WorldWideScience

Sample records for mounted longitudinal vortex

  1. Full scale wind turbine test of vortex generators mounted on the entire blade

    DEFF Research Database (Denmark)

    Bak, Christian; Skrzypinski, Witold Robert; Gaunaa, Mac;

    2016-01-01

    are compared to the predictions carried out by a developed design tool, where the effect of vortex generators and leading edge roughness is simulated using engineering models. The measurements showed that if vortex generators are mounted there is an increase in flapwise blade moments if the blades are clean......Measurements on a heavily instrumented pitch regulated variable speed Vestas V52 850 kW wind turbine situated at the DTU Risø Campus are carried out, where the effect of vortex generators mounted on almost the entire blade is tested with and without leading edge roughness. The measurements...

  2. The Effect of Mounting Vortex Generators on the DTU 10MW Reference Wind Turbine Blade

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Bak, Christian

    2014-01-01

    The aim of the current work is to analyze possible advantages of mounting Vortex Generators (VG's) on a wind turbine blade. Specifically, the project aims at investigating at which radial sections of the DTU 10 MW Reference Wind Turbine blade it is most beneficial to mount the VG's in order...

  3. Full scale wind turbine test of vortex generators mounted on the entire blade

    Science.gov (United States)

    Bak, Christian; Skrzypiński, Witold; Gaunaa, Mac; Villanueva, Hector; Brønnum, Niels F.; Kruse, Emil K.

    2016-09-01

    Measurements on a heavily instrumented pitch regulated variable speed Vestas V52 850 kW wind turbine situated at the DTU Risø Campus are carried out, where the effect of vortex generators mounted on almost the entire blade is tested with and without leading edge roughness. The measurements are compared to the predictions carried out by a developed design tool, where the effect of vortex generators and leading edge roughness is simulated using engineering models. The measurements showed that if vortex generators are mounted there is an increase in flapwise blade moments if the blades are clean, but also that the loads are almost neutral when vortex generators are installed if there is leading edge roughness on the blades. Finally, it was shown that there was a good agreement between the measurements and the predictions from the design tool.

  4. Vortex propagation around a wall-mounted obstacle in pulsatile flow

    Science.gov (United States)

    Carr, Ian A.; Plesniak, Michael W.

    2015-11-01

    Wall-mounted obstacles are prevalent in nature and engineering applications. Physiological flows observed in human vocal fold pathologies, such as polyps, can be modeled by flow over a wall-mounted protuberance. Despite their prevalence, studies of wall-mounted obstacles have been restricted to steady (constant velocity) freestream flow. In biological and geophysical applications, pulsatile flow is much more common, yet effects of pulsatility on the wake of a wall-mounted obstacle remain to be extensively studied. This study aims to characterize the complex physics produced in this unsteady, separated flow. Experiments were performed in a low-speed wind tunnel with a set of rotating vanes, which produce the pulsatile inflow waveform. Instantaneous and phase-averaged particle image velocimetry (PIV) results acquired around a hemispherical obstacle are presented and compared. A mechanism based on self-induced vortex propagation, analogous to that in vortex rings, is proposed to explain the observed dynamics of coherent structures. Predictions of the propagation velocity based on analytical expressions for vortex rings in a viscous fluid are compared to the experimentally measured propagation velocity. Effects of the unsteady boundary layer on the observed physics are explored. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  5. Mean flow development of a longitudinal vortex embedded in an attached, three-dimensional, turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Shizawa, T. [Science Univ. of Tokyo (Japan); Eaton, J.K. [Stanford Univ., CA (United States). Dept. of Mechanical Engineering

    1990-12-31

    The interaction of a longitudinal vortex with a pressure-driven, three dimensional turbulent boundary layer was investigated experimentally. The vortex was attenuated much more rapidly in the three dimensional layer than in a two-dimensional boundary layer. The persistence for the vortex-induced perturbation was strongly dependent on the sign of the vortex.

  6. On the vortex dynamics in the wake of a finite surface-mounted square cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Sattari, P.; Bourgeois, J.A.; Martinuzzi, R.J. [University of Calgary, Department of Mechanical and Manufacturing Engineering, Calgary, AB (Canada)

    2012-05-15

    The shedding process in the near wake of a surface-mounted, square cross-section cylinder of height-to-width aspect ratio 4 at a Reynolds number of 12,000 based on free-stream velocity and the obstacle width was investigated. The boundary layer thickness was 0.18 obstacle heights based on 99% free-stream velocity. The study is performed using planar high frame-rate particle image velocimetry synchronized with pressure measurements and hot-wire anemometry. Spatial cross-correlation, instantaneous phase relationships, and phase-averaged velocity data are reported. Two dominant vortex-shedding regimes are observed. During intervals of high-amplitude pressure fluctuations on the obstacle side faces, alternate formation and shedding of vortices is observed (regime A) similar to the von Karman process. Regime B is characterized by two co-existing vortices in the obstacle lee throughout the shedding cycle and is observed within low-amplitude pressure fluctuation intervals. Despite the coexisting vortices in the base region, opposite sign vorticity is still shed out-of-phase downstream of this vortex pair giving rise to a staggered arrangement of counter-rotating vortices downstream. While the probability of occurrence of Regime B increases toward the free end, the amplitude modulation remains coherent along the obstacle height. Conditionally phase-averaged reconstructions of the flow field are consistent with the spatial distribution of the phase relationships and their probability density function. Earlier observations are reconciled showing that the symmetric shedding of vortices is a rare occurrence. (orig.)

  7. Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate

    Science.gov (United States)

    Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth

    2013-11-01

    We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  8. Numerical investigation and analysis of heat transfer enhancement in channel by longitudinal vortex based on field synergy principle

    Institute of Scientific and Technical Information of China (English)

    Wenquan TAO; Junmei WU

    2008-01-01

    3-D numerical simulations were presented for laminar flow and heat transfer characteristics in a rectangular channel with vortex generators. The effects of Reynolds number (from 800 to 3 000), the attack angle of vortex generator (from 15° to 90°) and the shape of vortex generator were examined. The numerical results were analyzed based on the field synergy principle. It is found that the inherent mechanism of the heat transfer enhancement by longitudinal vortex can be explained by the field synergy principle, that is, the second flow generated by vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient. The longitudinal vortex improves the field synergy of the large downstream region of longitudinal vortex generator (LVG) and the region near (LVG); however, transverse vortex only improves the syn-ergy of the region near vortex generator. Thus, longitudinal vortex can enhance the integral heat transfer of the flow field, while transverse vortex can only enhance the local heat transfer. The synergy angle decreases with the increase of Reynolds number for the channel with LVG to differ from the result obtained from the plain channel, and the triangle winglet performs better than the rectanglar one under the same surface area condition.

  9. Numerical Analysis on Longitudinal Location Optimization of Vortex Generator in Compact Heat Exchangers

    DEFF Research Database (Denmark)

    Gorji, M.; Mirgolbababei, H.; Barari, Amin

    2011-01-01

    In this paper, numerical, curvilinear and turbulent model has been used to investigate the effect of vortex generator's longitudinal displacement on heat transfer and fluid flow in different Reynolds numbers ranging from 500 to 3000. The numerical model has been validated with experimental result...

  10. Numerical analysis on heat transfer enhancement by longitudinal vortex based on field synergy principle

    Institute of Scientific and Technical Information of China (English)

    WU Junmei; TAO Wenquan

    2007-01-01

    Three-dimensional numerical simulation results are presented for a fin-and-tube heat transfer surface with vortex generators.The effects of the Reynolds number (from 800 to 2 000) and the attack angle (30° and 45°) of a delta winglet vortex generator are examined.The numerical results are analyzed on the basis of the field synergy principle to explain the inherent mechanism of heat transfer enhancement by longitudinal vortex.The secondary flow generated by the vortex generators causes the reduction of the intersection angle between the velocity and fluid temperature gradients.In addition,the computational evaluations indicate that the heat transfer enhancement of delta winglet pairs for an aligned tube bank fin-and-tube surface is more significant than that for a staggered tube bank fin-and-tube surface.The heat transfer enhancement of the delta winglet pairs with an attack angle of 45° is larger than that with an angle of 30°.The delta winglet pair with an attack angle of 45° leads to an increase in pressure drop,while the delta winglet pair with the 30°angle results in a slight decrease.The heat transfer enhancement under identical pumping power condition for the attack angle of 30° is larger than that for the attack angle of 45°either for staggered or for aligned tube bank arrangement.

  11. Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Fiebig, M.; Mitra, N.K. [Ruhr-Universitaet Bochum (Germany). Inst. fuer Thermo- und Fluiddynamik

    2000-02-01

    Punched longitudinal vortex generators in form of winglets in staggered arrangements were employed to enhance heat transfers in high performance finned oval tube heat exchanger elements. Three-dimensional hydrodynamically and thermally developing laminar flow (Re = 300) and conjugate heat transfer in finned oval tubes were calculated by solving the Navier-Stokes and energy equations with a finite-volume method in curvilinear grids. Velocity field, pressure distribution, vortex formation, temperature fields, local heat transfer distributions and global results for finned oval tubes with two to four staggered winglets ({beta}= 30{sup o}, {lambda} = 2, h =H) were presented and compared. Winglets in staggered arrangement bring larger heat transfer enhancement than in in-line arrangement since the longitudinal vortices from the former arrangement influence a larger area and intensify the fluid motion normal to the flow direction. For Re = 300 and Fi = 500, the ratios of heat transfer enhancement to flow loss penalty (j/j{sub 0})/( f/f{sub 0}) were 1.151 and 1.097 for a finned oval tube with two and four staggered winglets, respectively. (author)

  12. Generation of Vortex Beams with Strong Longitudinally Polarized Magnetic Field by Using a Metasurface

    CERN Document Server

    Veysi, Mehdi; Capolino, Filippo

    2014-01-01

    A novel method of generation and synthesis of azimuthally E-polarized vortex beams is presented. Along the axis of propagation such beams have a strong longitudinally polarized magnetic field where ideally there is no electric field. We show how these beams can be constructed through the interference of Laguerre-Gaussian beams carrying orbital angular momentum. As an example, we present a metasurface made of double-split ring slot pairs and report a good agreement between simulated and analytical results. Both a high magnetic-to-electric-field contrast ratio and a magnetic field enhancement are achieved. We also investigate the metasurface physical constraints to convert a linearly polarized beam into an azimuthally E- polarized beam and characterize the performance of magnetic field enhancement and electric field suppression of a realistic metasurface. These findings are potentially useful for novel optical spectroscopy related to magnetic dipolar transitions and for optical manipulation of particles with sp...

  13. Advances and Outlooks of Heat Transfer Enhancement by Longitudinal Vortex Generators

    CERN Document Server

    He, Ya-Ling

    2016-01-01

    In the last several decades, heat transfer enhancements using extended surface (fins) has received considerable attentions. A new heat transfer enhancement technique, longitudinal vortex generators (LVG), has received significant attention since the 1990s. It is activated by a special type of extended surface that can generate vortices with axes parallel to the main flow direction. The vortices result from strong swirling secondary flow caused by flow separation and friction. The state-of-the-art on research and applications of LVG are described here. The topical coverage includes heat transfer enhancement in straight channels and in heat exchangers. Among the latter are plate and wavy fin-and-tube heat exchangers, fin-and-oval-tube heat exchangers, and fin-and-tube heat exchangers with multiple rows of tubes. The trends and future directions of heat transfer enhancement by means of LVG are discussed.

  14. The effects of blade mounted vortex generators on the noise from a MOD-2 wind turbine generator

    Science.gov (United States)

    Hubbard, H. H.; Shepherd, K. P.

    1984-01-01

    Comparison noise measurements were made for a standard MOD-2 machine and for one modified to include an array of vortex generators on the suction sides of the blades near maximum thickness. Data were obtained for comparable azimuth angles and distances for a range of wind velocities of 7.6 to 10.3 m/s and for power outputs of 1.4 MW. Since the observed differences are small it is concluded that the inclusion of vortex generators on this machine will result in no significant increase in environmental impact due to noise.

  15. Longitudinal Plasmoid in High-Speed Vortex Gas Flow Created by Capacity HF Discharge

    Science.gov (United States)

    2010-10-28

    instrumentation will be used in this Project to study plasma and gas flow parameters, including new shadow device with excimer KrF laser, MW...vortex decay (attenuation) by HF plasma. The additional experiments with small helium jet injection prove the conclusion about vortex attenuation by a...equilibrium HF plasma. Plasma and airflow parameters are measured by different diagnostic instrumentation including shadow optical device with excimer

  16. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    Science.gov (United States)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  17. The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm

    Science.gov (United States)

    Wu, Xuehong; Liu, DanDan; Zhao, Min; Lu, YanLi; Song, Xiaoyong

    2016-09-01

    Delta winglet works better than other vortex generators in improving the performance of fin-tube heat exchangers. In this paper, Response Surface Approximation is used to study the effects of the fin pitch, the ratio of the longitudinal tube pitch to transverse tube pitch, the ratio of both sides V 1 , V h of delta winglets and the attack angle of delta winglets on the performance of fin-tube heat exchanger. Firstly, Twenty-nine numerical group experiments including five times repeated experiments at the central point are conducted. Then, the analyses of variable (ANOVA) and regression are performed to verify the accuracy of the polynomial coefficients. Finally, the optimization of the fin-tube heat exchanger using the Genetic Algorithm is conducted and the best performance of j/f (1/3) is found to be 0.07945, which is consistent with the numerical result.

  18. Effectiveness of a redesigned water diversion using rock vortex weirs to enhance longitudinal connectivity for small Salmonids

    Science.gov (United States)

    Martens, Kyle D.; Connolly, Patrick J.

    2010-01-01

    For nearly 100 years, water diversions have affected fish passage in Beaver Creek, a tributary of the lower Methow River in north-central Washington State. From 2000 to 2004, four dam-style water diversions were replaced with a series of rock vortex weirs (RVWs). The weirs were designed to allow fish passage while maintaining the ability to divert water into irrigation canals. We observed the new appearance of three species (juvenile Chinook salmon Oncorhynchus tshawytscha, juvenile coho salmon O. kisutch, and mountain whitefish Prosopium williamsoni) upstream of the RVWs, indicating successful restoration of longitudinal connectivity. We used passive integrated transponder (PIT) tags and instream PIT tag interrogation systems during 2004–2007 to evaluate upstream passage of small salmonids (<240 mm fork length) through one series of RVWs. We documented 109 upstream passage events by small salmonids through the series of RVWs; most of the events (81%) involved passage of rainbow trout O. mykiss or juvenile steelhead (anadromous rainbow trout). Small rainbow trout or steelhead ranging from 86 to 238 mm (adjusted fork length) were able to pass upstream through the RVWs, although a delay in fish passage at discharges below 0.32 m3/s was detected in comparison with nearby control sections.

  19. Heat transfer enhancement of Taylor-Couette-Poiseuille flow in an annulus by mounting longitudinal ribs on the rotating inner cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, Tzer-Ming [Air Force Institute of Technology, Gangshan (Taiwan). Department of Mechanical Engineering; Tzeng, Sheng-Chung; Lin, Chao-Hsien [ChienKuo Technology University, Changhua (Taiwan). Department of Mechanical Engineering

    2007-01-15

    This work experimentally investigates the heat transfer characteristics of Taylor-Couette-Poiseuille flow in an annular channel by mounting longitudinal ribs on the rotating inner cylinder. The ranges of the axial Reynolds number (Re) and the rotational Reynolds number (Re{sub {omega}}) are Re=30-1200 and Re{sub {omega}}=0-2922, respectively. Three modes of the inner cylinder without/with longitudinal ribs are considered. A special entry and exit design for the axial coolant flow reveals some interesting findings. The value of Nusselt number (Nu) is almost minimal at the inlet of the annular channel, and then sharply rises in the axial direction. The average Nusselt number (Nu|) increases with Re. Nu increases rapidly with Re{sub {omega}} at low Re (such as at Re=30 and 60) but that the effect of Re{sub {omega}} decreases as the value increases (such as at Re=300-1200). The ratio Nu|/Nu|{sub 0} increases with Re{sub {omega}} and exceed two at all Re and in the test modes. The heat transfer is typically promoted by mounting longitudinal ribs on the rotating inner cylinder, especially at Re=300 and 600. When Re=300 or 600 and Re{sub {omega}}>2000, the Nu| of the system with ribs reaches around 1.4 times that of Nu|{sub A} (Nu| in mode A). Under a given pumping power constraint (PRe{sup 3}), the Nu| of the system with ribs (modes B and C) generally exceeds that without ribs (mode A), while the difference between the values of Nu| in modes B and A slowly falls as PRe{sup 3} increases. Additionally, mode B (with ribs) is preferred for high heat transfer when PRe{sup 3}<4.5x10{sup 13} but mode C (with cavities on ribs) is optimal for high heat transfer when PRe{sup 3}>4.5x10{sup 13}. (author)

  20. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 2nd Report. Behavior of the interacting flow field controlled passively; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 2. Judo seigyosareta nagareba no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents the behavior of a passively controlled horseshoe vortex at the root of NACA0024 wing which is established on a turbulent boundary layer, A pair of vortex generators of half delta wing is installed upstream of the wing. The flow field of the optimally controlled horseshoe vortex both in case of Common Flow Up (CFUC) and Common Flow Down Configuration (CFDC) is carefully investigated by an X-array hot-wire. In case of CFUC, the horseshoe vortex is not shifted from the wing, because the longitudinal vortex is restrained. The interacted vortex presents a circular profile, in a optimally controlled case. In case of CFDC, the interacted vortex that has strong vorticity by the pairing process is shifted away from the wing. Then, the high momentum fluid flow penetrates between the wing and the vortex. (author)

  1. The Effect of Circular Finned Tube Heat Transfer Enhancement by Using Longitudinal Vortex Generators%纵向涡发生器对圆形翅片管换热强化的影响

    Institute of Scientific and Technical Information of China (English)

    于恩播; 孙铁; 张素香

    2012-01-01

    The fluid flow and heat transfer process of circular finned tube with longitudinal vortex generators(LVGs) were numerically simulated with the CFD calculation software FLUENT, then compared with the normal circular finned tube. The simulation results show that the performance of circular finned tube with longitudinal vortex generators is far better than that of the normal circular finned tube. It can be explained from the view point of field synergy principle, which says that the longitudinal vortex generators can enhance effect of heat transfer because it reduces the angle between velocity and fluid temperature gradient.%利用CFD计算软件FLUENT对带有纵向涡发生器的圆形翅片管的流体流动和传热过程进行数值模拟,并与普通圆形翅片管加以对比.结果表明,带有纵向涡发生器的翅片管换热效果明显优于普通翅片管.应用场协同原理解释认为,纵向涡发生器使流体速度和温度梯度之间夹角减小,改善了速度场和温度场的协同性,从而增强了换热效果.

  2. A longitudinal study on anaemia in children with Plasmodium falciparum infection in the Mount Cameroon region: prevalence, risk factors and perceptions by caregivers

    Science.gov (United States)

    2013-01-01

    Background In heavily endemic malaria areas, it is almost inevitable that malarial infection will be associated with anaemia, although malaria may not be the prime cause of it. Anaemia is a major public health problem in Cameroon. We hypothesized that, factors other than falciparum malaria account for anaemia in the study area. Methods A longitudinal study was conducted among 351 Plasmodium falciparum positive children to determine the prevalence, risk factors and the perception of anaemia by the caregivers in a semi-rural community. The investigative methods included the use of a structured questionnaire, clinical evaluation and laboratory investigations. Results At enrolment the overall prevalence of anaemia as assessed by Hb concentration (Hb anaemia was 6% and 46.2% of the children achieved haematological recovery by day 42. Exploratory multiple linear regression analysis showed the following; parasitaemia density (P 2 days (P anaemia in children with falciparum infection. Approximately 75.5% (265) of the caregivers had some knowledge about anaemia. Conclusion The identified risk factors revealed the important contributors to the pathogenesis of anaemia in the Mount Cameroon region. Control efforts should therefore be directed towards proper health education emphasizing on proper health seeking behaviour and attitudes of the population. PMID:23497273

  3. Vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Akhmetov, D.G. [Lavrentiev Institute of Hydrodynamics, Novosibirsk (Russian Federation)

    2009-07-01

    This book presents a comprehensive coverage of the wide field of vortex rings. The book presents the results of systematic experimental investigations, theoretical foundation, as well as the practical applications of vortex rings, such as the extinction of fires at gushing gas and oil wells. All the basic properties of vortex rings as well as their hydrodynamic structures are presented. Special attention is paid to the formation and motion of turbulent vortex rings. (orig.)

  4. Vulcanized Vortex

    CERN Document Server

    Cho, Inyong

    2008-01-01

    We investigate vortex configurations with the "vulcanization" term introduced for renormalization of $\\phi_\\star^4$ theory in canonical $\\theta$-deformed noncommutativity. In the small-$\\theta$ limit, we perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  5. Numerical simulations on convective heat transfer characteristics of laminar flow with longitudinal vortex induced by winglets%翼片诱导纵向涡强化层流对流传热数值模拟

    Institute of Scientific and Technical Information of China (English)

    车翠翠; 田茂诚; 冷学礼

    2013-01-01

    3-D numerical simulations were presented for studying the flow structures and convective heat transfer charac-teristics in a cylinder tube embedded with wing-finned vortex generators.In the numerical simulation, the winglet was upstream placed at an angle of 45 to the tube wall and 1/6 of channel was selected for studying due to symmetry.The results showed that two counter-rotating longitudinal vortices were induced downstream the winglet, forming a symmet-ric vortex pair.The flow inner vortex pair was towards the wall while the flow outer vortex pair was backwards the wall.The longitudinal vortex could improve the magnitude of velocity in the radial direction, and the maximum value in near wall region reached 80% of the average mainstream velocity downstream the winglet.As a result, the winglet booted the disturbance of the velocity boundary layer.The improved velocity field could make the temperature field in the tube more uniform.Compared with the smooth tube, the temperature gradient near the wall could improve approxi-mately an order of magnitude.The flow induced by the longitudinal vortex rushed to the wall, which strengthened the convective heat transfer significantly.The maximum value of the local Nu on the wall surface could reach 50 times of the smooth tube.The improved convective heat transfer performance lead by longitudinal vortex enhanced with the Reynolds numbers increasing.%利用三维数值模拟,分析了圆管内添加翼片后流体的流动结构和对流传热特性。模拟中,翼片与壁面呈45°倾斜放置,选取包含1个翼片的1/6通道进行研究。结果表明,翼片可在下游诱导产生2个旋转方向相反的纵向涡,形成对称的涡偶,涡偶外侧为背壁流,内侧为向壁流。纵向涡结构提高了流体在径向上的速度波动,在翼片下游靠近管壁处,最大速度可达到主流平均速度的80%,增强了对速度边界层的扰动。流场的改善使通道内的温度场分布

  6. 三角形纵向涡在管翅式换热器的应用及优化%Application and Optimization of Triangular Longitudinal Vortex in Fin and Tube Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    王成刚; 高兴; 刘俊; 刘慧

    2014-01-01

    The longitudinal vortex can increase heat transfer coefficient of the fin and tube heat exchanger, and the flow resistance increases slightly. In this paper, numerical simulation on the fin and tube heat exchanger with 4 kinds of different structure fins (plain fin,H3/6,H4/6 and H5/6) was carried out. The results show that the heat transfer coefficient of the fin and tube heat exchanger with the longitudinal vortex generator is obviously increased, and the highest increase reaches 49%, at the same time resistance coefficient J also has obvious increase. The resistance factor of the fin and tube heat exchanger with the longitudinal vortex H5/6 fin has minimal increase;it is almost the same with that with plain fin. Finally, it’s pointed out that the fin and tube heat exchanger with H5/6 type longitudinal vortex fin has the best comprehensive effect.%纵向涡能够在增加管翅式换热器换热系数,同时较小幅度地增加其流动阻力。本文通过对4种结构的翅片(未进行任何处理的平翅片,结构为高为H3/6、H4/6、H5/6且攻角为30°长高比为2)进行数值模拟。结果显示安装纵向涡发生器的翅片的传热系数明显增强,且最高增加49%。在换热系数增加的同时阻力系数j也有明显的增加。其中安装纵向涡H5/6型翅片的阻力因子增加最小与平翅片几乎相同。最后本文通过对综合评价因子j/f的比较得知安装H5/6型纵向涡翅片具有最好的综合效果。

  7. Sculptured 3D twister superlattices embedded with tunable vortex spirals.

    Science.gov (United States)

    Xavier, Jolly; Vyas, Sunil; Senthilkumaran, Paramasivam; Denz, Cornelia; Joseph, Joby

    2011-09-01

    We present diverse reconfigurable complex 3D twister vortex superlattice structures in a large area embedded with tunable vortex spirals as well as dark rings, threaded by vortex helices. We demonstrate these tunable complex chiral vortex superlattices by the superposition of relatively phase engineered plane waves. The generated complex 3D twister lattice vortex structures are computationally as well as experimentally analyzed using various tools to verify the presence of phase singularities. Our observation indicates the application-specific flexibility of our approach to tailor the transverse superlattice spatial irradiance profile of these longitudinally whirling vortex-cluster units and dark rings.

  8. A longitudinal study on anaemia in children with Plasmodium falciparum infection in the Mount Cameroon region: prevalence, risk factors and perceptions by caregivers

    National Research Council Canada - National Science Library

    Sumbele, Irene Ule Ngole; Samje, Moses; Nkuo-Akenji, Theresa

    2013-01-01

    .... A longitudinal study was conducted among 351 Plasmodium falciparum positive children to determine the prevalence, risk factors and the perception of anaemia by the caregivers in a semi-rural community...

  9. Vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Chorin, A.J. [California Univ., Berkeley, CA (United States). Dept. of Mathematics]|[Lawrence Berkeley Lab., CA (United States)

    1993-06-01

    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  10. Brownian vortexes

    Science.gov (United States)

    Sun, Bo; Lin, Jiayi; Darby, Ellis; Grosberg, Alexander Y.; Grier, David G.

    2009-07-01

    Mechanical equilibrium at zero temperature does not necessarily imply thermodynamic equilibrium at finite temperature for a particle confined by a static but nonconservative force field. Instead, the diffusing particle can enter into a steady state characterized by toroidal circulation in the probability flux, which we call a Brownian vortex. The circulatory bias in the particle’s thermally driven trajectory is not simply a deterministic response to the solenoidal component of the force but rather reflects interplay between advection and diffusion in which thermal fluctuations extract work from the nonconservative force field. As an example of this previously unrecognized class of stochastic heat engines, we consider a colloidal sphere diffusing in a conventional optical tweezer. We demonstrate both theoretically and experimentally that nonconservative optical forces bias the particle’s fluctuations into toroidal vortexes whose circulation can reverse direction with temperature or laser power.

  11. Vortex transmutation.

    Science.gov (United States)

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  12. Effect of Fluid Viscoelasticity on Turbulence and Large-Scale Vortices behind Wall-Mounted Plates

    Directory of Open Access Journals (Sweden)

    Takahiro Tsukahara

    2014-03-01

    Full Text Available Direct numerical simulations of turbulent viscoelastic fluid flows in a channel with wall-mounted plates were performed to investigate the influence of viscoelasticity on turbulent structures and the mean flow around the plate. The constitutive equation follows the Giesekus model, valid for polymer or surfactant solutions, which are generally capable of reducing the turbulent frictional drag in a smooth channel. We found that turbulent eddies just behind the plates in viscoelastic fluid decreased in number and in magnitude, but their size increased. Three pairs of organized longitudinal vortices were observed downstream of the plates in both Newtonian and viscoelastic fluids: two vortex pairs were behind the plates and the other one with the longest length was in a plate-free area. In the viscoelastic fluid, the latter vortex pair in the plate-free area was maintained and reached the downstream rib, but its swirling strength was weakened and the local skin-friction drag near the vortex was much weaker than those in the Newtonian flow. The mean flow and small spanwise eddies were influenced by the additional fluid force due to the viscoelasticity and, moreover, the spanwise component of the fluid elastic force may also play a role in the suppression of fluid vortical motions behind the plates.

  13. Surface Roughness Effects on Vortex Torque of Air Supported Gyroscope

    Institute of Scientific and Technical Information of China (English)

    LIANG Yingchun; LIU Jingshi; SUN Yazhou; LU Lihua

    2011-01-01

    In order to improve the drift precision of air supported gyroscope, effects of surface roughness magnitude and direction on vortex torque of air supported gyroscope are studied. Based on Christensen's rough surface stochastic model and consistency transformation method, Reynolds equation of air supported gyroscope containing surface roughness information is established.Also effects of mathematical models of main machining errors on vortex torque are established. By using finite element method,the Reynolds equation is solved numerically and the vortex torque in the presence of machining errors and surface roughness is calculated. The results show that surface roughness of slit has a significant effect on vortex torque. Transverse surface roughness makes vortex torque greater, while longitudinal surface roughness makes vortex torque smaller. The maximal difference approaches 11.4% during the range analyzed in this article. However surface roughness of journal influences vortex torque insignificantly. The research is of great significance for designing and manufacturing air supported gyroscope and predicting its performance.

  14. 纵向涡旋发生元LVG强化换热的实验研究%Experimental study on heat transfer enhancement by using delta-winglet longitudinal vortex generators

    Institute of Scientific and Technical Information of China (English)

    吕静; 马济成; 杜雅萍

    2001-01-01

    对直角三角翼纵向涡旋发生元LVG(Longitudinal Vortex Generator)的强化换热进行了研究. 结果表明,在一定的雷诺数范围内,直角三角翼纵向涡旋发生元的冲击角、翼高、翼宽及宽高比等几何参数是影响传热强化的主要因素,存在最佳冲击角,宽高比只是一个形状因子,翼高或翼宽的变化会影响换热的效果.将LVG与扰流柱和矩形低肋换热表面的性能作了对比性实验, 在其他条件相同的情况下,LVG强化换热的效果优于扰流柱和矩形低肋.

  15. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 1st Report. Potential for passive controlling by a pair of vortex generators; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 1. Ittsui no uzu hasseiki ni yoru judo seigyoho no teian

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H.; Takahashi, M. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Ikeda, K. [Toshiba Corp., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents a potential for a passive control of a horseshoe vortex at the root of the wing. NACA0024 wing is established on a turbulent boundary layer. A pair of vortex generators of halt delta wing is installed upstream of the wing. The controlled horseshoe vortex is tested qualitatively by flow visualization technique. Also, the potential for controlling is quantitatively investigated by wall static pressure and total pressure. The horseshoe vortex is remarkably controlled in Common Flow Up Configuration (CFUC) of vortex generators. The distortion of the total pressure contours is diminished by 49% and the vortex is located closer to the wing. In case of Common Flow Down Configuration (CFDC), the mass flow averaged pressure loss is decreased by 29% compared with the case without a pair of vortex generators. (author)

  16. On vortex shedding and prediction of vortex-induced vibrations of circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Karl Henning

    1997-12-31

    In offshore installations, many crucial components can be classified as slender marine structures: risers, mooring lines, umbilicals and cables, pipelines. This thesis studies the vortex shedding phenomenon and the problem of predicting vortex-induced vibrations of such structures. As the development of hydrocarbons move to deeper waters, the importance of accurately predicting the vortex-induced response has increased and so the need for proper response prediction methods is large. This work presents an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders and the different numerical approaches to modelling the fluid flow. The response predictions from different methods are found to disagree, both in response shapes and in vibration amplitudes. This work presents a prediction method that uses a fully three-dimensional structural finite element model integrated with a laminar two-dimensional Navier-Stokes solution modelling the fluid flow. This solution is used to study the flow both around a fixed cylinder and in a flexibly mounted one-degree-of-freedom system. It is found that the vortex-shedding process (in the low Reynolds number regime) is well described by the computer program, and that the vortex-induced vibration of the flexibly mounted section do reflect the typical dynamic characteristics of lock-in oscillations. However, the exact behaviour of the experimental results found in the literature was not reproduced. The response of the three-dimensional structural model is larger than the expected difference between a mode shape and a flexibly mounted section. This is due to the use of independent hydrodynamic sections along the cylinder. The predicted response is not unrealistic, and the method is considered a powerful tool. 221 refs., 138 figs., 36 tabs.

  17. 纵向涡发生器作用下矩形通道内流动换热性能研究%Study on Flow and Heat Transfer Characteristic in Rectangular Channel With Longitudinal Vortex Generator

    Institute of Scientific and Technical Information of China (English)

    唐凌虹; 谭思超; 高璞珍

    2014-01-01

    In this study , the effects of three types of longitudinal vortex generator (LVG) configurations on the flow and heat transfer characteristics in a rectangular channel were investigated and analyzed by field synergy principle .The results show that the temperature of plate fuel assembly can be decreased and the critical heat flux (CHF) of the reactor will be increased .Compared by the performance evaluation parameter ,JF factor ,the results indicate that “common flow up”combined with ellipse pole configura-tion can bring about more enhancement of heat transfer at a modest expense of the addi-tional pressure-loss .%对渐缩式纵向涡发生器与椭圆支柱共同作用下矩形通道内的流动换热性能进行了研究,与渐缩式纵向涡发生器、渐扩式纵向涡发生器和光通道的流动换热性能进行了对比,并利用场协同原理对其换热机理进行了分析。结果表明:纵向涡发生器可增强换热,有利于降低加热板的表面温度,从而提高反应堆堆芯的C H F值。采用JF因子对各矩形通道的综合流动换热性能进行了比较,结果表明,渐缩式纵向涡发生器与椭圆支柱组合结构能以较小的阻力代价得到较大的换热效果,是一种理想的强化换热方式。

  18. Fractional vortex Hilbert's Hotel

    CERN Document Server

    Gbur, Greg

    2015-01-01

    We demonstrate how the unusual mathematics of transfinite numbers, in particular a nearly perfect realization of Hilbert's famous hotel paradox, manifests in the propagation of light through fractional vortex plates. It is shown how a fractional vortex plate can be used, in principle, to create any number of "open rooms," i.e. topological charges, simultaneously. Fractional vortex plates are therefore demonstrated to create a singularity of topological charge, in which the vortex state is completely undefined and in fact arbitrary.

  19. Sadovskii vortex in strain

    Science.gov (United States)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2014-11-01

    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  20. Streamwise Vortex Interaction with a Horseshoe Vortex

    Institute of Scientific and Technical Information of China (English)

    Piotr Doerffer; Pawel Flaszynski; Franco Magagnato

    2003-01-01

    Flow control in turbomachinery is very difficult because of the complexity of its fully 3-D flow structure. The authors propose to introduce streamwise vortices into the control of internal flows. A simple configuration of vortices was investigated in order to better understand the flow control methods by means of streamwise vortices.The research presented here concerns streamwise vortex interaction with a horseshoe vortex. The effects of such an interaction are significantly dependent on the relative location of the streamwise vortex in respect to the leading edge of the profile. The streamwise vortex is induced by an air jet. The horseshoe vortex is generated by the leading edge of a symmetric profile. Such a configuration gives possibility to investigate the interaction of these two vortices alone. The presented analysis is based on numerical simulations by means of N-S compressible solver with a two-equation turbulence model.

