early recognition of respiratory decline and symptomatic intervention, including non-invasive ventilation can significantly enhance both quality of life and life expectancy in ALS. Patients with respiratory failure should be advised to consider an advance directive to avoid emergency mechanical ventilation.

  5. Management of respiratory symptoms in ALS.

    LENUS (Irish Health Repository)

    Hardiman, Orla

    2011-03-01

    Respiratory insufficiency is a frequent feature of ALS and is present in almost all cases at some stage of the illness. It is the commonest cause of death in ALS. FVC is used as important endpoint in many clinical trials, and in decision-making events for patients with ALS, although there are limitations to its predictive utility. There are multiple causes of respiratory muscle failure, all of which act to produce a progressive decline in pulmonary function. Diaphragmatic fatigue and weakness, coupled with respiratory muscle weakness, lead to reduced lung compliance and atelectasis. Increased secretions increase the risk of aspiration pneumonia, which further compromises respiratory function. Bulbar dysfunction can lead to nutritional deficiency, which in turn increases the fatigue of respiratory muscles. Early recognition of respiratory decline and symptomatic intervention, including non-invasive ventilation can significantly enhance both quality of life and life expectancy in ALS. Patients with respiratory failure should be advised to consider an advance directive to avoid emergency mechanical ventilation.

  6. Mild hypothermia attenuates changes in respiratory system mechanics and modifies cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation.

    Science.gov (United States)

    Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V

    2010-01-01

    Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.

  7. Live Attenuated Tularemia Vaccines for Protection Against Respiratory Challenge With Virulent F. tularensis subsp. tularensis

    Science.gov (United States)

    Jia, Qingmei; Horwitz, Marcus A.

    2018-01-01

    higher standard of having efficacy ≥LVS in the demanding mouse model of tularemia. These latter include LVS with deletions in purMCD, sodBFt, capB or wzy; LVS ΔcapB that also overexpresses Type VI Secretion System (T6SS) proteins; FSC200 with a deletion in clpB; the single deletional purMCD mutant of F. tularensis SCHU S4, and a heterologous prime-boost vaccine comprising LVS ΔcapB and Listeria monocytogenes expressing T6SS proteins. PMID:29868510

  8. Antagonism of morphine-induced central respiratory depression by donepezil in the anesthetized rabbit

    Directory of Open Access Journals (Sweden)

    MIKI TSUJITA

    2007-01-01

    Full Text Available Morphine is often used in cancer pain and postoperative analgesic management but induces respiratory depression. Therefore, there is an ongoing search for drug candidates that can antagonize morphine-induced respiratory depression but have no effect on morphine-induced analgesia. Acetylcholine is an excitatory neurotransmitter in central respiratory control and physostigmine antagonizes morphine-induced respiratory depression. However, physostigmine has not been applied in clinical practice because it has a short action time, among other characteristics. We therefore asked whether donepezil (a long-acting acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease can antagonize morphine-induced respiratory depression. Using the anesthetized rabbit as our model, we measured phrenic nerve discharge as an index of respiratory rate and amplitude. We compared control indices with discharges after the injection of morphine and after the injection of donepezil. Morphine-induced depression of respiratory rate and respiratory amplitude was partly antagonized by donepezil without any effect on blood pressure and end-tidal C0(2. In the other experiment, apneic threshold PaC0(2 was also compared. Morphine increased the phrenic nerve apnea threshold but this was antagonized by donepezil. These findings indicate that systemically administered donepezil partially restores morphine-induced respiratory depression and morphine-deteriorated phrenic nerve apnea threshold in the anesthetized rabbit

  9. Respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK): Initial clinical experience on an MRI-guided radiotherapy system.

    Science.gov (United States)

    Han, Fei; Zhou, Ziwu; Du, Dongsu; Gao, Yu; Rashid, Shams; Cao, Minsong; Shaverdian, Narek; Hegde, John V; Steinberg, Michael; Lee, Percy; Raldow, Ann; Low, Daniel A; Sheng, Ke; Yang, Yingli; Hu, Peng

