WorldWideScience

Sample records for mouse cns endothelial

  1. Radioprotection of mouse CNS endothelial cells in vivo

    International Nuclear Information System (INIS)

    Lyubimova, N.; Coultas, P.; Martin, R.

    1996-01-01

    Full text: Radioprotection using the minor groove binding DNA ligand Hoechst 33342 has been demonstrated in vitro, and more recently in vivo, in mouse lung. Intravenous administration was used for the lung studies, and both endothelial and alveolar epithelial cells-showed good up-take. Radiation damage to the endothelial cell population has also been postulated as important in late developing radionecrosis of spinal cord and brain. Endothelial cell density in brain can be readily determined by a fluorescent-histochemical technique. Treatment with a monoamine oxidase inhibitor and subsequent injection with L-DOPA results in an accumulation of dopamine (DA) in CNS endothelial cells. DA is converted to a fluorophore by exposure to paraformaldehyde, and cell numbers assayed by fluorescence microscopy. Earlier studies used this technique to monitor post-irradiation changes in endothelial cell density in rodent brain and showed the loss, within 24 hours, of a sensitive subpopulation comprising about 15% of the endothelial cells. Ten minutes after intravenous injection of Hoechst 33342 (80mg/kg) the ligand is confined by its limited penetration to the endothelial cells in mouse brain. When we irradiated at this time, there was protection against early endothelial cell loss. Ablation of the sensitive subpopulation in unprotected mice takes place over a dose range of 1 to 3 Gy γ-rays, but doses between 12 to 20 Gy are required in the presence of ligand. This protection equates to a very high dose modification factor of about 7 and possibly reflects a suppression of apoptosis in the sensitive endothelial subpopulation. The extent to which there is enhanced survival in the endothelial population as a whole and how the observed protection affects late CNS necrosis development has yet to be determined. However present results clearly show potential for the use of DNA-binding radioprotectors with limited penetration for investigations into the relative significance of

  2. Nogo-A is a reliable oligodendroglial marker in adult human and mouse CNS and in demyelinated lesions

    DEFF Research Database (Denmark)

    Kuhlmann, Tanja; Remington, Leah; Maruschak, Brigitte

    2007-01-01

    to be strongly expressed in mature oligodendrocytes in vivo. In the present investigation we analyzed the expression patterns of Nogo-A in adult mouse and human CNS as well as in demyelinating animal models and multiple sclerosis lesions. Nogo-A expression was compared with that of other frequently used...... oligodendroglial markers such as CC1, CNP, and in situ hybridization for proteolipid protein mRNA. Nogo-A strongly and reliably labeled oligodendrocytes in the adult CNS as well as in demyelinating lesions and thus represents a valuable tool for the identification of oligodendrocytes in human and mouse CNS tissue...

  3. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shize Jiang

    Full Text Available The blood-brain barrier (BBB impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF on BBB permeability in Kunming (KM mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse, while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI. Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001. Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.

  4. An optimized method for mouse liver sinusoidal endothelial cell isolation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Jeremy, E-mail: jeremy.meyer@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Lacotte, Stéphanie, E-mail: stephanie.lacotte@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Morel, Philippe, E-mail: philippe.morel@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Gonelle-Gispert, Carmen, E-mail: carmen.gonelle@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Bühler, Léo, E-mail: leo.buhler@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland)

    2016-12-10

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic

  5. An optimized method for mouse liver sinusoidal endothelial cell isolation

    International Nuclear Information System (INIS)

    Meyer, Jeremy; Lacotte, Stéphanie; Morel, Philippe; Gonelle-Gispert, Carmen; Bühler, Léo

    2016-01-01

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic

  6. Endothelial and lipoprotein lipases in human and mouse placenta

    DEFF Research Database (Denmark)

    Lindegaard, Marie L S; Olivecrona, Gunilla; Christoffersen, Christina

    2005-01-01

    Placenta expresses various lipase activities. However, a detailed characterization of the involved genes and proteins is lacking. In this study, we compared the expression of endothelial lipase (EL) and LPL in human term placenta. When placental protein extracts were separated by heparin-Sepharos...

  7. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  8. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier.

    Science.gov (United States)

    Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I

    2013-06-18

    Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS

  9. Sildenafil restores endothelial function in the apolipoprotein E knockout mouse

    Directory of Open Access Journals (Sweden)

    Balarini Camille M

    2013-01-01

    Full Text Available Abstract Background Atherosclerosis is an inflammatory process of the arterial walls and is initiated by endothelial dysfunction accompanied by an imbalance in the production of reactive oxygen species (ROS and nitric oxide (NO. Sildenafil, a selective phosphodiesterase-5 (PDE5 inhibitor used for erectile dysfunction, exerts its cardiovascular effects by enhancing the effects of NO. The aim of this study was to investigate the influence of sildenafil on endothelial function and atherosclerosis progression in apolipoprotein E knockout (apoE−/− mice. Methods ApoE−/− mice treated with sildenafil (Viagra®, 40 mg/kg/day, for 3 weeks, by oral gavage were compared to the untreated apoE−/− and the wild-type (WT mice. Aortic rings were used to evaluate the relaxation responses to acetylcholine (ACh in all of the groups. In a separate set of experiments, the roles of NO and ROS in the relaxation response to ACh were evaluated by incubating the aortic rings with L-NAME (NO synthase inhibitor or apocynin (NADPH oxidase inhibitor. In addition, the atherosclerotic lesions were quantified and superoxide production was assessed. Results Sildenafil restored the vasodilator response to acetylcholine (ACh in the aortic rings of the apoE−/− mice. Treatment with L-NAME abolished the vasodilator responses to ACh in all three groups of mice and revealed an augmented participation of NO in the endothelium-dependent vasodilation in the sildenafil-treated animals. The normalized endothelial function in sildenafil-treated apoE−/− mice was unaffected by apocynin highlighting the low levels of ROS production in these animals. Moreover, morphological analysis showed that sildenafil treatment caused approximately a 40% decrease in plaque deposition in the aorta. Conclusion This is the first study demonstrating the beneficial effects of chronic treatment with sildenafil on endothelial dysfunction and atherosclerosis in a model of spontaneous

  10. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines.

    Science.gov (United States)

    Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H

    2004-12-01

    The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.

  11. Cardiac endothelial cells isolated from mouse heart - a novel model for radiobiology

    International Nuclear Information System (INIS)

    Jelonek, K.; Walaszczyk, A.; Gabrys, D.; Pietrowska, M.; Widlak, P.; Kanthou, Ch.

    2011-01-01

    Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH 2 A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation. (authors)

  12. Bone marrow endothelial progenitors augment atherosclerotic plaque regression in a mouse model of plasma lipid lowering

    Science.gov (United States)

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Iida, Ryuji; Wang, Qilong; Zou, Ming-Hui; Barlic-Dicen, Jana

    2012-01-01

    The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP+) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP+ EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis. PMID:23081735

  13. A novel podoplanin-GFPCre mouse strain for gene deletion in lymphatic endothelial cells.

    Science.gov (United States)

    Gil, Hyea Jin; Ma, Wanshu; Oliver, Guillermo

    2018-04-01

    The lymphatic vascular system is a one-direction network of thin-walled capillaries and larger vessels covered by a continuous layer of endothelial cells responsible for maintaining fluid homeostasis. Some of the main functions of the lymphatic vasculature are to drain fluid from the extracellular spaces and return it back to the blood circulation, lipid absorption from the intestinal tract, and transport of immune cells to lymphoid organs. A number of genes controlling the development of the mammalian lymphatic vasculature have been identified in the last few years, and their functional roles started to be characterized using gene inactivation approaches in mice. Unfortunately, only few mouse Cre strains relatively specific for lymphatic endothelial cells (LECs) are currently available. In this article, we report the generation of a novel Podoplanin (Pdpn) GFPCre transgenic mouse strain using its 5' regulatory region. Pdpn encodes a transmembrane mucin-type O-glycoprotein that is expressed on the surface of embryonic and postnatal LECs, in addition to few other cell types. Our detailed characterization of this novel strain indicates that it will be a valuable additional genetic tool for the analysis of gene function in LECs. © 2018 Wiley Periodicals, Inc.

  14. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus.

    Science.gov (United States)

    Gómez-Guzmán, Manuel; Jiménez, Rosario; Romero, Miguel; Sánchez, Manuel; Zarzuelo, María José; Gómez-Morales, Mercedes; O'Valle, Francisco; López-Farré, Antonio José; Algieri, Francesca; Gálvez, Julio; Pérez-Vizcaino, Francisco; Sabio, José Mario; Duarte, Juan

    2014-08-01

    Hydroxychloroquine has been shown to be efficacious in the treatment of autoimmune diseases, including systemic lupus erythematosus. Hydroxychloroquine-treated lupus patients showed a lower incidence of thromboembolic disease. Endothelial dysfunction, the earliest indicator of the development of cardiovascular disease, is present in lupus. Whether hydroxychloroquine improves endothelial function in lupus is not clear. The aim of this study was to analyze the effects of hydroxychloroquine on hypertension, endothelial dysfunction, and renal injury in a female mouse model of lupus. NZBWF1 (lupus) and NZW/LacJ (control) mice were treated with hydroxychloroquine 10 mg/kg per day by oral gavage, or with tempol and apocynin in the drinking water, for 5 weeks. Hydroxychloroquine treatment did not alter lupus disease activity (assessed by plasma double-stranded DNA autoantibodies) but prevented hypertension, cardiac and renal hypertrophy, proteinuria, and renal injury in lupus mice. Aortae from lupus mice showed reduced endothelium-dependent vasodilator responses to acetylcholine and enhanced contraction to phenylephrine, which were normalized by hydroxychloroquine or antioxidant treatments. No differences among all experimental groups were found in both the relaxant responses to acetylcholine and the contractile responses to phenylephrine in rings incubated with the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. Vascular reactive oxygen species content and mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase subunits NOX-1 and p47(phox) were increased in lupus mice and reduced by hydroxychloroquine or antioxidants. Chronic hydroxychloroquine treatment reduced hypertension, endothelial dysfunction, and organ damage in severe lupus mice, despite the persistent elevation of anti-double-stranded DNA, suggesting the involvement of new additional mechanisms to improve cardiovascular complications. © 2014 American Heart Association, Inc.

  15. Endothelial ATP-binding cassette G1 in mouse endothelium protects against hemodynamic-induced atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shanshan [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Pediatrics, Baodi District People’s Hospital of Tianjin City, Tianjin, 301800 (China); Wang, Jiaxing [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Zhang, Xu; Shi, Ying; Li, Bochuan; Bao, Qiankun [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Pang, Wei [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Ai, Ding [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Zhu, Yi [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); He, Jinlong, E-mail: hejinlong@tmu.edu.cn [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China)

    2016-08-19

    Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor–deficient (Ldlr{sup −/−}) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressed to investigate the mechanism in vitro. Compared with Ldlr{sup −/−} mouse aortas, EC-ABCG1-Tg/Ldlr{sup −/−} aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr{sup −/−} mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response. - Highlights: • EC-ABCG1-Tg mice in a Ldlr{sup −/−} background showed decreased atherosclerosis. • Overexpression of ABCG1 in ECs decreased OSS-induced EC activation. • NLRP3 and NF-κB might be an underlying mechanism of ABCG1 protective role.

  16. Ectopic expression of the calcium-binding protein parvalbumin in mouse liver endothelial cells

    DEFF Research Database (Denmark)

    Castillo, M B; Berchtold, M W; Rülicke, T

    1997-01-01

    To elucidate the physiological role of the Ca2+ binding protein parvalbumin, we have generated transgenic mice carrying the full-length complementary DNA (cDNA) of rat parvalbumin under the control of the heavy-metal inducible metallothionein IIA promoter. Immunohistochemical and biochemical...... methods have been used to detect the presence of ectopic parvalbumin expression in different tissues. Here we show the expression of parvalbumin in endothelial cells lining the liver sinusoids in situ and after isolation in vitro. The hemodynamic effects of endothelin 1, a peptide hormone mediating potent...... vasoconstriction via calcium signalling, were investigated in the mouse liver perfused in situ. Vasoconstriction, thought to be mediated by the Ito cell, was not affected in the transgenic animals, whereas microvascular exchange, probed with the multiple indicator dilution technique, was markedly decreased...

  17. Generation of Pet1210-Cre Transgenic Mouse Line Reveals Non-Serotonergic Expression Domains of Pet1 Both in CNS and Periphery

    Science.gov (United States)

    Pelosi, Barbara; Migliarini, Sara; Pacini, Giulia; Pratelli, Marta; Pasqualetti, Massimo

    2014-01-01

    Neurons producing serotonin (5-hydroxytryptamine, 5-HT) constitute one of the most widely distributed neuronal networks in the mammalian central nervous system (CNS) and exhibit a profuse innervation throughout the CNS already at early stages of development. Serotonergic neuron specification is controlled by a combination of secreted molecules and transcription factors such as Shh, Fgf4/8, Nkx2.2, Lmx1b and Pet1. In the mouse, Pet1 mRNA expression appears between 10 and 11 days post coitum (dpc) in serotonergic post-mitotic precursors and persists in serotonergic neurons up to adulthood, where it promotes the expression of genes defining the mature serotonergic phenotype such as tryptophan hydroxylase 2 (Tph2) and serotonin transporter (SERT). Hence, the generation of genetic tools based on Pet1 specific expression represents a valuable approach to study the development and function of the serotonergic system. Here, we report the generation of a Pet1210-Cre transgenic mouse line in which the Cre recombinase is expressed under the control of a 210 kb fragment from the Pet1 genetic locus to ensure a reliable and faithful control of somatic recombination in Pet1 cell lineage. Besides Cre-mediated recombination accurately occurred in the serotonergic system as expected and according to previous studies, Pet1210-Cre transgenic mouse line allowed us to identify novel, so far uncharacterized, Pet1 expression domains. Indeed, we showed that in the raphe Pet1 is expressed also in a non-serotonergic neuronal population intermingled with Tph2-expressing cells and mostly localized in the B8 and B9 nuclei. Moreover, we detected Cre-mediated recombination also in the developing pancreas and in the ureteric bud derivatives of the kidney, where it reflected a specific Pet1 expression. Thus, Pet1210-Cre transgenic mouse line faithfully drives Cre-mediated recombination in all Pet1 expression domains representing a valuable tool to genetically manipulate serotonergic and non

  18. Systemic delivery of a glucosylceramide synthase inhibitor reduces CNS substrates and increases lifespan in a mouse model of type 2 Gaucher disease.

    Directory of Open Access Journals (Sweden)

    Mario A Cabrera-Salazar

    Full Text Available Neuropathic Gaucher disease (nGD, also known as type 2 or type 3 Gaucher disease, is caused by a deficiency of the enzyme glucocerebrosidase (GC. This deficiency impairs the degradation of glucosylceramide (GluCer and glucosylsphingosine (GluSph, leading to their accumulation in the brains of patients and mouse models of the disease. These accumulated substrates have been thought to cause the severe neuropathology and early death observed in patients with nGD and mouse models. Substrate accumulation is evident at birth in both nGD mouse models and humans affected with the most severe type of the disease. Current treatment of non-nGD relies on the intravenous delivery of recombinant human glucocerebrosidase to replace the missing enzyme or the administration of glucosylceramide synthase inhibitors to attenuate GluCer production. However, the currently approved drugs that use these mechanisms do not cross the blood brain barrier, and thus are not expected to provide a benefit for the neurological complications in nGD patients. Here we report the successful reduction of substrate accumulation and CNS pathology together with a significant increase in lifespan after systemic administration of a novel glucosylceramide synthase inhibitor to a mouse model of nGD. To our knowledge this is the first compound shown to cross the blood brain barrier and reduce substrates in this animal model while significantly enhancing its lifespan. These results reinforce the concept that systemically administered glucosylceramide synthase inhibitors could hold enhanced therapeutic promise for patients afflicted with neuropathic lysosomal storage diseases.

  19. Systemic delivery of a glucosylceramide synthase inhibitor reduces CNS substrates and increases lifespan in a mouse model of type 2 Gaucher disease.

    Science.gov (United States)

    Cabrera-Salazar, Mario A; Deriso, Matthew; Bercury, Scott D; Li, Lingyun; Lydon, John T; Weber, William; Pande, Nilesh; Cromwell, Mandy A; Copeland, Diane; Leonard, John; Cheng, Seng H; Scheule, Ronald K

    2012-01-01

    Neuropathic Gaucher disease (nGD), also known as type 2 or type 3 Gaucher disease, is caused by a deficiency of the enzyme glucocerebrosidase (GC). This deficiency impairs the degradation of glucosylceramide (GluCer) and glucosylsphingosine (GluSph), leading to their accumulation in the brains of patients and mouse models of the disease. These accumulated substrates have been thought to cause the severe neuropathology and early death observed in patients with nGD and mouse models. Substrate accumulation is evident at birth in both nGD mouse models and humans affected with the most severe type of the disease. Current treatment of non-nGD relies on the intravenous delivery of recombinant human glucocerebrosidase to replace the missing enzyme or the administration of glucosylceramide synthase inhibitors to attenuate GluCer production. However, the currently approved drugs that use these mechanisms do not cross the blood brain barrier, and thus are not expected to provide a benefit for the neurological complications in nGD patients. Here we report the successful reduction of substrate accumulation and CNS pathology together with a significant increase in lifespan after systemic administration of a novel glucosylceramide synthase inhibitor to a mouse model of nGD. To our knowledge this is the first compound shown to cross the blood brain barrier and reduce substrates in this animal model while significantly enhancing its lifespan. These results reinforce the concept that systemically administered glucosylceramide synthase inhibitors could hold enhanced therapeutic promise for patients afflicted with neuropathic lysosomal storage diseases.

  20. A mouse model of familial ALS has increased CNS levels of endogenous ubiquinol9/10 and does not benefit from exogenous administration of ubiquinol10.

    Directory of Open Access Journals (Sweden)

    Jacopo Lucchetti

    Full Text Available Oxidative stress and mitochondrial impairment are the main pathogenic mechanisms of Amyotrophic Lateral Sclerosis (ALS, a severe neurodegenerative disease still lacking of effective therapy. Recently, the coenzyme-Q (CoQ complex, a key component of mitochondrial function and redox-state modulator, has raised interest for ALS treatment. However, while the oxidized form ubiquinone10 was ineffective in ALS patients and modestly effective in mouse models of ALS, no evidence was reported on the effect of the reduced form ubiquinol10, which has better bioavailability and antioxidant properties. In this study we compared the effects of ubiquinone10 and a new stabilized formulation of ubiquinol10 on the disease course of SOD1(G93A transgenic mice, an experimental model of fALS. Chronic treatments (800 mg/kg/day orally started from the onset of disease until death, to mimic the clinical trials that only include patients with definite ALS symptoms. Although the plasma levels of CoQ10 were significantly increased by both treatments (from <0.20 to 3.0-3.4 µg/mL, no effect was found on the disease progression and survival of SOD1(G93A mice. The levels of CoQ10 in the brain and spinal cord of ubiquinone10- or ubiquinol10-treated mice were only slightly higher (≤10% than the endogenous levels in vehicle-treated mice, indicating poor CNS availability after oral dosing and possibly explaining the lack of pharmacological effects. To further examine this issue, we measured the oxidized and reduced forms of CoQ9/10 in the plasma, brain and spinal cord of symptomatic SOD1(G93A mice, in comparison with age-matched SOD1(WT. Levels of ubiquinol9/10, but not ubiquinone9/10, were significantly higher in the CNS, but not in plasma, of SOD1(G93A mice, suggesting that CoQ redox system might participate in the mechanisms trying to counteract the pathology progression. Therefore, the very low increases of CoQ10 induced by oral treatments in CNS might be not sufficient to

  1. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    Science.gov (United States)

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  2. Transcriptome-wide survey of mouse CNS-derived cells reveals monoallelic expression within novel gene families.

    Directory of Open Access Journals (Sweden)

    Sierra M Li

    Full Text Available Monoallelic expression is an integral component of regulation of a number of essential genes and gene families. To probe for allele-specific expression in cells of CNS origin, we used next-generation sequencing (RNA-seq to analyze four clonal neural stem cell (NSC lines derived from Mus musculus C57BL/6 (B6×Mus musculus molossinus (JF1 adult female mice. We established a JF1 cSNP library, then ascertained transcriptome-wide expression from B6 vs. JF1 alleles in the NSC lines. Validating the assay, we found that 262 of 268 X-linked genes evaluable in at least one cell line showed monoallelic expression (at least 85% expression of the predominant allele, p-value<0.05. For autosomal genes 170 of 7,198 genes (2.4% of the total showed monoallelic expression in at least 2 evaluable cell lines. The group included eight known imprinted genes with the expected pattern of allele-specific expression. Among the other autosomal genes with monoallelic expression were five members of the glutathione transferase gene superfamily, which processes xenobiotic compounds as well as carcinogens and cancer therapeutic agents. Monoallelic expression within this superfamily thus may play a functional role in the response to diverse and potentially lethal exogenous factors, as is the case for the immunoglobulin and olfactory receptor superfamilies. Other genes and gene families showing monoallelic expression include the annexin gene family and the Thy1 gene, both linked to inflammation and cancer, as well as genes linked to alcohol dependence (Gabrg1 and epilepsy (Kcnma1. The annotated set of genes will provide a resource for investigation of mechanisms underlying certain cases of these and other major disorders.

  3. AFM-based detection of glycocalyx degradation and endothelial stiffening in the db/db mouse model of diabetes.

    Science.gov (United States)

    Targosz-Korecka, Marta; Jaglarz, Magdalena; Malek-Zietek, Katarzyna E; Gregorius, Aleksandra; Zakrzewska, Agnieszka; Sitek, Barbara; Rajfur, Zenon; Chlopicki, Stefan; Szymonski, Marek

    2017-11-21

    Degradation of the glycocalyx and stiffening of endothelium are important pathophysiological components of endothelial dysfunction. However, to our knowledge, these events have not been investigated in tandem in experimental diabetes. Here, the mechanical properties of the glycocalyx and endothelium in ex vivo mouse aorta were determined simultaneously in indentation experiments with an atomic force microscope (AFM) for diabetic db/db and control db/+ mice at ages of 11-19 weeks. To analyze highly heterogeneous aorta samples, we developed a tailored classification procedure of indentation data based on a bi-layer brush model supplemented with Hertz model for quantification of nanomechanics of endothelial regions with and without the glycocalyx surface. In db/db mice, marked endothelial stiffening and reduced glycocalyx coverage were present already in 11-week-old mice and persisted in older animals. In contrast, reduction of the effective glycocalyx length was progressive and was most pronounced in 19-week-old db/db mice. The reduction of the glycocalyx length correlated with an increasing level of glycated haemoglobin and decreased endothelial NO production. In conclusion, AFM nanoindentation analysis revealed that stiffening of endothelial cells and diminished glycocalyx coverage occurred in early diabetes and were followed by the reduction of the glycocalyx length that correlated with diabetes progression.

  4. Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV.

    Science.gov (United States)

    Kopp, Sarah J; Ranaivo, Hantamalala R; Wilcox, Douglas R; Karaba, Andrew H; Wainwright, Mark S; Muller, William J

    2014-12-01

    Outcomes of neonates with herpes simplex virus (HSV) encephalitis are worse after infection with HSV-2 when compared with HSV-1. The proteins herpes virus entry mediator (HVEM) and nectin-1 mediate HSV entry into susceptible cells. Prior studies have shown receptor-dependent differences in pathogenesis that depend on route of inoculation and host developmental age. We investigated serotype-related differences in HSV disease and their relationship to entry receptor availability in a mouse model of encephalitis. Mortality was attenuated in 7-d-old, wild-type (WT) mice inoculated with HSV-1(F) when compared with HSV-2(333). No serotype-specific differences were seen after inoculation of adult mice. HSV-1 pathogenesis was also attenuated relative to HSV-2 in newborn but not adult mice lacking HVEM or nectin-1. HSV-2 requires nectin-1 for encephalitis in adult but not newborn mice; in contrast, nectin-1 was important for HSV-1 pathogenesis in both age groups. Early viral replication was independent of age, viral serotype, or mouse genotype, suggesting host responses influence outcomes. In this regard, significantly greater amounts of inflammatory mediators were detected in brain homogenates from WT newborns 2 d after infection compared with adults and receptor-knockout newborns. Dysregulation of inflammatory responses induced by infection may influence the severity of HSV encephalitis.

  5. Posttranslational inactivation of endothelial nitric oxide synthase in the transgenic sickle cell mouse penis

    Science.gov (United States)

    Musicki, Biljana; Champion, Hunter C.; Hsu, Lewis L.; Bivalacqua, Trinity J.; Burnett, Arthur L.

    2017-01-01

    INTRODUCTION Sickle cell disease (SCD)-associated priapism is characterized by endothelial nitric oxide synthase (eNOS) dysfunction in the penis. However, the mechanism of decreased eNOS function/activation in the penis in association with SCD is not known. AIMS Our hypothesis in the present study was that eNOS is functionally inactivated in the SCD penis in association with impairments in eNOS posttranslational phosphorylation and the enzyme’s interactions with its regulatory proteins. METHODS Sickle cell transgenic (sickle) mice were used as an animal model of SCD. Wild type (WT) mice served as controls. Penes were excised at baseline for molecular studies. eNOS phosphorylation on Ser-1177 (positive regulatory site) and Thr-495 (negative regulatory site), total eNOS, and phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177) expressions, and eNOS interactions with heat shock protein 90 (HSP90) and caveolin-1 were measured by Western blot. Constitutive NOS catalytic activity was measured by conversion of L-[14C]arginine-to-L-[14C]citrulline in the presence of calcium. MAIN OUTCOME MEASURES Molecular mechanisms of eNOS dysfunction in the sickle mouse penis. RESULTS eNOS phosphorylated on Ser-1177, an active portion of eNOS, was decreased in the sickle mouse penis compared to WT penis. eNOS interaction with its positive protein regulator HSP90, but not with its negative protein regulator caveolin-1, and phosphorylated AKT expression, as well as constitutive NOS activity, were also decreased in the sickle mouse penis compared to WT penis. eNOS phosphorylated on Thr-495, total eNOS, HSP90, and caveolin-1 protein expressions in the penis were not affected by SCD. CONCLUSION These findings provide a molecular basis for chronically reduced eNOS function in the penis by SCD, which involves decreased eNOS phosphorylation on Ser-1177 and decreased eNOS-HSP90 interaction. PMID:21143412

  6. Effects of the PPARγ agonist troglitazone on endothelial cells in vivo and in vitro: Differences between human and mouse

    International Nuclear Information System (INIS)

    Kakiuchi-Kiyota, Satoko; Vetro, Joseph A.; Suzuki, Shugo; Varney, Michelle L.; Han, Huai-Yun; Nascimento, Merielen; Pennington, Karen L.; Arnold, Lora L.; Singh, Rakesh K.; Cohen, Samuel M.

    2009-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) agonists and PPARγ/α dual agonists have been or are being developed for clinical use in the treatment of type 2 diabetes mellitus and hyperlipidemias. A common tumor finding in rodent carcinogenicity studies for these agonists is hemangioma/hemangiosarcoma in mice but not in rats. We hypothesized that increased endothelial cell proliferation may be involved in the mechanism of PPAR agonist-induced vascular tumors in mice, and we investigated the effects on endothelial cells utilizing troglitazone, the first clinically used PPARγ agonist, in vivo and in vitro. Troglitazone (400 and 800 mg/kg/day) induced hemangiosarcomas in mice in a 2-year bioassay. We showed that troglitazone increased endothelial cell proliferation in brown and white adipose tissue and liver in mice at sarcomagenic doses after 4 weeks of treatment. Troglitazone was cytotoxic both to human dermal microvascular endothelial cells (HMEC1) and mouse mammary fat pad microvascular endothelial cells (MFP MVEC) at high concentrations. However, MFP MVEC were more resistant to the cytotoxic effects of troglitazone based on the much lower LC 50 in HMEC1 (17.4 μM) compared to MFP MVEC (92.2 μM). Troglitazone increased the proliferation and survival of MFP MVEC but not HMEC1 in growth factor reduced conditions. Our data demonstrate that troglitazone may induce hemangiosarcomas in mice, at least in part, through enhancement of survival and proliferation of microvascular endothelial cells. Such an effect does not occur with human cells, suggesting that human may react differently to exposure to PPAR agonists compared with mice.

  7. Limitations of the colloidal silica method in mapping the endothelial plasma membrane proteome of the mouse heart.

    Science.gov (United States)

    Arjunan, Selvam; Reinartz, Michael; Emde, Barbara; Zanger, Klaus; Schrader, Jürgen

    2009-01-01

    The endothelial cell (EC) membrane is an important interface, which plays a crucial role in signal transduction. Our aim was to selectively purify luminal EC membrane proteins from the coronary vasculature of the isolated perfused mouse heart and analyze its composition with mass spectrometry (MS). To specifically label coronary ECs in the intact heart, the colloidal silica method was applied, which is based on the binding of positively charged colloidal silica to the surface of EC membranes. Transmission electron microscopy revealed the specific labeling of ECs of macro and microvessels. Two different methods of tissue homogenization (Teflon pestle and ultra blade) together with density centrifugation were used for membrane protein enrichment. Enrichment and purity was controlled by Western blot analysis using the EC-specific protein caveolin 1 and various intracellular marker proteins. The ultra blade method resulted in a tenfold enrichment of caveolin 1, while there was negligible contamination as judged by Western blot. However, protein yield was low and required pooling of ten hearts for MS. When enriched endothelial membrane proteins were digested with trypsin and analyzed by LC-MS, a total of 56 proteins could be identified, of which only 12 were membrane proteins. We conclude that coronary endothelial membranes can be conveniently labeled with colloidal silica. However, due to the ionic nature of interaction of colloidal silica with the EC membrane the shear rate required for cardiac homogenization resulted in a substantial loss of specificity.

  8. Late gestational hypoxia and a postnatal high salt diet programs endothelial dysfunction and arterial stiffness in adult mouse offspring.

    Science.gov (United States)

    Walton, Sarah L; Singh, Reetu R; Tan, Tiffany; Paravicini, Tamara M; Moritz, Karen M

    2016-03-01

    Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  9. Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells.

    Science.gov (United States)

    You, Jinzhi; Sun, Jiacheng; Ma, Teng; Yang, Ziying; Wang, Xu; Zhang, Zhiwei; Li, Jingjing; Wang, Longgang; Ii, Masaaki; Yang, Junjie; Shen, Zhenya

    2017-08-03

    Neovascularization is impaired in diabetes mellitus, which leads to the development of peripheral arterial disease and is mainly attributed to the dysfunction of endothelial progenitor cells (EPCs). Previous studies proved the promotional effect of curcumin on neovascularization in wound healing of diabetes. Thus, we hypothesize that curcumin could promote neovascularization at sites of hindlimb ischemia in diabetes and might take effect via modulating the function of EPCs. Streptozotocin-induced type 1 diabetic mice and nondiabetic mice both received unilateral hindlimb ischemic surgery. Curcumin was then administrated to the mice by lavage for 14 days consecutively. Laser Doppler perfusion imaging was conducted to demonstrate the blood flow reperfusion. Capillary density was measured in the ischemic gastrocnemius muscle. In addition, angiogenesis, migration, proliferation abilities, and senescence were determined in EPCs isolated from diabetic and nondiabetic mice. Quantitative PCR was then used to determine the mRNA expression of vascular endothelial growth factor (VEGF) and angiopoetin-1 (Ang-1) in EPCs. Curcumin application to type 1 diabetic mice significantly improved blood reperfusion and increased the capillary density in ischemic hindlimbs. The in-vitro study also revealed that the angiogenesis, migration, and proliferation abilities of EPCs and the number of senescent EPCs were reversed by curcumin application. Quantitative PCR confirmed the overexpression of VEGF-A and Ang-1 in EPCs after curcumin treatment. Curcumin could enhance neovascularization via promoting the function of EPCs in a diabetic mouse hindlimb ischemia model.

  10. Proliferation studies of the endothelial and smooth muscle cells of the mouse mesentery after irradiation

    International Nuclear Information System (INIS)

    Hirst, D.G.; Denekamp, J.; Hobson, B.

    1980-01-01

    A continuous tritium labelling technique was employed to study the effects of external β-radiation on the proliferation of endothelial cells and smooth muscle cells in the mesenteric arterioles of mice. Calculations showed very long turnover times for the two cell populations in control animals (> 2 years for endothelium and > 3 years for smooth muscle). After single doses of 20 and 45 Gy, no significant increase in endothelial proliferation was seen except at 3 weeks. No significant increase in labelling was observed in smooth muscle up to 48 weeks after irradiation. These labelling data have been compared with the pattern of cell depletion of the irradiated endothelium. It was concluded that the depletion was much earlier than expected for a slowly proliferating tissue, if all the cells were cycling very slowly. Such an early depletion is, however, consistent with cell death resulting from a small proportion of the cells having a short cell cycle. The recovery of the endothelial cell numbers between 9 and 12 months was not accompanied by a rise in the fraction of labelled cells. It is suggested that repopulation may occur from outside the treated area. (author)

  11. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model.

    Science.gov (United States)

    Toh, Huishi; Cao, Mingju; Daniels, Eugene; Bateman, Andrew

    2013-01-01

    Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2-promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5-14.5) and later (E15.5-17.5) developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with subsequent effects in

  12. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model.

    Directory of Open Access Journals (Sweden)

    Huishi Toh

    Full Text Available Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2-promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5-14.5 and later (E15.5-17.5 developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with

  13. CNS penetration of intrathecal-lumbar idursulfase in the monkey, dog and mouse: implications for neurological outcomes of lysosomal storage disorder.

    Directory of Open Access Journals (Sweden)

    Pericles Calias

    Full Text Available A major challenge for the treatment of many central nervous system (CNS disorders is the lack of convenient and effective methods for delivering biological agents to the brain. Mucopolysaccharidosis II (Hunter syndrome is a rare inherited lysosomal storage disorder resulting from a deficiency of iduronate-2-sulfatase (I2S. I2S is a large, highly glycosylated enzyme. Intravenous administration is not likely to be an effective therapy for disease-related neurological outcomes that require enzyme access to the brain cells, in particular neurons and oligodendrocytes. We demonstrate that intracerebroventricular and lumbar intrathecal administration of recombinant I2S in dogs and nonhuman primates resulted in widespread enzyme distribution in the brain parenchyma, including remarkable deposition in the lysosomes of both neurons and oligodendrocytes. Lumbar intrathecal administration also resulted in enzyme delivery to the spinal cord, whereas little enzyme was detected there after intraventricular administration. Mucopolysaccharidosis II model is available in mice. Lumbar administration of recombinant I2S to enzyme deficient animals reduced the storage of glycosaminoglycans in both superficial and deep brain tissues, with concurrent morphological improvements. The observed patterns of enzyme transport from cerebrospinal fluid to the CNS tissues and the resultant biological activity (a warrant further investigation of intrathecal delivery of I2S via lumbar catheter as an experimental treatment for the neurological symptoms of Hunter syndrome and (b may have broader implications for CNS treatment with biopharmaceuticals.

  14. LPS, but not Angiotensin ll, lnduces Direct Pro-lnflammatory Effects in Cultured Mouse Arteries and Human Endothelial and Vascular Smooth Muscle Cells

    DEFF Research Database (Denmark)

    Outzen, Emilie M; Zaki, Marina; Mehryar, Rahila

    2017-01-01

    resistance-sized arteries (MRA) supported by experiments in cultured human primary endothelial and vascular smooth muscle cells. Results showed that 24-hr organ culture of mouse MRA with 10 nM Ang II had, unlike 100 ng/mL LPS, no effects on IL-6 or MCP-1 secretion, VCAM1 mRNA expression or endothelial......]-Ang II had no concentration- or time-dependent effects on IL-6 and MCP-1 secretion in human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HASMC). AGTR1 or AGTR2 mRNA expression were undetectable in HUVEC, whereas HASMC expressed only AGTR1 mRNA. In summary, contrary...... rights reserved....

  15. Systemic Delivery of a Glucosylceramide Synthase Inhibitor Reduces CNS Substrates and Increases Lifespan in a Mouse Model of Type 2 Gaucher Disease

    OpenAIRE

    Cabrera-Salazar, Mario A.; DeRiso, Matthew; Bercury, Scott D.; Li, Lingyun; Lydon, John T.; Weber, William; Pande, Nilesh; Cromwell, Mandy A.; Copeland, Diane; Leonard, John; Cheng, Seng H.; Scheule, Ronald K.

    2012-01-01

    Neuropathic Gaucher disease (nGD), also known as type 2 or type 3 Gaucher disease, is caused by a deficiency of the enzyme glucocerebrosidase (GC). This deficiency impairs the degradation of glucosylceramide (GluCer) and glucosylsphingosine (GluSph), leading to their accumulation in the brains of patients and mouse models of the disease. These accumulated substrates have been thought to cause the severe neuropathology and early death observed in patients with nGD and mouse models. Substrate a...

  16. Microultrasound Molecular Imaging of Vascular Endothelial Growth Factor Receptor 2 in a Mouse Model of Tumor Angiogenesis

    Directory of Open Access Journals (Sweden)

    Joshua J. Rychak

    2007-09-01

    Full Text Available High-frequency microultrasound imaging of tumor progression in mice enables noninvasive anatomic and functional imaging at excellent spatial and temporal resolution, although microultrasonography alone does not offer molecular scale data. In the current study, we investigated the use of microbubble ultrasound contrast agents bearing targeting ligands specific for molecular markers of tumor angiogenesis using high-frequency microultrasound imaging. A xenograft tumor model in the mouse was used to image vascular endothelial growth factor receptor 2 (VEGFR-2 expression with microbubbles conjugated to an anti-VEGFR-2 monoclonal antibody or an isotype control. Microultrasound imaging was accomplished at a center frequency of 40 MHz, which provided lateral and axial resolutions of 40 and 90 μm, respectively. The B-mode (two-dimensional mode acoustic signal from microbubbles bound to the molecular target was determined by an ultrasound-based destruction-subtraction scheme. Quantification of the adherent microbubble fraction in nine tumor-bearing mice revealed significant retention of VEGFR-2-targeted microbubbles relative to control-targeted microbubbles. These data demonstrate that contrast-enhanced microultrasound imaging is a useful method for assessing molecular expression of tumor angiogenesis in mice at high resolution.

  17. Immunohistochemical Examination on the Distribution of Cells Expressed Lymphatic Endothelial Marker Podoplanin and LYVE-1 in the Mouse Tongue Tissue

    Science.gov (United States)

    Noda, Yuya; Amano, Ikuko; Hata, Minoru; Kojima, Hiroshi; Sawa, Yoshihiko

    2010-01-01

    The clinical study for lingual disease requires the detailed investigation of the lingual lymphatic network and lymphatic marker-positive cells. Recently, it has been reported that several tissue cells and leukocytes express lymphatic markers, LYVE-1 and podoplanin. This study was aimed to clarify the lingual distribution of cells expressing LYVE-1 and podoplanin. In the mouse tongue, podoplanin is expressed in nerve sheaths, lingual gland myoepithelial cells, and lymphatic vessels. LYVE-1 is expressed in the macrophage marker Mac-1-positive cells as well as lymphatic vessels, while factor-VIII was detected in only blood endothelial cells. α-SMA was detected in vascular smooth muscle and myoepithelial cells. Therefore, identification of lymphatic vessels in lingual glands, the combination of LYVE-1 and factor-VIII, or LYVE-1 and Mac-1 is useful because myoepithelial cells express podoplanin and α-SMA. The immunostaining of factor-VIII on lymphatic vessels was masked by the immunostaining to LYVE-1 or podoplanin because lymphatic vessels express factor-VIII to a far lesser extent than blood vessels. Therefore, except for the salivary glands, the combination of podoplanin and α-SMA, or factor-VIII is useful to identify lymphatic vessels and blood vessels with smooth muscle, or blood capillaries. PMID:20514293

  18. Efficient production of platelets from mouse embryonic stem cells by enforced expression of Gata2 in late hemogenic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Manami [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Kitajima, Kenji [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Kanokoda, Mai [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Suzuki, Hidenori [Division of Morphological and Biomolecular Research, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 (Japan); Miyashita, Kazuya; Nakajima, Marino [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Nuriya, Hideko [Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Kasahara, Kohji [Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Hara, Takahiko, E-mail: hara-tk@igakuken.or.jp [Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan)

    2016-06-03

    Platelets are essential for blood circulation and coagulation. Previous study indicated that overexpression of Gata2 in differentiated mouse embryonic stem cells (ESCs) resulted in robust induction of megakaryocytes (Mks). To evaluate platelet production capacity of the Gata2-induced ESC-derived Mks, we generated iGata2-ESC line carrying the doxycycline-inducible Gata2 expression cassette. When doxycycline was added to day 5 hemogenic endothelial cells in the in vitro differentiation culture of iGata2-ESCs, c-Kit{sup −}Tie2{sup −}CD41{sup +} Mks were predominantly generated. These iGata2-ESC-derived Mks efficiently produced CD41{sup +}CD42b{sup +}CD61{sup +} platelets and adhered to fibrinogen-coated glass coverslips in response to thrombin stimulation. Transmission electron microscopy analysis demonstrated that the iGata2-ESC-derived platelets were discoid-shaped with α-granules and an open canalicular system, but were larger than peripheral blood platelets in size. These results demonstrated that an enforced expression of Gata2 in late HECs of differentiated ESCs efficiently promotes megakaryopoiesis followed by platelet production. This study provides valuable information for ex vivo platelet production from human pluripotent stem cells in future. -- Highlights: •Megakaryocytes are efficiently induced by Gata2 from ESC-derived day 5 HECs. •Gata2-induced ESC-derived megakaryocytes are c-Kit{sup −}Tie2{sup −}CD41{sup +}. •Gata2-induced ESC-derived megakaryocytes produce larger discoid-shaped platelets. •Gata2-induced ESC-derived platelets bind fibrinogen upon thrombin stimulation.

  19. Efficient production of platelets from mouse embryonic stem cells by enforced expression of Gata2 in late hemogenic endothelial cells

    International Nuclear Information System (INIS)

    Kawaguchi, Manami; Kitajima, Kenji; Kanokoda, Mai; Suzuki, Hidenori; Miyashita, Kazuya; Nakajima, Marino; Nuriya, Hideko; Kasahara, Kohji; Hara, Takahiko

    2016-01-01

    Platelets are essential for blood circulation and coagulation. Previous study indicated that overexpression of Gata2 in differentiated mouse embryonic stem cells (ESCs) resulted in robust induction of megakaryocytes (Mks). To evaluate platelet production capacity of the Gata2-induced ESC-derived Mks, we generated iGata2-ESC line carrying the doxycycline-inducible Gata2 expression cassette. When doxycycline was added to day 5 hemogenic endothelial cells in the in vitro differentiation culture of iGata2-ESCs, c-Kit − Tie2 − CD41 + Mks were predominantly generated. These iGata2-ESC-derived Mks efficiently produced CD41 + CD42b + CD61 + platelets and adhered to fibrinogen-coated glass coverslips in response to thrombin stimulation. Transmission electron microscopy analysis demonstrated that the iGata2-ESC-derived platelets were discoid-shaped with α-granules and an open canalicular system, but were larger than peripheral blood platelets in size. These results demonstrated that an enforced expression of Gata2 in late HECs of differentiated ESCs efficiently promotes megakaryopoiesis followed by platelet production. This study provides valuable information for ex vivo platelet production from human pluripotent stem cells in future. -- Highlights: •Megakaryocytes are efficiently induced by Gata2 from ESC-derived day 5 HECs. •Gata2-induced ESC-derived megakaryocytes are c-Kit − Tie2 − CD41 + . •Gata2-induced ESC-derived megakaryocytes produce larger discoid-shaped platelets. •Gata2-induced ESC-derived platelets bind fibrinogen upon thrombin stimulation.

  20. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Science.gov (United States)

    Papa, Michelle P.; Meuren, Lana M.; Coelho, Sharton V. A.; Lucas, Carolina G. de Oliveira; Mustafá, Yasmin M.; Lemos Matassoli, Flavio; Silveira, Paola P.; Frost, Paula S.; Pezzuto, Paula; Ribeiro, Milene R.; Tanuri, Amilcar; Nogueira, Mauricio L.; Campanati, Loraine; Bozza, Marcelo T.; Paula Neto, Heitor A.; Pimentel-Coelho, Pedro M.; Figueiredo, Claudia P.; de Aguiar, Renato S.; de Arruda, Luciana B.

    2017-01-01

    Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways. PMID:29312238

  1. Biocompatibility of Poly-ε-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells

    Directory of Open Access Journals (Sweden)

    Wooley Paul H

    2009-02-01

    Full Text Available Abstract Background Tissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds. The current study investigated the performance of mice bone marrow-derived osteogenic cells and endothelial cells as seeded on hydroxyapatite (HA and poly-ε-caprolactone (PCL composite scaffolds. Methods Mononuclear cells were induced to osteoblasts and endothelial cells respectively, which were defined by the expression of osteocalcin, alkaline phosphatase (ALP, and deposits of calcium-containing crystal for osteoblasts, or by the expression of vascular endothelial growth factor receptor-2 (VEGFR-2 and von Willebrand factor (vWF, and the formation of a capillary network in Matrigel™ for endothelial cells. Both types of cell were seeded respectively on PCL-HA scaffolds at HA to PCL weight ratio of 1:1, 1:4, or 0:1 and were evaluated using scanning electron microscopy, ALP activity (of osteoblasts and nitric oxide production (of endothelial cells plus the assessment of cell viability. Results The results indicated that HA led to a positive stimulation of osteoblasts viability and ALP activity, while HA showed less influence on endothelial cells viability. An elevated nitric oxide production of endothelial cells was observed in HA-containing group. Conclusion Supplement of HA into PCL improved biocompatible for bone marrow-derived osteoblasts and endothelial cells. The PCL-HA composite integrating with two types of cells may provide a useful system for tissue-engineered bone grafts with vascularization.

  2. Detection and analysis of apoptosis- and autophagy-related miRNAs of mouse vascular endothelial cells in chronic intermittent hypoxia model.

    Science.gov (United States)

    Liu, Kai-Xiong; Chen, Gong-Ping; Lin, Ping-Li; Huang, Jian-Chai; Lin, Xin; Qi, Jia-Chao; Lin, Qi-Chang

    2018-01-15

    Endothelial dysfunction is the main pathogenic mechanism of cardiovascular complications induced by obstructive sleep apnea/hyponea syndrome (OSAHS). Chronic intermittent hypoxia (CIH) is the primary factor of OSAHS-associated endothelial dysfunction. The hypoxia inducible factor (HIF) pathway regulates the expression of downstream target genes and mediates cell apoptosis caused by CIH-induced endothelial injury. miRNAs play extensive and important negative regulatory roles in this process at the post-transcriptional level. However, the regulatory mechanism of miRNAs in CIH tissue models remains unclear. The present study established a mouse aortic endothelial cell model of CIH in an attempt to screen out specific miRNAs by using miRNA chip analysis. It was found that 14 miRNAs were differentially expressed. Of them, 6 were significantly different and verified by quantitative real-time PCR (Q-PCR), of which four were up-regulated and two were down-regulated markedly. To gain an unbiased global perspective on subsequent regulation by altered miRNAs, we established signaling networks by GO to predict the target genes of the 6 miRNAs. It was found that the 6 identified miRNAs were apoptosis- or autophagy-related target genes. Down-regulation of miR-193 inhibits CIH induced endothelial injury and apoptosis- or autophagy-related protein expression. In conclusion, our results showed that CIH could induce differential expression of miRNAs, and alteration in the miRNA expression pattern was associated with the expression of apoptosis- or autophagy-related genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Visualization of endothelial cell cycle dynamics in mouse using the Flt-1/eGFP-anillin system.

    Science.gov (United States)

    Herz, Katia; Becker, Alexandra; Shi, Chenyue; Ema, Masatsugo; Takahashi, Satoru; Potente, Michael; Hesse, Michael; Fleischmann, Bernd K; Wenzel, Daniela

    2018-05-01

    Endothelial cell proliferation is a key process during vascular growth but its kinetics could only be assessed in vitro or ex vivo so far. To enable the monitoring and quantification of cell cycle kinetics in vivo, we have generated transgenic mice expressing an eGFP-anillin construct under control of the endothelial-specific Flt-1 promoter. This construct labels the nuclei of endothelial cells in late G1, S and G2 phase and changes its localization during the different stages of M phase, thereby enabling the monitoring of EC proliferation and cytokinesis. In Flt-1/eGFP-anillin mice, we found eGFP + signals specifically in Ki67 + /PECAM + endothelial cells during vascular development. Quantification using this cell cycle reporter in embryos revealed a decline in endothelial cell proliferation between E9.5 to E12.5. By time-lapse microscopy, we determined the length of different cell cycle phases in embryonic endothelial cells in vivo and found a M phase duration of about 80 min with 2/3 covering karyokinesis and 1/3 cytokinesis. Thus, we have generated a versatile transgenic system for the accurate assessment of endothelial cell cycle dynamics in vitro and in vivo.

  4. Involvement of insulin-degrading enzyme in insulin- and atrial natriuretic peptide-sensitive internalization of amyloid-β peptide in mouse brain capillary endothelial cells.

    Science.gov (United States)

    Ito, Shingo; Ohtsuki, Sumio; Murata, Sho; Katsukura, Yuki; Suzuki, Hiroya; Funaki, Miho; Tachikawa, Masanori; Terasaki, Tetsuya

    2014-01-01

    Cerebral clearance of amyloid-β peptide (Aβ), which is implicated in Alzheimer's disease, involves elimination across the blood-brain barrier (BBB), and we previously showed that an insulin-sensitive process is involved in the case of Aβ1-40. The purpose of this study was to clarify the molecular mechanism of the insulin-sensitive Aβ1-40 elimination across mouse BBB. An in vivo cerebral microinjection study demonstrated that [125I]hAβ1-40 elimination from mouse brain was inhibited by human natriuretic peptide (hANP), and [125I]hANP elimination was inhibited by hAβ1-40, suggesting that hAβ1-40 and hANP share a common elimination process. Internalization of [125I]hAβ1-40 into cultured mouse brain capillary endothelial cells (TM-BBB4) was significantly inhibited by either insulin, hANP, other natriuretic peptides or insulin-degrading enzyme (IDE) inhibitors, but was not inhibited by phosphoramidon or thiorphan. Although we have reported the involvement of natriuretic peptide receptor C (Npr-C) in hANP internalization, cells stably expressing Npr-C internalized [125I]hANP but not [125I]hAβ1-40, suggesting that there is no direct interaction between Npr-C and hAβ1-40. IDE was detected in plasma membrane of TM-BBB4 cells, and internalization of [125I]hAβ1-40 by TM-BBB4 cells was reduced by IDE-targeted siRNAs. We conclude that elimination of hAβ1-40 from mouse brain across the BBB involves an insulin- and ANP-sensitive process, mediated by IDE expressed in brain capillary endothelial cells.

  5. A CNS-permeable Hsp90 inhibitor rescues synaptic dysfunction and memory loss in APP-overexpressing Alzheimer's mouse model via an HSF1-mediated mechanism.

    Science.gov (United States)

    Wang, B; Liu, Y; Huang, L; Chen, J; Li, J J; Wang, R; Kim, E; Chen, Y; Justicia, C; Sakata, K; Chen, H; Planas, A; Ostrom, R S; Li, W; Yang, G; McDonald, M P; Chen, R; Heck, D H; Liao, F-F

    2017-07-01

    Induction of neuroprotective heat-shock proteins via pharmacological Hsp90 inhibitors is currently being investigated as a potential treatment for neurodegenerative diseases. Two major hurdles for therapeutic use of Hsp90 inhibitors are systemic toxicity and limited central nervous system permeability. We demonstrate here that chronic treatment with a proprietary Hsp90 inhibitor compound (OS47720) not only elicits a heat-shock-like response but also offers synaptic protection in symptomatic Tg2576 mice, a model of Alzheimer's disease, without noticeable systemic toxicity. Despite a short half-life of OS47720 in mouse brain, a single intraperitoneal injection induces rapid and long-lasting (>3 days) nuclear activation of the heat-shock factor, HSF1. Mechanistic study indicates that the remedial effects of OS47720 depend upon HSF1 activation and the subsequent HSF1-mediated transcriptional events on synaptic genes. Taken together, this work reveals a novel role of HSF1 in synaptic function and memory, which likely occurs through modulation of the synaptic transcriptome.

  6. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    International Nuclear Information System (INIS)

    Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D.; Eisinger-Mathason, T.S. Karin; Choy, Edwin; Kirsch, David G.; Simon, M. Celeste

    2015-01-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm 3 within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm 3 for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature

  7. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoon, Changhwan [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Park, Do Joong [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Surgery, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Kim, Yeo-Jung [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Schmidt, Benjamin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Lee, Yoon-Jin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Tap, William D. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Eisinger-Mathason, T.S. Karin [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Choy, Edwin [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Simon, M. Celeste [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Howard Hughes Medical Institute (United States); and others

    2015-03-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.