  1. Characterization of Vortex Generator Induced Flow

    DEFF Research Database (Denmark)

    Velte, Clara Marika

    The aim of this thesis is the characterization and modeling of the longitudinal structures actuated by vortex generators. Results from generic studies performed at low Reynolds numbers have shown that the device induced vortices possess helical structure of the vortex core. Further, their ability...... to control separation and downstream evolution across the chord of a circular sector have been studied. Similar flow structures to the ones found in the generic experiments have been found in a higher Reynolds number setting, more applicable to realistic cases common to, e.g., aeronautical applications...

  2. Vortex mechanism in hydrocyclones

    Institute of Scientific and Technical Information of China (English)

    徐继润; 刘正宁; 邢军; 李新跃; 黄慧; 徐海燕; 罗茜

    2001-01-01

    On the basis of analyzing the vortex characteristics, a new mechanism of the vortex formation in hydrocyclones is developed. The main concept of the mechanism is that the vortex flow in a hydrocyclone is resulted from the overlapping of container rotation and hole leakage. The model is then used to explain the compound distribution of free vortex and forced vortex, predict the similarity of tangential velocity at different input pressures, and make count of the principle of small hydrocyclone with lower cut-size than large one. Meanwhile a new possible approach to a large hydro-cyclone with lower cut-size by minimizing or eliminating the air core is discussed briefly.

  3. Depicting Vortex Stretching and Vortex Relaxing Mechanisms

    Institute of Scientific and Technical Information of China (English)

    符松; 李启兵; 王明皓

    2003-01-01

    Different from many existing studies on the paranetrization of vortices, we investigate the effectiveness of two new parameters for identifying the vortex stretching and vortex relaxing mechanisms. These parameters are invariants and identify three-dimensional flow structures only, i.e. they diminish in two-dimensional flows. This is also unlike the existing vortex identification approaches which deliver information in two-dimensional flows. The present proposals have been successfully applied to identify the stretching and relaxing vortices in compressible mixing layers and natural convection flows.

  4. Application of Wind Tunnel Free-Flight Technique for Wake Vortex Encounters

    Science.gov (United States)

    Brandon, Jay M.; Jordan, Frank L., Jr.; Stuever, Robert A.; Buttrill, Catherine W.

    1997-01-01

    A wind tunnel investigation was conducted in the Langley 30- by 60-Foot Tunnel to assess the free-flight test technique as a tool in research on wake vortex encounters. A typical 17.5-percent scale business-class jet airplane model was flown behind a stationary wing mounted in the forward portion of the wind tunnel test section. The span ratio (model span-generating wingspan) was 0.75. The wing angle of attack could be adjusted to produce a vortex of desired strength. The test airplane model was successfully flown in the vortex and through the vortex for a range of vortex strengths. Data obtained included the model airplane body axis accelerations, angular rates, attitudes, and control positions as a function of vortex strength and relative position. Pilot comments and video records were also recorded during the vortex encounters.

  5. Cavitating vortex characterization based on acoustic signal detection

    Science.gov (United States)

    Digulescu, A.; Murgan, I.; Candel, I.; Bunea, F.; Ciocan, G.; Bucur, D. M.; Dunca, G.; Ioana, C.; Vasile, G.; Serbanescu, A.

    2016-11-01

    In hydraulic turbines operating at part loads, a cavitating vortex structure appears at runner outlet. This helical vortex, called vortex rope, can be cavitating in its core if the local pressure is lower that the vaporization pressure. An actual concern is the detection of the cavitation apparition and the characterization of its level. This paper presents a potentially innovative method for the detection of the cavitating vortex presence based on acoustic methods. The method is tested on a reduced scale facility using two acoustic transceivers positioned in ”V” configuration. The received signals were continuously recorded and their frequency content was chosen to fit the flow and the cavitating vortex. Experimental results showed that due to the increasing flow rate, the signal - vortex interaction is observed as modifications on the received signal's high order statistics and bandwidth. Also, the signal processing results were correlated with the data measured with a pressure sensor mounted in the cavitating vortex section. Finally it is shown that this non-intrusive acoustic approach can indicate the apparition, development and the damping of the cavitating vortex. For real scale facilities, applying this method is a work in progress.

  6. Vaginitis test - wet mount

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003916.htm Vaginitis test - wet mount To use the sharing features on this page, please enable JavaScript. The vaginitis wet mount test is a test to detect ...

  7. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.

    2012-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  8. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.

    2014-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  9. Photovoltaic module mounting system

    Science.gov (United States)

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N.; Holland, Rodney H.

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  10. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian;

    2009-01-01

    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws ...

  11. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  12. Vortex cutting in superconductors

    Science.gov (United States)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  13. An optical vortex coronagraph

    Science.gov (United States)

    Palacios, David M.

    2005-08-01

    An optical vortex may be characterized as a dark core of destructive interference in a beam of spatially coherent light. This dark core may be used as a filter to attenuate a coherent beam of light so an incoherent background signal may be detected. Applications of such a filter include: eye and sensor protection, forward-scattered light measurement, and the detection of extra-solar planets. Optical vortices may be created by passing a beam of light through a vortex diffractive optical element, which is a plate of glass etched with a spiral pattern, such that the thickness of the glass increases in the azimuthal direction. An optical vortex coronagraph may be constructed by placing a vortex diffractive optical element near the image plane of a telescope. An optical vortex coronagraph opens a dark window in the glare of a distant star so nearby terrestrial sized planets and exo-zodiacal dust may be detected. An optical vortex coronagraph may hold several advantages over other techniques presently being developed for high contrast imaging, such as lower aberration sensitivity and multi-wavelength operation. In this manuscript, I will discuss the aberration sensitivity of an optical vortex coronagraph and the key advantages it may hold over other coronagraph architectures. I will also provide numerical simulations demonstrating high contrast imaging in the presence of low-order static aberrations.

  14. Optoelectronic Mounting Structure

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gene R. (Albuquerque, NM); Armendariz, Marcelino G. (Albuquerque, NM); Baca, Johnny R. F. (Albuquerque, NM); Bryan, Robert P. (Albuquerque, NM); Carson, Richard F. (Albuquerque, NM); Chu, Dahwey (Albuquerque, NM); Duckett, III, Edwin B. (Albuquerque, NM); McCormick, Frederick B. (Albuquerque, NM); Peterson, David W. (Sandia Park, NM); Peterson, Gary D. (Albuquerque, NM); Reber, Cathleen A. (Corrales, NM); Reysen, Bill H. (Lafayette, CO)

    2004-10-05

    An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region. In another embodiment, an electrical contact and ground plane may pass along a surface of the head region so as to provide an electrical contact path to the optoelectronic devices and limit electromagnetic interference. In yet another embodiment, a window may be formed in the head region of the mounting structure so as to provide access to the heat spreader. Optoelectronic devices may be adapted to the heat spreader in such a manner that the devices are accessible through the window in the mounting structure.

  15. Fast Josephson vortex

    Energy Technology Data Exchange (ETDEWEB)

    Malishevskii, A.S.; Silin, V.P.; Uryupin, S.A

    2002-12-30

    For the magnetically coupled waveguide and long Josephson junction we gave the analytic description of two separate velocity domains where the free motion of traveling vortex (2{pi}-kink) exists. The role of the mutual influence of waveguide and long Josephson junction is discussed. It is shown the possibility of the fast vortex motion with the velocity much larger than Swihart velocity of Josephson junction and close to the speed of light in the waveguide. The excitation of motion of such fast Josephson vortex is described.

  16. Vortex development on slender missiles at supersonic speeds

    Science.gov (United States)

    Allen, J. M.; Dillenius, M. F. E.

    1979-01-01

    A theoretical and experimental effort has been made to develop a vortex-prediction capability on circular and noncircular missiles at supersonic speeds. Predicted vortex patterns are computed by two linear-theory computer codes. One calculates the strengths and initial locations of the vortices, and the other calculates their trajectories. A short color motion picture has been produced from the calculations to illustrate the predicted vortex patterns on a typical missile. Experimental vapor-screen photographs are presented to show the longitudinal development of the vortices on a fin-control missile. Comparisons are made between these data and the predicted vortices to assess the accuracy of the theory. The theory appears to be fairly accurate in predicting the number, locations, and relative strengths of individual vortices which develop over the missile, but cannot predict vortex sheets or diffuse vorticity whenever they occur.

  17. Mechanical effects in a vortex device with a rotating core

    Science.gov (United States)

    Samokhvalov, V. N.

    2017-05-01

    The process of the appearance of forced rotation of an axial core mounted in a modified vortex tube in the direction opposite to the rotation of the air vortex and the precession of its axis have been studied. It has been established that dynamical bending of a metal axial core arises in the process of rotation which causes mechanical wear of its end part and fracture in the fastening area of the bearing without residual curvature of the core axis. The excitation of rotation and observed force effects are not related to the mechanical action of rotating air flow on the axial core.

  18. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect

    Science.gov (United States)

    Lan, C. Edward

    1985-01-01

    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  19. Conceptual design for PSP mounting bracket

    Energy Technology Data Exchange (ETDEWEB)

    Ransom, G.; Stein, R. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Protective structural packages (PSP`s or overpacks) used to ship 2 1/2-ton UF{sub 6} product cylinders are bolted to truck trailers. All bolts penetrate two longitudinal rows of wooden planks. Removal and replacement is required at various intervals for maintenance and routine testing. A conceptual design is presented for mounting brackets which would securely attach PSP`s to trailer frames, reduce removal and replacement time, and minimize risk of personnel injury.

  20. Vortex flow hysteresis

    Science.gov (United States)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  1. Modeling gasodynamic vortex cooling

    Science.gov (United States)

    Allahverdyan, A. E.; Fauve, S.

    2017-08-01

    We aim at studying gasodynamic vortex cooling in an analytically solvable, thermodynamically consistent model that can explain limitations on the cooling efficiency. To this end, we study an angular plus radial flow between two (coaxial) rotating permeable cylinders. Full account is taken of compressibility, viscosity, and heat conductivity. For a weak inward radial flow the model qualitatively describes the vortex cooling effect, in terms of both temperature and the decrease of the stagnation enthalpy, seen in short uniflow vortex (Ranque) tubes. The cooling does not result from external work and its efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the lowest temperature actually reached. We show that for the vortex cooling the efficiency is strictly smaller than 1, but in another configuration with an outward radial flow, we find that the efficiency can be larger than 1. This is related to both the geometry and the finite heat conductivity.

  2. Vector Lattice Vortex Solitons

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping

    2005-01-01

    @@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.

  3. Buoyant Norbury's vortex rings

    Science.gov (United States)

    Blyth, Mark; Rodriguez-Rodriguez, Javier; Salman, Hayder

    2014-11-01

    Norbury's vortices are a one-parameter family of axisymmetric vortex rings that are exact solutions to the Euler equations. Due to their relative simplicity, they are extensively used to model the behavior of real vortex rings found in experiments and in Nature. In this work, we extend the original formulation of the problem to include buoyancy effects for the case where the fluid that lies within the vortex has a different density to that of the ambient. In this modified formulation, buoyancy effects enter the problem through the baroclinic term of the vorticity equation. This permits an efficient numerical solution of the governing equation of motion in terms of a vortex contour method that tracks the evolution of the boundary of the vortex. Finally, we compare our numerical results with the theoretical analysis of the short-time evolution of a buoyant vortex. Funded by the Spanish Ministry of Economy and Competitiveness through grant DPI2011-28356-C03-02 and by the London Mathematical Society.

  4. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  5. Photovoltaic mounting/demounting unit

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a photovoltaic arrangement comprising a photovoltaic assembly comprising a support structure defining a mounting surface onto which a photovoltaic module is detachably mounted; and a mounting/demounting unit comprising at least one mounting/demounting apparatus...... which when the mounting/demounting unit is moved along the mounting surface, causes the photovoltaic module to be mounted or demounted to the support structure; wherein the photovoltaic module comprises a carrier foil and wherein a total thickness of the photo voltaic module is below 500 muiotaeta....... The present invention further relates to an associated method for mounting/demounting photovoltaic modules....

  6. Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Gaunaa, Mac

    2016-01-01

    in Blade Element Momentum method codes for yawed conditions. Here, all the components of the full vortex system are analyzed in view of extending Blade Element Momentum models. The main assumptions of the current study are a constant uniform circulation, an infinite number of blades, an un-expanding wake......A vortex system consisting of a bound vortex disk, a root vortex and a vortex cylinder is presented and applied for skewed wake situations. Both the longitudinal and tangential components of vorticity of the cylinder are considered. A subset of this system leads to a model, which is commonly used...... shape and a finite tip-speed ratio. The investigation remains within the context of inviscid potential flow theory. The model is derived for horizontal-axis rotors in general, but results are presented for wind-turbine applications. For each vortex element, the velocity components in all directions...

  7. Measurement of Vortex Strength and Core Diameter in the Wake of a Hovering Rotor

    Science.gov (United States)

    Wadcock, Alan J.

    1997-01-01

    Detailed hot wire measurements have been acquired in the tip vortex of a three-bladed model tilt rotor in hover. Testing was conducted at a rotor tip speed of 752 ft/sec, a Reynolds number (based on blade tip chord) of 1.77 x 10(exp 6), for thrust coefficients up to 0.0160. A figure shows the hot wire mounted above the inverted rotor at the Outside Aerodynamic Rotor Facility (OARF) at NASA Ames Research Center. Strobed shadowgraph flow visualization was used to define the vortex trajectory as an aid in hot wire positioning. Considerable variations in tip vortex structure with time were observed, even from the same blade, under essentially uniform test conditions. The only velocity signatures analyzed were those corresponding to passage of the probe directly through the center of the vortex. These time histories were ensemble averaged after compensating for jitter in the vortex arrival time at the probe, thereby retaining the core structure with minimal smearing. An example of a mean velocity signature, after ensemble averaging, is shown. The mean velocity signature was analyzed under the assumption of constant (unknown) translation speed of the vortex filament past the fixed probe. The translation speed of the vortex is deduced and the vortex strength and core diameter inferred. The results were highly unexpected. The indicated vortex strength is seen to decrease rapidly after first blade passage. In addition, the core radius is seen to decrease with increasing wake age, not increase as might be expected from simple diffusion.

  8. Reconnection of superfluid vortex bundles.

    Science.gov (United States)

    Alamri, Sultan Z; Youd, Anthony J; Barenghi, Carlo F

    2008-11-21

    Using the vortex filament model and the Gross-Pitaevskii nonlinear Schroedinger equation, we show that bundles of quantized vortex lines in He II are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence and show that, during the bundle reconnection process, kelvin waves of large amplitude are generated, in agreement with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows.

  9. Nano magnetic vortex wall guide

    Directory of Open Access Journals (Sweden)

    H. Y. Yuan

    2015-11-01

    Full Text Available A concept of nano magnetic vortex wall guide is introduced. Two architectures are proposed. The first one is properly designed superlattices while the other one is bilayer nanostrips. The concept is verified by micromagnetic simulations. Both guides can prevent the vortex core in a magnetic vortex wall from colliding with sample surface so that the information stored in the vortex core can be preserved during its transportation from one location to another one through the guides.

  10. Vortex Characterization for Engineering Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R

    2008-01-30

    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  11. Jet vortex methods

    CERN Document Server

    Holm, Darryl D

    2015-01-01

    Vortex blob methods are typically characterized by a regularization length scale, below which the the dynamics are trivial for isolated blobs. In this article we will find that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularised Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularised Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also characterise the Hamiltonian dynamics of the higher-order singular vortices. Applications to the design of numerical meth- ods similar to vortex blob methods are also discussed. Such findings shed light onto the rich dynamics which occur below the regularization length scale and enlighten our perspective on the multiscale aspects of regularized fluid m...

  12. Vortex tube optimization theory

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, Jeffery [Cambridge Univ., Magdalene Coll., Cambridge (United Kingdom); Bejan, Adrian [Duke Univ., Dept. of Mechanical Engineering and Materials Science, Durham, NC (United States)

    1999-11-01

    The Ranque-Hilsch vortex tube splits a single high pressure stream of gas into cold and warm streams. Simple models for the vortex tube combined with regenerative precooling are given from which an optimisation can be undertaken. Two such optimisations are needed: the first shows that at any given cut or fraction of the cold stream, the best refrigerative load, allowing for the temperature lift, is nearly half the maximum loading that would result in no lift. The second optimisation shows that the optimum cut is an equal division of the vortex streams between hot and cold. Bounds are obtainable within this theory for the performance of the system for a given gas and pressure ratio. (Author)

  13. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  14. Near wake vortex dynamics of a hovering hawkmoth

    Institute of Scientific and Technical Information of China (English)

    Hikaru Aono; Wei Shyy; Hao Liu

    2009-01-01

    Numerical investigation of vortex dynamics in near wake of a hovering hawkmoth and hovering aerody-namics is conducted to support the development of a biology-inspired dynamic flight simulator for flapping wing-based micro air vehicles. Realistic wing-body morphologies and kinematics are adopted in the numerical simulations. The computed results show 3D mechanisms of vortical flow structures in hawkmoth-like hovering. A horseshoe-shaped primary vortex is observed to wrap around each wing during the early down- and upstroke; the horseshoe-shaped vortex subsequently grows into a doughnut-shaped vortex ring with an intense jet-flow present in its core, forming a downwash. The doughnut-shaped vortex rings of the wing pair eventu-ally break up into two circular vortex rings as they propagate downstream in the wake. The aerodynamic yawing and roll-ing torques are canceled out due to the symmetric wing kine-matics even though the aerodynamic pitching torque shows significant variation with time. On the other hand, the time-varying the aerodynamics pitching torque could make the body a longitudinal oscillation over one flapping cycle.

  15. Dynamics of Vortex Cavitation

    NARCIS (Netherlands)

    Pennings, P.C.

    2016-01-01

    This thesis describes the mechanisms with which tip vortex cavitation is responsible for broadband pressure fluctuations on ship propellers. Hypotheses for these are described in detail by Bosschers (2009). Validation is provided by three main cavitation-tunnel experiments, one on a model propeller

  16. Passive Wake Vortex Control

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging

  17. 三种三角翼纵向涡翅片管换热器流动传热特性对比研究%Comparative study of fluid flow and heat transfer characteristics on the three kinds of fin-tube heat exchanger with delta winglets longitudinal vortex

    Institute of Scientific and Technical Information of China (English)

    刘丹丹; 吴学红; 张林; 孟浩; 吕彦力; 李芳星

    2015-01-01

    对三角翼圆形翅片管换热器、三角翼等径长椭圆形翅片管换热器和三角翼等周长椭圆形翅片管换热器的流动传热性能分别进行了数值研究.结果表明:三角翼等周长椭圆形翅片管换热器温度场和速度场分布最为均匀,换热效果最好;三角翼等周长椭圆形翅片管换热器奴塞尔数(Nu)最大,比三角翼圆形翅片管换热器增大2.2%~6.1%,比三角翼等径长椭圆形翅片管换热器增大6.5%~8.3%,比平翅片管换热器增大29.1%~ 33.5%;从综合传热性能分析,三角翼纵向涡椭圆形翅片管换热器适合于中等及较大雷诺数(Re)工况.%In the present study,the heat transfer and fluid flow characteristics of fin-tube heat exchangers of circular-tube,equal-diameter elliptic-tube and equal-perimeter elliptic-tube with delta winglets longitu-dinal vortex was presented based on the numerical simulation. The result showed that the temperature and velocity field of equal-perimeter elliptic-tube fin heat exchanger more uniform,and its heat transfer per-formance was the best,and the Nu number of equal-diameter elliptic-tube fin heat exchanger was the lar-gest,which was 2. 2% ~ 6. 1% higher than that of circular-tube heat exchanger with delta winglets, 6. 5% ~ 8. 3% higher than that of equal-radius elliptic-tube heat exchanger and with delta winglets and 29. 1% ~ 33. 5% higher than that of flat fin-tube heat exchanger. Considering from the overall perform-ance,the delta winglets longitudinal vortex oval fin-tube heat exchanger fit for moderate and high Reynolds numbers.

  18. The shock-vortex interaction patterns affected by vortex flow regime and vortex models

    Science.gov (United States)

    Chang, Keun-Shik; Barik, Hrushikesh; Chang, Se-Myong

    2009-08-01

    We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock-vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock-vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock-vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock-vortex interaction.

  19. Horizontally mounted solar collector

    Science.gov (United States)

    Black, D. H. (Inventor)

    1979-01-01

    Solar energy is collected by using a vertical deflector assembly, a stationary reflector and a horizontally mounted solar collector. The deflector assembly contains a plurality of vanes which change the direction of the solar energy to the vertical, while constantly keeping the same side of the deflector facing the sun. The vertical rays are then reflected off the stationary reflector and are then absorbed by the collector.

  20. 49 CFR 571.212 - Standard No. 212; Windshield mounting.

    Science.gov (United States)

    2010-10-01

    ... portion of the windshield periphery on each side of the vehicle longitudinal centerline. S5.2Vehicles not... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.212 Standard No. 212; Windshield mounting. S1. Scope. This...

  1. Simulations of vortex generators

    Science.gov (United States)

    Koumoutsakos, P.

    1995-01-01

    We are interested in the study, via direct numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the stream direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise vorticity is generated and ejected due to the oscillatory motion of the lid. The present simulations complement relevant experimental investigations of active vortex generators at NASA Ames and Stanford University (Saddoughi, 1994, and Jacobson and Reynolds, 1993). Jacobson and Reynolds (1993) used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and he observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. Our task is to simulate the flows generated by these devices and to conduct a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin (1994). The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands of particles allow for high resolution simulations. The results of the present simulations would help us assess some of the effects of three-dimensionality in experiments and investigate the role

  2. Multiply Phased Traveling BPS Vortex

    CERN Document Server

    Kimm, Kyoungtae; Cho, Y M

    2016-01-01

    We present the multiply phased current carrying vortex solutions in the U(1) gauge theory coupled to an $(N+1)$-component SU(N+1) scalar multiplet in the Bogomolny limit. Our vortex solutions correspond to the static vortex dressed with traveling waves along the axis of symmetry. What is notable in our vortex solutions is that the frequencies of traveling waves in each component of the scalar field can have different values. The energy of the static vortex is proportional to the topological charge of $CP^N$ model in the BPS limit, and the multiple phase of the vortex supplies additional energy contribution which is proportional to the Noether charge associated to the remaining symmetry.

  3. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Science.gov (United States)

    Galvis, J. A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-02-01

    Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  4. Regimes of Vorticity in the Wake of a Rectangular Vortex Generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2011-01-01

    This paper concerns the study of the secondary structures generated in the wake of a wall mounted rectangular vane, commonly referred to as a vortex generator. The study has been conducted by Stereoscopic PIV measurements in a wind tunnel and supplementary flow visualizations in a water channel...

  5. Flow analysis of vortex generators on wing sections by stereoscopic particle image velocimetry measurements

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Cavar, Dalibor

    2008-01-01

    Stereoscopic particle image velocimetry measurements have been executed in a low speed wind tunnel in spanwise planes in the flow past a row of vortex generators, mounted on a bump in a fashion producing counter-rotating vortices. The measurement technique is a powerful tool which provides all...

  6. NUMERICAL STUDY OF FLOW IN CONICAL DIFFUSER WITH VORTEX GENERATOR JETS

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaomin; NISHI Michihiro

    2007-01-01

    To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14°conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with κ-ε turbulence model. The diffuser performance, based on different velocity ratio (ratio of the jet speed to the mainstream velocity), is investigated and compared with the experimental study. On the basis of the flow characteristics using computation fluid dynamics (CFD) method observed in the conical diffuser and the downstream development of the longitudinal vortices, attempt is made to correlate the pressure recovery coefficient with the behavior of vortices produced by vortex generator jets.

  7. SIMULATION OF WAKE VORTEX AIRCRAFT IN GROUND EFFECT

    Directory of Open Access Journals (Sweden)

    Pamfil ŞOMOIAG

    2011-03-01

    Full Text Available The problem developed in this paper is encountered in airplane aerodynamics and concernsthe influence of long life longitudinal wake vortices generated by wing tips or by external obstaclessuch as reactors or landing gears. More generally it concerns 3D bodies of finite extension in crossflow. At the edge of such obstacles, longitudinal vortices are created by pressure differences inside theboundary layers and rotate in opposite senses. It can constitute a danger to another aircraft that fliesin this wake, especially during takeoff and landing. In this case the wake vortex trajectories andstrengths are altered by ground interactions. This study presents the results of a Large EddySimulation of wake vortex in ground effect providing the vorticity flux behavior.

  8. A generalization of vortex lines

    CERN Document Server

    Fecko, Marian

    2016-01-01

    Helmholtz theorem states that, in ideal fluid, vortex lines move with the fluid. Another Helmholtz theorem adds that strength of a vortex tube is constant along the tube. The lines may be regarded as integral surfaces of an 1-dimensional integrable distribution (given by the vorticity 2-form). In general setting of theory of integral invariants, due to Poincare and Cartan, one can find $d$-dimensional integrable distribution whose integral surfaces show both properties of vortex lines: they move with (abstract) fluid and, for appropriate generalization of vortex tube, strength of the latter is constant along the tube.

  9. Electronic thermal conductivity in a superconducting vortex state

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, H. [Department of Physics, Okayama University, Tsushima, Okayama 700-8530 (Japan)], E-mail: adachi@itp.phys.ethz.ch; Miranovic, P. [Department of Physics, University of Montenegro, Podgorica 81000 (Montenegro); Ichioka, M.; Machida, K. [Department of Physics, Okayama University, Tsushima, Okayama 700-8530 (Japan)

    2007-10-01

    The longitudinal component of the electronic thermal conductivity {kappa}{sub xx} in a superconducting vortex state is calculated as a function of magnetic field B. Calculations are performed by taking account of the spatial dependence of normal Green's function g, which was neglected in the previous studies using the Brandt-Pesch-Tewordt method. We discuss the possibility of using {kappa}{sub xx}(B) as a probe of the pair potential symmetry.

  10. Electronic thermal conductivity in a superconducting vortex state

    Science.gov (United States)

    Adachi, H.; Miranovic, P.; Ichioka, M.; Machida, K.

    2007-10-01

    The longitudinal component of the electronic thermal conductivity κxx in a superconducting vortex state is calculated as a function of magnetic field B. Calculations are performed by taking account of the spatial dependence of normal Green's function g, which was neglected in the previous studies using the Brandt-Pesch-Tewordt method. We discuss the possibility of using κxx(B) as a probe of the pair potential symmetry.

  11. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  12. Mind the gap - tip leakage vortex in axial turbines

    Science.gov (United States)

    Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M.

    2014-03-01

    The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex.

  13. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    Science.gov (United States)

    2015-10-16

    a) Main vortex structures developing on a typical submarine hull; (b) Schematic illustrating a horseshoe vortex at a wing-body junction of a " Rood ...secondary vortices. Firstly, looking at Figure 7, showing only the secondary vortices being visualized by our technique , we see that a tongue of secondary

  14. Evolution of optical vortex distributions in stochastic vortex fields

    CSIR Research Space (South Africa)

    Roux, FS

    2011-01-01

    Full Text Available dipole,? Opt. Commun. 236, 433?440 (2004). [23] Dana, I. and Freund, I., ?Vortex-lattice wave fields,? Opt. Commun. . [24] Jenkins, R., Banerji, J., and Davies, A., ?The generation of optical vortices and shape preserving vortex arrays in hollow...

  15. Solitary vortexes in magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Vainshtein, S.I.

    1985-12-01

    Stationary configurations in magnetohydrodynamics are investigated for the following two particular cases: (1) there is no motion, which corresponds to a state of magnetostatic equilibrium; and (2) the magnetic field intensity becomes zero, i.e., hydrodynamic vortexes are involved. It is shown that in certain cases the line-of-force topology must be sufficiently simple in order before a stationary or equilibrium state can be achieved. It is also shown that in the two-dimensional case, the magnetic surfaces of an equilibrium configuration represent coaxial cylindrical surfaces. 12 references.

  16. Vortex Flow Correlation

    Science.gov (United States)

    1981-01-01

    j . 1978. 93. Grabowski , W.J.; "Solutions of the Navier-Stokes Equations for Vortex Breakdown," NASA CR...including foreign nations. This technical report has been reviewed and is approved for publication. LAWRENCE W. ROGERS Q LOWELL C. KEEL, Major, USAF Project...or’ a w U - a LU LU U- LU C - J ’di 2 2 C LU I- 4 S Ua * - w x 2 40 20 I- 2 LU W S ~ 00 * U. 4 I- 𔃾 LU a 4 U 4 2 C C LU 4 a 4a 2 I- 4 a 3 9

  17. Robustness of a coherence vortex.

    Science.gov (United States)

    Alves, Cleberson R; Jesus-Silva, Alcenisio J; Fonseca, Eduardo J S

    2016-09-20

    We study, experimentally and theoretically, the behavior of a coherence vortex after its transmission through obstacles. Notably, we find that such a vortex survives and preserves its effective topological charge. Despite suffering changes on the modulus of the coherence function, these changes disappear during propagation.

  18. Vortex duality in higher dimensions

    NARCIS (Netherlands)

    Beekman, Aron Jonathan

    2011-01-01

    A dynamic vortex line traces out a world sheet in spacetime. This thesis shows that the information of all its dynamic behaviour is completely contained in the world sheet. Furthermore a mathematical framework for order–disorder phase transitions in terms of the proliferation of such vortex world sh

  19. PECULIARITIES OF ASSIGNMENT OF ROLLING BEARING MOUNTING AND PARAMETERS OF GEOMETRIC ACCURACY OF MOUNTING SURFACES OF SHAFTS AND FRAMES

    Directory of Open Access Journals (Sweden)

    Adamenko Yu. І.

    2017-04-01

    Full Text Available The standards and methods concerning assignment of rolling bearing fit with shafts and frames via example of bearing 6-208 are analyzed. We set certain differences of recommendations according to GOST 3325-85, "Rolling bearings. Tolerance zones and technical requirements to mounting surfaces of shafts and frames. Attachment" and by reference of rolling bearing manufacturers. The following factors should be taken into consideration when assigning the mounting with the tension the internal ring of the bearing with shaft and mounting with a gap in the outer ring with a housing bore. The methods of achieving accuracy of mounting surfaces of shafts and frames via form tolerance assignment: roundness tolerance, profile of longitudinal cut, cross section, cylindricity and others. It is possible to limit the bearing rings in different ways, for example appointing the cylindrical mounting surfaces and bead end surfaces the appropriate tolerances, namely: coaxiality tolerance or full radial beat of mounting surfaces, and also perpendicularity tolerance, butt beats and full butt beats of mounting end surfaces. We suggest to expand methods of achieving the accuracy of shafts and frames depending on seriation of production and production operations metrology support.

  20. Mount Vesuvius, Italy

    Science.gov (United States)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  1. Mount Vesuvius, Italy

    Science.gov (United States)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  2. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  3. Superfluid Vortex Cooler

    Science.gov (United States)

    Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A. T. A. M.; Thummes, G.

    2004-06-01

    A superfluid vortex cooler (SVC) is a combination of a fountain pump and a vortex cooler. The working fluid in the SVC is 4He at a temperature below the lambda line. The cooler has no moving parts, is gravity independent, and hardly requires any additional infrastructure. At saturated vapour pressure the SVC is capable of reaching a temperature as low as 0.75 K. At pressures close to the melting pressure the temperature can be brought down to 0.65 K. As the SVC operates only below the lambda line, it has to be precooled e.g. by a liquid-helium bath or a cryocooler. As a first step of our research we have carried out a number of experiments, using a liquid-helium bath as a precooler for the SVC. In this arrangement we have reached temperatures below 1 K with 3.5 mW heating power supplied to the fountain part of the SVC at 1.4 K. The next step was combining the SVC with a pulse tube refrigerator (PTR), developed at the University of Giessen. It is a two-stage G-M type refrigerator with 3He as a working fluid that reached a lowest temperature of 1.27 K. In this contribution we report on the results of the SVC tests in liquid helium and the progress in the integration of the SVC with the PTR.

  4. Helmet-Mounted Displays (HMD)

    Data.gov (United States)

    Federal Laboratory Consortium — The Helmet-Mounted Display labis responsible for monocular HMD day display evaluations; monocular HMD night vision performance processes; binocular HMD day display...

  5. Evaluation of engineering plastic for rollover protective structure (ROPS) mounting.

    Science.gov (United States)

    Comer, R S; Ayers, P D; Liu, J

    2007-04-01

    Agriculture has one of the highest fatality rates of any industry in America. Tractor rollovers are a significant contributor to the high death rate. Rollover protective structures (ROPS) have helped lower these high fatality rates on full-size tractors. However, a large number of older tractors still do not use ROPS due to the difficulty of designing and creating a mounting structure. To help reduce this difficulty, engineering plastics were evaluated for use in a ROPS mounting structure on older tractors. The use of engineering plastics around axle housings could provide a uniform mounting configuration as well as lower costs for aftermarket ROPS. Various plastics were examined through shear testing, scale model testing, and compressive strength testing. Once a material was chosen based upon strength and cost, full-scale testing of the plastic's strength on axle housings was conducted. Finally, a mounting structure was tested in static ROPS tests, and field upset tests were performed in accordance with SAE Standard J2194. Initial tests revealed that the ROPS mounting structure and axle housing combination had higher torsional strength with less twisting than the axle housing alone. An engineering plastic ROPS mounting structure was easily successful in withstanding the forces applied during the static longitudinal and lateral ROPS tests. Field upset testing revealed that the mounting structure could withstand the impact loads seen during actual upsets without a failure. During both static testing and field upset testing, no permanent twisting of the mounting structure was found. Engineering plastic could therefore be a viable option for a universal ROPS mounting structure for older tractors.

  6. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.

    2012-01-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...

  7. Some discussions on Arctic vortex

    Institute of Scientific and Technical Information of China (English)

    Li Hai; Sun Lantao; Wu Huiding; Li Xiang

    2006-01-01

    The Arctic vortex is a persistent large-scale cyclonic circulation in the middle and upper troposphere and the stratosphere. Its activity and variation control the semi-permanent active centers of Pan-Arctic and the short-time cyclone activity in the subarctic areas. Its strength variation, which directly relates to the atmosphere, ocean, sea ice and ecosystem of the Arctic, can affect the lower atmospheric circulation, the weather of subarctic area and even the weather of middle latitude areas. The 2003 Chinese Second Arctic Research Expedition experienced the transition of the stratosphereic circulation from a warm anticyclone to a cold cyclone during the ending period of Arctic summertime, a typical establishing process of the polar vortex circulation. The impact of the polar vortex variation on the low-level circulation has been investigated by some scientists through studying the coupling mechanisms of the stratosphere and troposphere. The impact of the Stratospheric Sudden Warming (SFW) events on the polar vortex variation was drawing people's great attention in the fifties of the last century. The Arctic Oscillation (AO) , relating to the variation of the Arctic vortex, has been used to study the impact of the Arctic vortex on climate change. The recent Arctic vortex studies are simply reviewed and some discussions on the Arctic vertex are given in the paper. Some different views and questions are also discussed.