    2018-06-01

    To optimize and evaluate the respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK-4D-MRI) method in a 0.35 T MRI-guided radiotherapy (MRgRT) system. The study included seven patients with abdominal tumors treated on the MRgRT system. ROCK-4D-MRI and 2D-CINE, was performed immediately after one of the treatment fractions. Motion quantification based on 4D-MRI was compared with those based on 2D-CINE. The image quality of 4D-MRI was evaluated against 4D-CT. The gross tumor volumes (GTV) were defined based on individual respiratory phases of both 4D-MRI and 4D-CT and compared for their variability over the respiratory cycle. The motion measurements based on 4D-MRI matched well with 2D-CINE, with differences of 1.04 ± 0.52 mm in the superior-inferior and 0.54 ± 0.21 mm in the anterior-posterior directions. The image quality scores of 4D-MRI were significantly higher than 4D-CT, with better tumor contrast (3.29 ± 0.76 vs. 1.86 ± 0.90) and less motion artifacts (3.57 ± 0.53 vs. 2.29 ± 0.95). The GTVs were more consistent in 4D-MRI than in 4D-CT, with significantly smaller GTV variability (9.31 ± 4.58% vs. 34.27 ± 23.33%). Our study demonstrated the clinical feasibility of using the ROCK-4D-MRI to acquire high quality, respiratory motion-resolved 4D-MRI in a low-field MRgRT system. The 4D-MRI image could provide accurate dynamic information for radiotherapy treatment planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Management of Postoperative Respiratory Failure.

    Science.gov (United States)

    Mulligan, Michael S; Berfield, Kathleen S; Abbaszadeh, Ryan V

    2015-11-01

    Despite best efforts, postoperative complications such as postoperative respiratory failure may occur and prompt recognition of the process and management is required. Postoperative respiratory failure, such as postoperative pneumonia, postpneumonectomy pulmonary edema, acute respiratory distress-like syndromes, and pulmonary embolism, are associated with high morbidity and mortality. The causes of these complications are multifactorial and depend on preoperative, intraoperative, and postoperative factors, some of which are modifiable. The article identifies some of the risk factors, causes, and treatment strategies for successful management of the patient with postoperative respiratory failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Mouse adhalin

    DEFF Research Database (Denmark)

    Liu, L; Vachon, P H; Kuang, W

    1997-01-01

    . To analyze the biological roles of adhalin, we cloned the mouse adhalin cDNA, raised peptide-specific antibodies to its cytoplasmic domain, and examined its expression and localization in vivo and in vitro. The mouse adhalin sequence was 80% identical to that of human, rabbit, and hamster. Adhalin...... was specifically expressed in striated muscle cells and their immediate precursors, and absent in many other cell types. Adhalin expression in embryonic mouse muscle was coincident with primary myogenesis. Its expression was found to be up-regulated at mRNA and protein levels during myogenic differentiation...

  12. Trends in Canadian Respiratory Clinical Trials from 2001 to 2011

    Directory of Open Access Journals (Sweden)

    Claire Elizabeth Tacon

    2014-01-01

    Full Text Available Clinical research bridges patients’ unmet medical need with innovative medicines, increases knowledge acquisition by clinicians, and creates solutions to improve the sustainability and quality of the Canadian health care system and economy. The Canadian Institutes of Health Research and the Canadian Lung Association have recently raised concerns over declining research activities within the Canadian respiratory community. While there are currently >3000 ongoing clinical trials in Canada, the number of trials investigating common respiratory diseases is unknown. The objective of the present study was to monitor the trends in industry- and non-industry-sponsored respiratory clinical trials in Canada from 2001 to 2011. Trialtrove 2012 (Citeline, an Informa UK business, a database containing summarized clinical trial information regarding pharmaceutical products, was searched using common chronic respiratory disease terms: “allergic rhinitis”, “asthma”, “chronic obstructive pulmonary disease (COPD”, “cystic fibrosis”, “respiratory infections”, “pulmonary fibrosis” and “smoking cessation”. Over the past 10 years, the number of respiratory clinical trials conducted in Canada has increased (4.49 per year; P=0.004. From 2001 to 2011, the majority of trials were performed in asthma, followed closely by respiratory infections and COPD. Over the past decade, the number of trials investigating COPD and respiratory infections increased (P<0.05, while asthma trials showed a declining trend since 2007. Of the clinical trials performed during this 10-year period, the majority were in phase III, with a significant increase in the number of phase II trials (2.49 per year; P=0.008. However, certain trends observed are concerning and warrant further monitoring in the coming years.

  13. Quantitation of respiratory viruses in relation to clinical course in children with acute respiratory tract infections

    NARCIS (Netherlands)

    Jansen, Rogier R.; Schinkel, Janke; dek, Irene; Koekkoek, Sylvie M.; Visser, Caroline E.; de Jong, Menno D.; Molenkamp, Richard; Pajkrt, Dasja

    2010-01-01

    Quantitation of respiratory viruses by PCR could potentially aid in clinical interpretation of PCR results. We conducted a study in children admitted with acute respiratory tract infections to study correlations between the clinical course of illness and semiquantitative detection of 14 respiratory

  14. Sound stabilizes locomotor-respiratory coupling and reduces energy cost.

    Directory of Open Access Journals (Sweden)