  8. CNS role evolution.

    Science.gov (United States)

    Payne, J L; Baumgartner, R G

    1996-01-01

    THE CNS ROLE has been actualized in a variety of ways. Flexibility-inherent in the role-and the revolution in health care consciousness tend to place the CNS at risk for criticism regarding value to the organization. At Vanderbilt University Medical Center, a CNS task force evaluated the current reality of CNS practice and recommended role changes to include the financial analysis of patient care. After incorporating a financial perspective into our present practice, we have embarked on an interesting journey of post-Master's degree study, that of the tertiary care nurse practitioner. This practice option could elevated the clinical and financial aspects of providing cost-effective health care to a more autonomous role form; however, the transition has been challenging. Since 1990, the American Nurses Association has recommended that nursing school curricula change to meet the needs of the health care environment and provide increased career flexibility through creating one advanced degree incorporating both CNS and NP functions. Swiftly moving past differences and toward similarities will bridge the gap for advanced practice nurses in the future.

  9. 1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress

    DEFF Research Database (Denmark)

    Ng, Hooi Hooi; Leo, Chen Huei; O'Sullivan, Kelly

    2017-01-01

    and decreased basal nitric oxide (NO) availability. SeTal (1mM) co-treatment prevented high glucose-induced endothelial dysfunction and oxidative stress in the mouse aorta. The presence of a cyclooxygenase inhibitor, indomethacin significantly improved the sensitivity to ACh in high glucose-treated aortae......, but had no effect in SeTal-treated aortae. Our data show that SeTal has potent antioxidant activity in isolated mouse aortae and prevents high glucose-induced endothelial dysfunction by decreasing superoxide levels, increasing basal NO availability and normalising the contribution of vasoconstrictor......Hyperglycaemia increases the generation of reactive oxidants in blood vessels and is a major cause of endothelial dysfunction. A water-soluble selenium-containing sugar (1,4-Anhydro-4-seleno-d-talitol, SeTal) has potent antioxidant activity in vitro and is a promising treatment to accelerate wound...

  10. Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma.

    NARCIS (Netherlands)

    Kusters, B.; Waal, R.M.W. de; Wesseling, P.; Verrijp, K.; Maass, C.N.; Heerschap, A.; Barentsz, J.O.; Sweep, C.G.J.; Ruiter, D.J.; Leenders, W.P.J.

    2003-01-01

    We reported previously that vascular endothelial growth factor isoform A (VEGF-A) expression by Mel57 human melanoma cells led to tumor progression in a murine brain metastasis model in an angiogenesis-independent fashion by dilation of co-opted, pre-existing vessels and concomitant enhanced blood

  11. One amino acid in mouse activated factor VII defines its endothelial protein C receptor (EPCR) binding and modulates its EPCR-dependent hemostatic activity in vivo.

    Science.gov (United States)

    Pavani, G; Zintner, S M; Ivanciu, L; Small, J C; Stafford, K A; Szeto, J H; Margaritis, P

    2017-03-01

    Essentials The lack of factor (F) VIIa-endothelial protein C receptor (EPCR) binding in mice is unresolved. A single substitution of Leu4 to Phe in mouse FVIIa (mFVIIa) enables its interaction with EPCR. mFVIIa with a Phe4 shows EPCR binding-dependent enhanced hemostatic function in vivo vs. mFVIIa. Defining the FVIIa-EPCR interaction in mice allows for further investigating its biology in vivo. Background Human activated factor VII (hFVIIa), which is used in hemophilia treatment, binds to the endothelial protein C (PC) receptor (EPCR) with unclear hemostatic consequences. Interestingly, mice lack the activated FVII (FVIIa)-EPCR interaction. Therefore, to investigate the hemostatic consequences of this interaction in hemophilia, we previously engineered a mouse FVIIa (mFVIIa) molecule that bound mouse EPCR (mEPCR) by using three substitutions from mouse PC (mPC), i.e. Leu4→Phe, Leu8→Met, and Trp9→Arg. The resulting molecule, mFVIIa-FMR, modeled the EPCR-binding properties of hFVIIa and showed enhanced hemostatic capacity in hemophilic mice versus mFVIIa. These data implied a role of EPCR in the action of hFVIIa in hemophilia treatment. However, the substitutions in mFVIIa-FMR only broadly defined the sequence determinants for its mEPCR interaction and enhanced function in vivo. Objectives To determine the individual contributions of mPC Phe4, Met8 and Arg9 to the in vitro/in vivo properties of mFVIIa-FMR. Methods The mEPCR-binding properties of single amino acid variants of mFVIIa or mPC at position 4, 8 or 9 were investigated. Results and conclusions Phe4 in mFVIIa or mPC was solely critical for interaction with mEPCR. In hemophilic mice, administration of mFVIIa harboring a Phe4 resulted in a 1.9-2.5-fold increased hemostatic capacity versus mFVIIa that was EPCR binding-dependent. This recapitulated previous observations made with triple-mutant mFVIIa-FMR. As Leu8 is crucial for hFVIIa-EPCR binding, we describe the sequence divergence of this interaction in

  12. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Ekhtear [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Ota, Akinobu, E-mail: aota@aichi-med-u.ac.jp [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Karnan, Sivasundaram; Damdindorj, Lkhagvasuren [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Takahashi, Miyuki [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Konishi, Yuko; Konishi, Hiroyuki; Hosokawa, Yoshitaka [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan)

    2013-12-15

    Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, an anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.

  13. Progesterone amplifies oxidative stress signal and promotes NO production via H2O2 in mouse kidney arterial endothelial cells.

    Science.gov (United States)

    Yuan, Xiao-Hua; Fan, Yang-Yang; Yang, Chun-Rong; Gao, Xiao-Rui; Zhang, Li-Li; Hu, Ying; Wang, Ya-Qin; Jun, Hu

    2016-01-01

    The role of progesterone on the cardiovascular system is controversial. Our present research is to specify the effect of progesterone on arterial endothelial cells in response to oxidative stress. Our result showed that H2O2 (150 μM and 300 μM) induced cellular antioxidant response. Glutathione (GSH) production and the activity of Glutathione peroxidase (GPx) were increased in H2O2-treated group. The expression of glutamate cysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) was induced in response to H2O2. However, progesterone absolutely abolished the antioxidant response through increasing ROS level, inhibiting the activity of Glutathione peroxidase (GPx), decreasing GSH level and reducing expression of GClC and GCLM. In our study, H2O2 induced nitrogen monoxide (NO) production and endothelial nitric oxide synthase (eNOS) expression, and progesterone promoted H2O2-induced NO production. Progesterone increased H2O2-induced expression of hypoxia inducible factor-α (HIFα) which in turn regulated eNOS expression and NO synthesis. Further study demonstrated that progesterone increased H2O2 concentration of culture medium which may contribute to NO synthesis. Exogenous GSH decreased the content of H2O2 of culture medium pretreated by progesterone combined with H2O2 or progesterone alone. GSH also inhibited expression of HIFα and eNOS, and abolished NO synthesis. Collectively, our study demonstrated for the first time that progesterone inhibited cellular antioxidant effect and increased oxidative stress, promoted NO production of arterial endothelial cells, which may be due to the increasing H2O2 concentration and amplified oxidative stress signal. Copyright © 2015. Published by Elsevier Ltd.

  14. The matricellular protein TSP1 promotes human and mouse endothelial cell senescence through CD47 and Nox1.

    Science.gov (United States)

    Meijles, Daniel N; Sahoo, Sanghamitra; Al Ghouleh, Imad; Amaral, Jefferson H; Bienes-Martinez, Raquel; Knupp, Heather E; Attaran, Shireen; Sembrat, John C; Nouraie, Seyed M; Rojas, Mauricio M; Novelli, Enrico M; Gladwin, Mark T; Isenberg, Jeffrey S; Cifuentes-Pagano, Eugenia; Pagano, Patrick J

    2017-10-17

    Senescent cells withdraw from the cell cycle and do not proliferate. The prevalence of senescent compared to normally functioning parenchymal cells increases with age, impairing tissue and organ homeostasis. A contentious principle governing this process has been the redox theory of aging. We linked matricellular protein thrombospondin 1 (TSP1) and its receptor CD47 to the activation of NADPH oxidase 1 (Nox1), but not of the other closely related Nox isoforms, and associated oxidative stress, and to senescence in human cells and aged tissue. In human endothelial cells, TSP1 promoted senescence and attenuated cell cycle progression and proliferation. At the molecular level, TSP1 increased Nox1-dependent generation of reactive oxygen species (ROS), leading to the increased abundance of the transcription factor p53. p53 mediated a DNA damage response that led to senescence through Rb and p21 cip , both of which inhibit cell cycle progression. Nox1 inhibition blocked the ability of TSP1 to increase p53 nuclear localization and p21 cip abundance and its ability to promote senescence. Mice lacking TSP1 showed decreases in ROS production, p21 cip expression, p53 activity, and aging-induced senescence. Conversely, lung tissue from aging humans displayed increases in the abundance of vascular TSP1, Nox1, p53, and p21 cip Finally, genetic ablation or pharmacological blockade of Nox1 in human endothelial cells attenuated TSP1-mediated ROS generation, restored cell cycle progression, and protected against senescence. Together, our results provide insights into the functional interplay between TSP1 and Nox1 in the regulation of endothelial senescence and suggest potential targets for controlling the aging process at the molecular level. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Supratentorial CNS malformations

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2012-01-01

    Full text: Clinical suspicion of a developmental anomaly of the central nervous system (CNS) is a frequent indication for performing and magnetic resonance imaging (MRI) examination of the brain. Classification systems for malformation of the CNS are constantly revised according to newer scientific research. Developmental abnormalities can be classified in two main types. The first category consists of disorders of organogenesis in which genetic defects or any ischemic, metabolic, toxic or infectious insult to the developing brain can cause malformation. These malformations result from abnormal neuronal and glial proliferation and from anomalies of neuronal migration and or cortical organization. They are divided into supra- and infratentorial and may involve grey or white matter or both. The second category of congenital brain abnormalities is disorders of histogenesis which result from abnormal cell differentiation with a relatively normal brain appearance. Supratentorial CNS malformations could be divided into anomalies in telencephalic commissure, holoprosencephalies and malformations in cortical development. There are three main telencephalic commissures: the anterior commissure, the hippocampal commissure and the corpus callosum. Their morphology (hypoplasia, hyperplasia, agenesis, dysgenesis, even atrophy) reflects the development of the brain. Their agenesis, complete or partial, is one of the most commonly observed features in the malformations of the brain and is a part of many syndromes. Malformations of cortical development (MCD) are heterogeneous group of disease which result from disruption of 3 main stages of cortical development. The common clinical presentation is refractory epilepsy and or developmental delay. The most common MCD are heterotopias, focal cortical dysplasia, polymicrogyria, schizencephaly, pachygyria and lizencephaly. The exact knowledge of the brain anatomy and embryology is mandatory to provide a better apprehension of the

  16. Intimal cushions and endothelial nuclear elongation around mouse aortic branches and their spatial correspondence with patterns of lipid deposition

    Science.gov (United States)

    Bond, Andrew R.; Ni, Chih-Wen; Jo, Hanjoong

    2010-01-01

    Spatial variation in hemodynamic stresses acting on the arterial wall may explain the nonuniform distribution of atherosclerosis. In thoracic aortas of LDL receptor/apolipoprotein E double knockout mice, lesions develop preferentially around the entire circumference of intercostal branch ostia, regardless of age, with the highest prevalence occurring upstream. Additional chevron-shaped lesions occur further upstream of the ostia. This pattern differs from the age-related ones occurring in people and rabbits. In the present study, patterns of near-wall blood flow around intercostal ostia in wild-type mice were estimated from the morphology of endothelial nuclei, which were shown in vitro to elongate in response to elevated shear stress and to align with the flow, and wall structure was assessed from confocal and scanning electron microscopy. A triangular intimal cushion surrounded the upstream part of most ostia. Nuclear length-to-width ratios were lowest over this cushion and highest at the sides of branches, regardless of age. Nuclear orientations were consistent with flow diverging around the branch. The pattern of nuclear morphology differed from the age-related ones observed in rabbits. The intimal cushion and the distribution of shear stress inferred from these observations can partly account for the pattern of lesions observed in knockout mice. Nuclear elongation in nonbranch regions was approximately constant across animals of different size, demonstrating the existence of a mechanism by which endothelial cells compensate for the dependence of mean aortic wall shear stress on body mass. PMID:19933414

  17. miR-214-Dependent Increase of PHLPP2 Levels Mediates the Impairment of Insulin-Stimulated Akt Activation in Mouse Aortic Endothelial Cells Exposed to Methylglyoxal

    Directory of Open Access Journals (Sweden)

    Cecilia Nigro

    2018-02-01

    Full Text Available Evidence has been provided linking microRNAs (miRNAs and diabetic complications, by the regulation of molecular pathways, including insulin-signaling, involved in the pathophysiology of vascular dysfunction. Methylglyoxal (MGO accumulates in diabetes and is associated with cardiovascular complications. This study aims to analyze the contribution of miRNAs in the MGO-induced damaging effect on insulin responsiveness in mouse aortic endothelial cells (MAECs. miRNA modulation was performed by transfection of specific miRNA mimics and inhibitors in MAECs, treated or not with MGO. miRNA-target protein levels were evaluated by Western blot. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2 regulation by miR-214 was tested by luciferase assays and by the use of a target protector specific for miR-214 on PHLPP2-3′UTR. This study reveals a 4-fold increase of PHLPP2 in MGO-treated MAECs. PHLPP2 levels inversely correlate with miR-214 modulation. Moreover, miR-214 overexpression is able to reduce PHLPP2 levels in MGO-treated MAECs. Interestingly, a direct regulation of PHLPP2 is proved to be dependent by miR-214. Finally, the inhibition of miR-214 impairs the insulin-dependent Akt activation, while its overexpression rescues the insulin effect on Akt activation in MGO-treated MAECs. In conclusion, this study shows that PHLPP2 is a target of miR-214 in MAECs, and identifies miR-214 downregulation as a contributing factor to MGO-induced endothelial insulin-resistance.

  18. Overexpression of catalase delays G0/G1- to S-phase transition during cell cycle progression in mouse aortic endothelial cells.

    Science.gov (United States)

    Onumah, Ogbeyalu E; Jules, George E; Zhao, Yanfeng; Zhou, LiChun; Yang, Hong; Guo, ZhongMao

    2009-06-15

    Although it is understood that hydrogen peroxide (H(2)O(2)) promotes cellular proliferation, little is known about its role in endothelial cell cycle progression. To assess the regulatory role of endogenously produced H(2)O(2) in cell cycle progression, we studied the cell cycle progression in mouse aortic endothelial cells (MAECs) obtained from mice overexpressing a human catalase transgene (hCatTg), which destroys H(2)O(2). The hCatTg MAECs displayed a prolonged doubling time compared to wild-type controls (44.0 +/- 4.7 h versus 28.6 +/- 0.8 h, pcatalase inhibitor, prevented the observed diminished growth rate in hCatTg MAECs. Inhibition of catalase activity with aminotriazole abrogated catalase overexpression-induced antiproliferative action. Flow cytometry analysis indicated that the prolonged doubling time was principally due to an extended G(0)/G(1) phase in hCatTg MAECs compared to the wild-type cells (25.0 +/- 0.9 h versus 15.9 +/- 1.4 h, pinhibitors, p21 and p27, which inhibit the Cdk activity required for the G(0)/G(1)- to S-phase transition. Knockdown of p21 and/or p27 attenuated the antiproliferative effect of catalase overexpression in MAECs. These results, together with the fact that catalase is an H(2)O(2) scavenger, suggest that endogenously produced H(2)O(2) mediates MAEC proliferation by fostering the transition from G(0)/G(1) to S phase.

  19. Vascular endothelial growth factor-D over-expressing tumor cells induce differential effects on uterine vasculature in a mouse model of endometrial cancer

    Directory of Open Access Journals (Sweden)

    Stacker Steven A

    2010-07-01

    Full Text Available Abstract Background It has been hypothesised that increased VEGF-D expression may be an independent prognostic factor for endometrial cancer progression and lymph node metastasis; however, the mechanism by which VEGF-D may promote disease progression in women with endometrial cancer has not been investigated. Our aim was to describe the distribution of lymphatic vessels in mouse uterus and to examine the effect of VEGF-D over-expression on these vessels in a model of endometrial cancer. We hypothesised that VEGF-D over-expression would stimulate growth of new lymphatic vessels into the endometrium, thereby contributing to cancer progression. Methods We initially described the distribution of lymphatic vessels (Lyve-1, podoplanin, VEGFR-3 and VEGF-D expression in the mouse uterus during the estrous cycle, early pregnancy and in response to estradiol-17beta and progesterone using immunohistochemistry. We also examined the effects of VEGF-D over-expression on uterine vasculature by inoculating uterine horns in NOD SCID mice with control or VEGF-D-expressing 293EBNA tumor cells. Results Lymphatic vessels positive for the lymphatic endothelial cell markers Lyve-1, podoplanin and VEGFR-3 profiles were largely restricted to the connective tissue between the myometrial circular and longitudinal muscle layers; very few lymphatic vessel profiles were observed in the endometrium. VEGF-D immunostaining was present in all uterine compartments (epithelium, stroma, myometrium, although expression was generally low. VEGF-D immunoexpression was slightly but significantly higher in estrus relative to diestrus; and in estradiol-17beta treated mice relative to vehicle or progesterone treated mice. The presence of VEGF-D over-expressing tumor cells did not induce endometrial lymphangiogenesis, although changes were observed in existing vessel profiles. For myometrial lymphatic and endometrial blood vessels, the percentage of profiles containing proliferating

  20. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones.

    Science.gov (United States)

    Zensi, Anja; Begley, David; Pontikis, Charles; Legros, Celine; Mihoreanu, Larisa; Wagner, Sylvia; Büchel, Claudia; von Briesen, Hagen; Kreuter, Jörg

    2009-07-01

    The blood-brain barrier (BBB) represents a considerable obstacle to brain entry of the majority of drugs and thus severely restricts the therapy of many serious CNS diseases including brain tumours, brain HIV, Alzheimer and other neurodegenerative diseases. The use of nanoparticles coated with polysorbate 80 or with attached apolipoprotein E has enabled the delivery of drugs across the BBB. However, the mechanism of this enhanced transport is still not fully understood. In this present study, human serum albumin nanoparticles, with covalently bound apolipoprotein E (Apo E) as a targetor as well as without apolipoprotein E, were manufactured and injected intravenously into SV 129 mice. The animals were sacrificed after 15 and 30 min, and their brains were examined by transmission electron microscopy. Only the nanoparticles with covalently bound apolipoprotein E were detected in brain capillary endothelial cells and neurones, whereas no uptake into the brain was detectable with nanoparticles without apolipoprotein E. We have also demonstrated uptake of the albumin/ApoE nanoparticles into mouse endothelial (b.End3) cells in vitro and their intracellular localisation. These findings indicate that nanoparticles with covalently bound apolipoprotein E are taken up into the cerebral endothelium by an endocytic mechanism followed by transcytosis into brain parenchyma.

  1. Management of CNS tumors

    International Nuclear Information System (INIS)

    Griem, M.L.

    1987-01-01

    The treatment of tumors of the CNS has undergone a number of changes based on the impact of CT. The use of intraoperative US for the establishment of tumor location and tumor histology is demonstrated. MR imaging also is beginning to make an impact on the diagnosis and treatment of tumors of the CNS. Examples of MR images are shown. The authors then discuss the important aspects of tumor histology as it affects management and newer concepts in surgery, radiation, and chemotherapy on tumor treatment. The role of intraoperative placement of radioactive sources, the utilization of heavy particle radiation therapy, and the potential role of other experimental radiation therapy techniques are discussed. The role of hyperfractionated radiation and of neutrons and x-ray in a mixed-beam treatment are discussed in perspective with standard radiation therapy. Current chemotherapy techniques, including intraarterial chemotherapy, are discussed. The complications of radiation therapy alone and in combination with chemotherapy in the management of primary brain tumors, brain metastases, and leukemia are reviewed. A summary of the current management of pituitary tumors, including secreting pituitary adenomas and chromophobe adenomas, are discussed. The treatment with heavy particle radiation, transsphenoidal microsurgical removal, and combined radiotherapeutic and surgical management are considered. Tumor metastasis management of lesions of the brain and spinal cord are considered

  2. Magnetic Resonance Tracking of Endothelial Progenitor Cells Labeled with Alkyl-Polyethylenimine 2 kDa/Superparamagnetic Iron Oxide in a Mouse Lung Carcinoma Xenograft Model

    Directory of Open Access Journals (Sweden)

    Cong Chen

    2014-11-01

    Full Text Available The potential of using endothelial progenitor cells (EPCs in novel anticancer therapy and the repair of vascular injury has been increasingly recognized. In the present study, EPCs were labeled with N-alkyl-polyethylenimine 2 kDa (PEI2k-stabilized superparamagnetic iron oxide (SPIO to facilitate magnetic resonance imaging (MRI of EPCs in a mouse lung carcinoma xenograft model. EPCs derived from human peripheral blood were labeled with alkyl-PEI2k/SPIO. The viability and activity of labeled cells were evaluated using proliferation, migration, and tubulogenesis assays. Alkyl-PEI2k/SPIO-labeled EPCs were injected intravenously (group 1 or mixed and injected together with A549 cells subcutaneously (group 2 into groups of six mice with severe combined immunodeficiency. The labeling efficiency with alkyl-PEI2k/SPIO at 7 mg Fe/mL concentration was approximately 100%. Quantitative analysis of cellular iron was 6.062 ± 0.050 pg/cell. No significant effects on EPC proliferation, migration, or tubulogenesis were seen after labeling. Seventesla micro-MRI showed the presence of schistic or linear hypointense regions at the tumor margins starting from days 7 to 8 after EPC administration. This gradually extended into the inner tumor layers in group 1. In group 2, tumor growth was accompanied by dispersion of low-signal intensity regions inside the tumor. Iron-positive cells identified by Prussian blue dye were seen at the sites identified using MRI. Human CD31-positive cells and mouse CD31-positive cells were present in both groups. Labeling EPCs with alkyl-PEI2k/SPIO allows noninvasive magnetic resonance investigation of EPC involvement in tumor neovasculature and is associated with excellent biocompatibility and MRI sensitivity.

  3. Flavonoids and the CNS

    DEFF Research Database (Denmark)

    Jäger, Anna Katharina; Saaby, Lasse

    2011-01-01

    Flavonoids are present in almost all terrestrial plants, where they provide UV-protection and colour. Flavonoids have a fused ring system consisting of an aromatic ring and a benzopyran ring with a phenyl substituent. The flavonoids can be divided into several classes depending on their structure....... Flavonoids are present in food and medicinal plants and are thus consumed by humans. They are found in plants as glycosides. Before oral absorption, flavonoids undergo deglycosylation either by lactase phloridzin hydrolase or cytosolic ß-glucocidase. The absorbed aglycone is then conjugated by methylation......, sulphatation or glucuronidation. Both the aglycones and the conjugates can pass the blood-brain barrier. In the CNS several flavones bind to the benzodiazepine site on the GABA(A)-receptor resulting in sedation, anxiolytic or anti-convulsive effects. Flavonoids of several classes are inhibitors of monoamine...

  4. Isolated vasculitis of the CNS

    International Nuclear Information System (INIS)

    Block, F.; Reith, W.

    2000-01-01

    Vasculitis is a rare cause for disease of the CNS. The isolated vasculitis of the CNS is restricted to the CNS whereas other forms of vasculitis affect various organs including the CNS. Headache, encephalopathy, focal deficits and epileptic seizures are the major symptoms suggestive for vasculitis. One major criterion of the isolated vasculitis of the CNS is the lack of evidence for other vasculitis forms or for pathology of other organs. Angiography displays multifocal segmental stenosis of intracranial vessels. MRI demonstrates multiple lesions which in part show enhancement after gadolinium. A definite diagnosis can only be made on the grounds of biopsy from leptomeninges and parenchyma. Therapy consists of corticosteroids and cyclophosphamid. (orig.) [de

  5. Flavonoids and the CNS

    Directory of Open Access Journals (Sweden)

    Anna K. Jäger

    2011-02-01

    Full Text Available Flavonoids are present in almost all terrestrial plants, where they provide UV-protection and colour. Flavonoids have a fused ring system consisting of an aromatic ring and a benzopyran ring with a phenyl substituent. The flavonoids can be divided into several classes depending on their structure. Flavonoids are present in food and medicinal plants and are thus consumed by humans. They are found in plants as glycosides. Before oral absorption, flavonoids undergo deglycosylation either by lactase phloridzin hydrolase or cytosolic β-glucocidase. The absorbed aglycone is then conjugated by methylation, sulphatation or glucuronidation. Both the aglycones and the conjugates can pass the blood-brain barrier. In the CNS several flavones bind to the benzodiazepine site on the GABAA-receptor resulting in sedation, anxiolytic or anti-convulsive effects. Flavonoids of several classes are inhibitors of monoamine oxidase A or B, thereby working as anti-depressants or to improve the conditions of Parkinson’s patients. Flavanols, flavanones and anthocyanidins have protective effects preventing inflammatory processes leading to nerve injury. Flavonoids seem capable of influencing health and mood.

  6. Ketamine alleviates bradykinin-induced disruption of the mouse cerebrovascular endothelial cell-constructed tight junction barrier via a calcium-mediated redistribution of occludin polymerization

    International Nuclear Information System (INIS)

    Chen, Jui-Tai; Lin, Yi-Ling; Chen, Ta-Liang; Tai, Yu-Ting; Chen, Cheng-Yu; Chen, Ruei-Ming

    2016-01-01

    Highlights: • Ketamine could suppress bradykinin-induced intracellular calcium mobilization. • Ketamine induced B1R protein and mRNA expressions but did not change B2R protein levels. • Ketamine attenuated bradykinin-induced redistribution of occludin tight junctions. • Ketamine prevented bradykinin-induced breakage of the MCEC-constructed tight junction barrier. - Abstract: Following brain injury, a sequence of mechanisms leads to disruption of the blood-brain barrier (BBB) and subsequent cerebral edema, which is thought to begin with activation of bradykinin. Our previous studies showed that ketamine, a widely used intravenous anesthetic agent, can suppress bradykinin-induced cell dysfunction. This study further aimed to evaluate the protective effects of ketamine against bradykinin-induced disruption of the mouse cerebrovascular endothelial cell (MCEC)-constructed tight junction barrier and the possible mechanisms. Exposure of MCECs to bradykinin increased intracellular calcium (Ca 2+ ) concentrations in a time-dependent manner. However, pretreatment of MCECs with ketamine time- and concentration-dependently lowered the bradykinin-induced calcium influx. As to the mechanisms, although exposure of MCECs to ketamine induced bradykinin R1 receptor protein and mRNA expression, this anesthetic did not change levels of the bradykinin R2 receptor, a major receptor that responds to bradykinin stimulation. Bradykinin increased amounts of soluble occludin in MCECs, but pretreatment with ketamine alleviated this disturbance in occludin polymerization. Consequently, exposure to bradykinin decreased the transendothelial electronic resistance in the MCEC-constructed tight junction barrier. However, pretreatment with ketamine attenuated the bradykinin-induced disruption of the tight junction barrier. Taken together, this study shows that ketamine at a therapeutic concentration can protect against bradykinin-induced breakage of the BBB via suppressing calcium

  7. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  8. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system.

    Science.gov (United States)

    Zhang, Jinhui; Chen, Songlin; Cai, Jing; Hou, Zhiqiang; Wang, Xiaohan; Kachelmeier, Allan; Shi, Xiaorui

    2017-03-01

    The vestibular blood-labyrinth barrier (BLB) is comprised of perivascular-resident macrophage-like melanocytes (PVM/Ms) and pericytes (PCs), in addition to endothelial cells (ECs) and basement membrane (BM), and bears strong resemblance to the cochlear BLB in the stria vascularis. Over the past few decades, in vitro cell-based models have been widely used in blood-brain barrier (BBB) and blood-retina barrier (BRB) research, and have proved to be powerful tools for studying cell-cell interactions in their respective organs. Study of both the vestibular and strial BLB has been limited by the unavailability of primary culture cells from these barriers. To better understand how barrier component cells interact in the vestibular system to control BLB function, we developed a novel culture medium-based method for obtaining EC, PC, and PVM/M primary cells from tiny explants of the semicircular canal, sacculus, utriculus, and ampullae tissue of young mouse ears at post-natal age 8-12 d. Each phenotype is grown in a specific culture medium which selectively supports the phenotype in a mixed population of vestibular cell types. The unwanted phenotypes do not survive passaging. The protocol does not require additional equipment or special enzyme treatment. The harvesting process takes less than 2 h. Primary cell types are generated within 7-10 d. The primary culture ECs, PCs, and PVM/M shave consistent phenotypes more than 90% pure after two passages (∼ 3 weeks). The highly purified primary cell lines can be used for studying cell-cell interactions, barrier permeability, and angiogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. CNS infections in immunocompetent patients

    International Nuclear Information System (INIS)

    Hartmann, K.M.; Zimmer, A.; Reith, W.

    2008-01-01

    This article gives a review of the most frequent infective agents reasonable for CNS infections in immunocompetent patients as well as their localisation and imaging specifications. MRI scanning is the gold standard to detect inflammatory conditions in the CNS. Imaging can be normal or nonspecifically altered although the infection is culturally or bioptically proven. There are no pathognomonic, pathogen-specific imaging criteria. The localization and dimension of the inflammation depends on the infection pathway. (orig.) [de

  10. Application of empowerment theory for CNS practice.

    Science.gov (United States)

    Carlson-Catalano, J M

    1993-11-01

    Power is necessary for the clinical nurse specialist (CNS) to successfully conduct objectives of practice in bureaucratic hospital settings. To obtain power, the CNS could use strategies of an empowerment theory to fully operationalize roles in hospitals. This article will discuss how the CNS may be empowered utilizing strategies in four empowering categories. In addition, the many benefits of empowering the CNS are reviewed.

  11. Bovine-associated CNS species resist phagocytosis differently

    Science.gov (United States)

    2013-01-01

    Background Coagulase-negative staphylococci (CNS) cause usually subclinical or mild clinical bovine mastitis, which often remains persistent. Symptoms are usually mild, mostly only comprising slight changes in the appearance of milk and possibly slight swelling. However, clinical mastitis with severe signs has also been reported. The reasons for the differences in clinical expression are largely unknown. Macrophages play an important role in the innate immunity of the udder. This study examined phagocytosis and killing by mouse macrophage cells of three CNS species: Staphylococcus chromogenes (15 isolates), Staphylococcus agnetis (6 isolates) and Staphylococcus simulans (15 isolates). Staphylococcus aureus (7 isolates) was also included as a control. Results All the studied CNS species were phagocytosed by macrophages, but S. simulans resisted phagocytosis more effectively than the other CNS species. Only S. chromogenes was substantially killed by macrophages. Significant variations between isolates were seen in both phagocytosis and killing by macrophages and were more common in the killing assays. Significant differences between single CNS species and S. aureus were observed in both assays. Conclusion This study demonstrated that differences in the phagocytosis and killing of mastitis-causing staphylococci by macrophages exist at both the species and isolate level. PMID:24207012

  12. Innate Interferons Regulate CNS Inflammation

    DEFF Research Database (Denmark)

    Dieu, Ruthe; Khorooshi, Reza M. H.; Mariboe, Anne

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) whose pathology is characterised by demyelination and axonal damage. This results from interplay between CNS-resident glia, infiltrating leukocytes and a plethora of cytokines and chemokines. Currently...... potential IFN-inducing receptor that signals through NF-kB. Receptor activator of NF-kB (RANK) belongs to the TNF-receptor superfamily and has been shown to induce IFN-beta in medullary thymic epithelial cells affecting autoimmune regulatory processes and osteoclast precursor cells in association to bone...

  13. Genetic models for CNS inflammation

    DEFF Research Database (Denmark)

    Owens, T; Wekerle, H; Antel, J

    2001-01-01

    The use of transgenic technology to over-express or prevent expression of genes encoding molecules related to inflammation has allowed direct examination of their role in experimental disease. This article reviews transgenic and knockout models of CNS demyelinating disease, focusing primarily on ...

  14. Basic Concepts of CNS Development.

    Science.gov (United States)

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  15. CNS complications of rotavirus gastroenteritis

    International Nuclear Information System (INIS)

    Volosinova, D.

    2010-01-01

    Rotavirus infection may be accompanied by serious complications, e.g. disabilities central nervous system (CNS). Theory rotavirus penetration across the blood-brain barrier and subsequent rota-associated convulsions by the 2-year case-history of the patient. Rotavirosis minor gastrointestinal symptoms may lead to erroneous diagnosis. (author)

  16. Positive Feedback Regulation of Agonist-Stimulated Endothelial Ca2+ Dynamics by KCa3.1 Channels in Mouse Mesenteric Arteries

    DEFF Research Database (Denmark)

    Qian, Xun; Francis, Michael; Köhler, Ralf

    2014-01-01

    Intermediate and small conductance KCa channels IK1 (KCa3.1) and SK3 (KCa2.3) are primary targets of endothelial Ca(2+) signals in the arterial vasculature, and their ablation results in increased arterial tone and hypertension. Activation of IK1 channels by local Ca(2+) transients from internal ...... stores or plasma membrane channels promotes arterial hyperpolarization and vasodilation. Here, we assess arteries from genetically altered IK1 knockout mice (IK1(-/-)) to determine whether IK1 channels exert a positive feedback influence on endothelial Ca(2+) dynamics....

  17. Intracavernous Delivery of a Designed Angiopoietin-1 Variant Rescues Erectile Function by Enhancing Endothelial Regeneration in the Streptozotocin-Induced Diabetic Mouse

    Science.gov (United States)

    Jin, Hai-Rong; Kim, Woo Jean; Song, Jae Sook; Piao, Shuguang; Choi, Min Ji; Tumurbaatar, Munkhbayar; Shin, Sun Hwa; Yin, Guo Nan; Koh, Gou Young; Ryu, Ji-Kan; Suh, Jun-Kyu

    2011-01-01

    OBJECTIVE Patients with diabetic erectile dysfunction often have severe endothelial dysfunction and respond poorly to oral phosphodiesterase-5 inhibitors. We examined the effectiveness of the potent angiopoietin-1 (Ang1) variant, cartilage oligomeric matrix protein (COMP)-Ang1, in promoting cavernous endothelial regeneration and restoring erectile function in diabetic animals. RESEARCH DESIGN AND METHODS Four groups of mice were used: controls; streptozotocin (STZ)-induced diabetic mice; STZ-induced diabetic mice treated with repeated intracavernous injections of PBS; and STZ-induced diabetic mice treated with COMP-Ang1 protein (days −3 and 0). Two and 4 weeks after treatment, we measured erectile function by electrical stimulation of the cavernous nerve. The penis was harvested for histologic examinations, Western blot analysis, and cGMP quantification. We also performed a vascular permeability test. RESULTS Local delivery of the COMP-Ang1 protein significantly increased cavernous endothelial proliferation, endothelial nitric oxide (NO) synthase (NOS) phosphorylation, and cGMP expression compared with that in the untreated or PBS-treated STZ-induced diabetic group. The changes in the group that received COMP-Ang1 restored erectile function up to 4 weeks after treatment. Endothelial protective effects, such as marked decreases in the expression of p47phox and inducible NOS, in the generation of superoxide anion and nitrotyrosine, and in the number of apoptotic cells in the corpus cavernosum tissue, were noted in COMP-Ang1–treated STZ-induced diabetic mice. An intracavernous injection of COMP-Ang1 completely restored endothelial cell-cell junction proteins and decreased cavernous endothelial permeability. COMP-Ang1–induced promotion of cavernous angiogenesis and erectile function was abolished by the NOS inhibitor, N-nitro-L-arginine methyl ester, but not by the NADPH oxidase inhibitor, apocynin. CONCLUSIONS These findings support the concept of cavernous

  18. Signaling hierarchy regulating human endothelial cell development

    Science.gov (United States)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  19. CNS-targets in control of energy and glucose homeostasis.

    Science.gov (United States)

    Kleinridders, André; Könner, A Christine; Brüning, Jens C

    2009-12-01

    The exceeding efforts in understanding the signals initiated by nutrients and hormones in the central nervous system (CNS) to regulate glucose and energy homeostasis have largely revolutionized our understanding of the neurocircuitry in control of peripheral metabolism. The ability of neurons to sense nutrients and hormones and to adopt a coordinated response to these signals is of crucial importance in controlling food intake, energy expenditure, glucose and lipid metabolism. Anatomical lesion experiments, pharmacological inhibition of signaling pathways, and, more recently, the analysis of conditional mouse mutants with modifications of hormone and nutrient signaling in defined neuronal populations have broadened our understanding of these complex neurocircuits. This review summarizes recent findings regarding the role of the CNS in sensing and transmitting nutritional and hormonal signals to control energy and glucose homeostasis and aims to define them as potential novel drug targets for the treatment of obesity and type 2 diabetes mellitus.

  20. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models.

    Directory of Open Access Journals (Sweden)

    Eduard Urich

    Full Text Available Brain microvascular endothelial cells (BEC constitute the blood-brain barrier (BBB which forms a dynamic interface between the blood and the central nervous system (CNS. This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local

  1. Protein kinase C-α signals P115RhoGEF phosphorylation and RhoA activation in TNF-α-induced mouse brain microvascular endothelial cell barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Deng Xiaolu

    2011-04-01

    Full Text Available Abstract Background Tumor necrosis factor-α (TNF-α, a proinflammatory cytokine, is capable of activating the small GTPase RhoA, which in turn contributes to endothelial barrier dysfunction. However, the underlying signaling mechanisms remained undefined. Therefore, we aimed to determine the role of protein kinase C (PKC isozymes in the mechanism of RhoA activation and in signaling TNF-α-induced mouse brain microvascular endothelial cell (BMEC barrier dysfunction. Methods Bend.3 cells, an immortalized mouse brain endothelial cell line, were exposed to TNF-α (10 ng/mL. RhoA activity was assessed by pull down assay. PKC-α activity was measured using enzyme assasy. BMEC barrier function was measured by transendothelial electrical resistance (TER. p115RhoGEF phosphorylation was detected by autoradiography followed by western blotting. F-actin organization was observed by rhodamine-phalloidin staining. Both pharmacological inhibitors and knockdown approaches were employed to investigate the role of PKC and p115RhoGEF in TNF-α-induced RhoA activation and BMEC permeability. Results We observed that TNF-α induces a rapid phosphorylation of p115RhoGEF, activation of PKC and RhoA in BMECs. Inhibition of conventional PKC by Gö6976 mitigated the TNF-α-induced p115RhoGEF phosphorylation and RhoA activation. Subsequently, we found that these events are regulated by PKC-α rather than PKC-β by using shRNA. In addition, P115-shRNA and n19RhoA (dominant negative mutant of RhoA transfections had no effect on mediating TNF-α-induced PKC-α activation. These data suggest that PKC-α but not PKC-β acts as an upstream regulator of p115RhoGEF phosphorylation and RhoA activation in response to TNF-α. Moreover, depletion of PKC-α, of p115RhoGEF, and inhibition of RhoA activation also prevented TNF-α-induced stress fiber formation and a decrease in TER. Conclusions Taken together, our results show that PKC-α phosphorylation of p115RhoGEF mediates TNF

  2. Nanomedicines for the Treatment of CNS Diseases.

    Science.gov (United States)

    Reynolds, Jessica L; Mahato, Ram I

    2017-03-01

    Targeting and delivering macromolecular therapeutics to the central nervous system (CNS) has been a major challenge. The blood-brain barrier (BBB) is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Therefore, much effort has been channelled into improving transport of therapeutics across the BBB and into the CNS including the use of nanoparticles. In this thematic issue, several reviews and original research are presented that address "Nanomedicines for CNS Diseases." The articles in this issue are concentrated on either CNS-HIV disease or CNS tumors. In regards to CNS-HIV disease, there are two reviews that discuss the role of nanoparticles for improving the delivery of HIV therapeutics to the CNS. In addition, there are two original articles focusing on therapies for CNS-HIV, one of them uses nanoparticles for delivery of siRNA specific to a key protein in autophagy to microglia, and another discusses nanoparticle delivery of a soluble mediator to suppress neuroinflammation. Furthermore, a comprehensive review about gene therapy for CNS neurological diseases is also included. Finally, this issue also includes review articles on enhanced drug targeting to CNS tumors. These articles include a review on the use of nanoparticles for CNS tumors, a review on functionalization (ligands) of nanoparticles for drug targeting to the brain tumor by overcoming BBB, and the final review discusses the use of macrophages as a delivery vehicle to CNS tumors. This thematic issue provides a wealth of knowledge on using nanomedicines for CNS diseases.

  3. Signaling hierarchy regulating human endothelial cell development.

    Science.gov (United States)

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  4. Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Birgitte; Ornås, Dorte; Grigorian, Mariam

    2004-01-01

    with the transcriptional modulation of genes involved in the proteolytic degradation of extracellular matrix (ECM). Treatment of SVEC 4-10 with the S100A4 protein leads to the transcriptional activation of collagenase 3 (MMP-13) mRNA followed by subsequent release of the protein from the cells. Beta-casein zymography...... demonstrates enhancement of proteolytic activity associated with MMP-13. This observation indicates that extracellular S100A4 stimulates the production of ECM degrading enzymes from endothelial cells, thereby stimulating the remodeling of ECM. This could explain the angiogenic and metastasis...

  5. An invertebrate model for CNS drug discovery

    DEFF Research Database (Denmark)

    Al-Qadi, Sonia; Schiøtt, Morten; Hansen, Steen Honoré

    2015-01-01

    BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple,...... barriers. CONCLUSION: Findings suggest a conserved mechanism of brain efflux activity between insects and vertebrates, confirming that this model holds promise for inexpensive and high-throughput screening relative to in vivo models, for CNS drug discovery....

  6. Laminin-411 Is a Vascular Ligand for MCAM and Facilitates TH17 Cell Entry into the CNS

    Science.gov (United States)

    Flanagan, Ken; Fitzgerald, Kent; Baker, Jeanne; Regnstrom, Karin; Gardai, Shyra; Bard, Frederique; Mocci, Simonetta; Seto, Pui; You, Monica; Larochelle, Catherine; Prat, Alexandre; Chow, Samuel; Li, Lauri; Vandevert, Chris; Zago, Wagner; Lorenzana, Carlos; Nishioka, Christopher; Hoffman, Jennifer; Botelho, Raquel; Willits, Christopher; Tanaka, Kevin; Johnston, Jennifer; Yednock, Ted

    2012-01-01

    TH17 cells enter tissues to facilitate pathogenic autoimmune responses, including multiple sclerosis (MS). However, the adhesion molecules involved in the unique migratory capacity of TH17 cells, into both inflamed and uninflamed tissues remain unclear. Herein, we characterize MCAM (CD146) as an adhesion molecule that defines human TH17 cells in the circulation; following in vitro restimulation of human memory T cells, nearly all of the capacity to secrete IL-17 is contained within the population of cells expressing MCAM. Furthermore, we identify the MCAM ligand as laminin 411, an isoform of laminin expressed within the vascular endothelial basement membranes under inflammatory as well as homeotstatic conditions. Purified MCAM-Fc binds to laminin 411 with an affinity of 27 nM, and recognizes vascular basement membranes in mouse and human tissue. MCAM-Fc binding was undetectable in tissue from mice with targeted deletion of laminin 411, indicating that laminin 411 is a major tissue ligand for MCAM. An anti-MCAM monoclonal antibody, selected for inhibition of laminin binding, as well as soluble MCAM-Fc, inhibited T cell adhesion to laminin 411 in vitro. When administered in vivo, the antibody reduced TH17 cell infiltration into the CNS and ameliorated disease in an animal model of MS. Our data suggest that MCAM and laminin 411 interact to facilitate TH17 cell entry into tissues and promote inflammation. PMID:22792325

  7. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development.

    Directory of Open Access Journals (Sweden)

    Kate Kosmac

    2013-03-01

    Full Text Available Infection of the developing fetus with human cytomegalovirus (HCMV is a major cause of central nervous system disease in infants and children; however, mechanism(s of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.

  8. Oral Session 03: CNS Risk

    International Nuclear Information System (INIS)

    Narici, Livio; Nelson, Gregory A.

    2014-01-01

    Exposure to space radiation may have impacts on brain function, either during or following missions. It is most important to determine how low doses of protons and high-LET irradiation elicit changes in brain function. Within this framework, the role of oxidative stress should also be assessed, as well as other possible interaction mechanisms involving, e.g., genetic, environmental, and sex-dependent risk factors. The hippocampus is particularly susceptible to radiation. It plays an essential role in memory formation and consolidation and is one of the most investigated brain components for its responses to radiation. The hippocampus is also one of the first brain structures to be damaged in the pathogenesis of Alzheimer's disease, an important potential late impairment following irradiation. In ‘Section 3: CNS risk’, six papers have been presented focused on these issues. For details the reader is directed to the specific papers. Here a very short summary follows

  9. Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration.

    Science.gov (United States)

    Nih, Lina R; Deroide, Nicolas; Leré-Déan, Carole; Lerouet, Dominique; Soustrat, Mathieu; Levy, Bernard I; Silvestre, Jean-Sébastien; Merkulova-Rainon, Tatiana; Pocard, Marc; Margaill, Isabelle; Kubis, Nathalie

    2012-04-01

    Pro-angiogenic cell-based therapies constitute an interesting and attractive approach to enhancing post-stroke neurogenesis and decreasing neurological deficit. However, most new stroke-induced neurons die during the first few weeks after ischemia, thus impairing total recovery. Although the neovascularization process involves different cell types and various growth factors, most cell therapy protocols are based on the biological effects of single-cell-type populations or on the administration of heterogeneous populations of progenitors, namely human cord blood-derived CD34(+) cells, with scarce vascular progenitor cells. Tight cooperation between endothelial cells and smooth muscle cells/pericytes is critical for the development of functional neovessels. We hypothesized that neuroblast survival in stroke brain depends on mature vascular network formation. In this study, we injected a combination of endothelial progenitor cells (EPCs) and smooth muscle progenitor cells (SMPCs), isolated from human umbilical cord blood, into a murine model of permanent focal ischemia induced by middle cerebral artery occlusion. The co-administration of SMPCs and EPCs induced enhanced angiogenesis and vascular remodeling in the peri-infarct and infarct areas, where vessels exhibited a more mature phenotype. This activation of vessel growth resulted in the maintenance of neurogenesis and neuroblast migration to the peri-ischemic cortex. Our data suggest that a mature vascular network is essential for neuroblast survival after cerebral ischemia, and that co-administration of EPCs and SMPCs may constitute a novel therapeutic strategy for improving the treatment of stroke. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. microRNAs in CNS disorders

    DEFF Research Database (Denmark)

    Kocerha, Jannet; Kauppinen, Sakari; Wahlestedt, Claes

    2009-01-01

    RNAs (miRNAs) have been identified in the mammalian central nervous system (CNS) and are reported to mediate pivotal roles in many aspects of neuronal functions. Disruption of miRNA-based post-transcriptional regulation has been implicated in a range of CNS disorders as one miRNA is predicted to impact...

  11. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease?

    Science.gov (United States)

    Rezai-Zadeh, Kavon; Gate, David; Town, Terrence

    2009-12-01

    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as "immune privilege," it is now clear that immune responses do occur in the CNS-giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripheral monocytes/macrophages limits progression of Alzheimer's disease pathology and militates against West Nile virus encephalitis. In addition, infiltrating T lymphocytes may help spare neuronal loss in models of amyotrophic lateral sclerosis. On the other hand, CNS leukocyte penetration drives experimental autoimmune encephalomyelitis (a mouse model for the human demyelinating disease multiple sclerosis) and may also be pathological in both Parkinson's disease and human immunodeficiency virus encephalitis. A critical understanding of the cellular and molecular mechanisms responsible for trafficking of immune cells from the periphery into the diseased CNS will be key to target these cells for therapeutic intervention in neurodegenerative diseases, thereby allowing neuroregenerative processes to ensue.

  12. Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2

    Directory of Open Access Journals (Sweden)

    Alena Chumanevich

    2016-01-01

    Full Text Available Mast cells (MC are present in most vascularized tissues around the vasculature likely exerting immunomodulatory functions. Endowed with diverse mediators, resident MC represent first-line fine-tuners of local microenvironment. Sphingosine-1-phosphate (S1P functions as a pluripotent signaling sphingolipid metabolite in health and disease. S1P formation occurs at low levels in resting MC and is upregulated upon activation. Its export can result in type 2 S1P receptor- (S1PR2- mediated stimulation of MC, further fueling inflammation. However, the role of S1PR2 ligation in proangiogenic vascular endothelial growth factor- (VEGF- A and matrix metalloproteinase- (MMP- 2 release from MC is unknown. Using a preclinical MC-dependent model of acute allergic responses and in vitro stimulated primary mouse bone marrow-derived MC (BMMC or human primary skin MC, we report that S1P signaling resulted in substantial amount of VEGF-A release. Similar experiments using S1pr2-deficient mice or BMMC or selective S1P receptor agonists or antagonists demonstrated that S1P/S1PR2 ligation on MC is important for VEGF-A secretion. Further, we show that S1P stimulation triggered transcriptional upregulation of VEGF-A and MMP-2 mRNA in human but not in mouse MC. S1P exposure also triggered MMP-2 secretion from human MC. These studies identify a novel proangiogenic axis encompassing MC/S1P/S1PR2 likely relevant to inflammation.

  13. CNS embryonal tumours: WHO 2016 and beyond.

    Science.gov (United States)

    Pickles, J C; Hawkins, C; Pietsch, T; Jacques, T S

    2018-02-01

    Embryonal tumours of the central nervous system (CNS) present a significant clinical challenge. Many of these neoplasms affect young children, have a very high mortality and therapeutic strategies are often aggressive with poor long-term outcomes. There is a great need to accurately diagnose embryonal tumours, predict their outcome and adapt therapy to the individual patient's risk. For the first time in 2016, the WHO classification took into account molecular characteristics for the diagnosis of CNS tumours. This integration of histological features with genetic information has significantly changed the diagnostic work-up and reporting of tumours of the CNS. However, this remains challenging in embryonal tumours due to their previously unaccounted tumour heterogeneity. We describe the recent revisions made to the 4th edition of the WHO classification of CNS tumours and review the main changes, while highlighting some of the more common diagnostic testing strategies. © 2017 British Neuropathological Society.

  14. Elevated interferon-gamma in CNS inflammatory disease: a potential complication for bone marrow reconstitution in MS

    DEFF Research Database (Denmark)

    Hassan-Zahraee, M; Tran, E H; Bourbonnière, L

    2000-01-01

    but levels were higher in IFNgamma transgenics. BM transplantation into IFNgamma-deficient recipients also had a high failure rate. Transplants of BM from mice lacking expression of IFNgamma-receptor failed, whereas IFNgamma-deficient grafts survived, suggesting that IFNgamma response status of the graft can......Bone marrow transplantation (BMT) is increasingly used to treat Multiple Sclerosis (MS) a CNS inflammatory disease with elevated CNS and systemic IFNgamma levels. We wished to determine the effect of IFNgamma on BM graft survival in a transgenic mouse model for chronic MS. BM transplantation...... into transgenic mice which express elevated levels of IFNgamma in the CNS was unsuccessful. By contrast, there was 100% survival of even fully allogeneic, T-depleted transplants to transgenics that over express TNFalpha in the CNS, using the same MBP promoter. IFNgamma was detectable in spleen of irradiated mice...

  15. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers

    Directory of Open Access Journals (Sweden)

    Jessica L Williams

    2014-05-01

    Full Text Available In the adult central nervous system (CNS, chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease.

  16. CNS recruitment of CD8+ T lymphocytes specific for a peripheral virus infection triggers neuropathogenesis during polymicrobial challenge.