  8. Motion of a helical vortex

    CERN Document Server

    Fuentes, Oscar Velasco

    2015-01-01

    We study the motion of a single helical vortex in an unbounded, inviscid, incompressible fluid. The vortex is an infinite tube whose centerline is a helix and whose cross section is a circle of small radius (compared to the radius of curvature) where the vorticity is uniform and parallel to the centerline. Ever since Joukowsky (1912) deduced that this vortex translates and rotates steadily without change of form, numerous attempts have been made to compute these self-induced velocities. Here we use Hardin's (1982) solution for the velocity field to find new expressions for the vortex's linear and angular velocities. Our results, verified by numerically computing the Helmholtz integral and the Rosenhead-Moore approximation to the Biot-Savart law, are more accurate than previous results over the whole range of values of the vortex pitch and cross-section. We then use the new formulas to study the advection of passive particles near the vortex; we find that the vortex's motion and capacity to transport fluid dep...

  9. Bathtub vortex induced by instability

    Science.gov (United States)

    Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto

    2014-10-01

    The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction to be cyclonic.

  10. Dynamic signatures of driven vortex motion.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  11. Vortex electronis and squids

    CERN Document Server

    2003-01-01

    Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.

  12. Entangled vector vortex beams

    Science.gov (United States)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  13. Vortex loops and Majoranas

    Energy Technology Data Exchange (ETDEWEB)

    Chesi, Stefano [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Jaffe, Arthur [Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Basel, Basel (Switzerland); Institute for Theoretical Physics, ETH Zürich, Zürich (Switzerland); Loss, Daniel [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Basel, Basel (Switzerland); Pedrocchi, Fabio L. [Department of Physics, University of Basel, Basel (Switzerland)

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  14. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  15. Vortex state in ferromagnetic nanoparticles

    Science.gov (United States)

    Betto, Davide; Coey, J. M. D.

    2014-05-01

    The evolution of the magnetic state of a soft ferromagnetic nanoparticle with its size is usually thought to be from superparamagnetic single domain to blocked single domain to a blocked multidomain structure. Néel pointed out that a vortex configuration produces practically no stray field at the cost of an increase in the exchange energy, of the order of RJS2lnR /c, where JS2 is the bond energy, R is the particle radius, and c is of the order of the exchange length. A vortex structure is energetically cheaper than single domain when the radius is greater than a certain value. The correct sequence should include a vortex configuration between the single domain and the multidomain states. The critical size is calculated for spherical particles of four important materials (nickel, magnetite, permalloy, and iron) both numerically and analytically. A vortex state is favored in materials with high magnetisation.

  16. Particle-vortex symmetric liquid

    CERN Document Server

    Mulligan, Michael

    2016-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not requir...

  17. Vortex migration in protoplanetary discs

    Directory of Open Access Journals (Sweden)

    Papaloizou John C. B.

    2013-04-01

    Full Text Available Vortices embedded in protoplanetary discs can act as obstacles to the unperturbed disc flow. The resulting velocity perturbations propagate away from the vortex in the form of density waves that transport angular momentum. Any asymmetry between the inner and the outer density wave means that the region around the vortex has to change its angular momentum. We find that this leads to orbital migration of the vortex. Asymmetric waves always arise except in the case of a disc with constant pressure, for isothermal as well as non-isothermal discs. Depending on the size and strength of the vortex, the resulting migration time scales can be as short as a few thousand orbits.

  18. Mount Rainier National Park

    Science.gov (United States)

    Hoffman, Robert; Woodward, Andrea; Haggerty, Patricia K.; Jenkins, Kurt J.; Griffin, Paul C.; Adams, Michael J.; Hagar, Joan; Cummings, Tonnie; Duriscoe, Dan; Kopper, Karen; Riedel, Jon; Samora, Barbara; Marin, Lelaina; Mauger, Guillaume S.; Bumbaco, Karen; Littell, Jeremy S.

    2014-01-01

    Natural Resource Condition Assessments (NRCAs) evaluate current conditions for a subset of natural resources and resource indicators in national parks. NRCAs also report on trends in resource condition (when possible), identify critical data gaps, and characterize a general level of confidence for study findings. The resources and indicators emphasized in a given project depend on the park’s resource setting, status of resource stewardship planning and science in identifying high-priority indicators, and availability of data and expertise to assess current conditions for a variety of potential study resources and indicators. Although the primary objective of NRCAs is to report on current conditions relative to logical forms of reference conditions and values, NRCAs also report on trends, when appropriate (i.e., when the underlying data and methods support such reporting), as well as influences on resource conditions. These influences may include past activities or conditions that provide a helpful context for understanding current conditions and present-day threats and stressors that are best interpreted at park, watershed, or landscape scales (though NRCAs do not report on condition status for land areas and natural resources beyond park boundaries). Intensive cause-andeffect analyses of threats and stressors, and development of detailed treatment options, are outside the scope of NRCAs. It is also important to note that NRCAs do not address resources that lack sufficient data for assessment. For Mount Rainier National Park, this includes most invertebrate species and many other animal species that are subject to significant stressors from climate change and other anthropogenic sources such as air pollutants and recreational use. In addition, we did not include an analysis of the physical hydrology associated with streams (such as riverine landforms, erosion and aggradation which is significant in MORA streams), due to a loss of staff expertise from the USGS

  19. New omega vortex identification method

    Science.gov (United States)

    Liu, ChaoQun; Wang, YiQian; Yang, Yong; Duan, ZhiWei

    2016-08-01

    A new vortex identification criterion called Ω-method is proposed based on the ideas that vorticity overtakes deformation in vortex. The comparison with other vortex identification methods like Q-criterion and λ 2-method is conducted and the advantages of the new method can be summarized as follows: (1) the method is able to capture vortex well and very easy to perform; (2) the physical meaning of Ω is clear while the interpretations of iso-surface values of Q and λ 2 chosen to visualize vortices are obscure; (3) being different from Q and λ 2 iso-surface visualization which requires wildly various thresholds to capture the vortex structure properly, Ω is pretty universal and does not need much adjustment in different cases and the iso-surfaces of Ω=0.52 can always capture the vortices properly in all the cases at different time steps, which we investigated; (4) both strong and weak vortices can be captured well simultaneously while improper Q and λ 2 threshold may lead to strong vortex capture while weak vortices are lost or weak vortices are captured but strong vortices are smeared; (5) Ω=0.52 is a quantity to approximately define the vortex boundary. Note that, to calculate Ω, the length and velocity must be used in the non-dimensional form. From our direct numerical simulation, it is found that the vorticity direction is very different from the vortex rotation direction in general 3-D vortical flow, the Helmholtz velocity decomposition is reviewed and vorticity is proposed to be further decomposed to vortical vorticity and non-vortical vorticity.

  20. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  1. Formation number for vortex dipoles

    Science.gov (United States)

    Sadri, Vahid; Krueger, Paul S.

    2016-11-01

    This investigation considers the axisymmetric formation of two opposite sign concentric vortex rings from jet ejection between concentric cylinders. This arrangement is similar to planar flow in that the vortex rings will travel together when the gap between the cylinders is small, similar to a vortex dipole, but it has the advantage that the vortex motion is less constrained than the planar case (vortex stretching and vortex line curvature is allowed). The flow was simulated numerically at a jet Reynolds number of 1,000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio (L / ΔR) in the range 10-20, and gap-to-outer radius ratio (ΔR /Ro) in the range 0.01-0.1. Small gap ratios were chosen for comparison with 2D results. In contrast with 2D results, the closely paired vortices in this study exhibited pinch-off from the generating flow and finite formation numbers. The more complex flow evolution afforded by the axisymmetric model and its influence on the pinch-off process will be discussed. This material is based on work supported by the National Science Foundation under Grant No. 1133876 and SMU. This supports are gratefully acknowledged.

  2. Vortex migration in protoplanetary disks

    CERN Document Server

    Paardekooper, S -J; Papaloizou, J C B

    2010-01-01

    We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulting spiral wave pattern is reminiscent of an embedded planet. There are two main causes for asymmetries in these wakes: geometrical effects tend to favor the outer wave, while a radial vortensity gradient leads to an asymmetric vortex core, which favors the wave at the side that has the lowest density. In the case of asymmetric waves, which we always find except for a disk of constant pressure, there is a net exchange of angular momentum between the vortex and the surrounding disk, which leads to orbital migration of the vortex. Numerical hydrodynamical simulations show that this migration can be very rapid, on a time scale of a few thousand orbits, for vortices with a size comparable to the scale height of the disk. We discuss the possible effects of vortex migrat...

  3. Optical Vortex Solitons in Parametric Wave Mixing

    CERN Document Server

    Alexander, T J; Buryak, A V; Sammut, R A; Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.

    2000-01-01

    We analyze two-component spatial optical vortex solitons supported by degenerate three- or four-wave mixing in a nonlinear bulk medium. We study two distinct cases of such solitons, namely, parametric vortex solitons due to phase-matched second-harmonic generation in a optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a `halo-vortex', consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a `ring-vortex' soliton which is a vortex in a harmonic field that guides a bright localized ring-like mode of a fundamental frequency field.

  4. Apollo Telescope Mount Spar Assembly

    Science.gov (United States)

    1969-01-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.

  5. Faraday Rotation for Electron Beams Composed of Vortex Modes

    CERN Document Server

    Greenshields, Colin; Franke-Arnold, Sonja

    2012-01-01

    Propagating vortex states, which carry orbital angular momentum (OAM), are well known in optics and have recently been demonstrated for electrons. While many analogies exist between photonic and electron vortex states, electron vortices in addition possess an orbital magnetic moment. We show here that propagation of electrons in a superposition of OAM states through a longitudinal magnetic field produces an analogue to optical Faraday rotation. In the optical domain, Faraday rotation is observed for polarisation, but not for superpositions of OAM states. The rotation we predict arises from the additional phase accumulated by the electron as it propagates in the presence of an external magnetic field. We propose an experiment in which this rotation can be measured directly in a transmission electron microscope, and discuss its relation to the well known classical image rotation associated with the Lorentz force.

  6. SPIV investigations of correlation between streamwise vorticity and velocity in the wake of a vortex generator in a boundary layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2013-01-01

    The current work describes the experimental parametric study of streamwise vortices generated in a boundary layer by a rectangular vane (commonly named vortex generator) mounted perpendicularly to the wall and at an angle to the oncoming flow. Stereoscopic Particle Image Velocimetry measurements...

  7. Energy flux density and angular momentum density of Pearcey-Gauss vortex beams in the far field

    Science.gov (United States)

    Cheng, K.; Lu, G.; Zhong, X.

    2017-02-01

    The longitudinal and transverse energy flux density (EFD) and angular momentum density (AMD) of a Pearcey-Gauss vortex beam in the far field are studied using the vector angular spectrum representation and stationary phase method, where the influence of topological charge, noncanonical strength and off-axis distance of the embedded optical vortex on far-field vectorial structures of the corresponding beam is emphasized. For comparison, the EFD and AMD of the Pearcey-Gauss beam with non-vortex in the far field are also discussed. The results show that the longitudinal EFDs of the Pearcey-Gauss vortex beam exhibit parabolic patterns, and the number of parabolic dark zones equals the absolute value of topological charge of the embedded optical vortex in the input plane. While for the Pearcey-Gauss beam, the dark zones are not found owing to the non-vortex in the input plane. The motion of zero-intensity spot of whole beam appears by varying the off-axis distance. Noncanonical strength and off-axis distance both can adjust the magnitudes and directions of transverse EFD and control the spatial energy distributions of longitudinal EFD, but not change the net AMD.

  8. Fast Picometer Mirror Mount Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a 6DOF controllable mirror mount with high dynamic range and fast tip/tilt capability for space based applications. It will enable the...

  9. Solar panel parallel mounting configuration

    Science.gov (United States)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  10. Mount Rainier: A decade volcano

    Science.gov (United States)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  11. Dry tilt network at Mount Rainier, Washington

    Science.gov (United States)

    Dzurisin, Daniel; Johnson, Daniel J.; Symonds, R.B.

    1984-01-01

    In addition to its primary responsibility of monitoring active Mount St. Helens, the David A. Johnston Cascades Volcano Observatory (CVO) has been charged with obtaining baseline geodetic and geochemical information at each of the other potentially active Cascade volcanoes. Dry tilt and/or trilateration networks were established during 1975-82 at Mount Baker, Mount St. Helens, Mount Hood, Mount Shasta, Lassen Peak, Crater Lake, and Long Valley caldera; coverage was extended during September 1982 to include Mount Rainier.

  12. The head-mounted microscope.

    Science.gov (United States)

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  13. Small disturbance diagnostic inside the vortex tube with a square cross-section

    Science.gov (United States)

    Kabardin, I. K.; Meledin, V. G.; Yavorskiy, N. I.; Pavlov, V. A.; Pravdina, M. H.; Kulikov, D. V.; Rahmanov, V. V.

    2016-10-01

    The vortex effect in Ranque-Hilch vortex tube was investigated. Being discovered by G.J. Ranque[1] in l928, the effect still has no adequate generally accepted physical explanation. One of the reasons is connected with the lack of reliable experimental data describing velocity and temperature distributions inside the vortex tube. The sensors mounted inside the vortex tube contribute conspicuous perturbation in the flow. Therefore, the new measuring methods should be searched that do not or slightly disturb the flow. For this purpose, optical techniques are the most suitable. In order to use optical methods the vortex tube with square section was applied. The flow kinematics investigation inside the Ranque-Hilsch tube was carried out using a laser Doppler anemometer (LDA) with an adaptive temporal selection of the velocity vector (LAD-056). The measurements of vector components of the swirling flow velocity were carried out in close to the hot output section of the Ranque-Hilsch tube at a working pressure of 4 bar, at which twisted spiral vortex patterns have been recorded. Also the temperature diagnostics has been carried out. It was based on the flow scanning with the small-sized special temperature sensor. The temperature distribution at several points along the vortex tube was recorded. Also the temperature distribution was measured in the swirler chamber surrounding the cold exit. The difference in temperature at cold and hot outputs was about 50 o C. For each point several series of measurements were carried out which show that the temperature distribution in the vortex tube is significantly nonstationary.

  14. Development of plasma streamwise vortex generators for increased boundary layer control authority

    Science.gov (United States)

    Bowles, Patrick; Schatzman, David; Corke, Thomas; Thomas, Flint

    2009-11-01

    This experimental study focuses on active boundary layer flow control utilizing streamwise vorticity produced by a single dielectric barrier discharge plasma actuator. A novel plasma streamwise vortex generator (PSVG) layout is presented that mimics the passive flow control characteristics of the trapezoidal vane vortex generator. The PSVG consists of a common insulated electrode and multiple, exposed streamwise oriented electrodes used to produce counter-rotating vortical structures. Smoke and oil surface visualization of boundary layer flow over a flat plate compare the characteristics of passive control techniques and different PSVG designs. Passive and active control over a generic wall-mounted hump model, Rec = 288,000-575,000, are compared through static wall pressure measurements along the model's centerline. Different geometric effects of the PSVG electrode configuration were investigated. PSVG's with triangular exposed electrodes outperformed ordinary PSVG's under certain circumstances. The electrode arrangement produced flow control mechanisms and effectiveness similar to the passive trapezoidal vane vortex generators.

  15. A water tunnel flow visualization study of the vortex flow structures on the F/A-18 aircraft

    Science.gov (United States)

    Sandlin, Doral R.; Ramirez, Edgar J.

    1991-01-01

    The vortex flow structures occurring on the F/A-18 aircraft at high angles of attack were studied. A water tunnel was used to gather flow visualization data on the forebody vortex and the wing leading edge extension vortex. The longitudinal location of breakdown of the leading edge vortex was found to be consistently dependent on the angle of attack. Other parameters such as Reynolds number, model scale, and model fidelity had little influence on the overall behavior of the flow structures studied. The lateral location of the forebody vortex system was greatly influenced by changes in the angle of sideslip. Strong interactions can occur between the leading edge extension vortex and the forebody vortex. Close attention was paid to vortex induced flows on various airframe components of the F/A-18. Reynolds number and angle of attack greatly affected the swirling intensity, and therefore the strength of the studied vortices. Water tunnel results on the F/A-18 correlated well with those obtained in similar studies at both full and sub scale levels. The water tunnel can provide, under certain conditions, good simulations of realistic flows in full scale configurations.

  16. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  17. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  18. Vortex Laser at Exceptional Point

    CERN Document Server

    Wang, Xing-Yuan; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-01-01

    The optical vortices carrying orbital angular momentum (OAM) are commonly generated by modulating the available conventional light beam. This article shows that a micro-laser operates at the exceptional point (EP) of the non-Hermitian quantum system can directly emit vortex laser with well-defined OAM at will. Two gratings (the refractive index modulation and along azimuthal direction and the grating protruding from the micro-ring cavity) modulate the eigenmode of a micro-ring cavity to be a vortex laser mode. The phase-matching condition ensures that we can tune the OAM of the vortex beam to be arbitrary orders by changing the grating protruding from the micro-ring cavity while the system is kept at EP. The results are obtained by analytical analysis and confirmed by 3D full wave simulations.

  19. A Experimental Study of Viscous Vortex Rings.

    Science.gov (United States)

    Dziedzic, Mauricio

    Motivated by the role played by vortex rings in the process of turbulent mixing, the work is focused on the problem of stability and viscous decay of a single vortex ring. A new classification is proposed for vortex rings which is based on extensive hot-wire measurements of velocity in the ring core and wake and flow visualization. Vortex rings can be classified as laminar, wavy, turbulence-producing, and turbulent. Prediction of vortex ring type is shown to be possible based on the vortex ring Reynolds number. Linear growth rates of ring diameter with time are observed for all types of vortex rings, with different growth rates occurring for laminar and turbulent vortex rings. Data on the viscous decay of vortex rings are used to provide experimental confirmation of the accuracy of Saffman's equation for the velocity of propagation of a vortex ring. Experimental data indicate that instability of the vortex ring strongly depends on the mode of generation and can be delayed by properly adjusting the generation parameters. A systematic review of the literature on vortex-ring interactions is presented in the form of an appendix, which helps identify areas in which further research may be fruitful.

  20. Fractional vortex dipole phase filter

    Science.gov (United States)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, Paramasivam

    2014-10-01

    In spatial filtering experiments, the use of vortex phase filters plays an important role in realizing isotropic edge enhancement. In this paper, we report the use of a vortex dipole phase filter in spatial filtering. A dipole made of fractional vortices is used, and its filtering characteristics are studied. It is observed that the filter performance can be tuned by varying the distance of separation between the vortices of the dipole to achieve better contrast and output noise suppression, and when this distance tends to infinity, the filter performs like a 1-D Hilbert mask. Experimental and simulation results are presented.

  1. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  2. Generation of nonlinear vortex precursors

    CERN Document Server

    Chen, Yue-Yue; Liu, Chengpu

    2016-01-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex har- monics are generated in the transmitted field due to ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provide a straightforward way of measuring precursors. By the virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical informa- tion and communication fields where controllable loss, large information-carrying capacity and high speed communication are required.

  3. Ice Volumes on Cascade Volcanoes: Mount Rainier, Mount Hood, Three Sisters, and Mount Shasta

    Science.gov (United States)

    Driedger, Carolyn L.; Kennard, Paul M.

    1986-01-01

    During the eruptions of Mount St. Helens the occurrence of floods and mudflows made apparent the need for predictive water-hazard analysis of other Cascade volcanoes. A basic requirement for such analysis is information about the volumes and distributions of snow and ice on other volcanoes. A radar unit contained in a backpack was used to make point measurements of ice thickness on major glaciers of Mount Rainier, Wash.; Mount Hood, Oreg.; the Three Sisters, Oreg.; and Mount Shasta, Calif. The measurements were corrected for slope and were used to develop subglacial contour maps from which glacier volumes were measured. These values were used to develop estimation methods for finding volumes of unmeasured glaciers. These methods require a knowledge of glacier slope, altitude, and area and require an estimation of basal shear stress, each estimate derived by using topographic maps updated by aerial photographs. The estimation methods were found to be accurate within ?20 percent on measured glaciers and to be within ?25 percent when applied to unmeasured glaciers on the Cascade volcanoes. The estimation methods may be applicable to other temperate glaciers in similar climatic settings. Areas and volumes of snow and ice are as follows: Mount Rainier, 991 million ft2, 156 billion ft3; Mount Hood, 145 million ft2, 12 billion ft3; Three Sisters, 89 million ft2, 6 billion ft3; and Mount Shasta, 74 million ft2, 5 billion ft3. The distribution of ice and firn patches within 58 glacierized basins on volcanoes is mapped and listed by altitude and by watershed to facilitate water-hazard analysis.

  4. Melting of heterogeneous vortex matter: The vortex `nanoliquid'

    Indian Academy of Sciences (India)

    S S Banerjee; S Goldberg; Y Myasoedov; M Rappaport; E Zeldov; A Soibel; F de la Cruz; C J van der Beek; M Konczykowski; T Tamegai; V Vinokur

    2006-01-01

    Disorder and porosity are parameters that strongly influence the physical behavior of materials, including their mechanical, electrical, magnetic and optical properties. Vortices in superconductors can provide important insight into the effects of disorder because their size is comparable to characteristic sizes of nanofabricated structures. Here we present experimental evidence for a novel form of vortex matter that consists of inter-connected nanodroplets of vortex liquid caged in the pores of a solid vortex structure, like a liquid permeated into a nanoporous solid skeleton. Our nanoporous skeleton is formed by vortices pinned by correlated disorder created by high-energy heavy ion irradiation. By sweeping the applied magnetic field, the number of vortices in the nanodroplets is varied continuously from a few to several hundred. Upon cooling, the caged nanodroplets freeze into ordered nanocrystals through either a first-order or a continuous transition, whereas at high temperatures a uniform liquid phase is formed upon delocalization-induced melt- ing of the solid skeleton. This new vortex nanoliquid displays unique properties and symmetries that are distinct from both solid and liquid phases.

  5. Mounting clips for panel installation

    Energy Technology Data Exchange (ETDEWEB)

    Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph; Valdes, Francisco

    2017-02-14

    An exemplary mounting clip for removably attaching panels to a supporting structure comprises a base, spring locking clips, a lateral flange, a lever flange, and a spring bonding pad. The spring locking clips extend upwardly from the base. The lateral flange extends upwardly from a first side of the base. The lateral flange comprises a slot having an opening configured to receive at least a portion of one of the one or more panels. The lever flange extends outwardly from the lateral flange. The spring bonding flange extends downwardly from the lever flange. At least a portion of the first spring bonding flange comprises a serrated edge for gouging at least a portion of the one or more panels when the one or more panels are attached to the mounting clip to electrically and mechanically couple the one or more panels to the mounting clip.

  6. Tonal noise production from a wall-mounted finite airfoil

    Science.gov (United States)

    Moreau, Danielle J.; Doolan, Con J.

    2016-02-01

    This study is concerned with the flow-induced noise of a smooth wall-mounted finite airfoil with flat ended tip and natural boundary layer transition. Far-field noise measurements have been taken at a single observer location and with a microphone array in the Virginia Tech Stability Wind Tunnel for a wall-mounted finite airfoil with aspect ratios of L / C = 1 - 3, at a range of Reynolds numbers (ReC = 7.9 ×105 - 1.6 ×106, based on chord) and geometric angles of attack (α = 0 - 6 °). At these Reynolds numbers, the wall-mounted finite airfoil produces a broadband noise contribution with a number of discrete equispaced tones at non-zero angles of attack. Spectral data are also presented for the noise produced due to three-dimensional vortex flow near the airfoil tip and wall junction to show the contributions of these flow features to airfoil noise generation. Tonal noise production is linked to the presence of a transitional flow state to the trailing edge and an accompanying region of mildly separated flow on the pressure surface. The separated flow region and tonal noise source location shift along the airfoil trailing edge towards the free-end region with increasing geometric angle of attack due to the influence of the tip flow field over the airfoil span. Tonal envelopes defining the operating conditions for tonal noise production from a wall-mounted finite airfoil are derived and show that the domain of tonal noise production differs significantly from that of a two-dimensional airfoil. Tonal noise production shifts to lower Reynolds numbers and higher geometric angles of attack as airfoil aspect ratio is reduced.

  7. Backreaction of excitations on a vortex

    CERN Document Server

    Arodz, H; Arodz, Henryk; Hadasz, Leszek

    1997-01-01

    Excitations of a vortex are usually considered in a linear approximation neglecting their backreaction on the vortex. In the present paper we investigate backreaction of Proca type excitations on a straightlinear vortex in the Abelian Higgs model. We propose exact Ansatz for fields of the excited vortex. From initial set of six nonlinear field equations we obtain (in a limit of weak excitations) two linear wave equations for the backreaction corrections. Their approximate solutions are found in the cases of plane wave and wave packet type excitations. We find that the excited vortex radiates vector field and that the Higgs field has a very broad oscillating component.

  8. Generation of Intense High-Order Vortex Harmonics

    CERN Document Server

    Zhang, Xiaomei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2014-01-01

    This paper presents the method for the first time to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region. In three-dimensional particle-in-cell simulation, both the reflected and transmitted light beams include high-order harmonics of the Laguerre-Gaussian (LG) mode when a linearly polarized LG laser pulse impinges on a solid foil. The mode of the generated LG harmonic scales with its order, in good agreement with our theoretical analysis. The intensity of the generated high-order vortex harmonics is close to the relativistic region, and the pulse duration can be in attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. Thus, the obtained intense vortex beam may have extraordinarily promising applications for high-capacity quantum information and for high-resolution dete...

  9. Particle-vortex symmetric liquid

    Science.gov (United States)

    Mulligan, Michael

    2017-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed by Breznay et al. [Proc. Natl. Acad. Sci. USA 113, 280 (2016), 10.1073/pnas.1522435113] to exhibit particle-vortex symmetric electrical response, and the nearby metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82, 5341 (1999), 10.1103/PhysRevLett.82.5341] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically neutral Dirac fermion minimally coupled to a (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not require the introduction of disorder; rather, it results when the Dirac fermions exhibit vanishing Hall effect. The theory predicts approximately equal (diagonal) thermopower and Nernst signal with a deviation parameterized by the measured electrical Hall response at the symmetric point.

  10. Anatomy of a Bathtub Vortex

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, Bjarne

    2003-01-01

    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Sur...

  11. Merger of Long Vortex Filaments

    CERN Document Server

    Khandekar, Akshay

    2012-01-01

    This fluid dynamics video demonstrates the merger of long vortex filaments is shown experimentally. Two counter-rotating vortices are generated using in a tank with very high aspect ratio. PIV demonstrates the merger of the vortices within a single orbit.

  12. Thermal inhomogeneities in vortex tubes

    Science.gov (United States)

    Lemesh, N. I.; Senchuk, L. A.

    An experimental study of the effect of the temperature of the inlet gas on the temperature difference between the hot and cold streams discharged from a Ranque-Hilsch vortex tube is described. The experimental results are presented in graphical form. It is that the temperature difference increases with the temperature of the entering gas.

  13. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  14. 150 Years of vortex dynamics

    DEFF Research Database (Denmark)

    Aref, Hassan

    2010-01-01

    An IUTAM symposium with the title of this paper was held on October 12-16, 2008, in Lyngby and Copenhagen, Denmark, to mark the sesquicentennial of publication of Helmholtz's seminal paper on vortex dynamics. This volume contains the proceedings of the Symposium. The present paper provides...

  15. Chaos in body-vortex interactions

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    The model of body–vortex interactions, where the fluid flow is planar, ideal and unbounded, and the vortex is a point vortex, is studied. The body may have a constant circulation around it. The governing equations for the general case of a freely moving body of arbitrary shape and mass density...... of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between...... and an arbitrary number of point vortices are presented. The case of a body and a single vortex is then investigated numerically in detail. In this paper, the body is a homogeneous, elliptical cylinder. For large body–vortex separations, the system behaves much like a vortex pair regardless of body shape. The case...

  16. Method for mitigating the negative effect of vortex motion inside the suction chambers of centrifugal pumps

    Directory of Open Access Journals (Sweden)

    Adrian CIOCANEA

    2013-09-01

    Full Text Available The paper presents a method for mitigating the negative effect of vortex motion inside the suction chambers of centrifugal pumps in order to obtain better use of water resource and decrease the risk related to loss of prime. It was studied the influence of a rotating device on the vortex motion in the case of a vertical suction pipe. The device is consisting of three thin vertical cylinders symmetrically mounted on a horizontal rotating disk placed in front of the inlet section of the suction pipe. The experimental research was conducted for various diameters of the cylinders, water levels in the suction chamber and pump flow rates. It was assessed the vortex type, frequency of arising and living life of vortices. The experimental results are compared with the case the device is absent in order to assess the efficiency of the solution. By using the device a decrease of about 1215% of vortex arising is observed for most of the water levels in the suction chamber and for 80 -90 % of the centrifugal pump flow rates. If high flow rates and low water level in the suction chamber are simultaneously present, violent vortex motion is blocking the rotating device and the volume of air entered the pipe is massive - extreme regime. The flow pattern in the suction chamber was visualized using a laser sheet. At the inlet section of the suction pipe one can observe two main flow patterns: central vortex entrance for high water level in the suction chamber and reduce flow rates of the centrifugal pump and lateral vortex entrance for low water level and high flow rates. The conclusions of the experiment confirm the energy dissipation of the vortices arising in the suction chamber, due to utilization of the rotating device, in most of the centrifugal pump regimes.

  17. The Solar Vortex: Electric Power Generation using Anchored, Buoyancy-Induced Columnar Vortices

    Science.gov (United States)

    Glezer, Ari

    2015-04-01

    Naturally-occurring, buoyancy-driven columnar vortices (``dust devils'') that are driven by the instability of thermally stratified air layers and sustained by the entrainment of ground- heated air, occur spontaneously in the natural environment with core diameters of 1-50 m and heights up to 1 km. These vortices convert low-grade waste heat in the air layer overlying the warm surface into a solar-induced wind with significant kinetic energy. Unlike dust devil vortices that are typically free to wander laterally, the Solar Vortex (SoV) is deliberately triggered and anchored within a cylindrical domain bounded by an azimuthal array of stationary ground-mounted vertical vanes and sustained by continuous entrainment of the ground-heated air through these vanes. The mechanical energy of the anchored vortex is exploited for power generation by coupling the vortex to a vertical-axis turbine. This simple, low-cost electric power generating unit is competitive in cost, intermittency, and capacity factor with traditional solar power technologies. The considerable kinetic energy of the vortex column cannot be explained by buoyancy alone, and the fundamental mechanisms associated with the formation, evolution, and dynamics of an anchored, buoyancy-driven columnar vortex were investigated experimentally and numerically with specific emphasis on flow manipulation for increasing the available kinetic energy and therefore the generated power. These investigations have also considered the dependence of the vortex scaling and strength on the thermal resources and on the flow enclosure in the laboratory and in the natural environment. Preliminary outdoor tests of a two-meter scale prototype successfully demonstrated the ability to engender and anchor a columnar vortex using only solar radiation and couple the flow to a vertical axis wind turbine. A kilowatt-scale outer door prototype will be tested during the summer of 2015.

  18. Mounting power cables on SOLEIL

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The power couplers are mounted on the SOLEIL cryomodule in a clean room. The cryomodule will allow superconducting technology to be used at SOLEIL, the French national synchrotron facility. This work is carried out as part of a collaboration between CERN and CEA Saclay, the French National Atomic Energy Commission.

  19. Control of Wall Mounting Robot

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pedersen, Rasmus

    2017-01-01

    This paper presents a method for designing controllers for trajectory tracking with actuator constraints. In particular, we consider a joystick-controlled wall mounting robot called WallMo. In contrast to previous works, a model-free approach is taken to the control problem, where the path...

  20. Mount Rainier active cascade volcano

    Science.gov (United States)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  1. Mount Rainier active cascade volcano

    Science.gov (United States)

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  2. 1992 Mount Spurr, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Following 39 years of inactivity, Crater Peak vent on the south flank of Mount Spurr volcano burst into eruption at 7:04 a.m. Alaska daylight time (ADT) on June 27,...

  3. Numerical investigation on thermal striping conditions for a tee junction of LMFBR coolant pipes. 6. Numerical evaluations of arched-vortex characteristics in non-isothermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Satoshi [Customer System Co. Ltd. (Japan); Muramatsu, Toshiharu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2002-05-01

    Numerical analyses for turbulence thermal mixing, the aim of which is to evaluate relationship between hydrodynamics and temperature distribution of an arched-vortex, were carried out using the direct numerical simulation code DINUS-3. From the analyses, the following results have been obtained: (1) Transportation period of the arched-vortex and distance between the arched-vortices were kept constant in isothermal and non-isothermal conditions. (2) The transportation period of arched-vortex was decreased with increasing Reynolds number under the condition of the constant flow velocity ratio between both coolant pipes. (3) One of the main reasons for this behavior was considered that the motion of the cold fluid flowing out of the branch pipe was restricted by the difference of fluid density between the branch and the main pipes. The amplitudes of the cross flow velocity fluctuation in the leg region of the arched-vortex were larger than those under isothermal condition. (4) It was confirmed that the arched-vortex consists of two kinds of vortexes, i.e., a longitudinal vortex generated by a shear motion at the top of the arched-vortex, and a horizontal vortex by shedding motion at both sides of the branch jet flow. (author)

  4. Controlling multipolar surface plasmon excitation through the azimuthal phase structure of electron vortex beams

    Science.gov (United States)

    Ugarte, Daniel; Ducati, Caterina

    2016-05-01

    We have theoretically studied how the azimuthal phase structure of an electron vortex beam excites surface plasmons on metal particles of different geometries as observed in electron energy loss spectroscopy (EELS). We have developed a semiclassical approximation combining a ring-shaped beam and the dielectric formalism. Our results indicate that for the case of total orbital angular momentum transfer, we can manipulate surface plasmon multipole excitation and even attain an enhancement factor of several orders of magnitude. Since electron vortex beams interact with particles mostly through effects due to azimuthal symmetry, i.e., in the plane perpendicular to the electron beam, anisotropy information (longitudinal and transversal) of the sample may be derived in EELS studies by comparing nonvortex and vortex beam measurements.

  5. Two vortex-blob regularization models for vortex sheet motion

    Science.gov (United States)

    Sohn, Sung-Ik

    2014-04-01

    Evolving vortex sheets generally form singularities in finite time. The vortex blob model is an approach to regularize the vortex sheet motion and evolve past singularity formation. In this paper, we thoroughly compare two such regularizations: the Krasny-type model and the Beale-Majda model. It is found from a linear stability analysis that both models have exponentially decaying growth rates for high wavenumbers, but the Beale-Majda model has a faster decaying rate than the Krasny model. The Beale-Majda model thus gives a stronger regularization to the solution. We apply the blob models to the two example problems: a periodic vortex sheet and an elliptically loaded wing. The numerical results show that the solutions of the two models are similar in large and small scales, but are fairly different in intermediate scales. The sheet of the Beale-Majda model has more spiral turns than the Krasny-type model for the same value of the regularization parameter δ. We give numerical evidences that the solutions of the two models agree for an increasing amount of spiral turns and tend to converge to the same limit as δ is decreased. The inner spiral turns of the blob models behave differently with the outer turns and satisfy a self-similar form. We also examine irregular motions of the sheet at late times and find that the irregular motions shrink as δ is decreased. This fact suggests a convergence of the blob solution to the weak solution of infinite regular spiral turns.