    Charles P Hoffmann

    Full Text Available A natural synchronization between locomotor and respiratory systems is known to exist for various species and various forms of locomotion. This Locomotor-Respiratory Coupling (LRC is fundamental for the energy transfer between the two subsystems during long duration exercise and originates from mechanical and neurological interactions. Different methodologies have been used to compute LRC, giving rise to various and often diverging results in terms of synchronization, (de-stabilization via information, and associated energy cost. In this article, the theory of nonlinear-coupled oscillators was adopted to characterize LRC, through the model of the sine circle map, and tested it in the context of cycling. Our specific focus was the sound-induced stabilization of LRC and its associated change in energy consumption. In our experimental study, participants were instructed during a cycling exercise to synchronize either their respiration or their pedaling rate with an external auditory stimulus whose rhythm corresponded to their individual preferential breathing or cycling frequencies. Results showed a significant reduction in energy expenditure with auditory stimulation, accompanied by a stabilization of LRC. The sound-induced effect was asymmetrical, with a better stabilizing influence of the metronome on the locomotor system than on the respiratory system. A modification of the respiratory frequency was indeed observed when participants cycled in synchrony with the tone, leading to a transition toward more stable frequency ratios as predicted by the sine circle map. In addition to the classical mechanical and neurological origins of LRC, here we demonstrated using the sine circle map model that information plays an important modulatory role of the synchronization, and has global energetic consequences.

  15. Respiratory innate immune proteins differentially modulate the neutrophil respiratory burst response to influenza A virus

    DEFF Research Database (Denmark)

    White, Mitchell R; Crouch, Erika; Vesona, Jenny

    2005-01-01

    of IAV with SP-D in vitro strongly increases neutrophil respiratory burst responses to the virus. Several factors are shown to modify this apparent proinflammatory effect of SP-D. Although multimeric forms of SP-D show dose-dependent augmentation of respiratory burst responses, trimeric, single-arm forms...... of IAV while reducing the respiratory burst response to virus....

  16. Management of hypoxaemic respiratory failure in a Respiratory High-dependency Unit.

    Science.gov (United States)

    Hukins, Craig; Wong, Mimi; Murphy, Michelle; Upham, John

    2017-07-01

    There are limited data on outcomes of hypoxaemic respiratory failure (HRF), especially in non-intensive care unit (ICU) settings. To assess outcomes in HRF (without multi-system disease and not requiring early intubation) of patients directly admitted to a Respiratory High-dependency Unit (R-HDU). This is a retrospective cohort study of HRF compared to hypercapnic respiratory failure (HCRF) in a R-HDU (2007-2011). Patient characteristics (age, gender, pre-morbid status, diagnoses) and outcomes (non-invasive ventilation (NIV) use, survival, ICU admission) were assessed. There were 1207 R-HDU admissions in 2007-2011, 205 (17%) with HRF and 495 (41%) with HCRF. The proportion with HRF increased from 12.2% in 2007 to 20.1% in 2011 (P < 0.05). HRF patients were younger, more often male and had better pre-morbid performance. Compared to HCRF, HRF was more frequently associated with lung consolidation (61% vs 15%, P < 0.001), interstitial lung disease (12% vs 1%, P < 0.001) and pulmonary hypertension (7% vs 0%, P < 0.001) and less frequently with chronic obstructive pulmonary disease (24% vs 65%, P < 0.001) and obstructive sleep apnoea (8% vs 26%, P < 0.001). Fewer patients with HRF were treated with NIV (28% vs 87%, P < 0.001), but NIV was discontinued early more often (28% vs 7%, P < 0.001). A total of 18% with HRF was transferred to ICU compared to 6% with HCRF (P = 0.06). More patients with HRF died (19.5% vs 12.3%, P = 0.02). Interstitial lung disease, consolidation, shock, malignancy and poorer pre-morbid function were associated with increased mortality. Initial R-HDU management is an effective option in selected HRF to reduce ICU demand, although mortality and clinical deterioration despite NIV are more common than in HCRF. © 2017 Royal Australasian College of Physicians.

  17. MODERN MANAGEMENT OF ACUTE RESPIRATORY INFECTIONS IN CHILDREN. RECOURSES OF SYSTEM ANTI INFLAMMATORY TREATMENT

    Directory of Open Access Journals (Sweden)

    O.V. Zaitseva

    2008-01-01

    Full Text Available A problem of etiology and pathogenesis of acute respiratory infections in children are observed in this article. Modern approach to management of its treatment in pediatric patients, including often ailing children, is described. Authors give characteristics to main directions of treatment of obstructive syndrome. An experience of anti-inflammatory therapy with fenspiride (eurespal in children of different age is summa ized in this article.Key words: often ailing children, acute respiratory infections, bronchoobstructive syndrome, anti-inflammatory treatment, fenspiride.