    Directory of Open Access Journals (Sweden)

    Christine M Matullo

    2011-12-01

    Full Text Available Although viruses have been implicated in central nervous system (CNS diseases of unknown etiology, including multiple sclerosis and amyotrophic lateral sclerosis, the reproducible identification of viral triggers in such diseases has been largely unsuccessful. Here, we explore the hypothesis that viruses need not replicate in the tissue in which they cause disease; specifically, that a peripheral infection might trigger CNS pathology. To test this idea, we utilized a transgenic mouse model in which we found that immune cells responding to a peripheral infection are recruited to the CNS, where they trigger neurological damage. In this model, mice are infected with both CNS-restricted measles virus (MV and peripherally restricted lymphocytic choriomeningitis virus (LCMV. While infection with either virus alone resulted in no illness, infection with both viruses caused disease in all mice, with ∼50% dying following seizures. Co-infection resulted in a 12-fold increase in the number of CD8+ T cells in the brain as compared to MV infection alone. Tetramer analysis revealed that a substantial proportion (>35% of these infiltrating CD8+ lymphocytes were LCMV-specific, despite no detectable LCMV in CNS tissues. Mechanistically, CNS disease was due to edema, induced in a CD8-dependent but perforin-independent manner, and brain herniation, similar to that observed in mice challenged intracerebrally with LCMV. These results indicate that T cell trafficking can be influenced by other ongoing immune challenges, and that CD8+ T cell recruitment to the brain can trigger CNS disease in the apparent absence of cognate antigen. By extrapolation, human CNS diseases of unknown etiology need not be associated with infection with any particular agent; rather, a condition that compromises and activates the blood-brain barrier and adjacent brain parenchyma can render the CNS susceptible to pathogen-independent immune attack.

  17. Metallothionein expression and roles in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2002-01-01

      Metallothioneins (MTs) are low-molecular-weight (6-7 kDa) nonenzymatic proteins (60-68 amino acid residues, 25-30% being cysteine) expressed ubiquitous in the animal kingdom. In the central nervous system (CNS), three MT isoforms are known, namely MT-I to MT-III. MT-I and MT-II (MT...

  18. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery.

    Science.gov (United States)

    Davis, Thomas P; Sanchez-Covarubias, Lucy; Tome, Margaret E

    2014-01-01

    The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription. © 2014 Elsevier Inc. All rights reserved.

  19. CNS penetration of ART in HIV-infected children

    NARCIS (Netherlands)

    van den Hof, Malon; Blokhuis, Charlotte; Cohen, Sophie; Scherpbier, Henriette J.; Wit, Ferdinand W. N. M.; Pistorius, M. C. M.; Kootstra, Neeltje A.; Teunissen, Charlotte E.; Mathot, Ron A. A.; Pajkrt, Dasja

    2018-01-01

    Background: Paediatric data on CNS penetration of antiretroviral drugs are scarce. Objectives: To evaluate CNS penetration of antiretroviral drugs in HIV-infected children and explore associations with neurocognitive function. Patients and methods: Antiretroviral drug levels were measured in paired

  20. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    Science.gov (United States)

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  1. CNS adverse events associated with antimalarial agents. Fact or fiction?

    NARCIS (Netherlands)

    Phillips-Howard, P. A.; ter Kuile, F. O.

    1995-01-01

    CNS adverse drug events are dramatic, and case reports have influenced clinical opinion on the use of antimalarials. Malaria also causes CNS symptoms, thus establishing causality is difficult. CNS events are associated with the quinoline and artemisinin derivatives. Chloroquine, once considered too

  2. Targeting immunoliposomes to transferrin receptors on brain capillary endothelial cells as a mean for cargo transport across the blood-brain barrier

    DEFF Research Database (Denmark)

    Johnsen, Kasper Bendix; Larsen, Annette Burkhart; Bruun, Jonas

    2016-01-01

    Brain capillary endothelial cells (BCECs) express transferrin receptors as opposed to endothelial cells of any organ in the remaining body, suggesting that targeting to the transferrin receptors as a reasonable strategy for delivering drugs to the CNS. However, as the intracellular trafficking...

  3. CNS effects following the treatment of malignancy

    International Nuclear Information System (INIS)

    Rane, N.; Quaghebeur, G.

    2012-01-01

    Corporeal and central nervous system (CNS) axis chemotherapy and radiotherapy have long been used for the effective treatment and prophylaxis of CNS, body malignancies, and leukaemias. However, they are not without their problems. Following the proliferation of magnetic resonance neuroimaging in recent years it has become clear that the spectrum of toxicity that these therapies produce ranges from subclinical white matter changes to overt brain necrosis. The effects are both direct and indirect and via different pathological mechanisms. Chronic and progressive changes can be detected many years after the initial intervention. In addition to leucoencephalopathic changes, grey matter changes are now well described. Changes may be difficult to distinguish from tumour recurrence, though may be reversible and remediable, and are thus very important to differentiate. In this review toxic effects are classified and their imaging appearances discussed, with reference to specific syndromes.

  4. Therapeutic potential of agmatine for CNS disorders.

    Science.gov (United States)

    Neis, Vivian B; Rosa, Priscila B; Olescowicz, Gislaine; Rodrigues, Ana Lúcia S

    2017-09-01

    Agmatine is a neuromodulator that regulates multiple neurotransmitters and signaling pathways. Several studies have focused on elucidating the mechanisms underlying the neuroprotective effects of this molecule, which seems to be mediated by a reduction in oxidative damage, neuroinflammation, and proapoptotic signaling. Since these events are implicated in acute and chronic excitotoxicity-related disorders (ischemia, epilepsy, traumatic brain injury, spinal cord injury, neurodegenerative, and psychiatric disorders) as well as in nociception, agmatine has been proposed as a therapeutic strategy for the treatment of central nervous system (CNS) disorders. Agmatine also stimulates the expression of trophic factors and adult neurogenesis, contributing to its ability to induce endogenous repair mechanisms. Therefore, considering its wide range of biological effects, this review summarizes the current knowledge about its protective and regenerative properties in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. VIIP: Central Nervous System (CNS) Modeling

    Science.gov (United States)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  6. Interneuron progenitor transplantation to treat CNS dysfunction

    Directory of Open Access Journals (Sweden)

    Muhammad O Chohan

    2016-08-01

    Full Text Available Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.

  7. Cerebral blood flow variations in CNS lupus

    International Nuclear Information System (INIS)

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M.

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery

  8. Treatment options for Primary CNS Lymphoma.

    Science.gov (United States)

    Laghari, Altaf Ali; Ahmed, Syed Ijlal; Jabbar, Adnan; Shamim, Muhammad Shahzad

    2018-03-01

    Primary CNS lymphoma (PCNSL) is a rare and aggressive brain tumour that is uniformly fatal. The rarity of the disease and the poor response to treatment makes it difficult to reach a consensus with regards to treatment options. In this review, the authors have discussed different treatment modalities used in the management of PCNSL including chemotherapy, surgery and radiation, as well as the results of recent clinical trials on treatment options for PCNSL.

  9. Mouse adenovirus type 1 infection of macrophages

    NARCIS (Netherlands)

    Ashley, S.L.; Welton, A.R.; Harwood, K.M.; Rooijen, van N.; Spindler, K.R.

    2009-01-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus.

  10. Engineering progress of CNS concept in Hanaro

    International Nuclear Information System (INIS)

    Choi, C.O.; Park, K.N.; Park, S.H.

    1997-01-01

    The Korea Atomic Energy research Institute (KAERI) strives to provide utilizing facilities on and around the Hanaro reactor in order to activate advanced researches by neutron application. As one of the facilities to be installed, the conceptual design work of CNS was started in 1996 with a project schedule of 5 years so that its installation work can be finished by the year 2000. And the major engineering targets of this CNS facility are established for a minimum physical interference with the present facilities of the Hanaro, a reach-out of very-high-gain factors in the cold neutron flux, a simplicity of the maintenance of the facility, and a safety in the operation of the facility as well as the reactor. For the conceptual design of Hanaro CNS, the experience of utilization and production of cold neutron at WWR-M reactor Gatchina, Russia has been used with that of elaborations for PIK reactor in design for neutron guide systems and instruments. (author)

  11. Prophylactic CNS therapy in childhood leukemia

    International Nuclear Information System (INIS)

    Yokoyama, Takashi; Hiyoshi, Yasuhiko; Fujimoto, Takeo

    1982-01-01

    This study was designed to evaluate the efficacy of CNS-prophylaxis with high-dose methotrexate (MTX). Seventy children with previously untreated acute lymphoblastic leukemia (ALL) entered to this study between July 1978 and December 1980. According to initial white blood count (WBC), they were stratified to induce remission with; vincristine and prednine in low initial WBC ( lt 25,000/mm 3 ) group and these two agents plus adriamycin in high initial WBC ( gt 25,000/mm 3 ) group. After inducing remission, 62 children who achieved CR, received different CNS-prophlaxis; using a regimen of three doses of weekly high-dose MTX (1,000 mg/m 2 ) 6-hour infusion, which was repeated every 12 weeks-Group A (n = 14); high-dose MTX followed by 2400 rad cranial irradiation plus three doses of i.t. MT X-Group B (n = 15), 2400 rad cranial irradiation plus three doses of i.t. MTX-Group C (n = 16), and in 17 patients with high initial WBC, same as in Group A-Group D (n = 17). During an intravenous 6-h infusion of MTX at a dose of 1,000 mg/m 2 , the CSF concentration of MTX rose to 2.3 +- 2.4 x 10 -6 M after initiation of infusion and remained in 10 -7 M level for 48 hours. CNS-leukemia terminated complete remission in one of 14 children in Group A, two of 15 in Group B, two of 16 in Group C and two of 17 in Group D. The cumulative incidence of CNS-leukemia at 20 months calculated by the technique of Kaplan and Meier was 0% i n Group A, 18.1% in Group B, 7.1% in Group C and 50.8% in Group D. There was no statistical difference among Groups A, B and C. These data suggested that CNS-prophylaxis with high-dose intravenous MTX was effective as well as 2400 rad cranial irradiation plus three doses of i.t. MTX in childhood ALL with low initial WBC. (author)

  12. Behavioral and Genetic Evidence for GIRK Channels in the CNS: Role in Physiology, Pathophysiology, and Drug Addiction.

    Science.gov (United States)

    Mayfield, Jody; Blednov, Yuri A; Harris, R Adron

    2015-01-01

    G protein-coupled inwardly rectifying potassium (GIRK) channels are widely expressed throughout the brain and mediate the inhibitory effects of many neurotransmitters. As a result, these channels are important for normal CNS function and have also been implicated in Down syndrome, Parkinson's disease, psychiatric disorders, epilepsy, and drug addiction. Knockout mouse models have provided extensive insight into the significance of GIRK channels under these conditions. This review examines the behavioral and genetic evidence from animal models and genetic association studies in humans linking GIRK channels with CNS disorders. We further explore the possibility that subunit-selective modulators and other advanced research tools will be instrumental in establishing the role of individual GIRK subunits in drug addiction and other relevant CNS diseases and in potentially advancing treatment options for these disorders. © 2015 Elsevier Inc. All rights reserved.

  13. Central Nervous System (CNS Disease Triggering Takotsubo Syndrome

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2016-01-01

    Full Text Available Takotsubo syndrome (TTS is usually triggered by psychological or physical stress. One of the many physical sources of stress are central nervous system (CNS disorders. CNS disorders most frequently triggering TTS include subarachnoid bleeding, epilepsy, ischemic stroke, migraine, and intracerebral bleeding. More rare CNS-triggers of TTS include posterior reversible encephalopathy syndrome (PRES, amyotrophic lateral sclerosis, encephalitis, or traumatic brain or spinal cord injury. TTS triggered by any of the CNS disorders needs to be recognized since adequate treatment of TTS may improve the general outcome from the CNS disorder as well. Neurologists need to be aware of TTS as a complication of specific CNS disorders but TTS may be triggered also by CNS disorders so far not recognised as causes of TTS.

  14. SINS/CNS Nonlinear Integrated Navigation Algorithm for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Yong-jun Yu

    2015-01-01

    Full Text Available Celestial Navigation System (CNS has characteristics of accurate orientation and strong autonomy and has been widely used in Hypersonic Vehicle. Since the CNS location and orientation mainly depend upon the inertial reference that contains errors caused by gyro drifts and other error factors, traditional Strap-down Inertial Navigation System (SINS/CNS positioning algorithm setting the position error between SINS and CNS as measurement is not effective. The model of altitude azimuth, platform error angles, and horizontal position is designed, and the SINS/CNS tightly integrated algorithm is designed, in which CNS altitude azimuth is set as measurement information. GPF (Gaussian particle filter is introduced to solve the problem of nonlinear filtering. The results of simulation show that the precision of SINS/CNS algorithm which reaches 130 m using three stars is improved effectively.

  15. Immune regulation and CNS autoimmune disease

    DEFF Research Database (Denmark)

    Antel, J P; Owens, T

    1999-01-01

    The central nervous system is a demonstrated target of both clinical and experimental immune mediated disorders. Immune regulatory mechanisms operative at the levels of the systemic immune system, the blood brain barrier, and within the CNS parenchyma are important determinants of the intensity...... and duration of the tissue directed injury. Convergence of research, involving direct manipulation of specific cells and molecular mediators in animal models and in vitro analysis of human immune and neural cells and tissues, is providing increasing insight into the role of these immune regulatory functions...

  16. Novel agents in CNS myeloma treatment.

    Science.gov (United States)

    Gozzetti, Alessandro; Cerase, Alfonso

    2014-01-01

    Central nervous system localization of multiple myeloma (CNS-MM) accounts for about 1% of all MM.Treatment is still unsatisfactory. Many treatments have been described in the literature: chemotherapy (CHT), intrathecal therapy (IT), and radiotherapy (RT), with survivals reported between one month and six months. Recent drugs such as the immunomodulatory drugs (IMiDs) and proteasome inhibitors (bortezomib) have changed the treatment of patients with MM, both younger and older, with a significant improvement in response and survival. The activity of new drugs in CNSMM has been reported but is still not well known. Bortezomib does not cross the blood brain barrier (BBB), and IMID’s seem to have only a minimal crossover. The role of novel agents in CNS MM management will be discussed as well as the potential role of other new immunomodulatory drugs (pomalidomide) and proteasome inhibitors that seem to cross the BBB and hold promise into the treatment of this rare and still incurable localization of the disease.

  17. Malignant lymphoma in central nervous system (CNS)

    International Nuclear Information System (INIS)

    Fujiyoshi, Kenji; Fukuyama, Hidenao; Akiguchi, Ichiro; Kameyama, Masakuni; Nishimura, Toshio.

    1984-01-01

    A 71-year-old male was admitted to Kohka Public Hospital on January 4, 1980, because of frequent vomiting and recent memory loss. Two weeks before admission upper G-I series showed no abnormalities. Physical and neurological examinations revealed no abnormalities except for slightly apathetic appearance and recent memory loss. Mild pleocytosis and marked increase of protein in CSF were observed. CT scan on January 17 showed high density areas in both medial sides of temporal lobes with remarkable contrast enhancement. His memory and, consciousness disturbances gradually aggravated, accompanied by abnormal density spreading around the ventricle walls like ventriculitis. He was transfered to Kyoto University Hospital on March 17, and malignant lymphoma was diagnosed on the basis of CSF cytology. Radiation and chemotherapy alleviated the CNS involvement and he regained normal mental function. On June 16, he developed pneumonia followed by status epilepticus. Autopsy findings revealed no lymphoid cell infiltration, but fibrous tissues in both hippocampal gyri and lymphomatous cells in the liver, which could not be suspected on clinical examinations. Apparent malignant lymphoma cells were not found in lymph nodes. This case indicated peculiar evolution of malignant lymphoma from liver to CNS or vice versa. We could not decide which organ was primary. CT findings of this case was very interesting; they resembled ventriculitis, which simulate tumors such as medulloblastoma or ependymoma spreading under ependymal lining. (author)

  18. Acute radiation sickness - morphology of CNS syndrome

    International Nuclear Information System (INIS)

    Kamarad, V.

    1989-01-01

    The effect was studied of supralethal doses of 60 Co gamma radiation on morphological changes in the brains of laboratory animals. For experiments, female rats irradiated with doses of 15 to 960 Gy, female mice irradiated with doses of 50 to 300 Gy and dogs irradiated with 6 to 500 Gy were used. For evaluation of the changes, light microscopy, electron microscopy and histochemistry were employed. The findings generally agreed with the results by other authors whose numerous studies are reviewed in detail. They included brain edema, alterations in enzyme activities, dystrophic changes and hemorrhages in nerve cells, marked structural changes in blood capillaries, damage of endothelial cells, etc. The observed changes in the activities of blood-brain barrier enzymes, increased pinocytotic activity and the formation of endothelial tunnels accompanied with necrosis of part of endothelial cells are clear morphological manifestations of marked alterations in the function of the blood-brain barrier that result in brain edema development. The increased permeability of the blood-brain barrier significantly worsens primary changes induced by radiation, especially in nerve cels, and adversely affects possible repair processes. (L.O.). 146 figs., 8 tabs., 352 refs

  19. Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1

    Directory of Open Access Journals (Sweden)

    Wilson Pak-Kin Lou

    2018-01-01

    Full Text Available Adult mammalian central nervous system (CNS neurons are unable to regenerate following axonal injury, leading to permanent functional impairments. Yet, the reasons underlying this regeneration failure are not fully understood. Here, we studied the transcriptome and translatome shortly after spinal cord injury. Profiling of the total and ribosome-bound RNA in injured and naïve spinal cords identified a substantial post-transcriptional regulation of gene expression. In particular, transcripts associated with nervous system development were down-regulated in the total RNA fraction while remaining stably loaded onto ribosomes. Interestingly, motif association analysis of post-transcriptionally regulated transcripts identified the cytoplasmic polyadenylation element (CPE as enriched in a subset of these transcripts that was more resistant to injury-induced reduction at the transcriptome level. Modulation of these transcripts by overexpression of the CPE binding protein, Cpeb1, in mouse and Drosophila CNS neurons promoted axonal regeneration following injury. Our study uncovered a global evolutionarily conserved post-transcriptional mechanism enhancing regeneration of injured CNS axons.

  20. Transplanting oligodendrocyte progenitors into the adult CNS

    International Nuclear Information System (INIS)

    Franklin, R.J.M.; Blakemore, W.F.; Cambridge Univ.

    1997-01-01

    This review covers a number of aspects of the behaviour of oligodendrocyte progenitors following transplantation into the adult CNS. First, an account is given of the ability of transplanted oligodendrocyte progenitors, grown in tissue culture in the presence of PDGF and bFGF, to extensively remyelinate focal areas of persistent demyelination. Secondly, we describe how transplanted clonal cell lines of oligodendrocyte progenitors will differentiate in to astrocytes as will oligodendrocytes following transplantation into pathological environments in which both oligodendrocytes and astrocytes are absent, thereby manifesting the bipotentially demonstrable in vitro but not during development. Finally, a series of studies examining the migratory behaviour of transplanted oligodendrocyte progenitors (modelled using the oligodendrocyte progenitor cell line CG4) are described. (author)

  1. Biomarkers for CNS involvement in pediatric lupus

    Science.gov (United States)

    Rubinstein, Tamar B; Putterman, Chaim; Goilav, Beatrice

    2015-01-01

    CNS disease, or central neuropsychiatric lupus erythematosus (cNPSLE), occurs frequently in pediatric lupus, leading to significant morbidity and poor long-term outcomes. Diagnosing cNPSLE is especially difficult in pediatrics; many current diagnostic tools are invasive and/or costly, and there are no current accepted screening mechanisms. The most complicated aspect of diagnosis is differentiating primary disease from other etiologies; research to discover new biomarkers is attempting to address this dilemma. With many mechanisms involved in the pathogenesis of cNPSLE, biomarker profiles across several modalities (molecular, psychometric and neuroimaging) will need to be used. For the care of children with lupus, the challenge will be to develop biomarkers that are accessible by noninvasive measures and reliable in a pediatric population. PMID:26079959

  2. Palmitoylethanolamide in CNS health and disease.

    Science.gov (United States)

    Mattace Raso, Giuseppina; Russo, Roberto; Calignano, Antonio; Meli, Rosaria

    2014-08-01

    The existence of acylethanolamides (AEs) in the mammalian brain has been known for decades. Among AEs, palmitoylethanolamide (PEA) is abundant in the central nervous system (CNS) and conspicuously produced by neurons and glial cells. Antihyperalgesic and neuroprotective properties of PEA have been mainly related to the reduction of neuronal firing and to control of inflammation. Growing evidence suggest that PEA may be neuroprotective during CNS neurodegenerative diseases. Advances in the understanding of the physiology and pharmacology of PEA have potentiated its interest as useful biological tool for disease management. Several rapid non-genomic and delayed genomic mechanisms of action have been identified for PEA as peroxisome proliferator-activated receptor (PPAR)-α dependent. First, an early molecular control, through Ca(+2)-activated intermediate- and/or big-conductance K(+) channels opening, drives to rapid neuronal hyperpolarization. This is reinforced by the increase of the inward Cl(-) currents due to the modulation of the gamma aminobutyric acid A receptor and by the desensitization of the transient receptor potential channel type V1. Moreover, the gene transcription-mediated mechanism sustains the long-term anti-inflammatory effects, by reducing pro-inflammatory enzyme expression and increasing neurosteroid synthesis. Overall, the integration of these different modes of action allows PEA to exert an immediate and prolonged efficacious control in neuron signaling either on inflammatory process or neuronal excitability, maintaining cellular homeostasis. In this review, we will discuss the effect of PEA on metabolism, behavior, inflammation and pain perception, related to the control of central functions and the emerging evidence demonstrating its therapeutic efficacy in several neurodegenerative diseases. Copyright © 2014. Published by Elsevier Ltd.

  3. In vivo human apolipoprotein E isoform fractional turnover rates in the CNS.

    Directory of Open Access Journals (Sweden)

    Kristin R Wildsmith

    Full Text Available Apolipoprotein E (ApoE is the strongest genetic risk factor for Alzheimer's disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4 each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer's disease (AD. Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS, we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis.

  4. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    DEFF Research Database (Denmark)

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H

    2016-01-01

    with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration...

  5. A philosophy for CNS radiotracer design.

    Science.gov (United States)

    Van de Bittner, Genevieve C; Ricq, Emily L; Hooker, Jacob M

    2014-10-21

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test-retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available

  6. Blood-CNS Barrier Impairment in ALS Patients versus an Animal Model

    Directory of Open Access Journals (Sweden)

    Svitlana eGarbuzova-Davis

    2014-02-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a severe neurodegenerative disease with a compli-cated and poorly understood pathogenesis. Recently, alterations in the blood-Central Nervous System barrier (B-CNS-B have been recognized as a key factor possibly aggravating motor neuron damage. The majority of findings on ALS microvascular pathology have been deter-mined in mutant SOD1 rodent models, identifying barrier damage during disease develop-ment which might similarly occur in familial ALS patients carrying the SOD1 mutation. However, our knowledge of B-CNS-B competence in sporadic ALS (SALS has been limited. We recently showed structural and functional impairment in postmortem gray and white mat-ter microvessels of medulla and spinal cord tissue from SALS patients, suggesting pervasive barrier damage. Although numerous signs of barrier impairment (endothelial cell degenera-tion, capillary leakage, perivascular edema, downregulation of tight junction proteins, and microhemorrhages are indicated in both mutant SOD1 animal models of ALS and SALS pa-tients, other pathogenic barrier alterations have as yet only been identified in SALS patients. Pericyte degeneration, perivascular collagen IV expansion, and white matter capillary abnor-malities in SALS patients are significant barrier related pathologies yet to be noted in ALS SOD1 animal models. In the current review, these important differences in blood-CNS barrier damage between ALS patients and animal models, which may signify altered barrier transport mechanisms, are discussed. Understanding discrepancies in barrier condition between ALS patients and animal models may be crucial for developing effective therapies.

  7. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Tansey Malú G

    2008-10-01

    Full Text Available Abstract The role of tumor necrosis factor (TNF as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1 is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF or transmembrane TNF (tmTNF, with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD, Parkinson's (PD, amyotrophic lateral sclerosis (ALS, and multiple sclerosis (MS. The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.

  8. Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner.

    Science.gov (United States)

    Brumm, Andrew J; Nunez, Stefanie; Doroudchi, Mehdi M; Kawaguchi, Riki; Duan, Jinhzu; Pellegrini, Matteo; Lam, Larry; Carmichael, S Thomas; Deb, Arjun; Hinman, Jason D

    2017-08-01

    Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.

  9. Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival.

    NARCIS (Netherlands)

    Coderre, J.A.; Morris, G.M.; Micca, P.L.; Hopewell, J.W.; Verhagen, I.; Kleiboer, B.J.; Kogel, A.J. van der

    2006-01-01

    Selective irradiation of the vasculature of the rat spinal cord was used in this study, which was designed specifically to address the question as to whether it is the endothelial cell or the glial progenitor cell that is the target responsible for late white matter necrosis in the CNS. Selective

  10. Modeling Group B Streptococcus and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells

    OpenAIRE

    Kim, Brandon J.; Bee, Olivia B.; McDonagh, Maura A.; Stebbins, Matthew J.; Palecek, Sean P.; Doran, Kelly S.; Shusta, Eric V.

    2017-01-01

    ABSTRACT Bacterial meningitis is a serious infection of the central nervous system (CNS) that occurs after bacteria interact with and penetrate the blood-brain barrier (BBB). The BBB is comprised of highly specialized brain microvascular endothelial cells (BMECs) that function to separate the circulation from the CNS and act as a formidable barrier for toxins and pathogens. Certain bacteria, such as Streptococcus agalactiae (group B Streptococcus [GBS]), possess the ability to interact with a...

  11. Fifth CNS international steam generator conference

    International Nuclear Information System (INIS)

    2006-01-01

    The Fifth CNS International Steam Generator Conference was held on November 26-29, 2006 in Toronto, Ontario, Canada. In contrast with other conferences which focus on specific aspects, this conference provided a wide ranging forum on nuclear steam generator technology from life-cycle management to inspection and maintenance, functional and structural performance characteristics to design architecture. The 5th conference has adopted the theme: 'Management of Real-Life Equipment Conditions and Solutions for the Future'. This theme is appropriate at a time of transition in the industry when plants are looking to optimize the performance of existing assets, prevent costly degradation and unavailability, while looking ahead for new steam generator investments in life-extension, replacements and new-build. More than 50 technical papers were presented in sessions that gave an insight to the scope: life management strategies; fouling, cleaning and chemistry; replacement strategies and new build design; materials degradation; condition assessment/fitness for service; inspection advancements and experience; and thermal hydraulic performance

  12. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation.

    Science.gov (United States)

    Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B

    2014-11-01

    Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Amyloidosis, synucleinopathy, and prion encephalopathy in a neuropathic lysosomal storage disease: the CNS-biomarker potential of peripheral blood.

    Directory of Open Access Journals (Sweden)

    Bartholomew J Naughton

    Full Text Available Mucopolysaccharidosis (MPS IIIB is a devastating neuropathic lysosomal storage disease with complex pathology. This study identifies molecular signatures in peripheral blood that may be relevant to MPS IIIB pathogenesis using a mouse model. Genome-wide gene expression microarrays on pooled RNAs showed dysregulation of 2,802 transcripts in blood from MPS IIIB mice, reflecting pathological complexity of MPS IIIB, encompassing virtually all previously reported and as yet unexplored disease aspects. Importantly, many of the dysregulated genes are reported to be tissue-specific. Further analyses of multiple genes linked to major pathways of neurodegeneration demonstrated a strong brain-blood correlation in amyloidosis and synucleinopathy in MPS IIIB. We also detected prion protein (Prnp deposition in the CNS and Prnp dysregulation in the blood in MPS IIIB mice, suggesting the involvement of Prnp aggregation in neuropathology. Systemic delivery of trans-BBB-neurotropic rAAV9-hNAGLU vector mediated not only efficient restoration of functional α-N-acetylglucosaminidase and clearance of lysosomal storage pathology in the central nervous system (CNS and periphery, but also the correction of impaired neurodegenerative molecular pathways in the brain and blood. Our data suggest that molecular changes in blood may reflect pathological status in the CNS and provide a useful tool for identifying potential CNS-specific biomarkers for MPS IIIB and possibly other neurological diseases.

  14. Nipah virus infection and glycoprotein targeting in endothelial cells

    Directory of Open Access Journals (Sweden)

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  15. Analysis of perfusion weighted image of CNS lymphoma

    International Nuclear Information System (INIS)

    Lee, In Ho; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik

    2010-01-01

    Purpose: It is difficult to differentiate CNS lymphoma from other tumors such as malignant gliomas, metastases, or meningiomas with conventional MR imaging, because the imaging findings are overlapped between these tumors. The purpose of this study is to investigate the perfusion weighted MR imaging findings of CNS lymphomas and to compare the relative cerebral blood volume ratios between CNS lymphomas and other tumors such as high grade gliomas, metastases, or meningiomas. Materials and methods: We retrospectively reviewed MRI findings and clinical records in 13 patients with pathologically proven CNS lymphoma between January 2006 and November 2008. We evaluated the relative cerebral blood volume ratios of tumor, which were obtained by dividing the values obtained from the normal white matter on MRI. Results: Total 13 patients (M:F = 8:5; age range 46-67 years, mean age 52.3 years) were included. The CNS lymphomas showed relatively low values of maximum relative CBV ratio in most patients regardless of primary or secondary CNS lymphoma. Conclusion: Perfusion weighted image may be helpful in the diagnosis of CNS lymphoma in spite of primary or secondary or B cell or T cell.

  16. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis

    Directory of Open Access Journals (Sweden)

    Cristina Espinosa-Díez

    2018-04-01

    Full Text Available Glutathione (GSH biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL, which is composed of the catalytic (GCLc and the modulatory (GCLm subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice. In murine lung endothelial cells (MLEC derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177 and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+ male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH4. To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+ mice. We observed that obstructed kidneys from Gclc(e/+ mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Keywords: Glutamate-cysteine ligase, ROS, Glutathione, Endothelial dysfunction, Kidney Fibrosis

  17. 3rd ENRI International Workshop on ATM/CNS

    CERN Document Server

    2014-01-01

    The Electronic Navigation Research Institute (ENRI) held its third International Workshop on ATM / CNS in 2013 with the theme of "Drafting the future sky". There is worldwide activity taking place in the research and development of modern air traffic management (ATM) and its enabling technologies in Communication, Navigation and Surveillance (CNS). Pioneering work is necessary to contribute to the global harmonization of air traffic management and control. At this workshop, leading experts in  research, industry and academia from around the world met to share their ideas and approaches on ATM/CNS related topics.

  18. Autoimmune process in CNS under Cs-137 inner irradiation

    International Nuclear Information System (INIS)

    Lisyany, N.I.; Liubich, L.D.

    1996-01-01

    Autoimmune hypothesis as to the development of radiation-induced brain injuries stands high among the concepts of the CNS post-radiation damage pathogenesis. To study the changes occurring in a living organism affected by a small-dose radiation due to incorporated radionuclides as well as to create adequate models are of critical importance in the post-Chernobyl period. The effects of chronic small-dose inner radiation on the development of autoimmune responses were evaluated by determining the level of the CNS proteins and protein-induced antibodies to the CNS components. (author)

  19. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.

    Science.gov (United States)

    Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y

    2018-04-17

    Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.

  20. Convulsant bicuculline modifies CNS muscarinic receptor affinity

    Directory of Open Access Journals (Sweden)

    Rodríguez de Lores Arnaiz Georgina

    2006-04-01

    Full Text Available Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP, a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC, known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg and convulsant (7.5 mg/kg doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process

  1. Air pollution: mechanisms of neuroinflammation and CNS disease.

    Science.gov (United States)

    Block, Michelle L; Calderón-Garcidueñas, Lilian

    2009-09-01

    Air pollution has been implicated as a chronic source of neuroinflammation and reactive oxygen species (ROS) that produce neuropathology and central nervous system (CNS) disease. Stroke incidence and Alzheimer's and Parkinson's disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain; systemic effects that impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that microglial activation and changes in the blood-brain barrier are key components. Here we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS, culminating in CNS disease.

  2. A map of taste neuron projections in the Drosophila CNS

    Indian Academy of Sciences (India)

    2014-07-08

    Jul 8, 2014 ... information that they represent. The extensive ... physiology and behaviour in the wild type and in these mutants .... taste information is processed in the CNS. 2. ..... gene affecting the specificity of the chemosensory neurons of.

  3. Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals

    Directory of Open Access Journals (Sweden)

    Jacinta Nwamaka Nwogu

    2016-01-01

    Full Text Available Neurological complications associated with the human immunodeficiency virus (HIV are a matter of great concern. While antiretroviral (ARV drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity.

  4. CNS Involvement in AML Patient Treated with 5-Azacytidine

    Directory of Open Access Journals (Sweden)

    Diamantina Vasilatou

    2014-01-01

    Full Text Available Central nervous system (CNS involvement in acute myeloid leukemia (AML is a rare complication of the disease and is associated with poor prognosis. Sometimes the clinical presentation can be unspecific and the diagnosis can be very challenging. Here we report a case of CNS infiltration in a patient suffering from AML who presented with normal complete blood count and altered mental status.

  5. CNS-directed gene therapy for lysosomal storage diseases

    OpenAIRE

    Sands, Mark S; Haskins, Mark E

    2008-01-01

    Lysosomal storage diseases (LSDs) are a group of inherited metabolic disorders usually caused by deficient activity of a single lysosomal enzyme. As most lysosomal enzymes are ubiquitously expressed, a deficiency in a single enzyme can affect multiple organ systems, including the central nervous system (CNS). At least 75% of all LSDs have a significant CNS component. Approaches such as bone marrow transplantation (BMT) or enzyme replacement therapy (ERT) can effectively treat the systemic dis...

  6. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro.

    Science.gov (United States)

    Chaitanya, Ganta V; Cromer, Walter E; Wells, Shannon R; Jennings, Merilyn H; Couraud, P Olivier; Romero, Ignacio A; Weksler, Babette; Erdreich-Epstein, Anat; Mathis, J Michael; Minagar, Alireza; Alexander, J Steven

    2011-11-23

    The glio-vascular unit (G-unit) plays a prominent role in maintaining homeostasis of the blood-brain barrier (BBB) and disturbances in cells forming this unit may seriously dysregulate BBB. The direct and indirect effects of cytokines on cellular components of the BBB are not yet unclear. The present study compares the effects of cytokines and cytokine-treated astrocytes on brain endothelial barrier. 3-dimensional transwell co-cultures of brain endothelium and related-barrier forming cells with astrocytes were used to investigate gliovascular barrier responses to cytokines during pathological stresses. Gliovascular barrier was measured using trans-endothelial electrical resistance (TEER), a sensitive index of in vitro barrier integrity. We found that neither TNF-α, IL-1β or IFN-γ directly reduced barrier in human or mouse brain endothelial cells or ECV-304 barrier (independent of cell viability/metabolism), but found that astrocyte exposure to cytokines in co-culture significantly reduced endothelial (and ECV-304) barrier. These results indicate that the barrier established by human and mouse brain endothelial cells (and other cells) may respond positively to cytokines alone, but that during pathological conditions, cytokines dysregulate the barrier forming cells indirectly through astrocyte activation involving reorganization of junctions, matrix, focal adhesion or release of barrier modulating factors (e.g. oxidants, MMPs). © 2011 Chaitanya et al; licensee BioMed Central Ltd.

  7. Sleep disorders in children after treatment for a CNS tumour.

    Science.gov (United States)

    Verberne, Lisa M; Maurice-Stam, Heleen; Grootenhuis, Martha A; Van Santen, Hanneke M; Schouten-Van Meeteren, Antoinette Y N

    2012-08-01

    The long-term survival of children with a central nervous system (CNS) tumour is improving. However, they experience late effects, including altered habits and patterns of sleep. We evaluated the presence and type of sleep disorders and daytime sleepiness in these children, and its associations with clinical characteristics and daily performance (fatigue and psychosocial functioning). In a cross-sectional study at the outpatient clinic of the Emma Children's Hospital AMC (February-June 2010), sleep, fatigue and psychosocial functioning were analysed in 31 CNS tumour patients (mean age: 11.8years; 20 boys) and compared with 78 patients treated for a non-CNS malignancy (mean age: 9.7years; 41 boys) and norm data. Questionnaires applied were the Sleep Disorder Scale for Children, the Epworth Sleepiness Scale, the Pediatric Quality of Life Inventory, and the Strengths and Difficulties Questionnaire. Sleeping habits and endocrine deficiencies were assessed with a self-developed questionnaire. Increased somnolence was found in CNS tumour patients compared with those with a non-CNS malignancy (8.8±2.8 versus 7.5±2.7; Psleep. No specific risk factors were identified for a sleep disorder in CNS tumour patients, but their excessive somnolence was correlated with lower fatigue related quality of life (QoL) (r=-0.78, Psleep quality and diminish fatigue. © 2011 European Sleep Research Society.

  8. Dual DNA methylation patterns in the CNS reveal developmentally poised chromatin and monoallelic expression of critical genes.

    Directory of Open Access Journals (Sweden)

    Jinhui Wang

    Full Text Available As a first step towards discovery of genes expressed from only one allele in the CNS, we used a tiling array assay for DNA sequences that are both methylated and unmethylated (the MAUD assay. We analyzed regulatory regions of the entire mouse brain transcriptome, and found that approximately 10% of the genes assayed showed dual DNA methylation patterns. They include a large subset of genes that display marks of both active and silent, i.e., poised, chromatin during development, consistent with a link between differential DNA methylation and lineage-specific differentiation within the CNS. Sixty-five of the MAUD hits and 57 other genes whose function is of relevance to CNS development and/or disorders were tested for allele-specific expression in F(1 hybrid clonal neural stem cell (NSC lines. Eight MAUD hits and one additional gene showed such expression. They include Lgi1, which causes a subtype of inherited epilepsy that displays autosomal dominance with incomplete penetrance; Gfra2, a receptor for glial cell line-derived neurotrophic factor GDNF that has been linked to kindling epilepsy; Unc5a, a netrin-1 receptor important in neurodevelopment; and Cspg4, a membrane chondroitin sulfate proteoglycan associated with malignant melanoma and astrocytoma in human. Three of the genes, Camk2a, Kcnc4, and Unc5a, show preferential expression of the same allele in all clonal NSC lines tested. The other six genes show a stochastic pattern of monoallelic expression in some NSC lines and bi-allelic expression in others. These results support the estimate that 1-2% of genes expressed in the CNS may be subject to allelic exclusion, and demonstrate that the group includes genes implicated in major disorders of the CNS as well as neurodevelopment.

  9. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    International Nuclear Information System (INIS)

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun

    2006-01-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Δp85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways

  10. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Charles N de Leeuw

    2014-01-01

    Full Text Available Critical for human gene therapy is the availability of small promoters tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters (MiniPs using computational biology and phylogenetic conservation. MiniPs were tested in mouse as single-copy knock-ins at the Hprt locus on the X chromosome and evaluated for lacZ reporter expression in central nervous system (CNS and non–CNS tissue. Eighteen novel MiniPs driving expression in mouse brain were identified, 2 MiniPs for driving pan-neuronal expression and 17 MiniPs for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPs exhibit similar cell type specificity when delivered via adeno-associated virus vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy-number effects or genomic location, and results in constructs predisposed to success in adeno-associated virus. These MiniPs are immediately applicable for preclinical studies toward gene therapy in humans and are publicly available to facilitate basic and clinical research, and human gene therapy.

  11. Evolution of endothelial keratoplasty.

    Science.gov (United States)

    Price, Francis W; Price, Marianne O

    2013-11-01

    Endothelial keratoplasty has evolved into a popular alternative to penetrating keratoplasty (PK) for the treatment of endothelial dysfunction. Although the earliest iterations were challenging and were not widely adopted, the iteration known as Descemet stripping endothelial keratoplasty (DSEK) has gained widespread acceptance. DSEK combines a simplified technique for stripping dysfunctional endothelium from the host cornea and microkeratome dissection of the donor tissue, a step now commonly completed in advance by eye bank technicians. Studies show that a newer endothelial keratoplasty iteration, known as Descemet membrane endothelial keratoplasty (DMEK), provides an even faster and better visual recovery than DSEK does. In addition, DMEK significantly reduces the risk of immunologic graft rejection episodes compared with that in DSEK or in PK. Although the DMEK donor tissue, consisting of the bare endothelium and Descemet membrane without any stroma, is more challenging to prepare and position in the recipient eye, recent improvements in instrumentation and surgical techniques are increasing the ease and the reliability of the procedure. DSEK successfully mitigates 2 of the main liabilities of PK: ocular surface complications and structural problems (including induced astigmatism and perpetually weak wounds), whereas DMEK further mitigates the 2 principal remaining liabilities of PK: immunologic graft reactions and secondary glaucoma from prolonged topical corticosteroid use.

  12. Trifluoperazine: corneal endothelial phototoxicity

    International Nuclear Information System (INIS)

    Hull, D.S.; Csukas, S.; Green, K.

    1983-01-01

    Trifluoperazine is used for the treatment of psychiatric disorders. Perfusion of corneal endothelial cells with trifluoperazine-HC1 concurrent with exposure to long wavelength ultraviolet light resulted in a corneal swelling rate greater than that found in perfused corneas not exposed to ultraviolet light. Exposure of endothelial cells to 25 W incandescent light during perfusion with trifluoperazine-HC1 did not result in a higher corneal swelling rate compared to those perfused in the dark. The increased corneal swelling rate could be produced by pre-exposure of the trifluoperazine-HC1 perfusing solution to ultraviolet light suggesting the production of toxic photoproducts during exposure of trifluoperazine-HC1 to ultraviolet light. Perfusion of corneal endothelial cells with non-ultraviolet illuminated trifluoperazine-HC1 had no effect on endothelial cell membranes or ultrastructure. This is in contrast to cells perfused with trifluoperazine-HC1 that had been exposed to ultraviolet light in which there was an alteration of mitochondria and a loss of cytoplasmic homogeneity. The data imply that the trifluoperazine-HC1 photoproduct had an adverse effect on cellular transport mechanisms. The study also further demonstrates the value of the corneal endothelial cell model for identifying the physiological and anatomical changes occuring in photo-induced toxic reactions. (author)

  13. Mitochondria and Endothelial Function

    Science.gov (United States)

    Kluge, Matthew A.; Fetterman, Jessica L.; Vita, Joseph A.

    2013-01-01

    In contrast to their role in other cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, ROS production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease. PMID:23580773

  14. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis.

    Science.gov (United States)

    Espinosa-Díez, Cristina; Miguel, Verónica; Vallejo, Susana; Sánchez, Francisco J; Sandoval, Elena; Blanco, Eva; Cannata, Pablo; Peiró, Concepción; Sánchez-Ferrer, Carlos F; Lamas, Santiago

    2018-04-01

    Glutathione (GSH) biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL), which is composed of the catalytic (GCLc) and the modulatory (GCLm) subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice). In murine lung endothelial cells (MLEC) derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177) and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT) mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+) male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH 4 . To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+) mice. We observed that obstructed kidneys from Gclc(e/+) mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Actuarial risk of isolated CNS involvement in Ewing's sarcoma following prophylactic cranial irradiation and intrathecal methotrexate

    International Nuclear Information System (INIS)

    Trigg, M.E.; Makuch, R.; Glaubiger, D.

    1985-01-01

    Records of 154 patients with Ewing's sarcoma treated at the National Cancer Institute were reviewed to assess the incidence and risk of developing isolated central nervous system (CNS) Ewing's sarcoma. Sixty-two of the 154 patients had received CNS irradiation and intrathecal (i.t.) methotrexate as part of their initial therapy to prevent the occurrence of isolated CNS Ewing's sarcoma. The risk of developing isolate CNS Ewing's sarcoma was greatest within the first two years after diagnosis and was approximately 10%. The overall risk of CNS recurrence in the group of patients receiving DNS treatment was similar to the group receiving no therapy directed to the CNS. The occurrence of isolated CNS involvement was not prevented by the use of CNS irradiation and i.t. methotrexate. Because of a lack of efficacy to the CNS irradiation regimen, current treatment regimens do not include therapy directed to CNS

  16. Wine and endothelial function.

    Science.gov (United States)

    Caimi, G; Carollo, C; Lo Presti, R

    2003-01-01

    In recent years many studies have focused on the well-known relationship between wine consumption and cardiovascular risk. Wine exerts its protective effects through various changes in lipoprotein profile, coagulation and fibrinolytic cascades, platelet aggregation, oxidative mechanisms and endothelial function. The last has earned more attention for its implications in atherogenesis. Endothelium regulates vascular tone by a delicate balancing among vasorelaxing (nitric oxide [NO]) and vasoconstrincting (endothelins) factors produced by endothelium in response to various stimuli. In rat models, wine and other grape derivatives exerted an endothelium-dependent vasorelaxing capacity especially associated with the NO-stimulating activity of their polyphenol components. In experimental conditions, reservatrol (a stilbene polyphenol) protected hearts and kidneys from ischemia-reperfusion injury through antioxidant activity and upregulation of NO production. Wine polyphenols are also able to induce the expression of genes involved in the NO pathway within the arterial wall. The effects of wine on endothelial function in humans are not yet clearly understood. A favorable action of red wine or dealcoholized wine extract or purple grape juice on endothelial function has been observed by several authors, but discrimination between ethanol and polyphenol effects is controversial. It is, however likely that regular and prolonged moderate wine drinking positively affects endothelial function. The beneficial effects of wine on cardiovascular health are greater if wine is associated with a healthy diet. The most recent nutritional and epidemiologic studies show that the ideal diet closely resembles the Mediterranean diet.

  17. Infections and endothelial cells

    NARCIS (Netherlands)

    Keller, Tymen T.; Mairuhu, Albert T. A.; de Kruif, Martijn D.; Klein, Saskia K.; Gerdes, Victor E. A.; ten Cate, Hugo; Brandjes, Dees P. M.; Levi, Marcel; van Gorp, Eric C. M.

    2003-01-01

    Systemic infection by various pathogens interacts with the endothelium and may result in altered coagulation, vasculitis and atherosclerosis. Endothelium plays a role in the initiation and regulation of both coagulation and fibrinolysis. Exposure of endothelial cells may lead to rapid activation of

  18. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  19. Can injured adult CNS axons regenerate by recapitulating development?

    Science.gov (United States)

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  20. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    Science.gov (United States)

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen; Wyrobek, Andrew J.

    2009-03-03

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications. Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.

  2. Phantom limb pain: a case of maladaptive CNS plasticity?

    DEFF Research Database (Denmark)

    Flor, Herta; Nikolajsen, Lone; Jensen, Troels Staehelin

    2006-01-01

    might be a phenomenon of the CNS that is related to plastic changes at several levels of the neuraxis and especially the cortex. Here, we discuss the evidence for putative pathophysiological mechanisms with an emphasis on central, and in particular cortical, changes. We cite both animal and human...

  3. Neurolymphomatosis: An International Primary CNS Lymphoma Collaborative Group report

    NARCIS (Netherlands)

    S. Grisariu (Sigal); B. Avni (Batia); T.T. Batchelor (Tracy); M.J. van den Bent (Martin); F. Bokstein (Felix); D. Schiff (David); O. Kuittinen (Outi); M.C. Chamberlain (Marc C.); P. Roth (Patrick); A. Nemets (Anatoly); E. Shalom (Edna); D. Ben-Yehuda (Dina); T. Siegal (Tali)

    2010-01-01

    textabstractNeurolymphomatosis (NL) is a rare clinical entity. The International Primary CNS Lymphoma Collaborative Group retrospectively analyzed 50 patients assembled from 12 centers in 5 countries over a 16-year period. NL was related to non-Hodgkin lymphoma in 90% and to acute leukemia in 10%.

  4. Causes of CNS inflammation and potential targets for anticonvulsants.

    Science.gov (United States)

    Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos

    2013-08-01

    Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

  5. Metallothionein Expression and Roles During Neuropathology in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2006-01-01

    , their receptors and neurotrophins (TGFb, TGFb-Receptor, bFGF, bFGF-Receptor, VEGF, NT-3, NT-4/5, NGF); angiogenesis; and growth cone formation. Hence, MT-I+II enhance CNS tissue repair as seen clearly after the cryogenic injury, after which MT-I+II promote substitution of the necrotic lesion cavity with a glial...

  6. Glypicans and FGFs in CNS Development and Function

    NARCIS (Netherlands)

    Galli, Antonella

    2003-01-01

    One of the most important events during central nervous system (CNS) development is the communication between cells. Cell-to-cell signaling implicates the interaction between a signaling molecules (or ligands) and their receptors. Ligand-receptor interaction is a tightly regulated process and is

  7. Problems of prophylactic CNS radiotherapy in acute children's leukemia

    International Nuclear Information System (INIS)

    Bek, V.; Pribylova, O.; Abrahamova, J.; Hynieova, H.; Hrodek, O.

    1980-01-01

    The prophylactic treatment of the CNS was conducted by cobalt teletherapy of the cranium and by intrathecal application of MTX after the induction of primary remission in 70 children with acute leukemia throughout 5 years up to the end of 1978. The method of the combined radio- and chemoprophylaxis of the CNS was being changed during the years, especially as far as the radiation dose for the cranium was concerned. A detailed analysis made in a group of 59 children with the minimum interval of 18 months from the beginning of the treatment showed the best results after the application of a dose of 24 Gy/3 weeks. Following this procedure the relapse of leukemia in the CNS occurred in 9% only, whereas on the application of doses of 20 Gy and lower it occurred in 35 to 40%. On the whole 24 out of 59 children, i.e. 41%, are surviving, 35 children, i.e. 59%, died. Mostly complete, but only temporary, epilation was an invariable consequence of the irradiation of the cranium. The somnolence syndrome was only sporadically observed. It cannot be excluded, however, that some of its forms in patients discharged from hospital escaped attention. No case was recorded of serious impairment of the CNS of the leukoencephalopathic type. Up to now the psychomotor, intellectual and emotional development of the surviving children has been normal. (author)

  8. Sleep disorders in children after treatment for a CNS tumour

    NARCIS (Netherlands)

    Verberne, Lisa M.; Maurice-Stam, Heleen; Grootenhuis, Martha A.; van Santen, Hanneke M.; Schouten-van Meeteren, Antoinette Y. N.

    2012-01-01

    The long-term survival of children with a central nervous system (CNS) tumour is improving. However, they experience late effects, including altered habits and patterns of sleep. We evaluated the presence and type of sleep disorders and daytime sleepiness in these children, and its associations with

  9. [Circulating endothelial cells: biomarkers for monitoring activity of antiangiogenic therapy].

    Science.gov (United States)

    Farace, Françoise; Bidart, Jean-Michel

    2007-07-01

    Tumor vessel formation is largely dependent on the recruitment of endothelial cells. Rare in healthy individuals, circulating endothelial cells (CEC) are shed from vessel walls and enter the circulation reflecting endothelial damage or dysfunction. Increased numbers of CEC have been documented in different types of cancer. Recent studies have suggested the role for CEC in tumor angiogenesis, but whose presence could also reflect normal endothelium perturbation in cancer. Originating from the bone marrow rather than from vessel walls, endothelial progenitor cells (EPC) are mobilized following tissue ischemia and may be recruited to complement local angiogenesis supplied by existing endothelium. Recently, studies in mouse models suggest that the circulating fraction of endothelial progenitors (CEP) is involved in tumor angiogenesis but their contribution is less clear in humans. The detection of CEC and CEP is difficult and impeded by the rarity of these cells. They may have important clinical implication as novel biomarkers susceptible to predict more efficiently and rapidly the therapeutic response to anti-angiogenic treatments. However, a methodological consensus would be necessary in order to correctly evaluate the clinical interest of CEC and CEP in patients.

  10. Effect of sunitinib combined with ionizing radiation on endothelial cells

    International Nuclear Information System (INIS)

    Zhang Haiping; Jiao Xiaodong; Li Rui; Wang Jiejun; Takayama, Koichi; Su Bo

    2011-01-01

    The aims of present study were to evaluate the efficacy of combining sunitinib with ionizing radiation (IR) on endothelial cells in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) were exposed to IR with or without sunitinib pretreatment. Apoptosis assay and cell cycle distribution were analyzed by flow cytometry. Clonogenic survival assay at 3 Gy dose with or without sunitinib was performed. The activity of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway was detected by Western immunoblot. Lewis lung carcinoma mouse model was built to examine the effect of combination therapy on endothelial cells in vivo. Microvasculature changes were detected by immunohistochemistry using anti-CD31 antibody. Our results showed combination therapy of sunitinib and IR significantly increased apoptosis of endothelial cells and inhibited colony formation compared to sunitinib or radiotherapy alone. It also resulted in cell cycle redistribution (decreasing cells in S phase and increasing cells in G2/M phase). The activity of PI3K/Akt signal pathway was inhibited, which could be the potential mechanisms that account for the enhanced radiation response induced by sunitinib. In vivo analysis showed that combination therapy significantly decreased microvasculature formation. The results demonstrated that combination therapy of sunitinib and IR has the potential to increase the cytotoxic effects on endothelial cells. (author)

  11. Applications of Genomic Sequencing in Pediatric CNS Tumors.

    Science.gov (United States)

    Bavle, Abhishek A; Lin, Frank Y; Parsons, D Williams

    2016-05-01

    Recent advances in genome-scale sequencing methods have resulted in a significant increase in our understanding of the biology of human cancers. When applied to pediatric central nervous system (CNS) tumors, these remarkable technological breakthroughs have facilitated the molecular characterization of multiple tumor types, provided new insights into the genetic basis of these cancers, and prompted innovative strategies that are changing the management paradigm in pediatric neuro-oncology. Genomic tests have begun to affect medical decision making in a number of ways, from delineating histopathologically similar tumor types into distinct molecular subgroups that correlate with clinical characteristics, to guiding the addition of novel therapeutic agents for patients with high-risk or poor-prognosis tumors, or alternatively, reducing treatment intensity for those with a favorable prognosis. Genomic sequencing has also had a significant impact on translational research strategies in pediatric CNS tumors, resulting in wide-ranging applications that have the potential to direct the rational preclinical screening of novel therapeutic agents, shed light on tumor heterogeneity and evolution, and highlight differences (or similarities) between pediatric and adult CNS tumors. Finally, in addition to allowing the identification of somatic (tumor-specific) mutations, the analysis of patient-matched constitutional (germline) DNA has facilitated the detection of pathogenic germline alterations in cancer genes in patients with CNS tumors, with critical implications for genetic counseling and tumor surveillance strategies for children with familial predisposition syndromes. As our understanding of the molecular landscape of pediatric CNS tumors continues to advance, innovative applications of genomic sequencing hold significant promise for further improving the care of children with these cancers.