  6. Vortex tube reconnection at Re = 104

    Science.gov (United States)

    van Rees, Wim M.; Hussain, Fazle; Koumoutsakos, Petros

    2012-07-01

    We present simulations of the long-time dynamics of two anti-parallel vortex tubes with and without initial axial flow, at Reynolds number Re = Γ/ν = 104. Simulations were performed in a periodic domain with a remeshed vortex method using 785 × 106 particles. We quantify the vortex dynamics of the primary vortex reconnection that leads to the formation of elliptical rings with axial flow and report for the first time a subsequent collision of these rings. In the absence of initial axial flow, a -5/3 slope of the energy spectrum is observed during the first reconnection of the tubes. The resulting elliptical vortex rings experience a coiling of their vortex lines imparting an axial flow inside their cores. These rings eventually collide, exhibiting a -7/3 slope of the energy spectrum. Studies of vortex reconnection with an initial axial flow exhibit also the -7/3 slope during the initial collision as well as in the subsequent collision of the ensuing elliptical vortex rings. We quantify the detailed vortex dynamics of these collisions and examine the role of axial flow in the breakup of vortex structures.

  7. Influence of mesoscale topography on vortex intensity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of mesoscale topography on multi-vortex self-organization is investigated numerically in this paper using a barotropic primitive equation model with topographic term. In the initial field there are one DeMaria major vortex with the maximum wind radius rm of 80 km at the center of the computational domain, and four meso-β vortices in the vicinity of rm to the east of the major vortex center.When there is no topography present, the initial vortices self-organize into a quasi-final state flow pattern, I.e. A quasi-axisymmetric vortex whose intensity is close to that of the initial major vortex. However, when a mesoscale topography is incorporated, the spatial scale of the quasi-final state vortex reduces, and the relative vorticity at the center of the vortex and the local maximum wind speed remarkably increase. The possible mechanism for the enhancement of the quasi-final state vortex might be that the negative relative vorticity lump,generated above the mesoscale topography because of the constraint of absolute vorticity conservation, squeezes the center of positive vorticity towards the mountain slope area, and thus reduces the spatial range of the major vortex. Meanwhile, because the total kinetic energy is basically conservative, the squeezing directly leads to the concentration of the energy in a smaller area, I.e. The strengthening of the vortex.

  8. Sample mounts for microcrystal crystallography

    Science.gov (United States)

    Thorne, Robert E. (Inventor); Stum, Zachary (Inventor); O'Neill, Kevin (Inventor); Kmetko, Jan (Inventor)

    2009-01-01

    Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.

  9. Vortex scattering by step topography

    Science.gov (United States)

    Hinds, A. K.; Johnson, E. R.; McDonald, N. R.

    The scattering at a rectilinear step change in depth of a shallow-water vortex pair consisting of two patches of equal but opposite-signed vorticity is studied. Using the constants of motion, an explicit relationship is derived relating the angle of incidence to the refracted angle after crossing. A pair colliding with a step from deep water crosses the escarpment and subsequently propagates in shallow water refracted towards the normal to the escarpment. A pair colliding with a step from shallow water either crosses and propagates in deep water refracted away from the normal or, does not cross the step and is instead totally internally reflected by the escarpment. For large depth changes, numerical computations show that the coherence of the vortex pair is lost on encountering the escarpment.

  10. Perturbations of vortex ring pairs

    CERN Document Server

    Gubser, Steven S; Parikh, Sarthak

    2015-01-01

    We study pairs of co-axial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.

  11. Collisions of Vortex Filament Pairs

    Science.gov (United States)

    Banica, Valeria; Faou, Erwan; Miot, Evelyne

    2014-12-01

    We consider the problem of collisions of vortex filaments for a model introduced by Klein et al. (J Fluid Mech 288:201-248, 1995) and Zakharov (Sov Phys Usp 31(7):672-674, 1988, Lect. Notes Phys 536:369-385, 1999) to describe the interaction of almost parallel vortex filaments in three-dimensional fluids. Since the results of Crow (AIAA J 8:2172-2179, 1970) examples of collisions are searched as perturbations of antiparallel translating pairs of filaments, with initial perturbations related to the unstable mode of the linearized problem; most results are numerical calculations. In this article, we first consider a related model for the evolution of pairs of filaments, and we display another type of initial perturbation leading to collision in finite time. Moreover, we give numerical evidence that it also leads to collision through the initial model. We finally study the self-similar solutions of the model.

  12. Divergence of optical vortex beams

    CERN Document Server

    Reddy, Salla Gangi; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P

    2015-01-01

    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analysed by using the width ($w(z)$) of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane ($z=0$) as defined in \\textit{Optics Letters \\textbf{39,} 4364-4367 (2014)}. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance, and found that it varies with the order in the same way as that of the inner and outer radii at zero propagation distance. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication.

  13. Heat transfer in a two-pass internally ribbed turbine blade coolant channel with cylindrical vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, R.; Chen, Y.; Nikitopoulos, D. [Louisiana State Univ., Baton Rouge, LA (United States)] [and others

    1995-10-01

    The effect of vortex generators on the mass (heat) transfer from the ribbed passage of a two pass turbine blade coolant channel is investigated with the intent of optimizing the vortex generator geometry so that significant enhancements in mass/heat transfer can be achieved. In the experimental configuration considered, ribs are mounted on two opposite walls; all four walls along each pass are active and have mass transfer from their surfaces but the ribs are non-participating. Mass transfer measurements, in the form of Sherwood number ratios, are made along the centerline and in selected inter-rib modules. Results are presented for Reynolds number in the range of 5,000 to 40,000, pitch to rib height ratios of 10.5 and 21, and vortex generator-rib spacing to rib height ratios of 0.55, and 1.5. Centerline and spanwise averaged Sherwood number ratios are presented along with contours of the Sherwood number ratios. Results indicate that the vortex generators induce substantial increases in the local mass transfer rates, particularly along the side walls, and modest increases in the average mass transfer rates. The vortex generators have the effect of making the inter-rib profiles along the ribbed walls more uniform. Along the side walls, horse-shoe vortices that characterize the vortex generator wake are associated with significant mass transfer enhancements. The wake effects and the levels of enhancement decrease somewhat with increasing Reynolds number and decreasing pitch.

  14. Dust vortex flows in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.K

    2002-12-30

    Coherent nonlinear structures in the form of dust vortex flows have been observed in unmagnetized laboratory dusty plasmas. Our objective here is show that the dynamics of such dust vortices is governed by a modified Navier-Stokes equation (MNSE) and that the stationary solutions of the MNSE can be represented as monopolar as well as a row of identical Stuart and a row of counter-rotating vortices.

  15. Experimental characteristics of vortex heaters

    Science.gov (United States)

    Piralishvili, Sh. A.; Novikov, N. N.

    The performance of a Ranque-Hilsch vortex tube is investigated experimentally for the case where the tube operates as a heater, with the mass of the heated gas remaining constant. The results obtained indicate that energy separation zones with sufficiently high (50 percent) relative heating effects can be achieved for a gas flow ratio of unity. A nomogram is presented for calculating the relative and absolute heating effects as a function of the tube geometry.

  16. Prediction and Control of Vortex Dominated and Vortex-wake Flows

    Science.gov (United States)

    Kandil, Osama

    1996-01-01

    This report describes the activities and accomplishments under this research grant, including a list of publications and dissertations, produced in the field of prediction and control of vortex dominated and vortex wake flows.

  17. Energy harvesting using vortex-induced vibrations of tensioned cables

    CERN Document Server

    Grouthier, Clement; de Langre, Emmanuel

    2012-01-01

    The development of energy harvesting systems based on fluid/structure interactions is part of the global search for innovative tools to produce renewable energy. In this paper, the possibility to harvest energy from a flow using vortex-induced vibrations (VIV) of a tensioned flexible cable is analyzed. The fluid loading on the vibrating solid and resulting dynamics are computed using an appropriate wake-oscillator model, allowing one to perform a systematic parametric study of the efficiency. The generic case of an elastically-mounted rigid cylinder is first investigated, before considering an infinite cable with two different types of energy harvesting : a uniformly spanwise distributed harvesting and then a periodic distribution of discrete harvesting devices. The maximum harvesting efficiency is of the same order for each configuration and is always reached when the solid body and its wake are in a frequency lock-in state.

  18. The lateral-directional characteristics of a 74-degree Delta wing employing gothic planform vortex flaps

    Science.gov (United States)

    Grantz, A. C.

    1984-01-01

    The low speed lateral/directional characteristics of a generic 74 degree delta wing body configuration employing the latest generation, gothic planform vortex flaps was determined. Longitudinal effects are also presented. The data are compared with theoretical estimates from VORSTAB, an extension of the Quasi vortex lattice Method of Lan which empirically accounts for vortex breakdown effects in the calculation of longitudinal and lateral/directional aerodynamic characteristics. It is indicated that leading edge deflections of 30 and 40 degrees reduce the magnitude of the wing effective dihedral relative to the baseline for a specified angle of attack or lift coefficient. For angles of attack greater than 15 degrees, these flap deflections reduce the configuration directional stability despite improved vertical tail effectiveness. It is shown that asymmetric leading edge deflections are inferior to conventional ailerons in generating rolling moments. VORSTAB calculations provide coarse lateral/directional estimates at low to moderate angles of attack. The theory does not account for vortex flow induced, vertical tail effects.

  19. Birth and evolution of an optical vortex

    CERN Document Server

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2016-01-01

    When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core.

  20. Topology of Vortex-Wing Interaction

    Science.gov (United States)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  1. Vortex rings impinging on permeable boundaries

    Science.gov (United States)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  2. Vortex dynamics in nonrelativistic Abelian Higgs model

    Directory of Open Access Journals (Sweden)

    A.A. Kozhevnikov

    2015-11-01

    Full Text Available The dynamics of the gauge vortex with arbitrary form of a contour is considered in the framework of the nonrelativistic Abelian Higgs model, including the possibility of the gauge field interaction with the fermion asymmetric background. The equations for the time derivatives of the curvature and the torsion of the vortex contour generalizing the Betchov–Da Rios equations in hydrodynamics, are obtained. They are applied to study the conservation of helicity of the gauge field forming the vortex, twist, and writhe numbers of the vortex contour. It is shown that the conservation of helicity is broken when both terms in the equation of the vortex motion are present, the first due to the exchange of excitations of the phase and modulus of the scalar field and the second one due to the coupling of the gauge field forming the vortex, with the fermion asymmetric background.

  3. An axisymmetric steady state vortex ring model

    CERN Document Server

    Wang, Ruo-Qian

    2016-01-01

    Based on the solution of Atanasiu et al. (2004), a theoretical model for axisymmetric vortex flows is derived in the present study by solving the vorticity transport equation for an inviscid, incompressible fluid in cylindrical coordinates. The model can describe a variety of axisymmetric flows with particular boundary conditions at a moderately high Reynolds number. This paper shows one example: a high Reynolds number laminar vortex ring. The model can represent a family of vortex rings by specifying the modulus function using a Rayleigh distribution function. The characteristics of this vortex ring family are illustrated by numerical methods. For verification, the model results compare well with the recent direct numerical simulations (DNS) in terms of the vorticity distribution and streamline patterns, cross-sectional areas of the vortex core and bubble, and radial vorticity distribution through the vortex center. Most importantly, the asymmetry and elliptical outline of the vorticity profile are well capt...

  4. Polishing Your Transparencies: Mounting, Masking, Overlays.

    Science.gov (United States)

    Jobe, Holly; Cannon, Glenn

    This brief guide discusses the mounting of overhead transparencies on frames, the types of mounts, the proper masking for presentation, and the use of overlays. Numerous line drawings provide the reader with a helpful visual reference. (RAO)

  5. Mounting support for a photovoltaic module

    Science.gov (United States)

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  6. Magnetism near Vortex Cores of Cuprate Superconductors

    Science.gov (United States)

    Lee, J. C.; Prudchenko, K.; Launspach, B.; Ruiz, E. J.; Boekema, C.

    2005-03-01

    We examined muon-spin-resonance (μSR) vortex data of Bi2212, Tl2223, and YBCO to search for antiferromagnetism (AF) near the vortex cores. [1] Field distributions were obtained from μSR data using Maximum-Entropy analysis. The grainboundary and vortex signals were fitted by Gaussian and Lorentzian curves, the latter suggestive of extra AF ordering. Narrow Gaussians fit the grainboundary signals well, independent of temperature. For T B17 (2003) 3436.

  7. Astronomical demonstration of an optical vortex coronagraph.

    Science.gov (United States)

    Swartzlander, Grover A; Ford, Erin L; Abdul-Malik, Rukiah S; Close, Laird M; Peters, Mary A; Palacios, David M; Wilson, Daniel W

    2008-07-07

    Using an optical vortex coronagraph and simple adaptive optics techniques, we have made the first convincing demonstration of an optical vortex coronagraph that is coupled to a star gazing telescope. We suppressed by 97% the primary star of a resolvable binary system, Cor Caroli. The stars had an angular separation of 1.9lambda/D at our imaging camera. The secondary star suffered no suppression from the vortex lens.

  8. Symmetry plane model for turbulent flows with vortex generators

    Science.gov (United States)

    Arnaud, Gilles L.; Russell, David A.

    1991-01-01

    An approximate procedure is proposed for predicting the performance of counterrotating vortex-generator installations in incompressible flow. An inviscid calculation that includes the motion of the vortices is used to obtain crossflow velocities at the boundary-layer edge as a function of initial position, spacing, and strength of the vortices, and local values of the spanwise gradient are then folded into an integral turbulent-boundary layer procedure applied in the plane of symmetry. Special attention is paid to the consistency of the approximations and equations used. The two-dimensional aerodynamics of vortex generator installations on a NACA 0016 airfoil at angle-of-attack are estimated in this manner, and the results compared with experiments carried out with a 30-cm chord wing mounted in a 2.4 x 3.6-m cross-section wind tunnel and tested at chord Reynolds numbers of 0.7 and 1.4 x 10 to the 6th. Agreement in the separation location is found for these complex flows for a range of conditions.

  9. The quasi-vortex-lattice method for wings with edge vortex separation

    Science.gov (United States)

    Pao, J. L.; Lan, E.

    1980-01-01

    The aerodynamic characteristics of wings with leading-edge vortex separation were predicted using a method based on a flow model with free vortex elements which are allowed to merge into a concentrated core. The calculated pressure distribution is more accurate than that predicted by methods with discrete vortex filaments alone. In addition, the computer time is reduced approximately by half.

  10. Recent Advances in Study of Oceanic Vortex

    Institute of Scientific and Technical Information of China (English)

    FU Gang; LI Li; LIU Qinyu

    2002-01-01

    In this paper, the recent advances in the study of oceanic vortex are outlined. Firstly, the previous studies on oceanic vortex are reviewed. Secondly, some prominent features of oceanic vortex in the Gulf Stream, the Kuroshio, the South China Sea and the Japan Sea regions are depicted based upon the observations and numerical modeling results. Generally, the lifetime of these oceanic vortices ranges from several weeks to several months, and their horizontal scales vary from tens of kilometers to hundreds of kilometers. Their vertical scales are on the order of thousands of meters. Finally, some theoretical studies, mainly on the splitting of a cyclonic vortex and the merging of anticyclonic vortices, are introduced.

  11. Water-tunnel and analytical investigation of the effect of strake design variables on strake vortex breakdown characteristics

    Science.gov (United States)

    Frink, N. T.; Lamar, J. E.

    1980-01-01

    A systematic water-tunnel study was made to determine the vortex breakdown characteristics of 43 strakes. The strakes were mounted on a 1/2-scale model of a Langley Research Center general research fighter fuselage model with a 44deg leading-edge-sweep trapezoidal wing. The analytically designed strake shapes provided examples of the effects of the primary design parameters (size, span, and slenderness) on vortex breakdown characteristics. These effects were analyzed in relation to the respective strake leading-edge suction distributions. Included were examples of the effects of detailed strake planform shaping. It was concluded that, consistent with the design criterion, those strakes with leading-edge suction distributions which increase more rapidly near, and have a higher value at, the spanwise tip of the strake produce a more stable vortex.

  12. Vortex-induced vibrations of a DU96-W-180 airfoil at 90° angle of attack

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.;

    2014-01-01

    This work presents an analysis of vortex-induced vibrations of a DU96-W-180 airfoil in deep stall at a 90 degrees angle of attack, based on 2D and 3D Reynolds Averaged Navier Stokes and 3D Detached Eddy Simulation unsteady Computational Fluid Dynamics computations with non-moving, prescribed motion...... and elastically mounted airfoil suspensions. Stationary vortex-shedding frequencies computed in 2D and 3D Computational Fluid Dynamics differed. In the prescribed motion computations, the airfoil oscillated in the direction of the chord line. Negative aerodynamic damping, found in both 2D and 3D Computational...... Fluid Dynamics computations with moving airfoil, showed in the vicinity of the stationary vortex-shedding frequency computed by 2D Computational Fluid Dynamics. A shorter time series was sufficient to verify the sign of the aerodynamic damping in the case of the elastic computations than the prescribed...

  13. Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise

    Science.gov (United States)

    Fontana, Richard Remo

    1988-01-01

    This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.

  14. Vortex diffusion and vortex-line hysteresis in radial quantum turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Saluto, L., E-mail: lidia.saluto@unipa.it [DEIM, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Jou, D., E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Mongiovi, M.S., E-mail: m.stella.mongiovi@unipa.it [DEIM, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2014-05-01

    We study the influence of vortex diffusion on the evolution of inhomogeneous quantized vortex tangles. A simple hydrodynamical model to describe inhomogeneous counterflow superfluid turbulence is used. As an illustration, we obtain solutions for these effects in radial counterflow of helium II between two concentric cylinders at different temperatures. The vortex diffusion from the inner hotter cylinder to the outer colder cylinder increases the vortex length density everywhere as compared with the non-diffusive situation. The possibility of hysteresis in the vortex line density under cyclical variations of the heat flow is explored.

  15. Modeling and Simulation of Hydraulic Engine Mounts

    Institute of Scientific and Technical Information of China (English)

    DUAN Shanzhong; Marshall McNea

    2012-01-01

    Hydraulic engine mounts are widely used in automotive powertrains for vibration isolation.A lumped mechanical parameter model is a traditional approach to model and simulate such mounts.This paper presents a dynamical model of a passive hydraulic engine mount with a double-chamber,an inertia track,a decoupler,and a plunger.The model is developed based on analogy between electrical systems and mechanical-hydraulic systems.The model is established to capture both low and high frequency dynatmic behaviors of the hydraulic mount.The model will be further used to find the approximate pulse responses of the mounts in terms of the force transmission and top chamber pressure.The close form solution from the simplifiod linear model may provide some insight into the highly nonlinear behavior of the mounts.Based on the model,computer simulation has been carried out to study dynamic performance of the hydraulic mount.

  16. Heat transfer enhancement in oscillatory flow in channel with periodically upper and lower walls mounted obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Korichi, Abdelkader [Centre Universitaire de Medea, Quartier Ain D' heb, Medea 26000 (Algeria)], E-mail: a_korichi@hotmail.com; Oufer, Lounes [Universite des Sciences et de la Technologie Houari Boumediene, Faculte de Genie Mecanique et de Genie des Procedes, Departement de Genie Chimique et de Cryogenie, Laboratoire des Phenomenes de Transfert, BP 32, El-Alia, Bab-Ezzouar, Alger (Algeria)], E-mail: lounesoufer@yahoo.com

    2007-10-15

    A numerical investigation is conducted in a rectangular channel with heated obstacles mounted alternatively on the upper and lower walls. Time-dependent two dimensional laminar flow with constant thermophysical properties is assumed for air at three values of the Reynolds number (50, 500 and 1000). A detailed analysis is carried out to investigate flow pattern and Nusselt number. Streamwise periodic contraction-expansion of the cross-section induces bifurcation from steady to unsteady flow. In the unsteady state, a self-sustained periodic oscillatory flow occurs. It is also found that a travelling wave generated by the vortex shedding contributes mainly to heat transfer enhancement.

  17. Dynamic vortex interactions with flexible fibers and edges for prediction of owl noise suppression

    Science.gov (United States)

    Korykora, Sarah; Jaworski, Justin

    2015-11-01

    The compliant trailing-edge fringe of owls and the soft downy material on their upper wing surfaces are thought to enable their silent flight by weakening the interaction of boundary layer turbulence with these flexible structures. Previous analysis of turbulence noise generation by wave-bearing elastic edges have shown that the far-field acoustic power scaling can be weakened by up to the square of the Mach number relative to a rigid edge. However, it is unclear whether or not the wave-bearing feature or simply the flexible nature of the edge scatterer produces this noise suppression. To assess this distinction, a dynamic vortex interaction model is developed whereby the motion of a line vortex round a rigid but elastically-restrained wall-mounted fiber or trailing edge is determined numerically. Special attention is paid to the dynamic interaction between the flexible structure and vortex, which is accomplished via a conformal mapping relationship determined in closed form. Results from this analysis seek to develop a vortex sound model to discern the effect of flexible versus wave-bearing scatterers on turbulence noise suppression and help explain the mechanisms of silent owl flight.

  18. Pinch-off of axisymmetric vortex pairs in the limit of vanishing vortex line curvature

    Science.gov (United States)

    Sadri, V.; Krueger, P. S.

    2016-07-01

    Pinch-off of axisymmetric vortex pairs generated by flow between concentric cylinders with radial separation ΔR was studied numerically and compared with planar vortex dipole behavior. The axisymmetric case approaches planar vortex dipole behavior in the limit of vanishing ΔR. The flow was simulated at a jet Reynolds number of 1000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio ( /L Δ R ) in the range 10-20, and gap-to-outer radius ratio ( /Δ R R o ) in the range 0.01-0.1. Contrary to investigations of strictly planar flows, vortex pinch-off was observed for all gap sizes investigated. This difference was attributed to the less constrained geometry considered, suggesting that even very small amounts of vortex line curvature and/or vortex stretching may disrupt the absence of pinch-off observed in strictly planar vortex dipoles.

  19. Simulations of Active Vortex Generators

    Science.gov (United States)

    Mansour, N. N.; Koumoutsakos, P.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    We are interested in the study, via numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the streamwise direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise voracity is generated and ejected due to the oscillatory motion of the lid. The present simulations c Implement relevant experimental investigations of active vortex generators that have been conducted at NASA Ames Research Center and Stanford University. Jacobson and Reynolds used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. More recently, Lachowiez and Wlezien are investigating the flow generated by an electro-mechanically driven lid to be used for assertion control in aerodynamic applications. We are simulating the flows generated by these devices and we are conducting a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin. The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands ol'particle's allow for high resolution simulations

  20. Mount Rainier, a decade volcano

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S.C.; Hooper, P.R. (Washington State Univ., Pullman, WA (United States). Dept. of Geology); Eggers, A.E. (Univ. of Puget Sound, Tacoma, WA (United States). Dept. of Geology)

    1993-04-01

    Mount Rainier, recently designated as a decade volcano, is a 14,410 foot landmark which towers over the heavily populated southern Puget Sound Lowland of Washington State. It last erupted in the mid-1800's and is an obvious threat to this area, yet Rainier has received little detailed study. Previous work has divided Rainier into two distinct pre-glacial eruptive episodes and one post-glacial eruptive episode. In a pilot project, the authors analyzed 253 well-located samples from the volcano for 27 major and trace elements. Their objective is to test the value of chemical compositions as a tool in mapping the stratigraphy and understanding the eruptive history of the volcano which they regard as prerequisite to determining the petrogenesis and potential hazard of the volcano. The preliminary data demonstrates that variation between flows is significantly greater than intra-flow variation -- a necessary condition for stratigraphic use. Numerous flows or groups of flows can be distinguished chemically. It is also apparent from the small variation in Zr abundances and considerable variation in such ratios as Ba/Nb that fractional crystallization plays a subordinate role to some form of mixing process in the origin of the Mount Rainier lavas.

  1. Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes.

    Science.gov (United States)

    Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor

    2012-10-20

    In this work, we introduce an alternative method of analysis in vortex metrology based on the application of the Fourier optics techniques. The first part of the procedure is conducted as is usual in vortex metrology for uniform in-plane displacement determination. On the basis of two recorded intensity speckled distributions, corresponding to two states of a diffuser coherently illuminated, we numerically generate an analytical signal from each recorded intensity pattern by using a version of the Riesz integral transform. Then, from each analytical signal, a two-dimensional pseudophase map is generated in which the vortices are located and characterized in terms of their topological charges and their core's structural properties. The second part of the procedure allows obtaining Young's interference fringes when Fourier transforming the light passing through a diffracting mask with multiple apertures at the locations of the homologous vortices. In fact, we use the Fourier transform as a mathematical operation to compute the far-field diffraction intensity pattern corresponding to the multiaperture set. Each aperture from the set is associated with a rectangular hole that coincides both in shape and size with a pixel from recorded images. We show that the fringe analysis can be conducted as in speckle photography in an extended range of displacement measurements. Effects related with speckled decorrelation are also considered. Our experimental results agree with those of speckle photography in the range in which both techniques are applicable.

  2. Delaying vortex breakdown by waves

    Science.gov (United States)

    Yao, M. F.; Jiang, L. B.; Wu, J. Z.; Ma, H. Y.; Pan, J. Y.

    1989-03-01

    The effect of spiral waves on delaying vortex breakdown in a tube is studied experimentally and theoretically. When a harmonic oscillation was imposed on one of guiding vanes in the tube, the breakdown was observed to be postponed appreciately. According to the generalized Lagrangian mean theory, proper forcing spiral waves may produce an additional streaming momentum, of which the effect is favorable and similar to an axial suction at downstream end. The delayed breakdown position is further predicted by using nonlinear wave theory. Qualitative agreement between theory and experiment is obtained, and experimental comparison of the effects due to forcing spiral wave and axial suction is made.

  3. Anatomy of a bathtub vortex.

    Science.gov (United States)

    Andersen, A; Bohr, T; Stenum, B; Rasmussen, J Juul; Lautrup, B

    2003-09-05

    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Surrounding this drainpipe is a region with slow upward flow generated by the Ekman layer at the bottom of the container. This flow structure leads us to a theoretical model similar to one obtained earlier by Lundgren [J. Fluid Mech. 155, 381 (1985)

  4. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  5. Tight Focusing of Partially Coherent Vortex Beams

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    2012-01-01

    Full Text Available Tight focusing of partially polarized vortex beams has been studied. Compact form of the coherence matrix has been derived for polarized vortex beams. Effects of topological charge and polarization distribution of the incident beam on intensity distribution, degree of polarization, and coherence have been investigated.

  6. The linear stability of swirling vortex rings

    Science.gov (United States)

    Gargan-Shingles, C.; Rudman, M.; Ryan, K.

    2016-11-01

    The stability of vortex rings with an azimuthal component of velocity is investigated numerically for various combinations of ring wavenumber and swirl magnitude. The vortex rings are equilibrated from an initially Gaussian distribution of azimuthal vorticity and azimuthal velocity, at a circulation-based Reynolds number of 10 000, to a state in which the vortex core is qualitatively identical to that of the piston generated vortex rings. The instability modes of these rings can be characterised as Kelvin instability modes, analogous to instability modes observed for Gaussian and Batchelor vortex pairs. The shape of an amplified mode typically depends only on the azimuthal wavenumber at the centre of the vortex core and the magnitude of the corresponding velocity component. The wavenumber of a particular sinuous instability varies with radius from the vortex ring centre for rings of finite aspect ratio. Thicker rings spread the amplification over a wider range of wavenumbers for a particular resonant mode pair, while the growth rate and the azimuthal wavenumber corresponding to the peak growth both vary as a function of the wavenumber variation. Normalisation of the wavenumber and the growth rate by a measure of the wavenumber variation allows a coherent description of stability modes to be proposed, across the parameter space. These results provide a framework for predicting the development of resonant Kelvin instabilities on vortex rings with an induced component of swirling velocity.

  7. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.;

    2005-01-01

    or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  8. An investigation of the vortex method

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Jr., Duaine Wright [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. This is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.

  9. Vortex attraction and the formation of sunspots

    Science.gov (United States)

    Parker, E. N.

    1992-01-01

    A downdraft vortex ring in a stratified atmosphere exhibits universal attraction for nearby vertical magnetic flux bundles. It is speculated that the magnetic fields emerging through the surface of the sun are individually encircled by one or more subsurface vortex rings, providing an important part of the observed clustering of magnetic fibrils to form pores and sunspots.

  10. Investigation of Wake-Vortex Aircraft Encounters

    Science.gov (United States)

    Smith, Sonya T.

    1999-01-01

    The National Aeronautics and Space Administration is addressing airport capacity enhancements during instrument meteorological conditions though the Terminal Area Productivity (TAP) program. The major goal of the TAP program is to develop the technology that will allow air traffic levels during instrument meteorological condition to approach those achieved during visual operations. The Reduced Spacing Operations (RSO) subelement of TAP at the NASA Langley Research Center (LaRC) will develop the Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to integrate current and predicted weather conditions, wake vortex transport and decay knowledge, wake vortex sensor data, and operational definitions of acceptable strengths for vortex encounters to produce dynamic wake vortex separation criteria. The proposed research is in support of the wake vortex hazard definition component of the LaRC AVOSS development research. The research program described in the next section provided an analysis of the static test data and uses this data to evaluate the accuracy vortex/wake-encounter models. The accuracy of these models has not before been evaluated using experimental data. The research results also presented the first analysis of the forces and moments imparted on an airplane during a wake vortex encounter using actual flight test data.

  11. On a few Aspects of Vortex Motion

    Directory of Open Access Journals (Sweden)

    Prantik Sinha

    2013-08-01

    Full Text Available Intricacies of vortex motion have been drawing the attention of scientists for many years. A number of works both experimental and numerical have been conducted to understand the various features of vortex motion and its effects on drag, etc. In the present experimental work we have made an attempt to visualize the patterns of both Forced and Free vortex motion. Here colored die has been used to understand the profiles and an arrow shaped strip marks the difference between irrotational and rotational flow. In the Forced vortex motion it has been observed that the parabolic profile remains invariant with the flow rate (speed of paddle, height of the lowest point of the profile decreases with the increase in flow rate (paddle speed. In the Free Vortex motion observations, the hyperbolic profile doesn’t change with the change in flow rate. In this case, suction is created towards the centre where as in the case of Force vortex no such suction arises. With the reduction in the size of the orifice diameter, the profile becomes less steep for Free vortex. In this case the velocity profile in the core region is straight, as the radius increases the profile becomes rectangular hyperbola where as in the case of Forced vortex the velocity profile maintains its linear nature for the entire range of radii.

  12. The bathtub vortex in a rotating container

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, B.

    2006-01-01

    We study the time-independent free-surface flow which forms when a fluid drains out of a container, a so-called bathtub vortex. We focus on the bathtub vortex in a rotating container and describe the free-surface shape and the complex flow structure using photographs of the free surface, flow...

  13. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FREE SURFACE VORTEX

    Institute of Scientific and Technical Information of China (English)

    LI Hai-feng; CHEN Hong-xun; MA Zheng; ZHOU Yi

    2008-01-01

    An experimental model was set up to investigate the formation and evolution of the free surface vortex. A Particle Image Velocimetry (PIV) was used to measure the free surface vortex flow field at different development stages. Flow visualization was used to locate the vortex position and find its structure. Empirical formulas about the critical submergence and the whole field structure were obtained. It is found that the tangential velocity distribution is similar to that of the Rankine vortex and the radial velocity changes little in the vortex functional scope. Vortex starts from the free surface and gradually intensifies to air entrainment vortex. The vortex core moves during the formation and evolution of the free surface vortex. Based on the experimental model, the vortex position and structure were predicted by numerical simulation combined with a vortex model and compared with that of the experiments, which shows satisfactory agreement.

  14. Bifurcation and instability problems in vortex wakes

    Energy Technology Data Exchange (ETDEWEB)

    Aref, H [Center for Fluid Dynamics and Department of Physics, Technical University of Denmark, Kgs. Lyngby, DK-2800 (Denmark); Broens, M [Center for Fluid Dynamics and Department of Mathematics, Technical University of Denmark, Kgs. Lyngby, DK-2800 (Denmark); Stremler, M A [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2007-04-15

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal-Reynolds number relation for vortex wakes, the bifurcation diagram for 'exotic' wake patterns behind an oscillating cylinder first determined experimentally by Williamson and Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices in a periodic strip is considered. The classical results of von Karman concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued to be relevant to the wake behind an oscillating body.

  15. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.

    2007-01-01

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  16. Variable Volumetric Stiffness Fluid Mount Design

    Directory of Open Access Journals (Sweden)

    Nader Vahdati

    2004-01-01

    Full Text Available Passive fluid mounts are commonly used in the automotive and aerospace applications to isolate the cabin from the engine noise and vibration. Due to manufacturing and material variabilities, no two identical fluid mount designs act the same. So, fluid mounts are tuned one by one before it is shipped out to customers. In some cases, for a batch of fluid mounts manufactured at the same time, one is tuned and the rest is set to the same settings. In some cases they are shipped as is with its notch frequency not being in its most optimum location. Since none of the passive fluid mount parameters are controllable, the only way to tune the mount is to redesign the mount by changing fluid, changing inertia track length or diameter, or changing rubber stiffness. This trial and error manufacturing process is very costly. To reduce the fluid mount notch frequency tuning cycle time, a new fluid mount design is proposed. In this new fluid mount design, the notch frequency can be easily modified without the need for any redesigns. In this paper, the new design concept, and its mathematical model and simulation results will be presented.

  17. Suppression of two-dimensional vortex-induced vibration with active velocity feedback controller

    Science.gov (United States)

    Ma, B.; Srinil, N.

    2016-09-01

    Vortex-induced vibrations (VIV) establish key design parameters for offshore and subsea structures subject to current flows. Understanding and predicting VIV phenomena have been improved in recent years. Further, there is a need to determine how to effectively and economically mitigate VIV effects. In this study, linear and nonlinear velocity feedback controllers are applied to actively suppress the combined cross-flow and in-line VIV of an elastically-mounted rigid circular cylinder. The strongly coupled fluid-structure interactions are numerically modelled and investigated using a calibrated reduced-order wake oscillator derived from the vortex strength concept. The importance of structural geometrical nonlinearities is studied which highlights the model ability in matching experimental results. The effectiveness of linear vs nonlinear controllers are analysed with regard to the control direction, gain and power. Parametric studies are carried out which allow us to choose the linear vs nonlinear control, depending on the target controlled amplitudes and associated power requirements.

  18. Introduction to Vortex Lattice Theory

    Directory of Open Access Journals (Sweden)

    Santiago Pinzón

    2015-10-01

    Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization.  Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.