  18. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.

    Science.gov (United States)

    Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William

    2017-11-01

    What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the

  19. Troxerutin attenuates diet-induced oxidative stress, impairment of mitochondrial biogenesis and respiratory chain complexes in mice heart.

    Science.gov (United States)

    Rajagopalan, Geetha; Chandrasekaran, Sathiya Priya; Carani Venkatraman, Anuradha

    2017-01-01

    Mitochondrial abnormality is thought to play a key role in cardiac disease originating from the metabolic syndrome (MS). We evaluated the effect of troxerutin (TX), a semi-synthetic derivative of the natural bioflavanoid rutin, on the respiratory chain complex activity, oxidative stress, mitochondrial biogenesis and dynamics in heart of high fat, high fructose diet (HFFD) -induced mouse model of MS. Adult male Mus musculus mice of body weight 25-30 g were fed either control diet or HFFD for 60 days. Mice from each dietary regimen were divided into two groups on the 16th day and were treated or untreated with TX (150 mg/kg body weight [bw], per oral) for the next 45 days. At the end of experimental period, respiratory chain complex activity, uncoupling proteins (UCP)-2 and -3, mtDNA content, mitochondrial biogenesis and dynamics, oxidative stress markers and reactive oxygen species (ROS) generation were analyzed. Reduced mtDNA abundance with alterations in the expression of genes related to mitochondrial biogenesis and fission and fusion processes were observed in HFFD-fed mice. Disorganized and smaller mitochondria, reduction in complexes I, III and IV activities (by about 55%) and protein levels of UCP-2 (52%) and UCP-3 (46%) were noted in these mice. TX administration suppressed oxidative stress, improved the oxidative capacity and biogenesis and restored fission/fusion imbalance in the cardiac mitochondria of HFFD-fed mice. TX protects the myocardium by modulating the putative molecules of mitochondrial biogenesis and dynamics and by its anti-oxidant function in a mouse model of MS. © 2016 John Wiley & Sons Australia, Ltd.

  20. Recurrent Respiratory Papillomatosis or Laryngeal Papillomatosis

    Science.gov (United States)

    ... Home » Health Info » Voice, Speech, and Language Recurrent Respiratory Papillomatosis or Laryngeal Papillomatosis On this page: What ... find additional information about RRP? What is recurrent respiratory papillomatosis? Recurrent respiratory papillomatosis (RRP) is a disease ...

  1. Analysis of Cigarette Smoke Deposition Within an In Vitro Exposure System for Simulating Exposure in the Human Respiratory Tract

    Directory of Open Access Journals (Sweden)

    Ishikawa Shinkichi

    2016-01-01

    Full Text Available For the risk assessment of airborne chemicals, a variety of in vitro direct exposure systems have been developed to replicate airborne chemical exposure in vivo. Since cells at the air-liquid interface are exposed to cigarette smoke as an aerosol in direct exposure systems, it is possible to reproduce the situation of cigarette smoke exposure in the human respiratory system using this device. However it is difficult to know whether the exposed cigarette smoke in this system is consistent with the smoke retained in the human respiratory tract. The purpose of this study is to clarify this point using the CULTEX® RFS module which is a recently developed direct exposure system. For this purpose, solanesol and acetaldehyde were respectively chosen as the particulate and gas/vapor phase representatives of smoke constituents, and their deposition and balance per unit area of cell culture surface of the RFS module were measured (dosimetry. We also conducted human retention studies to compare with the dosimetry data. By comparing inhaled smoke and exhaled smoke under three inhalation conditions, we estimated the regional retention and balance of each representative per unit surface area of the respiratory tract (mouth, bronchi, and alveoli separately. The deposition of solanesol and acetaldehyde per unit area of cell culture surface in the RFS module decreased dependent on the dilution flow rate and ranged from 0.26-0.0076%/cm2 in our experimental conditions. The ratio of deposited acetaldehyde to deposited solanesol ranged from 0.96-1.96 in the RFS module. The retention of solanesol and acetaldehyde per unit surface area in the mouth and the bronchi ranged from 0.095-0.0083%/cm2 in this study. The retention per unit surface area of alveoli was far lower than in the other two regions (0.0000063%/cm2. The ratio of retained acetaldehyde to retained solanesol ranged from 0.54-1.97. From these results, we concluded that the CULTEX® RFS module can simulate

  2. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    Science.gov (United States)

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  3. Inactivity-induced respiratory plasticity: Protecting the drive to breathe in disorders that reduce respiratory neural activity☆

    Science.gov (United States)

    Strey, K.A.; Baertsch, N.A.; Baker-Herman, T.L.