  12. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  13. Hydrogen sulfide metabolism regulates endothelial solute barrier function

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2016-10-01

    Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE, a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.

  14. Disruption of the blood-brain barrier as the primary effect of CNS irradiation.

    Science.gov (United States)

    Rubin, P; Gash, D M; Hansen, J T; Nelson, D F; Williams, J P

    1994-04-01

    The blood-brain barrier (BBB) is believed to be unique in organ microcirculation due to the 'tight junctions' which exist between endothelial cells and, some argue, the additional functional components represented by the perivascular boundary of neuroglial cells; these selectively exclude proteins and drugs from the brain parenchyma. This study was designed to examine the effects of irradiation on the BBB and determine the impact of the altered pathophysiology on the production of central nervous system (CNS) late effects such as demyelination, gliosis and necrosis. Rats, irradiated at 60 Gy, were serially sacrificed at 2, 6, 12 and 24 weeks. Magnetic resonance image analysis (MRI) was obtained prior to sacrifice with selected animals from each group. The remaining animals underwent horse-radish peroxidase (HRP) perfusion at the time of sacrifice. The serial studies showed a detectable disruption of the BBB at 2 weeks post-irradiation and this was manifested as discrete leakage; late injury seen at 24 weeks indicated diffuse vasculature leakage, severe loss of the capillary network, cortical atrophy and white matter necrosis. Reversal or repair of radiation injury was seen between 6 and 12 weeks, indicating a bimodal peak in events. Blood-brain barrier disruption is an early, readily recognizable pathophysiological event occurring after radiation injury, is detectable in vivo/in vitro by MRI and HRP studies, and appears to precede white matter necrosis. Dose response studies over a wide range of doses, utilizing both external and interstitial irradiation, are in progress along with correlative histopathologic and ultrastructural studies.

  15. Gut-derived factors promote neurogenesis of CNS-neural stem cells and nudge their differentiation to an enteric-like neuronal phenotype.

    Science.gov (United States)

    Kulkarni, Subhash; Zou, Bende; Hanson, Jesse; Micci, Maria-Adelaide; Tiwari, Gunjan; Becker, Laren; Kaiser, Martin; Xie, Xinmin Simon; Pasricha, Pankaj Jay

    2011-10-01

    Recent studies have explored the potential of central nervous system-derived neural stem cells (CNS-NSC) to repopulate the enteric nervous system. However, the exact phenotypic fate of gut-transplanted CNS-NSC has not been characterized. The aim of this study was to investigate the effect of the gut microenvironment on phenotypic fate of CNS-NSC in vitro. With the use of Transwell culture, differentiation of mouse embryonic CNS-NSC was studied when cocultured without direct contact with mouse intestinal longitudinal muscle-myenteric plexus preparations (LM-MP) compared with control noncocultured cells, in a differentiating medium. Differentiated cells were analyzed by immunocytochemistry and quantitative RT-PCR to assess the expression of specific markers and by whole cell patch-clamp studies for functional characterization of their phenotype. We found that LM-MP cocultured cells had a significant increase in the numbers of cells that were immune reactive against the panneuronal marker β-tubulin, neurotransmitters neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and neuropeptide vasoactive intestinal peptide (VIP) and showed an increase in expression of these genes, compared with control cells. Whole cell patch-clamp analysis showed that coculture with LM-MP decreases cell excitability and reduces voltage-gated Na(+) currents but significantly enhances A-current and late afterhyperpolarization (AHP) and increases the expression of the four AHP-generating Ca(2+)-dependent K(+) channel genes (KCNN), compared with control cells. In a separate experiment, differentiation of LM-MP cocultured CNS-NSC produced a significant increase in the numbers of cells that were immune reactive against the neurotransmitters nNOS, ChAT, and the neuropeptide VIP compared with CNS-NSC differentiated similarly in the presence of neonatal brain tissue. Our results show that the gut microenvironment induces CNS-NSC to produce neurons that share some of the

  16. Mouse adhalin

    DEFF Research Database (Denmark)

    Liu, L; Vachon, P H; Kuang, W

    1997-01-01

    . To analyze the biological roles of adhalin, we cloned the mouse adhalin cDNA, raised peptide-specific antibodies to its cytoplasmic domain, and examined its expression and localization in vivo and in vitro. The mouse adhalin sequence was 80% identical to that of human, rabbit, and hamster. Adhalin...... was specifically expressed in striated muscle cells and their immediate precursors, and absent in many other cell types. Adhalin expression in embryonic mouse muscle was coincident with primary myogenesis. Its expression was found to be up-regulated at mRNA and protein levels during myogenic differentiation...

  17. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  18. Endothelial RIG-I activation impairs endothelial function

    International Nuclear Information System (INIS)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-01-01

    Highlights: ► RIG-I activation impairs endothelial function in vivo. ► RIG-I activation alters HCAEC biology in vitro. ► EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5′end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  19. The shifting landscape of metastatic breast cancer to the CNS.

    Science.gov (United States)

    Quigley, Matthew R; Fukui, Olivia; Chew, Brandon; Bhatia, Sanjay; Karlovits, Steven

    2013-07-01

    The improved survival following the diagnosis of breast cancer has potentially altered the characteristics and course of patients presenting with CNS involvement. We therefore sought to define our current cohort of breast cancer patients with metastatic disease to the CNS in regard to modern biomarkers and clinical outcome. Review of clinical and radiographic records of women presenting to a tertiary medical center with the new diagnosis of CNS metastatic disease from breast cancer. This was a retrospective review from patients identities obtained from two prospective databases. There were 88 women analyzed who were treated over the period of January 2003 to February 2010, average age 56.9 years. At the time of initial presentation of CNS disease, 68 % of patients had multiple brain metastases, 17 % had a solitary metastasis, and 15 % had only leptomeningeal disease (LMD). The median survival for all patients from the time of diagnosis of breast disease was 50.0 months, and 9.7 months from diagnosis of CNS involvement. The only factor related to overall survival was estrogen receptor-positive pathology (57.6 v. 38.2 months, p = .02 log-rank); those related to survival post CNS diagnosis were presentation with LMD (p = .004, HR = 3.1, Cox regression) and triple-negative hormonal/HER2 status (p = .02, HR = 2.3, Cox regression). Patients with either had a median survival of 3.1 months (no patients in common). Of the 75 patients who initially presented with metastatic brain lesions, 20 (26 %) subsequently developed LMD in the course of their disease (median 10.4 months), following which survival was grim (1.8 months median). Symptoms of LMD were most commonly lower extremity weakness (14/33), followed by cranial nerve deficits (11/33). The recently described Graded Prognostic Assessment (GPA) tumor index stratified median survival at 2.5, 5.9, 13.1, and 21.7 months, respectively, for indices of 1-4 (p = .004, log-rank), which

  20. Activated ovarian endothelial cells promote early follicular development and survival.

    Science.gov (United States)

    Kedem, Alon; Aelion-Brauer, Anate; Guo, Peipei; Wen, Duancheng; Ding, Bi-Sen; Lis, Raphael; Cheng, Du; Sandler, Vladislav M; Rafii, Shahin; Rosenwaks, Zev

    2017-09-19

    New data suggests that endothelial cells (ECs) elaborate essential "angiocrine factors". The aim of this study is to investigate the role of activated ovarian endothelial cells in early in-vitro follicular development. Mouse ovarian ECs were isolated using magnetic cell sorting or by FACS and cultured in serum free media. After a constitutive activation of the Akt pathway was initiated, early follicles (50-150 um) were mechanically isolated from 8-day-old mice and co-cultured with these activated ovarian endothelial cells (AOEC) (n = 32), gel (n = 24) or within matrigel (n = 27) in serum free media for 14 days. Follicular growth, survival and function were assessed. After 6 passages, flow cytometry showed 93% of cells grown in serum-free culture were VE-cadherin positive, CD-31 positive and CD 45 negative, matching the known EC profile. Beginning on day 4 of culture, we observed significantly higher follicular and oocyte growth rates in follicles co-cultured with AOECs compared with follicles on gel or matrigel. After 14 days of culture, 73% of primary follicles and 83% of secondary follicles co-cultured with AOEC survived, whereas the majority of follicles cultured on gel or matrigel underwent atresia. This is the first report of successful isolation and culture of ovarian ECs. We suggest that co-culture with activated ovarian ECs promotes early follicular development and survival. This model is a novel platform for the in vitro maturation of early follicles and for the future exploration of endothelial-follicular communication. In vitro development of early follicles necessitates a complex interplay of growth factors and signals required for development. Endothelial cells (ECs) may elaborate essential "angiocrine factors" involved in organ regeneration. We demonstrate that co-culture with ovarian ECs enables culture of primary and early secondary mouse ovarian follicles.

  1. The Expression Profiles of Lysophospholipid Receptors (LPLRs in Different Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Yu-Wei Lee

    2006-03-01

    Full Text Available Sphingosine-1-phosphate (S1P and lysophosphatidic acid (LPA are two bioactive lysophospholipids (LPLs, stored primarily in platelets and released during platelet activation. Both LPLs are capable of regulating endothelial cell functions. The physiological functions of S1P and LPA are mediated by interacting with eight different G-protein coupled receptors: S1P1 through 5 and LPA1 through 3, which activate three different heterotrimeric GTP proteins-including Gi、Gq and G(12/13. The expression of LPL receptors in endothelial cells would affect the responses of S1P and LPA to these cells. There is no previous report discussing the expression profiles of LPL receptors in different endothelial cells from various species. In this study, we aim to investigate the expression profiles of S1P and LPA receptors in different endothelial cells isolated from human, rat, mouse and bovine origin. We used RT-PCR to determine LPLs receptors expression profiles in different endothelial cells. Our results indicated that endothelial cells from various species express different LPL receptors. Endothelial cells isolated from the same source of different species also had different LPLs receptors expression profiles. Therefore, different endothelial cells should respond to LPLs in different manners.

  2. The Volatile Anesthetic Isoflurane Increases Endothelial Adenosine Generation via Microparticle Ecto-5′-Nucleotidase (CD73) Release

    Science.gov (United States)

    Kim, Mihwa; Ham, Ahrom; Kim, Katelyn Yu-Mi; Brown, Kevin M.; Lee, H. Thomas

    2014-01-01

    Endothelial dysfunction is common in acute and chronic organ injury. Isoflurane is a widely used halogenated volatile anesthetic during the perioperative period and protects against endothelial cell death and inflammation. In this study, we tested whether isoflurane induces endothelial ecto-5′-nucleotidase (CD73) and cytoprotective adenosine generation to protect against endothelial cell injury. Clinically relevant concentrations of isoflurane induced CD73 activity and increased adenosine generation in cultured human umbilical vein or mouse glomerular endothelial cells. Surprisingly, isoflurane-mediated induction of endothelial CD73 activity occurred within 1 hr and without synthesizing new CD73. We determined that isoflurane rapidly increased CD73 containing endothelial microparticles into the cell culture media. Indeed, microparticles isolated from isoflurane-treated endothelial cells had significantly higher CD73 activity as well as increased CD73 protein. In vivo, plasma from mice anesthetized with isoflurane had significantly higher endothelial cell-derived CD144+ CD73+ microparticles and had increased microparticle CD73 activity compared to plasma from pentobarbital-anesthetized mice. Supporting a critical role of CD73 in isoflurane-mediated endothelial protection, a selective CD73 inhibitor (APCP) prevented isoflurane-induced protection against human endothelial cell inflammation and apoptosis. In addition, isoflurane activated endothelial cells Rho kinase evidenced by myosin phosphatase target subunit-1 and myosin light chain phosphorylation. Furthermore, isoflurane-induced release of CD73 containing microparticles was significantly attenuated by a selective Rho kinase inhibitor (Y27632). Taken together, we conclude that the volatile anesthetic isoflurane causes Rho kinase-mediated release of endothelial microparticles containing preformed CD73 and increase adenosine generation to protect against endothelial apoptosis and inflammation. PMID:24945528

  3. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Yamamoto, Yumi; Valitalo, Pyry A.; Wong, Yin Cheong; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; Kokki, Hannu; Kokki, Merja; Danhof, Meindert; van Hasselt, Johan G. C.; de Lange, Elizabeth C. M.

    2018-01-01

    Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human,

  4. Tendencies the treatment of the central nervous system (CNS) tumors

    International Nuclear Information System (INIS)

    Alert Silva, Jose; Jimenez Medina, Jose

    2004-01-01

    It is known that the treatment of the central nervous system (CNS) tumors is based on the use of surgery and radiotherapy (RT) and that chemotherapy (QMT) is used even more, as well as the other drugs. A bibliographic review was made to update the knowledge on the current trends and perspectives of RT applied to CNS tumors. The following were found among them: a) combinations of RT and CMT; b) radiosensitizers incorporated to the radiant treatment; c) angiogenesis inhibitors associated with RT; d) the scale-up or increase of the RT doses thanks to the development of new technologies, such as 3 D conformal radiotherapy, intensity- modulated radiotherapy, surgery and others. Another field of research is that of the changes in the rhythm or fractioning of the RT: hyperfractionated, accelerated, combinations of both, etc., which will allow mainly to increase the dosage scale-up

  5. CXCL10 can inhibit endothelial cell proliferation independently of CXCR3.

    Directory of Open Access Journals (Sweden)

    Gabriele S V Campanella

    2010-09-01

    Full Text Available CXCL10 (or Interferon-inducible protein of 10 kDa, IP-10 is an interferon-inducible chemokine with potent chemotactic activity on activated effector T cells and other leukocytes expressing its high affinity G protein-coupled receptor CXCR3. CXCL10 is also active on other cell types, including endothelial cells and fibroblasts. The mechanisms through which CXCL10 mediates its effects on non-leukocytes is not fully understood. In this study, we focus on the anti-proliferative effect of CXCL10 on endothelial cells, and demonstrate that CXCL10 can inhibit endothelial cell proliferation in vitro independently of CXCR3. Four main findings support this conclusion. First, primary mouse endothelial cells isolated from CXCR3-deficient mice were inhibited by CXCL10 as efficiently as wildtype endothelial cells. We also note that the proposed alternative splice form CXCR3-B, which is thought to mediate CXCL10's angiostatic activity, does not exist in mice based on published mouse CXCR3 genomic sequences as an in-frame stop codon would terminate the proposed CXCR3-B splice variant in mice. Second, we demonstrate that human umbilical vein endothelial cells and human lung microvascular endothelial cells that were inhibited by CXL10 did not express CXCR3 by FACS analysis. Third, two different neutralizing CXCR3 antibodies did not inhibit the anti-proliferative effect of CXCL10. Finally, fourth, utilizing a panel of CXCL10 mutants, we show that the ability to inhibit endothelial cell proliferation correlates with CXCL10's glycosaminoglycan binding affinity and not with its CXCR3 binding and signaling. Thus, using a very defined system, we show that CXCL10 can inhibit endothelial cell proliferation through a CXCR3-independent mechanism.

  6. 4th ENRI International Workshop on ATM/CNS

    CERN Document Server

    2017-01-01

    This book is a compilation of selected papers from the 4th ENRI International Workshop on ATM/CNS (EIWAC2015). The work focuses on novel techniques for aviation infrastructure in air traffic management (ATM) and communications, navigation, surveillance, and informatics (CNSI) domains. The contents make valuable contributions to academic researchers, engineers in the industry, and regulators of aviation authorities. As well, readers will encounter new ideas for realizing a more efficient and safer aviation system. .

  7. Morphological evaluation of fetus CNS and its related anomalies

    International Nuclear Information System (INIS)

    Oi, Shizuo; Tamaki, Norihiko; Matsumoto, Satoshi; Katayama, Kazuaki; Mochizuki, Matsuto

    1989-01-01

    The fetus central nervous system was evaluated morphologically by ultrasonography (US), magnetic resonance imaging (MRI), and CT scan to analyze the prenatal diagnostic value for CNS anomalies. A total of 31 patients with 42 lesions had been diagnosed during the preceding 7 years. The patients included 24 with hydrocephalus, three with anencephaly, three with myeloschisis, three with holoprosencephaly, three with an encephalocele, two with a Dandy-Walker cyst, one with hydroencephalodysplasia, one with an intracranial neoplasm, one with sacrococcygeal teratoma, and one with sacral agenesis. Compared with US and MRI, CT proved to be more accurate in the detection of spine and cranium-bone morphology. This finding seems to be valuable in the diagnosis of spina bifida, cranium bifidum and some cases of hypertensive hydrocephalus, especially in the axial view. MRI was definitely superior in the anatomico-pathological diagnosis of cerebral dysgenesis, ventriculomegaly, intracranial tumors, and other brain parenchymal changes in view of multi-dimensional analysis. The most considerable disadvantage of MRI in the diagnosis of a fetus CNS anomaly is the poor information about spine and cranium morphology. A super-conducting MRI system is still insufficient to demonstrate the spinal cord of a fetus. US was routinely used, and the multidimensional slices were useful for screening the CNS abnormalies. Some of the fetus brain lesions, such as intracranial hematomas, had a specific echogenecity on US. However, US sometimes failed to demarcate the cerebral parenchymal or subdural morphological changes because its artifacts had hyperchoic shadows. While US, MRI, and CT were valuable diagnostic tools in the morphological evaluation of fetus CNS and its related anomalies, each modality has different diagnostic advantages and disadvantages. Improvement can be expected when these diagnostic imaging modalities are complementary, depending upon the nature of the anatomy. (J.P.N.)

  8. Primary CNS lymphoma in nonimmunocompromised patients magnetic resonance study

    International Nuclear Information System (INIS)

    Pena, J.; Fernandez, J.M.; Galarraga, M.I.; Pozo, A.; Montes, A.; Ablanedo, P.

    1995-01-01

    Prymary lymphoma of the CNS (PLCNS) is a relatively infrequent malignant tumor that has become increasingly common over the past decade. The radiological signs, although not pathognomonic, are quite specific and suggestive of the correct diagnosis, thus facilitating therapeutic management. We present six cases of PLCNS in nonimmunocopromised patients studied by MR in our hospital over the past two and a half years. We describe theradiological findings, correlating them with those mentioned in the literature. 14 refs

  9. Melanocortin signaling in the CNS directly regulates circulating cholesterol

    OpenAIRE

    Perez-Tilve, Diego; Hofmann, Susanna M; Basford, Joshua; Nogueiras, Ruben; Pfluger, Paul T; Patterson, James T; Grant, Erin; Wilson-Perez, Hilary E; Granholm, Norman A; Arnold, Myrtha; Trevaskis, James L; Butler, Andrew A; Davidson, William S; Woods, Stephen C; Benoit, Stephen C

    2010-01-01

    Cholesterol circulates in the blood in association with triglycerides and other lipids, and elevated blood low-density lipoprotein cholesterol carries a risk for metabolic and cardiovascular disorders, whereas high-density lipoprotein (HDL) cholesterol in the blood is thought to be beneficial. Circulating cholesterol is the balance among dietary cholesterol absorption, hepatic synthesis and secretion, and the metabolism of lipoproteins by various tissues. We found that the CNS is also an impo...

  10. Computerized tomography data on CNS affection in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Ivanova, M.M.; Bliznyuk, O.I.; Todua, F.I.; Tumanova, A.A.

    1989-01-01

    Computed tomography (CT) of the brain was employed in 40 patients with systemic lupus erythematosus (SLE). Clinical cerebral pathology was obvious in 30 and absent in 10 patients. By CT cerebral symptoms were divided of 4 groups. Clinical symptom complexes of CNS defects and SLE were reflected on definite CT images correlated with focal damage to the brain. CT picture of enlarged subarachnoid space, ventricles and basal cisterns can be observed in SLE patients without neurological symptoms. This indicated likely subclinical cerebral affection

  11. EMMPRIN, an upstream regulator of MMPs, in CNS biology.

    Science.gov (United States)

    Kaushik, Deepak Kumar; Hahn, Jennifer Nancy; Yong, V Wee

    2015-01-01

    Matrix metalloproteinases (MMPs) are engaged in pathologies associated with infections, tumors, autoimmune disorders and neurological dysfunctions. With the identification of an upstream regulator of MMPs, EMMPRIN (Extracellular matrix metalloproteinase inducer, CD147), it is relevant to address if EMMPRIN plays a role in the pathology of central nervous system (CNS) diseases. This would enable the possibility of a more upstream and effective therapeutic target. Indeed, conditions including gliomas, Alzheimer's disease (AD), multiple sclerosis (MS), and other insults such as hypoxia/ischemia show elevated levels of EMMPRIN which correlate with MMP production. In contrast, given EMMPRIN's role in CNS homeostasis with respect to regulation of monocarboxylate transporters (MCTs) and interactions with adhesion molecules including integrins, we need to consider that EMMPRIN may also serve important regulatory or protective functions. This review summarizes the current understanding of EMMPRIN's involvement in CNS homeostasis, its possible roles in escalating or reducing neural injury, and the mechanisms of EMMPRIN including and apart from MMP induction. Copyright © 2015 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  12. Mechanisms of CNS invasion and damage by parasites.

    Science.gov (United States)

    Kristensson, Krister; Masocha, Willias; Bentivoglio, Marina

    2013-01-01

    Invasion of the central nervous system (CNS) is a most devastating complication of a parasitic infection. Several physical and immunological barriers provide obstacles to such an invasion. In this broad overview focus is given to the physical barriers to neuroinvasion of parasites provided at the portal of entry of the parasites, i.e., the skin and epithelial cells of the gastrointestinal tract, and between the blood and the brain parenchyma, i.e., the blood-brain barrier (BBB). A description is given on how human pathogenic parasites can reach the CNS via the bloodstream either as free-living or extracellular parasites, by embolization of eggs, or within red or white blood cells when adapted to intracellular life. Molecular mechanisms are discussed by which parasites can interact with or pass across the BBB. The possible targeting of the circumventricular organs by parasites, as well as the parasites' direct entry to the brain from the nasal cavity through the olfactory nerve pathway, is also highlighted. Finally, examples are given which illustrate different mechanisms by which parasites can cause dysfunction or damage in the CNS related to toxic effects of parasite-derived molecules or to immune responses to the infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. CNS Involvement in Hemophagocytic Lymphohistiocytosis: CT and MR Findings

    International Nuclear Information System (INIS)

    Chung, Tae Woong

    2007-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a rare disorder that is characterized by proliferation of benign histiocytes, and this commonly involves the liver, spleen, lymph nodes, bone marrow and central nervous system (CNS). We report here on the CT and MR imaging findings in a case of CNS HLH that showed multiple ring enhancing masses mimicking abscess or another mass on the CT and MR imaging. emophagocytic lymphohistiocytosis (HLH) is a rare disorder that is characterized by nonmalignant diffuse infiltration of multiple organs, including the central nervous system (CNS), by lymphocytes and histiocytes (1). Many radiologic reports describing diffuse white matter infiltrations, parenchymal atrophy and calcification have been published, but the characteristics of these findings remain non-specific, especially in immunocompromised patients. We present here a case of HLH in a 3-year-old boy who presented with multiple ring enhancing lesions involving the brain. In conclusion, although the CT and MRI findings of HLH with ring enhancing parenchymal lesions are nonspecific and mimic abscess, and especially in the immunosuppressed patients, increased diffusion at the center on DWI may be a finding of HLH to differentiate it from abscess, which has restricted diffusion at the center. However, the pathologic correlation with DWI according to the lesion stage certainly needs further study with a larger number of patients

  14. Adverse CNS-effects of beta-adrenoceptor blockers.

    Science.gov (United States)

    Gleiter, C H; Deckert, J

    1996-11-01

    In 1962 propranolol, the first beta adrenoceptor antagonist (beta blocker), was brought on to the market. There is now a host of different beta blockers available, and these compounds are among the most commonly prescribed groups of drugs. The efficacy of beta blockers has been proven predominantly for the treatment of cardiovascular diseases. Beta blockers are also used for certain types of CNS disorders, such as anxiety disorders, essential tremor and migraine. While low toxicity means that they have a favorable risk-benefit ratio, given the high intensity of use, it is essential to have a comprehensive knowledge of adverse events. Adverse events of beta blockers that can be related to the CNS are quite often neglected, even in textbooks of clinical pharmacology or review articles, and thus often misdiagnosed. The following article, therefore, after summarizing the use of beta blockers for CNS indications, critically reviews the literature on centrally mediated adverse events. General pharmacological features of beta blockers and their molecular basis of action will briefly be addressed to the extent that they are or may become relevant for central nervous pharmacotherapy and side-effects.

  15. Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo.

    Science.gov (United States)

    Trindade, Alexandre; Djokovic, Dusan; Gigante, Joana; Mendonça, Liliana; Duarte, António

    2017-03-14

    The inhibition of Delta-like 4 (Dll4)/Notch signaling has been shown to result in excessive, nonfunctional vessel proliferation and significant tumor growth suppression. However, safety concerns emerged with the identification of side effects resulting from chronic Dll4/Notch blockade. Alternatively, we explored the endothelial Dll4 overexpression using different mouse tumor models. We used a transgenic mouse model of endothelial-specific Dll4 overexpression, previously produced. Growth kinetics and vascular histopathology of several types of solid tumors was evaluated, namely Lewis Lung Carcinoma xenografts, chemically-induced skin papillomas and RIP1-Tag2 insulinomas. We found that increased Dll4/Notch signaling reduces tumor growth by reducing vascular endothelial growth factor (VEGF)-induced endothelial proliferation, tumor vessel density and overall tumor blood supply. In addition, Dll4 overexpression consistently improved tumor vascular maturation and functionality, as indicated by increased vessel calibers, enhanced mural cell recruitment and increased network perfusion. Importantly, the tumor vessel normalization is not more effective than restricted vessel proliferation, but was found to prevent metastasis formation and allow for increased delivery to the tumor of concomitant chemotherapy, improving its efficacy. By reducing endothelial sensitivity to VEGF, these results imply that Dll4/Notch stimulation in tumor microenvironment could be beneficial to solid cancer patient treatment by reducing primary tumor size, improving tumor drug delivery and reducing metastization. Endothelial specific Dll4 overexpression thus appears as a promising anti-angiogenic modality that might improve cancer control.

  16. Identification and functional analysis of endothelial tip cell-enriched genes.

    Science.gov (United States)

    del Toro, Raquel; Prahst, Claudia; Mathivet, Thomas; Siegfried, Geraldine; Kaminker, Joshua S; Larrivee, Bruno; Breant, Christiane; Duarte, Antonio; Takakura, Nobuyuki; Fukamizu, Akiyoshi; Penninger, Josef; Eichmann, Anne

    2010-11-11

    Sprouting of developing blood vessels is mediated by specialized motile endothelial cells localized at the tips of growing capillaries. Following behind the tip cells, endothelial stalk cells form the capillary lumen and proliferate. Expression of the Notch ligand Delta-like-4 (Dll4) in tip cells suppresses tip cell fate in neighboring stalk cells via Notch signaling. In DLL4(+/-) mouse mutants, most retinal endothelial cells display morphologic features of tip cells. We hypothesized that these mouse mutants could be used to isolate tip cells and so to determine their genetic repertoire. Using transcriptome analysis of retinal endothelial cells isolated from DLL4(+/-) and wild-type mice, we identified 3 clusters of tip cell-enriched genes, encoding extracellular matrix degrading enzymes, basement membrane components, and secreted molecules. Secreted molecules endothelial-specific molecule 1, angiopoietin 2, and apelin bind to cognate receptors on endothelial stalk cells. Knockout mice and zebrafish morpholino knockdown of apelin showed delayed angiogenesis and reduced proliferation of stalk cells expressing the apelin receptor APJ. Thus, tip cells may regulate angiogenesis via matrix remodeling, production of basement membrane, and release of secreted molecules, some of which regulate stalk cell behavior.

  17. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    Science.gov (United States)

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  18. Microtubule-Targeting Agents Enter the Central Nervous System (CNS: Double-edged Swords for Treating CNS Injury and Disease

    Directory of Open Access Journals (Sweden)

    Eun-Mi Hur

    2014-12-01

    Full Text Available Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  19. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Directory of Open Access Journals (Sweden)

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  20. Expression of ICAM-1 in blood-spinal cord barrier disruption and CNS radiation injury

    International Nuclear Information System (INIS)

    Nordal, R.A.; Li, Y.-Q.; Wong, C.S.

    2003-01-01

    Full text: Intercellular adhesion molecule-1 (ICAM-1) expression is increased following a number of CNS insults in association with blood-brain barrier (BBB) disruption. While disruption of ICAM-1 expression reduces injury in diverse pathologies ranging from trauma to ischemia, its role in CNS radiation injury is not understood. Adult rats received 0 to 22 Gy to a 1.6 cm length of the cervical spinal cord. Expression of ICAM-1 was studied using immunohistochemistry (IHC). Blood-spinal cord barrier (BSCB) disruption was detected by IHC for endogenous albumin and the BBB protein endothelial barrier antigen (EBA). To assess the role of ICAM-1 in the mechanisms of BSCB disruption, animals received IV injections of an ICAM-1-specific blocking antibody (IA-29) or vehicle control, and BSCB disruption was examined by albumin IHC. ICAM-1, albumin, and EBA staining areas were quantified by digital image analysis. ICAM-1 expression localized predominantly to endothelium in non-irradiated spinal cord sections. Some expression was also identified in astrocytes. ICAM-1 expression was increased in white matter, but not in grey matter following radiation. After 22 Gy, ICAM-1 protein increased at 24 hours, and increased again from baseline at 17-20 weeks. Induction was seen in both the total immunostained area, and in the number of ICAM-1 positive glia. A dose response was observed in ICAM-1 expression 20 weeks after 16-20 Gy. BSCB disruption also increased with doses 16-20 Gy at 20 weeks. Blocking ICAM-1 with IA-29 significantly decreased BSCB leakage of albumin at 24 hours (p=0.03). Regions with both increased ICAM-1 expression and BSCB disruption were identified in white matter. Thus the dose response and spatial distribution of increased ICAM-1 expression parallels that for BSCB disruption. These results are consistent with a role for increased ICAM-1 expression in radiation-induced BSCB disruption. The effect of blocking ICAM-1 with a neutralizing antibody suggests its

  1. Identification of genetic determinants of the sexual dimorphism in CNS autoimmunity.

    Directory of Open Access Journals (Sweden)

    Frank Bearoff

    Full Text Available Multiple sclerosis (MS is a debilitating chronic inflammatory disease of the nervous system that affects approximately 2.3 million individuals worldwide, with higher prevalence in females, and a strong genetic component. While over 200 MS susceptibility loci have been identified in GWAS, the underlying mechanisms whereby they contribute to disease susceptibility remains ill-defined. Forward genetics approaches using conventional laboratory mouse strains are useful in identifying and functionally dissecting genes controlling disease-relevant phenotypes, but are hindered by the limited genetic diversity represented in such strains. To address this, we have combined the powerful chromosome substitution (consomic strain approach with the genetic diversity of a wild-derived inbred mouse strain. Using experimental allergic encephalomyelitis (EAE, a mouse model of MS, we evaluated genetic control of disease course among a panel of 26 consomic strains of mice inheriting chromosomes from the wild-derived PWD strain on the C57BL/6J background, which models the genetic diversity seen in human populations. Nineteen linkages on 18 chromosomes were found to harbor loci controlling EAE. Of these 19 linkages, six were male-specific, four were female-specific, and nine were non-sex-specific, consistent with a differential genetic control of disease course between males and females. An MS-GWAS candidate-driven bioinformatic analysis using orthologous genes linked to EAE course identified sex-specific and non-sex-specific gene networks underlying disease pathogenesis. An analysis of sex hormone regulation of genes within these networks identified several key molecules, prominently including the MAP kinase family, known hormone-dependent regulators of sex differences in EAE course. Importantly, our results provide the framework by which consomic mouse strains with overall genome-wide genetic diversity, approximating that seen in humans, can be used as a rapid and

  2. A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury.

    Science.gov (United States)

    Ribera, Jordi; Pauta, Montse; Melgar-Lesmes, Pedro; Córdoba, Bernat; Bosch, Anna; Calvo, Maria; Rodrigo-Torres, Daniel; Sancho-Bru, Pau; Mira, Aurea; Jiménez, Wladimiro; Morales-Ruiz, Manuel

    2017-11-01

    Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl 4 A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high-resolution three-dimensional confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl 4 -treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the coexpression of CD31 and α-smooth muscle actin, compared with noncirrhotic livers. Bone morphogenetic protein-7 (BMP-7) inhibited the acquisition of EndMT induced by transforming growth factor-β1 (TGF-β1) treatment in cultured primary mouse liver endothelial cells from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9 ± 0.2 vs. 3.8 ± 0.3%, respectively; P livers correlated with a significant decrease in liver fibrosis ( P livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization. NEW & NOTEWORTHY A subpopulation of liver endothelial cells from cirrhotic patients and mice with liver fibrosis undergoes endothelial-to-mesenchymal transition. Liver endothelial cells from healthy mice could transition into a mesenchymal phenotype in culture in response to TGF-β1 treatment. Fibrotic livers treated chronically with BMP-7 showed lower EndMT acquisition, reduced fibrosis, and improved vascular organization. Copyright © 2017 the American

  3. Derivation of an occupational exposure limit (OEL) for methylene chloride based on acute CNS effects and relative potency analysis.

    Science.gov (United States)

    Storm, J E; Rozman, K K

    1998-06-01

    The Occupational Safety and Health Administration (OSHA) methylene chloride Permissible Exposure Level (PEL) or 25 ppm is quantitatively derived from mouse tumor results observed in a high-exposure National Toxicology Program bioassay. Because this approach depends on controversial interspecies and low-dose extrapolations, the PEL itself has stimulated heated debate. Here, an alternative safety assessment for methylene chloride is presented. It is based on an acute human lowest-observed-adverse-effect level (LOAEL) of 200 ppm for subtle central nervous system (CNS) depression. Steep, parallel exposure-response curves for anesthetic and subanesthetic CNS effects associated with compounds mechanistically and structurally related to methylene chloride are shown to support a safety factor of two to account for inter-individual variability in response. LOAEL/no-observed-adverse-effect ratios for subtle CNS effects associated with structurally related solvents are shown to support a safety factor range of two to four to account for uncertainty in identifying a subthreshold exposure level. Anesthetic relative potencies and anesthetic/subanesthetic effect level ratios are shown to be constant for the compounds evaluated, demonstrating that subanesthetic relative potencies are also constant. Relative potencies among similarly derived occupational exposure limits (OELs) for solvents structurally related to methylene chloride are therefore used to validate the derived methylene chloride OEL range of 25-50 ppm. Because this safety assessment is based on human (rather than rodent) data and empirical (rather than theoretical) exposure-response relationships and is supported by relative potency analysis, it is a defensible alternative to to the OSHA risk assessment and should positively contribute to the debate regarding the appropriate basis and value for a methylene chloride PEL.

  4. Endovascular transplantation of stem cells to the injured rat CNS

    International Nuclear Information System (INIS)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan; Le Blanc, Katarina

    2009-01-01

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  5. Endovascular transplantation of stem cells to the injured rat CNS

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan [Karolinska University Hospital, Department of Clinical Neuroscience, Karolinska Institutet, Department of Neuroradiology, Stockholm (Sweden); Le Blanc, Katarina [Karolinska University Hospital, Department of Stem Cell Research, Karolinska Institutet, Department of Clinical Immunology, Stockholm (Sweden)

    2009-10-15

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  6. Immune and inflammatory responses in the CNS : Modulation by astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; aschner, michael; hidalgo, juan

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating...... the communication between hematogenous cells and resident cells of the central nervous system (CNS). This review will address (1) the functions of astrocytes in the normal brain and (2) their role in surveying noxious stimuli within the brain, with particular emphasis on astrocytic responses to damage or disease...

  7. Kynurenines in CNS disease: regulation by inflammatory cytokines

    Science.gov (United States)

    Campbell, Brian M.; Charych, Erik; Lee, Anna W.; Möller, Thomas

    2014-01-01

    The kynurenine pathway (KP) metabolizes the essential amino acid tryptophan and generates a number of neuroactive metabolites collectively called the kynurenines. Segregated into at least two distinct branches, often termed the “neurotoxic” and “neuroprotective” arms of the KP, they are regulated by the two enzymes kynurenine 3-monooxygenase and kynurenine aminotransferase, respectively. Interestingly, several enzymes in the pathway are under tight control of inflammatory mediators. Recent years have seen a tremendous increase in our understanding of neuroinflammation in CNS disease. This review will focus on the regulation of the KP by inflammatory mediators as it pertains to neurodegenerative and psychiatric disorders. PMID:24567701

  8. MicroRNA expression in the adult mouse central nervous system

    DEFF Research Database (Denmark)

    Bak, Mads; Silahtaroglu, Asli; Møller, Morten

    2008-01-01

    distinct areas of the adult mouse central nervous system (CNS). Microarray profiling in combination with real-time RT-PCR and LNA (locked nucleic acid)-based in situ hybridization uncovered 44 miRNAs displaying more than threefold enrichment in the spinal cord, cerebellum, medulla oblongata, pons......RNA-related gene regulatory networks in the mammalian central nervous system. Udgivelsesdato: 2008-Mar...

  9. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    International Nuclear Information System (INIS)

    Li, Zhao; Jin, Zhu-Qiu

    2012-01-01

    Highlights: ► Cardiac tight junctions are present between coronary endothelial cells. ► Ischemic preconditioning preserves the structural and functional integrity of tight junctions. ► Myocardial edema is prevented in hearts subjected to ischemic preconditioning. ► Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood–heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs–Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC enhanced the translocation of ZO-2 from cytosol to cytoskeleton. In conclusion, TJs occur in

  10. Development of mPMab-1, a Mouse-Rat Chimeric Antibody Against Mouse Podoplanin.

    Science.gov (United States)

    Yamada, Shinji; Kaneko, Mika K; Nakamura, Takuro; Ichii, Osamu; Konnai, Satoru; Kato, Yukinari

    2017-04-01

    Podoplanin (PDPN), the ligand of C-type lectin-like receptor-2, is used as a lymphatic endothelial marker. We previously established clone PMab-1 of rat IgG 2a as a specific monoclonal antibody (mAb) against mouse PDPN. PMab-1 is also very sensitive in immunohistochemical analysis; however, rat mAbs seem to be unfavorable for pathologists because anti-mouse IgG and anti-rabbit IgG are usually used as secondary antibodies in commercially available kits for immunohistochemical analysis. In this study, we develop a mouse-rat chimeric antibody, mPMab-1 of mouse IgG 2a , which was derived from rat PMab-1 mAb. Immunohistochemical analysis shows that mPMab-1 detects podocytes of the kidney, lymphatic endothelial cells of the colon, and type I alveolar cells of the lung. Importantly, mPMab-1 is more sensitive than PMab-1. This conversion strategy from rat mAb to mouse mAb could be applicable to other mAbs.

  11. A Mouse Model of Chronic West Nile Virus Disease.

    Directory of Open Access Journals (Sweden)

    Jessica B Graham

    2016-11-01

    Full Text Available Infection with West Nile virus (WNV leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.

  12. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1

    Directory of Open Access Journals (Sweden)

    Dan He

    2018-05-01

    Full Text Available Disruption of endothelial monolayer integrity is the primary instigating factor for many cardiovascular diseases. High density lipoprotein (HDL oxidized by heme enzyme myeloperoxidase (MPO is dysfunctional in promoting endothelial repair. Apolipoprotein A-1 mimetic 4F with its pleiotropic benefits has been proven effective in many in vivo models. In this study we investigated whether 4F promotes endothelial repair and restores the impaired function of oxidized HDL (Cl/NO2-HDL in promoting re-endothelialization. We demonstrate that 4F and Cl/NO2-HDL act on scavenger receptor type I (SR-B1 using human aorta endothelial cells (HAEC and SR-B1 (-/- mouse aortic endothelial cells. Wound healing, transwell migration, lamellipodia formation and single cell migration assay experiments show that 4F treatment is associated with a recovery of endothelial cell migration and associated with significantly increased endothelial nitric oxide synthase (eNOS activity, Akt phosphorylation and SR-B1 expression. 4F increases NO generation and diminishes oxidative stress. In vivo, 4F can stimulate cell proliferation and re-endothelialization in the carotid artery after treatment with Cl/NO2-HDL in a carotid artery electric injury model but fails to do so in SR-B1(-/- mice. These findings demonstrate that 4F promotes endothelial cell migration and has a potential therapeutic benefit against early endothelial injury in cardiovascular diseases.

  13. Discovery of VU6005649, a CNS Penetrant mGlu7/8 Receptor PAM Derived from a Series of Pyrazolo[1,5-a]pyrimidines.

    Science.gov (United States)

    Abe, Masahito; Seto, Mabel; Gogliotti, Rocco G; Loch, Matthew T; Bollinger, Katrina A; Chang, Sichen; Engelberg, Eileen M; Luscombe, Vincent B; Harp, Joel M; Bubser, Michael; Engers, Darren W; Jones, Carrie K; Rodriguez, Alice L; Blobaum, Anna L; Conn, P Jeffrey; Niswender, Colleen M; Lindsley, Craig W

    2017-10-12

    Herein, we report the structure-activity relationships within a series of mGlu 7 PAMs based on a pyrazolo[1,5- a ]pyrimidine core with excellent CNS penetration ( K p s > 1 and K p,uu s > 1). Analogues in this series proved to display a range of Group III mGlu receptor selectivity, but VU6005649 emerged as the first dual mGlu 7/8 PAM, filling a void in the Group III mGlu receptor PAM toolbox and demonstrating in vivo efficacy in a mouse contextual fear conditioning model.

  14. Papillary endothelial hyperplasia in angiokeratoma.

    Science.gov (United States)

    Mehta, Anurag; Sayal, Satish Kumar; Raman, Deep Kumar; Sood, Aradhana

    2003-01-01

    Papillary endothelial hyperplasia (Masson's tumour) is a reactive proliferation of endothelium producing papillary structures with fibrovascular cores. Dilatation, stasis and accompanying inflammation have been incriminated as the inciting events, evident by the presence of this lesion in haemorrhoids, urethral caruncles and laryngeal polyps. We present here a case of papillary endothelial hyperplasia in angiokeratoma hitherto undescribed despite sharing common etiopathogenetic features of dilatation and stasis with other aforementioned lesions.

  15. Neurotransmitter synthesis from CNS glutamine for central control of breathing

    International Nuclear Information System (INIS)

    Hoop, B.; Systrom, D.; Chiang, C.H.; Shih, V.E.; Kazemi, H.

    1986-01-01

    The maximum rate at which CNS glutamine (GLN) derived from glutamate (GLU) can be sequestered for synthesis of neurotransmitter GLU and/or γ-aminobutyric acid (GABA) has been determined in pentobarbital-anesthetized dogs. A total of 57 animals were studied under normal, hypoxic (Pa/sub O2/ greater than or equal to 20 mmHg), or hypercapnic (Pa/sub CO2/ less than or equal to 71 mm Hg) conditions. Thirteen of these were bilaterally vagotomized and carotid body denervated and studied only under normoxic or hypoxic conditions. In 5 animals cerebrospinal fluid GLN transfer rate constant k was measured using 13 N-ammonia tracer. Measured cerebral cortical (CC) and medullary (MED) GLN concentrations c are found to vary with GLU metabolic rate r according to c-C/sub m/r/(r+R), where r, the product of k and corresponding tissue GLU concentration, is assumed equal to the maximum GLN metabolic rate via pathways other than for neurotransmitter synthesis. The constants C/sub m/ and R are the predicted maximum GLN concentration and its maximum rate of sequestration for neurotransmitter synthesis, respectively. For both CNS tissue types in all animals, C/sub m/ = 20.9 +- 7.4 (SD) mmoles/kg wet wt(mM) and R = 6.2 +- 2.3 mM/min. These values are consistent with results obtained in anesthetized rats

  16. Primary CNS lymphoma as a cause of Korsakoff syndrome.

    Science.gov (United States)

    Toth, Cory; Voll, Chris; Macaulay, Robert

    2002-01-01

    Korsakoff syndrome presents with memory dysfunction with retrograde amnesia, anterograde amnesia, limited insight into dysfunction, and confabulation. The most common etiology of Korsakoff syndrome is thiamine deficiency secondary to alcoholism. There are limited case reports of structural lesions causing Korsakoff syndrome. A 46-year-old male with a long history of alcoholism presented with a history of confusion, amnesia, and confabulation with no localizing features on neurological examination. The patient showed no clinical change with intravenous thiamine. Computed tomography of the brain revealed a heterogenous, enhancing mass lesion centered within the third ventricle, with other lesions found throughout cortical and subcortical regions. The patient was given dexamethasone i.v. without noticeable clinical improvement but with marked radiological improvement with mass reduction. Stereotactic biopsy revealed a diagnosis of primary central nervous system (CNS) lymphoma. Most patients presenting with Korsakoff syndrome have thiamine deficiency; however, mass lesions can produce an identical clinical picture. This is the first case report of a patient with primary CNS lymphoma presenting as Korsakoff syndrome.

  17. Glibenclamide for the Treatment of Acute CNS Injury

    Directory of Open Access Journals (Sweden)

    J. Marc Simard

    2013-10-01

    Full Text Available First introduced into clinical practice in 1969, glibenclamide (US adopted name, glyburide is known best for its use in the treatment of diabetes mellitus type 2, where it is used to promote the release of insulin by blocking pancreatic KATP [sulfonylurea receptor 1 (Sur1-Kir6.2] channels. During the last decade, glibenclamide has received renewed attention due to its pleiotropic protective effects in acute CNS injury. Acting via inhibition of the recently characterized Sur1-Trpm4 channel (formerly, the Sur1-regulated NCCa-ATP channel and, in some cases, via brain KATP channels, glibenclamide has been shown to be beneficial in several clinically relevant rodent models of ischemic and hemorrhagic stroke, traumatic brain injury, spinal cord injury, neonatal encephalopathy of prematurity, and metastatic brain tumor. Glibenclamide acts on microvessels to reduce edema formation and secondary hemorrhage, it inhibits necrotic cell death, it exerts potent anti-inflammatory effects and it promotes neurogenesis—all via inhibition of Sur1. Two clinical trials, one in TBI and one in stroke, currently are underway. These recent findings, which implicate Sur1 in a number of acute pathological conditions involving the CNS, present new opportunities to use glibenclamide, a well-known, safe pharmaceutical agent, for medical conditions that heretofore had few or no treatment options.

  18. Gene delivery of therapeutic polypeptides to brain capillary endothelial cells for protein secretion

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    . Results: mRNA expression of proteins with neuroprotective potential in RBEC were enabled. Their expression patters were compared with those of RBE4 and HeLa cells using RT-qPCR analyzes. The evidence for protein synthesis and secretion was obtained by detection of FLAG-tagged to the C-terminal of any......Background: The potential for treatment of chronic disorders affecting the CNS is complicated by the inability of several drugs to cross the blood-brain barrier (BBB). None-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints...... in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion into the brain. Aim: The aim of the present study was to investigate the possibility of transfection to primary rat brain capillary endothelial cells (RBEC) for recombinant protein synthesis...

  19. TRPM2 Channel Aggravates CNS Inflammation and Cognitive Impairment via Activation of Microglia in Chronic Cerebral Hypoperfusion.

    Science.gov (United States)

    Miyanohara, Jun; Kakae, Masashi; Nagayasu, Kazuki; Nakagawa, Takayuki; Mori, Yasuo; Arai, Ken; Shirakawa, Hisashi; Kaneko, Shuji

    2018-04-04

    Chronic cerebral hypoperfusion is a characteristic seen in widespread CNS diseases, including neurodegenerative and mental disorders, and is commonly accompanied by cognitive impairment. Recently, several studies demonstrated that chronic cerebral hypoperfusion can induce the excessive inflammatory responses that precede neuronal dysfunction; however, the precise mechanism of cognitive impairment due to chronic cerebral hypoperfusion remains unknown. Transient receptor potential melastatin 2 (TRPM2) is a Ca 2+ -permeable channel that is abundantly expressed in immune cells and is involved in aggravation of inflammatory responses. Therefore, we investigated the pathophysiological role of TRPM2 in a mouse chronic cerebral hypoperfusion model with bilateral common carotid artery stenosis (BCAS). When male mice were subjected to BCAS, cognitive dysfunction and white matter injury at day 28 were significantly improved in TRPM2 knock-out (TRPM2-KO) mice compared with wild-type (WT) mice, whereas hippocampal damage was not observed. There were no differences in blood-brain barrier breakdown and H 2 O 2 production between the two genotypes at 14 and 28 d after BCAS. Cytokine production was significantly suppressed in BCAS-operated TRPM2-KO mice compared with WT mice at day 28. In addition, the number of Iba1-positive cells gradually decreased from day 14. Moreover, daily treatment with minocycline significantly improved cognitive perturbation. Surgical techniques using bone marrow chimeric mice revealed that activated Iba1-positive cells in white matter could be brain-resident microglia, not peripheral macrophages. Together, these findings suggest that microglia contribute to the aggravation of cognitive impairment by chronic cerebral hypoperfusion, and that TRPM2 may be a potential target for chronic cerebral hypoperfusion-related disorders. SIGNIFICANCE STATEMENT Chronic cerebral hypoperfusion is manifested in a wide variety of CNS diseases, including neurodegenerative

  20. Endothelial Cells Control Pancreatic Cell Fate at Defined Stages through EGFL7 Signaling

    Directory of Open Access Journals (Sweden)

    Der-I Kao

    2015-02-01

    Full Text Available Although endothelial cells have been shown to affect mouse pancreatic development, their precise function in human development remains unclear. Using a coculture system containing human embryonic stem cell (hESC-derived progenitors and endothelial cells, we found that endothelial cells play a stage-dependent role in pancreatic development, in which they maintain pancreatic progenitor (PP self-renewal and impair further differentiation into hormone-expressing cells. The mechanistic studies suggest that the endothelial cells act through the secretion of EGFL7. Consistently, endothelial overexpression of EGFL7 in vivo using a transgenic mouse model resulted in an increase of PP proliferation rate and a decrease of differentiation toward endocrine cells. These studies not only identified the role of EGFL7 as the molecular handle involved in the crosstalk between endothelium and pancreatic epithelium, but also provide a paradigm for using hESC stepwise differentiation to dissect the stage-dependent roles of signals controlling organogenesis.

  1. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?

    Directory of Open Access Journals (Sweden)

    Simona F Spampinato

    Full Text Available The ability of the Blood Brain Barrier (BBB to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS activity and regulating leukocytes' access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS: fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.

  2. Nuclear innovation through collaboration. 35th Annual CNS conference and 39th CNS/CNA student conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The Canadian Nuclear Society (CNS) held its 35th Annual Conference in Saint John, New Brunswick, Canada on May 31 to June 3, 2015, combined with the 39th Annual CNS/CNA Student Conference. With the theme of the conference, 'Nuclear Innovation through Collaboration', more than 425 delegates, exhibitors and students were in attendance. The conference commenced with two strong plenary sessions on Utility Collaborations to Improve Lifetime Performance; and, Performance Improvement Programs: Goals and Experience. The second day consisted of the panel discussions on International Developments in Used Nuclear Fuel Repository Programs, and two plenary sessions on: Enterprise Risk Management; and, Vendor Role in a Continuously Improving Industry. The third day contained a number of interesting features, including plenary sessions on Waste Management and Decommissioning; Developing Technologies and Resources, and a panel discussion on the Transportation of Used Nuclear Fuel. All three days of the conference also contained parallel sessions with over 100 technical papers presented at the main and student sessions. The technical session titles were: Refurbishment and Life Extension; Thermalhydraulics; Nuclear Materials; WMD - Radiation Monitoring; Safety and Licensing; Communication; Safety and Licensing; Instrumentation and Control; Advanced Reactor Designs; WMD - Deep Geological Repository Packaging; Reactor Physics; Chemistry and Materials; Advanced Fuel Cycles; Waste Management and Decommissioning; and, Medical Physics and Radiation Biology.