  19. The VORTEX coronagraphic test bench

    CERN Document Server

    Jolivet, Aissa; Huby, Elsa; Absil, Olivier; Delacroix, Christian; Mawet, Dimitri; Surdej, Jean; Habraken, Serge

    2016-01-01

    In this paper, we present the infrared coronagraphic test bench of the University of Li\\`ege named VODCA (Vortex Optical Demonstrator for Coronagraphic Applications). The goal of the bench is to assess the performances of the Annular Groove Phase Masks (AGPMs) at near- to mid-infrared wavelengths. The AGPM is a subwavelength grating vortex coronagraph of charge two (SGVC2) made out of diamond. The bench is designed to be completely achromatic and will be composed of a super continuum laser source emitting in the near to mid-infrared, several parabolas, diaphragms and an infrared camera. This way, we will be able to test the different AGPMs in the M, L, K and H bands. Eventually, the bench will also allow the computation of the incident wavefront aberrations on the coronagraph. A reflective Lyot stop will send most of the stellar light to a second camera to perform low-order wavefront sensing. This second system coupled with a deformable mirror will allow the correction of the wavefront aberrations. We also ai...

  20. Vortex dynamics in $R^4$

    CERN Document Server

    Shashikanth, Banavara N

    2011-01-01

    The vortex dynamics of Euler's equations for a constant density fluid flow in $R^4$ is studied. Most of the paper focuses on singular Dirac delta distributions of the vorticity two-form $\\omega$ in $R^4$. These distributions are supported on two-dimensional surfaces termed {\\it membranes} and are the analogs of vortex filaments in $R^3$ and point vortices in $R^2$. The self-induced velocity field of a membrane is shown to be unbounded and is regularized using a local induction approximation (LIA). The regularized self-induced velocity field is then shown to be proportional to the mean curvature vector field of the membrane but rotated by 90 degrees in the plane of normals. Next, the Hamiltonian membrane model is presented. The symplectic structure for this model is derived from a general formula for vorticity distributions due to Marsden and Weinstein (1983). Finally, the dynamics of the four-form $\\omega \\wedge \\omega$ is examined. It is shown that Ertel's vorticity theorem in $R^3$, for the constant density...

  1. Dalian’s Mounted Policewomen

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    IN the summer of 1996, the first group of mounted policewomen came into being at the coastal city of Dalian,in northern China. The cavalrywomen patrol the streets on the backs of tall horses. bringing a new sense of safety and security to Dalian. Dalian sits on the Liaodong peninsula. This summer resort features long beaches, green folliage and sprawling lawns. Since 1988. the annual Dalian International Fashion Festival. with its thriving clothing industry and colorful cultural background, has attracted many businessmen and tourists from around the world. To welcome the Eighth Dalian International Fashion Festival and satisfy the needs of Dalian’s economic and cultural development, the Dalian City Public Security Bureau selected six policewomen to form a group of cavalrywomen.

  2. Advanced centering of mounted optics

    Science.gov (United States)

    Wenzel, Christian; Winkelmann, Ralf; Klar, Rainer; Philippen, Peter; Garden, Ron; Pearlman, Sasha; Pearlman, Guy

    2016-03-01

    Camera objectives or laser focusing units consist of complex lens systems with multiple lenses. The optical performance of such complex lens systems is dependent on the correct positioning of lenses in the system. Deviations in location or angle within the system directly affect the achievable image quality. To optimize the achievable performance of lens systems, these errors can be corrected by machining the mount of the lens with respect to the optical axis. The Innolite GmbH and Opto Alignment Technology have developed a novel machine for such center turning operation. A confocal laser reflection measurement sensor determines the absolute position of the optical axis with reference to the spindle axis. As a strong advantage compared to autocollimator measurements the utilized Opto Alignment sensor is capable of performing centration and tilt measurements without changing objectives on any radius surface from 2 mm to infinity and lens diameters from 0.5 mm to 300 mm, including cylinder, aspheric, and parabolic surfaces. In addition, it performs significantly better on coated lenses. The optical axis is skewed and offset in reference to the spindle axis as determined by the measurement. Using the information about the mount and all reference surfaces, a machine program for an untrue turning process is calculated from this data in a fully automated manner. Since the optical axis is not collinear with the spindle axis, the diamond tool compensates for these linear and tilt deviations with small correction movements. This results in a simple machine setup where the control system works as an electronic alignment chuck. Remaining eccentricity of errors of < 10 sec are typical alignment results.

  3. Vortex bursting and tracer transport of a counter-rotating vortex pair

    Science.gov (United States)

    Misaka, T.; Holzäpfel, F.; Hennemann, I.; Gerz, T.; Manhart, M.; Schwertfirm, F.

    2012-02-01

    Large-eddy simulations of a coherent counter-rotating vortex pair in different environments are performed. The environmental background is characterized by varying turbulence intensities and stable temperature stratifications. Turbulent exchange processes between the vortices, the vortex oval, and the environment, as well as the material redistribution processes along the vortex tubes are investigated employing passive tracers that are superimposed to the initial vortex flow field. It is revealed that the vortex bursting phenomenon, known from photos of aircraft contrails or smoke visualization, is caused by collisions of secondary vortical structures traveling along the vortex tube which expel material from the vortex but do not result in a sudden decay of circulation or an abrupt change of vortex core structure. In neutrally stratified and weakly turbulent conditions, vortex reconnection triggers traveling helical vorticity structures which is followed by their collision. A long-lived vortex ring links once again establishing stable double rings. Key phenomena observed in the simulations are supported by photographs of contrails. The vertical and lateral extents of the detrained passive tracer strongly depend on environmental conditions where the sensitivity of detrainment rates on initial tracer distributions appears to be low.

  4. Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation

    Science.gov (United States)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2003-01-01

    Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.

  5. The method to control the submarine horseshoe vortex by breaking the vortex core

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-hua; XIONG Ying; TU Cheng-xu

    2014-01-01

    The quality of the inflow across the propeller is closely related with the hydrodynamic performance and the noise characteristics of the propeller. For a submarine, with a horseshoe vortex generated at the junction of the main body and the appendages, the submarine wake is dominated by a kind of highly non-uniform flow field, which has an adverse effect on the performance of the submarine propeller. In order to control the horseshoe vortex and improve the quality of the submarine wake, the flow field around a submarine model is simulated by the detached eddies simulation (DES) method, and the vortex configuration is displayed using the second invariant of the velocity derivative tensor. The state and the transition process of the horseshoe vortex are analyzed, then a modified method to break the vortex core by a vortex baffle is proposed. The flow numerical simulation is carried out to study the effect of this method. Numerical simulations show that, with the breakdown of the vortex core, many unstable vortices are shed and the energy of the horseshoe vortex is dissipated quickly, and the uniformity of the submarine wake is improved. The submarine wake test in a wind tunnel has verified the effect of the method to control the horseshoe vortex. The vortex baffle can improve the wake uniformity in cases of high Reynolds numbers as well, and it does not have adverse effects on the maneuverability and the speed ability of the submarine.

  6. Flow above the free end of a surface-mounted finite-height circular cylinder: A review

    Science.gov (United States)

    Sumner, D.

    2013-11-01

    The wake of a surface-mounted finite-height circular cylinder and the associated vortex patterns are strongly dependent on the cylinder aspect ratio and the thickness of the boundary layer on the ground plane relative to the dimensions of the cylinder. Above a critical aspect ratio, the mean wake is characterized by streamwise tip vortex structures and Kármán vortex shedding from the sides of the cylinder. Below a critical aspect ratio, a unique mean wake structure is observed. Recent experimental studies in the literature that used phase-averaged techniques, as well as recent numerical simulations, have led to an improved physical understanding of the near-wake vortex flow patterns. However, the flow above the free end of the finite circular cylinder, and its relationship to the near wake, has not been systematically studied. The effects of aspect ratio and boundary layer thickness on the free-end flow field are also not completely understood, nor has the influence of Reynolds number on the free-end flow field been fully explored. Common features associated with the free end include separation from the leading edge, a mean recirculation zone containing a prominent cross-stream arch (or mushroom) vortex, and reattachment onto the free-surface. Other flow features that remain to be clarified include a separation bubble near the leading edge, one or two cross-stream vortices within this separation bubble, the origins of the streamwise tip or trailing vortices, and various critical points in the near-surface flow topology. This paper reviews the current understanding of the flow above the free end of a surface-mounted finite-height circular cylinder, with a focus on models of the flow field, surface oil flow visualization studies, pressure and heat flux distributions on the free-end surface, measurements of the local velocity field, and numerical simulations, found in the literature.

  7. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  8. Mounting and Alignment of IXO Mirror Segments

    Science.gov (United States)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  9. Improvement of aerodynamic characteristics of a thick airfoil with a vortex cell in sub- and transonic flow

    Science.gov (United States)

    Isaev, Sergey; Baranov, Paul; Popov, Igor; Sudakov, Alexander; Usachov, Alexander

    2017-03-01

    The modified SST model (2005) is verified using Rodi- Leschziner-Isaev's approach and the multiblock computational technologies are validated in the VP2/3 code on different-structure overlapping grids by comparing the numerical predictions with the experimental data on transonic flow around an NACA0012 airfoil at an angle of attack of 4o for M=0.7 and Re=4×106. It is proved that the aerodynamic characteristics of a thick (20% of the chord) MQ airfoil mounted at an angle of attack of 2o for Re=107 and over the Mach number range 0.3-0.55 are significantly improved because an almost circular small-size (0.12) vortex cell with a defined volumetric flow rate coefficient of 0.007 during slot suction has been located on the upper airfoil section and an intense trapped vortex has been formed in it. A detailed analysis of buffeting within the self-oscillatory regime of flow around the MQ airfoil with a vortex cell has demonstrated the periodic changes in local and integral characteristics; the lift and the aerodynamic efficiency remain quite high, but inferior to the similar characteristics at M=0.55. It is found that the vortex cell at M=0.7 is inactive, and the aerodynamic characteristics of the MQ airfoil with a vortex cell are close to those of a smooth airfoil without a cell.

  10. Surface mount technology terms and concepts

    CERN Document Server

    Zarrow, Phil

    1997-01-01

    In today's fast-paced world of technology, keeping up with new terms and concepts can be quite a challenge. Surface Mount Technology Terms and Concepts is an invaluable reference containing over 1000 terms and definitions used in the SMT field. Each term is followed by a paragraph or two explaining the meaning and how it fits into the surface mount industry. The easy lookup and concise explanations make it ideal for those starting out in the field as well as professionals already involved in surface mount design and assembly.Glossary of over 1000 surface mount technology terms

  11. Microscale vortex laser with controlled topological charge

    Science.gov (United States)

    Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-12-01

    A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).

  12. Nonlinear ion acoustic waves scattered by vortexes

    Science.gov (United States)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  13. A VORTEX MODEL OF A HELICOPTER ROTOR

    Directory of Open Access Journals (Sweden)

    Valentin BUTOESCU

    2009-06-01

    Full Text Available A vortex model of a helicopter rotor is presented. Each blade of the rotor has three degrees of freedom: flapping, lagging and feathering. The motions after each degree of freedom are also known for all blades. The blade is modelled as a thin vortex surface. The wakes are free fluid surfaces. A system of five equations are obtained: the first one is the integral equation of the lifting surface (rotor, the next three describe the wakes motion, and the last one relates the vortex strength on the wakes and the variation of vorticity on the rotor. A numerical solution of this system is presented. To avoid the singularities that can occur due to the complexity of vortex system, a desingularized model of the vortex core was adopted. A Mathcad worksheet containing the method has been written.The original contribution of the work. The calculation method of the motion of the wakes free vortex system, the development of the vortex cores in time and a new method to approximate the aerodynamic influence of remoted wake regions.

  14. Contrasting vortex-gyration dispersions for different lattice bases in one-dimensional magnetic vortex arrays

    Science.gov (United States)

    Han, Dong-Soo; Jeong, Han-Byeol; Kim, Sang-Koog

    2013-09-01

    We performed micromagnetic numerical and analytical calculations in studying the effects of change in the primitive unit cells of one-dimensional (1D) vortex arrays on collective vortex-gyration dispersion. As the primitive basis, we consider alternating constituent materials (NiMnSb vs. Permalloy) and alternating dimensions including constituent disk diameter and thickness. In the simplest case, that of one vortex-state disk of given dimensions and single material in the primitive cell, only a single branch of collective vortex-gyration dispersion appears. By contrast, two constituent disks' different alternating materials, thicknesses, and diameters yield characteristic two-branch dispersions, the band widths and gaps of which differ in each case. This work offers not only an efficient means of manipulating collective vortex-gyration band structures but also a foundation for the development of a rich variety of 1D or 2D magnonic crystals and their band structures based on dipolar-coupled-vortex arrays.

  15. Evaluation of travelling vortex speed by means of vortex tracking and dynamic mode decomposition

    Science.gov (United States)

    Hyhlík, Tomáš

    2016-06-01

    The article deals with the analysis of unsteady periodic flow field related to synthetic jet creation. The analyses are based on the data obtained using ANSYS Fluent solver. Numerical results are validated by hot wire anemometry data measured along the jet centerline. The speed of travelling vortex ring is evaluated by using vortex tracking method and by using dynamic mode decomposition method. Vortex identification is based on residual vorticity which allows identifying regions in the flow field where fluid particles perform the rotational motion. The regime of the synthetic jet with Re = 329 and S = 19.7 is chosen. Both the vortex tracking and the dynamic mode decomposition based vortex speed evaluation indicate an increase in the vortex speed close to the orifice and then decrease with maximum reaching almost one and half of orifice centerline velocity. The article contains extended version the article presented at the conference AEaNMiFMaE 2016.

  16. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors

    Science.gov (United States)

    Meng, Qingyou; Varney, Christopher N.; Fangohr, Hans; Babaev, Egor

    2017-01-01

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  17. Symmetry-constrained electron vortex propagation

    CERN Document Server

    Clark, L; Béché, A; Lubk, A; Verbeeck, J

    2016-01-01

    Electron vortex beams hold great promise for development in transmission electron microscopy, but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM and topology. We present multiple simulations, alongside experimental data to study the behaviour of a variety of electron vortex beams after interacting with apertures of different symmetries, and investigate the effect on their OAM and vortex structure, both in the far-field and under free-space propagation.

  18. Dynamic Optimization for Vortex Shedding Suppression

    Directory of Open Access Journals (Sweden)

    Bonis Ioannis

    2016-01-01

    Full Text Available Flows around structures exhibiting vortex shedding induce vibrations that can potentially damage the structure. A way to avoid it is to suppress vortex shedding by controlling the wake. Wake control of laminar flow behind a rotating cylinder is formulated herein as a dynamic optimization problem. Angular cylinder speed is the manipulated variable that is adjusted to suppress vortex shedding by minimizing lift coefficient variation. The optimal angular speed is assumed to be periodic like wake formation. The control problem is solved for different time horizons tH. The impact of tH to control is evaluated and the need for feedback is assessed.

  19. Vortex dynamics in ferromagnetic/superconducting bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2008-07-01

    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  20. Superconducting Josephson vortex flow transistors

    CERN Document Server

    Tavares, P A C

    2002-01-01

    The work reported in this thesis focuses on the development of high-temperature superconducting Josephson vortex-flow transistors (JVFTs). The JVFT is a particular type of superconducting transistor, i.e. an electromagnetic device capable of delivering gain while keeping the control and output circuits electrically isolated. Devices were fabricated from (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta thin films grown by Pulsed Laser Deposition on 24 deg magnesium oxide and strontium titanate bicrystals. The design of the JVFTs was guided by numerical simulations and the devices were optimised for current gain. Improvements were made to the fabrication process in order to accurately pattern the small structures required. The devices exhibited current gains higher than 60 in liquid nitrogen. Gains measured at lower temperatures were significantly higher. As part of the work a data acquisition suite was developed for the characterisation of three-terminal devices and, in particular, of JVFTs.

  1. Vortex disruption by magnetohydrodynamic feedback

    CERN Document Server

    Mak, Julian; Hughes, D W

    2016-01-01

    In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses --- and thus the degree of disruption --- that depends on the strength of the background magnetic field (measured by the parameter $M$, a ratio between the Alfv\\'en speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number $\\mbox{Rm}$). The resulting estimate suggests that significant disruption occurs when $M^{2}\\mbox{Rm} = O(1)$. To test our prediction, we analyse direct numerical simulations of vortices generated by the breakup of unstable shear flo...

  2. Mount Meager landslide flow history

    Science.gov (United States)

    Moretti, Laurent; Allstadt, Kate; Mangeney, Anne; Yann, capdeville; Eleonore, Stutzmann; François, Bouchut

    2014-05-01

    Gravitational instabilities, such as landslides, avalanches, or debris flows, play a key role in erosional processes and represent one of the major natural hazards in mountainous, coastal, and volcanic regions. Despite the great amount of field, experimental and numerical work devoted to this problem, the understanding of the physical processes at work in gravitational flows is still an open issue, in particular due to the lack of observations relevant to their dynamics. In this context, the seismic signal generated by gravitational flows is a unique opportunity to obtain information on their dynamics. Indeed, as shown recently by Favreau et al., (2010), simulation of the seismic signal generated by landslides makes it possible to discriminate different flow scenarios and estimate rheological parameters. Global and regional seismic networks continuously record gravitational instabilities, so this new method will help gather new data on landslide behavior, particularly when combined with a landslide numerical modeling. Using this approach, we focus on the 6 August 2010 Mount Meager landslide: a 48.5 Mm3 rockslide-debris flow occurring in the Mount Meager Volcanic complex in the Southwest British Columbia. This landslide traveled over 12.7 km in just a few minutes time and was recorded by 25 broadband seismic stations. The time history of the forces exerted by the landslide on the ground surface was inverted from the seismic waveforms. The forcing history revealed the occurrence of a complicated initiation and showed features attributable to flow over a complicated path that included two sharp turns and runup at a valley wall barrier. To reliably interpret this signal and thus obtain detailed information about the dynamics of the landslide, we ran simulations for a range of scenarios by varying the coefficient of friction and the number, mass, and timings of subevents and compute the forces generated in each case. By comparing the results of these simulations to the

  3. Internato Longitudinal

    Directory of Open Access Journals (Sweden)

    Marcelo Marcos Piva Demarzo

    Full Text Available O internato médico tem gerado recorrente debate frente às transformações curriculares em andamento no País. A despeito das discussões, um modelo de internato consonante com essas mudanças ainda não foi consistentemente delineado. Neste ensaio, trazemos uma proposta de matriz estruturante para o internato médico. Propomos que o internato médico seja realizado durante os seis anos do curso, de forma longitudinal, tendo como eixo estruturante a clínica da Atenção Básica (AB. Esse modelo de "internato longitudinal" prevê a introdução progressiva na prática clínica, iniciando-se pela AB nos dois primeiros anos, acrescentando-se progressivamente os ambulatórios de especialidades, os estágios hospitalares e demais atividades práticas, alcançando-se, dessa forma, o rol de diversidade e complexidade previsto para o egresso da escola médica.

  4. Vortex Dynamics in Anisotropic Superconductors

    Science.gov (United States)

    Steel, David Gordon

    Measurements of the ac screening response and resistance of superconducting Bi_2Sr _2CaCu_2O _8 (BSCCO) crystals have been used to probe the dynamics of the magnetic flux lines within the mixed state as a function of frequency, temperature, and applied dc field. For the particular range of temperature and magnetic field in which measurements were made, the systematic behavior of the observed dissipation peak in the screening response is consistent with electromagnetic skin size effects rather than a phase transition. According to microscopic theories of the interaction between the flux lines and a driving ac field, such a skin size effect is expected for the case when the vortex motion is diffusive in nature. However, diffusive motion is inconsistent with simple activation models that use a single value for the pinning energy (derived from direct measurement of the dc resistance). This contradiction suggests a distribution of pinning energies within the sample. Interlayer vortex decoupling has been directly observed as a function of temperature and applied magnetic field using electronic transport perpendicular to the layers in synthetic amorphous MoGe/Ge multilayer samples. Perpendicular transport has been shown to be a far more sensitive measure of the phase coupling between layers than in-plane properties. Below the decoupling temperature T_{D} the resistivity anisotropy collapses and striking nonlinearities appear in the perpendicular current-voltage behavior, which are not observed in parallel transport. A crossover in behavior is also observed at a field H _{x}, in accordance with theory. The data suggest the presence of a phase transition into a state with finite in-plane resistivity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  5. Prediction and control of vortex-dominated and vortex-wake flows

    Science.gov (United States)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  6. Scattering of a vortex pair by a single quantum vortex in a Bose-Einstein condensate

    Science.gov (United States)

    Smirnov, L. A.; Smirnov, A. I.; Mironov, V. A.

    2016-01-01

    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose-Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex-antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used to classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross-Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex-antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).

  7. The effect of the Taylor-Grtler vortex on Reynolds stress transport in the rotating turbulent channel flow

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We investigates the effect of Taylor-Grtler vortex on the Reynolds stress transport in the rotating turbulent channel flow by direct numerical simulation. The Taylor-Grtler vortex is detected by longitudinal average of velocity fluctuation in the channel and defined as TG fluctuation. It has been found that turbulent diffusion is significant in the Reynolds stress transportation at the suction side of rotating turbulent channel in contrast with the turbulent channel flow without rotation and Taylor-Grtler vortex plays an important role in the turbulent diffusion in Reynolds stress transport. The paper focuses on the low and moderate rotation number, but the effect of the rotation number on the Reynolds stress transport is also reported.

  8. The Life of a Vortex Knot

    CERN Document Server

    Kleckner, Dustin; Irvine, William T M

    2013-01-01

    The idea that the knottedness (hydrodynamic Helicity) of a fluid flow is conserved has a long history in fluid mechanics. The quintessential example of a knotted flow is a knotted vortex filament, however, owing to experimental difficulties, it has not been possible until recently to directly generate knotted vortices in real fluids. Using 3D printed hydrofoils and high-speed laser scanning tomography, we generate vortex knots and links and measure their subsequent evolution. In both cases, we find that the vortices deform and stretch until a series of vortex reconnections occurs, eventually resulting several disjoint vortex rings. This article accompanies a fluid dynamics video entered into the Gallery of Fluid Motion at the 66th Annual Meeting of the APS Division of Fluid Dynamics.

  9. Vortex Shedding From a Flexible Hydrofoil

    OpenAIRE

    Dreyer, Matthieu; Farhat, Mohamed

    2011-01-01

    Video of vortex shedding in the wake of a Naca0009 hydrofoil made of polyoxymethylene type C (POM C). This video was submitted as part of the Gallery of Fluid Motion 2011 which is showcase of fluid dynamics videos.

  10. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  11. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  12. Free wake models for vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K. [Technical Univ. Berlin, Aerospace Inst. (Germany)

    1997-08-01

    The blade element method works fast and good. For some problems (rotor shapes or flow conditions) it could be better to use vortex methods. Different methods for calculating a wake geometry will be presented. (au)

  13. 'Optimal' vortex rings and aquatic propulsion mechanisms

    Science.gov (United States)

    Linden, Paul; Turner, Stewart

    2004-11-01

    Fish swim by flapping their tail and other fins. Other sea creatures, such as squid and salps, eject fluid intermittently as a jet. We discuss the fluid mechanics behind these propulsion mechanisms, and show that these animals produce optimal vortex rings, which give the maximum thrust for a given energy input. We show fish optimise both their steady swimming and their ability to accelerate and turn by producing an individual optimal ring with each flap of the tail or fin. Salps produce vortex rings directly by ejecting a volume of fluid through a rear orifice, and these are also optimal. An important implication of this paper is that the repetition of vortex production is not necessary for an individual vortex to have the `optimal' characteristics.

  14. Experiments with vortex rings in air

    Science.gov (United States)

    Hernández, R. H.; Cibert, B.; Béchet, C.

    2006-09-01

    We report quantitative experimental measurements of the instability of vortex rings generated in air. Vortex rings are created by pushing air through the circular orifice of a cylindrical cavity with a flat piston driven by a loudspeaker. Hot-wire anemometry provides accurate measurements of the velocity profile at all stages of the ring formation including stable and unstable rings. Flow visualization using a laser light sheet shows that the initially undisturbed vortex ring is progressively deformed in the azimuthal direction giving rise to a wavy azimuthal and periodic pattern in the circumference of the ring. The wavy pattern is steady, i.e., it does not rotate or translate during the ring's motion. However as the vortex motion progresses in the axial direction, the displaced portions of the ring are convected away from the initial undisturbed position and the wavy pattern grows with local Reynolds number.

  15. Cockpit-based Wake Vortex Visualization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To prevent aircraft accidents due to wake vortex hazards, FAA procedures specify the minimum separation required between different categories of aircraft. However, a...

  16. Development of gas pressure vortex regulator

    Science.gov (United States)

    Uss, A. Yu.; Chernyshyov, A. V.; Krylov, V. I.

    2017-08-01

    The present paper describes the applications of vortex regulators and the current state of the issue on the use and development of such devices. A patent review has been carried out. Automatic control systems using a vortex regulator are considered. Based on the analysis and preliminary numerical calculation of gas flow in the working cavity of the regulator, a new design of a vortex gas pressure regulator has been developed. An experimental sample of the device was made using additive technologies and a number of tests were carried out. The results of experimental studies confirmed the adequacy of the created mathematical model. Based on further numerical studies a new design of a vortex regulator with a distributed feed of the process control flow as well as with the regulated swirl of the supply and control process flows has been developed.

  17. Investigation of aircraft vortex wake structure

    Science.gov (United States)

    Baranov, N. A.; Turchak, L. I.

    2014-11-01

    In this work we analyze the mechanisms of formation of the vortex wake structure of aircraft with different wing shape in the plan flying close to or away from the underlying surface cleaned or released mechanization wing.

  18. Interaction and merging of vortex filaments

    Science.gov (United States)

    Liu, C. H.; Weston, R. P.; Ishii, K.; Ting, L.; Visintainer, J. A.

    1988-01-01

    The asymptotic solutions of Navier-Stokes equations for vortex filaments of finite strength with small effective vortical cores are summarized with special emphasis placed on the physical meaning and the practical limit to the applicability of the asymptotic solution. Finite-difference solutions of Navier-Stokes equations for the marging of the filament(s) are described with a focus on the development of the approximate boundary conditions for the computational domain. An efficiency study employing a model problem is used to assess the advantages of the present approximate boundary condition method over previously used techniques. Applications of the present method are presented for the motion and decay of a 3:1 elliptic vortex ring, and for the merging process of a pair of coaxial vortex rings. A numerical procedure for the problem of local merging of vortex filaments, which requires the asymptotic analysis as well as the numerical Navier-Stokes solver, is also presented.

  19. Development of Magnetorheological Engine Mount Test Rig

    Directory of Open Access Journals (Sweden)

    Md Yunos Mohd Razali

    2017-01-01

    Full Text Available Ride comfort is an important factor in any road vehicle performance. Nonetheless, passenger ride comfort is sometimes affected by the vibrations resulting from the road irregularities. Vehicle ride comfort is also often compromised by engine vibration. Engine mount is one of the devices which act as vibration isolator from unwanted vibration from engine to the driver and passengers. This paper explains the development of the test rig used for laboratory testing of Magnetorheological (MR engine mount characterization. MR engine mount was developed to investigate the vibration isolation process. An engine mount test machine was designed to measure the displacement, relative velocity and damper force with respect to current supply to characterize the hysteresis behavior of the damper and as force tracking control of the MR engine mount.

  20. Mitigating the hazards of Mount Rainier

    Science.gov (United States)

    Swanson, Don; Malone, Steve; Casadevall, Tom

    Mount Rainier volcano is an ever-present reminder to the more than three million inhabitants of the Puget Sound Lowland of the potentially hazardous geologic setting of the Pacific Northwest. Increased public awareness resulting from the recent eruptions of Mount St. Helens, Nevado del Ruiz, and Mount Pinatubo, among others, and the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI)'s designation of Mount Rainier as a Decade Volcano [Swanson et al., 1992] afford an opportunity to improve our knowledge about Mount Rainier with the goal of reducing these hazards. A workshop to discuss research needs and strategies, cosponsored by the National Academy of Sciences, the U.S. Geological Survey, and the University of Washington, was held at the University of Washington in Seattle from September 18 to 20, 1992. About seventy-five Earth scientists, social scientists, and representatives of several companies and government agencies attended.

  1. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  2. Structure of a Steady Bathtub Vortex

    Science.gov (United States)

    Andersen, Anders; Bøhling, Lasse; Fabre, David

    2010-11-01

    Bathtub vortex flows constitute an important class of concentrated vortex flows which are characterised by intense axial down-flow and stress free surface. We use direct numerical simulations to explore the flow structure of a steady bathtub vortex in a cylindrical tank with a central drain-hole. We find that the qualitative structure of the meridional flow does not depend on the radial Reynolds number, whereas we observe a weak overall rotation at low radial Reynolds number and a concentrated vortex above the drain-hole at high radial Reynolds number. We present a simple analytical model which shows the same qualitative dependence on the radial Reynolds number as the simulations and which compares favourably with the results for the radial velocity and the azimuthal velocity at the surface. Finally, we describe the height dependence of the radius of the vortex core and the maximum of the azimuthal velocity at high radial Reynolds number, and we show that the data on the radius of the vortex core and the maximum of the azimuthal velocity as functions of height collapse on single curves by appropriate scaling.

  3. Application of vortex method; Uzuho no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Tsukiji, T. [Ashikaga Inst. of Technology, Tochigi (Japan); Shimizu, S. [Hiroshima Univ., Hiroshima (Japan). Faculty of Engineering

    1995-07-15

    Basic jets such as two dimensional free jet, impact jet, axisymmetric circular free jet, and jet flowing out from a nozzle equipped with a collar at the outlet, as well as flow in such valves as disc valves, spool valves, and poppet valves are taken up to discuss their applications using the vortex method, and the results of studies made using vortex method on the analysis of jet and conditions inside valves are reported. The state of the development of large scale vortex structure in the shear layer can be simulated comparatively simply by using the vortex method. The effects of the radius and the lift of a valve on the fluid outlet angle of jet and on the discharge coefficient of orifice are analyzed. Although the shape of the spool valve near the throttle is very complicated, simplified models are used for numerical analysis. An example of calculated result in the case where the spool reciprocates is introduced. Actual vibrating phenomena can be simulated well by the vortex method for minute vibration of the poppet caused by the discharge of lump vortex. 17 refs., 16 figs., 1 tab.

  4. Boundary Layers in Laminar Vortex Flows.

    Science.gov (United States)

    Baker, Glenn Leslie

    A detailed experimental study of the flow in an intense, laminar, axisymmetric vortex has been conducted in the Purdue Tornado Vortex Simulator. The complicated nature of the flow in the boundary layer of laboratory vortices and presumably on that encountered in full-scale tornadoes has been examined. After completing a number of modifications to the existing facility to improve the quality of the flow in the simulator, hot-film anemometry was employed for making velocity-component and turbulence-intensity measurements of both the free-stream and boundary layer portions of the flow. The measurements represent the first experimental boundary layer investigation of a well-defined vortex flow to appear in the literature. These results were compared with recent theoretical work by Burggraf, Stewartson and Belcher (1971) and with an exact similarity solution for line-sink boundary layers developed by the author. A comparison is also made with the numerical simulation of Wilson (1981) in which the boundary conditions were matched to those of the present experimental investigation. Expressions for the vortex core radius, the maximum tangential velocity and the maximum pressure drop are given in terms of dimensionless modeling parameters. References. Burggraf, O. R., K. Stewartson and R. Belcher, Boundary layer. induced by a potential vortex. Phys. Fluids 14, 1821-1833 (1971). Wilson, T., M. S. thesis, Vortex Boundary Layer Dynamics, Univ. Calif. Davis (1981).

  5. Drill cuttings mount formation study

    Science.gov (United States)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  6. Numerical Study of Mechanism of U-shaped Vortex Formation

    CERN Document Server

    Lu, Ping; Liu, Chaoqun

    2014-01-01

    This paper illustrates the mechanism of U-shaped vortex formation which is found both by experiment and DNS. The main goal of this paper is to explain how the U-shaped vortex is formed and further develops. According to the results obtained by our direct numerical simulation with high order accuracy, the U-shaped vortex is part of the coherent vortex structure and is actually the tertiary streamwise vortices induced by the secondary vortices. The new finding is quite different from existing theories which describe that the U-shaped vortex is newly formed as the head of young turbulence spot and finally break down to small pieces. In addition, we find that the U-shaped vortex has the same vorticity sign as the original {\\lambda}-shaped vortex tube legs and serves as a second neck to supply vorticity to the ringlike vortex when the original vortex tube is stretched and multiple rings are generated.

  7. Experimental Investigation of wing-tip vortex evolution in turbulence

    Science.gov (United States)

    Bailey, Sean; Ghimire, Hari

    2016-11-01

    Towing tank experiments were conducted to examine the evolution of a wing-tip vortex in grid-generated turbulence. Measurements using particle image velocimetry (PIV) were conducted of the velocity field generated by towing a semi-span symmetric wing oriented at 8 degree angle of attack. Turbulence of different kinetic energy and length scales was produced by simultaneously towing grids of different mesh sizes upstream of the wing. Results showed that wing-tip vortex wandering increased with the increase in turbulence kinetic energy, ultimately leading to spontaneous collapse of the vortex. During this process, a measurable diffusion of overall vortex circulation was observed, with the rate of diffusion leading to the collapse of the vortex dependent on the turbulence intensity. Interestingly, the radius of the vortex core remained largely unchanged during the diffusion process, Evidence suggests that the breakdown of vortex was enhanced by entrainment of fluid inside vortex core due to vortex stripping in presence of turbulence.

  8. Vortex sound in confined flows

    Science.gov (United States)

    Hofmans, Gerardus Carolus Johannus

    The interaction of vortex structures with the acoustic velocity field is prerequisite for the production or absorption of acoustic energy. When the source region in which this interaction occurs is much smaller than the wavelength of the acoustic wave, it is possible to neglect wave propagation in the source region itself. Such a source region is called 'compact' and it results in a simplified description of the acoustic source. We have restricted ourselves to compact source regions. Three relevant applications have been studied: speech modelling, damping of acoustic waves by means of diaphragms, and the prediction of flow-induced resonances in bifurcated pipe systems with T-shaped junctions. Experimental as well as numerical work has been carried out for rigid in vitro models of the vocal folds. It was found that it is possible to use a simplified quasi- steady model, which describes the boundary-layer flow in the glottis, to reasonably predict the separation point during a part of one cycle of the vocal-fold movement. This results in a reasonable prediction of the source of sound in voiced speech. Furthermore, it was found that the instability of the jet, that is formed downstream of the glottis, can be a significant source of broad-band sound. A diaphragm used as a constriction in a pipe is a common element in mufflers. This configuration is investigated theoretically, numerically, and experimentally. Results of the quasi-steady flow model and of the numerical calculations are in good agreement with results of experiments. Theory also correctly describes the limit of high frequencies. For the intermediate frequencies we found some deviation between theory and experiments, which is not yet fully understood. The flow through T-joints, with sharp edges, has been numerically investigated as a function of the acoustic amplitude, the Strouhal number, and the flow configuration. In the limit of low frequencies the acoustic source in a T-joint can be described by means

  9. Experimental and theoretical analysis of vortex breakdown in the wake of the 25∘ Ahmed body

    Science.gov (United States)

    Jermann, Cyril; Meliga, Philippe; Pujals, Gregory; Gallaire, Francois; Serre, Eric

    2014-11-01

    We study experimentally and theoretically the wake of the 25circ; Ahmed body, considered a suitable test-case to reproduce the two counter-rotating longitudinal vortices widely encountered in automotive aerodynamics. The three-dimensional experimental mean flow is reconstructed at high Reynolds number (Re = 2 . 8 ×106) from a series of cross-flow time-averaged planes acquired with a moving automated Stereo-PIV system. We observe a sharp decay of the axial velocity and vorticity in the near-wake, 0 . 5 times the projected length of the slanted surface downstream the square back, where the streamwise vortices is subjected to a strong adverse pressure gradient and the turbulent kinetic energy exhibits a peak in the vortex core. A stability analysis of the experimental velocity shows that the flow undergoes vortex breakdown roughly at the same position, through a transition from supercritical (x 0 . 5) conditions and the accumulation of upstream propagating axisymmetric waves.