    2013-01-01

    Multiple forms of plasticity are activated following reduced respiratory neural activity. For example, in ventilated rats, a central neural apnea elicits a rebound increase in phrenic and hypoglossal burst amplitude upon resumption of respiratory neural activity, forms of plasticity called inactivity-induced phrenic and hypoglossal motor facilitation (iPMF and iHMF), respectively. Here, we provide a conceptual framework for plasticity following reduced respiratory neural activity to guide future investigations. We review mechanisms giving rise to iPMF and iHMF, present new data suggesting that inactivity-induced plasticity is observed in inspiratory intercostals (iIMF) and point out gaps in our knowledge. We then survey conditions relevant to human health characterized by reduced respiratory neural activity and discuss evidence that inactivity-induced plasticity is elicited during these conditions. Understanding the physiological impact and circumstances in which inactivity-induced respiratory plasticity is elicited may yield novel insights into the treatment of disorders characterized by reductions in respiratory neural activity. PMID:23816599

  4. Microbial flora variations in the respiratory tract of mice

    Directory of Open Access Journals (Sweden)

    Rosa Cangemi de Gutierrez

    1999-09-01

    Full Text Available A stable microbial system in the respiratory tract acts as an important defense mechanism against pathogenic microorganisms. Perturbations in this system may allow pathogens to establish. In an ecological environment such as the respiratory tract, there are many diverse factors that play a role in the establishment of the indigenous flora. In the present work we studied the normal microbial flora of different areas of the respiratory tract of mice and their evolution from the time the mice were born. Our interest was to know which were the dominant groups of microorganisms in each area, which were the first capable of colonizing and which dominated over time to be used as probiotic microorganisms. Our results show that Gram negative facultatively anaerobic bacilli and strict anaerobic microorganisms were the last ones to appear in the bronchia, while aerobic and Gram positive cocci were present in all the areas of the respiratory tract. The number of facultative aerobes and strict anaerobes were similar in the nasal passage, pharynx instilled and trachea, but lower in bronchia. The dominant species were Streptococcus viridans and Staphylococcus saprophyticcus, followed by S. epidermidis, Lactobacilli and S. cohnii I which were present on every studied days but at different proportions. This paper is the first part of a research topic investigating the protective effect of the indigenous flora against pathogens using the mice as an experimental model.

  5. Effects of cartap on isolated mouse phrenic nerve diaphragm and its related mechanism.

    Science.gov (United States)

    Liao, J W; Kang, J J; Liu, S H; Jeng, C R; Cheng, Y W; Hu, C M; Tsai, S F; Wang, S C; Pang, V F

    2000-06-01

    +), with subsequent induction of muscular contracture in the isolated mouse phrenic nerve diaphragm. Based on these findings, we propose that the acute death of rabbits following ocular exposure to cartap might have resulted from respiratory failure secondary to diaphragm contracture.

  6. Reproduction Does Not Adversely Affect Liver Mitochondrial Respiratory Function but Results in Lipid Peroxidation and Increased Antioxidants in House Mice.

    Science.gov (United States)

    Mowry, Annelise V; Kavazis, Andreas N; Sirman, Aubrey E; Potts, Wayne K; Hood, Wendy R

    2016-01-01

    Reproduction is thought to come at a cost to longevity. Based on the assumption that increased energy expenditure during reproduction is associated with increased free-radical production by mitochondria, oxidative damage has been suggested to drive this trade-off. We examined the impact of reproduction on liver mitochondrial function by utilizing post-reproductive and non-reproductive house mice (Mus musculus) living under semi-natural conditions. The age-matched post-reproductive and non-reproductive groups were compared after the reproductive females returned to a non-reproductive state, so that both groups were in the same physiological state at the time the liver was collected. Despite increased oxidative damage (p = 0.05) and elevated CuZnSOD (p = 0.002) and catalase (p = 0.04) protein levels, reproduction had no negative impacts on the respiratory function of liver mitochondria. Specifically, in a post-reproductive, maintenance state the mitochondrial coupling (i.e., respiratory control ratio) of mouse livers show no negative impacts of reproduction. In fact, there was a trend (p = 0.059) to suggest increased maximal oxygen consumption by liver mitochondria during the ADP stimulated state (i.e., state 3) in post-reproduction. These findings suggest that oxidative damage may not impair mitochondrial respiratory function and question the role of mitochondria in the trade-off between reproduction and longevity. In addition, the findings highlight the importance of quantifying the respiratory function of mitochondria in addition to measuring oxidative damage.

  7. Respiratory mechanics in brain injury: A review.

    Science.gov (United States)

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-02-04

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.