  3. Nuclear innovation through collaboration. 35th Annual CNS conference and 39th CNS/CNA student conference

    International Nuclear Information System (INIS)

    2015-01-01

    The Canadian Nuclear Society (CNS) held its 35th Annual Conference in Saint John, New Brunswick, Canada on May 31 to June 3, 2015, combined with the 39th Annual CNS/CNA Student Conference. With the theme of the conference, 'Nuclear Innovation through Collaboration', more than 425 delegates, exhibitors and students were in attendance. The conference commenced with two strong plenary sessions on Utility Collaborations to Improve Lifetime Performance; and, Performance Improvement Programs: Goals and Experience. The second day consisted of the panel discussions on International Developments in Used Nuclear Fuel Repository Programs, and two plenary sessions on: Enterprise Risk Management; and, Vendor Role in a Continuously Improving Industry. The third day contained a number of interesting features, including plenary sessions on Waste Management and Decommissioning; Developing Technologies and Resources, and a panel discussion on the Transportation of Used Nuclear Fuel. All three days of the conference also contained parallel sessions with over 100 technical papers presented at the main and student sessions. The technical session titles were: Refurbishment and Life Extension; Thermalhydraulics; Nuclear Materials; WMD - Radiation Monitoring; Safety and Licensing; Communication; Safety and Licensing; Instrumentation and Control; Advanced Reactor Designs; WMD - Deep Geological Repository Packaging; Reactor Physics; Chemistry and Materials; Advanced Fuel Cycles; Waste Management and Decommissioning; and, Medical Physics and Radiation Biology.

  4. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Thorsten M Leucker

    Full Text Available Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4 is a required cofactor for nitric oxide (NO production by endothelial NO synthase (eNOS. Hyperglycemia (HG leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs were co-cultured with endothelial cells (ECs and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.

  5. Gene expression analysis of embryonic stem cells expressing VE-cadherin (CD144 during endothelial differentiation

    Directory of Open Access Journals (Sweden)

    Libermann Towia

    2008-05-01

    Full Text Available Abstract Background Endothelial differentiation occurs during normal vascular development in the developing embryo. This process is recapitulated in the adult when endothelial progenitor cells are generated in the bone marrow and can contribute to vascular repair or angiogenesis at sites of vascular injury or ischemia. The molecular mechanisms of endothelial differentiation remain incompletely understood. Novel approaches are needed to identify the factors that regulate endothelial differentiation. Methods Mouse embryonic stem (ES cells were used to further define the molecular mechanisms of endothelial differentiation. By flow cytometry a population of VEGF-R2 positive cells was identified as early as 2.5 days after differentiation of ES cells, and a subset of VEGF-R2+ cells, that were CD41 positive at 3.5 days. A separate population of VEGF-R2+ stem cells expressing the endothelial-specific marker CD144 (VE-cadherin was also identified at this same time point. Channels lined by VE-cadherin positive cells developed within the embryoid bodies (EBs formed by differentiating ES cells. VE-cadherin and CD41 expressing cells differentiate in close proximity to each other within the EBs, supporting the concept of a common origin for cells of hematopoietic and endothelial lineages. Results Microarray analysis of >45,000 transcripts was performed on RNA obtained from cells expressing VEGF-R2+, CD41+, and CD144+ and VEGF-R2-, CD41-, and CD144-. All microarray experiments were performed in duplicate using RNA obtained from independent experiments, for each subset of cells. Expression profiling confirmed the role of several genes involved in hematopoiesis, and identified several putative genes involved in endothelial differentiation. Conclusion The isolation of CD144+ cells during ES cell differentiation from embryoid bodies provides an excellent model system and method for identifying genes that are expressed during endothelial differentiation and that

  6. Differential expression of metallothioneins in the CNS of mice with experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C; Carrasco, J; Hidalgo, J

    2001-01-01

    Multiple sclerosis is an inflammatory, demyelinating disease of the CNS. Metallothioneins-I+II are antioxidant proteins induced in the CNS by immobilisation stress, trauma or degenerative diseases which have been postulated to play a neuroprotective role, while the CNS isoform metallothionein......-III has been related to Alzheimer's disease. We have analysed metallothioneins-I-III expression in the CNS of mice with experimental autoimmune encephalomyelitis. Moreover, we have examined the putative role of interferon-gamma, a pro-inflammatory cytokine, in the control of metallothioneins expression...

  7. Endothelial-regenerating cells: an expanding universe.

    Science.gov (United States)

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  8. Sustained apnea induces endothelial activation.

    Science.gov (United States)

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  9. Organic cation transporter 1 (OCT1 is involved in pentamidine transport at the human and mouse blood-brain barrier (BBB.

    Directory of Open Access Journals (Sweden)

    Gayathri N Sekhar

    Full Text Available Pentamidine is an effective trypanocidal drug used against stage 1 Human African Trypanosomiasis (HAT. At the blood-brain barrier (BBB, it accumulates inside the endothelial cells but has limited entry into the brain. This study examined transporters involved in pentamidine transport at the human and mouse BBB using hCMEC/D3 and bEnd.3 cell lines, respectively. Results revealed that both cell lines expressed the organic cation transporters (OCT1, OCT2 and OCT3, however, P-gp was only expressed in hCMEC/D3 cells. Polarised expression of OCT1 was also observed. Functional assays found that ATP depletion significantly increased [3H]pentamidine accumulation in hCMEC/D3 cells (***p<0.001 but not in bEnd.3 cells. Incubation with unlabelled pentamidine significantly decreased accumulation in hCMEC/D3 and bEnd.3 cells after 120 minutes (***p<0.001. Treating both cell lines with haloperidol and amantadine also decreased [3H]pentamidine accumulation significantly (***p<0.001 and **p<0.01 respectively. However, prazosin treatment decreased [3H]pentamidine accumulation only in hCMEC/D3 cells (*p<0.05, and not bEnd.3 cells. Furthermore, the presence of OCTN, MATE, PMAT, ENT or CNT inhibitors/substrates had no significant effect on the accumulation of [3H]pentamidine in both cell lines. From the data, we conclude that pentamidine interacts with multiple transporters, is taken into brain endothelial cells by OCT1 transporter and is extruded into the blood by ATP-dependent mechanisms. These interactions along with the predominant presence of OCT1 in the luminal membrane of the BBB contribute to the limited entry of pentamidine into the brain. This information is of key importance to the development of pentamidine based combination therapies which could be used to treat CNS stage HAT by improving CNS delivery, efficacy against trypanosomes and safety profile of pentamidine.

  10. STUDIES ON ENDOTHELIAL REACTIONS

    Science.gov (United States)

    Foot, Nathan Chandler

    1923-01-01

    operative. On the other hand, there may be an increase in the phagocytic activity of the endothelium of the sinusoids which might take up more bacteria under these changed conditions. Several investigators have claimed, recently, that there is an increased activity of the liver endothelium following splenectomy, their experiments being directed chiefly toward determining the fate of the erythrocytes. Pearce (1918) in reporting the effects of experimental splenectomy in dogs, states that there are definite compensatory changes in the lymph nodes, in the form of an increased proliferation of endothelial phagocytes, and that the stellate cells of the liver sinusoids often show a similar compensatory increase in number. In both cases the cells are, apparently, formed in situ rather than transported to the organs. He says: ‘Such findings suggest the development of a compensatory function on the part of the lymph-nodes and possibly the liver,’ and suggests that, in times of stress ‘the stellate cells of the liver thus assume, in part at least, the function of destroying red blood-corpuscles by phagocytosis.’ Incidentally, he presents an excellent discussion of the history and subject of splenectomy. Motohashi (1922) reports a great increase in the hemophagic power of the hepatic endothelium and an increase in the number of endothelial elements, after some 45 days following splenectomy in rabbits. Nishikawa and Takagi (1922) have observed similar phenomena with white rats, the Kupffer cells taking up erythrocytes in large numbers in splenectomized animals, whereas controls never show similar propensities on the part of these cells. It may be that different substances cause different reactions on the part of the hepatic endothelium. Contributory Experiment.—A side experiment was performed with five rabbits, two splenectomized and three controls, into which uniform doses of pneumococci were injected intravenously. They all died of septicemia after a few days. The results

  11. 6. CNS international conference on CANDU maintenance. Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    The 6th CNS International Conference on CANDU Maintenance took place in Toronto, Ontario on November 16-18, 2003. The theme for the conference was 'Maintenance for Life'. About 270 delegates attended the conference held by the Canadian Nuclear Society. The conference consisted of four parallel sessions, a pattern that continued throughout the conference. Papers were grouped under the following headings: Fuel Channels and End Fittings - Assessments; Fuel Channels and End Fittings - Inspections; Fuel Channels and End Fittings - Maintenance; Fuel Channels and End Fittings - Universal Delivery Machine; Water Upgrading; Performance and Plant Life Improvement; Steam Generator Life Management; Steam Generator Modifications; Steam Generators - Inspections; Steam Generators - Assessments; Maintenance Programs; Feeder Inspections; Feeder Assessment and Mitigation; Valve Maintenance; Instrumentation and Control; Inspection Technology; and Fuel Handling

  12. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    Science.gov (United States)

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  13. Brain abscess with an unexpected finding: Actinomyces meyeri CNS infection

    DEFF Research Database (Denmark)

    Eiset, Andreas Halgreen; Thomsen, Marianne Kragh; Wejse, Christian

    -up. The source of infection was most likely periodontitis with spread to the lungs from aspiration or oropharyngeal secretion into the respiratory tract, alternatively from haematogenous spread. Conclusions: We report of the successful treatment of a cerebral abscess caused by A. meyeri with narrow spectrum......Background: CNS infection caused by Actinomyces spp. is rare and the subtype Actinomyces meyeri even rarer. Risk factors include periodontal disease and alcohol overuse. We present a case report of a 54-year-old female with dental and lung foci. Case history: A female was hospitalised with tonic...... oedema. By MRI an abscess was suspected and the patient was transferred to the department of neurosurgery, where drainage was performed. Microscopy revealed gram-positive cocci and gram-negative rods and iv. treatment with ceftriaxone 4g x 1 and metronidazole 1g x 1 was commenced. Pus cultures showed...

  14. Gene therapy for CNS diseases – Krabbe disease

    Directory of Open Access Journals (Sweden)

    Mohammad A. Rafi

    2016-06-01

    Full Text Available This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases.

  15. Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence.

    Science.gov (United States)

    Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo

    2016-07-02

    Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration.

  16. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    Science.gov (United States)

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  17. Collaborative enhancement of antibody binding to distinct PECAM-1 epitopes modulates endothelial targeting.

    Directory of Open Access Journals (Sweden)

    Ann-Marie Chacko

    Full Text Available Antibodies to platelet endothelial cell adhesion molecule-1 (PECAM-1 facilitate targeted drug delivery to endothelial cells by "vascular immunotargeting." To define the targeting quantitatively, we investigated the endothelial binding of monoclonal antibodies (mAbs to extracellular epitopes of PECAM-1. Surprisingly, we have found in human and mouse cell culture models that the endothelial binding of PECAM-directed mAbs and scFv therapeutic fusion protein is increased by co-administration of a paired mAb directed to an adjacent, yet distinct PECAM-1 epitope. This results in significant enhancement of functional activity of a PECAM-1-targeted scFv-thrombomodulin fusion protein generating therapeutic activated Protein C. The "collaborative enhancement" of mAb binding is affirmed in vivo, as manifested by enhanced pulmonary accumulation of intravenously administered radiolabeled PECAM-1 mAb when co-injected with an unlabeled paired mAb in mice. This is the first demonstration of a positive modulatory effect of endothelial binding and vascular immunotargeting provided by the simultaneous binding a paired mAb to adjacent distinct epitopes. The "collaborative enhancement" phenomenon provides a novel paradigm for optimizing the endothelial-targeted delivery of therapeutic agents.

  18. Suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

    Directory of Open Access Journals (Sweden)

    Dhong Hyun Lee

    2017-05-01

    Full Text Available We have established two mouse models of central nervous system (CNS demyelination that differ from most other available models of multiple sclerosis (MS in that they represent a mixture of viral and immune triggers. In the first model, ocular infection of different strains of mice with a recombinant HSV-1 that expresses murine IL-2 constitutively (HSV-IL-2 causes CNS demyelination. In the second model, depletion of macrophages causes CNS demyelination in mice that are ocularly infected with wild-type (WT HSV-1. In the present study, we found that the demyelination in macrophage-intact mice infected with HSV-IL-2 was blocked by depletion of FoxP3-expressing cells, while concurrent depletion of macrophages restored demyelination. In contrast, demyelination was blocked in the macrophage-depleted mice infected with wild-type HSV-1 following depletion of FoxP3-expressing cells. In macrophage-depleted HSV-IL-2-infected mice, demyelination was associated with the activity of both CD4+ and CD8+ T cells, whereas in macrophage-depleted mice infected with WT HSV-1, demyelination was associated with CD4+ T cells. Macrophage depletion or infection with HSV-IL-2 caused an imbalance of T cells and TH1 responses as well as alterations in IL-12p35 and IL-12p40 but not other members of the IL-12 family or their receptors. Demyelination was blocked by adoptive transfer of macrophages that were infected with HSV-IL-12p70 or HSV-IL-12p40 but not by HSV-IL-12p35. These results indicate that suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

  19. The endothelial border to health

    DEFF Research Database (Denmark)

    Hansen, Nina Wærling; Hansen, Anker Jon; Sams, Anette

    2017-01-01

    player for maintenance of health and for development of a number of diseases. Endothelial dysfunction is known to be an important component of type 2 diabetes, but is also assumed to be involved in many other diseases, for example, rheumatoid arthritis, inflammatory bowel disease, asthma...... extracellular proteins form epitopes for potential specific antibody formation upon interactions with reducing sugars. This paper reviews the endothelial metabolism, biology, inflammatory processes, physical barrier functions, and summarizes evidence that although stochastic in nature, endothelial responses...... to hyperglycemia are major contributors to disease pathophysiology. We present molecular and mechanistic evidence that both biological and physical barriers, protein function, specific immunity, and inflammatory processes are compromised by hyperglycemic events and thus, hyperglycemic events alone should...

  20. Endothelial Targeting of Cowpea Mosaic Virus (CPMV) via Surface Vimentin

    Science.gov (United States)

    Koudelka, Kristopher J.; Destito, Giuseppe; Plummer, Emily M.; Trauger, Sunia A.; Siuzdak, Gary; Manchester, Marianne

    2009-01-01

    Cowpea mosaic virus (CPMV) is a plant comovirus in the picornavirus superfamily, and is used for a wide variety of biomedical and material science applications. Although its replication is restricted to plants, CPMV binds to and enters mammalian cells, including endothelial cells and particularly tumor neovascular endothelium in vivo. This natural capacity has lead to the use of CPMV as a sensor for intravital imaging of vascular development. Binding of CPMV to endothelial cells occurs via interaction with a 54 kD cell-surface protein, but this protein has not previously been identified. Here we identify the CPMV binding protein as a cell-surface form of the intermediate filament vimentin. The CPMV-vimentin interaction was established using proteomic screens and confirmed by direct interaction of CPMV with purified vimentin, as well as inhibition in a vimentin-knockout cell line. Vimentin and CPMV were also co-localized in vascular endothelium of mouse and rat in vivo. Together these studies indicate that surface vimentin mediates binding and may lead to internalization of CPMV in vivo, establishing surface vimentin as an important vascular endothelial ligand for nanoparticle targeting to tumors. These results also establish vimentin as a ligand for picornaviruses in both the plant and animal kingdoms of life. Since bacterial pathogens and several other classes of viruses also bind to surface vimentin, these studies suggest a common role for surface vimentin in pathogen transmission. PMID:19412526

  1. Endothelial targeting of cowpea mosaic virus (CPMV via surface vimentin.

    Directory of Open Access Journals (Sweden)

    Kristopher J Koudelka

    2009-05-01

    Full Text Available Cowpea mosaic virus (CPMV is a plant comovirus in the picornavirus superfamily, and is used for a wide variety of biomedical and material science applications. Although its replication is restricted to plants, CPMV binds to and enters mammalian cells, including endothelial cells and particularly tumor neovascular endothelium in vivo. This natural capacity has lead to the use of CPMV as a sensor for intravital imaging of vascular development. Binding of CPMV to endothelial cells occurs via interaction with a 54 kD cell-surface protein, but this protein has not previously been identified. Here we identify the CPMV binding protein as a cell-surface form of the intermediate filament vimentin. The CPMV-vimentin interaction was established using proteomic screens and confirmed by direct interaction of CPMV with purified vimentin, as well as inhibition in a vimentin-knockout cell line. Vimentin and CPMV were also co-localized in vascular endothelium of mouse and rat in vivo. Together these studies indicate that surface vimentin mediates binding and may lead to internalization of CPMV in vivo, establishing surface vimentin as an important vascular endothelial ligand for nanoparticle targeting to tumors. These results also establish vimentin as a ligand for picornaviruses in both the plant and animal kingdoms of life. Since bacterial pathogens and several other classes of viruses also bind to surface vimentin, these studies suggest a common role for surface vimentin in pathogen transmission.

  2. Widespread and highly persistent gene transfer to the CNS by retrovirus vector in utero: implication for gene therapy to Krabbe disease.

    Science.gov (United States)

    Shen, Jin-Song; Meng, Xing-Li; Yokoo, Takashi; Sakurai, Ken; Watabe, Kazuhiko; Ohashi, Toya; Eto, Yoshikatsu

    2005-05-01

    Brain-directed prenatal gene therapy may benefit some lysosomal storage diseases that affect the central nervous system (CNS) before birth. Our previous study showed that intrauterine introduction of recombinant adenoviruses into cerebral ventricles results in efficient gene transfer to the CNS in the mouse. However, transgene expression decreased with time due to the non-integrative property of adenoviral vectors. In this study, in order to obtain permanent gene transduction, we investigated the feasibility of retrovirus-mediated in utero gene transduction. Concentrated retrovirus encoding the LacZ gene was injected into the cerebral ventricles of the embryos of normal and twitcher mice (a murine model of Krabbe disease) at embryonic day 12. The distribution and maintenance of the transgene expression in the recipient brain were analyzed histochemically, biochemically and by the quantitative polymerase chain reaction method pre- and postnatally. Efficient and highly persistent gene transduction to the brain was achieved both in normal and the twitcher mouse. Transduced neurons, astrocytes and oligodendrocytes were distributed throughout the brain. The transduced LacZ gene, its transcript and protein expression in the brain were maintained for 14 months without decrement. In addition, gene transduction to multiple tissues other than the brain was also detected at low levels. This study suggests that brain-directed in utero gene transfer using retrovirus vector may be beneficial to the treatment of lysosomal storage diseases with severe brain damage early in life, such as Krabbe disease. Copyright (c) 2005 John Wiley & Sons, Ltd.

  3. Effectiveness of Prescription-Based CNS Stimulants on Hospitalization in Patients With Schizophrenia

    DEFF Research Database (Denmark)

    Rohde, Christopher; Polcwiartek, Christoffer; Asztalos, Marton

    2018-01-01

    were used to investigate the effectiveness of CNS stimulants in patients with schizophrenia between 1995 and 2014; a mirror-image model with 605 individuals, using paired t tests and Wilcoxon signed rank tests, and a follow-up study with 789 individuals, using a conditional risk-set model. RESULTS: CNS...

  4. CNS metastasis from malignant uveal melanoma: a clinical and histopathological characterisation

    DEFF Research Database (Denmark)

    Holfort, S K; Lindegaard, J; Isager, P

    2008-01-01

    was observed in two cases (14%). The amount of tumour infiltrating lymphocytes was pronounced in three cases (23%). CONCLUSION: The proportion of uveal melanoma patients having CNS metastasis was 0.7%. Eleven patients had multiple organ metastases, and the average time from the initial CNS symptoms to death...

  5. Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus.

    Science.gov (United States)

    Das, Trina; Jaffar-Bandjee, Marie Christine; Hoarau, Jean Jacques; Krejbich Trotot, Pascale; Denizot, Melanie; Lee-Pat-Yuen, Ghislaine; Sahoo, Renubala; Guiraud, Pascale; Ramful, Duksha; Robin, Stephanie; Alessandri, Jean Luc; Gauzere, Bernard Alex; Gasque, Philippe

    2010-06-01

    Chikungunya virus (CHIKV) is transmitted by Aedes mosquitoes and causes an acute symptomatic illness with fever, skin rash, and incapacitating arthralgia, which can evolve into chronic rheumatoid arthritis in elderly patients. This is a tropical disease originally described in central/east Africa in the 1960s, but its 2004 re-emergence in Africa and rapid spread in lands in and around the Indian Ocean (Reunion island, India, Malaysia) as well as Europe (Italy) led to almost 6 million cases worldwide. The risk of importation and spreading diseases with long-term sequelae is even greater today given the global distribution of the vectors (including in the Americas), increased tourism and the apparent capacity of CHIKV to produce high levels of viremia (10(9)-10(12) virus/ml of blood) and new mutants. CHIKV-associated neuropathology was described early in the 1960s, but it is the unprecedented incidence rate in Indian Ocean areas with efficient clinical facilities that allowed a better description of cases with severe encephalitis, meningoencephalitis, peripheral neuropathies and deaths among newborns (mother-to-child infection), infants and elderly patients. Death rates following CHIKV infection were estimated at 1:1000 cases in la Reunion's outbreak. These clinical observations have been corroborated by experimental infection in several mouse models, leading to CNS pathologies. We further describe in this review the capacity of CHIKV to infect neurons and glial cells, delineate the fundamental innate (intrinsic) immune defence mechanisms to protect from infection and argue about the possible mechanisms involved in the encephalopathy. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination.

    Science.gov (United States)

    Dutta, Dipankar J; Zameer, Andleeb; Mariani, John N; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P; Brown, Chester W; John, Gareth R

    2014-06-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb(-/-) embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3(-/-) mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. © 2014. Published by The Company of Biologists Ltd.

  7. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination

    Science.gov (United States)

    Dutta, Dipankar J.; Zameer, Andleeb; Mariani, John N.; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M.; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V.; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P.; Brown, Chester W.; John, Gareth R.

    2014-01-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb−/− embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3−/− mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. PMID:24917498

  8. Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI.

    NARCIS (Netherlands)

    Leenders, W.P.J.; Kusters, B.; Pikkemaat, J.A.; Wesseling, P.; Ruiter, D.J.; Heerschap, A.; Barentsz, J.O.; Waal, R.M.W. de

    2003-01-01

    We have previously shown that the dense vascular network in mouse brain allows for growth of human melanoma xenografts (Mel57) by co-option of preexisting vessels. Overexpression of recombinant vascular endothelial growth factor-A (VEGF-A) by such xenografts induced functional and morphologic

  9. HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix

    Science.gov (United States)

    Paveliev, Mikhail; Fenrich, Keith K.; Kislin, Mikhail; Kuja-Panula, Juha; Kulesskiy, Evgeny; Varjosalo, Markku; Kajander, Tommi; Mugantseva, Ekaterina; Ahonen-Bishopp, Anni; Khiroug, Leonard; Kulesskaya, Natalia; Rougon, Geneviève; Rauvala, Heikki

    2016-01-01

    Chondroitin sulfate (CS) glycosaminoglycans inhibit regeneration in the adult central nervous system (CNS). We report here that HB-GAM (heparin-binding growth-associated molecule; also known as pleiotrophin), a CS-binding protein expressed at high levels in the developing CNS, reverses the role of the CS chains in neurite growth of CNS neurons in vitro from inhibition to activation. The CS-bound HB-GAM promotes neurite growth through binding to the cell surface proteoglycan glypican-2; furthermore, HB-GAM abrogates the CS ligand binding to the inhibitory receptor PTPσ (protein tyrosine phosphatase sigma). Our in vivo studies using two-photon imaging of CNS injuries support the in vitro studies and show that HB-GAM increases dendrite regeneration in the adult cerebral cortex and axonal regeneration in the adult spinal cord. Our findings may enable the development of novel therapies for CNS injuries. PMID:27671118

  10. Therapy of CNS leukemia with intraventricular chemotherapy and low-dose neuraxis radiotherapy

    International Nuclear Information System (INIS)

    Steinherz, P.; Jereb, B.; Galicich, J.

    1985-01-01

    Successful treatment of CNS leukemic relapse has been frustrated by frequent local recurrence and eventual marrow relapse. The authors describe the treatment of meningeal leukemia in 39 children with intrathecal remission induction followed by the placement of an Ommaya reservoir to facilitate the administration and distribution of chemotherapeutic agents into the CSF. Six hundred or 900 rad of craniospinal radiation and maintenance intraventricular and intrathecal chemotherapy was then administered. Systemic reinduction therapy was added in the later cases. Sixteen children (41%) experienced no further events, with 17+ months to 13+ years (median, 25 months) follow-up . Eleven patients (28%) had CNS recurrence, nine (23%) bone marrow (BM) relapse, and two (5%) testicular relapse as the next adverse event. The course of patients with first isolated CNS relapse differed from that of the others. Eleven (69%) of 16 patients treated for first isolated CNS relapse are alive and 9 are event free, while only 35% of patients whose CNS relapse occurred simultaneously or after recurrent disease at other sites are alive (P = .04). Seven of 23 in the later group are event free. The difference is due to the increased incidence of BM relapse in the later group (30% v 6%; P = .04). For patients with first isolated CNS relapse, the life-table median CNS remission duration is 42 months. The projected CNS relapse-free survival and event-free survival 8 to 10 years after CNS relapse are 40% and 32%, respectively. Headache, nausea, and emesis of short duration were frequent during therapy. In three patients, the reservoir had to be removed for infection. No patient suffered neurologic deficit related to the reservoir. The therapy described can reduce the CNS relapse rate with manageable toxicity

  11. TIME COURSE MODIFICATIONS INDUCED BY PERINATAL ASPHYXIA IN RAT CNS

    Directory of Open Access Journals (Sweden)

    Francisco Capani

    2015-04-01

    of estradiol treatment we were able to revert some of these alterations using PI3K/Akt/GSK3. Overall these results demonstrate that synaptic dysfunction following PA might be produced by early changes in the actin organization and long-term misfolding and aggregation of proteins in the PSDs. Therefore, we hypothesize that the synaptic and neuronal cytoskeleton changes induced by PA in the rat CNS could lead to the cellular dysfunction and death in adult animals. Estradiol appears as a new therapeutic tool to slacken the damage induces by perinatal asphyxia on the CNS.

  12. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice

    DEFF Research Database (Denmark)

    Gustafsson, E; Brakebusch, C; Hietanen, K

    2001-01-01

    Tissue-specific gene inactivation using the Cre-loxP system has become an important tool to unravel functions of genes when the conventional null mutation is lethal. We report here the generation of a transgenic mouse line expressing Cre recombinase in endothelial cells. In order to avoid...... the production and screening of multiple transgenic lines we used embryonic stem cell and embryoid body technology to identify recombinant embryonic stem cell clones with high, endothelial-specific Cre activity. One embryonic stem cell clone that showed high Cre activity in endothelial cells was used to generate...... germline chimeras. The in vivo efficiency and specificity of the transgenic Cre was analysed by intercrossing the tie-1-Cre line with the ROSA26R reporter mice. At initial stages of vascular formation (E8-9), LacZ staining was detected in almost all cells of the forming vasculature. Between E10 and birth...

  13. Msx1 is expressed in retina endothelial cells at artery branching sites

    OpenAIRE

    Miguel Lopes; Olivier Goupille; Cécile Saint Cloment; Benoît Robert

    2012-01-01

    Summary Msx1 and Msx2 encode homeodomain transcription factors that play a role in several embryonic developmental processes. Previously, we have shown that in the adult mouse, Msx1lacZ is expressed in vascular smooth muscle cells (VSMCs) and pericytes, and that Msx2lacZ is also expressed in VSMCs as well as in a few endothelial cells (ECs). The mouse retina and choroid are two highly vascularized tissues. Vessel alterations in the retina are associated with several human diseases and the ret...

  14. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  15. Growth of Malignant Non-CNS Tumors Alters Brain Metabolome

    Science.gov (United States)

    Kovalchuk, Anna; Nersisyan, Lilit; Mandal, Rupasri; Wishart, David; Mancini, Maria; Sidransky, David; Kolb, Bryan; Kovalchuk, Olga

    2018-01-01

    Cancer survivors experience numerous treatment side effects that negatively affect their quality of life. Cognitive side effects are especially insidious, as they affect memory, cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising even before cancer diagnosis, and we refer to them as “tumor brain.” Metabolomics is a new area of research that focuses on metabolome profiles and provides important mechanistic insights into various human diseases, including cancer, neurodegenerative diseases, and aging. Many neurological diseases and conditions affect metabolic processes in the brain. However, the tumor brain metabolome has never been analyzed. In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain metabolome of TumorGraft™ mice. We found that the growth of malignant non-CNS tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and amino acid and sphingolipid metabolism. The observed metabolic changes were similar to those reported for neurodegenerative diseases and brain aging, and may have potential mechanistic value for future analysis of the tumor brain phenomenon. PMID:29515623

  16. Role of galectin-3 in prion infections of the CNS

    International Nuclear Information System (INIS)

    Mok, Simon W.F.; Riemer, Constanze; Madela, Kazimierz; Hsu, Daniel K.; Liu, Fu-Tong; Gueltner, Sandra; Heise, Ines; Baier, Michael

    2007-01-01

    Galectin-3 is a multi-functional protein and participates in mediating inflammatory reactions. The pronounced overexpression of galectin-3 in prion-infected brain tissue prompted us to study the role of this protein in a murine prion model. Immunofluorescence double-labelling identified microglia as the major cell type expressing galectin-3. Ablation of galectin-3 did not affect PrP Sc -deposition and development of gliosis. However, galectin-3 -/- -mice showed prolonged survival times upon intracerebral and peripheral scrapie infections. Moreover, protein levels of the lysosomal activation marker LAMP-2 were markedly reduced in prion-infected galectin-3 -/- -mice suggesting a role of galectin-3 in regulation of lysosomal functions. Lower mRNA levels of Beclin-1 and Atg5 in prion-infected wild-type and galectin-3 -/- -mice indicated an impairment of autophagy although autophagosome formation was unchanged. The results point towards a detrimental role of galectin-3 in prion infections of the CNS and suggest that endo-/lysosomal dysfunction in combination with reduced autophagy may contribute to disease development

  17. Fluids and barriers of the CNS: a historical viewpoint

    Directory of Open Access Journals (Sweden)

    Liddelow Shane A

    2011-01-01

    Full Text Available Abstract Tracing the exact origins of modern science can be a difficult but rewarding pursuit. It is possible for the astute reader to follow the background of any subject through the many important surviving texts from the classical and ancient world. While empirical investigations have been described by many since the time of Aristotle and scientific methods have been employed since the Middle Ages, the beginnings of modern science are generally accepted to have originated during the 'scientific revolution' of the 16th and 17th centuries in Europe. The scientific method is so fundamental to modern science that some philosophers consider earlier investigations as 'pre-science'. Notwithstanding this, the insight that can be gained from the study of the beginnings of a subject can prove important in the understanding of work more recently completed. As this journal undergoes an expansion in focus and nomenclature from cerebrospinal fluid (CSF into all barriers of the central nervous system (CNS, this review traces the history of both the blood-CSF and blood-brain barriers from as early as it was possible to find references, to the time when modern concepts were established at the beginning of the 20th century.

  18. CNS fungal meningitis to the "Top of the basilar"

    Institute of Scientific and Technical Information of China (English)

    Logan CS; Kirschner RC; Simonds GR

    2013-01-01

    Central nervous system(CNS) infections are a rare complication of epidural steroid injections and without strong clinical suspicion, fungal organisms may be overlooked among the long differential of causes of meningitis.Rare sequela of fungal meningitis is the development of stroke.To our knowledge, we present the first case of post epidural steroid injection(ESI) fungal meningitis leading toa basilar artery stroke, otherwise known as“top of the basilar” syndrome.We present a49-year-old female with a history ofESIs who presented to the emergency department with headache, neck stiffness, and abdominal pain.She was discharged after her labs and symptoms were deemed inconsistent with meningitis.She was eventually admitted and twelve days after her originalED visit, she was diagnosed with meningitis and started on anti-fungal treatment.She was discharged88 days later but was readmitted due to left sided weakness and mental status changes.She quickly lost motor and bulbar functions.AnMRA showed diminished distal flow through the basilar artery, suggesting near complete occlusion.Although appropriate long term anti-fungal treatment was started, the patient still succumbed to a rare vascular event.Physicians who are treating patients forESI meningitis should be aware of the potential for vasculitic and encephalitic complications.

  19. Electrophysiological CNS-processes related to associative learning in humans.

    Science.gov (United States)

    Christoffersen, Gert R J; Schachtman, Todd R

    2016-01-01

    The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Stress preconditioning of spreading depression in the locust CNS.

    Directory of Open Access Journals (Sweden)

    Corinne I Rodgers

    Full Text Available Cortical spreading depression (CSD is closely associated with important pathologies including stroke, seizures and migraine. The mechanisms underlying SD in its various forms are still incompletely understood. Here we describe SD-like events in an invertebrate model, the ventilatory central pattern generator (CPG of locusts. Using K(+ -sensitive microelectrodes, we measured extracellular K(+ concentration ([K(+](o in the metathoracic neuropile of the CPG while monitoring CPG output electromyographically from muscle 161 in the second abdominal segment to investigate the role K(+ in failure of neural circuit operation induced by various stressors. Failure of ventilation in response to different stressors (hyperthermia, anoxia, ATP depletion, Na(+/K(+ ATPase impairment, K(+ injection was associated with a disturbance of CNS ion homeostasis that shares the characteristics of CSD and SD-like events in vertebrates. Hyperthermic failure was preconditioned by prior heat shock (3 h, 45 degrees C and induced-thermotolerance was associated with an increase in the rate of clearance of extracellular K(+ that was not linked to changes in ATP levels or total Na(+/K(+ ATPase activity. Our findings suggest that SD-like events in locusts are adaptive to terminate neural network operation and conserve energy during stress and that they can be preconditioned by experience. We propose that they share mechanisms with CSD in mammals suggesting a common evolutionary origin.

  1. Human abuse liability evaluation of CNS stimulant drugs.

    Science.gov (United States)

    Romach, Myroslava K; Schoedel, Kerri A; Sellers, Edward M

    2014-12-01

    Psychoactive drugs that increase alertness, attention and concentration and energy, while also elevating mood, heart rate and blood pressure are referred to as stimulants. Despite some overlapping similarities, stimulants cannot be easily categorized by their chemical structure, mechanism of action, receptor binding profile, effects on monoamine uptake, behavioral pharmacology (e.g., effects on locomotion, temperature, and blood pressure), therapeutic indication or efficacy. Because of their abuse liability, a pre-market assessment of abuse potential is required for drugs that show stimulant properties; this review article focuses on the clinical aspects of this evaluation. This includes clinical trial adverse events, evidence of diversion or tampering, overdoses and the results of a human abuse potential study. While there are different types of human experimental studies that can be employed to evaluate stimulant abuse potential (e.g., drug discrimination, self-administration), only the human abuse potential study and clinical trial adverse event data are required for drug approval. The principal advances that have improved human abuse potential studies include using study enrichment strategies (pharmacologic qualification), larger sample sizes, better selection of endpoints and measurement strategies and more carefully considered interpretation of data. Because of the methodological advances, comparisons of newer studies with historical data is problematic and may contribute to a biased regulatory framework for the evaluation of newer stimulant-like drugs, such as A2 antagonists. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Endothelial dysfunction after non-cardiac surgery

    DEFF Research Database (Denmark)

    Søndergaard, E S; Fonnes, S; Gögenur, I

    2015-01-01

    was to systematically review the literature to evaluate the association between non-cardiac surgery and non-invasive markers of endothelial function. METHODS: A systematic search was conducted in MEDLINE, EMBASE and Cochrane Library Database according to the PRISMA guidelines. Endothelial dysfunction was described only...... transplantation and vascular surgery respectively) had an improvement in endothelial dysfunction 1 month after surgery. CONCLUSION: Endothelial function changes in relation to surgery. Assessment of endothelial function by non-invasive measures has the potential to guide clinicians in the prevention or treatment...

  3. Methods Development for the Isolation and Culture of Primary Corneal Endothelial Cells

    Science.gov (United States)

    2017-02-01

    a cell population particularly suitable for low serum propagation, provided that appropriate growth factors are available. A low serum medium...of MGK. 15. SUBJECT TERMS Cornea, chemical warfare agent, corneal endothelial cell, endothelium, growth , isolation, mouse, rabbit, porcine, in...with corneal SM exposure.2 A primary requirement in achieving this goal is to develop methods that enable the isolation of a pure CEC population and

  4. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  5. The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects

    OpenAIRE

    de Lange, Elizabeth CM

    2013-01-01

    Despite enormous advances in CNS research, CNS disorders remain the world?s leading cause of disability. This accounts for more hospitalizations and prolonged care than almost all other diseases combined, and indicates a high unmet need for good CNS drugs and drug therapies. Following dosing, not only the chemical properties of the drug and blood?brain barrier (BBB) transport, but also many other processes will ultimately determine brain target site kinetics and consequently the CNS effects. ...

  6. When the Tail Can't Wag the Dog: The Implications of CNS-Intrinsic Initiation of Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Deirdre S Davis

    2009-04-01

    Full Text Available The CNS (central nervous system is unquestionably the central organ that regulates directly or indirectly all physiological systems in the mammalian body. Yet, when considering the defence of the CNS from pathogens, the CNS has often been considered passive and subservient to the pro-inflammatory responses of the immune system. In this view, neuroinflammatory disorders are examples of when the tail (the immune system wags the dog (the CNS to the detriment of an individual's function and survival.

  7. Expression of Toll-Like Receptor 4 in Glomerular Endothelial Cells under Diabetic Conditions

    International Nuclear Information System (INIS)

    Takata, Shunsuke; Sawa, Yoshihiko; Uchiyama, Takanobu; Ishikawa, Hiroyuki

    2013-01-01

    Diabetic conditions promote glomerulosclerosis by mesangial cells but the mechanisms are not fully elucidated. The present study evaluated the expression of toll-like receptor 4 in glomerular endothelial cells in the streptozotocin (STZ)-induced type 1 diabetic mouse (ICR-STZ) and the type 2 diabetic KK/TaJcl mouse which were fed a high fat diet feed (KK/Ta-HF). In the ICR-STZ and KK/Ta-HF almost glomeruli were immunostained with anti-TLR4 but there was no glomerulus immunostained by ani-TLR4 in the control ICR and KK/Ta. Laser-scanning confocal microscopy showed that the TLR4-positive region did not coincide with the podoplanin-positive region but coincide with the PECAM-1- and VE-cadherin-positive regions in the glomeruli of the ICR-STZ and KK/Ta-HF. The in situ hybridization showed that almost signals for TLR4 mRNA were present in the glomerulus of the ICR-STZ and KK/Ta-HF to a stronger extent than in the control ICR and KK/Ta. These suggest that glomerular endothelial cells usually express the TLR4 gene and hyperglycemia in the diabetic condition induces the TLR4 protein expression in the glomerular capillary endothelial cells. Cytokine productions through the TLR signaling pathway in glomerular endothelial cells may allow mesangial cells to produce extracellular matrix proteins in the diabetic milieu

  8. The retina as a window to the brain-from eye research to CNS disorders.

    Science.gov (United States)

    London, Anat; Benhar, Inbal; Schwartz, Michal

    2013-01-01

    Philosophers defined the eye as a window to the soul long before scientists addressed this cliché to determine its scientific basis and clinical relevance. Anatomically and developmentally, the retina is known as an extension of the CNS; it consists of retinal ganglion cells, the axons of which form the optic nerve, whose fibres are, in effect, CNS axons. The eye has unique physical structures and a local array of surface molecules and cytokines, and is host to specialized immune responses similar to those in the brain and spinal cord. Several well-defined neurodegenerative conditions that affect the brain and spinal cord have manifestations in the eye, and ocular symptoms often precede conventional diagnosis of such CNS disorders. Furthermore, various eye-specific pathologies share characteristics of other CNS pathologies. In this Review, we summarize data that support examination of the eye as a noninvasive approach to the diagnosis of select CNS diseases, and the use of the eye as a valuable model to study the CNS. Translation of eye research to CNS disease, and deciphering the role of immune cells in these two systems, could improve our understanding and, potentially, the treatment of neurodegenerative disorders.

  9. Observations at the CNS-PNS border of ventral roots connected to a neuroma

    Directory of Open Access Journals (Sweden)

    Sten Remahl

    2010-10-01

    Full Text Available Previous studies have shown that numerous sprouts originating from a neuroma, after nerve injury in neonatal animals, can invade spinal nerve roots. In this study the border between the central and peripheral nervous system (CNS-PNS border of ventral roots in kittens was examined with both light and electron microscopy after early postnatal sciatic nerve resection. A transient ingrowth of substance P positive axons was observed into the CNS, but no spouts remained 6 weeks after the injury. Using serial sections and electron microscopy it was possible to identify small bundles of unmyelinated axons that penetrated from the root fascicles for a short distance into the CNS. These axons ended blindly, sometimes with a growth cone-like terminal swelling filled with vesicles. The axon bundles were accompanied by p75 positive cells in both the root fascicles and the pia mater, but not in the CNS. It may thus be suggested that neurotrophin presenting p75 positive cells could facilitate axonal growth into the pia mater and that the lack of such cells in the CNS compartment might contribute to the failure of growth into the CNS. A maldevelopment of myelin sheaths at the CNS-PNS border of motor axons was observed and it seems possible that this could have consequences for the propagation of action potential across this region after neonatal nerve injury.

  10. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system

    Directory of Open Access Journals (Sweden)

    Marta Chaverra

    2017-05-01

    Full Text Available Hereditary sensory and autonomic neuropathies (HSANs are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS dysfunction. HSAN type III, known as familial dysautonomia (FD, results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1 for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4 are associated with central nervous system (CNS disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on

  11. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability*

    Science.gov (United States)

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André

    2012-01-01

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  12. Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and Central Nervous System Homeostasis.

    Science.gov (United States)

    Tran, Khiem A; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F; Göthert, Joachim R; Malik, Asrar B; Valyi-Nagy, Tibor; Zhao, You-Yang

    2016-01-12

    The blood-brain barrier (BBB) formed by brain endothelial cells interconnected by tight junctions is essential for the homeostasis of the central nervous system. Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Using a mouse model with tamoxifen-inducible endothelial cell-restricted disruption of ctnnb1 (iCKO), we show here that endothelial β-catenin signaling is essential for maintaining BBB integrity and central nervous system homeostasis in adult mice. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and central nervous system inflammation, and all had postictal death. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of the specific tight junction proteins claudin-1 and -3 in adult brain endothelial cells. The clinical relevance of the data is indicated by the observation of decreased expression of claudin-1 and nuclear β-catenin in brain endothelial cells of hemorrhagic lesions of hemorrhagic stroke patients. These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity, and central nervous system inflammation. © 2015 American Heart Association, Inc.

  13. An EMMPRIN–γ-catenin–Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions

    Science.gov (United States)

    Moreno, Vanessa; Gonzalo, Pilar; Gómez-Escudero, Jesús; Pollán, Ángela; Acín-Pérez, Rebeca; Breckenridge, Mark; Yáñez-Mó, María; Barreiro, Olga; Orsenigo, Fabrizio; Kadomatsu, Kenji; Chen, Christopher S.; Enríquez, José A.; Dejana, Elisabetta; Sánchez-Madrid, Francisco; Arroyo, Alicia G.

    2014-01-01

    ABSTRACT Cell–cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly. PMID:24994937

  14. An EMMPRIN-γ-catenin-Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions.

    Science.gov (United States)

    Moreno, Vanessa; Gonzalo, Pilar; Gómez-Escudero, Jesús; Pollán, Ángela; Acín-Pérez, Rebeca; Breckenridge, Mark; Yáñez-Mó, María; Barreiro, Olga; Orsenigo, Fabrizio; Kadomatsu, Kenji; Chen, Christopher S; Enríquez, José A; Dejana, Elisabetta; Sánchez-Madrid, Francisco; Arroyo, Alicia G

    2014-09-01

    Cell-cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly. © 2014. Published by The Company of Biologists Ltd.

  15. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    Full Text Available Abstract The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the

  16. Technical note: a pilot study using a mouse mastitis model to study differences between bovine associated coagulase-negative staphylococci.

    Science.gov (United States)

    Breyne, K; De Vliegher, S; De Visscher, A; Piepers, S; Meyer, E

    2015-02-01

    Coagulase-negative staphylococci (CNS) are a group of bacteria classified as either minor mastitis pathogens or commensal microbiota. Recent research suggests species- and even strain-related epidemiological and genetic differences within the large CNS group. The current pilot study investigated in 2 experiments whether a mouse mastitis model validated for bovine Staphylococcus aureus can be used to explore further differences between CNS species and strains. In a first dose titration experiment, a low inoculum dose of S. aureus Newbould 305 (positive control) was compared with increasing inoculum doses of a Staphylococcus chromogenes strain originating from a chronic bovine intramammary infection to a sham-inoculated mammary glands (negative control). In contrast to the high bacterial growth following inoculation with S. aureus, S. chromogenes was retrieved in very low levels at 24 h postinduction (p.i.). In a second experiment, the inflammation inflicted by 3 CNS strains was studied in mice. The host immune response induced by the S. chromogenes intramammary strain was compared with the one induced by a Staphylococcus fleurettii strain originating from cow bedding sawdust and by a S. chromogenes strain originating from a teat apex of a heifer. As expected, at 28 and 48 h p.i., low bacterial growth and local neutrophil influx in the mammary gland were induced by all CNS strains. As hypothesized, bacterial growth p.i. was the lowest for S. fleurettii compared with that induced by the 2 S. chromogenes strains, and the overall immune response established by the 3 CNS strains was less pronounced compared with the one induced by S. aureus. Proinflammatory cytokine profiling revealed that S. aureus locally induced IL-6 and IL-1β but not TNF-α, whereas, overall, CNS-inoculated glands lacked a strong cytokine host response but also induced IL-1β locally. Compared with both other CNS strains, S. chromogenes from the teat apex inflicted a more variable IL-1β response

  17. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jiajun; Yang, Ming [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Kosterin, Paul [Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Salzberg, Brian M. [Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Milovanova, Tatyana N.; Bhopale, Veena M. [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Thom, Stephen R., E-mail: sthom@smail.umaryland.edu [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2013-12-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  18. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhao [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States); Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC

  19. Challenges in pediatric endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2014-01-01

    Full Text Available We performed endothelial keratoplasty (EK in three eyes of two siblings (2.5 years, male and 3.5 years, female with congenital hereditary endothelial dystrophy (CHED and report the intraoperative and postoperative difficulties. Repeated iris prolapse, apprehension of crystalline lens touch due to positive vitreous pressure, and need for frequent air injections to attach the graft were intraoperative challenges in all three eyes. These were addressed by use of Sheet′s glide instead of Busin′s glide during graft insertion and suturing of main and side ports before air injection. One eye had graft dislocation on second postoperative day due to eye rubbing by the child. Graft was repositioned with air and a venting incision was created. Postoperative examination required repeated general anesthesia. Corneal edema resolved completely in all three eyes. Present case series highlights the possible intraoperative and postoperative challenges and their solutions in pediatric EK for CHED.

  20. Polyphenols in preventing endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Sylwia Biegańska-Hensoldt

    2017-03-01

    Full Text Available One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions.Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS and increased production of nitric oxide (NO and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules – sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

  1. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

    Science.gov (United States)

    Bedarida, Tatiana; Domingues, Alison; Baron, Stephanie; Ferreira, Chrystophe; Vibert, Francoise; Cottart, Charles-Henry; Paul, Jean-Louis; Escriou, Virginie; Bigey, Pascal; Gaussem, Pascale; Leguillier, Teddy; Nivet-Antoine, Valerie

    2018-06-01

    Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIP fl/fl cdh5 cre ). Control (TXNIP fl/fl ) and TXNIP fl/fl cdh5 cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIP fl/fl and TXNIP fl/fl cdh5 cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIP fl/fl cdh5 cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1β. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

  2. CLIPPERS among patients diagnosed with non-specific CNS neuroinflammatory diseases

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, B M; Lindelof, M; Illes, Zsolt

    2014-01-01

    Chronic Lymphocytic Inflammation with Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS) is an inflammatory CNS disorder characterized by 1) subacute onset of cerebellar and brainstem symptoms, 2) peripontine contrast-enhancing perivascular lesions with a "salt-and-pepper" appeara...

  3. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    NARCIS (Netherlands)

    Sturm, Dominik; Orr, Brent A.; Toprak, Umut H.; Hovestadt, Volker; Jones, David T. W.; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A.; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J.; Balasubramanian, Gnanaprakash; Worst, Barbara C.; Pajtler, Kristian W.; Brabetz, Sebastian; Johann, Pascal D.; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M.; Remke, Marc; Phillips, Joanna J.; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C.; Schniederjan, Matthew J.; Santi, Mariarita; Buccoliero, Anna M.; Dahiya, Sonika; Kramm, Christof M.; von Bueren, André O.; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C.; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V. Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U.; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S.; Taylor, Michael D.; Jones, Chris; Jabado, Nada; Karajannis, Matthias A.; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M.; Ellison, David W.; Korshunov, Andrey; Kool, Marcel

    2016-01-01

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally

  4. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    NARCIS (Netherlands)

    Sturm, Dominik; Orr, Brent A.; Toprak, Umut H.; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A.; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J.; Balasubramanian, Gnanaprakash; Worst, Barbara C.; Pajtler, Kristian W.; Brabetz, Sebastian; Johann, Pascal D.; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M.; Remke, Marc; Phillips, Joanna J.; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C.; Schniederjan, Matthew J.; Santi, Mariarita; Buccoliero, Anna M.; Dahiya, Sonika; Kramm, Christof M.; Von Bueren, André O.; Von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C.; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V. Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U.; Shalaby, Tarek; Grotzer, Michael; Van Meter, Timothy; Monoranu, Camelia Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; Van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S.; Taylor, Michael D.; Jones, Chris; Jabado, Nada; Karajannis, Matthias A.; Eils, Roland; Schlesner, Matthias; Lichter, Peter; Von Deimling, Andreas; Pfister, Stefan M.; Ellison, David W.; Korshunov, Andrey; Kool, Marcel

    2016-01-01

    Summary Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of

  5. Netrin-1 Confines Rhombic Lip-Derived Neurons to the CNS

    Directory of Open Access Journals (Sweden)

    Andrea R. Yung

    2018-02-01

    Full Text Available During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR, and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.

  6. Micropituitarism and cortical dysplasia: an unknown association of two uncommon CNS disorders

    International Nuclear Information System (INIS)

    Blinder, G.; Corat-Simon, J.; Hershkovitz, E.

    2001-01-01

    We describe a case of two known pathologies of the CNS in an unusual association: the concomitant presentation of the micropituitarism and cortical dysplasia. To our knowledge, this association is unreported to date. (orig.)

  7. Micropituitarism and cortical dysplasia: an unknown association of two uncommon CNS disorders

    Energy Technology Data Exchange (ETDEWEB)

    Blinder, G. [MAR Bikur Cholim Hospital Jerusalem (MOR-MAR), Jerusalem (Israel); Corat-Simon, J. [Dept. of Radiology, Assaf Harofeh Medical Center, Zrifin, Beer Jakov (Israel); Hershkovitz, E. [Dept. of Pediatrics, Soroka Medical Center, Beer Sheba (Israel)

    2001-06-01

    We describe a case of two known pathologies of the CNS in an unusual association: the concomitant presentation of the micropituitarism and cortical dysplasia. To our knowledge, this association is unreported to date. (orig.)

  8. Centralized mouse repositories.

    Science.gov (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  9. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  10. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.

    Science.gov (United States)

    Nash, Kevin R; Gordon, Marcia N

    2016-01-01

    Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.

  11. Resveratrol: A Multifunctional Compound Improving Endothelial Function

    OpenAIRE

    Li, Huige; F?rstermann, Ulrich

    2009-01-01

    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression a...