  10. An improved loopless mounting method for cryocrystallography

    Science.gov (United States)

    Qi, Jian-Xun; Jiang, Fan

    2010-01-01

    Based on a recent loopless mounting method, a simplified loopless and bufferless crystal mounting method is developed for macromolecular crystallography. This simplified crystal mounting system is composed of the following components: a home-made glass capillary, a brass seat for holding the glass capillary, a flow regulator, and a vacuum pump for evacuation. Compared with the currently prevalent loop mounting method, this simplified method has almost the same mounting procedure and thus is compatible with the current automated crystal mounting system. The advantages of this method include higher signal-to-noise ratio, more accurate measurement, more rapid flash cooling, less x-ray absorption and thus less radiation damage to the crystal. This method can be extended to the flash-freeing of a crystal without or with soaking it in a lower concentration of cryoprotectant, thus it may be the best option for data collection in the absence of suitable cryoprotectant. Therefore, it is suggested that this mounting method should be further improved and extensively applied to cryocrystallographic experiments.

  11. Modeling of Wind Turbine Gearbox Mounting

    Directory of Open Access Journals (Sweden)

    Morten K. Ebbesen

    2011-10-01

    Full Text Available In this paper three bushing models are evaluated to find a best practice in modeling the mounting of wind turbine gearboxes. Parameter identification on measurements has been used to determine the bushing parameters for dynamic simulation of a gearbox including main shaft. The stiffness of the main components of the gearbox has been calculated. The torsional stiffness of the main shaft, gearbox and the mounting of the gearbox are of same order of magnitude, and eigenfrequency analysis clearly reveals that the stiffness of the gearbox mounting is of importance when modeling full wind turbine drivetrains.

  12. Effects of surface anisotropy on magnetic vortex core

    Energy Technology Data Exchange (ETDEWEB)

    Pylypovskyi, Oleksandr V., E-mail: engraver@univ.net.ua [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Sheka, Denis D. [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Kravchuk, Volodymyr P.; Gaididei, Yuri [Institute for Theoretical Physics, 03143 Kiev (Ukraine)

    2014-06-01

    The vortex core shape in the three dimensional Heisenberg magnet is essentially influenced by a surface anisotropy. We predict that depending of the surface anisotropy type there appears barrel- or pillow-shaped deformation of the vortex core along the magnet thickness. Our theoretical study is well confirmed by spin–lattice simulations. - Highlights: • The shape of magnetic vortex core is essentially influenced by SA (surface anisotropy). • We predict barrel- or pillow-shaped deformation of the vortex depending on SA. • The variational approach fully describes the vortex core deformation. • We performed spin–lattice simulations to detect SA influence on the vortex core.

  13. Effect of Dzyaloshinskii–Moriya interaction on magnetic vortex

    Directory of Open Access Journals (Sweden)

    Y. M. Luo

    2014-04-01

    Full Text Available The effect of the Dzyaloshinskii–Moriya (DM interaction on the vortex in magnetic microdisk was investigated by micro-magnetic simulation based on the Landau–Lifshitz–Gilbert equation. Our results show that the DM interaction modifies the size of the vortex core, and also induces an out-of-plane magnetization component at the edge and inside the disk. The DM interaction can destabilizes one vortex handedness, generate a bias field to the vortex core and couple the vortex polarity and chirality. This DM-interaction-induced coupling can therefore provide a new way to control vortex polarity and chirality.

  14. Vortex loops entry into type-II superconductors

    CERN Document Server

    Samokhvalov, A V

    1996-01-01

    The magnetic field distribution, the magnetic flux, and the free energy of an Abrikosov vortex loop near a flat surface of type--II superconductors are calculated in the London approximation. The shape of such a vortex line is a semicircle of arbitrary radius. The interaction of the vortex half--ring and an external homogeneous magnetic field applied along the surface is studied. The magnitude of the energy barrier against the vortex expansion into superconductor is found. The possibilities of formation of an equilibrium vortex line determined by the structure of the applied magnetic field by creating the expanding vortex loops near the surface of type--II superconductor are discussed.

  15. A Fresh Look at Longitudinal Standing Waves on a Spring

    Science.gov (United States)

    Rutherford, Casey

    2013-01-01

    Transverse standing waves produced on a string, as shown in Fig. 1, are a common demonstration of standing wave patterns that have nodes at both ends. Longitudinal standing waves can be produced on a helical spring that is mounted vertically and attached to a speaker, as shown in Fig. 2, and used to produce both node-node (NN) and node-antinode…

  16. A Fresh Look at Longitudinal Standing Waves on a Spring

    Science.gov (United States)

    Rutherford, Casey

    2013-01-01

    Transverse standing waves produced on a string, as shown in Fig. 1, are a common demonstration of standing wave patterns that have nodes at both ends. Longitudinal standing waves can be produced on a helical spring that is mounted vertically and attached to a speaker, as shown in Fig. 2, and used to produce both node-node (NN) and node-antinode…

  17. Multiply-interacting Vortex Streets

    CERN Document Server

    Oskouei, Babak G; Newton, Paul K

    2010-01-01

    We investigate the behavior of an infinite array of (reverse) von K'arm'an streets. Our primary motivation is to model the wake dynamics in large fish schools. We ignore the fish and focus on the dynamic interaction of multiple wakes where each wake is modeled as a reverse von K'arm'an street. There exist configurations where the infinite array of vortex streets is in relative equilibrium, that is, the streets move together with the same translational velocity. We examine the topology of the streamline patterns in a frame moving with the same translational velocity as the streets which lends insight into fluid transport through the mid-wake region. Fluid is advected along different paths depending on the distance separating two adjacent streets. Generally, when the distance between the streets is large enough, each street behaves as a single von K'arm'an street and fluid moves globally between two adjacent streets. When the streets get closer to each other, the number of streets that enter into partnership in...

  18. Effect of a wing-tip mounted pusher turboprop on the aerodynamic characteristics of a semi-span wing

    Science.gov (United States)

    Patterson, J. C., Jr.; Bartlett, G. R.

    1985-01-01

    An exploratory investigation has been conducted at the NASA Langley Research Center to determine the installed performance of a wing tip-mounted pusher turboprop. Tests were conducted using a semispan model having an unswept, untapered wing with a air-driven motor located on the tip of the wing, with an SR-2 design high speed propeller installed on the rear shaft of the motor. All tests were conducted at a Mach number of 0.70, at angles of attack of approximately -2 to +4 deg, and at a Reynolds number of 3.82 million based on the wing chord of 13 inches. The data indicate that, as a result of locating the propeller behind the wing trailing edge, at the wingtip, in the cross flow of the tip vortex, it is possible to recover part of the vortex energy as an increase in propeller thrust and, therefore, a reduction in the lift-induced drag as well.

  19. Vortex lift augmentation by suction on a 60 deg swept Gothic wing

    Science.gov (United States)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1982-01-01

    An experimental investigation was conducted in the Langley high-speed 7- by 10-foot wind tunnel to determine the aerodynamic performance of suction applied near the wing tips above the trailing edge of a 60 deg swept Gothic wing. Moveable suction inlets were symmetrically mounted in the proximity of the trailing edge, and the amount of suction was varied to maximize wing lift. Tests were conducted at Mach 0.15, 0.30, and 0.45, and the angle of attack was varied from -4 to 50 deg. The suction augmentation increases the lift coefficient over the entire range of angle of attack. The lift improvement exceeds the unaugmented wing lift by over 20%. Moreover, the augmented lift exceeds the lift predicted by vortex lattice theory to 30 deg angle of attack. Suction augmentation is postulated to strengthen the vortex system by increasing its velocity and making it more concentrated. This causes the vortex breakdown to be delayed to a higher angle of attack

  20. Vortex Formation, Shedding and Energy Harvesting from a Cyber-Physical Pitching Flat Plate

    Science.gov (United States)

    Onoue, Kyohei; Breuer, Kenneth

    2014-11-01

    We examine the dynamics and energy harvesting capabilities of an elastically mounted flat plate undergoing large amplitude limit cycle oscillations in a uniform flow. All experiments are performed using a cyber-physical system, wherein the structural inertia, stiffness and damping are numerically simulated using a position-following feedback algorithm. The cyber-physical system also allows for implementation of nonlinear spring and damping coefficients, which control the plate dynamics and subsequent energy harvesting characteristics. Analysis of the plate kinematics and the fluid flow over the plate and in the wake (measured using PIV) are used to understand the interplay between structural motion and vortex formation at the sharp leading and trailing edges of the plate. By varying the structural properties of the system we systematically analyze the formation, strength, stability and separation of the leading edge vortex, as well as the dependence on kinematic parameters and Reynolds number. Connections to previous results on vortex formation time and bluff body aerodynamics are discussed. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  1. Study of control effects of vortex generators on a supercritical wing

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flows around vortex generators(VGs),which serve as one of the important flow control methods,are investigated by solving Reynolds-averaged Navier-Stokes(RANS)equations.The influences on the main flow of VGs are intended to explore.Firstly, the flow around a single VG on a flat plane is computed to validate the schemes and to acquire basic knowledge of this kind of flow.Secondly,transonic flow past a standard model,named by ONERA-M6 wing,is predicted to investigate the flow features of shockwave/boundary-layer interactions(SWBLI).Thirdly,the effects of a row of VGs mounted about 25%local chord on a supercritical wing are analyzed in transonic condition with strong SWBLI.Lastly,VGs are mounted more upwind(about 3.5%local chord)to explore the effects at low speed and high incidence condition.The numerical results show that seven VGs can effectively suppress the separations behind the strong SWBLI and decrease spanwise flow and wing-tip vortex in transonic condition.VGs also can decrease the large scope of separation over the wing at low speed with high angle of attack.

  2. Analysis of Vortex Line Cutting and Reconnection by a Blade

    Science.gov (United States)

    Saunders, Curtis; Marshall, Jeffrey

    2015-11-01

    The essence of vortex reconnection involves the cutting of vortex lines originating from one region and reconnecting to vortex lines originating from another region via the diffusion-regulated annihilation of vorticity. Vortex cutting by a blade is a special case of the more general class of vortex reconnection problems, with an important difference being that vorticity is generated at the reconnection site. In this study, a series of Navier-Stokes simulations of orthogonal vortex cutting by a blade with different values of vortex strength are reported. The three phases of vortex reconnection identified in the literature are found to have counterparts for the vortex cutting problem. However numerous differences between the mechanics of vortex cutting and reconnection within each phase are discussed. In addition, comparisons are made between the temporal changes of the maximum and minimum components of vorticity for vortices of differing strength but still within the vortex cutting regime. The vortex cutting results are also compared with predictions of a simple analytical model that incorporates the key elements of a stretched vorticity field interacting with a solid surface, which is representative of the vortex cutting mechanism near the blade leading edge. Funded by National Science Foundation project DGE-1144388.

  3. 1980 Mount Saint Helens, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An earthquake occurred at 15 32 UT, only seconds before the explosion that began the eruption of Mount St. Helens volcano. This eruption and blast blew off the top...

  4. Mount Pinatubo, Philippines: June 1991 Eruptions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Mount Pinatubo is an andesitic island arc volcano, located on the southern Luzon Island, Philippines. Prior to 1991 it had been dormant for more than 635 years. On...

  5. Mount Sinai Hospital's journey into TQM.

    Science.gov (United States)

    Freedman, T; Mapa, J; Droppo, L

    1994-01-01

    Toronto's Mount Sinai Hospital commenced its total quality management journey in the late 1980s as a complement to its extensive experience in quality assurance. This article focuses on Phase I--the process of setting up teams. This phase includes project nomination and selection; team membership selection and education; and the quality improvement process. The authors share the lessons they learned during the course of the journey and present the directions that TQM at Mount Sinai will take in the future.

  6. History and hazards of Mount Rainier, Washington

    Science.gov (United States)

    Sisson, Thomas W.

    1995-01-01

    Mount Rainier is an active volcano that first erupted about half a million years ago. Because of Rainier's great height (14,410 feet above sea level) and northerly location, glaciers have cut deeply into its lavas, making it appear deceptively older than it actually is. Mount Rainier is known to have erupted as recently as in the 1840s, and large eruptions took place as recently as about 1,000 and 2,300 years ago.

  7. Mount Rainier: living with perilous beauty

    Science.gov (United States)

    Scott, Kevin M.; Wolfe, Edward W.; Driedger, Carolyn L.

    1998-01-01

    Mount Rainier is an active volcano reaching more than 2.7 miles (14,410 feet) above sea level. Its majestic edifice looms over expanding suburbs in the valleys that lead to nearby Puget Sound. USGS research over the last several decades indicates that Mount Rainier has been the source of many volcanic mudflows (lahars) that buried areas now densely populated. Now the USGS is working cooperatively with local communities to help people live more safely with the volcano.

  8. Vortex-Based Aero- and Hydrodynamic Estimation

    Science.gov (United States)

    Hemati, Maziar Sam

    Flow control strategies often require knowledge of unmeasurable quantities, thus presenting a need to reconstruct flow states from measurable ones. In this thesis, the modeling, simulation, and estimator design aspects of flow reconstruction are considered. First, a vortex-based aero- and hydrodynamic estimation paradigm is developed to design a wake sensing algorithm for aircraft formation flight missions. The method assimilates wing distributed pressure measurements with a vortex-based wake model to better predict the state of the flow. The study compares Kalman-type algorithms with particle filtering algorithms, demonstrating that the vortex nonlinearities require particle filters to yield adequate performance. Furthermore, the observability structure of the wake is shown to have a negative impact on filter performance regardless of the algorithm applied. It is demonstrated that relative motions can alleviate the filter divergence issues associated with this observability structure. In addition to estimator development, the dissertation addresses the need for an efficient unsteady multi-body aerodynamics testbed for estimator and controller validation studies. A pure vortex particle implementation of a vortex panel-particle method is developed to satisfy this need. The numerical method is demonstrated on the impulsive startup of a flat plate as well as the impulsive startup of a multi-wing formation. It is clear, from these validation studies, that the method is able to accommodate the unsteady wake effects that arise in formation flight missions. Lastly, successful vortex-based estimation is highly dependent on the reliability of the low-order vortex model used in representing the flow of interest. The present treatise establishes a systematic framework for vortex model improvement, grounded in optimal control theory and the calculus of variations. By minimizing model predicted errors with respect to empirical data, the shortcomings of the baseline vortex model

  9. Vortex-based line beam optical tweezers

    Science.gov (United States)

    Cheng, Shubo; Tao, Shaohua

    2016-10-01

    A vortex-based line beam, which has a straight-line shape of intensity and possesses phase gradient along the line trajectory is developed and applied for optical manipulation in this paper. The intensity and phase distributions of the beam in the imaging plane of the Fourier transform are analytically studied. Simulation results show that the length of the line and phase gradient possessed by a vortex-based line beam are dependent on the topological charge and the azimuthal proportional constant. A superposition of multiple phase-only holograms with elliptical azimuthal phases can be used to generate an array of vortex-based line beams. Optical trapping with the vortex-based line beams has been implemented. Furthermore, the automatic transportation of microparticles along the line trajectory perpendicular to the optical axis is realized with an array of the beams. The generation method for the vortex-based line beam is simple. The beam would have potential applications in fields such as optical trapping, laser machining, and so on.

  10. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O’Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition.

  11. Nonlinear ion acoustic waves scattered by vortexes

    CERN Document Server

    Ohno, Yuji

    2015-01-01

    The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...

  12. Improvement of mount preparations in showing myenteric nerve plexus from intestines of mice

    Institute of Scientific and Technical Information of China (English)

    王红; 张远强; 孙岚; 王春杨; 尹岭

    2003-01-01

    Objective: The whole mount preparations of digestive tract is an effective experimental way to study the appearance and distribution of nerve plexus in digestive tract. Although myentric nerve plexus preparations technique was reported very early. But we have done experiment over and over during our research work in order to improve this traditional method and to meet the needs of our research work, we made some progresses in regular mount preparations after many experiments, which helped offer better situation in observing myentric nerve plexus. Methods: Five healthy male adult Kunming mice (20-30 g in weight) were used in this study. After intraperitoneal injection of muscle relaxant, with dislocation of cervical vertebra method, the abdominal cavity was exposed through abdominal median incision. After several steps of mount preparations the mucous layer and longitudinal muscle layer mount preparations with myentric nerve plexus were stripped under anatomical microscope. Immunohistochemical staining was also used in our study. Results: The mount preparation samples with myentric nerve plexus from intestines of mice showed positive SP immunoreaction. The positive cells were dark brown. Many of the cytons appeared circular and oval, while some appeared triangular or irregular. Conclusion: Our improved method is really a good method to show enteric nerve plexus. The method has many advantages and is particularly applied to small animals such as Kunming mice and BALB/c mice, weighing from 20 g to 30 g.

  13. Shaping the focal field of radially/azimuthally polarized phase vortex with Zernike polynomials

    CERN Document Server

    Wei, Lei

    2016-01-01

    The focal field properties of radially/azimuthally polarized Zernike polynomials are studied. A method to design the pupil field in order to shape the focal field of radially or azimuthally polarized phase vortex is introduced. With this method, we are able to obtain a pupil field to achieve a longitudinally polarized hollow spot with a depth of focus up to $12\\lambda$ and $0.14\\lambda$ lateral resolution for a optical system with numerical aperture 0.99; A pupil field to generate 8 circularly polarized focal spots along the optical axis is also obtained with this method.

  14. Optical vortex array in spatially varying lattice

    CERN Document Server

    Kapoor, Amit; Senthilkumaran, P; Joseph, Joby

    2015-01-01

    We present an experimental method based on a modified multiple beam interference approach to generate an optical vortex array arranged in a spatially varying lattice. This method involves two steps which are: numerical synthesis of a consistent phase mask by using two-dimensional integrated phase gradient calculations and experimental implementation of produced phase mask by utilizing a phase only spatial light modulator in an optical 4f Fourier filtering setup. This method enables an independent variation of the orientation and period of the vortex lattice. As working examples, we provide the experimental demonstration of various spatially variant optical vortex lattices. We further confirm the existence of optical vortices by formation of fork fringes. Such lattices may find applications in size dependent trapping, sorting, manipulation and photonic crystals.

  15. Scattering by a draining bathtub vortex

    Science.gov (United States)

    Dolan, Sam R.; Oliveira, Ednilton S.

    2013-06-01

    We present an analysis of scattering by a fluid-mechanical “black hole analogue,” known as the draining bathtub vortex: a two-dimensional flow that possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular “orbiting” oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulas for both effects and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex and highlight the prospects for experimental investigation.

  16. Scattering by a draining bathtub vortex

    CERN Document Server

    Dolan, Sam R

    2013-01-01

    We present an analysis of scattering by a fluid-mechanical `black hole analogue', known as the draining bathtub (DBT) vortex: a two-dimensional flow which possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular `orbiting' oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulae for both effects, and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex, and highlight the prospects for experimental investigation.

  17. Alternate powers in Serrin's swirling vortex solutions

    CERN Document Server

    Bělík, Pavel; Scholz, Kurt; Shvartsman, Mikhail M

    2012-01-01

    We consider a modification of the fluid flow model for a swirling vortex developed by J. Serrin, where velocity decreases as the reciprocal of the distance from the vortex axis. Recent studies, based on radar data of selected severe weather events, indicate that the angular momentum in a tornado may not be constant with the radius, and thus suggest a different scaling of the velocity/radial distance dependence. Motivated by this suggestion, we consider Serrin's approach with the assumption that the velocity decreases as the reciprocal of the distance from the vortex axis to the power b with a general b>0. This leads to a boundary-value problem for a system of nonlinear differential equations. We analyze this problem for particular cases, both with nonzero and zero viscosity, discuss the question of existence of solutions, and use numerical techniques to describe those solutions that we cannot obtain analytically.

  18. Holographic Vortex Pair Annihilation in Superfluid Turbulence

    CERN Document Server

    Du, Yiqiang; Tian, Yu; Zhang, Hongbao

    2014-01-01

    We make a first principles investigation of the dynamical evolution of vortex number in a two-dimensional (2D) turbulent superfluid by holography through numerically solving its highly non-trivial gravity dual. With the randomly placed vortices and antivortices prepared as initial states, we find that the temporal evolution of the vortex number can be well fit statistically by two-body decay due to the vortex pair annihilation featured relaxation process remarkably from a very early time on. In particular, subtracted by the universal offset, the power law fit indicates that our holographic turbulent superfluid exhibits an apparently different decay pattern from the superfluid recently experimented in highly oblate Bose-Einstein condensates.

  19. Vortex knots in tangled quantum eigenfunctions

    CERN Document Server

    Taylor, Alexander J

    2016-01-01

    Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic 3-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex 3-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose-Einstein condensates.

  20. Vortex noise from nonrotating cylinders and airfoils

    Science.gov (United States)

    Schlinker, R. H.; Amiet, R. K.; Fink, M. R.

    1976-01-01

    An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.

  1. Convectively driven vortex flows in the Sun

    CERN Document Server

    Bonet, J A; Almeida, J Sanchez; Cabello, I; Domingo, V

    2008-01-01

    We have discovered small whirlpools in the Sun, with a size similar to the terrestrial hurricanes (<~0.5 Mm). The theory of solar convection predicts them, but they had remained elusive so far. The vortex flows are created at the downdrafts where the plasma returns to the solar interior after cooling down, and we detect them because some magnetic bright points (BPs) follow a logarithmic spiral in their way to be engulfed by a downdraft. Our disk center observations show 0.009 vortexes per Mm^2, with a lifetime of the order of 5 min, and with no preferred sense of rotation. They are not evenly spread out over the surface, but they seem to trace the supergranulation and the mesogranulation. These observed properties are strongly biased by our type of measurement, unable to detect vortexes except when they are engulfing magnetic BPs.

  2. Downstream Thermal Evolution of Vortex Cores

    Science.gov (United States)

    Gómez-Barea, A.; Herrada, M. A.; Pérez-Saborid, M.; Barrero, A.

    1999-11-01

    The downstream evolution of the total temperature field in a quasi-incompressible axisymmetric vortex core has been computed. Starting at an initial station (z=0) with velocity profiles of the Burgers type and given temperature distributions, the numerical results of the evolution show that, according to experimental results, the total temperature in the near-axis region decreases substantially due to the work done by pressure and viscous forces together with the effect of both convection and conduction of heat. Depending on the values of the parameters characterizing the initial profiles and on the value of the Prandtl number, the vortex either breaks down or eventually reaches a self-similar regime. The results obtained shed light on the basic physics involved in the thermal separation phenomenon which appears inside Ranque-Hilsch vortex tubes.

  3. Chiral specific electron vortex beam spectroscopy

    CERN Document Server

    Yuan, J; Babiker, M

    2013-01-01

    Electron vortex beams carry well-defined orbital angular momentum (OAM) about the propagation axis. Such beams are thus characterised by chirality features which make them potentially useful as probes of magnetic and other chiral materials. An analysis of the inelastic processes in which electron vortex beams interact with atoms and which involve OAM exchange is outlined, leading to the multipolar selection rules governing this chiral specific electron vortex beam spectroscopy. Our results show clearly that the selection rules are dependent on the dynamical state and location of the atoms involved. In the most favorable scenario, this form of electron spectroscopy can induce magnetic sublevel transitions which are commonly probed using circularly polarized photon beams.

  4. Introduction to vortex filaments in equilibrium

    CERN Document Server

    Andersen, Timothy D

    2014-01-01

    This book presents fundamental concepts and seminal results to the study of vortex filaments in equilibrium. It also presents new discoveries in quasi-2D vortex structures with applications to geophysical fluid dynamics and magnetohydrodynamics in plasmas.  It fills a gap in the vortex statistics literature by simplifying the mathematical introduction to this complex topic, covering numerical methods, and exploring a wide range of applications with numerous examples. The authors have produced an introduction that is clear and easy to read, leading the reader step-by-step into this topical area. Alongside the theoretical concepts and mathematical formulations, interesting applications are discussed. This combination makes the text useful for students and researchers in mathematics and physics.

  5. Vortex ventilation in the laboratory environment.

    Science.gov (United States)

    Meisenzahl, Lawrence R

    2014-01-01

    Assured containment at low airflow has long eluded the users of ventilated enclosures including chemical fume hoods used throughout industry. It is proposed that containment will be enhanced in a hood that has a particular interior shape that causes a natural vortex to occur. The sustained vortex improves the containment of contaminants within the enclosure at low airflow. This hypothesis was tested using the ASHRAE 110 tracer gas test. A known volume of tracer gas was emitted in the hood. A MIRAN SapphIRe infrared spectrometer was used to measure the concentration of tracer gas that escapes the enclosure. The design of the experiment included a written operating procedure, data collection plan, and statistical analysis of the data. A chemical fume hood of traditional design was tested. The hood interior was then reconstructed to enhance the development of a vortex inside the enclosure. The hood was retested using the same method to compare the performance of the traditional interior shape with the enhanced vortex shape. In every aspect, the vortex hood showed significant improvement over the traditional hood design. Use of the Hood Index characterizing the dilution of gas in an air stream as a logarithmic function indicates a causal relationship between containment and volumetric airflow through an enclosure. Use of the vortex effect for ventilated enclosures can provide better protection for the user and lower operating cost for the owner. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a data collection spreadsheet, data analysis, and data collection procedure.].

  6. Vortex lattice theory: A linear algebra approach

    Science.gov (United States)

    Chamoun, George C.

    Vortex lattices are prevalent in a large class of physical settings that are characterized by different mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-based formulation that reduces all vortex lattices into a classic problem in linear algebra for a non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null space of the matrix (i.e., we require nullity( A) > 0) as well as the distribution of its singular values. We demonstrate that this approach provides a good model for various types of vortex lattices, and makes it possible to extract a rich amount of information on them. The contributions of this thesis can be classified into four main points. The first is asymmetric equilibria. A 'Brownian ratchet' construct was used which converged to asymmetric equilibria via a random walk scheme that utilized the smallest singular value of A. Distances between configurations and equilibria were measured using the Frobenius norm ||·||F and 2-norm ||·||2, and conclusions were made on the density of equilibria within the general configuration space. The second contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for vortex street patterns on the sphere by using SVD in conjunction with expressions for the center of vorticity vector and angular velocity. Equilibrium curves within the configuration space were presented as a function of the geometry, and pole vortices were shown to have a critical role in the formation and destruction of vortex streets. The fourth contribution entailed a more complete perspective of the streamline topology of vortex streets, linking the bifurcations to critical points on the equilibrium curves.

  7. Reactive Flow Control of Delta Wing Vortex (Postprint)

    Science.gov (United States)

    2006-08-01

    Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...width. The dynamic test parameters are summarized in Table 2. The composite duty cycle input signal is denoted ( ) ( )ou t u u tδ= + in which ou

  8. Acoustics of finite-aperture vortex beams

    CERN Document Server

    Mitri, F G

    2014-01-01

    A method based on the Rayleigh-Sommerfeld surface integral is provided, which makes it feasible to rigorously model, evaluate and compute the acoustic scattering and other mechanical effects of finite-aperture vortex beams such as the acoustic radiation force and torque on a viscoelastic sphere in various applications in acoustic tweezers and microfluidics, particle entrapment, manipulation and rotation. Partial-wave series expansions are derived for the incident field of acoustic spiraling (vortex) beams, comprising high-order Bessel and Bessel-Gauss beams.

  9. Paramagnetic excited vortex states in superconductors

    Science.gov (United States)

    Gomes, Rodolpho Ribeiro; Doria, Mauro M.; Romaguera, Antonio R. de C.

    2016-06-01

    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.

  10. Center-vortex loops with one selfintersection

    CERN Document Server

    Moosmann, Julain

    2008-01-01

    We investigate the 2D behavior of one-fold selfintersecting, topologically stabilized center-vortex loops in the confining phase of an SU(2) Yang-Mills theory. This coarse-graining is described by curve-shrinking evolution of center-vortex loops immersed in a flat 2D plane driving the renormalization-group flow of an effective `action'. We observe that the system evolves into a highly ordered state at finite noise level, and we speculate that this feature is connected with 2D planar high $T_c$ superconductivity in $FeAs$ systems.

  11. On Stratified Vortex Motions under Gravity.

    Science.gov (United States)

    2014-09-26

    AD-A156 930 ON STRATIFIED VORTEX MOTIONS UNDER GRAVITY (U) NAVAL i/i RESEARCH LAB WASHINGTON DC Y T FUNG 20 JUN 85 NRL-MIR-5564 UNCLASSIFIED F/G 20/4...Under Gravity LCn * Y. T. Fung Fluid Dynamics Branch - Marine Technologyv Division June 20, 1985 SO Cyk. NAVAL RESEARCH LABORATORY Washington, D.C...DN880-019 TITLE (Include Security Classification) On Stratified Vortex Motions Under Gravity 12 PERSONAL AUTHOR(S) Funa, Y.T. 13a. TYPE OF REPORT 13b

  12. Intra-cavity vortex beam generation

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-08-01

    Full Text Available ? per photon, and may be found as beams expressed in several basis functions, including Laguerre-Gaussian (LGpl) beams1, Bessel-Gaussian beams3 and Airy beams4 to name but a few. LG0l are otherwise known as vortex beams and LG0l beams are routinely... are represented by ?petals? and we show that through a full modal decomposition, the ?petal? fields are a superposition of two LG0l modes. Keywords: Vortex beams, SLM, Laguerre-Gaussian beams, Porro-prism resonator, Petals. 1. INTRODUCTION It is well...

  13. Vortex gyroscope imaging of planar superfluids.

    Science.gov (United States)

    Powis, A T; Sammut, S J; Simula, T P

    2014-10-17

    We propose a robust imaging technique that makes it possible to distinguish vortices from antivortices in quasi-two-dimensional Bose-Einstein condensates from a single image of the density of the atoms. Tilting the planar condensate prior to standard absorption imaging excites a generalized gyroscopic mode of the condensate, revealing the sign and location of each vortex. This technique is anticipated to enable experimental measurement of the incompressible kinetic energy spectrum of the condensate and the observation of a negative-temperature phase transition of the vortex gas, driven by two-dimensional superfluid turbulence.

  14. Experimental Study on Coupled Cross-Flow and in-Line Vortex-Induced Vibration of Flexible Risers

    Institute of Scientific and Technical Information of China (English)

    GUO Hai-yan; LOU Min

    2008-01-01

    In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow (Y-) and in-line (X-) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features.

  15. Some interactions of a vortex with a seamount

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, N.R.; Dunn, D.C. [London University College, London (United Kingdom). Dept. of Mathematics

    1999-12-01

    The initial value problem for the motion of an equivalent-barotropic vortex which is initially circular and of uniform potential vorticity near a circular seamount of constant dynamics. Counter surgery experiments are used to investigate qualitative changes in behaviour of the vortex-seamount system as these parameters are varied. Of particular note is the generation of additional vortex features by the original vortex as it sweeps fluid from the seamount. Moreover, when the origin vortex is an anticyclone, dipoles are frequently formed over a wide range of parameter values, which subsequently propagate away from the seamount.

  16. A mathematical consideration of vortex thinning in 2D turbulence

    CERN Document Server

    Yoneda, Tsuyoshi

    2016-01-01

    In two dimensional turbulence, vortex thinning process is one of the attractive mechanism to explain inverse energy cascade in terms of vortex dynamics. By direct numerical simulation to the two-dimensional Navier-Stokes equations with small-scale forcing and large-scale damping, Xiao-Wan-Chen-Eyink (2009) found an evidence that inverse energy cascade may proceed with the vortex thinning mechanism. The aim of this paper is to analyze the vortex-thinning mechanism mathematically (using the incompressible Euler equations), and give a mathematical evidence that large-scale vorticity gains energy from small-scale vorticity due to the vortex-thinning process.

  17. Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-01-01

    Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.

  18. 14 CFR 23.363 - Side load on engine mount.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less...

  19. Flow distortion on boom mounted cup anemometers

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Friis Pedersen, Troels; Gottschall, Julia

    In this report we investigate on wind direction dependent errors in the measurement of the horizontal wind speed by boom mounted cup anemometers. The boom mounting on the studied lattice tower is performed according to IEC standard design rules, yet, larger deviations than predicted by flow models...... are observed. The errors on the measurements are likely caused by an underestimation of the flow distortions around the tower. In this paper an experimental method for deriving a correction formula and an in-field calibration is suggested. The method is based on measurements with two cup anemometers mounted...... in the measurement of wind turbine power performance, wind resource assessment and for providing purposeful in-field comparisons between different sensors, e.g. lidar anemometers. With the proposed method, direction dependent errors can be extracted and the mast flow distortion effect on the wind measurements...

  20. Numerical simulation of secondary vortex chamber effect on the cooling capacity enhancement of vortex tube

    Science.gov (United States)

    Pourmahmoud, Nader; Azar, Farid Sepehrian; Hassanzadeh, Amir

    2014-09-01

    A vortex tube with additional chamber is investigated by computational fluid mechanics techniques to realize the effects of additional chamber in Ranque-Hilsch vortex tube and to understand optimal length for placing the second chamber in order to have maximum cooling effect. Results show that by increasing the distance between two chambers, both minimum cold and maximum hot temperatures increase and maximum cooling effect occurs at Z/ L = 0.047 (dimensionless distance).

  1. Flow regimes in a trapped vortex cell

    Science.gov (United States)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  2. Vortex ring breakdown induced by topographic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Geiser, J; Kiger, K T, E-mail: kkiger@umd.edu [Department of Mechanical Engineering, University of Maryland, College Park, MD 20910 (United States)

    2011-12-22

    Detailed measurements of the vortex breakdown within a strongly forced impinging jet are presented, with the goal of studying the effects of a small topographic disturbance on the breakdown and turbulence structure. This work is related to an ongoing effort to understand the dynamics of sediment suspension within a landing rotorcraft where a mobile boundary is subject to rapid erosion and deposition. The current work compares the results of a uniform surface to that of a small radial fence placed upstream of the vortex impingement location. The result is a dramatic increase in the coherence of the three-dimensional looping exhibited by the secondary vortex, leading to a more organized and strongly perturbed mean flow. Specifically, a triple decomposition of the velocity fluctuations indicates a very intense periodic stress in the vicinity of the impingement site, followed by a significant decay. Conversely, the random component of the fluctuating stresses gradually increases to modest levels as the coherent contributions decrease, eventually becoming greater than the coherent stress. The fence produces a bifurcation in the flow through the perturbation of the secondary vortex, which in turn creates a high-and low-speed streak on either side of the fence. The subsequent dynamics leads to increased fluctuating stress in the high-speed region, and a dramatically lower stress in the low-speed region, favoring preferential erosion on either side of the topographic disturbance.