  8. A Quick Reference on Respiratory Acidosis.

    Science.gov (United States)

    Johnson, Rebecca A

    2017-03-01

    Respiratory acidosis, or primary hypercapnia, occurs when carbon dioxide production exceeds elimination via the lung and is mainly owing to alveolar hypoventilation. Concurrent increases in Paco 2 , decreases in pH and compensatory increases in blood HCO 3 - concentration are associated with respiratory acidosis. Respiratory acidosis can be acute or chronic, with initial metabolic compensation to increase HCO 3 - concentrations by intracellular buffering. Chronic respiratory acidosis results in longer lasting increases in renal reabsorption of HCO 3 - . Alveolar hypoventilation and resulting respiratory acidosis may also be associated with hypoxemia, especially evident when patients are inspiring room air (20.9% O 2 ). Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter

    Directory of Open Access Journals (Sweden)

    Hussein Traboulsi

    2017-01-01

    Full Text Available Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood, fossil fuels (e.g., cars and trucks, incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene, metals, sulphur and nitrogen oxides, ozone and particulate matter (PM. PM0.1 (ultrafine particles (UFP, those particles with a diameter less than 100 nm (includes nanoparticles (NP are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB and nuclear factor (erythroid-derived 2-like 2 (Nrf2. Epigenetic mechanisms including non-coding RNA (ncRNA may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease.

  10. History of mechanical ventilation may affect respiratory mechanics evolution in acute respiratory distress syndrome.

    Science.gov (United States)

    Koutsoukou, Antonia; Perraki, Helen; Orfanos, Stylianos E; Koulouris, Nikolaos G; Tromaropoulos, Andreas; Sotiropoulou, Christina; Roussos, Charis

    2009-12-01

    The aim of this study was to investigate the effect of mechanical ventilation (MV) before acute respiratory distress syndrome (ARDS) on subsequent evolution of respiratory mechanics and blood gases in protectively ventilated patients with ARDS. Nineteen patients with ARDS were stratified into 2 groups according to ARDS onset relative to the onset of MV: In group A (n = 11), MV was applied at the onset of ARDS; in group B (n = 8), MV had been initiated before ARDS. Respiratory mechanics and arterial blood gas were assessed in early (protectively ventilated patients with ARDS, late alteration of respiratory mechanics occurs more commonly in patients who have been ventilated before ARDS onset, suggesting that the history of MV affects the subsequent progress of ARDS even when using protective ventilation.

  11. A new respiratory rate monitor: development and initial clinical experience

    DEFF Research Database (Denmark)

    Hök, B; Wiklund, L; Henneberg, S

    1993-01-01

    different kinds of interference, including motion artefacts. The sensor is nonexpensive, rugged, simple to apply and inherently safe. An instrument with continuous display of respiratory rate, and an audiovisual apnea alarm has been designed and built. The complete system has been tested on patients during...... and apnea. Such events may in some patients be as frequent as one incident per hour. One case of 'Ondine's curse' provided clear evidence that pulse oximetry has a low sensitivity to respiratory disorders....

  12. Vitamin D and respiratory disorder

    Directory of Open Access Journals (Sweden)

    Mahnaz Hushmand

    2015-09-01

    Full Text Available The active form of vitamin D is synthesized in some body organs following sun exposure and dietary intake. Vitamin D exhibits its major and critical effects not only through regulation of calcium and phosphate metabolism but also by influencing on respiratory and immune system. Serum concentrations of 25-hydroxyvitamin D below the optimum limit lead to vitamin D insufficiency or maybe deficiency. These inappropriate concentrations of vitamin D lead to different types of pulmonary diseases such as viral and bacterial respiratory infection, asthma, chronic obstructive pulmonary disease, and cancer. In this review we described the association between vitamin D deficiency and severe therapy resistant asthma. We also reviewed the underlying molecular mechanism of vitamin D deficiency in children with severe- therapy resistant asthma. Based on current information, future clinical trial are needed to study the role of vitamin D supplementation on different groups of patients with severe asthma including infants, children of school age, and ethnic minorities.