  12. Toxicity, biodistribution and radioprotective capacity of l-homocysteine thiolactone in CNS tissues and tumors in rodents: comparison with prior results with phosphorothioates

    International Nuclear Information System (INIS)

    Spence, Alexander M.; Rasey, Janet S.; Dwyer-Hansen, Lori; Grunbaum, Zdenka; Livesey, John; Chin, Lay; Nelson, Norma; Stein, Donna; Krohn, Kenneth A.; Ali-Osman, Francis

    1995-01-01

    l-Homocysteine thiolactone (L-HCTL) was evaluated for its potential as an intravenously-administered central nervous system (CNS) radioprotector in C3H mice and F344 rats. Toxicity assessments in the mouse yielded a LD 50 of 297 mg/kg and in the rat 389 mg/kg. Biodistribution studies in tumor-bearing mice showed that brain specimens contained more label at 10 min than the tumors but less at 30 or 60 min. Brain uptake relative to the tumors, the brain/tumor ratio, ranged between 0.5 and 3.3. The cervical spinal cord of non-tumor-bearing rats was irradiated with 32 Gy 137 Cs with or without prior treatment with l-HCTL following which the time to forelimb or hindlimb paralysis was measured to determine the relative protective factors (RPFs) for this radiation dose. For forelimb paralysis the RPF was 1.9 (± 1.0, SD) and for hindlimb it was 2.0 (± 1.1, SD). 36B-10 glioma cells irradiated in vitro with or without l-HCTL and assayed for colony forming capacity demonstrated a dose modifying factor (DMF) of only 1.15 (± 0.16, SE). Rats bearing intracerebral 36B-10 glioma received 137 Cs irradiation with or without l-HCTL after which the tumors were similarly assayed in vitro. From this the glioma DMF was 1.2 (± 0.30, SE). Compared to prior results with phosphorothioates our data show that the toxicity of l-HCTL is roughly the same as WR2721, WR77913 and WR3689 and that it distributes at higher levels in the CNS after systemic administration. l-HCTL may well equal these phosphorothioates at protecting normal CNS tissue without requiring administration directly into the cerebrospinal fluid-containing spaces and it does not protect the 36B-10 glioma

  13. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Jens O Watzlawik

    Full Text Available Neonatal white matter injury (nWMI is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2-3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life

  14. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    Science.gov (United States)

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  15. Hormonal regulation of Na+/K+-dependent ATPase activity and pump function in corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin

    2011-10-01

    Na- and K-dependent ATPase (Na,K-ATPase) in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. We investigated the role of dexamethasone in the regulation of Na,K-ATPase activity and pump function in these cells. Mouse corneal endothelial cells were exposed to dexamethasone or insulin. ATPase activity was evaluated by spectrophotometric measurement, and pump function was measured using an Ussing chamber. Western blotting and immunocytochemistry were performed to measure the expression of the Na,K-ATPase α1-subunit. Dexamethasone increased Na,K-ATPase activity and the pump function of endothelial cells. Western blot analysis indicated that dexamethasone increased the expression of the Na,K-ATPase α1-subunit but decreased the ratio of active to inactive Na,K-ATPase α1-subunit. Insulin increased Na,K-ATPase activity and pump function of cultured corneal endothelial cells. These effects were transient and blocked by protein kinase C inhibitors and inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A). Western blot analysis indicated that insulin decreased the amount of inactive Na,K-ATPase α1-subunit, but the expression of total Na,K-ATPase α1-subunit was unchanged. Immunocytochemistry showed that insulin increased cell surface expression of the Na,K-ATPase α1-subunit. Our results suggest that dexamethasone and insulin stimulate Na,K-ATPase activity in mouse corneal endothelial cells. The effect of dexamethasone activation in these cells was mediated by Na,K-ATPase synthesis and an increased enzymatic activity because of dephosphorylation of Na,K-ATPase α1-subunits. The effect of insulin is mediated by the protein kinase C, PP1, and/or PP2A pathways.

  16. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  17. Endothelial Function in Migraine With Aura – A Systematic Review

    DEFF Research Database (Denmark)

    Butt, Jawad H; Franzmann, Ulriche; Kruuse, Christina

    2015-01-01

    in migraineurs, and several studies on endothelial markers in the areas of inflammation, oxidative stress, and coagulation found increased endothelial activation in migraineurs, particularly in MA. One study, assessing cerebral endothelial function using transcranial Doppler sonography, reported lower...

  18. The effect of interferon-{beta} on mouse neural progenitor cell survival and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Marek [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States); Knight, Julia [Neuroscience Department, University of Vermont College of Medicine, Burlington, VT (United States); Tobita, Mari; Soltys, John; Panitch, Hillel [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States); Mao-Draayer, Yang, E-mail: yang.mao-draayer@vtmednet.org [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States)

    2009-10-16

    Interferon-{beta} (IFN-{beta}) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-{beta} on the central nervous system (CNS) are not well understood. To determine whether IFN-{beta} has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-{beta} and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFN{alpha}/{beta} receptor (IFNAR). In response to IFN-{beta} treatment, no effect was observed on differentiation or proliferation. However, IFN-{beta} treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-{beta} treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-{beta} can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  19. The effect of interferon-β on mouse neural progenitor cell survival and differentiation

    International Nuclear Information System (INIS)

    Hirsch, Marek; Knight, Julia; Tobita, Mari; Soltys, John; Panitch, Hillel; Mao-Draayer, Yang

    2009-01-01

    Interferon-β (IFN-β) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-β on the central nervous system (CNS) are not well understood. To determine whether IFN-β has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-β and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFNα/β receptor (IFNAR). In response to IFN-β treatment, no effect was observed on differentiation or proliferation. However, IFN-β treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-β treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-β can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  20. Exacerbation of CNS inflammation and neurodegeneration by systemic LPS treatment is independent of circulating IL-1 beta and IL-6

    LENUS (Irish Health Repository)

    Murray, Carol L

    2011-05-17

    Abstract Background Chronic neurodegeneration comprises an inflammatory response but its contribution to the progression of disease remains unclear. We have previously shown that microglial cells are primed by chronic neurodegeneration, induced by the ME7 strain of prion disease, to synthesize limited pro-inflammatory cytokines but to produce exaggerated responses to subsequent systemic inflammatory insults. The consequences of this primed response include exaggerated hypothermic and sickness behavioural responses, acute neuronal death and accelerated progression of disease. Here we investigated whether inhibition of systemic cytokine synthesis using the anti-inflammatory steroid dexamethasone-21-phosphate was sufficient to block any or all of these responses. Methods ME7 animals, at 18-19 weeks post-inoculation, were challenged with LPS (500 μg\\/kg) in the presence or absence of dexamethasone-21-phosphate (2 mg\\/kg) and effects on core-body temperature and systemic and CNS cytokine production and apoptosis were examined. Results LPS induced hypothermia and decreased exploratory activity. Dexamethasone-21-phosphate prevented this hypothermia, markedly suppressed systemic IL-1β and IL-6 secretion but did not prevent decreased exploration. Furthermore, robust transcription of cytokine mRNA occurred in the hippocampus of both ME7 and NBH (normal brain homogenate) control animals despite the effective blocking of systemic cytokine synthesis. Microglia primed by neurodegeneration were not blocked from the robust synthesis of IL-1β protein and endothelial COX-2 was also robustly synthesized. We injected biotinylated LPS at 100 μg\\/kg and even at this lower dose this could be detected in blood plasma. Apoptosis was acutely induced by LPS, despite the inhibition of the systemic cytokine response. Conclusions These data suggest that LPS can directly activate the brain endothelium even at relatively low doses, obviating the need for systemic cytokine stimulation to

  1. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  2. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Kristel Kegler

    Full Text Available Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas

  3. Current approaches to enhance CNS delivery of drugs across the brain barriers

    Directory of Open Access Journals (Sweden)

    Lu CT

    2014-05-01

    Full Text Available Cui-Tao Lu,1 Ying-Zheng Zhao,2,3 Ho Lun Wong,4 Jun Cai,5 Lei Peng,2 Xin-Qiao Tian1 1The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China; 2Hainan Medical College, Haikou City, Hainan Province, People’s Republic of China; 3College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, People’s Republic of China; 4School of Pharmacy, Temple University, Philadelphia, PA, USA; 5Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA Abstract: Although many agents have therapeutic potentials for central nervous system (CNS diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed. Keywords: drug delivery system, blood–brain barrier (BBB, central nervous system, brain-targeted therapy, cerebrospinal fluid (CSF

  4. Foxp3+ regulatory T cells control persistence of viral CNS infection.

    Directory of Open Access Journals (Sweden)

    Dajana Reuter

    Full Text Available We earlier established a model of a persistent viral CNS infection using two week old immunologically normal (genetically unmodified mice and recombinant measles virus (MV. Using this model infection we investigated the role of regulatory T cells (Tregs as regulators of the immune response in the brain, and assessed whether the persistent CNS infection can be modulated by manipulation of Tregs in the periphery. CD4(+ CD25(+ Foxp3(+ Tregs were expanded or depleted during the persistent phase of the CNS infection, and the consequences for the virus-specific immune response and the extent of persistent infection were analyzed. Virus-specific CD8(+ T cells predominantly recognising the H-2D(b-presented viral hemagglutinin epitope MV-H(22-30 (RIVINREHL were quantified in the brain by pentamer staining. Expansion of Tregs after intraperitoneal (i.p. application of the superagonistic anti-CD28 antibody D665 inducing transient immunosuppression caused increased virus replication and spread in the CNS. In contrast, depletion of Tregs using diphtheria toxin (DT in DEREG (depletion of regulatory T cells-mice induced an increase of virus-specific CD8(+ effector T cells in the brain and caused a reduction of the persistent infection. These data indicate that manipulation of Tregs in the periphery can be utilized to regulate virus persistence in the CNS.

  5. Detail Design of the hydrogen system and the gas blanketing system for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Kim, Young Ki; Wu, Sang Ik; Kim, Bong Su; Lee, Yong Seop

    2007-04-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system (HRS). Because of its installed location, the hydrogen system is designed to be surrounded by the gas blanketing system to notify the leakage on the system and to prevent hydrogen leakage out of the CNS. The hydrogen system, consisted of hydrogen charging unit, hydrogen storage unit, hydrogen buffer tank, and hydrogen piping, is designed to smoothly and safely supply hydrogen to and to draw back hydrogen from the IPA of the CNS under the HRS operation mode. Described is that calculation for total required hydrogen amount in the CNS as well as operation schemes of the hydrogen system. The gas blanketing system (GBS) is designed for the supply of the compressed nitrogen gas into the air pressurized valves for the CNS, to isolate the hydrogen system from the air and the water, and to prevent air or water intrusion into the vacuum system as well as the hydrogen system. All detail descriptions are shown inhere as well as the operation scheme for the GBS

  6. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    International Nuclear Information System (INIS)

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  7. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    Science.gov (United States)

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  8. The regulatory mechanism of Hsp90α secretion from endothelial cells and its role in angiogenesis during wound healing

    International Nuclear Information System (INIS)

    Song, Xiaomin; Luo, Yongzhang

    2010-01-01

    Research highlights: → Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90α secretion from endothelial cells. → Secreted Hsp90α localizes on the leading edge of activated endothelial cells. → Secreted Hsp90α promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90α can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90α from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90α in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90α but not Hsp90β is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90α localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90α neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90α localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90α can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90α as a stimulator for wound repair.

  9. The regulatory mechanism of Hsp90{alpha} secretion from endothelial cells and its role in angiogenesis during wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaomin [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Luo, Yongzhang, E-mail: yluo@tsinghua.edu.cn [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China)

    2010-07-16

    Research highlights: {yields} Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90{alpha} secretion from endothelial cells. {yields} Secreted Hsp90{alpha} localizes on the leading edge of activated endothelial cells. {yields} Secreted Hsp90{alpha} promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90{alpha} (Hsp90{alpha}) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90{alpha} can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90{alpha} from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90{alpha} in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90{alpha} but not Hsp90{beta} is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90{alpha} localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90{alpha} neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90{alpha} localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90{alpha} can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90{alpha} as a stimulator for wound repair.

  10. Role of ATP-binding cassette and solute carrier transporters in erlotinib CNS penetration and intracellular accumulation.

    Science.gov (United States)

    Elmeliegy, Mohamed A; Carcaboso, Angel M; Tagen, Michael; Bai, Feng; Stewart, Clinton F

    2011-01-01

    To study the role of drug transporters in central nervous system (CNS) penetration and cellular accumulation of erlotinib and its metabolite, OSI-420. After oral erlotinib administration to wild-type and ATP-binding cassette (ABC) transporter-knockout mice (Mdr1a/b(-/-), Abcg2(-/-), Mdr1a/b(-/-)Abcg2(-/-), and Abcc4(-/-)), plasma was collected and brain extracellular fluid (ECF) was sampled using intracerebral microdialysis. A pharmacokinetic model was fit to erlotinib and OSI-420 concentration-time data, and brain penetration (P(Brain)) was estimated by the ratio of ECF-to-unbound plasma area under concentration-time curves. Intracellular accumulation of erlotinib was assessed in cells overexpressing human ABC transporters or SLC22A solute carriers. P(Brain) in wild-type mice was 0.27 ± 0.11 and 0.07 ± 0.02 (mean ± SD) for erlotinib and OSI-420, respectively. Erlotinib and OSI-420 P(Brain) in Abcg2(-/-) and Mdr1a/b(-/-)Abcg2(-/-) mice were significantly higher than in wild-type mice. Mdr1a/b(-/-) mice showed similar brain ECF penetration as wild-type mice (0.49 ± 0.37 and 0.04 ± 0.02 for erlotinib and OSI-420, respectively). In vitro, erlotinib and OSI-420 accumulation was significantly lower in cells overexpressing breast cancer resistance protein (BCRP) than in control cells. Only OSI-420, not erlotinib, showed lower accumulation in cells overexpressing P-glycoprotein (P-gp) than in control cells. The P-gp/BCRP inhibitor elacridar increased erlotinib and OSI-420 accumulation in BCRP-overexpressing cells. Erlotinib uptake was higher in OAT3- and OCT2-transfected cells than in empty vector control cells. Abcg2 is the main efflux transporter preventing erlotinib and OSI-420 penetration in mouse brain. Erlotinib and OSI-420 are substrates for SLC22A family members OAT3 and OCT2. Our findings provide a mechanistic basis for erlotinib CNS penetration, cellular uptake, and efflux mechanisms. ©2010 AACR.

  11. Genetic pharmacotherapy as an early CNS drug development strategy: testing glutaminase inhibition for schizophrenia treatment in adult mice

    Directory of Open Access Journals (Sweden)

    Susana eMingote

    2016-01-01

    Full Text Available Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to test the therapeutic potential of glutaminase inhibition. We specifically asked whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAG ERT2 cre/+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction — mimicking pharmacological inhibition — strongly

  12. [11C]NS8880, a promising PET radiotracer targeting the norepinephrine transporter

    DEFF Research Database (Denmark)

    Vase, Karina Højrup; Peters, Dan; Nielsen, Elsebeth Ø

    2014-01-01

    -azabicyclo[3.2.1]octane (NS8880), targeting NET. NS8880 has an in vitro binding profile comparable to desipramine and is structurally not related to reboxetine. METHODS: Labeling of NS8880 with [11C] was achieved by a non-conventional technique: substitution of pyridinyl fluorine with [11C]methanolate...... yields with high purity. The PET in vivo evaluation in pig and rat revealed a rapid brain uptake of [11C]NS8880 and fast obtaining of equilibrium. Highest binding was observed in thalamic and hypothalamic regions. Pretreatment with desipramine efficiently reduced binding of [11C]NS8880. CONCLUSION: Based...... on the pre-clinical results obtained so far [11C]NS8880 displays promising properties for PET imaging of NET....

  13. Serial brain MRI findings in CNS involvement of familial erythrophagocytic lymphohistiocytosis: a case report

    International Nuclear Information System (INIS)

    Cho, Kyung Soo; Yoo, Jeong Hyun; Suh, Jeong Soo; Ryu, Kyung Ha; Hong, Ki Sook; Kim, Hak Jin

    2002-01-01

    Familial erythrophagocytic lymphohistiocytosis is a fatal early childhood disorder characterized by multiorgan lymphohistiocytic infiltration and active hemophagocytosis. Involvement of the central nervous system (CNS) is not uncommon and is characterized by rapidly progressive tissue damage affecting both the gray and white matter. We encountered a case of familial erythrophagocytic lymphohistiocytosis with CNS involvement. Initial T2-weighted MRI of the brain demonstrated high signal intensity in the right thalamus, though after chemotherapy, which led to the relief of neurologic symptoms, this disappeared. After four months. however, the patient's neurologic symptoms recurred, and follow-up T2-weighted MR images showed high signal intensity in the thalami, basal ganglia, and cerebral and cerebellar white matter. Brain MRI is a useful imaging modality for the evaluation of CNS involvement and monitoring the response to treatment

  14. Analysis of neurocognitive function and CNS endpoints in the PROTEA trial

    DEFF Research Database (Denmark)

    Clarke, Amanda; Johanssen, Veronika; Gerstoft, Jan

    2014-01-01

    INTRODUCTION: During treatment with protease inhibitor monotherapy, the number of antiretrovirals with therapeutic concentrations in the cerebrospinal fluid (CSF) is lower, compared to standard triple therapy. However, the clinical consequences are unclear. METHODS: A total of 273 patients with HIV...... and the Grooved Pegboard Test at screening, baseline and at Week 48. A global neurocognitive score (NPZ-5) was derived by averaging the standardized results of the five domains. In a central nervous system (CNS) sub-study (n=70), HIV RNA levels in the CNS were evaluated at baseline and Week 48. Clinical adverse...... events related to the CNS were collected at each visit. RESULTS: Patients were 83% male and 88% White, with median age 43 years. There were more patients with nadir CD4 count below 200 cells/µL in the DRV/r monotherapy arm (41/137, 30%) than the triple therapy arm (30/136, 22%). At Week 48...

  15. Intellectual abilities among survivors of childhood leukaemia as a function of CNS irradiation

    International Nuclear Information System (INIS)

    Eiser, C.

    1978-01-01

    Twenty-eight children in remission at least 2 years after completing chemotherapy for acute lymphoblastic leukaemia were assessed on standardised psychological tests. It was found that 7 who never had central nervous system (CNS) irradiation and 9 having prophylactic CNS irradiation at least 6 months after diagnosis tended to perform at average or above levels, while those 10 each having prophylactic CNS irradiation (within 2 months of diagnosis) were generally at lower ability. Within the latter group 3 children showed serious intellectual impairments, while the group as a whole functioned especially poorly on quantitative tasks and those involving speeded performance with abstract material. General language ability was not affected. Practical and theoretical implications are discussed. (author)

  16. Cancers of the Brain and CNS: Global Patterns and Trends in Incidence.

    Science.gov (United States)

    Mortazavi, S M J; Mortazavi, S A R; Paknahad, M

    2018-03-01

    Miranda-Filho et al. in their recently published paper entitled "Cancers of the brain and CNS: global patterns and trends in incidence" provided a global status report of the geographic and temporal variations in the incidence of brain and CNS cancers in different countries across continents worldwide. While the authors confirm the role of genetic risk factors and ionizing radiation exposures, they claimed that no firm conclusion could be drawn about the role of exposure to non-ionizing radiation. The paper authored by Miranda-Filho et al. not only addresses a challenging issue, it can be considered as a good contribution in the field of brain and CNS cancers. However, our correspondence addresses a basic shortcoming of this paper about the role of electromagnetic fields and cancers and provides evidence showing that exposure to radiofrequency electromagnetic fields (RF-EMFs), at least at high levels and long durations, can increases the risk of cancer.

  17. Neonatal CNS infection and inflammation caused by Ureaplasma species: rare or relevant?

    Science.gov (United States)

    Glaser, Kirsten; Speer, Christian P

    2015-02-01

    Colonization with Ureaplasma species has been associated with adverse pregnancy outcome, and perinatal transmission has been implicated in the development of bronchopulmonary dysplasia in preterm neonates. Little is known about Ureaplasma-mediated infection and inflammation of the CNS in neonates. Controversy remains concerning its incidence and implication in the pathogenesis of neonatal brain injury. In vivo and in vitro data are limited. Despite improving care options for extremely immature preterm infants, relevant complications remain. Systematic knowledge of ureaplasmal infection may be of great benefit. This review aims to summarize pathogenic mechanisms, clinical data and diagnostic pitfalls. Studies in preterm and term neonates are critically discussed with regard to their limitations. Clinical questions concerning therapy or prophylaxis are posed. We conclude that ureaplasmas may be true pathogens, especially in preterm neonates, and may cause CNS inflammation in a complex interplay of host susceptibility, serovar pathogenicity and gestational age-dependent CNS vulnerability.

  18. Differential endothelial transcriptomics identifies semaphorin 3G as a vascular class 3 semaphorin.

    Science.gov (United States)

    Kutschera, Simone; Weber, Holger; Weick, Anja; De Smet, Frederik; Genove, Guillem; Takemoto, Minoru; Prahst, Claudia; Riedel, Maria; Mikelis, Constantinos; Baulande, Sylvain; Champseix, Catherine; Kummerer, Petra; Conseiller, Emmanuel; Multon, Marie-Christine; Heroult, Melanie; Bicknell, Roy; Carmeliet, Peter; Betsholtz, Christer; Augustin, Hellmut G

    2011-01-01

    To characterize the role of a vascular-expressed class 3 semaphorin (semaphorin 3G [Sema3G]). Semaphorins have been identified as axon guidance molecules. Yet, they have more recently also been characterized as attractive and repulsive regulators of angiogenesis. Through a transcriptomic screen, we identified Sema3G as a molecule of angiogenic endothelial cells. Sema3G-deficient mice are viable and exhibit no overt vascular phenotype. Yet, LacZ expression in the Sema3G locus revealed intense arterial vascular staining in the angiogenic vasculature, starting at E9.5, which was detectable throughout adolescence and downregulated in adult vasculature. Sema3G is expressed as a full-length 100-kDa secreted molecule that is processed by furin proteases to yield 95- and a 65-kDa Sema domain-containing subunits. Full-length Sema3G binds to NP2, whereas processed Sema3G binds to NP1 and NP2. Expression profiling and cellular experiments identified autocrine effects of Sema3G on endothelial cells and paracrine effects on smooth muscle cells. Although the mouse knockout phenotype suggests compensatory mechanisms, the experiments identify Sema3G as a primarily endothelial cell-expressed class 3 semaphorin that controls endothelial and smooth muscle cell functions in autocrine and paracrine manners, respectively.

  19. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  20. Clearance of an immunosuppressive virus from the CNS coincides with immune reanimation and diversification

    Directory of Open Access Journals (Sweden)

    McGavern Dorian B

    2007-06-01

    Full Text Available Abstract Once a virus infection establishes persistence in the central nervous system (CNS, it is especially difficult to eliminate from this specialized compartment. Therefore, it is of the utmost importance to fully understand scenarios during which a persisting virus is ultimately purged from the CNS by the adaptive immune system. Such a scenario can be found following infection of adult mice with an immunosuppressive variant of lymphocytic choriomeningitis virus (LCMV referred to as clone 13. In this study we demonstrate that following intravenous inoculation, clone 13 rapidly infected peripheral tissues within one week, but more slowly inundated the entire brain parenchyma over the course of a month. During the establishment of persistence, we observed that genetically tagged LCMV-specific cytotoxic T lymphocytes (CTL progressively lost function; however, the severity of this loss in the CNS was never as substantial as that observed in the periphery. One of the most impressive features of this model system is that the peripheral T cell response eventually regains functionality at ~60–80 days post-infection, and this was associated with a rapid decline in virus from the periphery. Coincident with this "reanimation phase" was a massive influx of CD4 T and B cells into the CNS and a dramatic reduction in viral distribution. In fact, olfactory bulb neurons served as the last refuge for the persisting virus, which was ultimately purged from the CNS within 200 days post-infection. These data indicate that a functionally revived immune response can prevail over a virus that establishes widespread presence both in the periphery and brain parenchyma, and that therapeutic enhancement of an existing response could serve as an effective means to thwart long term CNS persistence.

  1. CD11c-expressing cells affect Treg behavior in the meninges during CNS infection1

    Science.gov (United States)

    O’Brien, Carleigh A.; Overall, Christopher; Konradt, Christoph; O’Hara Hall, Aisling C.; Hayes, Nikolas W.; Wagage, Sagie; John, Beena; Christian, David A.; Hunter, Christopher A.; Harris, Tajie H.

    2017-01-01

    Treg cells play an important role in the CNS during multiple infections as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, the Treg cells in the CNS during T. gondii infection are Th1-polarized, exemplified by T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4+ T cells, an MHC Class II tetramer reagent specific for T. gondii did not recognize Treg cells isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector and regulatory T cells in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Treg cells were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4+ T cells within the meninges were highly migratory, while Treg cells moved more slowly and were found in close association with CD11c+ cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c+ cells, mice were treated with anti-LFA-1 antibodies to reduce the number of CD11c+ cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c+ cells and increased the speed of Treg cell migration. These data suggest that Treg cells are anatomically restricted within the CNS and the interaction with CD11c+ populations regulates their local behavior during T. gondii infection. PMID:28389591

  2. Femtosecond laser cutting of endothelial grafts: comparison of endothelial and epithelial applanation.

    Science.gov (United States)

    Bernard, Aurélien; He, Zhiguo; Gauthier, Anne Sophie; Trone, Marie Caroline; Baubeau, Emmanuel; Forest, Fabien; Dumollard, Jean Marc; Peocʼh, Michel; Thuret, Gilles; Gain, Philippe

    2015-02-01

    Stromal surface quality of endothelial lamellae cut for endothelial keratoplasty with a femtosecond laser (FSL) with epithelial applanation remains disappointing. Applanation of the endothelial side of the cornea, mounted inverted on an artificial chamber, has therefore been proposed to improve cut quality. We compared lamellar quality after FSL cutting using epithelial versus endothelial applanation. Lamellae were cut with an FSL from organ-cultured corneas. After randomization, 7 were cut with epithelial applanation and 7 with endothelial applanation. Lamellae of 50-, 75-, and 100-μm thickness were targeted. Thickness was measured by optical coherence tomography before and immediately after cutting. Viable endothelial cell density was quantified immediately after cutting using triple labeling with Hoechst/ethidium/calcein-AM coupled with image analysis with ImageJ. The stromal surface was evaluated by 9 masked observers using semiquantitative scoring of scanning electronic microscopy images. Histology of 2 samples was also analyzed before lamellar detachment. Precision (difference in target/actual thickness) and thickness regularity [coefficient of variation (CV) of 10 measurements] were significantly better with endothelial applanation (precision: 18 μm; range, 10-30; CV: 11%; range, 8-12) than with epithelial applanation (precision: 84 μm; range, 54-107; P = 0.002; CV: 24%; range, 13-47; P = 0.001). Endothelial applanation provided thinner lamellae. However, viable endothelial cell density was significantly lower after endothelial applanation (1183 cells/mm2; range, 787-1725 versus 1688 cells/mm2; range, 1288-2025; P = 0.018). FSL cutting of endothelial lamellae using endothelial applanation provides thinner more regular grafts with more predictable thickness than with conventional epithelial applanation but strongly reduces the pool of viable endothelial cells.

  3. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage.

    Science.gov (United States)

    Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M

    2017-08-15

    The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.

  4. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  5. Kinetic modelling of [123I]CNS 1261--a potential SPET tracer for the NMDA receptor

    International Nuclear Information System (INIS)

    Erlandsson, Kjell; Bressan, Rodrigo A.; Mulligan, Rachel S.; Gunn, Roger N; Cunningham, Vincent J.; Owens, Jonathan; Wyper, David; Ell, Peter J.; Pilowsky, Lyn S.

    2003-01-01

    N-(1-napthyl)-N'-(3-[ 123 I]-iodophenyl)-N-methylguanidine ([ 123 I]CNS 1261) is a novel SPET ligand developed for imaging the NMDA receptor intra-channel MK 801/PCP/ketamine site. Data was acquired in 7 healthy volunteers after bolus injection of [ 123 I]CNS 1261. Kinetic modeling showed reversible tracer binding. Arterial and venous time-activity curves overlapped after 90 min. The rank order of binding was: Thalamus > striatum > cortical regions > white matter. This distribution concurs with [ 11 C]-ketamine and [ 18 F]-memantine PET studies . These data provide a methodological basis for further direct in vivo challenge studies

  6. Effects of x rays on the morphology and physiology of the CNS blood vessels of mice

    Energy Technology Data Exchange (ETDEWEB)

    Gladysz, J [Akademia Medyczna, Poznan (Poland)

    1974-01-01

    Irradiation of the CNS of mice with 4000 to 7600 R produces transitional disorder of the permeability of vascular walls, followed by a permanent (irreversible) degenerative lesion of blood capillaries and the surrounding astrogial cells. Intensity of this alterations may however not be the same in different terminal blood vessels. It is very likely that the above described lesion appearing in the acute phase can be the main cause of further alterations in the CNS which are observed in late phase of postradiation disease.

  7. Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia

    DEFF Research Database (Denmark)

    Maiorino, C; Khorooshi, R; Ruffini, F

    2013-01-01

    Interleukin-25 (IL-25) is the only anti-inflammatory cytokine of the IL-17 family, and it has been shown to be efficacious in inhibiting neuroinflammation. Known for its effects on cells of the adaptive immune system, it has been more recently described to be effective also on cells of the innate...... was partly inhibited and the CNS protected from immune-mediated damage. To our knowledge, this is the first example of M2 shift (alternative activation) induced in vivo on CNS-resident myeloid cells by gene therapy, and may constitute a promising strategy to investigate the potential role of protective...

  8. Metallothionein-1+2 protect the CNS after a focal brain injury

    DEFF Research Database (Denmark)

    Giralt, Mercedes; Penkowa, Milena; Lago, Natalia

    2002-01-01

    We have evaluated the physiological relevance of metallothionein-1+2 (MT-1+2) in the CNS following damage caused by a focal cryolesion onto the cortex. In comparison to normal mice, transgenic mice overexpressing the MT-1 isoform (TgMTI* mice) showed a significant decrease of the number...... dramatically reduced the cryolesion-induced oxidative stress and neuronal apoptosis. Remarkably, these effects were also obtained by the intraperitoneal administration of MT-2 to both normal and MT-1+2 knock-out mice. These results fully support the notion that MT-1+2 are essential in the CNS for coping...

  9. Imaging aspects of neurologic emergencies in children treated for non-CNS malignancies

    International Nuclear Information System (INIS)

    Kaste, S.C.; Langston, J.; Rodriguez-Galindo, C.; Furman, W.L.; Thompson, S.J.

    2000-01-01

    There is a paucity of radiologic literature addressing neurologic emergencies in children receiving therapy for non-CNS primary malignancies. In the acute setting, many of these children present to local community hospitals. This pictorial is from a single institutional experience describing the spectrum of neurologic emergencies seen in children with non-CNS cancers. We hope to familiarize pediatric radiologists with these entities in order to expedite diagnosis, facilitate treatment, and minimize morbity and mortality that may be associated with these complications. (orig.)

  10. Neuroprotective effects of estrogen in CNS injuries: insights from animal models

    Directory of Open Access Journals (Sweden)

    Raghava N

    2017-07-01

    Full Text Available Narayan Raghava,1 Bhaskar C Das,2 Swapan K Ray1 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA; 2Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA Abstract: Among the estrogens that are biosynthesized in the human body, 17β-estradiol (estradiol or E2 is the most common and the best estrogen for neuroprotection in animal models of the central nervous system (CNS injuries such as spinal cord injury (SCI, traumatic brain injury (TBI, and ischemic brain injury (IBI. These CNS injuries are not only serious health problems, but also enormous economic burden on the patients, their families, and the society at large. Studies from animal models of these CNS injuries provide insights into the multiple neuroprotective mechanisms of E2 and also suggest the possibility of translating the therapeutic efficacy of E2 in the treatment SCI, TBI, and IBI in humans in the near future. The pathophysiology of these injuries includes loss of motor function in the limbs, arms and their extremities, cognitive deficit, and many other serious consequences including life-threatening paralysis, infection, and even death. The potential application of E2 therapy to treat the CNS injuries may become a trend as the results are showing significant therapeutic benefits of E2 for neuroprotection when administered into the animal models of SCI, TBI, and IBI. This article describes the plausible mechanisms how E2 works with or without the involvement of estrogen receptors and provides an overview of the known neuroprotective effects of E2 in these three CNS injuries in different animal models. Because activation of estrogen receptors has profound implications in maintaining and also affecting normal physiology, there are notable impediments in translating E2 therapy to the clinics for neuroprotection in CNS injuries in humans. While E2 may not yet be the sole molecule for

  11. Implication of endothelial to mesenchymal cell transition in the development of healthy digestive tissue injury following radiotherapy

    International Nuclear Information System (INIS)

    Mintet, Elodie

    2015-01-01

    Fibrosis is identified as a chronic side effect occurring after radiotherapy for pelvic tumors in 5 to 10 % of patients. This pathological healing process is characterized by an accumulation of extracellular matrix synthesized by mesenchymal cells. Endothelial to mesenchymal transition (EndoMT), is a processes during which endothelial cells express mesenchymal markers in response to stress. EndoMT is identified as a new source of mesenchymal cells taking part to fibrosis development in patients suffering from inflammatory bowel diseases. Then, this study focused on the potential participation of EndoMT in radiation-induced intestinal fibrosis and tried to identify new therapeutics targets. Interestingly, our results showed for the first time EndoMT in rectal tissues from patients who developed radiation proctitis following radiotherapy. We used an in vivo approach to follow the mesenchymal cells having an endothelial origin in a mouse model expressing the GFP under the control of an endothelial promoter, Tie2 (Tie2-GFP). Thereby, our results confirmed the existence of radiation-induced EndoMT in our preclinical model of radiation proctitis. In vitro characterization showed that irradiation induced a modulation of the endothelial phenotype through a mesenchymal profile, a hallmark of EndoMT. This project also focused on a potential molecular actor, Hey2. In this context, we generated a transgenic mouse model in which Hey2 gene expression is repressed specifically in the endothelial compartment and observed a decrease in radiation-induced mucosal damages and EndoMT frequency. Consequently, inhibiting Hey2 expression could represent a new interesting therapeutic strategy. (author)

  12. Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation

    Directory of Open Access Journals (Sweden)

    Sagar Divya

    2012-10-01

    Full Text Available Abstract Background Transmigration of circulating dendritic cells (DCs into the central nervous system (CNS across the blood–brain barrier (BBB has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by chemokines. Chemokine ligand 2 (CCL2 is a potent chemoattractant known to be secreted by the BBB but has not been implicated in the recruitment of DCs specifically at the BBB. Methods Experimental autoimmune encephalomyelitis (EAE was induced in C57BL/6 mice by injection of MOG35–55 peptide and pertussis toxin intraperitoneally. Animals with increasing degree of EAE score were sacrificed and subjected to near-infrared and fluorescence imaging analysis to detect and localize the accumulation of CD11c+-labeled DCs with respect to CCL2 expression. To further characterize the direct effect of CCL2 in DC trafficking at the BBB, we utilized an in vitro BBB model consisting of human brain microvascular endothelial cells to compare migratory patterns of monocyte-derived dendritic cells, CD4+ and CD8+ T cells. Further, this model was used to image transmigration using fluorescence microcopy and to assess specific molecular signaling pathways involved in transmigration. Results Near-infrared imaging of DC transmigration correlated with the severity of inflammation during EAE. Ex vivo histology confirmed the presence of CCL2 in EAE lesions, with DCs emerging from perivascular spaces. DCs exhibited more efficient transmigration than T cells in BBB model studies. These observations correlated with transwell imaging, which indicated a paracellular versus transcellular pattern of migration by DCs and T cells. Moreover, at the molecular level, CCL2 seems to facilitate DC transmigration in an ERK1/2-dependent manner. Conclusion CNS recruitment of DCs correlates with disease severity in EAE via CCL2 chemotaxis and paracellular transmigration across the BBB

  13. Specialized mouse embryonic stem cells for studying vascular development.

    Science.gov (United States)

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  14. Epidermal growth factor-like domain 7 is a marker of the endothelial lineage and active angiogenesis.

    Science.gov (United States)

    Bambino, Kathryn; Lacko, Lauretta A; Hajjar, Katherine A; Stuhlmann, Heidi

    2014-07-01

    Epidermal growth factor-like domain 7 (Egfl7) expression in the developing embryo is largely restricted to sites of mesodermal progenitors of angioblasts/hemangioblasts and the vascular endothelium. We hypothesize that Egfl7 marks the endothelial lineage during embryonic development, and can be used to define the emergence of endothelial progenitor cells, as well as to visualize newly-forming vasculature in the embryo and during the processes of physiologic and pathologic angiogenesis in the adult. We have generated a transgenic mouse strain that expresses enhanced green fluorescent protein (eGFP) under the control of a minimal Egfl7 regulatory sequence (Egfl7:eGFP). Expression of the transgene recapitulated that of endogenous Egfl7 at sites of vasculogenesis and angiogenesis in the allantois, yolk sac, and in the embryo proper. The transgene was not expressed in the quiescent endothelium of most adult organs. However, the uterus and ovary, which undergo vascular growth and remodeling throughout the estrus cycle, expressed high levels of Egfl7:eGFP. Importantly, expression of the Egfl7:eGFP transgene was induced in adult neovasculature. We also found that increased Egfl7 expression contributed to pathologic revascularization in the mouse retina. To our knowledge, this is the first mouse model that enables monitoring of endothelial cells at sites of active vasculogenesis and angiogenesis. This model also facilitated the isolation and characterization of EGFL7(+) endothelial cell populations by fluorescence activated cell sorting (FACS). Together, our results demonstrate that the Egfl7:eGFP reporter mouse is a valuable tool that can be used to elucidate the mechanisms by which blood vessels form during development and under pathologic circumstances. © 2014 Wiley Periodicals, Inc.

  15. Pre-micro RNA signatures delineate stages of endothelial cell transformation in Kaposi sarcoma.

    Directory of Open Access Journals (Sweden)

    Andrea J O'Hara

    2009-04-01

    Full Text Available MicroRNAs (miRNA have emerged as key regulators of cell lineage differentiation and cancer. We used precursor miRNA profiling by a novel real-time QPCR method (i to define progressive stages of endothelial cell transformation cumulating in Kaposi sarcoma (KS and (ii to identify specific miRNAs that serve as biomarkers for tumor progression. We were able to compare primary patient biopsies to well-established culture and mouse tumor models. Loss of mir-221 and gain of mir-15 expression demarked the transition from merely immortalized to fully tumorigenic endothelial cells. Mir-140 and Kaposi sarcoma-associated herpesvirus viral miRNAs increased linearly with the degree of transformation. Mir-24 emerged as a biomarker specific for KS.

  16. Atherosclerosis-Associated Endothelial Cell Apoptosis by MiR-429-Mediated Down Regulation of Bcl-2

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-10-01

    Full Text Available Background/Aims: Endothelial cell injury and subsequent apoptosis play a key role in the development and pathogenesis of atherosclerosis, which is hallmarked by dysregulated lipid homeostasis, aberrant immunity and inflammation, and plaque-instability-associated coronary occlusion. Nevertheless, our understanding of the mechanisms underlying endothelial cell apoptosis is still limited. MicroRNA-429 (miR-29 is a known cancer suppressor that promotes cancer cell apoptosis. However, it is unknown whether miR-429 may be involved in the development of atherosclerosis through similar mechanisms. We addressed these questions in the current study. Methods: We examined the levels of endothelial cell apoptosis in ApoE (-/- mice suppled with high-fat diet (HFD, a mouse model for atherosclerosis (simplified as HFD mice. We analyzed the levels of anti-apoptotic protein Bcl-2 and the levels of miR-429 in the purified CD31+ endothelial cells from mouse aorta. Prediction of the binding between miR-429 and 3'-UTR of Bcl-2 mRNA was performed by bioinformatics analyses and confirmed by a dual luciferase reporter assay. The effects of miR-429 were further analyzed in an in vitro model using oxidized low-density lipoprotein (ox-LDL-treated human aortic endothelial cells (HAECs. Results: HFD mice developed atherosclerosis in 12 weeks, while the control ApoE (-/- mice that had received normal diet (simplified as NOR mice did not. HFD mice had significantly lower percentage of endothelial cells and significantly higher percentage of mesenchymal cells in the aorta than NOR mice. Significantly higher levels of endothelial cell apoptosis were detected in HFD mice, resulting from decreases in Bcl-2 protein, but not mRNA. The decreases in Bcl-2 in endothelial cells were due to increased levels of miR-429, which suppressed the translation of Bcl-2 mRNA via 3'-UTR binding. These in vivo findings were reproduced in vitro on ox-LDL-treated HAECs. Conclusion: Atherosclerosis

  17. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase

    International Nuclear Information System (INIS)

    Mo Yiqun; Wan Rong; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2009-01-01

    Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O 2 ·- generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67 phox siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91 phox knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47 phox , p67 phox and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67 phox siRNA. Exposure of MPMVEC obtained from gp91 phox knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly via activation of NADPH oxidase. UFP-induced ROS lead to

  18. Is risk of central nervous system (CNS) relapse related to adjuvant taxane treatment in node-positive breast cancer? Results of the CNS substudy in the intergroup Phase III BIG 02-98 Trial

    DEFF Research Database (Denmark)

    Pestalozzi, B.C.; Francis, P.; Quinaux, E.

    2008-01-01

    BACKGROUND: Breast cancer central nervous system (CNS) metastases are an increasingly important problem because of high CNS relapse rates in patients treated with trastuzumab and/or taxanes. PATIENTS AND METHODS: We evaluated data from 2887 node-positive breast cancer patients randomised in the BIG...

  19. The endothelial αENaC contributes to vascular endothelial function in vivo

    DEFF Research Database (Denmark)

    Tarjus, Antoine; Maase, Martina; Jeggle, Pia

    2017-01-01

    The Epithelial Sodium Channel (ENaC) is a key player in renal sodium homeostasis. The expression of α β γ ENaC subunits has also been described in the endothelium and vascular smooth muscle, suggesting a role in vascular function. We recently demonstrated that endothelial ENaC is involved in aldo......-mediated dilation. Our data suggest that endothelial αENaC contributes to vascular endothelial function in vivo....

  20. Connexins and M3 Muscarinic Receptors Contribute to Heterogeneous Ca2+ Signaling in Mouse Aortic Endothelium

    Directory of Open Access Journals (Sweden)

    François-Xavier Boittin

    2013-02-01

    Full Text Available Background/Aims: Smooth muscle tone is controlled by Ca2+ signaling in the endothelial layer. Mouse endothelial cells are interconnected by gap junctions made of Connexin40 (Cx40 and Cx37, which allow the exchange of signaling molecules to coordinate their activity. Here, we investigated the role of Cx40 in the endothelial Ca2+ signaling of the mouse aorta. Methods: Ca2+ imaging was performed on intact aortic endothelium from both wild type (Cx40+/+ and Connexin40-deficient (Cx40 -/- mice. Results: Acetylcholine (ACh induced early fast and high amplitude Ca2+ transients in a fraction of endothelial cells expressing the M3 muscarinic receptors. Inhibition of intercellular communication using carbenoxolone or octanol fully blocked the propagation of ACh-induced Ca2+ transients toward adjacent cells in WT and Cx40-/- mice. As compared to WT, Cx40-/- mice displayed a reduced propagation of ACh-induced Ca2+ waves, indicating that Cx40 contributes to the spreading of Ca2+ signals. The propagation of those Ca2+ responses was not blocked by suramin, a blocker of purinergic ATP receptors, indicating that there is no paracrine effect of ATP release on the Ca2+ waves. Conclusions: Altogether our data show that Cx40 and Cx37 contribute to the propagation and amplification of the Ca2+ signaling triggered by ACh in endothelial cells expressing the M3 muscarinic receptors.

  1. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    Science.gov (United States)

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Pathways for insulin access to the brain: the role of the microvascular endothelial cell.

    Science.gov (United States)

    Meijer, Rick I; Gray, Sarah M; Aylor, Kevin W; Barrett, Eugene J

    2016-11-01

    Insulin affects multiple important central nervous system (CNS) functions including memory and appetite, yet the pathway(s) by which insulin reaches brain interstitial fluid (bISF) has not been clarified. Recent studies demonstrate that to reach bISF, subarachnoid cerebrospinal fluid (CSF) courses through the Virchow-Robin space (VRS) which sheaths penetrating pial vessels down to the capillary level. Whether insulin predominantly enters the VRS and bISF by local transport through the blood-brain barrier, or by being secreted into the CSF by the choroid plexus, is unknown. We injected 125 I-TyrA14-insulin or regular insulin intravenously and compared the rates of insulin reaching subarachnoid CSF with its plasma clearance by brain tissue samples (an index of microvascular endothelial cell binding/uptake/transport). The latter process was more than 40-fold more rapid. We then showed that selective insulin receptor blockade or 4 wk of high-fat feeding each inhibited microvascular brain 125 I-TyrA14-insulin clearance. We further confirmed that 125 I-TyrA14-insulin was internalized by brain microvascular endothelial cells, indicating that the in vivo tissue association reflected cellular transport, not simply microvascular tracer binding. Copyright © 2016 the American Physiological Society.

  3. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  4. In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies

    Directory of Open Access Journals (Sweden)

    vFatemeh Kazemi-Lomedasht v

    2017-05-01

    Full Text Available Objective(s: Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size and good penetration to tumor tissues makes them promising tools in drug development.  Development of NBs targeting both human and mouse VEGF is required for understanding their in vivo functions.  Therefore, development of cross-species reactive anti-VEGF Nbs for immunotherapy of lung cancer was the main aim of the current study. Materials and Methods: Here we developed NBs from Camelus dromedarius library with high specificity and binding affinity to both human and mouse VEGF. In vitro and In vivo function of developed NB was evaluated on human endothelial cells and lung epithelial tumor cells (TC-1. Results: A nanobody showed the highest affinity to human and mouse VEGF and potently inhibited VEGF in the ELISA experiment. Anti-VEGF NBs significantly inhibited in vitro human endothelial cell migration through blockade of VEGF (P=0.045. Anti-VEGF NBs also significantly inhibited in vivo TC-1 growth in a dose-dependent manner (P=0.001 and resulted in higher survival rate in the nanobody treated group Conclusion: These findings demonstrate the potential of anti-VEGF NBsin tumor growth inhibition and are promising as novel cancer therapeutic candidate.

  5. Endothelial NLRP3 inflammasome activation and arterial neointima formation associated with acid sphingomyelinase during hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Saisudha Koka

    2017-10-01

    Full Text Available The NLRP3 inflammasome has been reported to be activated by atherogenic factors, whereby endothelial injury and consequent atherosclerotic lesions are triggered in the arterial wall. However, the mechanisms activating and regulating NLRP3 inflammasomes remain poorly understood. The present study tested whether acid sphingomyelinase (ASM and ceramide associated membrane raft (MR signaling platforms contribute to the activation of NLRP3 inflammasomes and atherosclerotic lesions during hypercholesterolemia. We found that 7-ketocholesterol (7-Keto or cholesterol crystal (ChC markedly increased the formation and activation of NLRP3 inflammasomes in mouse carotid arterial endothelial cells (CAECs, as shown by increased colocalization of NLRP3 with ASC or caspase-1, enhanced caspase-1 activity and elevated IL-1β levels, which were markedly attenuated by mouse Asm siRNA, ASM inhibitor- amitriptyline, and deletion of mouse Asm gene. In CAECs with NLRP3 inflammasome formation, membrane raft (MR clustering with NADPH oxidase subunits was found remarkably increased as shown by CTXB (MR marker and gp91phox aggregation indicating the formation of MR redox signaling platforms. This MR clustering was blocked by MR disruptor (MCD, ROS scavenger (Tempol and TXNIP inhibitor (verapamil, accompanied by attenuation of 7-Keto or ChC-induced increase in caspase-1 activity. In animal experiments, Western diet fed mice with partially ligated left carotid artery (PLCA were found to have significantly increased neointimal formation, which was associated with increased NLRP3 inflammasome formation and IL-1β production in the intima of Asm+/+ mice but not in Asm-/- mice. These results suggest that Asm gene and ceramide associated MR clustering are essential to endothelial inflammasome activation and dysfunction in the carotid arteries, ultimately determining the extent of atherosclerotic lesions.

  6. Kaempferol Inhibits Angiogenesis by Suppressing HIF-1α and VEGFR2 Activation via ERK/p38 MAPK and PI3K/Akt/mTOR Signaling Pathways in Endothelial Cells.

    Science.gov (United States)

    Kim, Gi Dae

    2017-12-01

    Kaempferol has been shown to inhibit vascular formation in endothelial cells. However, the underlying mechanisms are not fully understood. In the present study, we evaluated whether kaempferol exerts antiangiogenic effects by targeting extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathways in endothelial cells. Endothelial cells were treated with various concentrations of kaempferol for 24 h. Cell viability was determined by the 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay; vascular formation was analyzed by tube formation, wound healing, and mouse aortic ring assays. Activation of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor receptor 2 (VEGFR2), ERK/p38 MAPK, and PI3K/Akt/mTOR was analyzed by Western blotting. Kaempferol significantly inhibited cell migration and tube formation in endothelial cells, and suppressed microvessel sprouting in the mouse aortic ring assay. Moreover, kaempferol suppressed the activation of HIF-1α, VEGFR2, and other markers of ERK/p38 MAPK and PI3K/Akt/mTOR signaling pathways in endothelial cells. These results suggest that kaempferol inhibits angiogenesis by suppressing HIF-1α and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR signaling in endothelial cells.

  7. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth ..... Periodontal disease in pregnancy I. Prevalence and severity. ... endothelial nitric oxide synthase gene in premenopausal women with.

  8. Intraoperative squash smear cytology in CNS lesions: A study of 150 pediatric cases

    Directory of Open Access Journals (Sweden)

    Arpita Jindal

    2017-01-01

    Full Text Available Background: Tumors of the central nervous system in the pediatric age group occur relatively frequently during the early years of life. Brain tumors are the most common solid malignancies of childhood and only second to acute childhood leukemia. Squash cytology is an indispensable diagnostic aid to central nervous system (CNS lesions. The definitive diagnosis of brain lesions is confirmed by histological examination. Aim: To study the cytology of CNS lesions in pediatric population and correlate it with histopathology. Materials and Methods: One hundred and fifty cases of CNS lesions in pediatric patients were studied over a period of 2 years. Intraoperative squash smears were prepared, stained with hematoxylin and eosin, and examined. Remaining sample was subjected to histopathological examination. Results: Medulloblastoma (24.0% was the most frequently encountered tumor followed by pilocyctic astrocytoma (21.33% and ependymoma (13.33%. Diagnostic accuracy of squash smear technique was 94.67% when compared with histological diagnosis. Conclusion: Smear cytology is a fairly accurate tool for intraoperative CNS consultations.

  9. Mining the topography and dynamics of the 4D Nucleome to identify novel CNS drug pathways.

    Science.gov (United States)

    Higgins, Gerald A; Allyn-Feuer, Ari; Georgoff, Patrick; Nikolian, Vahagn; Alam, Hasan B; Athey, Brian D

    2017-07-01

    The pharmacoepigenome can be defined as the active, noncoding province of the genome including canonical spatial and temporal regulatory mechanisms of gene regulation that respond to xenobiotic stimuli. Many psychotropic drugs that have been in clinical use for decades have ill-defined mechanisms of action that are beginning to be resolved as we understand the transcriptional hierarchy and dynamics of the nucleus. In this review, we describe spatial, temporal and biomechanical mechanisms mediated by psychotropic medications. Focus is placed on a bioinformatics pipeline that can be used both for detection of pharmacoepigenomic variants that discretize drug response and adverse events to improve pharmacogenomic testing, and for the discovery of novel CNS therapeutics. This approach integrates the functional topology and dynamics of the transcriptional hierarchy of the pharmacoepigenome, gene variant-driven identification of pharmacogenomic regulatory domains, and mesoscale mapping for the discovery of novel CNS pharmacodynamic pathways in human brain. Examples of the application of this pipeline are provided, including the discovery of valproic acid (VPA) mediated transcriptional reprogramming of neuronal cell fate following injury, and mapping of a CNS pathway glutamatergic pathway for the mood stabilizer lithium. These examples in regulatory pharmacoepigenomics illustrate how ongoing research using the 4D nucleome provides a foundation to further insight into previously unrecognized psychotropic drug pharmacodynamic pathways in the human CNS. Copyright © 2017. Published by Elsevier Inc.

  10. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    DEFF Research Database (Denmark)

    Owens, T; Renno, T; Taupin, V

    1994-01-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far ...

  11. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    Energy Technology Data Exchange (ETDEWEB)

    Vismari, Lucio Flavio, E-mail: lucio.vismari@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil); Batista Camargo Junior, Joao, E-mail: joaocamargo@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil)

    2011-07-15

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  12. Durable treatment response of relapsing CNS plasmacytoma using intrathecal chemotherapy, radiotherapy, and Daratumumab.