  3. Iterative Brinkman penalization for remeshed vortex methods

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Koumoutsakos, Petros; Leonard, Anthony;

    2015-01-01

    We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time s...

  4. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    and the shedding process at the sharp trailing edge in detail. This allows us to identify the origins of the vortices in the 2P wake, to understand that two distinct 2P regions are present in the phase diagram due to the timing of the vortex shedding at the leading edge and the trailing edge and to propose......We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street......, inverted von Karman vortex street, 2P wake, 2P+2S wake and novel wakes ranging from 4P to 8P. We map out the wake types in a phase diagram spanned by the width-based Strouhal number and the dimensionless amplitude. We follow the time evolution of the vortex formation near the round leading edge...

  5. Chemical Observations of a Polar Vortex Intrusion

    Science.gov (United States)

    Schoeberl, M. R.; Kawa, S. R.; Douglass, A. R.; McGee, T. J.; Browell, E.; Waters, J.; Livesey, N.; Read, W.; Froidevaux, L.

    2006-01-01

    An intrusion of vortex edge air in D the interior of the Arctic polar vortex was observed on the January 31,2005 flight of the NASA DC-8 aircraft. This intrusion was identified as anomalously high values of ozone by the AROTAL and DIAL lidars. Our analysis shows that this intrusion formed when a blocking feature near Iceland collapsed, allowing edge air to sweep into the vortex interior. along the DC-8 flight track also shows the intrusion in both ozone and HNO3. Polar Stratospheric Clouds (PSCs) were observed by the DIAL lidar on the DC-8. The spatial variability of the PSCs can be explained using MLS HNO3 and H2O observations and meteorological analysis temperatures. We also estimate vortex denitrification using the relationship between N2O and HNO3. Reverse domain fill back trajectory calculations are used to focus on the features in the MLS data. The trajectory results improve the agreement between lidar measured ozone and MLS ozone and also improve the agreement between the HNO3 measurements PSC locations. The back trajectory calculations allow us to compute the local denitrification rate and reduction of HCl within the filament. We estimate a denitrification rate of about lO%/day after exposure to below PSC formation temperature. Analysis of Aura MLS observations made

  6. Soliton algebra by vortex-beam splitting.

    Science.gov (United States)

    Minardi, S; Molina-Terriza, G; Di Trapani, P; Torres, J P; Torner, L

    2001-07-01

    We experimentally demonstrate the possibility of breaking up intense vortex light beams into stable and controllable sets of parametric solitons. We report observations performed in seeded second-harmonic generation, but the scheme can be extended to all parametric processes. The number of generated solitons is shown to be determined by a robust arithmetic rule.

  7. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street...

  8. Superconducting vortex pinning with artificial magnetic nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS/Thales; Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  9. Vortex formation with a snapping shrimp claw.

    Directory of Open Access Journals (Sweden)

    David Hess

    Full Text Available Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.

  10. Axisymmetric Vortex Simulations with Various Turbulence Models

    Directory of Open Access Journals (Sweden)

    Brian Howard Fiedler

    2010-10-01

    Full Text Available The CFD code FLUENTTM has been applied to a vortex within an updraft above a frictional lower boundary. The sensitivity of vortex intensity and structure to the choice of turbulent model is explored. A high Reynolds number of 108 is employed to make the investigation relevant to the atmospheric vortex known as a tornado. The simulations are axisymmetric and are integrated forward in time to equilibrium.  In a variety of turbulence models tested, the Reynolds Stress Model allows for the greatest intensification of the vortex, with the azimuthal wind speed near the surface being 2.4 times the speed of the updraft, consistent with the destructive nature of tornadoes.  The Standard k-e Model, which is simpler than the Reynolds Stress Model but still more detailed than what is commonly available in numerical weather prediction models, produces an azimuthal wind speed near the surface of at most 0.6 times the updraft speed.        

  11. Vortex properties of mesoscopic superconducting samples

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Leonardo R.E. [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Barba-Ortega, J. [Grupo de Fi' sica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Souza Silva, C.C. de [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Albino Aguiar, J., E-mail: albino@df.ufpe.b [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil)

    2010-10-01

    In this work we investigated theoretically the vortex properties of mesoscopic samples of different geometries, submitted to an external magnetic field. We use both London and Ginzburg-Landau theories and also solve the non-linear Time Dependent Ginzburg-Landau equations to obtain vortex configurations, equilibrium states and the spatial distribution of the superconducting electron density in a mesoscopic superconducting triangle and long prisms with square cross-section. For a mesoscopic triangle with the magnetic field applied perpendicularly to sample plane the vortex configurations were obtained by using Langevin dynamics simulations. In most of the configurations the vortices sit close to the corners, presenting twofold or three-fold symmetry. A study of different meta-stable configurations with same number of vortices is also presented. Next, by taking into account de Gennes boundary conditions via the extrapolation length, b, we study the properties of a mesoscopic superconducting square surrounded by different metallic materials and in the presence of an external magnetic field applied perpendicularly to the square surface. It is determined the b-limit for the occurrence of a single vortex in a mesoscopic square of area d{sup 2}, for 4{xi}(0){<=}d{<=}10{xi}(0).

  12. Vortex Cloud Street during AMTEX 75

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Agee, E. M.

    1978-01-01

    Strong northerly flow across Cheju Island, Korea, during the 1975 Air Mass Transformation Experiment (AMTEX 75) resulted in a pronounced vortex cloud street to the lee of the island on February 17 1975. This pattern has been studied and explained in terms of classical von Karman eddies shed...

  13. Coherent Vortex Evolution in Drift Wave Turbulence

    Science.gov (United States)

    Gatto, R.; Terry, P. W.

    1998-11-01

    Localized structures in turbulence are subject to loss of coherence by mixing. Phase space structures, such as drift-hole, (P. W. Terry, P. H. Diamond, T. S. Hahm, Phys. Fluids B) 2 9 2048 (1990) possess a self-electric field, which if sufficiently large maintains particle trapping against the tidal deformations of ambient turbulence. We show here that intense vortices in fluid drift wave turbulence avoid mixing by suppressing ambient turbulence with the strong flow shear of the vortex edge. Analysis of turbulence evolution in the vortex edge recovers Rapid Distortion Theory (G. K. Batchelor and I. Proudman, Q. J. Mech. Appl. Math.) 7 83 (1954) as the short time limit and the shear suppression scaling theory (H. Biglari, P. H. Diamond and P. W. Terry, Phys. Fluids B) 2 1 (1990) as the long time limit. Shear suppression leads to an amplitude condition for coherence and delineates the Gaussian core from the non Gaussian tail of the probability distribution function. The amplitude condition of shear suppression is compared with the trapping condition for phase space holes. The possibility of nonlinear vortex growth will be examined by considering electron dynamics in the vortex evolution.

  14. Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground

    Science.gov (United States)

    Proctor, Fred H.; Hamilton, David W.; Han, Jongil

    2000-01-01

    Numerical simulations are carried out with a three-dimensional Large-Eddy Simulation (LES) model to explore the sensitivity of vortex decay and transport in ground effect (IGE). The vortex decay rates are found to be strongly enhanced following maximum descent into ground effect. The nondimensional decay rate is found to be insensitive to the initial values of circulation, height, and vortex separation. The information gained from these simulations is used to construct a simple decay relationship. This relationship compares well with observed data from an IGE case study. Similarly, a relationship for lateral drift due to ground effect is constructed from the LES data. In the second part of this paper, vortex linking with the ground is investigated. Our numerical simulations of wake vortices for IGE show that a vortex may link with its image beneath the ground, if the intensity of the ambient turbulence is moderate to high. This linking with the ground (which is observed in real cases)gives the appearance of a vortex tube that bends to become vertically oriented and which terminates at the ground. From the simulations conducted, the linking time for vortices in the free atmosphere; i.e., a function of ambient turbulence intensity.

  15. Planet-vortex interaction:How a vortex can shepherd a planetary embryo

    CERN Document Server

    Kley, W; Meheut, H

    2014-01-01

    Context: Anticyclonic vortices are considered as a favourable places for trapping dust and forming planetary embryos. On the other hand, they are massive blobs that can interact gravitationally with the planets in the disc. Aims: We aim to study how a vortex interacts gravitationally with a planet which migrates toward it or a planet which is created inside the vortex. Methods: We performed hydrodynamical simulations of a viscous locally isothermal disc using GFARGO and FARGO-ADSG. We set a stationary Gaussian pressure bump in the disc in a way that RWI is triggered. After a large vortex is established, we implanted a low mass planet in the outer disc or inside the vortex and allowed it to migrate. We also examined the effect of vortex strength on the planet migration and checked the validity of the final result in the presence of self-gravity. Results: We noticed regardless of the planet's initial position, the planet is finally locked to the vortex or its migration is stopped in a farther orbital distance i...

  16. Aeroacoustic response of coaxial wall-mounted Helmholtz resonators in a low-speed wind tunnel.

    Science.gov (United States)

    Slaton, William V; Nishikawa, Asami

    2015-01-01

    The aeroacoustic response of coaxial wall-mounted Helmholtz resonators with different neck geometries in a low-speed wind tunnel has been investigated. Experimental test results of this system reveal a strong aeroacoustic response over a Strouhal number range of 0.25 to 0.1 for both increasing and decreasing the flow rate in the wind tunnel. Aeroacoustic response in the low-amplitude range O(10(-3)) < Vac/Vflow < O(10(-1)) has been successfully modeled by describing-function analysis. This analysis, coupled with a turbulent flow velocity distribution model, gives reasonable values for the location in the flow of the undulating stream velocity that drives vortex shedding at the resonator mouth. Having an estimate for the stream velocity that drives the flow-excited resonance is crucial when employing the describing-function analysis to predict aeroacoustic response of resonators.

  17. Flow visualization of a vortex ring interaction with porous surfaces

    Science.gov (United States)

    Hrynuk, John T.; Van Luipen, Jason; Bohl, Douglas

    2012-03-01

    The interaction of vortex rings of constant Reynolds number with porous surfaces composed of wire meshes of constant open area, i.e., surface porosity, but variable wire diameter is studied using flow visualization. The results indicate that several regimes of flow behavior exist in the parameter space investigated. The vortex ring passes through and immediately reforms downstream of the surface for porous surfaces with small wire mesh diameters. The transmitted vortex ring has the same diameter, but lower convection speed and circulation than the pre-interaction vortex ring. For these cases, secondary vortex rings are formed on the upstream side of the porous surface that convect upstream away from the screen. As the wire diameter of the porous surface is increased, smaller sub-scale vortical structures are formed on the transmitted vortex ring as it passes through the surface. The spatial scale of these structures is dependent on the diameter of the mesh wire. The vortex ring is disrupted but is able to reform downstream when these structures are small compared to the scale of the vortex ring. When these structures are large enough the transmitted vortex ring is disrupted and does not reform. The results indicate that the dynamics governing the vortex ring/mesh surface interaction are dependent not only on the strength of the vortex ring and the porosity of the surface, as previously thought, but also on the length scales (i.e., the diameter and spacing of the wire mesh) of the porous surface.

  18. The Interaction Vortex Flow Around Two Bluff Cylinders

    Directory of Open Access Journals (Sweden)

    Hirao K.

    2013-04-01

    Full Text Available In this study, the interaction vortex flow features around a pair of parallel arranged bluff cylinders were observed by visualizing water flow experiment at the range of the gap ratio G/d=0~3. It was obtained that the result of established wind tunnel test and the result of this water tank test agreed about the characteristics of vortex shedding when varying the distance of circular cylinder gap. The flow pattern and vortex shedding frequency of another type bluff cylinder (triangular and square cylinder were also investigated. As a result of the experiment, it was shown that the flow pattern of wake flow was divided into three kinds (coupled vortex streets, biased gap flow and single vortex street regardless of the cylinder section shape and cylinder size. Then, the region of the appearance of flow pattern was shown about each case. In the case where two each other independent vortex streets were formed, three typical flow patterns of vortex formation (in-phase coupled vortex streets, out-of-phase coupled vortex streets and complication coupled vortex streets were observed. It was known that three configuration of vortex formation appear intermittently and alternatively.

  19. The Interaction Vortex Flow Around Two Bluff Cylinders

    Science.gov (United States)

    Yokoi, Y.; Hirao, K.

    2013-04-01

    In this study, the interaction vortex flow features around a pair of parallel arranged bluff cylinders were observed by visualizing water flow experiment at the range of the gap ratio G/d=0~3. It was obtained that the result of established wind tunnel test and the result of this water tank test agreed about the characteristics of vortex shedding when varying the distance of circular cylinder gap. The flow pattern and vortex shedding frequency of another type bluff cylinder (triangular and square cylinder) were also investigated. As a result of the experiment, it was shown that the flow pattern of wake flow was divided into three kinds (coupled vortex streets, biased gap flow and single vortex street) regardless of the cylinder section shape and cylinder size. Then, the region of the appearance of flow pattern was shown about each case. In the case where two each other independent vortex streets were formed, three typical flow patterns of vortex formation (in-phase coupled vortex streets, out-of-phase coupled vortex streets and complication coupled vortex streets) were observed. It was known that three configuration of vortex formation appear intermittently and alternatively.

  20. CADICAM Design of Trunnion Mount (Short Communication

    Directory of Open Access Journals (Sweden)

    Rahul D. Basu

    2002-04-01

    Full Text Available The computer-aided design (CAD, computer-aided manufacturing (CAM of a 3-D trunnion mount located on the intercasing housing of a gas turbine engine is described. The mount carries load and thrust, hence stress-concentrating locations, like sharp edges and corners must be avoided. A program involving CAD, CAM and post-processing CAD surfaces for tool paths has been developed. Preliminary machining of a scrap aluminum piece that verified the program is described. This method is applicable to a wide variety of proprietary packages.

  1. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  2. Topological Aspect of Knotted Vortex Filaments in Excitable Media

    Institute of Scientific and Technical Information of China (English)

    REN Ji-Rong; ZHU Tao; DUAN Yi-Shi

    2008-01-01

    Scroll waves exist ubiquitously in three-dimensional excitable media.The rotation centre can be regarded as a topological object called the vortex filament.In three-dimensional space,the vortex filaments usually form closed loops,and can be even linked and knotted.We give a rigorous topological description of knotted vortex filaments.By using the Φ-mapping topological current theory,we rewrite the topological current form of the charge density of vortex filaments,and using this topological current we reveal that the Hopf invariant of vortex filaments is just the sum of the linking and self-linking numbers of the knotted vortex filaments.We think that the precise expression of the Hopf invariant may imply a new topological constraint on knotted vortex filaments.

  3. Borneo vortex and mesoscale convective rainfall

    Science.gov (United States)

    Koseki, S.; Koh, T.-Y.; Teo, C.-K.

    2014-05-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite data sets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the Equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-α cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-β-scale rainfall cells. The intense rainfall in the comma head (comma tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-α cyclone system. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics.

  4. Wake-Vortex Hazards During Cruise

    Science.gov (United States)

    Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)

    1998-01-01

    Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.

  5. Analysis of Axial Flow Ventilation Fans by Vortex - Method.

    Science.gov (United States)

    Hardin, Richard Anthony

    A steady vortex-lattice method is used to solve the lifting surface equation for an axial flow fan. The type of fan studied is designed for industrial and ventilation applications and in thermofluid systems such as cooling towers. The fan blades are thin cambered surfaces manufactured from metal sheets. The numerical approach is inviscid and results in a boundary value problem with viscous effects partially accounted for by application of drag coefficient data. A non-linear wake alignment procedure is used to account for the effects of vorticity shedding in the wake and variation in wake geometry with operating conditions. The wake alignment procedure is semi-free with wake input parameters required for accurate use of the technique. A study of the wake parameters was conducted and gave trends in the variation of their values with flow rate. At "free-air" conditions, flow visualization estimates of these parameters were found to agree with those from the computations. Comparisons are made between the measured and predicted fan performance with and without a surrounding duct. The comparison of the results were especially good at the "free-air" condition using wake parameters determined from flow visualization and an inlet velocity profile measured using hot-wire anemometry. To enable better understanding of basic flow phenomena and to provide data for verification of numerical analyses, a method for measuring unsteady surface pressure on a rotating axial-flow fan blade was devised. Unsteadiness of pressure on the blade surfaces is due to the effects of upstream fan motor supports and other installation features. A pressure transducer and signal amplification circuit were mounted on a circuit board at the rotating hub with signals taken off the rotating shaft through copper disk-mercury slip rings. The pressure difference across the blade was determined and the data were corrected for time lag and distortion caused by the length of tubing. The pressure difference

  6. Persistence of Metastable Vortex Lattice Domains in MgB2 in the Presence of Vortex Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rastovski, Catherine [University of Notre Dame, IN; Schlesinger, Kimberly [University of Notre Dame, IN; Gannon, William J [Northwestern University, Evanston; Dewhurst, Charles [Institut Laue-Langevin (ILL); Debeer-Schmitt, Lisa M [ORNL; Zhigadlo, Nikolai [ETH Zurich, Switzerland; Karpinski, Janusz [ETH Zurich, Switzerland; Eskildsen, Morten [University of Notre Dame, IN

    2013-01-01

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  7. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    Science.gov (United States)

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-01

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  8. Mount Sinai and Mount Zion: Discontinuity and continuity in the book of Hebrews

    Directory of Open Access Journals (Sweden)

    Hulisani Ramantswana

    2013-11-01

    Full Text Available The author of Hebrews draws significant contrasts between Mount Sinai and Mount Zion which both played a major role in the old covenant. For the author of Hebrews the former mountain, Mount Sinai, only had limited significance with respect to the new covenant, whereas the latter mountain, Mount Zion, continued to have significance in the new covenant. Mount Zion was viewed as a shadow of the heavenly reality, which is the true destination for the pilgrimage community. Mount Sinai as the locus of encounter or meeting between God and Israel only played a transitory role, whereas Mount Zion had perpetual significance as the destination, the dwelling place of God and his people.Berg Sinai en Berg Sion: Diskontinuïteit en kontinuïteit in die brief aan die Hebreërs. Die skrywer van Hebreërs wys op betekenisvolle teenstellings tussen Berg Sinai en Berg Sion, wat elkeen ’n beduidende rol in die ou verbond gespeel het. Vir die Hebreërskrywer het Berg Sinai egter beperkte betekenis vir die nuwe verbond, terwyl Sion nog steeds betekenis het. Berg Sion word as skaduwee van die hemelse werklikheid beskou, wat die uiteindelike bestemming van die pelgrimsgemeenskap is. Berg Sinai, as die lokus van ontmoeting tussen God en Israel, speel slegs ‘n oorgangsrol, terwyl Berg Sion steeds beduidende betekenis het as bestemming en woonplek van God en sy volk.

  9. Applied longitudinal analysis

    CERN Document Server

    Fitzmaurice, Garrett M; Ware, James H

    2012-01-01

    Praise for the First Edition "". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis.""-Journal of the American Statistical Association   Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of lo

  10. Bearing-Mounting Concept Accommodates Thermal Expansion

    Science.gov (United States)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  11. Dish-mounted latent heat buffer storage

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    Dish-mounted latent heat storage subsystems for Rankine, Brayton, and Stirling engines operating at 427 C, 816 C, and 816 C respectively are discussed. Storage requirements definition, conceptual design, media stability and compatibility tests, and thermal performance analyses are considered.

  12. PC board mount corrosion sensitive sensor

    Science.gov (United States)

    Robinson, Alex L.; Casias, Adrian L.; Pfeifer, Kent B.; Laguna, George R.

    2016-03-22

    The present invention relates to surface mount structures including a capacitive element or a resistive element, where the element has a property that is responsive to an environmental condition. In particular examples, the structure can be optionally coupled to a printed circuit board. Other apparatuses, surface mountable structures, and methods of use are described herein.

  13. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  14. Photographs, Mounts, and the Tactile Archive

    Directory of Open Access Journals (Sweden)

    Elizabeth Edwards

    2014-10-01

    Full Text Available This short article considers the humble photographic mount as a site of tactile engagement. In particular, it will explore photographs that were deposited in the visual collections of public libraries as sources of local history and instruments of local identities in the late nineteenth and early twentieth centuries. Mounts were specifically designed to present information to the eye in certain ways, and enable that information to be held in the hand and manipulated. But they also served to protect photographs against the ravages of touch in the public space. I shall consider how we might understand the enormous amount of energy expended on the consideration of photographic mounts. I consider staged materialities of the institutions that constitute these objects and their haptic requirements. These were changing radically at this period as open-access libraries organized the body of the reader in new ways. I argue that photographic mounts, their storage, access, and the arrangement of information upon them constituted part of this revolution.

  15. Motion planning for gantry mounted manipulators

    DEFF Research Database (Denmark)

    Olsen, Anders Lau; Petersen, Henrik Gordon

    2007-01-01

    We present a roadmap based planner for finding robot motions for gantry mounted manipulators for a line welding application at Odense Steel Shipyard (OSS). The robot motions are planned subject to constraints on when the gantry may be moved. We show that random sampling of gantry configurations...

  16. Summit firn caves, mount rainier, washington.

    Science.gov (United States)

    Kiver, E P; Mumma, M D

    1971-07-23

    Heat and steam from the crater fumaroles have melted over 5700 feet (1737 meters) of cave passage in the ice-filled east crater of Mount Rainier. The caves are in approximate balance with the present geothermal heat release. Future changes in the thermal activity of the summit cone will cause corresponding changes in cave passage dimensions, location, and ceiling and wall ablation features.

  17. Photovoltaic module mounting clip with integral grounding

    Science.gov (United States)

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  18. Simultaneous evidence for Pauli paramagnetic effects and multiband superconductivity in KFe2As2 by small-angle neutron scattering studies of the vortex lattice

    Science.gov (United States)

    Kuhn, S. J.; Kawano-Furukawa, H.; Jellyman, E.; Riyat, R.; Forgan, E. M.; Ono, M.; Kihou, K.; Lee, C. H.; Hardy, F.; Adelmann, P.; Wolf, Th.; Meingast, C.; Gavilano, J.; Eskildsen, M. R.

    2016-03-01

    We study the intrinsic anisotropy of the superconducting state in KFe2As2 by using small-angle neutron scattering to image the vortex lattice as the applied magnetic field is rotated towards the FeAs crystalline planes. The anisotropy is found to be strongly field dependent, indicating multiband superconductivity. Furthermore, the high-field anisotropy significantly exceeds that of the upper critical field, providing further support for Pauli limiting in KFe2As2 for fields applied in the basal plane. The effect of Pauli paramagnetism on the unpaired quasiparticles in the vortex cores is directly evident from the ratio of scattered intensities due to the longitudinal and transverse vortex lattice field modulation.

  19. Transverse and longitudinal angular momenta of light

    CERN Document Server

    Bliokh, Konstantin Y

    2015-01-01

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin...

  20. Experimental observation of the collision of three vortex rings

    Science.gov (United States)

    Hernández, R. H.; Monsalve, E.

    2015-06-01

    We investigate for the first time the motion, interaction and simultaneous collision between three initially stable vortex rings arranged symmetrically, making an angle of 120 degrees between their straight path lines. We report results with laminar vortex rings in air and water obtained through measurements of the ring velocity field with a hot-wire anemometer, both in free flight and during the entire collision. In the air experiment, our flow visualizations allowed us to identify two main collision stages. A first ring-dominated stage where the rings slowdown progressively, increasing their diameter rapidly, followed by secondary vortex structures resulting after the rings make contact. Local portions of the vortex tubes of opposite circulation are coupled together thus creating local arm-like vortex structures moving radially in outward directions, rapidly dissipating kinetic energy. From a similar water experiment, we provide detailed shadowgraph visualizations of both the ring bubble and the full size collision, showing clearly the final expanding vortex structure. It is accurately resolved that the physical contact between vortex ring tubes gives rise to three symmetric expanding vortex arms but also the vortex reconnection of the top and lower vortex tubes. The central collision zone was found to have the lowest kinetic energy during the entire collision and therefore it can be identified as a safe zone. The preserved collision symmetries leading to the weak kinematic activity in the safe zone is the first step into the development of an intermittent hydrodynamic trap for small and lightweight particles.

  1. Computational investigation of the temperature separation in vortex chamber

    Energy Technology Data Exchange (ETDEWEB)

    Anish, S. [National Institute of Technology Karnataka, Mangalore (India); Setoguchi, T. [Institute of Ocean Energy, Saga University (Japan); Kim, H. D. [Andong National University, Andong (Korea, Republic of)

    2014-06-15

    The vortex chamber is a mechanical device, without any moving parts that separates compressed gas into a high temperature region and a low temperature region. Functionally vortex chamber is similar to a Ranque-Hilsch vortex tube (RVHT), but it is a simpler and compact structure. The objective of the present study is to investigate computationally the physical reasoning behind the energy separation mechanism inside a vortex chamber. A computational analysis has been performed using three-dimensional compressible Navier Stokes equations. A fully implicit finite volume scheme was used to solve the governing equations. A commercial software ANSYS CFX is used for this purpose. The computational predictions were validated with existing experimental data. The results obtained show that the vortex chamber contains a large free vortex zone and a comparatively smaller forced vortex region. The physical mechanism that causes the heating towards periphery of the vortex chamber is identified as the work done by the viscous force. The cooling at the center may be due to expansion of the flow. The extent of temperature separation greatly depends on the outer diameter of the vortex chamber. A small amount of compression is observed towards the periphery of the vortex chamber when the outer diameter is reduced.

  2. Interaction of a Vortex Ring with a Thin Porous Surface

    Science.gov (United States)

    Hrynuk, John; Bohl, Doug

    2012-11-01

    The interaction of vortex rings with thin porous screens was investigated using Molecular Tagging Velocimetry (MTV). The surface porosity, defined as the ratio of the open area to total area of the screen, was held constant at ϕ = 65% while the diameter of screen wires was varied. The three screens of varying wire diameter tested were: a fine wire (Dwire = 0.0178 cm), a medium wire (Dwire = 0.104 cm) and coarse wire (Dwire = 0.204 cm). When the vortex interacted with the fine wire screen a secondary vortex formed on the upstream face of the screen that orbited the primary vortex and then convected back up stream. The primary vortex reformed immediately downstream of the screen with significantly lower strength. For medium and large wire screens additional vorticity was generated and shed from individual wires, changing the downstream vortex behavior. Secondary vortices were observed for these larger screens but they were weaker and remained in proximity to the screen. Vortex shedding from the screen wires was observed for the medium screen which delayed the reformation of the vortex ring downstream of the screen. Shed vortex pairs, from individual wires, were observed to dominate the downstream flow for the large wire screen and no vortex ring reformation was observed. Vorticity and circulation will be used to further understand the interaction process for each of these screens.

  3. Dynamically controlled energy dissipation for fast magnetic vortex switching

    Science.gov (United States)

    Badea, R.; Berezovsky, J.

    2017-09-01

    Manipulation of vortex states in magnetic media provides new routes towards information storage and processing technology. The typical slow relaxation times (˜100 ns) of magnetic vortex dynamics may present an obstacle to the realization of these applications. Here, we investigate how a vortex state in a ferromagnetic microdisk can be manipulated in a way that translates the vortex core while enhancing energy dissipation to rapidly damp the vortex dynamics. We use time-resolved differential magneto-optical Kerr effect microscopy to measure the motion of the vortex core in response to applied magnetic fields. We first map out how the vortex core becomes sequentially trapped by pinning sites as it translates across the disk. After applying a fast magnetic field step to translate the vortex from one pinning site to another, we observe long-lived dynamics of the vortex as it settles to the new equilibrium. We then demonstrate how the addition of a short (magnetic field pulse can induce additional energy dissipation, strongly damping the long-lived dynamics. A model of the vortex dynamics using the Thiele equation of motion explains the mechanism behind this effect.

  4. On the Pressure Drop and the Velocity Distribution in the Cylindrical Vortex Chamber with Two Inlet Pipes for the Control of Vortex Flow

    Institute of Scientific and Technical Information of China (English)

    Akira OGAWA; Tutomu OONO; Hayato OKABE; Noriaki AKIBA; Taketo OOYAGI

    2005-01-01

    @@ Vortex flow is applied to a cyclone dust collector, a vortex combustion chamber, and a vortex diode for vortex control. In order to apply the vortex flow to the industries, it is necessary to keep the stable flow condition and to estimate the response time of the transient flow process and also the intensity of the vortex flow. For control vortex flow, two types of vortex chamber with two inlet pipes were designed. One of them is to promote the vortex flow named as Co-Rotating Flow System and another one is to hinder the vortex flow named as Counter-Rotating Flow System. The pressure drops and the velocity distributions were measured for these vortex chambers. The estimation of the tangential velocity by the application of the angular momentum flux is compared with the measured velocity by a cylindrical Pitot-tube. The characteristics of the total pressure drop could be explained by introducing the circulation.

  5. INVESTIGATION OF VORTEX SHEDDING INDUCED HYDRODYNAMIC VIBRATION IN VORTEX STREET FLOWMETER

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Vortex street flowmeter has been used in steady flo w measurement for about three decades. The benefits of this type of flowmeter i nclude high accuracy,good linearty,wide measuring range,and excellent reliabilit y. However,in unsteady flow measurement,the pressure disturbance as well as the noise from the system or surrounding can reduce the signal-to-noise ra tio of the flowmeter seriously. Aimed to use vortex street flowmeters in unstea dy flow measurement,the characteristics of the vortex shedding induced hydrodyna mic vibration around the prism bluff body in a vortex street flowmeter are inves tigated numerically and by expriments. The results show that the hydrodynamic vibrations with 180° phase shift occur at the axisymmetric points of the channe l around the bluff body. The most intense vibration occurs at the points on the lateral faces close to the base of the prism. The results provide therefore a useful reference for developing an anti-interference vortex flowmeter using the differential sensing technique.

  6. Topological fluid mechanics of point vortex motions

    CERN Document Server

    Boyland, P; Aref, H; Boyland, Philip; Stremler, Mark; Aref, Hassan

    1999-01-01

    Topological techniques are used to study the motions of systems of point vortices in the infinite plane, in singly-periodic arrays, and in doubly-periodic lattices. The reduction of each system using its symmetries is described in detail. Restricting to three vortices with zero net circulation, each reduced system is described by a one degree of freedom Hamiltonian. The phase portrait of this reduced system is subdivided into regimes using the separatrix motions, and a braid representing the topology of all vortex motions in each regime is computed. This braid also describes the isotopy class of the advection homeomorphism induced by the vortex motion. The Thurston-Nielsen theory is then used to analyse these isotopy classes, and in certain cases strong conclusions about the dynamics of the advection can be made.

  7. Vortex Generators to Control Boundary Layer Interactions

    Science.gov (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  8. Vortex structures in exponentially shaped Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Semerdjieva, E. G.; Boyadjiev, T. L.

    2005-04-01

    We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.

  9. Simulations Of On Demand Vortex Generators

    Science.gov (United States)

    Koumoutsakos, P.; Mansour, N. N.; Rai, Man Mohan (Technical Monitor)

    1995-01-01

    The development of a two-dimensional viscous incompressible flow generated by an off center thin oscillating bd on top of a cavity is studied computationally as a prototype of vortex generators. The lid is placed asymmetrically over the cavity so that the gap size is different on either side of the cavity. An adaptive numerical scheme, based on high resolution viscous vortex methods, is used to integrate the vorticity/velocity formulation of the Navier-Stokes equations with the no-slip boun.lary condition enforced on the lid and cavity walls. Depending on the a amplitude and frequency of the oscillation as well as the the gap size, vorticity is ejected in the fluid above the cavity either from the large and/or the small gap. The results of the computations complement ongoing experimental work.

  10. Helicity of the toroidal vortex with swirl

    CERN Document Server

    Bannikova, Elena Yu; Poslavsky, Sergey A

    2016-01-01

    On the basis of solutions of the Bragg-Hawthorne equations we discuss the helicity of thin toroidal vortices with the swirl - the orbital motion along the torus diretrix. It is shown that relationship of the helicity with circulations along the small and large linked circles - directrix and generatrix of the torus - depends on distribution of the azimuthal velocity in the core of the swirling vortex ring. In the case of non-homogeneous swirl this relationship differs from the well-known Moffat relationship - the doubled product of such circulations multiplied by the number of links. The results can be applied to vortices in planetary atmospheres and to vortex movements in the vicinity of active galactic nuclei.

  11. Vortices and vortex lattices in quantum ferrofluids

    CERN Document Server

    Martin, A M; O'Dell, D H J; Parker, N G

    2016-01-01

    The achievement of quantum-degenerate Bose gases composed of atoms with sizeable magnetic dipole moments has realized quantum ferrofluids, a form of fluid which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to circulate through vortices with quantized circulation. These excitations underpin a variety of rich phenomena, including vortex lattices, quantum turbulence, the Berenzinksii-Kosterlitz-Thouless transition and Kibble-Zurek defect formation. Here we provide a comprehensive review of the theory of vortices and vortex lattices in quantum ferrofluids created from dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. Our discussion is based on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, from analytic treatments based on the Thomas-Fermi and variational approaches to full numerical simula...

  12. Vortex Anemometer Using MEMS Cantilever Sensor

    CERN Document Server

    Zylka, P; Zylka, Pawel; Modrzynski, Pawel

    2010-01-01

    This paper presents construction and performance of a novel hybrid microelectromechanical system (MEMS) vortex flowmeter. A miniature cantilever MEMS displacement sensor was used to detect frequency of vortices development. 3-mm-long silicon cantilever, protruding directly out of a trailing edge of a trapezoidal glass-epoxy composite bluff body was put into oscillatory motion by vortices shed alternately from side surfaces of the obstacle. Verified linearmeasurement range of the device extended from 5 to 22 m/s; however, it could be broadened in absence of external 50-Hz mains electrical interfering signal which required bandpass frequency-domain digital sensor signal processing. The MEMS vortex sensor proved its effectiveness in detection of semilaminar airflow velocity distribution in a 40-mm-diameter tubular pipe.

  13. Numerical Study of Tip Vortex Flows

    Science.gov (United States)

    Dacles-Mariani, Jennifer; Hafez, Mohamed

    1998-01-01

    This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

  14. Coherent vortex structures in fluids and plasmas

    CERN Document Server

    Tur, Anatoli

    2017-01-01

    This monograph introduces readers to the hydrodynamics of vortex formation, and reviews the last decade of active research in the field, offering a unique focus on research topics at the crossroads of traditional fluids and plasmas. Vortices are responsible for the process of macroscopic transport of momentum, energy and mass, and are formed as the result of spontaneous self-organization. Playing an important role in nature and technology, localized, coherent vortices are regularly observed in shear flows, submerged jets, afterbody flows and in atmospheric boundary layers, sometimes taking on the form of vortex streets. In addition, the book addresses a number of open issues, including but not limited to: which singularities are permitted in a 2D Euler equation besides point vortices? Which other, even more complex, localized vortices could be contained in the Euler equation? How do point vortices interact with potential waves?