  13. Ethanol induced antidepressant-like effect in the mouse forced swimming test: modulation by serotonergic system.

    Science.gov (United States)

    Jain, Nishant S; Kannamwar, Uday; Verma, Lokesh

    2017-02-01

    The present investigation explored the modulatory role of serotonergic transmission in the acute ethanol-induced effects on immobility time in the mouse forced swim test (FST). Acute i.p. administration of ethanol (20% w/v, 2 or 2.5 g/kg, i.p.) decreased the immobility time in FST of mice, indicating its antidepressant-like effect while lower doses of ethanol (1, 1.5 g/kg, i.p.) were devoid of any effect in the FST. The mice pre-treated with a sub-effective dose of 5-HT 2A agonist, DOI (10 μg/mouse, i.c.v.) or 5-HT 1A receptor antagonist, WAY 100635 (0.1 μg/mouse, i.c.v.) but not with the 5-HT 2A/2C antagonist, ketanserin (1.5 μg/mouse, i.c.v.) exhibited a synergistic reduction in the immobility time induced by sub-effective dose of ethanol (1.5 g/kg, i.p.). On the other hand, ethanol (2.5 g/kg, i.p.) failed to decrease the immobility time in mice, pre-treated with 5-HT 1A agonist, 8-OH-DPAT (0.1 μg/mouse, i.c.v.) or ketanserin (1.5 μg/mouse, i.c.v.). In addition, pre-treatment with a 5-HT neuronal synthesis inhibitor, p-CPA (300 mg/kg, i.p. × 3 days) attenuated the anti-immobility effect ethanol (2.5 g/kg, i.p.) in mouse FST. Thus, the results of the present study points towards the essentiality of the central 5-HT transmission at the synapse for the ethanol-induced antidepressant-like effect in the FST wherein the regulatory role of the 5-HT 1A receptor or contributory role of the 5-HT 2A/2C receptor-mediated mechanism is proposed in the anti-immobility effect of acute ethanol in mouse FST.

  14. Establishment of neurovascular congruency in the mouse whisker system by an independent patterning mechanism.

    Science.gov (United States)

    Oh, Won-Jong; Gu, Chenghua

    2013-10-16

    Nerves and vessels often run parallel to one another, a phenomenon that reflects their functional interdependency. Previous studies have suggested that neurovascular congruency in planar tissues such as skin is established through a "one-patterns-the-other" model, in which either the nervous system or the vascular system precedes developmentally and then instructs the other system to form using its established architecture as a template. Here, we find that, in tissues with complex three-dimensional structures such as the mouse whisker system, neurovascular congruency does not follow the previous model but rather is established via a mechanism in which nerves and vessels are patterned independently. Given the diversity of neurovascular structures in different tissues, guidance signals emanating from a central organizer in the specific target tissue may act as an important mechanism to establish neurovascular congruency patterns that facilitate unique target tissue function. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy

    International Nuclear Information System (INIS)

    Tsunashima, Yoshikazu; Sakae, Takeji; Shioyama, Yoshiyuki; Kagei, Kenji; Terunuma, Toshiyuki; Nohtomi, Akihiro; Akine, Yasuyuki

    2004-01-01

    Purpose: The purpose of this study is to investigate the correlation between the respiratory waveform measured using a respiratory sensor and three-dimensional (3D) tumor motion. Methods and materials: A laser displacement sensor (LDS: KEYENCE LB-300) that measures distance using infrared light was used as the respiratory sensor. This was placed such that the focus was in an area around the patient's navel. When the distance from the LDS to the body surface changes as the patient breathes, the displacement is detected as a respiratory waveform. To obtain the 3D tumor motion, a biplane digital radiography unit was used. For the tumor in the lung, liver, and esophagus of 26 patients, the waveform was compared with the 3D tumor motion. The relationship between the respiratory waveform and the 3D tumor motion was analyzed by means of the Fourier transform and a cross-correlation function. Results: The respiratory waveform cycle agreed with that of the cranial-caudal and dorsal-ventral tumor motion. A phase shift observed between the respiratory waveform and the 3D tumor motion was principally in the range 0.0 to 0.3 s, regardless of the organ being measured, which means that the respiratory waveform does not always express the 3D tumor motion with fidelity. For this reason, the standard deviation of the tumor position in the expiration phase, as indicated by the respiratory waveform, was derived, which should be helpful in suggesting the internal margin required in the case of respiratory gated radiotherapy. Conclusion: Although obtained from only a few breathing cycles for each patient, the correlation between the respiratory waveform and the 3D tumor motion was evident in this study. If this relationship is analyzed carefully and an internal margin is applied, the accuracy and convenience of respiratory gated radiotherapy could be improved by use of the respiratory sensor.Thus, it is expected that this procedure will come into wider use

  16. Reassessment of the evidence for postcranial skeletal pneumaticity in Triassic archosaurs, and the early evolution of the avian respiratory system.

    Directory of Open Access Journals (Sweden)

    Richard J Butler

    Full Text Available Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP. PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs. However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina is found only in bird-line (ornithodiran archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs. The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have

  17. Seasonality of long term wheezing following respiratory syncytial virus lower respiratory tract infection

    NARCIS (Netherlands)

    Bont, L.; Steijn, M.; van Aalderen, W. M. C.; Brus, F.; Th Draaisma, J. M.; van Diemen-Steenvoorde, R. A. A. M.; Pekelharing-Berghuis, M.; Kimpen, J. L. L.