    Science.gov (United States)

    Elhassadi, Ezzat; Murphy, Maurice; Hacking, Dayle; Farrell, Michael

    2018-04-01

    CNS myelomatous involvement is a rare complication of multiple myeloma with dismal outcome. This disease's optimal treatment is unclear. Combined approach of systemic therapy, radiotherapy, and intrathecal injections chemotherapy should be considered and autologous stem cell transplant consolidation is offered to eligible patients. The role of Daratumumab in this disease deserves further evaluation.

  13. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi.

    Science.gov (United States)

    Malik, Jai; Karan, Maninder; Vasisht, Karan

    2011-12-01

    Shankhpushpi, a well-known drug in Ayurveda, is extensively used for different central nervous system (CNS) effects especially memory enhancement. Different plants are used under the name shankhpushpi in different regions of India, leading to an uncertainty regarding its true source. Plants commonly used under the name shankhpushpi are: Convolvulus pluricaulis Chois., Evolvulus alsinoides Linn., both from Convolvulaceae, and Clitoria ternatea Linn. (Leguminosae). To find out the true source of shankhpushpi by evaluating and comparing memory-enhancing activity of the three above mentioned plants. Anxiolytic, antidepressant and CNS-depressant activities of these three plants were also compared and evaluated. The nootropic activity of the aqueous methanol extract of each plant was tested using elevated plus-maze (EPM) and step-down models. Anxiolytic, antidepressant and CNS-depressant studies were evaluated using EPM, Porsolt?s swim despair and actophotometer models, respectively. C. pluricaulis extract (CPE) at a dose of 100 mg/kg, p.o. showed maximum nootropic and anxiolytic activity (p nootropic, anxiolytic and CNS-depressant activity. The results of memory-enhancing activity suggest C. pluricaulis to be used as true source of shankhpushpi.

  14. Immune cell entry to the CNS--a focus for immunoregulation of EAE

    DEFF Research Database (Denmark)

    Owens, T; Tran, E; Hassan-Zahraee, M

    1999-01-01

    -requirement then to prove such a role. The point that emerges is that cytokine production in the CNS parenchyma is itself dependent on the prior infiltration of immune cells, and that without immune cell entry, EAE does not occur. This identifies events at the BBB, and in particular in the perivascular space, as critical...

  15. Migration, fate and in vivo imaging of stem cells in the CNS

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva

    2009-01-01

    Roč. 16, Suppl.3 (2009), s. 4-4 ISSN 1351-5101. [Congress of the European-Federation-of-Neurological-Societies /13./. 12.09.2009-15.09.2009, Florencie] Institutional research plan: CEZ:AV0Z50390703 Keywords : CNS * ESC Subject RIV: FH - Neurology

  16. Comparative analysis of acid sphingomyelinase distribution in the CNS of rats and mice following intracerebroventricular delivery.

    Directory of Open Access Journals (Sweden)

    Christopher M Treleaven

    Full Text Available Niemann-Pick A (NPA disease is a lysosomal storage disorder (LSD caused by a deficiency in acid sphingomyelinase (ASM activity. Previously, we reported that biochemical and functional abnormalities observed in ASM knockout (ASMKO mice could be partially alleviated by intracerebroventricular (ICV infusion of hASM. We now show that this route of delivery also results in widespread enzyme distribution throughout the rat brain and spinal cord. However, enzyme diffusion into CNS parenchyma did not occur in a linear dose-dependent fashion. Moreover, although the levels of hASM detected in the rat CNS were determined to be within the range shown to be therapeutic in ASMKO mice, the absolute amounts represented less than 1% of the total dose administered. Finally, our results also showed that similar levels of enzyme distribution are achieved across rodent species when the dose is normalized to CNS weight as opposed to whole body weight. Collectively, these data suggest that the efficacy observed following ICV delivery of hASM in ASMKO mice could be scaled to CNS of the rat.

  17. CNS Damage Classification in Newborn Infants by Neural Network Based Cry Analysis

    NARCIS (Netherlands)

    Poel, Mannes; Ekkel, T.

    2002-01-01

    The central nervous system (CNS) of the human body is the whole system of brain, spinal marrow and nerve cells throughout the body that correlates and regulates the internal reactions of the body and controls its adjustment to the environment. It controls muscles and processes sensory information

  18. CSF Hypocretin-1 Levels and Clinical Profiles in Narcolepsy and Idiopathic CNS Hypersomnia in Norway

    Science.gov (United States)

    Heier, Mona Skard; Evsiukova, Tatiana; Vilming, Steinar; Gjerstad, Michaela D.; Schrader, Harald; Gautvik, Kaare

    2007-01-01

    Objective: To evaluate the relationship between CSF hypocretin-1 levels and clinical profiles in narcolepsy and CNS hypersomnia in Norwegian patients. Method: CSF hypocretin-1 was measured by a sensitive radioimmunoassay in 47 patients with narcolepsy with cataplexy, 7 with narcolepsy without cataplexy, 10 with idiopathic CNS hypersomnia, and a control group. Results: Low hypocretin-1 values were found in 72% of the HLA DQB1*0602 positive patients with narcolepsy and cataplexy. Patients with low CSF hypocretin-1 levels reported more extensive muscular involvement during cataplectic attacks than patients with normal levels. Hypnagogic hallucinations and sleep paralysis occurred more frequently in patients with cataplexy than in the other patient groups, but with no correlation to hypocretin-1 levels. Conclusion: About three quarters of the HLA DQB1*0602 positive patients with narcolepsy and cataplexy had low CSF hypocretin-1 values, and appear to form a distinct clinical entity. Narcolepsy without cataplexy could not be distinguished from idiopathic CNS hypersomnia by clinical symptoms or biochemical findings. Citation: Heier MS; Evsiukova T; Vilming S; Gjerstad MD; Schrader H; Gautvik K. CSF hypocretin-1 levels and clinical profiles in narcolepsy and idiopathic CNS hypersomnia in norway. SLEEP 2007;30(8):969-973. PMID:17702265

  19. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    International Nuclear Information System (INIS)

    Vismari, Lucio Flavio; Batista Camargo Junior, Joao

    2011-01-01

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  20. Diagnostic value of kinetic analysis using dynamic FDG PET in immunocompetent patients with primary CNS lymphoma

    International Nuclear Information System (INIS)

    Nishiyama, Yoshihiro; Yamamoto, Yuka; Monden, Toshihide; Sasakawa, Yasuhiro; Satoh, Katashi; Ohkawa, Motoomi; Kawai, Nobuyuki

    2007-01-01

    The purpose of this study was to investigate the accumulation of FDG in immunocompetent patients with primary central nervous system (CNS) lymphoma using qualitative and quantitative PET images and to compare baseline with follow-up PET after therapy. Twelve immunocompetent patients with CNS lymphoma were examined. Dynamic emission data were acquired for 60 min immediately following injection of FDG. In seven patients, repeated PET studies were performed after treatment. Applying a three-compartment five-parameter model, K 1 , k 2 , k 3 , k 4 , vascular fraction (V B ) and cerebral metabolic rate of glucose (CMR Glc ) were obtained. We evaluated the FDG uptake visually using qualitative and parametric images and quantitatively using parametric images. A total of 12 lesions were identified in ten patients with newly diagnosed CNS lymphoma. On visual analysis, ten lesions showed an increase on qualitative images, eight showed an increase on K 1 images, 12 showed an increase on k 3 images and ten showed an increase on CMR Glc images. On quantitative analysis, k 2 , k 3 and CMR Glc values of the lesion were significantly different from those of the normal grey matter (p 3 and CMR Glc images. The K 1 , k 2 , k 3 and CMR Glc values after treatment were significantly different from those obtained before treatment (p 3 , using dynamic FDG PET might be helpful for diagnosis of CNS lymphoma and for monitoring therapeutic assessment. (orig.)

  1. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Kuziel, William A; Rivest, Serge

    2003-01-01

    Innate responses in the CNS are critical to first line defense against infection and injury. Leukocytes migrate to inflammatory sites in response to chemokines. We studied leukocyte migration and glial chemokine expression within the denervated hippocampus in response to axonal injury caused by e...

  2. Bone Marrow-Derived Cell Accumulation in the Spinal Cord Is Independent of Peripheral Mobilization in a Mouse Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Peake, Kyle; Manning, John; Lewis, Coral-Ann; Tran, Kevin; Rossi, Fabio; Krieger, Charles

    2017-01-01

    Bone marrow-derived cells (BMDCs) are capable of migrating across the blood–brain barrier (BBB) and accumulating in the central nervous system (CNS) when transplanted into recipients conditioned with whole-body irradiation or chemotherapy. We used the chemotherapeutic agents busulfan and treosulfan to condition recipient mice for transplantation with bone marrow (BM) cells isolated from donor mice ubiquitously expressing green fluorescent protein. We attempted to increase the accumulation of BMDCs in the CNS by mobilization of BMDCs using either, or both, granulocyte colony-stimulating factor (GCSF) or plerixafor (AMD3100). We also used several concentrations of busulfan. We hypothesized that higher concentrations of busulfan and BMDC mobilization would increase numbers of GFP+ cells in the CNS. The doses of busulfan employed (60–125 mg/kg) all resulted in high levels of sustained chimerism (>85% 1 year post-transplant) in both the blood and BM of wild-type (WT) mice and an amyotrophic lateral sclerosis (ALS) mouse model. Moreover, cells accumulated within the CNS in a dose-, time-, and disease-dependent manner. Conditioning with the hydrophilic busulfan analog treosulfan, which is unable to cross the BBB efficiently, also resulted in a high degree of BM chimerism. However, few GFP+ BMDCs were found within the CNS of WT or ALS mice of treosulfan-conditioned mice. Mobilization of BMDCs into the circulation using GCSF and/or AMD3100 did not lead to increased accumulation of GFP+ BMDCs within the CNS of WT or ALS mice. Weekly analysis of BMDC accumulation revealed that BMDCs accumulated more rapidly and to a greater extent in the CNS of ALS mice conditioned with a high dose (125 mg/kg) of busulfan compared to a lower dose (80 mg/kg). The number of GFP+ BMDCs in the CNS labeling with the proliferation marker Ki67 increased in parallel with BMDC accumulation within the CNS. Our results indicate that establishment of high levels of blood and BM chimerism

  3. Enhancing Psychosocial Outcomes for Young Adult Childhood CNS Cancer Survivors: Importance of Addressing Vocational Identity and Community Integration

    Science.gov (United States)

    Strauser, David R.; Wagner, Stacia; Wong, Alex W. K.

    2012-01-01

    The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years…

  4. Distribution of CNS Species on Teat Skin and in Milk Samples from Dairy Cows in Automatic Milking Systems

    DEFF Research Database (Denmark)

    Mahmmod, Yasser; Svennesen, Line; Pedersen, Karl

    identified in milk samples. Staphylococcus chromogenes was detected in both milk (n= 2) and teat skin (n= 1) samples. Data collection will be finished in April 2017. The final results will give new insights into herd specific CNS species patterns and the microbial ecology and epidemiology of common CNS...

  5. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vuillemenot, Brian R., E-mail: bvuillemenot@bmrn.com [BioMarin Pharmaceutical Inc., Novato, CA (United States); Kennedy, Derek [BioMarin Pharmaceutical Inc., Novato, CA (United States); Reed, Randall P.; Boyd, Robert B. [Northern Biomedical Research, Inc., Muskegon, MI (United States); Butt, Mark T. [Tox Path Specialists, LLC, Hagerstown, MD (United States); Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O' Neill, Charles A. [BioMarin Pharmaceutical Inc., Novato, CA (United States)

    2014-05-15

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  6. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    International Nuclear Information System (INIS)

    Vuillemenot, Brian R.; Kennedy, Derek; Reed, Randall P.; Boyd, Robert B.; Butt, Mark T.; Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O'Neill, Charles A.

    2014-01-01

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  7. Dynamical Systems Approach to Endothelial Heterogeneity

    Science.gov (United States)

    Regan, Erzsébet Ravasz; Aird, William C.

    2012-01-01

    Rationale Objective Here we reexamine our current understanding of the molecular basis of endothelial heterogeneity. We introduce multistability as a new explanatory framework in vascular biology. Methods We draw on the field of non-linear dynamics to propose a dynamical systems framework for modeling multistability and its derivative properties, including robustness, memory, and plasticity. Conclusions Our perspective allows for both a conceptual and quantitative description of system-level features of endothelial regulation. PMID:22723222

  8. An ?All-laser? Endothelial Transplant

    OpenAIRE

    Rossi, Francesca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Pini, Roberto; Menabuoni, Luca

    2015-01-01

    The ?all laser? assisted endothelial keratoplasty is a procedure that is performed with a femtosecond laser used to cut the donor tissue at an intended depth, and a near infrared diode laser to weld the corneal tissue. The proposed technique enables to reach the three main goals in endothelial keratoplasty: a precise control in the thickness of the donor tissue; its easy insertion in the recipient bed and a reduced risk of donor lenticule dislocation. The donor cornea thickness is measured in...

  9. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  10. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Perez, Viviana; Recchia, Fabio A; Podlutsky, Andrej; Mukhopadhyay, Partha; Losonczy, Gyorgy; Pacher, Pal; Austad, Steven N; Bartke, Andrzej; Ungvari, Zoltan

    2008-11-01

    Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2(-) and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2(-) and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2(-) and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress.

  11. Endothelial remodelling and intracellular calcium machinery.

    Science.gov (United States)

    Moccia, F; Tanzi, F; Munaron, L

    2014-05-01

    Rather being an inert barrier between vessel lumen and surrounding tissues, vascular endothelium plays a key role in the maintenance of cardiovascular homeostasis. The de-endothelialization of blood vessels is regarded as the early event that results in the onset of severe vascular disorders, including atherosclerosis, acute myocardial infarction, brain stroke, and aortic aneurysm. Restoration of the endothelial lining may be accomplished by the activation of neighbouring endothelial cells (ECs) freed by contact inhibition and by circulating endothelial progenitor cells (EPCs). Intracellular Ca(2+) signalling is essential to promote wound healing: however, the molecular underpinnings of the Ca(2+) response to injury are yet to be fully elucidated. Similarly, the components of the Ca(2+) toolkit that drive EPC incorporation into denuded vessels are far from being fully elucidated. The present review will survey the current knowledge on the role of Ca(2+) signalling in endothelial repair and in EPC activation. We propose that endothelial regeneration might be boosted by intraluminal release of specific Ca(2+) channel agonists or by gene transfer strategies aiming to enhance the expression of the most suitable Ca(2+) channels at the wound site. In this view, connexin (Cx) channels/hemichannels and store-operated Ca(2+) entry (SOCE) stand amid the most proper routes to therapeutically induce the regrowth of denuded vessels. Cx stimulation might trigger the proliferative and migratory behaviour of ECs facing the lesion site, whereas activation of SOCE is likely to favour EPC homing to the wounded vessel.

  12. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  13. Gaze beats mouse

    DEFF Research Database (Denmark)

    Mateo, Julio C.; San Agustin, Javier; Hansen, John Paulin

    2008-01-01

    Facial EMG for selection is fast, easy and, combined with gaze pointing, it can provide completely hands-free interaction. In this pilot study, 5 participants performed a simple point-and-select task using mouse or gaze for pointing and a mouse button or a facial-EMG switch for selection. Gaze...

  14. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    Science.gov (United States)

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  15. Discrimination of different brain metastases and primary CNS lymphomas using morphologic criteria and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bette, S.; Wiestler, B.; Huber, T.; Boeckh-Behrens, T.; Zimmer, C.; Kirschke, J. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neuroradiology; Delbridge, C. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neuropathology; Meyer, B.; Gempt, J. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neurosurgery

    2016-12-15

    Brain metastases are a common complication of cancer and occur in about 15-40% of patients with malignancies. The aim of this retrospective study was to differentiate between metastases from different primary tumors/CNS lymphyomas using morphologic criteria, fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Morphologic criteria such as hemorrhage, cysts, pattern of contrast enhancement and location were reported in 200 consecutive patients with brain metastases/primary CNS lymphomas. FA and ADC values were measured in regions of interest (ROIs) placed in the contrast-enhancing tumor part, the necrosis and the non-enhancing peritumoral region (NEPTR). Differences between histopathological subtypes of metastases were analyzed using non-parametric tests, decision trees and hierarchical clustering analysis. Significant differences were found in morphologic criteria such as hemorrhage or pattern of contrast enhancement. In diffusion measurements, significant differences between the different tumor entities were only found in ADC analyzed in the contrast-enhancing tumor part. Among single tumor entities, primary CNS lymphomas showed significantly lower median ADC values in the contrast-enhancing tumor part (ADC{sub lymphoma} 0.92 [0.83-1.07] vs. ADC{sub no} {sub lymphoma} 1.35 [1.10-1.64] P=0.001). Further differentiation between types of metastases was not possible using FA and ADC. There were morphologic differences among the main subtypes of brain metastases/CNS lymphomas. However, due to a high variability of common types of metastases and low specificity, prospective differentiation remained challenging. DTI including FA and ADC was not a reliable tool for differentiation between different histopathological subtypes of brain metastases except for CNS lymphomas showing lower ADC values. Biopsy, surgery and staging remain essential for diagnosis.

  16. SPARC and GluA1-Containing AMPA Receptors Promote Neuronal Health Following CNS Injury

    Directory of Open Access Journals (Sweden)

    Emma V. Jones

    2018-02-01

    Full Text Available The proper formation and maintenance of functional synapses in the central nervous system (CNS requires communication between neurons and astrocytes and the ability of astrocytes to release neuromodulatory molecules. Previously, we described a novel role for the astrocyte-secreted matricellular protein SPARC (Secreted Protein, Acidic and Rich in Cysteine in regulating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs and plasticity at developing synapses. SPARC is highly expressed by astrocytes and microglia during CNS development but its level is reduced in adulthood. Interestingly, SPARC has been shown to be upregulated in CNS injury and disease. However, the role of SPARC upregulation in these contexts is not fully understood. In this study, we investigated the effect of chronic SPARC administration on glutamate receptors on mature hippocampal neuron cultures and following CNS injury. We found that SPARC treatment increased the number of GluA1-containing AMPARs at synapses and enhanced synaptic function. Furthermore, we determined that the increase in synaptic strength induced by SPARC could be inhibited by Philanthotoxin-433, a blocker of homomeric GluA1-containing AMPARs. We then investigated the effect of SPARC treatment on neuronal health in an injury context where SPARC expression is upregulated. We found that SPARC levels are increased in astrocytes and microglia following middle cerebral artery occlusion (MCAO in vivo and oxygen-glucose deprivation (OGD in vitro. Remarkably, chronic pre-treatment with SPARC prevented OGD-induced loss of synaptic GluA1. Furthermore, SPARC treatment reduced neuronal death through Philanthotoxin-433 sensitive GluA1 receptors. Taken together, this study suggests a novel role for SPARC and GluA1 in promoting neuronal health and recovery following CNS damage.

  17. Alcohol intake alters immune responses and promotes CNS viral persistence in mice.

    Science.gov (United States)

    Loftis, Jennifer M; Taylor, Jonathan; Raué, Hans-Peter; Slifka, Mark K; Huang, Elaine

    2016-10-01

    Chronic hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic effects, including central nervous system (CNS) damage and neuropsychiatric impairments. Alcohol abuse can exacerbate these adverse effects on brain and behavior, but the molecular mechanisms are not well understood. This study investigated the role of alcohol in regulating viral persistence and CNS immunopathology in mice infected with lymphocytic choriomeningitis virus (LCMV), a model for HCV infections in humans. Female and male BALB/c mice (n=94) were exposed to alcohol (ethanol; EtOH) and water (or water only) using a two-bottle choice paradigm, followed one week later by infection with either LCMV clone 13 (causes chronic infection similar to chronic HCV), LCMV Armstrong (causes acute infection), or vehicle. Mice were monitored for 60days post-infection and continued to receive 24-h access to EtOH and water. Animals infected with LCMV clone 13 drank more EtOH, as compared to those with an acute or no viral infection. Six weeks after infection with LCMV clone 13, mice with EtOH exposure evidenced higher serum viral titers, as compared to mice without EtOH exposure. EtOH intake was also associated with reductions in virus-specific CD8(+) T cell frequencies (particularly CD11a(hi) subsets) and evidence of persistent CNS viremia in chronically infected mice. These findings support the hypothesis that EtOH use and chronic viral infection can result in combined toxic effects accelerating CNS damage and neuropsychiatric dysfunction and suggest that examining the role of EtOH in regulating viral persistence and CNS immunopathology in mice infected with LCMV can lead to a more comprehensive understanding of comorbid alcohol use disorder and chronic viral infection. Published by Elsevier B.V.

  18. Ketamine displaces the novel NMDA receptor SPET probe [123I]CNS-1261 in humans in vivo

    International Nuclear Information System (INIS)

    Stone, James M.; Erlandsson, Kjell; Arstad, Erik; Bressan, Rodrigo A.; Squassante, Lisa; Teneggi, Vincenza; Ell, Peter J.; Pilowsky, Lyn S.

    2006-01-01

    [ 123 I]CNS-1261 [N-(1-naphthyl)-N'-(3-iodophenyl)-N-methylguanidine] is a high-affinity SPET ligand with selectivity for the intrachannel PCP/ketamine/MK-801 site of the N-methyl-D-aspartate (NMDA) receptor. This study evaluated the effects of ketamine (a specific competitor for the intrachannel PCP/ketamine/MK-801 site) on [ 123 I]CNS-1261 binding to NMDA receptors in vivo. Ten healthy volunteers underwent 2 bolus-plus-infusion [ 123 I]CNS-1261 scans, one during placebo and the other during a ketamine challenge. Ketamine administration led to a significant decrease in [ 123 I]CNS-1261 V T in most of the brain regions examined (P 123 I]CNS-1261 appears to be a specific ligand in vivo for the intrachannel PCP/ketamine/MK-801 NMDA binding site

  19. Ketamine displaces the novel NMDA receptor SPET probe [{sup 123}I]CNS-1261 in humans in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Stone, James M. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom)]. E-mail: j.stone@iop.kcl.ac.uk; Erlandsson, Kjell [Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom); Arstad, Erik [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Bressan, Rodrigo A. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Squassante, Lisa [GlaxoSmithKline (GSK), Verona 37135 (Italy); Teneggi, Vincenza [GlaxoSmithKline (GSK), Verona 37135 (Italy); Ell, Peter J. [Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom); Pilowsky, Lyn S. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom)

    2006-02-15

    [{sup 123}I]CNS-1261 [N-(1-naphthyl)-N'-(3-iodophenyl)-N-methylguanidine] is a high-affinity SPET ligand with selectivity for the intrachannel PCP/ketamine/MK-801 site of the N-methyl-D-aspartate (NMDA) receptor. This study evaluated the effects of ketamine (a specific competitor for the intrachannel PCP/ketamine/MK-801 site) on [{sup 123}I]CNS-1261 binding to NMDA receptors in vivo. Ten healthy volunteers underwent 2 bolus-plus-infusion [{sup 123}I]CNS-1261 scans, one during placebo and the other during a ketamine challenge. Ketamine administration led to a significant decrease in [{sup 123}I]CNS-1261 V {sub T} in most of the brain regions examined (P<.05). [{sup 123}I]CNS-1261 appears to be a specific ligand in vivo for the intrachannel PCP/ketamine/MK-801 NMDA binding site.

  20. Polychlorinated biphenyl-induced VCAM-1 expression is attenuated in aortic endothelial cells isolated from caveolin-1 deficient mice

    International Nuclear Information System (INIS)

    Han, Sung Gu; Eum, Sung Yong; Toborek, Michal; Smart, Eric; Hennig, Bernhard

    2010-01-01

    Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of cardiovascular diseases such as atherosclerosis. Vascular cell adhesion molecule-1 (VCAM-1) is a critical mediator for adhesion and uptake of monocytes across the endothelium in the early stages of atherosclerosis development. The upregulation of VCAM-1 by PCBs may be dependent on functional membrane domains called caveolae. Caveolae are particularly abundant in endothelial cell membranes and involved in trafficking and signal transduction. The objective of this study was to investigate the role of caveolae in PCB-induced endothelial cell dysfunction. Primary mouse aortic endothelial cells (MAECs) isolated from caveolin-1-deficient mice and background C57BL/6 mice were treated with coplanar PCBs, such as PCB77 and PCB126. In addition, siRNA gene silencing technique was used to knockdown caveolin-1 in porcine vascular endothelial cells. In MAECs with functional caveolae, VCAM-1 protein levels were increased after exposure to both coplanar PCBs, whereas expression levels of VCAM-1 were not significantly altered in cells deficient of caveolin-1. Furthermore, PCB-induced monocyte adhesion was attenuated in caveolin-1-deficient MAECs. Similarly, siRNA silencing of caveolin-1 in porcine endothelial cells confirmed the caveolin-1-dependent VCAM-1 expression. Treatment of cells with PCB77 and PCB126 resulted in phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2), and pharmacological inhibition of ERK1/2 diminished the observed PCB-induced increase in monocyte adhesion. These findings suggest that coplanar PCBs induce adhesion molecule expression, such as VCAM-1, in endothelial cells, and that this response is regulated by caveolin-1 and functional caveolae. Our data demonstrate a critical role of functional caveolae in the activation and dysfunction of endothelial cells by coplanar PCBs.

  1. A novel three-dimensional system to study interactions between endothelial cells and neural cells of the developing central nervous system

    Directory of Open Access Journals (Sweden)

    Milner Richard

    2007-01-01

    Full Text Available Abstract Background During angiogenesis in the developing central nervous system (CNS, endothelial cells (EC detach from blood vessels growing on the brain surface, and migrate into the expanding brain parenchyma. Brain angiogenesis is regulated by growth factors and extracellular matrix (ECM proteins secreted by cells of the developing CNS. In addition, recent evidence suggests that EC play an important role in establishing the neural stem cell (NSC niche. Therefore, two-way communication between EC and neural cells is of fundamental importance in the developing CNS. To study the interactions between brain EC and neural cells of the developing CNS, a novel three-dimensional (3-D murine co-culture system was developed. Fluorescent-labelled brain EC were seeded onto neurospheres; floating cellular aggregates that contain NSC/neural precursor cells (NPC and smaller numbers of differentiated cells. Using this system, brain EC attachment, survival and migration into neurospheres was evaluated and the role of integrins in mediating the early adhesive events addressed. Results Brain EC attached, survived and migrated deep into neurospheres over a 5-day period. Neurospheres express the ECM proteins fibronectin and laminin, and brain EC adhesion to neurospheres was inhibited by RGD peptides and antibodies specific for the β1, but not the α6 integrin subunit. Conclusion A novel 3-D co-culture system for analysing the interactions between EC and neural cells of the developing CNS is presented. This system could be used to investigate the reciprocal influence of EC and NSC/NPC; to examine how NSC/NPC influence cerebral angiogenesis, and conversely, to examine how EC regulate the maintenance and differentiation of NSC/NPC. Using this system it is demonstrated that EC attachment to neurospheres is mediated by the fibronectin receptor, α5β1 integrin.

  2. Ultrastructural study of Rift Valley fever virus in the mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E. [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States); Smith, Darci R., E-mail: darci.smith1@us.army.mil [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States)

    2012-09-15

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.

  3. Ultrastructural study of Rift Valley fever virus in the mouse model

    International Nuclear Information System (INIS)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E.; Smith, Darci R.

    2012-01-01

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV–host interactions and further characterize the mouse model of RVF.

  4. Reduced Ang2 expression in aging endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ebenbauer, B. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Kaun, C.; Maurer, G. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Huber, K. [Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); 3rd Medical Department, Wilhelminenhospital, Vienna (Austria); Sigmund Freud University, Medical Faculty, Vienna (Austria); Wojta, J. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Core Facilities, Medical University of Vienna, Vienna (Austria)

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  5. Reduced Ang2 expression in aging endothelial cells

    International Nuclear Information System (INIS)

    Hohensinner, P.J.; Ebenbauer, B.; Kaun, C.; Maurer, G.; Huber, K.; Wojta, J.

    2016-01-01

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  6. [The role of endothelial cells and endothelial precursor cells in angiogenesis].

    Science.gov (United States)

    Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz

    2006-01-01

    Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.

  7. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhang, Yanlin; Guan, Li; Yu, Jie; Zhao, Zanmei; Mao, Lijun; Li, Shuqiang; Zhao, Jinyuan

    2016-11-21

    During the acute respiratory distress syndrome (ARDS), neutrophils play a central role in the pathogenesis, and their activation requires interaction with the endothelium. Extracellular histones have been recognized as pivotal inflammatory mediators. This study was to investigate the role of pulmonary endothelial activation during the extracellular histone-induced inflammatory response in ARDS. ARDS was induced in male C57BL/6 mice by intravenous injection with lipopolysaccharide (LPS) or exogenous histones. Concurrent with LPS administration, anti-histone H4 antibody (anti-H4) or non-specific IgG was administered to study the role of extracellular histones. The circulating von Willebrand factor (vWF) and soluble thrombomodulin (sTM) were measured with ELISA kits at the preset time points. Myeloperoxidase (MPO) activity in lung tissue was measured with a MPO detection kit. The translocation of P-selectin and neutrophil infiltration were measured by immunohistochemical detection. For in vitro studies, histone H4 in the supernatant of mouse lung vascular endothelial cells (MLVECs) was measured by Western blot. The binding of extracellular histones with endothelial membrane was examined by confocal laser microscopy. Endothelial P-selectin translocation was measured by cell surface ELISA. Adhesion of neutrophils to MLVECs was assessed with a color video digital camera. The results showed that during LPS-induced ARDS extracellular histones caused endothelial and neutrophil activation, as seen by P-selectin translocation, release of vWF, an increase of circulating sTM, lung neutrophil infiltration and increased MPO activity. Extracellular histones directly bound and activated MLVECs in a dose-dependent manner. On the contrary, the direct stimulatory effect of exogenous histones on neutrophils was very limited, as measured by neutrophil adhesion and MPO activity. With the contribution of activated endothelium, extracellular histones could effectively activating

  8. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  9. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Joseph L Mankowski

    Full Text Available Human immunodeficiency virus (HIV infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS disease using a well-characterized simian immunodeficiency (SIV/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5. Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001. Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.

  10. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study.

    Science.gov (United States)

    de Almeida, Sergio M; Rotta, Indianara; Ribeiro, Clea E; Oliveira, Michelli F; Chaillon, Antoine; de Pereira, Ana Paula; Cunha, Ana Paula; Zonta, Marise; Bents, Joao França; Raboni, Sonia M; Smith, Davey; Letendre, Scott; Ellis, Ronald J

    2017-06-01

    Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.

  11. The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury

    Science.gov (United States)

    Forbes, Lindsey H.

    2018-01-01

    The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554

  12. Dietary phosphorus acutely impairs endothelial function.

    Science.gov (United States)

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  13. Transport of lipoprotein lipase across endothelial cells

    International Nuclear Information System (INIS)

    Saxena, U.; Klein, M.G.; Goldberg, I.J.

    1991-01-01

    Lipoprotein lipase (LPL), synthesized in muscle and fat, hydrolyzes plasma triglycerides primarily while bound to luminal endothelial cell surfaces. To obtain information about the movement of LPL from the basal to the luminal endothelial cell surface, the authors studied the transport of purified bovine milk LPL across bovine aortic endothelial cell monolayers. 125 I-labeled LPL ( 125 I-LPL) added to the basal surface of the monolayers was detected on the apical side of the cells in two compartments: (1) in the medium of the upper chamber, and (2) bound to the apical cell surface. The amount of 125 I-LPL on the cell surface, but not in the medium, reached saturation with time and LPL dose. Catalytically active LPL was transported to the apical surface but very little LPL activity appeared in the medium. Heparinase treatment of the basal cell surface and addition of dextran sulfate to the lower chamber decreased the amount of 125 I-LPL appearing on the apical surface. Similarly, the presence of increasing molar ratios of oleic acid/bovine serum albumin at the basal surface decreased the transport of active LPL across the monolayer. Thus, a saturable transport system, which requires haparan sulfate proteoglycans and is inhibited by high concentrations of free fatty acids on the basal side of the cells, appears to exist for passage of enzymatically active LPL across endothelial cells. They postulate that regulation of LPL transport to the endothelial luminal surface modulates the physiologically active pool of LPL in vivo

  14. Organotypic Cultures as a Model to Study Adult Neurogenesis in CNS Disorders

    Directory of Open Access Journals (Sweden)

    Fabio Cavaliere

    2016-01-01

    Full Text Available Neural regeneration resides in certain specific regions of adult CNS. Adult neurogenesis occurs throughout life, especially from the subgranular zone of hippocampus and the subventricular zone, and can be modulated in physiological and pathological conditions. Numerous techniques and animal models have been developed to demonstrate and observe neural regeneration but, in order to study the molecular and cellular mechanisms and to characterize multiple types of cell populations involved in the activation of neurogenesis and gliogenesis, investigators have to turn to in vitro models. Organotypic cultures best recapitulate the 3D organization of the CNS and can be explored taking advantage of many techniques. Here, we review the use of organotypic cultures as a reliable and well defined method to study the mechanisms of neurogenesis under normal and pathological conditions. As an example, we will focus on the possibilities these cultures offer to study the pathophysiology of diseases like Alzheimer disease, Parkinson’s disease, and cerebral ischemia.

  15. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    Science.gov (United States)

    Owens, T; Renno, T; Taupin, V; Krakowski, M

    1994-12-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.

  16. The imaging appearances of intracranial CNS infections in adult HIV and AIDS patients

    Energy Technology Data Exchange (ETDEWEB)

    Offiah, C.E. [Department of Neuroradiology, Hope Hospital, Stott Lane, Salford, Manchester (United Kingdom)]. E-mail: chockycj@yahoo.co.uk; Turnbull, I.W. [Department of Neuroradiology, Hope Hospital, Stott Lane, Salford, Manchester (United Kingdom)

    2006-05-15

    The spectrum of pathology affecting the central nervous system (CNS) in patients suffering from acquired immunodeficiency syndrome (AIDS) is broad and comprises predominantly opportunistic infections and neoplasms. It is estimated that approximately one-third of all patients with AIDS develop neurological complications. The organisms responsible for AIDS are human retroviruses: primarily the human immunodeficiency virus type 1 (HIV). In this review we shall focus on the neurological complications of HIV and AIDS which are applicable to the more frequently occurring intracranial infective organisms. Attention will be paid specifically to those CNS manifestations occurring in the adult HIV and AIDS population as infection in the paediatric HIV and AIDS group, although bearing some similarities, demonstrates some important differences.

  17. Peroxisome Proliferator-Activated Receptors (PPARs as Potential Inducers of Antineoplastic Effects in CNS Tumors

    Directory of Open Access Journals (Sweden)

    Lars Tatenhorst

    2008-01-01

    Full Text Available The peroxisome proliferator-activated receptors (PPARs are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS. The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy.

  18. The glymphatic system in CNS health and disease: past, present and future

    Science.gov (United States)

    Plog, Benjamin A.; Nedergaard, Maiken

    2018-01-01

    The central nervous system (CNS) is unique in being the only organ system lacking lymphatic vessels to assist in the removal of interstitial metabolic waste products. Recent work has led to the discovery of the glymphatic system, a glial-dependent perivascular network that subserves a pseudo-lymphatic function in the brain. Within the glymphatic pathway, cerebrospinal fluid (CSF) enters brain via periarterial spaces, passes into the interstitium via perivascular astrocytic aquaporin-4, and then drives the perivenous drainage of interstitial fluid (ISF) and its solute. Here we review the role of the glymphatic pathway in CNS physiology, factors known to regulate glymphatic flow, and pathologic processes where a breakdown of glymphatic CSF-ISF exchange has been implicated in disease initiation and progression. Important areas of future research, including manipulation of glymphatic activity aiming to improve waste clearance and therapeutic agent delivery, will also be discussed. PMID:29195051

  19. The imaging appearances of intracranial CNS infections in adult HIV and AIDS patients

    International Nuclear Information System (INIS)

    Offiah, C.E.; Turnbull, I.W.

    2006-01-01

    The spectrum of pathology affecting the central nervous system (CNS) in patients suffering from acquired immunodeficiency syndrome (AIDS) is broad and comprises predominantly opportunistic infections and neoplasms. It is estimated that approximately one-third of all patients with AIDS develop neurological complications. The organisms responsible for AIDS are human retroviruses: primarily the human immunodeficiency virus type 1 (HIV). In this review we shall focus on the neurological complications of HIV and AIDS which are applicable to the more frequently occurring intracranial infective organisms. Attention will be paid specifically to those CNS manifestations occurring in the adult HIV and AIDS population as infection in the paediatric HIV and AIDS group, although bearing some similarities, demonstrates some important differences

  20. Commercial viability of CNS drugs: balancing the risk/reward profile.

    Science.gov (United States)

    Johnson, Ginger S

    2014-01-01

    CNS has historically been a formidable therapeutic area in which to innovate owing to biological (e.g., complex neurobiology, difficulty reaching the target), as well as clinical (e.g., subjective clinical endpoints, high placebo response, lack of biomarkers) challenges. In the current market where many of the larger diseases are dominated by a generic standard of care, commercial challenges now make the triple threat of scientific-clinical-commercial risk too much for many players to tackle. However, opportunities do exist for smaller biotech companies to concentrate on narrowly focused patient populations associated with high unmet need for which risk can be tightly defined. In CNS, there are two major areas to balance the risk/reward profile and create commercially viable opportunities: To realize value, all companies (start-ups and big players) must define, measure and quantify clear and meaningful value to all stakeholders: physicians, patients, caregivers and payers. © 2013.

  1. Evaluation of CNS activities of aerial parts of Cynodon dactylon Pers. in mice.

    Science.gov (United States)

    Pal, Dilipkumar

    2008-01-01

    The dried extracts of aerial parts of Cynodon dactylon Pers. (Graminae) were evaluated for CNS activities in mice. The ethanol extract of aerial parts of C. dactylon (EECD) was found to cause significant depression in general behavioral profiles in mice. EECD significantly potentiated the sleeping time in mice induced by standard hypnotics viz. pentobarbitone sodium, diazepam, and meprobamate in a dose dependant manner. EECD showed significant analgesic properties as evidenced by the significant reduction in the number of writhes and stretches induced in mice by 1.2% acetic acid solution. It also potentiated analgesia induced by morphine and pethidine in mice. EECD inhibited the onset and the incidence of convulsion in a dose dependent manner against pentylenetetrazole (PTZ)-induced convulsion. The present study indicates that EECD has significant CNS depressant activities.

  2. CNS manifestation in progressive facial hemiatrophy (Romberg's disease). MRI findings and review of the literature

    International Nuclear Information System (INIS)

    Terstegge, K.; Henkes, H.; Kern, A.

    1993-01-01

    In this article the authors describe the clinical and MR imaging findings of the CNS in three female patients with PFH and present a comprehensive review of the literature. One of three PFH patients had partial epilepsy. MRI showed ventricular enlargement, white matter lesions, flattening of the cortical surface and meningeal adhesions homolateral to the facial hemiatrophy. Two other patients had completely normal intracranial findings. These findings confirm that cerebral hemiatrophy can occur in a subgroup of PFH patients. The MRI pattern, however, does not seem to be consistent with a simple atrophic or malnutrition process. The authors consider chronic localized meningoencephalitis with vascular involvement as a possible underlying mechanism for the occasional CNS involvement in PFH. (orig./MG) [de

  3. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  4. Mouse Phenome Database (MPD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mouse Phenome Database (MPD) has characterizations of hundreds of strains of laboratory mice to facilitate translational discoveries and to assist in selection...

  5. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    Science.gov (United States)

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  6. Metastatic Ewing's sarcoma to the skull: CNS involvement excluded by MRI

    International Nuclear Information System (INIS)

    Taets ven Amerongen, A.H.M.; Kaiser, M.C.; Waal, F.C. de

    1987-01-01

    A case of metastatic Ewing's sarcoma to the skull is presented, demonstrating the superiority of magnetic resonance imaging over other imaging modalities to exclude CNS involvement. Precise delineation of different tumor components in extradural location contained in an intact dural rim together with compressed cortex showing no signs of tumorous involvement constituted an MRI appearance allowing us to exclude tumor outgrowth into the brain. (orig.)

  7. Rotorcraft Low Altitude CNS (Communications, Navigation and Surveillance) Benefit/Cost Analysis, Rotorcraft Operations Data

    Science.gov (United States)

    1989-09-01

    inventory of rotorcraft activity by mission and location. 17. Key Words 18. Distribution Statement Helicopter Helicopter Missions This document is available...helicopter is used to transport skiers /hikers to remote, normally inaccessible places. This mission is performed in rural or wilderness areas at altitudes...their applicability to the CNS benefit/cost analysis. Because of the uncertainty in the knowledge of the characteristics of both current and future

  8. Metastatic Ewing's sarcoma to the skull: CNS involvement excluded by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Taets ven Amerongen, A.H.M.; Kaiser, M.C.; Waal, F.C. de

    1987-03-01

    A case of metastatic Ewing's sarcoma to the skull is presented, demonstrating the superiority of magnetic resonance imaging over other imaging modalities to exclude CNS involvement. Precise delineation of different tumor components in extradural location contained in an intact dural rim together with compressed cortex showing no signs of tumorous involvement constituted an MRI appearance allowing us to exclude tumor outgrowth into the brain.

  9. BOBATH THERAPY IN CORRECTION OF PSYCHOMOTOR DEVELOPMENT OF CHILDREN WITH ORGANIC INJURIES CNS

    OpenAIRE

    Bukhovets, B. O.; Romanchuk, A. P.

    2014-01-01

    The article represents therapy of Bobath such as one of the most effective author method which use in correction psychomotor development of children with disorders of musculoskeletal system. Bobath method is not new in the correction of movement disorders since last century and still supplementing and improving. In this work highlight topic of the effective use Bobath therapy in correction of psychomotor development in children age 3 – 6 years with organic involvement CNS. the experiment w...

  10. The glymphatic system in CNS health and disease: past, present and future

    OpenAIRE

    Plog, Benjamin A.; Nedergaard, Maiken

    2018-01-01

    The central nervous system (CNS) is unique in being the only organ system lacking lymphatic vessels to assist in the removal of interstitial metabolic waste products. Recent work has led to the discovery of the glymphatic system, a glial-dependent perivascular network that subserves a pseudo-lymphatic function in the brain. Within the glymphatic pathway, cerebrospinal fluid (CSF) enters brain via periarterial spaces, passes into the interstitium via perivascular astrocytic aquaporin-4, and th...

  11. Nanomaterials for delivery of nucleic acid to the central nervous system (CNS)

    DEFF Research Database (Denmark)

    Wang, Danyang; Wu, Lin-Ping

    2017-01-01

    -related disease, such as neurodegeneration and disorders, suitable, safe and effective drug delivery nanocarriers have to been developed to overcome the blood brain barrier (BBB), which is the most inflexible barrier in human body. Here, we highlight the structure and function of barriers in the central nervous...... system (CNS) and summary several types of nanomaterials which can be potentially used in the brain delivery nucleic acid....

  12. Prospective evaluation of delayed central nervous system (CNS) toxicity of hyperfractionated total body irradiation (TBI)

    International Nuclear Information System (INIS)

    Wenz, Frederik; Steinvorth, Sarah; Lohr, Frank; Fruehauf, Stefan; Wildermuth, Susanne; Kampen, Michael van; Wannenmacher, Michael

    2000-01-01

    Purpose: Prospective evaluation of chronic radiation effects on the healthy adult brain using neuropsychological testing of intelligence, attention, and memory. Methods and Materials: 58 patients (43 ± 10 yr) undergoing hyperfractionated total body irradiation (TBI) (TBI, 14.4 Gy, 12 x 1.2 Gy in 4 days) before bone marrow or peripheral blood stem cell transplantation were prospectively included. Twenty-one recurrence-free long-term survivors were re-examined 6-36 months (median 27 months) after completion of TBI. Neuropsychological testing included assessment of general intelligence, attention, and memory using normative, standardized psychometric tests. Mood status was controlled, as well. Test results are given as IQ scores (population mean 100) or percentiles for attention and memory (population mean 50). Results: The 21 patients showed normal baseline test results of IQ (101 ± 13) and attention (53 ± 28), with memory test scores below average (35 ± 21). Test results of IQ (98 ± 17), attention (58 ± 27), and memory (43 ± 28) showed no signs of clinically measurable radiation damage to higher CNS (central nervous system) functions during the follow-up. The mood status was improved. Conclusion: The investigation of CNS toxicity after hyperfractionated TBI showed no deterioration of test results in adult recurrence-free patients with tumor-free CNS. The median follow-up of 27 months will be extended.

  13. Decreased Cognitive/CNS Function in Young Adults at Risk for Hypertension: Effects of Sleep Deprivation

    Directory of Open Access Journals (Sweden)

    James A. McCubbin

    2012-01-01

    Full Text Available Hypertension has been linked to impaired cognitive/CNS function, and some of these changes may precede development of frank essential hypertension. The stress and fatigue of sleep deprivation may exacerbate these cognitive changes in young adults at risk. We hypothesize that individuals at risk for hypertension will show significant declines in cognitive function during a night of sleep deprivation. Fifty-one young adults were recruited for 28-hour total sleep deprivation studies. Hypertension risk was assessed by mildly elevated resting blood pressure and by family history of hypertension. A series of cognitive memory tasks was given at four test sessions across the sleep deprivation period. Although initially comparable in cognitive performance, persons at risk showed larger declines across the night for several indices of working memory, including code substitution, category, and order recall. These results suggest that cognitive/CNS changes may parallel or precede blood pressure dysregulation in the early stages of hypertension development. The role of CNS changes in the etiology of essential hypertension is discussed.

  14. Developmental hyperoxia alters CNS mechanisms underlying hypoxic ventilatory depression in neonatal rats.

    Science.gov (United States)

    Hill, Corey B; Grandgeorge, Samuel H; Bavis, Ryan W

    2013-12-01

    Newborn mammals exhibit a biphasic hypoxic ventilatory response (HVR), but the relative contributions of carotid body-initiated CNS mechanisms versus central hypoxia on ventilatory depression during the late phase of the HVR are not well understood. Neonatal rats (P4-5 or P13-15) were treated with a nonselective P2 purinergic receptor antagonist (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, or PPADS; 125mgkg(-1), i.p.) to pharmacologically denervate the peripheral chemoreceptors. At P4-5, rats reared in normoxia showed a progressive decline in ventilation during a 10-min exposure to 12% O2 (21-28% decrease from baseline). No hypoxic ventilatory depression was observed in the older group of neonatal rats (i.e., P13-15), suggesting that the contribution of central hypoxia to hypoxic ventilatory depression diminishes with age. In contrast, rats reared in moderate hyperoxia (60% O2) from birth exhibited no hypoxic ventilatory depression at either age studied. Systemic PPADS had no effect on the ventilatory response to 7% CO2, suggesting that the drug did not cross the blood-brain barrier. These findings indicate that (1) CNS hypoxia depresses ventilation in young, neonatal rats independent of carotid body activation and (2) hyperoxia alters the development of CNS pathways that modulate the late phase of the hypoxic ventilatory response. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Kif13b Regulates PNS and CNS Myelination through the Dlg1 Scaffold.

    Directory of Open Access Journals (Sweden)

    Roberta Noseda

    2016-04-01

    Full Text Available Microtubule-based kinesin motors have many cellular functions, including the transport of a variety of cargos. However, unconventional roles have recently emerged, and kinesins have also been reported to act as scaffolding proteins and signaling molecules. In this work, we further extend the notion of unconventional functions for kinesin motor proteins, and we propose that Kif13b kinesin acts as a signaling molecule regulating peripheral nervous system (PNS and central nervous system (CNS myelination. In this process, positive and negative signals must be tightly coordinated in time and space to orchestrate myelin biogenesis. Here, we report that in Schwann cells Kif13b positively regulates myelination by promoting p38γ mitogen-activated protein kinase (MAPK-mediated phosphorylation and ubiquitination of Discs large 1 (Dlg1, a known brake on myelination, which downregulates the phosphatidylinositol 3-kinase (PI3K/v-AKT murine thymoma viral oncogene homolog (AKT pathway. Interestingly, Kif13b also negatively regulates Dlg1 stability in oligodendrocytes, in which Dlg1, in contrast to Schwann cells, enhances AKT activation and promotes myelination. Thus, our data indicate that Kif13b is a negative regulator of CNS myelination. In summary, we propose a novel function for the Kif13b kinesin in glial cells as a key component of the PI3K/AKT signaling pathway, which controls myelination in both PNS and CNS.

  16. Optimization of dipeptidic inhibitors of cathepsin L for improved Toxoplasma gondii selectivity and CNS permeability.

    Science.gov (United States)

    Zwicker, Jeffery D; Diaz, Nicolas A; Guerra, Alfredo J; Kirchhoff, Paul D; Wen, Bo; Sun, Duxin; Carruthers, Vern B; Larsen, Scott D

    2018-06-01

    The neurotropic protozoan Toxoplasma gondii is the second leading cause of death due to foodborne illness in the US, and has been designated as one of five neglected parasitic infections by the Center for Disease Control and Prevention. Currently, no treatment options exist for the chronic dormant-phase Toxoplasma infection in the central nervous system (CNS). T. gondii cathepsin L (TgCPL) has recently been implicated as a novel viable target for the treatment of chronic toxoplasmosis. In this study, we report the first body of SAR work aimed at developing potent inhibitors of TgCPL with selectivity vs the human cathepsin L. Starting from a known inhibitor of human cathepsin L, and guided by structure-based design, we were able to modulate the selectivity for Toxoplasma vs human CPL by nearly 50-fold while modifying physiochemical properties to be more favorable for metabolic stability and CNS penetrance. The overall potency of our inhibitors towards TgCPL was improved from 2 μM to as low as 110 nM and we successfully demonstrated that an optimized analog 18b is capable of crossing the BBB (0.5 brain/plasma). This work is an important first step toward development of a CNS-penetrant probe to validate TgCPL as a feasible target for the treatment of chronic toxoplasmosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. BRAINSTEM AUDITORY EVOKED POTENTIAL AS AN INDEX OF CNS DEMYELINATION IN GUILLAIN -BARRÉ SYNDROME (GBS

    Directory of Open Access Journals (Sweden)

    Smita Singh

    2016-01-01

    Full Text Available Background: Guillain-Barré Syndrome (GBS is an acute, frequently severe and fulminant polyradicular neuropathy that is autoimmune in nature. GBS manifest as rapidly evolving areflexic motor paralysis with or without sensory disturbances. It mainly involves peripheral nervous system and autonomic nervous system. There are rare evidences about the involvement of central nervous system (CNS in GBS. Aims: The main objective of the study was to assess the CNS involvement in GBS using the Brainstem Auditory Evoked Potential (BAEP. Methods & Material: The study was conducted in the clinical neurophysiology lab in the department of physiology, CSMMU Lucknow. Study group involved 26 subjects (n=26 having GBS and control group involved 30 normal subjects (n=30. BAEPS were recorded by Neuroperfect- EMG 2000 EMG/NCV/EPsytem. The data so obtained were subjected to analysis using Statistical Package for Social Sciences (SPSS Version 13.0. Results & Conclusions: There was significant increase in PIII & PV peak latencies and PI-PIII & PI-PV interpeak latencies in both left and right ear in the study group, which showed the CNS involvement in GBS which can be assessed using BAEP.

  18. Curcumin modulates endothelial permeability and monocyte transendothelial migration by affecting endothelial cell dynamics.

    Science.gov (United States)

    Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan

    2017-11-01

    Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Valerie E. Ryman

    2016-01-01

    Full Text Available Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1 metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE, can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE, is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  20. Qidantongmai Protects Endothelial Cells Against Hypoxia-Induced ...

    African Journals Online (AJOL)

    induced damage. The ability of QDTM to modulate the serum VEGF-A level may play an important role in its effects on endothelial cells. Key words: Traditional Chinese Medicine, human umbilical vein endothelial cells, hypoxia, VEGF ...

  1. Loss of CD34 expression in aging human choriocapillaris endothelial cells.

    Directory of Open Access Journals (Sweden)

    Elliott H Sohn

    Full Text Available Structural and gene expression changes in the microvasculature of the human choroid occur during normal aging and age-related macular degeneration (AMD. In this study, we sought to determine the impact of aging and AMD on expression of the endothelial cell glycoprotein CD34. Sections from 58 human donor eyes were categorized as either young (under age 40, age-matched controls (> age 60 without AMD, or AMD affected (>age 60 with early AMD, geographic atrophy, or choroidal neovascularization. Dual labeling of sections with Ulex europaeus agglutinin-I lectin (UEA-I and CD34 antibodies was performed, and the percentage of capillaries labeled with UEA-I but negative for anti-CD34 was determined. In addition, published databases of mouse and human retinal pigment epithelium-choroid were evaluated and CD34 expression compared between young and old eyes. Immunohistochemical studies revealed that while CD34 and UEA-I were colocalized in young eyes, there was variable loss of CD34 immunoreactivity in older donor eyes. While differences between normal aging and AMD were not significant, the percentage of CD34 negative capillaries in old eyes, compared to young eyes, was highly significant (p = 3.8×10(-6. Endothelial cells in neovascular membranes were invariably CD34 positive. Published databases show either a significant decrease in Cd34 (mouse or a trend toward decreased CD34 (human in aging. These findings suggest that UEA-I and endogenous alkaline phosphatase activity are more consistent markers of aging endothelial cells in the choroid, and suggest a possible mechanism for the increased inflammatory milieu in the aging choroid.

  2. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, Brian C., E-mail: briancstagg@gmail.com; Uehara, Hironori; Lambert, Nathan; Rai, Ruju; Gupta, Isha; Radmall, Bryce; Bates, Taylor; Ambati, Balamurali K. [John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132 (United States)

    2014-11-26

    Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.

  3. Early wound site seeding in a patient with CNS high-grade neuroepithelial tumor with BCOR alteration: A case report.

    Science.gov (United States)

    Kirkman, Matthew A; Pickles, Jessica C; Fairchild, Amy R; Avery, Aimee; Pietsch, Torsten; Jacques, Thomas S; Aquilina, Kristian

    2018-05-30

    Advances in molecular profiling have facilitated the emergence of newly defined entities of central nervous system tumor, including CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR). Relatively little is known about the clinical behaviour of these newly-characterized tumors. We describe a pediatric male patient with CNS HGNET-BCOR who developed seeding of the tumor into the site of the surgical wound within months of surgery for resection of a residual posterior fossa tumor. This case emphasises three important points. First, CNS HGNET-BCOR can be aggressive tumors that necessitate close clinical and radiological surveillance. Second, surveillance imaging in such cases should incorporate the surgical incision site into the field of view, and this should be closely scrutinised to ensure the timely detection of wound site seeding. Third, wound site seeding may still occur despite the use of meticulous surgical techniques. Copyright © 2018. Published by Elsevier Inc.

  4. Cellular adhesion molecules on endothelial cells participate in radiation-mediated inflammation

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Clark, Elizabeth T.; Kuchibhotla, Jaya; Gewertz, Bruce L.

    1995-01-01

    Purpose: The acute and subacute clinical manifestations of ionizing radiation mimic the inflammatory response to a number of stimuli. During the early stages of the inflammatory response, endothelial cells rapidly and transiently express a number of glycoproteins such as E-selectin, P-selectin, ICAM-1 and VCAM-1 which influence leucocyte adhesion. We quantified the expression of these cellular adhesion molecules (CAMs) in irradiated endothelial cells in order to determine whether these glycoproteins participate in radiation-mediated inflammation. Methods: Primary cultures of human umbilical vein endothelial cells (HUVEC) and HMEC cells were grown to 90% confluence and irradiated with a GE Maxitron x-ray generator. The cells were incubated with primary IgG1 antibody (mouse anti-human ICAM-1, VCAM-1, P-selectin and E-selectin and incubated with FITC-conjugated secondary antibody (goat anti-mouse IgG1). Fluorescence-activated cell sorting (FACS) analysis was utilized for quantitation of receptor expression of each CAM on irradiated endothelial cells. Electrophoretic mobility gel shift assays of nuclear protein extracts from irradiated HUVEC cells were performed using the E-selectin NFkB binding sequence (5'AGCTTAGAGGGGATTTCCGAGAGGA-3'). The E-selectin promoter was ligated to the growth hormone reporter. Plasmids pE-sel(-587 +35)GH or pE-sel(-587 +35)GH Δ NFκB (5 μg) was transfected into HMEC or HUVEC cells by use of lipofection. Transfectants were incubated for 16 h after transfection followed by treatment with 10 Gy (1 Gy/min, GE Maxitron) of ionizing radiation, and or with TNF or IL-1. Leukocyte adhesion to irradiated endothelial cells was quantified by HL-60 binding. Results: The log fluorescence of cells incubated with the antibody to E-selectin shifted by 32% at 4 h after irradiation. In comparison, a shift of 35% occurred 20 h after irradiation for cells incubated with the antibody to ICAM. However, there was no significant increase in P-selectin or VCAM

  5. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  6. Endothelial dysfunction – A predictor of atherosclerosis | Chhabra ...

    African Journals Online (AJOL)

    Endothelial dysfunction is a systemic disorder and a critical element in the pathogenesis of atherosclerotic diseases and its complications. Growing evidences suggest that the individual burden of currently known cardiovascular risk factors is not the only determinant of endothelial function; rather endothelial integrity ...

  7. Systemic high-dose methotrexate plus ifosfamide is highly effective for central nervous system (CNS) involvement of lymphoma

    OpenAIRE

    2008-01-01

    Abstract Patients with malignant central nervous system (CNS) involvement of lymphoma have a poor prognosis with intrathecal chemotherapy and radiation. In this paper, we report the results we obtained in such patients by intravenous chemotherapy with high-dose methotrexate and ifosfamide (HDMTX/IFO). The study involved a review of all patients who received HDMTX/IFO for CNS involvement of malignant lymphoma at our hospital. Therapy consisted of 4 g/m2 of MTX (4 h infu...

  8. Endothelial cell seeding on crosslinked collagen : Effects of crosslinking on endothelial cell proliferation and functional parameters

    NARCIS (Netherlands)

    Wissink, MJB; van Luyn, MJA; Dijk, F; Poot, AA; Engbers, GHM; Beugeling, T; van Aken, WG; Feijen, J

    Endothelial cell seeding, a promising method to improve the performance of small-diameter vascular grafts, requires a suitable substrate, such as crosslinked collagen. Commonly used crosslinking agents such as glutaraldehyde and formaldehyde cause, however, cytotoxic reactions and thereby hamper

  9. Rudhira/BCAS3 is essential for mouse development and cardiovascular patterning.

    Science.gov (United States)

    Shetty, Ronak; Joshi, Divyesh; Jain, Mamta; Vasudevan, Madavan; Paul, Jasper Chrysolite; Bhat, Ganesh; Banerjee, Poulomi; Abe, Takaya; Kiyonari, Hiroshi; VijayRaghavan, K; Inamdar, Maneesha S

    2018-04-04

    Rudhira/Breast Carcinoma Amplified Sequence 3 (BCAS3) is a cytoskeletal protein that promotes directional cell migration and angiogenesis in vitro and is implicated in human carcinomas and coronary artery disease. To study the role of Rudhira during development in vivo, we generated the first knockout mouse for rudhira and show that Rudhira is essential for mouse development. Rudhira null embryos die at embryonic day (E) 9.5 accompanied by severe vascular patterning defects in embryonic and extra-embryonic tissues. To identify the molecular processes downstream of rudhira, we analyzed the transcriptome of intact knockout yolk sacs. Genome-wide transcriptome analysis showed that Rudhira functions in angiogenesis and its related processes such as cell adhesion, extracellular matrix organization, peptidase activity and TGFβ signaling. Since Rudhira is also expressed in endothelial cells (ECs), we further generated Tie2Cre-mediated endothelial knockout (CKO) of rudhira. CKO embryos survive to E11.5 and similar to the global knockout, display gross vascular patterning defects, showing that endothelial Rudhira is vital for development. Further, Rudhira knockdown ECs in culture fail to sprout in a spheroid-sprouting assay, strongly supporting its role in vascular patterning. Our study identifies an essential role for Rudhira in blood vessel remodeling and provides a mouse model for cardiovascular development.

  10. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Katsunari Makino

    Full Text Available Endothelin (ET-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF-α and connective tissue growth factor (CTGF were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.

  11. Tailored central nervous system-directed treatment strategy for isolated CNS recurrence of adult acute myeloid leukemia.

    Science.gov (United States)

    Zheng, Changcheng; Liu, Xin; Zhu, Weibo; Cai, Xiaoyan; Wu, Jingsheng; Sun, Zimin

    2014-06-01

    The aim of this report was to investigate the tailored treatment strategies for isolated central nervous system (CNS) recurrence in adult patients with acute myeloid leukemia (AML). Isolated CNS recurrence was documented in 34 patients: there were 18, 6, and 10 patients with meningeal involvement type (type A), cranial nerve palsy type (type B), and myeloid sarcoma type (type C), respectively. For patients with type A, intrathecal chemotherapy was the predominant strategy. For type B, systemic HD-Ara-C with four cycles was the main treatment. For type C, cranial irradiation or craniospinal irradiation was adopted and two cycles of HD-Ara-C were given after the irradiation. The 5-year cumulative incidence of CNS recurrence was 12.8%. There was a significantly higher WBC count (32.6∼60.8 × 10(9)/l) in patients at first diagnosis who developed CNS recurrence (all of the three types) compared with patients with no CNS recurrence (10.1 × 10(9)/l) (P = 0.005). We found that a significantly more patients with AML-M5 and 11q23 abnormalities developed CNS recurrence in type A (P adult AML, but further studies are needed to improve the long-term survival.

  12. A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2016-03-01

    Full Text Available Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS and celestial navigation system (CNS can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter.

  13. Evaluation of calcium, magnesium, zinc, aluminum and manganese deposition in bones and CNS of rats fed calcium-deficient diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa; Iwata, Shiro.

    1994-01-01

    The long term intake of unbalanced mineral diets has been reported to be one of the pathogenetic factors of central nervous system (CNS) degeneration, and the unbalanced mineral distribution in the bones clinically is expressed as a metabolic bone disorder or deposition of neurotoxic minerals/metals. The unbalanced mineral or metal diets in animals provoke the unbalanced mineral distribution in bones and soft tissues. In this study, the calcium (Ca), magnesium (Mg), zinc (Zn), aluminum (Al) and manganese (Mn) contents in the CNS and the bones of rats maintained on unbalanced mineral diets were analyzed to investigate the roles of bone on CNS degeneration. Male Wistar rats were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn contents were determined in the frontal cortex, spinal cord, lumbar spine and femur using inductively coupled plasma emission spectrometry (ICP) for Ca, Mg and Zn, and neutron activation analysis (NAA) for Al and Mn. Intake of low Ca and Mg with added Al in rats led to the abnormal distribution of metals or minerals in the bones and in the CNS. These results illustrate that unbalanced mineral diets and metal-metal interactions may lead to the irregular deposition of Al and Mn in the bones and ultimately in the CNS, thus inducing CNS degeneration. (author)

  14. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  15. Lipoprotein receptors in cultured bovine endothelial cells

    International Nuclear Information System (INIS)

    Struempfer, A.E.M.

    1983-07-01

    In this study, receptors that may be involved in the uptake of low density lipoproteins (LDL) and low density lipoproteins which have been modified by acetylation (AcLDL), were characterized. Aortic epithelial cells were used and a cell culture system which closely resembled the in vivo monolayer was established. Endothelial cell and lipoprotein interactions were examined by incubating the cells with 125 l-labelled lipoproteins under various conditions. The receptor affinity of bovine aortic endothelial cells was higher for AcLDL than that for LDL. Competition studies demonstrated that there were two distinct receptors for LDL and AcLDL on the endothelial cells. AcLDL did not compete with LDL for the LDL receptor, and conversely LDL did not compete with AcLDL for the AcLDL receptor. The receptor activities for LDL and AcLDL were examined as a function of culture age. Whereas the LDL receptor could be regulated, the AcLDL receptor was not as susceptible to regulation. Upon exposing endothelial cells for 72 h to either LDL or AcLDL, it was found that the total amount of cellular cholesterol increased by about 50%. However, the increase of total cholesterol was largely in the form of free cholesterol. This is in contrast to macrophages, where the increase in total cholesterol upon exposure to AcLDL is largely in the form cholesteryl esters

  16. ORIGINAL ARTICLE Relationship between endothelial nitric oxide ...

    African Journals Online (AJOL)

    salah

    The haplotype analysis confirmed ... hand, no consistent association was shown between the two SNPs and SBP or. DBP. ... Endothelial nitric oxide synthase gene polymorphisms and risk of MI .... type (-786T*+894G), the haplotypes ... Tests adjusted for age, BMI, diabetes, current smoking and alcohol consumption.

  17. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained ...

  18. Jagged gives endothelial tip cells an edge.

    Science.gov (United States)

    Suchting, Steven; Eichmann, Anne

    2009-06-12

    Sprouting blood vessels have tip cells that lead and stalk cells that follow. Benedito et al. (2009) now show that competition between endothelial cells for the tip position is regulated by glycosylation of Notch receptors and by the opposing actions of the Notch ligands Jagged1 and Delta-like 4.

  19. Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice: Implications for Superficial Erosion.

    Science.gov (United States)

    Franck, Grégory; Mawson, Thomas; Sausen, Grasiele; Salinas, Manuel; Masson, Gustavo Santos; Cole, Andrew; Beltrami-Moreira, Marina; Chatzizisis, Yiannis; Quillard, Thibault; Tesmenitsky, Yevgenia; Shvartz, Eugenia; Sukhova, Galina K; Swirski, Filip K; Nahrendorf, Matthias; Aikawa, Elena; Croce, Kevin J; Libby, Peter

    2017-06-23

    Superficial erosion currently causes up to a third of acute coronary syndromes; yet, we lack understanding of its mechanisms. Thrombi because of superficial intimal erosion characteristically complicate matrix-rich atheromata in regions of flow perturbation. This study tested in vivo the involvement of disturbed flow and of neutrophils, hyaluronan, and Toll-like receptor 2 ligation in superficial intimal injury, a process implicated in superficial erosion. In mouse carotid arteries with established intimal lesions tailored to resemble the substrate of human eroded plaques, acute flow perturbation promoted downstream endothelial cell activation, neutrophil accumulation, endothelial cell death and desquamation, and mural thrombosis. Neutrophil loss-of-function limited these findings. Toll-like receptor 2 agonism activated luminal endothelial cells, and deficiency of this innate immune receptor decreased intimal neutrophil adherence in regions of local flow disturbance, reducing endothelial cell injury and local thrombosis ( P <0.05). These results implicate flow disturbance, neutrophils, and Toll-like receptor 2 signaling as mechanisms that contribute to superficial erosion, a cause of acute coronary syndrome of likely growing importance in the statin era. © 2017 American Heart Association, Inc.

  20. Endothelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: relevance to fibrosis of vascular senescence.

    Science.gov (United States)

    Vasko, Radovan; Xavier, Sandhya; Chen, Jun; Lin, Chi Hua Sarah; Ratliff, Brian; Rabadi, May; Maizel, Julien; Tanokuchi, Rina; Zhang, Frank; Cao, Jian; Goligorsky, Michael S

    2014-02-01

    Sirtuin 1 (SIRT1) depletion in vascular endothelial cells mediates endothelial dysfunction and premature senescence in diverse cardiovascular and renal diseases. However, the molecular mechanisms underlying these pathologic effects remain unclear. Here, we examined the phenotype of a mouse model of vascular senescence created by genetically ablating exon 4 of Sirt1 in endothelial cells (Sirt1(endo-/-)). Under basal conditions, Sirt1(endo-/-) mice showed impaired endothelium-dependent vasorelaxation and angiogenesis, and fibrosis occurred spontaneously at low levels at an early age. In contrast, induction of nephrotoxic stress (acute and chronic folic acid-induced nephropathy) in Sirt1(endo-/-) mice resulted in robust acute renal functional deterioration followed by an exaggerated fibrotic response compared with control animals. Additional studies identified matrix metalloproteinase-14 (MMP-14) as a target of SIRT1. In the kidneys of Sirt1(endo-/-) mice, impaired angiogenesis, reduced matrilytic activity, and retention of the profibrotic cleavage substrates tissue transglutaminase and endoglin accompanied MMP-14 suppression. Furthermore, restoration of MMP-14 expression in SIRT1-depeleted mice improved angiogenic and matrilytic functions of the endothelium, prevented renal dysfunction, and attenuated nephrosclerosis. Our findings establish a novel mechanistic molecular link between endothelial SIRT1 depletion, downregulation of MMP-14, and the development of nephrosclerosis.

  1. Animal study on transplantation of human umbilical vein endothelial cells for corneal endothelial decompensation

    Directory of Open Access Journals (Sweden)

    Li Cui

    2014-06-01

    Full Text Available AIM: To explore the feasibility of culturing human umbilical vein endothelial cells(HUVECon acellular corneal stroma and performing the posterior lamellar endothelial keratoplasty(PLEKtreating corneal endothelial decompensation.METHODS: Thirty New-Zealand rabbits were divided into three groups randomly, 10 rabbits for experimental group, 10 for stroma group and 10 for control group. Corneal endothelial cells were removed to establish animal model of corneal endothelial failure. PLEK was performed on the rabbits of experimental group and stroma group, and nothing was transplantated onto the rabbits of control group with the deep layer excised only. Postoperative observation was taken for 3mo. The degree of corneal edema and central corneal thickness were recorded for statistical analysis.RESULTS: Corneas in experimental group were relieved in edema obviously compared with that in stroma group and the control group, and showed increased transparency 7d after the operation. The average density of endothelial cells was 2 026.4±129.3cells/mm2, and average central corneal thickness was 505.2±25.4μm in experimental group, while 1 535.6±114.5μm in stroma group and 1 493.5±70.2μm in control group 3mo after operation.CONCLUSION:We achieved preliminary success in our study that culturing HUVEC on acellular corneal stroma and performing PLEK for corneal endothelial decompensation. HUVEC transplanted could survive in vivo, and have normal biological function of keeping cornea transparent. This study provides a new idea and a new way clinically for the treatment of corneal endothelial diseases.

  2. Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters.

    Science.gov (United States)

    Taylor, R F; Price, T H; Schwartz, S M; Dale, D C

    1981-01-01

    We have developed a technique for growing endothelial monolayers on micropore filters. These monolayers demonstrate confluence by phase and electron microscopy and provide a functional barrier to passage of radiolabeled albumin. Neutrophils readily penetrate the monolayer in response to chemotaxin, whereas there is little movement in the absence of chemotaxin. This system offers unique advantages over available chemotaxis assays and may have wider applications in the study of endothelial function. Images PMID:7007441

  3. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.

    Science.gov (United States)

    Bagley, Rebecca G; Rouleau, Cecile; St Martin, Thia; Boutin, Paula; Weber, William; Ruzek, Melanie; Honma, Nakayuki; Nacht, Mariana; Shankara, Srinivas; Kataoka, Shiro; Ishida, Isao; Roberts, Bruce L; Teicher, Beverly A

    2008-08-01

    Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45-/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow-derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC.

  4. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    International Nuclear Information System (INIS)

    Lin, Ming-Chung; Chen, Chia-Ling; Yang, Tsan-Tzu; Choi, Pui-Ching; Hsing, Chung-Hsi; Lin, Chiou-Feng

    2012-01-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  5. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Chung [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan (China); Chen, Chia-Ling [Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Yang, Tsan-Tzu; Choi, Pui-Ching [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan (China); Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin@mail.ncku.edu.tw [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  6. Endothelial microparticles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases?

    Science.gov (United States)

    McCarthy, E M; Wilkinson, F L; Parker, B; Alexander, M Y

    2016-11-01

    Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Reduced Ang2 expression in aging endothelial cells.

    Science.gov (United States)

    Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Immunostimulatory mouse granuloma protein.

    Science.gov (United States)

    Fontan, E; Fauve, R M; Hevin, B; Jusforgues, H

    1983-10-01

    Earlier studies have shown that from subcutaneous talc-induced granuloma in mice, a fraction could be extracted that fully protected mice against Listeria monocytogenes. Using standard biochemical procedures--i.e., ammonium sulfate fractionation, preparative electrophoresis, gel filtration chromatography, isoelectric focusing, and preparative polyacrylamide gel electrophoresis--we have now purified an active factor to homogeneity. A single band was obtained in NaDodSO4/polyacrylamide gel with an apparent Mr of 55,000. It migrated with alpha 1-globulins and the isoelectric point was 5 +/- 0.1. The biological activity was destroyed with Pronase but not with trypsin and a monospecific polyclonal rabbit antiserum was obtained. The intravenous injection of 5 micrograms of this "mouse granuloma protein" fully protects mice against a lethal inoculum of L. monocytogenes. Moreover, after their incubation with 10 nM mouse granuloma protein, mouse peritoneal cells became cytostatic against Lewis carcinoma cells.

  9. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  10. Leukoencephalopathy following CNS prophylaxis therapy in pediatric leukemia : MR imaging findings

    International Nuclear Information System (INIS)

    Kim, Jong Sub; Lee, Sang Kwon; Kim, Tae Hun; Kim, Yong Joo; Kang, Duck Sik; Kwon, Soon Hak; Lee, Keon Soo

    2001-01-01

    To evaluate the MR imaging findings and the usefulness of MR imaging in the diagnosis and follow-up leukoencephalopathy following CNS prophylaxis therapy in pediatric leukemia. We retrospectively evaluated the MR imaging findings of eight children with white matter abnormalities on MR out of seventeen acute leukemic patients with various neuropsychiatric symptoms who received intrathecal methotrexate administration, with or without cranial irradiation. In all cases, initial MR was performed within a week of the onset of neuropsychiatric symptoms. Follow-up MR was performed one to sixteen months after initial study, and the MR imaging findings were compared with the initial findings. The initial MR imaging findings were classified into three categories : focal or multifocal white matter abnormalities (3/8), and diffuse white matter abnormalities without enhancement (3/8), and diffuse white matter abnormalities with enhancement (2/8). At follow-up MR, diffuse or focal atrophic changes were noted in all children. White matter abnormalities improved in two out of three patients with focal or multifocal white matter abnormalities. In five with diffuse white matter abnormalities, the extent of these showed no significant change, but contrast enhancement was markedly reduced in two children in whom diffuse white matter abnormalities with enhancement had been demonstrated. In pediatric leukemia, the MR imaging findings of leukoencephalopathy following CNS prophylaxis therapy are variable, but are specific with the clinical history of neuropsychiatric symptoms after intrathecal methotrexate administration, with or without cranial irradiation. The MR imaging is valuable in the diagnosis and follow-up of leukoencephalopathy following CNS prophylaxis therapy in pediatric leukemia

  11. Effects of prolonged treatment with memantine in the MRL model of CNS lupus.

    Science.gov (United States)

    Marcinko, Katarina; Parsons, Tiffany; Lerch, Jason P; Sled, John G; Sakic, Boris

    2012-09-01

    Neuropsychiatric manifestations and brain atrophy of unknown etiology are common and severe complications of systemic lupus erythematosus (SLE). An autoantibody that binds to N-methyl-D-aspartate (NMDA) receptor NR2 has been proposed as a key factor in the etiology of central nervous system (CNS) SLE. This hypothesis was supported by evidence suggesting memantine (MEM), an uncompetitive NMDA receptor antagonist, prevents behavioral dysfunction and brain pathology in healthy mice immunized with a peptide similar to an epitope on the NR2 receptor. Given that SLE is a chronic condition, we presently examine the effects of MEM in MRL/lpr mice, which develop behavioral deficits alongside SLE-like disease. A broad behavioral battery and 7-Tesla MRI were used to examine whether prolonged treatment with MEM (~25 mg/kg b.w. in drinking water) prevents CNS involvement in this spontaneous model of SLE. Although MEM increased novel object exploration in MRL/lpr mice, it did not show other beneficial, substrain-specific effects. Conversely, MEM was detrimental to spontaneous activity in control MRL +/+ mice and had a negative effect on body mass gain. Similarly, MRI revealed comparable increases in the volume of periventricular structures in MEM-treated groups. Sustained exposure to MEM affects body growth, brain morphology, and behavior primarily by pharmacological, and not autoimmunity-dependant mechanisms. Substrain-specific improvement in exploratory behavior of MEM-treated MRL/lpr mice may indicate that the NMDA system is merely a constituent of a complex pathogenenic cascade. However, it was evident that chronic administration of MEM is unable to completely prevent the development of a CNS SLE-like syndrome.

  12. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice

    Energy Technology Data Exchange (ETDEWEB)

    Farfán-García, E.D.; Pérez-Rodríguez, M. [Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México (Mexico); Espinosa-García, C. [Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana (UAM), 09310 Ciudad de México (Mexico); Castillo-Mendieta, N.T.; Maldonado-Castro, M.; Querejeta, E.; Trujillo-Ferrara, J.G. [Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México (Mexico); and others

    2016-09-15

    The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥ 200 mg/kg, and involving granular cell damage at doses of 400 mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system. - Highlights: • Intraperitoneal 3-thienylboronic acid (3TB) induces tremor in CD1 or C57BL6 mice. • Injury on CNS as well as motor disruption is dose-dependent. • Damage is greater in basal ganglia than in cerebellum or motor cortex. • The DMSO as vehicle plays a key role in the induced effect. • Motor disruption seems to involve basal ganglia and cerebellum damage.

  13. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice

    International Nuclear Information System (INIS)

    Farfán-García, E.D.; Pérez-Rodríguez, M.; Espinosa-García, C.; Castillo-Mendieta, N.T.; Maldonado-Castro, M.; Querejeta, E.; Trujillo-Ferrara, J.G.

    2016-01-01

    The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥ 200 mg/kg, and involving granular cell damage at doses of 400 mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system. - Highlights: • Intraperitoneal 3-thienylboronic acid (3TB) induces tremor in CD1 or C57BL6 mice. • Injury on CNS as well as motor disruption is dose-dependent. • Damage is greater in basal ganglia than in cerebellum or motor cortex. • The DMSO as vehicle plays a key role in the induced effect. • Motor disruption seems to involve basal ganglia and cerebellum damage.

  14. Potential Role of Oxidative Stress in mediating the Effect of Hypergravity on the Developing CNS.

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Sulkowski, Z. L.; Lipinski, B.

    The present studies will explore the mechanisms through which altered gravity affects the developing CNS We have previously shown that exposure to hypergravity during the perinatal period adversely impacts cerebellar structure and function Pregnant rat dams were exposed to 1 65 G on a 24-ft centrifuge at NASA-ARC from gestational day G 5 through giving birth Both dams and their offspring remained at 1 65 G until pups reached postnatal day P 21 Control rats were raised under identical conditions in stationary cages On P21 motor behavior as determined by performance on a rotorod was more negatively impacted in hypergravity-exposed HG male 39 5 than in HG female pups 29 1 The total number of Purkinje cells determined stereologically in cerebella isolated from a subset of P21 rats was decreased in both HG males and HG female pups but the correlation between Purkinje cell number and rotorod performance was more consistent in male pups The level of 3-nitrosotyrosine 3-NT an index of oxidative damage to proteins was determined by ELISA in cerebellar tissue derived from a separate subset of P21 rats The level of 3-NT was increased by 127 in HG males but only 42 in HG females These results suggest that the effect of altered gravity on the developing brain may be mediated by oxidative stress These results also suggest that the developing male CNS may be more sensitive to hypergravity-induced oxidative stress than the developing female CNS Supported by NIEHS grant ES11946-01

  15. The Effect of the Uncariae Ramulus et Uncus on the Regeneration Following CNS Injury

    Directory of Open Access Journals (Sweden)

    Lee Jin-Goo

    2009-03-01

    Full Text Available Objective : Following central nervous system(CNS injury, inhibitory influences at the site of axonal damage occur. Glial cells become reactive and form a glial scar, gliosis. Also myelin debris such as MAG inhibits axonal regeneration. Astrocyte-rich gliosis relates with up-regulation of GFAP and CD81, and eventually becomes physical and mechanical barrier to axonal regeneration. MAG is one of several endogenous axon regeneration inhibitors that limit recovery from CNS injury and disease. It was reported that molecules that block such inhibitors enhanced axon regeneration and functional recovery. Recently it was reported that treatment with anti-CD81 antibodies enhanced functional recovery in the rat with spinal cord injury. So in this current study, the author investigated the effect of the water extract of Uncariae Ramulus et Uncus on the regulation of CD81, GFAP and MAG that increase when gliosis occurs. Methods : MTT assay was performed to examine cell viability, and cell-based ELISA, western blot and PCR were used to detect the expression of CD81, GFAP and MAG. Then also immunohistochemistry was performed to confirm in vivo. Results : Water extract of Uncariae Ramulus et Uncus showed relatively high cell viability at the concentration of 0.05%, 0.1% and 0.5%. The expression of CD81, GFAP and MAG in astrocytes was decreased after the administration of Uncariae Ramulus et Uncus water extract. These results was confirmed in the brain sections following cortical stab injury by immunohistochemistry. Conclusion : The authors observed that Uncariae Ramulus et Uncus significantly down-regulates the expression of CD81, GFAP and MAG. These results suggest that Uncariae Ramulus et Uncus can be a candidate to regenerate CNS injury.

  16. Installation and Commissioning of the Helium Refrigeration System for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Young Ki; Wu, Sang Ik; Son, Woo Jung

    2009-11-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system. For the maintenance of liquid hydrogen in the IPA, the CNS system is mainly consisted of the hydrogen system to supply the hydrogen to the IPA, the vacuum system to keep the cryogenic liquid hydrogen in the IPA, and the helium refrigeration system to liquefy the hydrogen gas. The helium refrigeration system can be divided into two sections: one is the helium compression part from the low pressure gas to the high pressure gas and the other is the helium expansion part from the high temperature gas and pressure to low temperature and pressure gas by the expansion turbine. The helium refrigeration system except the warm helium pipe and the helium buffer tank has been manufactured by Linde Kryotechnik, AG in Switzerland and installed in the research reactor hall, HANARO. Other components have been manufactured in the domestic company. This technical report deals with the issues, its solutions, and other particular points while the helium refrigeration system was installed at site, verified its performance, and conducted its commissioning along the reactor operation. Furthermore, the operation procedure of the helium refrigeration system is included in here for the normal operation of the CNS

  17. AVN-101: A Multi-Target Drug Candidate for the Treatment of CNS Disorders.

    Science.gov (United States)

    Ivachtchenko, Alexandre V; Lavrovsky, Yan; Okun, Ilya

    2016-05-25

    Lack of efficacy of many new highly selective and specific drug candidates in treating diseases with poorly understood or complex etiology, as are many of central nervous system (CNS) diseases, encouraged an idea of developing multi-modal (multi-targeted) drugs. In this manuscript, we describe molecular pharmacology, in vitro ADME, pharmacokinetics in animals and humans (part of the Phase I clinical studies), bio-distribution, bioavailability, in vivo efficacy, and safety profile of the multimodal drug candidate, AVN-101. We have carried out development of a next generation drug candidate with a multi-targeted mechanism of action, to treat CNS disorders. AVN-101 is a very potent 5-HT7 receptor antagonist (Ki = 153 pM), with slightly lesser potency toward 5-HT6, 5-HT2A, and 5HT-2C receptors (Ki = 1.2-2.0 nM). AVN-101 also exhibits a rather high affinity toward histamine H1 (Ki = 0.58 nM) and adrenergic α2A, α2B, and α2C (Ki = 0.41-3.6 nM) receptors. AVN-101 shows a good oral bioavailability and facilitated brain-blood barrier permeability, low toxicity, and reasonable efficacy in animal models of CNS diseases. The Phase I clinical study indicates the AVN-101 to be well tolerated when taken orally at doses of up to 20 mg daily. It does not dramatically influence plasma and urine biochemistry, nor does it prolong QT ECG interval, thus indicating low safety concerns. The primary therapeutic area for AVN-101 to be tested in clinical trials would be Alzheimer's disease. However, due to its anxiolytic and anti-depressive activities, there is a strong rational for it to also be studied in such diseases as general anxiety disorders, depression, schizophrenia, and multiple sclerosis.

  18. Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Nansen, Anneline; Moos, Torben

    2004-01-01

    T-cells play an important role in controlling viral infections inside the CNS. To study the role of the chemokine receptor CXCR3 in the migration and positioning of virus-specific effector T-cells within the brain, CXCR3-deficient mice were infected intracerebrally with lymphocytic choriomeningitis......-cell-mediated immunopathology. Quantitative analysis of the cellular infiltrate in CSF of infected mice revealed modest, if any, decrease in the number of mononuclear cells recruited to the meninges in the absence of CXCR3. However, immunohistological analysis disclosed a striking impairment of CD8+ T-cells from CXCR3...

  19. CNS changes in Usher's syndrome with mental disorder: CT, MRI and PET findings.

    Science.gov (United States)

    Koizumi, J; Ofuku, K; Sakuma, K; Shiraishi, H; Iio, M; Nawano, S

    1988-01-01

    CNS changes in a case of Usher's syndrome associated with schizophrenia-like mental disorder were observed by CT, MRI and PET. The neuro-radiological findings of the case demonstrate the degenerative and metabolic alterations in various regions of cortex, white matter and subcortical areas in the brain. Mental disorder of the case is almost indistinguishable from that of schizophrenia, but the psychotic feature is regarded as an atypical or mixed organic brain syndrome according to the classification in the third edition of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders (DSM-III). Images PMID:3264568

  20. [Regularities of fixation of brain serum antibodies from patients with lateral amyotrophic sclerosis in rabbit CNS].

    Science.gov (United States)

    Musaeva, L S; Gannyshkina, I V; Zavalishin, I A; Markova, E D; Ivanova-Smolenskaia, I A

    2002-01-01

    Kuhns' indirect immunofluorescent test was used to study fixation of serum brain antibodies (Ab) of patients with bulbar, cervicothoracic, lumbosacral lateral amyotropic sclerosis (LAS) on brain sections of rabbits. The disease is characterized by formation of brain Ab complementary to various structures of nervous and glial cells, myelin of fibers from different conducting systems, vessels which exhibit both common and individual antigenic properties. It was found that fixation of antineuronal, antimyelin brain Ab of patients with bulbar, cervicothoracic and lumbosacral LAS in different CNS structures varies.

  1. News from the editors of Fluids and Barriers of the CNS.

    Science.gov (United States)

    Drewes, Lester R; Jones, Hazel C; Keep, Richard F

    2014-01-01

    This editorial announces a new affiliation between Fluids and Barriers of the CNS (FBCNS) and the International Brain Barriers Society (IBBS) with mutual benefits to the journal and to society members. This is a natural progression from the appointment of two new Co-Editors in Chief: Professor Lester Drewes and Professor Richard Keep in 2013. FBCNS provides a unique and specialist platform for the publication of research in the expanding fields of brain barriers and brain fluid systems in both health and disease.

  2. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS)

    DEFF Research Database (Denmark)

    Asgari, N; Owens, T; Frøkiaer, J

    2010-01-01

    Asgari N, Owens T, Frøkiaer J, Stenager E, Lillevang ST, Kyvik KO. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS).
Acta Neurol Scand: DOI: 10.1111/j.1600-0404.2010.01416.x.
© 2010 John Wiley & Sons A/S. In the past 10 years, neuromyelitis optica (NMO) has...... or by intrathecal administration to naive mice. NMO may be characterized as a channelopathy of the central nervous system with autoimmune characteristics....

  3. An in vitro clonogenic assay to assess radiation damage in rat CNS glial progenitor cells

    International Nuclear Information System (INIS)

    Maazen, R.W.M. van der; Verhagen, I.; Kogel, A.J. van der

    1990-01-01

    Normal glial progenitor cells can be isolated from the rat central nervous system (CNS) and cultured in vitro on a monolayer of type-1 astrocytes. These monolayers are able to support and stimulate explanted glial progenitor cells to proliferate. Employing these in vitro interactions of specific glial cell types, an in vivo-in vitro clonogenic assay has been developed. This method offers the possibility to study the intrinsic radiosensitivity, repair and regeneration of glial progenitor cells after in vitro or in vivo irradiation. (author)

  4. CD36 and Fyn kinase mediate malaria-induced lung endothelial barrier dysfunction in mice infected with Plasmodium berghei.

    Directory of Open Access Journals (Sweden)

    Ifeanyi U Anidi

    Full Text Available Severe malaria can trigger acute lung injury characterized by pulmonary edema resulting from increased endothelial permeability. However, the mechanism through which lung fluid conductance is altered during malaria remains unclear. To define the role that the scavenger receptor CD36 may play in mediating this response, C57BL/6J (WT and CD36-/- mice were infected with P. berghei ANKA and monitored for changes in pulmonary endothelial barrier function employing an isolated perfused lung system. WT lungs demonstrated a >10-fold increase in two measures of paracellular fluid conductance and a decrease in the albumin reflection coefficient (σalb compared to control lungs indicating a loss of barrier function. In contrast, malaria-infected CD36-/- mice had near normal fluid conductance but a similar reduction in σalb. In WT mice, lung sequestered iRBCs demonstrated production of reactive oxygen species (ROS. To determine whether knockout of CD36 could protect against ROS-induced endothelial barrier dysfunction, mouse lung microvascular endothelial monolayers (MLMVEC from WT and CD36-/- mice were exposed to H2O2. Unlike WT monolayers, which showed dose-dependent decreases in transendothelial electrical resistance (TER from H2O2 indicating loss of barrier function, CD36-/- MLMVEC demonstrated dose-dependent increases in TER. The differences between responses in WT and CD36-/- endothelial cells correlated with important differences in the intracellular compartmentalization of the CD36-associated Fyn kinase. Malaria infection increased total lung Fyn levels in CD36-/- lungs compared to WT, but this increase was due to elevated production of the inactive form of Fyn further suggesting a dysregulation of Fyn-mediated signaling. The importance of Fyn in CD36-dependent endothelial signaling was confirmed using in vitro Fyn knockdown as well as Fyn-/- mice, which were also protected from H2O2- and malaria-induced lung endothelial leak, respectively. Our

  5. The effects of dexamethasone on the Na,K-ATPase activity and pump function of corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin; Yamada, Masakazu; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo

    2009-05-01

    The Na(+)- and K(+)-dependent ATPase (Na,K-ATPase) expressed in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. We investigated the possible role of dexamethasone in the regulation of Na,K-ATPase activity and pump function in corneal endothelial cells. Confluent monolayers of mouse corneal endothelial cells were exposed to dexamethasone. ATPase activity of the cells was evaluated by spectrophotometric measurement of phosphate released from ATP with the use of ammonium molybdate, with Na,K-ATPase activity being defined as the portion of total ATPase activity sensitive to ouabain. Pump function of the cells was measured with the use of an Ussing chamber, with the pump function attributable to Na,K-ATPase activity being defined as the portion of the total short-circuit current sensitive to ouabain. Western blot analysis was examined to measure the expression of the Na,K-ATPase alpha(1)-subunit. Dexamethasone (1 or 10 microM) increased the Na,K-ATPase activity and pump function of the cultured cells. These effects of dexamethasone were blocked by cycloheximide, a protein synthesis inhibitor. Western blot analysis also indicated that dexamethasone increased the expression of the Na,K-ATPase alpha(1)-subunit, whereas it decreased the expression of the phospho-Na,K-ATPase alpha(1)-subunit. Our results suggest that dexamethasone stimulates Na,K-ATPase activity in mouse corneal endothelial cells. The effect of dexamethasone activation in these cells is mediated by Na,K-ATPase synthesis and increase in an enzymatic activity by dephosphorylation of Na,K-ATPase alpha(1)-subunits.

  6. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning.

    Science.gov (United States)

    Amour, Julien; Brzezinska, Anna K; Weihrauch, Dorothee; Billstrom, Amie R; Zielonka, Jacek; Krolikowski, John G; Bienengraeber, Martin W; Warltier, David C; Pratt, Philip F; Kersten, Judy R

    2009-02-01

    Nitric oxide is known to be essential for early anesthetic preconditioning (APC) and ischemic preconditioning (IPC) of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, the authors tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC. Myocardial infarct size was measured in rabbits after coronary occlusion and reperfusion in the absence or presence of preconditioning within 30 min of isoflurane (APC) or 5 min of coronary artery occlusion (IPC), and with or without pretreatment with geldanamycin or radicicol, two chemically distinct Hsp90 inhibitors, or N-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase NOS inhibitor. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells or mouse cardiomyocytes, in the absence or presence of Hsp90 inhibitors or N-nitro-L-arginine methyl ester. Interactions between Hsp90 and eNOS, and eNOS activation, were assessed with immunoprecipitation, immunoblotting, and confocal microscopy. APC and IPC decreased infarct size (by 50% and 59%, respectively), and this action was abolished by Hsp90 inhibitors. N-nitro-L-arginine methyl ester blocked APC but not IPC. Isoflurane increased nitric oxide production in human coronary artery endothelial cells concomitantly with an increase in Hsp90-eNOS interaction (immunoprecipitation, immunoblotting, and immunohistochemistry). Pretreatment with Hsp90 inhibitors abolished isoflurane-dependent nitric oxide production and decreased Hsp90-eNOS interactions. Isoflurane did not increase nitric oxide production in mouse cardiomyocytes, and eNOS was below the level of detection. The results indicate that Hsp90 plays a critical role in mediating APC and IPC through protein-protein interactions, and suggest that endothelial cells are important contributors to nitric oxide-mediated signaling during APC.

  7. Colonization, mouse-style

    Directory of Open Access Journals (Sweden)

    Searle Jeremy B

    2010-10-01

    Full Text Available Abstract Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice. See research article: http://www.biomedcentral.com/1471-2148/10/325

  8. Glucose-independent persistence of PAI-1 gene expression and H3K4 tri-methylation in type 1 diabetic mouse endothelium: implication in metabolic memory.

    Science.gov (United States)

    Takizawa, Fumihiko; Mizutani, Shuki; Ogawa, Yoshihiro; Sawada, Naoki

    2013-03-29

    Clinical trials with type 1 and type 2 diabetes have identified a phenomenon known as "metabolic memory" in which previous periods of hyperglycemia result in the long-lasting deleterious impact on cardiovascular events. Emerging evidence shows that transient hyperglycemic exposure of human endothelial cells induces histone 3 lysine 4 mono-methylation (H3K4me1) on the promoter and persistent mRNA expression of RelA and IL-8 genes, suggesting that epigenetic histone modification and chromatin structure remodeling is a key event underlying metabolic memory. This burgeoning hypothesis, however, critically remains to be tested for relevance in the disease process of diabetes in vivo, and for broader applicability to an array of genes involved in endothelial dysfunction. To address this, we used type 1 diabetes mouse model induced by streptozocin to be hyperglycemic for 8 weeks, and isolated endothelial cells that were used either freshly after isolation or after 2 to 3-week cell culture in normoglycemic conditions. mRNA expression profiling in diabetic mouse endothelial cells revealed significant and persistent up-regulation of Serpine1 encoding PAI-1, the hypo-fibrinolytic mediator leading to thrombotic diseases in diabetes, along with Rock2, Fn1 and Ccl2, whereas only Serpine 1 was persistently elevated in high glucose-treated mouse endothelial cells. Chromosome immunoprecipitation assay in type 1 diabetic mouse endothelial cells showed predominant enrichment of H3K4 tri-methylation on Serpine1 promoter, suggesting a unique epigenetic regulation in diabetic mice as opposed to high glucose-treated human ECs. Our study demonstrates the importance of combining in vivo models of diabetes with high glucose-treated cell culture to better assess the epigenetic mechanisms relevant to disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Arterial endothelial function measurement method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Jonathan S; Budinger, Thomas F

    2014-03-04

    A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.

  10. The effects of hydroxychloroquine on endothelial dysfunction.

    Science.gov (United States)

    Rahman, Rahana; Murthi, Padma; Singh, Harmeet; Gurusinghe, Seshini; Mockler, Joanne C; Lim, Rebecca; Wallace, Euan M

    2016-10-01

    Hydroxychloroquine is an anti-malarial drug which, due to its anti-inflammatory and immunomodulatory effects, is widely used for the treatment of autoimmune diseases. In a model of systemic lupus erythematosus hydroxychloroquine has been shown to exert protective endothelial effects. In this study, we aimed to investigate whether hydroxychloroquine was endothelial protective in an in vitro model of TNF-α and preeclamptic serum induced dysfunction. We showed that hydroxychloroquine significantly reduced the production of TNF-α and preeclamptic serum induced endothelin-1 (ET-1). Hydroxychloroquine also significantly mitigated TNF-α induced impairment of angiogenesis. These findings support the further assessment of hydroxychloroquine as an adjuvant therapy in preeclampsia. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  11. Young endothelial cells revive aging blood.

    Science.gov (United States)

    Chang, Vivian Y; Termini, Christina M; Chute, John P

    2017-11-01

    The hematopoietic system declines with age, resulting in decreased hematopoietic stem cell (HSC) self-renewal capacity, myeloid skewing, and immune cell depletion. Aging of the hematopoietic system is associated with an increased incidence of myeloid malignancies and a decline in adaptive immunity. Therefore, strategies to rejuvenate the hematopoietic system have important clinical implications. In this issue of the JCI, Poulos and colleagues demonstrate that infusions of bone marrow (BM) endothelial cells (ECs) from young mice promoted HSC self-renewal and restored immune cell content in aged mice. Additionally, delivery of young BM ECs along with HSCs following total body irradiation improved HSC engraftment and enhanced survival. These results suggest an important role for BM endothelial cells (ECs) in regulating hematopoietic aging and support further research to identify the rejuvenating factors elaborated by BM ECs that restore HSC function and the immune repertoire in aged mice.

  12. Microalbuminuria, endothelial dysfunction and cardiovascular risk

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B

    2000-01-01

    Microalbuminuria was originally considered to be an important new risk factor for diabetic nephropathy. More recently, it has been convincingly shown that microalbuminuria is also an independent risk factor for cardiovascular morbidity and mortality in Type 1 and Type 2 diabetic patients. Even...... in the non-diabetic background population, microalbuminuria is a risk factor for cardiovascular mortality. What is the link between increased loss of albumin in urine and cardiovascular disease and mortality? As microalbuminuria is apparently associated with increased universal vascular sieving of albumin...... evidence of endothelial dysfunction in patients with microalbuminuria, which may be the common link accounting for the associations mentioned above. In this context, a number of markers of endothelial cell dysfunction have been found to be increased in patients with microalbuminuria. In addition, a number...

  13. Fluid Induced Vibration Analysis of a Cooling Water Pipeline for the HANARO CNS

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Lee, Young Sub; Kim, Ik Soo; Kim, Young Ki

    2007-01-01

    CNS is the initial of Cold Neutron Source and the CNS facility system consists of hydrogen, a vacuum, a gas blanketing, a helium refrigeration and a cooling water supply system. Out of these subsystems, the helium refrigeration system has the function of removal of heat from a thermal neutron under reactor operation. Therefore, HRS (helium refrigeration system) must be under normal operation for the production of cold neutron. HRS is mainly made up of a helium compressor and a coldbox. This equipment is in need of cooling water to get rid of heat generation under stable operation and a cooling water system is essential to maintain the normal operation of a helium compressor and a coldbox. The main problem for the cooling water system is the vibration issue in the middle of operation due to a water flow in a pipeline. In order to suppress the vibration problem for a pipeline, the characteristics of a pipeline and fluid flow must be analyzed in detail. In this paper, fluid induced vibration of a cooling water pipe is analyzed numerically and the stability of the cooling water pipeline is investigated by using pipe dynamic theory

  14. Extending Injury- and Disease-Resistant CNS Phenotypes by Repetitive Epigenetic Conditioning

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Gidday

    2015-03-01

    Full Text Available Significant reductions in the extent of acute injury in the CNS can be achieved by exposure to different preconditioning stimuli, but the duration of the induced protective phenotype is typically short-lasting, and thus is deemed as limiting its clinical applicability. Extending the period over which such adaptive epigenetic changes persist – in effect, expanding conditioning’s therapeutic window – would significantly broaden the potential applications of such a treatment approach in patients. The frequency of the conditioning stimulus may hold the key. While transient (1-3 days protection against CNS ischemic injury is well established preclinically following a single preconditioning stimulus, repetitively presenting preconditioning stimuli extends the duration of ischemic tolerance by many weeks. Moreover, repetitive intermittent postconditioning enhances postischemic recovery metrics and improves long-term survival. Intermittent conditioning is also efficacious for preventing or delaying injury in preclinical models of chronic neurodegenerative disease, and for promoting long-lasting functional improvements in a number of other pathologies as well. Although the detailed mechanisms underlying these protracted kinds of neuroplasticity remain largely unstudied, accumulating empirical evidence supports the contention that all of these adaptive phenotypes are epigenetically mediated. Going forward, additional preclinical demonstrations of the ability to induce sustained beneficial phenotypes that reduce the burden of acute and chronic neurodegeneration, and experimental interrogations of the regulatory constructs responsible for these epigenetic responses, will accelerate the identification of not only efficacious, but practical, adaptive epigenetics-based treatments for individuals with neurological disease.

  15. Blue moon neurovirology: the merits of studying rare CNS diseases of viral origin.

    Science.gov (United States)

    O'Donnell, Lauren A; Rall, Glenn F

    2010-09-01

    While measles virus (MV) continues to have a significant impact on human health, causing 150,000-200,000 deaths worldwide each year, the number of fatalities that can be attributed to MV-triggered central nervous system (CNS) diseases are on the order of a few hundred individuals annually (World Health Organization 2009). Despite this modest impact, substantial effort has been expended to understand the basis of measles-triggered neuropathogenesis. What can be gained by studying such a rare condition? Simply stated, the wealth of studies in this field have revealed core principles that are relevant to multiple neurotropic pathogens, and that inform the broader field of viral pathogenesis. In recent years, the emergence of powerful in vitro systems, novel animal models, and reverse genetics has enabled insights into the basis of MV persistence, the complexity of MV interactions with neurons and the immune system, and the role of immune and CNS development in virus-triggered disease. In this review, we highlight some key advances, link relevant measles-based studies to the broader disciplines of neurovirology and viral pathogenesis, and propose future areas of study for the field of measles-mediated neurological disease.

  16. Herpes simplex and varicella zoster CNS infections: clinical presentations, treatments and outcomes.

    Science.gov (United States)

    Kaewpoowat, Quanhathai; Salazar, Lucrecia; Aguilera, Elizabeth; Wootton, Susan H; Hasbun, Rodrigo

    2016-06-01

    To describe the clinical manifestations, cerebrospinal fluid (CSF) characteristics, imaging studies and prognostic factors of adverse clinical outcomes (ACO) among adults with herpes simplex virus (HSV) or varicella zoster virus (VZV) CNS infections. Retrospective review of adult patients with positive HSV or VZV polymerase chain reaction on CSF from an observational study of meningitis or encephalitis in Houston, TX (2004-2014), and New Orleans, LA (1999-2008). Ninety-eight adults patients were identified; 25 had encephalitis [20 (20.4 %) HSV, 5 (5.1 %) VZV], and 73 had meningitis [60 (61.1 %) HSV and 13 (13.3 %) VZV]. HSV and VZV had similar presentations except for nausea (P 1 and an encephalitis presentation were independently associated with an ACO. The treatment for HSV meningitis was variable, and all patients had a good clinical outcome. Alpha herpes CNS infections due to HSV and VZV infections have similar clinical and laboratory manifestations. ACO was observed more frequently in those patients with comorbidities and an encephalitis presentation.

  17. Permanent I-125 interstitial implant in the management of high grade CNS malignancies in children

    International Nuclear Information System (INIS)

    Vaishampayan, N.; Zamorano, L.; Aronin, P.; Gaspar, L.; Canady, A.; Lattin, P.; Ezzell, G.; Yakar, D.; Chungbin, S.; Fontanesi, J.

    1996-01-01

    Purpose/Objective: To evaluate the efficacy and complications associated with the use of permanent I-125 interstitial implants in children with high grade CNS malignancies. Materials and Methods: Between May of 1990 and September of 1994, fourteen children received permanent I-125 interstitial implant brachytherapy as initial therapy (n=8) or at time of recurrence (n=6). Histologies included Glioblastoma Multiforme (n=2), Anaplastic Astrocytoma (n=9) and others (n=3). Pre-implant surgical procedures included: Gross Total Resection (n=2), Subtotal Resection (n=8) or Biopsy alone (n=4). Six patients received pre-implant external beam irradiation (dose range 3,500-6500 cGy) and three patients received post-implant external beam irradiation (dose range 5,040-5,060 cGy). Implant dose range was 8,294-10,368 cGy over the lifetime of the implant (median 10,368 cGy). Results: At last follow-up (median 17.5 months; range 4-56 months), eight children were alive. Six out of the eight had no evidence of disease progression while the remaining had radiologic evidence of progression. Implant complications (n=2) included skin necrosis and bone flap infection. Conclusions: Based on this initial review, we continue to investigate the use of permanent I-125 interstitial brachytherapy in the treatment of high grade CNS malignancies in children and will discuss and compare these results with those of other 'Boost' series

  18. Drug Elucidation: Invertebrate Genetics Sheds New Light on the Molecular Targets of CNS Drugs

    Directory of Open Access Journals (Sweden)

    Donard S. Dwyer

    2014-07-01

    Full Text Available Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents and gap j