    2004-01-01

    Background: It is well known that respiratory syncytial virus (RSV) lower respiratory tract infection (LRTI) is associated with subsequent wheezing episodes, but the precise natural course of wheezing following RSV LRTI is not known. This study aimed to determine the continuous development of

  18. Seasonality of long term wheezing following respiratory syncytial virus lower respiratory tract infection

    NARCIS (Netherlands)

    Bont, L; Steijn, M; van Aalderen, WMC; Brus, F; Draaisma, JMT; Van Diemen-Steenvoorde, RAAM; Pekelharing-Berghuis, M; Kimpen, JLL

    Background: It is well known that respiratory syncytial virus (RSV) lower respiratory tract infection (LRTI) is associated with subsequent wheezing episodes, but the precise natural course of wheezing following RSV LRTI is not known. This study aimed to determine the continuous development of

  19. Quantitation of respiratory motion during 4D-PET/CT acquisition

    International Nuclear Information System (INIS)

    Nehmeh, S.A.; Erdi, Y.E.; Pan, T.; Yorke, E.; Mageras, G.S.; Rosenzweig, K.E.; Schoder, H.; Mostafavi, H.; Squire, O.; Pevsner, A.; Larson, S.M.; Humm, J.L.

    2004-01-01

    We report on the variability of the respiratory motion during 4D-PET/CT acquisition. The respiratory motion for five lung cancer patients was monitored by tracking external markers placed on the abdomen. CT data were acquired over an entire respiratory cycle at each couch position. The x-ray tube status was recorded by the tracking system, for retrospective sorting of the CT data as a function of respiration phase. Each respiratory cycle was sampled in ten equal bins. 4D-PET data were acquired in gated mode, where each breathing cycle was divided into ten 500 ms bins. For both CT and PET acquisition, patients received audio prompting to regularize breathing. The 4D-CT and 4D-PET data were then correlated according to their respiratory phases. The respiratory periods, and average amplitude within each phase bin, acquired in both modality sessions were then analyzed. The average respiratory motion period during 4D-CT was within 18% from that in the 4D-PET sessions. This would reflect up to 1.8% fluctuation in the duration of each 4D-CT bin. This small uncertainty enabled good correlation between CT and PET data, on a phase-to-phase basis. Comparison of the average-amplitude within the respiration trace, between 4D-CT and 4D- PET, on a bin-by-bin basis show a maximum deviation of ∼15%. This study has proved the feasibility of performing 4D-PET/CT acquisition. Respiratory motion was in most cases consistent between PET and CT sessions, thereby improving both the attenuation correction of PET images, and co-registration of PET and CT images. On the other hand, in two patients, there was an increased partial irregularity in their breathing motion, which would prevent accurately correlating the corresponding PET and CT images

  20. Respiratory failure following anti-lung serum: study on mechanisms associated with surfactant system damage

    International Nuclear Information System (INIS)

    Lachmann, B.; Hallman, M.; Bergmann, K.C.

    1987-01-01

    Within 2 minutes intravenous anti-lung serum (ALS) into guinea pig induces a respiratory failure that is fatal within 30 min. The relationship between surfactant, alveolar-capillary permeability and respiratory failure was studied. Within two minutes ALS induced a leak in the alveolar-capillary barrier. Within 30 minutes 28.3% (controls, given normal rabbit serum: 0.7%) of iv 131 I-albumin, and 0.5% (controls 0.02%) of iv surfactant phospholipid tracer were recovered in bronchoalveolar lavage. Furthermore, 57% (controls 32%) of the endotracheally administered surfactant phospholipid became associated with lung tissue and only less than 0.5% left the lung. The distribution of proteins and phospholipids between the in vivo small volume bronchoalveolar lavages and the ex vivo bronchoalveolar lavages were dissimilar: 84% (controls 20%) of intravenously injected, lavageable 131 I-albumin and 23% (controls 18%) of total lavageable phospholipid were recovered in the in vivo small volume bronchoalveolar lavages. ALS also decreased lavageable surfactant phospholipid by 41%. After ALS the minimum surface tension increased. The supernatant of the lavage increased the minimum surface tension of normal surfactant. In addition, the sediment fraction of the lavage had slow surface adsorption, and a marked reduction in 35,000 and 10,000 MW peptides. Exogenous surfactant ameliorated the ALS-induced respiratory failure. We propose that inhibition, altered intrapulmonary distribution, and dissociation of protein and phospholipid components of surfactant are important in early pathogenesis of acute respiratory failure