  15. Solitary vortex couples in viscoelastic Couette flow

    CERN Document Server

    Groisman, A; Groisman, Alexander; Steinberg, Victor

    1996-01-01

    We report experimental observation of a localized structure, which is of a new type for dissipative systems. It appears as a solitary vortex couple ("diwhirl") in Couette flow with highly elastic polymer solutions. A unique property of the diwhirls is that they are stationary, in contrast to the usual localized wave structures in both Hamiltonian and dissipative systems which are stabilized by wave dispersion. It is also a new object in fluid dynamics - a couple of vortices that build a single entity somewhat similar to a magnetic dipole. The diwhirls arise as a result of a purely elastic instability through a hysteretic transition at negligible Reynolds numbers. It is suggested that the vortex flow is driven by the same forces that cause the Weissenberg effect. The diwhirls have a striking asymmetry between the inflow and outflow, which is also an essential feature of the suggested elastic instability mechanism.

  16. Vortex shedding by a Savonius rotor

    Science.gov (United States)

    Botrini, M.; Beguier, C.; Chauvin, A.; Brun, R.

    1984-05-01

    A series of flow visualizations was performed to characterize the wake vortices of a Savonius rotor. The trials were undertaken in an attempt to account for discrepancies between theoretical and experimentally-derived power coefficients. The Savonius examined was two-bladed with a center offset. All tests were made in a water tunnel. Dye injection provided the visualization, and average velocities and velocity fluctuations were measured using a laser Doppler anemometer. A system of three vortices was found to be periodically shed by the rotor. Flow velocity fluctuation intensity peaked as a vortex was shed. The vortex shedding alternated from blade to blade, so that one was shed from a blade moving upstream.

  17. A nonabelian particle–vortex duality

    Directory of Open Access Journals (Sweden)

    Jeff Murugan

    2016-02-01

    Full Text Available We define a nonabelian particle–vortex duality as a 3-dimensional analogue of the usual 2-dimensional worldsheet nonabelian T-duality. The transformation is defined in the presence of a global SU(2 symmetry and, although derived from a string theoretic setting, we formulate it generally. We then apply it to so-called “semilocal strings” in an SU(2G×U(1L gauge theory, originally discovered in the context of cosmic string physics.

  18. On the efficiency of energy harvesting using vortex-induced vibrations of cables

    CERN Document Server

    Grouthier, Clement; Bourguet, Remi; Modarres-Sadeghi, Yahya; de Langre, Emmanuel

    2014-01-01

    Many technologies based on fluid-structure interaction mechanisms are being developed to harvest energy from geophysical flows. The velocity of such flows is low, and so is their energy density. Large systems are therefore required to extract a significant amount of energy. The question of the efficiency of energy harvesting using vortex-induced vibrations (VIV) of cables is addressed in this paper, through two reference configurations: (i) a long tensioned cable with periodically-distributed harvesters and (ii) a hanging cable with a single harvester at its upper extremity. After validation against either direct numerical simulations or experiments, an appropriate reduced-order wake- oscillator model is used to perform parametric studies of the impact of the harvesting parameters on the efficiency. For both configurations, an optimal set of parameters is identified and it is shown that the maximum efficiency is close to the value reached with an elastically-mounted rigid cylinder. The variability of the effi...

  19. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system

    Science.gov (United States)

    Khonina, S. N.; Kazanskiy, N. L.; Volotovsky, S. G.

    2011-05-01

    An analysis was performed into the possibility of reducing the lateral size and increasing the longitudinal size of a high-aperture focal system focus using a vortex phase transmission function for different types of input polarisation (including the general vortex polarisation). We have shown both analytically and numerically that subwavelength localisation for individual components of the vector field is possible at any polarisation type. This fact can be important when considering the interaction between laser radiation and materials that are selectively sensitive to different components of an electromagnetic field. In order to form substantially subwavelength details in total intensity, specific polarisation types and additional apodisation of pupil function, such as masking by a narrow annular slit, are necessary. The optimal selection of the slit radius allows balance of the trade-off between focus depth and focal spot size.

  20. On point vortex models of exotic bluff body wakes

    Energy Technology Data Exchange (ETDEWEB)

    Stremler, Mark A; Basu, Saikat, E-mail: stremler@vt.edu [Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2014-12-01

    Exotic vortex wakes, in which three or more vortices are generated during each shedding cycle, are frequently found in the wake of an oscillating bluff body. Two common examples are P+S wakes (with 3 vortices) and 2P wakes (with 4 vortices). We consider mathematical models of these wakes consisting of N = 3 or 4 point vortices with constant strengths in an inviscid fluid that is otherwise at rest in a singly-periodic domain. By enforcing constraints on the vortex strengths and, in the case of N = 4, on the symmetry of the vortex locations, the mathematical models reduce to integrable Hamiltonian systems. We compare the point vortex trajectories with two exotic wake patterns reported in the literature. Results support the use of point vortex modeling to investigate vortex dynamics in exotic wakes and suggest the need for additional classification of experimental wake patterns. (paper)

  1. HYDRAULIC CHARACTERISTICS OF VERTICAL VORTEX AT HYDRAULIC INTAKES

    Institute of Scientific and Technical Information of China (English)

    CHEN Yun-liang; WU Chao; YE Mao; JU Xiao-ming

    2007-01-01

    The trace of vertical vortex flow at hydraulic intakes is of the shape of spiral lines, which was observed in the presented experiments with the tracer technique. It represents the fluid particles flow spirally from the water surface to the underwater and rotate around the vortex-axis multi-cycle. This process is similar to the movement of screw. To describe the multi-circle spiral characteristics under the axisymmetric condition, the vertical vortex would change not only in the radial direction but also in the axial direction. The improved formulae for three velocity components for the vertical vortex flow were deduced by using the method of separation of variables in this article. In the improved formulae, the velocity components are the functions of the radial and axial coordinates, so the multi-circle spiral flow of vertical vortex could be simulated. The calculated and measured results for the vertical vortex flow were compared and the causes of errors were analyzed.

  2. GENERALIZED ENERGY CONSERVATION AND UNSTABLE PERTURBATION PROPERTY IN BAROTROPIC VORTEX

    Institute of Scientific and Technical Information of China (English)

    HUANG Hong; ZHANG Ming

    2006-01-01

    Based on a barotropic vortex model, generalized energy-conserving equation was derived and two necessary conditions of basic flow destabilization are gained. These conditions correspond to generalized barotropic instability and super speed instability. They are instabilities of vortex and gravity inertial wave respectively. In order to relate to practical situation, a barotropic vortex was analyzed, the basic flow of which is similar to lower level basic wind field of tropical cyclones and the maximum wind radius of which is 500 km.The results show that generalized barotropic instability depending upon the radial gradient of relative vorticity can appear in this vortex. It can be concluded that unstable vortex Rossby wave may appear in barotropic vortex.

  3. Comparison of four different models of vortex generators

    DEFF Research Database (Denmark)

    Fernandez, U.; Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    A detailed comparison between four different models of vortex generators is presented in this paper. To that end, a single Vortex Generator on a flat plate test case has been designed and solved by the following models. The first one is the traditional mesh-resolved VG and the second one, called...... Actuator Vortex Generator Model (AcVG), is based on the lifting force theory of Bender, Anderson and Yagle, the BAY Model, which provides an efficient method for computational fluid dynamic (CFD) simulations of flow with VGs, and the forces are applied into the computational domain using the actuator shape...... model. This AcVG Model enables to simulate the effects of the Vortex Generators without defining the geometry of the vortex generator in the mesh and makes it easier for researchers the investigations of different vortex generator lay outs. Both models have been archived by the in house EllipSys CFD...

  4. Robust and adjustable C-shaped vortex beams

    CERN Document Server

    Mousley, M; Babiker, M; Yuan, J

    2016-01-01

    Wavefront engineering is an important quantum technology. Here, we demonstrate the design and production of a robust C-shaped and orbital angular momentum (OAM) carrying beam in which the doughnut shaped structure contains an adjustable gap. We find that the presence of the vortex line in the core of the beam is crucial for the robustness of the C-shape against beam propagation. The topological charge of the vortex core controls mainly the size of the C, while its opening angle is controlled by the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. Applications of C-shaped vortex beams include lithography, dynamical atom sorting and atomtronics.

  5. COMPARATIVE ANALYSIS OF PERFORMANCE CHARACTERISTICS OF JET VORTEX TYPE SUPERCHAGES

    Directory of Open Access Journals (Sweden)

    A. Rogovyi

    2016-06-01

    Full Text Available On the basis of mathematical modeling there was carried out a comparative analysis of characteristics of jet vortex type superchargers. Dependences of the energy performance of vortex ejector on the geometry parameters and the largest values in terms of efficiency as well as the coefficient of ejection are analyzed. There were built combined characteristics of vortex chamber pumps and vortex ejectors. Vortex chamber pump has advantage pressure in an exit channel over the vortex ejector, consequently there is a more effective power transmission from a working medium, besides the withdrawal of pumping medium in a tangential channel allows to avoid energy losses owing to rotation of a stream in an exit channel.

  6. Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R. M. da [Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil); Milošević, M. V.; Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Domínguez, D. [Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Río Negro (Argentina); Aguiar, J. Albino, E-mail: albino@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil); Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil)

    2014-12-08

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.

  7. Competing stability modes in vortex structure formation

    Science.gov (United States)

    Garrett, Stephen; Gostelow, J. Paul; Rona, Aldo; McMullan, W. Andrew

    2015-11-01

    Nose cones and turbine blades have rotating components and represent very practical geometries for which the behavior of vortex structures is not completely understood. These two different physical cases demonstrate a common theme of competition between mode and vortex types. The literature concerning boundary-layer transition over rotating cones presents clear evidence of an alternative instability mode leading to counter-rotating vortex pairs, consistent with a centrifugal instability. This is in contrast to co-rotating vortices present over rotating disks that arise from crossflow effects. It is demonstrated analytically that this mode competes with the crossflow mode and is dominant only over slender cones. Predictions are aligned with experimental measurements over slender cones. Concurrent experimental work on the flow over swept cylinders shows that organized fine-scale streamwise vorticity occurs more frequently on convex surfaces than is appreciated. The conventional view of purely two-dimensional laminar boundary layers following blunt leading edges is not realistic and such boundary layers need to be treated three-dimensionally, particularly when sweep is present. The vortical structures are counter-rotating for normal cylinders and co-rotating under high sweep conditions. Crossflow instabilities may have a major role to play in the transition process but the streamline curvature mode is still present, and seemingly unchanged, when the boundary layer becomes turbulent.

  8. Optical vortex beam generator at nanoscale level

    Science.gov (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  9. Plasma spectroscopy using optical vortex laser

    Science.gov (United States)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Toda, Yasunori; Czarnetzki, Uwe; Shikano, Yutaka

    2014-10-01

    Laser spectroscopy is a useful tool for nonintrusive plasma diagnostics; it can provide many important quantities in a plasma such as temperature, density, and flow velocity of ions and neutrals from the spectrum obtained by scanning the frequency of narrow bandwidth laser. Obtainable information is, however, limited in principle to the direction parallel to the laser path. The aim of this study is to introduce a Laguerre-Gaussian beam, which is called as optical vortex, in place of a widely used Hermite-Gaussian beam. One of the remarkable properties of the Laguerre-Gaussian beam is that it carries an angular momentum in contrast to the Hermite-Gaussian beam. It follows that particles in the laser beam feel the Doppler effect even in the transverse direction of the laser path. Therefore it is expected that the limitation imposed by the laser path can be overcome by using an optical vortex laser. The concept of optical vortex spectroscopy, the development of the laser system, and some preliminary results of a proof-of-principle experiment will be presented. This work is performed with the support and under the auspices of NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI Grant Number 25287152.

  10. Monopole-Antimonopole and Vortex Rings

    CERN Document Server

    Teh, R; Teh, Rosy; Wong, Khai-Ming

    2004-01-01

    The SU(2) Yang-Mills-Higgs theory supports the existence of monopoles, antimonopoles, and vortex rings. In this paper, we would like to present new exact static antimonopole-monopole-antimonopole (A-M-A) configurations. The net magnetic charge of these configurations is always negative one, whilst the net magnetic charge at the origin is always positive one for all positive integer values of the solution parameter $m$. However, when $m$ increases beyond one, vortex rings appear coexisting with these A-M-A configurations. The number of vortex rings increases proportionally with the value of $m$. They are magnetically neutral and are located in space where the Higgs field vanishes. We also show that a single point singularity in the Higgs field need not corresponds to a structureless 1-monopole at the origin but to a zero size monopole-antimonopole-monopole (MAM) structure. These exact solutions are a different kind of BPS solutions as they satisfy the first order Bogomol'nyi equation but possess infinite energ...

  11. Monopole-antimonopole and vortex rings

    Science.gov (United States)

    Teh, Rosy; Wong, Khai-Ming

    2005-08-01

    The SU(2) Yang-Mills-Higgs theory supports the existence of monopoles, antimonopoles, and vortex rings. In this paper, we would like to present new exact static antimonopole-monopole-antimonopole (A-M-A) configurations. The net magnetic charge of these configurations is always -1, while the net magnetic charge at the origin is always +1 for all positive integer values of the solution's parameter m. However, when m increases beyond 1, vortex rings appear coexisting with these AMA configurations. The number of vortex rings increases proportionally with the value of m. They are located in space where the Higgs field vanishes along rings. We also show that a single-point singularity in the Higgs field does not necessarily correspond to a structureless 1-monopole at the origin but to a zero-size monopole-antimonopole-monopole (MAM) structure when the solution's parameter m is odd. This monopole is the Wu-Yang-type monopole and it possesses the Dirac string potential in the Abelian gauge. These exact solutions are a different kind of Bogomol'nyi-Prasad-Sommerfield (BPS) solutions as they satisfy the first-order Bogomol'nyi equation but possess infinite energy due to a point singularity at the origin of the coordinate axes. They are all axially symmetrical about the z-axis.

  12. The Geologic Story of Mount Rainier

    Science.gov (United States)

    Crandell, Dwight Raymond

    1969-01-01

    Ice-clad Mount Rainier, towering over the landscape of western Washington, ranks with Fuji-yama in Japan, Popocatepeti in Mexico, and Vesuvius in Italy among the great volcanoes of the world. At Mount Rainier, as at other inactive volcanoes, the ever-present possibility of renewed eruptions gives viewers a sense of anticipation, excitement, and apprehension not equaled by most other mountains. Even so, many of us cannot imagine the cataclysmic scale of the eruptions that were responsible for building the giant cone which now stands in silence. We accept the volcano as if it had always been there, and we appreciate only the beauty of its stark expanses of rock and ice, its flower-strewn alpine meadows, and its bordering evergreen forests. Mount Rainier owes its scenic beauty to many features. The broad cone spreads out on top of a major mountain range - the Cascades. The volcano rises about 7,000 feet above its 7,000-foot foundation, and stands in solitary splendor - the highest peak in the entire Cascade Range. Its rocky ice-mantled slopes above timberline contrast with the dense green forests and give Mount Rainier the appearance of an arctic island in a temperate sea, an island so large that you can see its full size and shape only from the air. The mountain is highly photogenic because of the contrasts it offers among bare rock, snowfields, blue sky, and the incomparable flower fields that color its lower slopes, shadows cast by the multitude of cliffs, ridges, canyons, and pinnacles change constantly from sunrise to sunset, endlessly varying the texture and mood of the mountain. The face of the mountain also varies from day to day as its broad snowfields melt during the summer. The melting of these frozen reservoirs makes Mount Rainier a natural resource in a practical as well as in an esthetic sense, for it ensures steady flows of water for hydroelectric power in the region, regardless of season. Seen from the Puget Sound country to the west, Mount Rainier has

  13. Mapping the Spread of Mounted Warfare

    Directory of Open Access Journals (Sweden)

    Peter Turchin

    2016-12-01

    Full Text Available Military technology is one of the most important factors affecting the evolution of complex societies. In particular, mounted warfare, the use of horse-riders in military operations, revolutionized war as it spread to different parts of Eurasia and Africa during the Ancient and Medieval eras, and to the Americas during the Early Modern period. Here we use a variety of sources to map this spread.

  14. Development of Magnetorheological Engine Mount Test Rig

    OpenAIRE

    Md Yunos Mohd Razali; Harun Mohamad Hafiz; Sariman M.Z.; Mat Yamin A.K.

    2017-01-01

    Ride comfort is an important factor in any road vehicle performance. Nonetheless, passenger ride comfort is sometimes affected by the vibrations resulting from the road irregularities. Vehicle ride comfort is also often compromised by engine vibration. Engine mount is one of the devices which act as vibration isolator from unwanted vibration from engine to the driver and passengers. This paper explains the development of the test rig used for laboratory testing of Magnetorheological (MR) engi...

  15. Indexing Mount For Rotation Of Optical Component

    Science.gov (United States)

    Reichle, Donald J., Jr.; Barnes, Norman P.

    1993-01-01

    Indexing mount for polarizer, wave plate, birefringent plate, or other optical component facilitates rotation of component to one or more preset angles. Includes hexagonal nut holding polarizer or other optical component. Ball bearing loaded by screw engages notch on cylindrical extension of nut engaging bracket. Time-consuming and tedious angular adjustment unnecessary: component turned quickly and easily, by hand or by use of wrench, to preset angular positions maintained by simple ball-detent mechanism.

  16. Lagrangian analysis of fluid transport in empirical vortex ring flows

    OpenAIRE

    Shadden, Shawn C.; Dabiri, John O.; Marsden, Jerrold E.

    2006-01-01

    In this paper we apply dynamical systems analyses and computational tools to fluid transport in empirically measured vortex ring flows. Measurements of quasisteadily propagating vortex rings generated by a mechanical piston-cylinder apparatus reveal lobe dynamics during entrainment and detrainment that are consistent with previous theoretical and numerical studies. In addition, the vortex ring wake of a free-swimming Aurelia aurita jellyfish is measured and analyzed in the framework of dynami...

  17. Experimental demonstration of vortex pancake in high temperature superconductor

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-xian; ZHANG Yu-heng

    2006-01-01

    In order to demonstrate the existence of the vortex pancake in high temperature superconductor experimentally,a configuration in which the current and voltage electrodes lies separately on the top and bottom surface is used.The E-j relation obtained with this electrodes spatial configuration is different from the expected E-j behavior of the stiff vortex line model.Thus,the current results support the existence of the vortex pancake in high temperature superconductor.

  18. Dynamic Evolution Equations for Isolated Smoke Vortexes in Rational Mechanics

    OpenAIRE

    2011-01-01

    Smoke circle vortexes are a typical dynamic phenomenon in nature. The similar circle vortexes phenomenon appears in hurricane, turbulence, and many others. A semi-empirical method is constructed to get some intrinsic understanding about such circle vortex structures. Firstly, the geometrical motion equations for smoke circle is formulated based on empirical observations. Based on them, the mechanic dynamic motion equations are established. Finally, the general dynamic evolution equations for ...

  19. Multi-frequency response of a cylinder subjected to vortex shedding and support motions

    Energy Technology Data Exchange (ETDEWEB)

    Vikestad, Kyrre

    1998-12-31

    This thesis deals with an experimental investigation of vortex induced vibrations of a circular cylinder. The purpose of the experiment was to identify the influence from a controlled disturbance of the cylinder motions on the response caused by vortex shedding. The cylinder investigated is 2 m long and the diameter is 10 cm. The cylinder is elastically mounted in an apparatus using springs, where the foundation of one of the springs can have a harmonic motion. The apparatus is placed on a carriage in a 25 m long towing tank. Towing velocities are varied between 0.140 m/s and 0.655 m/s corresponding to reduced velocity range from 2.8 to 13.2. The still water natural frequency is 0.497 Hz, and the natural frequency in air is 0.634 Hz. The cylinder is only able to oscillate in the cross-flow direction. The support motion frequency was varied between 0.26 Hz and 1.01 Hz, and the force motion amplitude was varied using 2, 4 and 6 cm support amplitudes. Three sets of experiments were carried out: (1) Still water oscillations due to harmonic support motion excitation, support amplitude and frequencies varied, (2) Towing tests with no support motion, the velocity is varied, (3) Combined excitation: Towing tests with support motion. All possible combinations of experiments (1) and (2) are carried out. The two first experiments provide reference values for the combined excitation experiments and for verification purposes. The results reveal the ability of the external disturbance to influence the vortex shedding process both regarding frequency and the resulting response amplitudes. Results for added mass, in-line drag and damping are also obtained. The work may be of use in deep water floating petroleum production. 81 refs., 73 figs., 6 tabs.

  20. Vortex-induced vibration of a cylinder with two degrees of freedom

    Science.gov (United States)

    Jauvtis, N.; Williamson, C. H. K.

    2003-06-01

    In this work, we study the response of an elastically mounted cylinder, which is free to move in two degrees of freedom in a fluid flow, and which has low mass and damping. There has been a great deal of work concerned with bodies restrained to move in the direction transverse to the free stream, but very few studies which comprise motion in both the transverse (/Y) and in-line (/X) directions. In such cases, it has generally been assumed that in-line response would dramatically change the character of the wake vortex dynamics as well as the transverse body response. We find in the present work that, surprisingly, the freedom to move in two directions has very little effect on the transverse response, the modes of vibration, or the vortex wake dynamics (for a body of similar low mass ratio (relative density) in the range m*=5-25). For low values of normalised velocity (U*~2-4) below the classical synchronisation regime for transverse response, we find two in-line vibration modes, which are associated with symmetric and antisymmetric vortex wake modes, corresponding well with the modes discovered by Wooton et al. and by King for a flexible cantilever. Coupled with a parallel effort by D.O. Rockwell's group at Lehigh, these experiments form the first such studies in which both the oscillating mass and the natural frequency are precisely the same in the /X and /Y directions. A principal conclusion from this investigation is that it demonstrates the validity, for bodies in two degrees of freedom, of employing the existing comprehensive results for bodies restrained to vibrate only in the transverse Y-direction, even down to low mass ratios of m*=5.

  1. MEMS accelerometers in accurate mount positioning systems

    Science.gov (United States)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  2. Atmospheric Pb levels over Mount Qomolangma region

    Institute of Scientific and Technical Information of China (English)

    Renjian Zhang; Zhenxing Shen; Han Zou

    2009-01-01

    The Pb spectral concentration of atmospheric aerosol samples observed over Mount Qomolangma site (28°11'33"N, 86°49'59"E, 4950 m ASL) in 2002 was 13.3 ng/m3, about 4.5 times higher than that in 2000. The Pb spectral distribution showed three peaks, located at <0.25 μm, 0.5-1 μm, and 4-8 μm in diameters. The peaks for <0.25 μm and 0.25-0.5 μm may be due to long-distant transport, while that for 4-8 μm probably results from local floating dust. The atmospheric Pb concentration over Mount Qomolangma was lower than that of South Pole, most of the urban areas, and desert areas in the northem hemisphere. The enrichment factors for fine and coarse particles of atmospheric Pb in 2002 over Mount Qomolangma were 413.2 and 62.6, respectively, in support of the slight atmospheric pollution with Pb over the Qinghai-Tibetan Plateau.

  3. Flow distortion on boom mounted cup anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Lindeloew-Marsden, P.; Pedersen, Troels F.; Gottschall, J.; Vesth, A.; Paulsen, R.W.U.; Courtney, M.S.

    2010-08-15

    In this report we investigate on wind direction dependent errors in the measurement of the horizontal wind speed by boom mounted cup anemometers. The boom mounting on the studied lattice tower is performed according to IEC standard design rules, yet, larger deviations than predicted by flow models are observed. The errors on the measurements are likely caused by an underestimation of the flow distortions around the tower. In this paper an experimental method for deriving a correction formula and an in-field calibration is suggested. The method is based on measurements with two cup anemometers mounted with booms at the same height but pointing in 60 deg. different directions. In the examined case of a 1.9 m wide equilateral triangular lattice tower with booms protruding 4.1 m at 80 m height the measurement errors are observed to reach up to +- 2 %. Errors of this magnitude are severely problematic in the measurement of wind turbine power performance, wind resource assessment and for providing purposeful in-field comparisons between different sensors, e.g. lidar anemometers. With the proposed method, direction dependent errors can be extracted and the mast flow distortion effect on the wind measurements corrected to an uncertainty estimated to better than 0.5%. This level of uncertainty is probably acceptable for the above mentioned applications. (author)

  4. Wake Vortex Inverse Model User's Guide

    Science.gov (United States)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input

  5. Observation of Vortex Patterns in a Magnetized Dusty Plasma System

    Institute of Scientific and Technical Information of China (English)

    HUANG Feng; YE Maofu; WANG Long; LIU Yanhong

    2007-01-01

    Vortex patterns of dust particles have been observed in a magnetized dusty plasma system. The formation mechanism of two-dimensional (2D) vortex patterns has been investigated by analysing the forces acting on dust particles and molecular dynamics (MD) simulations in a 2D confined magnetized dusty plasma. It has been found that with a weak confining electric field and a strong magnetic field, the particles' trajectories will form a vortex shape. The simulation results agree with our experimental observations. In our experiments, vortex patterns can be induced via circular rotation of particles by changing the rf (radio-frequency) power in a magnetized dusty plasma.

  6. Dynamic Evolution Equations for Isolated Smoke Vortexes in Rational Mechanics

    CERN Document Server

    Jianhua, Xiao

    2011-01-01

    Smoke circle vortexes are a typical dynamic phenomenon in nature. The similar circle vortexes phenomenon appears in hurricane, turbulence, and many others. A semi-empirical method is constructed to get some intrinsic understanding about such circle vortex structures. Firstly, the geometrical motion equations for smoke circle is formulated based on empirical observations. Based on them, the mechanic dynamic motion equations are established. Finally, the general dynamic evolution equations for smoke vortex are formulated. They are dynamic evolution equations for exact stress field and dynamic evolution equations for average stress field. For industrial application and experimental data processing, their corresponding approximation equations for viscous fluid are given. Some simple discussions are made.

  7. Vortex Strings and Nonabelian sine-Gordon Theories

    CERN Document Server

    Park, Q H

    1999-01-01

    We generalize the Lund-Regge model for vortex string dynamics in 4-dimensional Minkowski space to the arbitrary n-dimensional case. The n-dimensional vortex equation is identified with a nonabelian sine-Gordon equation and its integrability is proven by finding the associated linear equations of the inverse scattering. An explicit expression of vortex coordinates in terms of the variables of the nonabelian sine-Gordon system is derived. In particular, we obtain the n-dimensional vortex soliton solution of the Hasimoto-type from the one soliton solution of the nonabelian sine-Gordon equation.

  8. Two possible mechanisms for vortex self-organization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The vortex self-organization is investigated in this paper by four groups of numerical experiments within the framework of quasi-geostrophic model, and based on the experimental results two types of possible mechanisms for vortex self-organization are suggested. The meso-scale topography may enable separated vortices to merge into a larger scale vortex; and the interaction of meso-γand meso-β scale systems may make separated vortices to self organize a typhoon-like vortex circulation.

  9. Wake Vortex Field Measurement Program at Memphis, Tennessee: Data Guide

    Science.gov (United States)

    Campbell, S. D.; Dasey, T. J.; Freehart, R. E.; Heinrichs, R. M.; Mathews, M. P.; Perras, G. H.; Rowe, G. S.

    1997-01-01

    Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.

  10. Alteration of helical vortex core without change in flow topology

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2011-01-01

    The abrupt expansion of the slender vortex core with changes in flow topology is commonly known as vortex breakdown. We present new experimental observations of an alteration of the helical vortex core in wall bounded turbulent flow with abrupt growth in core size, but without change in flow...... topology. The helical symmetry as such is preserved, although the characteristic parameters of helical symmetry of the vortex core transfer from a smooth linear variation to a different trend under the influence of a non-uniform pressure gradient, causing an increase in helical pitch without changing its...

  11. Helicity conservation under quantum reconnection of vortex rings

    CERN Document Server

    Zuccher, Simone

    2016-01-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross- Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion and intrinsic twist of the reconnecting vortex rings.

  12. Boson-Vortex Duality in 3+1 Dimensions for Open Vortex Lines Ending on Dark Solitons

    CERN Document Server

    Mateo, A Muñoz; Nian, Jun

    2016-01-01

    We propose a boson-vortex duality in 3+1 dimensions for open vortex lines together with planar dark solitons to which the endpoints of vortex lines are attached. Combining the one-form gauge field living on the soliton plane which couples to the endpoints of vortex lines and the two-form gauge field which couples to vortex lines, we obtain a gauge-invariant dual action of open vortex lines with their endpoints attached to dark solitons. We demonstrate numerically the existence of such stationary composite topological excitations in scalar Bose-Einstein condensates. Dynamically stable states of this type are found at low values of the chemical potential in channeled condensates, where the long-wavelength instability of dark solitons is prevented. Our results are reported for parameters typical of current experiments, and open up a way to explore the interplay of different topological structures in scalar Bose-Einstein condensations.

  13. The mechanism of vortex switching in magnetic nanodots under circular magnetic field. II. The dynamics of spin plaquette with vortex

    CERN Document Server

    Kovalev, A S

    2003-01-01

    A plaquette spin system in a vortex configuration is considered analytically and numerically to treat theoretically the vortex switching in magnetic nanodots due to the action of external circular magnetic field. The initial (linear) stage of the switching is analyzed. The analytical results obtained confirm the numerical data on the plaquette dynamics. Both the numerical analysis and the analytical consideration of the initial activation stage show the importance of taking into account the system azimuthal modes. At the frequencies of these modes the most rapid amplification of the vortex energy and the total out-of-plane magnetization occurs. The growth of the modes amplitudes gives rise to a parametrical activation of the low-frequency symmetric mode, and in turn causes the vortex switching. The results obtained provide a qualitative explanation of the numerical data on vortex switching in large-sized magnetic systems and may be used in experiments on guided effect on vortex polarization in magnetic nanodo...

  14. Effects of Structural Flexibility on Aircraft-Engine Mounts

    Science.gov (United States)

    Phillips, W. H.

    1986-01-01

    Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.

  15. 46 CFR 61.05-15 - Boiler mountings and attachments.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler mountings and attachments. 61.05-15 Section 61.05... TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-15 Boiler mountings and attachments. (a....05-10. (b) Each stud or bolt for each boiler mounting that paragraph (c) of this section requires...

  16. [The controversy of routine articulator mounting in orthodontics].

    Science.gov (United States)

    Wang, Li; Han, Xianglong; Bai, Ding

    2013-06-01

    Articulators have been widely used by clinicians of dentistry. But routine articulator mounting is still controversial in orthodontics. Orthodontists oriented by gnathology approve routine articulator mounting while nongnathologic orthodontists disapprove it. This article reviews the thoughts of orthodontist that they agree or disagree with routine articulator mounting based on the considerations of biting, temporomandibular disorder (TMD), periodontitis, and so on.

  17. Guiding-center dynamics of vortex dipoles in Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Middelkamp, S.; Schmelcher, P. [Zentrum fuer Optische Quantentechnologien, Universitaet Hamburg, Luruper Chaussee 149, DE-22761 Hamburg (Germany); Torres, P. J. [Departamento de Matematica Aplicada, Universidad de Granada, ES-18071 Granada (Spain); Kevrekidis, P. G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515 (United States); Frantzeskakis, D. J. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece); Carretero-Gonzalez, R. [Nonlinear Dynamical System Group, Computational Science Research Center and Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182-7720 (United States); Freilich, D. V.; Hall, D. S. [Department of Physics, Amherst College, Amherst, Massachusetts 01002-5000 (United States)

    2011-07-15

    A quantized vortex dipole is the simplest vortex molecule, comprising two countercirculating vortex lines in a superfluid. Although vortex dipoles are endemic in two-dimensional superfluids, the precise details of their dynamics have remained largely unexplored. We present here several striking observations of vortex dipoles in dilute-gas Bose-Einstein condensates, and develop a vortex-particle model that generates vortex line trajectories that are in good agreement with the experimental data. Interestingly, these diverse trajectories exhibit essentially identical quasiperiodic behavior, in which the vortex lines undergo stable epicyclic orbits.

  18. 30 Cool Facts about Mount St. Helens

    Science.gov (United States)

    Driedger, Carolyn; Liz, Westby; Faust, Lisa; Frenzen, Peter; Bennett, Jeanne; Clynne, Michael

    2010-01-01

    Commemorating the 30th anniversary of the 1980 eruptions of Mount St. Helens 1-During the past 4,000 years, Mount St. Helens has erupted more frequently than any other volcano in the Cascade Range. 2-Most of Mount St. Helens is younger than 3,000 years old (younger than the pyramids of Egypt). 3-Some Native American names that refer to smoke at the volcano include- Lawala Clough, Low-We- Lat-Klah, Low-We-Not- Thlat, Loowit, Loo-wit, Loo-wit Lat-kla, and Louwala-Clough. 4-3,600 years ago-Native Americans abandoned hunting grounds devastated by an enormous eruption four times larger than the May 18, 1980 eruption. 5-1792-Captain George Vancouver named the volcano for Britain's ambassador to Spain, Alleyne Fitzherbert, also known as Baron St. Helens. 6-1975-U.S. Geological Survey geologists forecasted that Mount St. Helens would erupt again, 'possibly before the end of the century.' 7-March 20, 1980-A magnitude 4.2 earthquake signaled the reawakening of the volcano after 123 years. 8-Spring 1980-Rising magma pushed the volcano's north flank outward 5 feet per day. 9-Morning of May 18, 1980- The largest terrestrial landslide in recorded history reduced the summit by 1,300 feet and triggered a lateral blast. 10-Within 3 minutes, the lateral blast, traveling at more than 300 miles per hour, blew down and scorched 230 square miles of forest. 11-Within 15 minutes, a vertical plume of volcanic ash rose over 80,000 feet. 12-Afternoon of May 18, 1980-The dense ash cloud turned daylight into darkness in eastern Washington, causing streetlights to turn on in Yakima and Ritzville. 13-The volcanic ash cloud drifted east across the United States in 3 days and encircled Earth in 15 days. 14-Lahars (volcanic mudflows) filled rivers with rocks, sand, and mud, damaging 27 bridges and 200 homes and forcing 31 ships to remain in ports upstream. 15-The May 18, 1980 eruption was the most economically destructive volcanic event in U.S. history. 16-Small plants and trees beneath winter snow

  19. Vortex erosion in a shallow water model of the polar vortex

    Science.gov (United States)

    Beaumont, Robin; Kwasniok, Frank; Thuburn, John

    2017-06-01

    The erosion of a model stratospheric polar vortex in response to bottom boundary forcing is investigated numerically. Stripping of filaments of air from the polar vortex has been implicated in the occurrence of stratospheric sudden warmings (SSWs) but it is not understood in detail what factors determine the rate and amount of stripping. Here a shallow water vortex forced by topography is used to investigate the factors initiating stripping and whether this leads the vortex to undergo an SSW. It is found that the amplitude of topographic forcing must exceed some threshold (of order 200-450 m) in order for significant stripping to occur. For larger forcing amplitudes significant stripping occurs, but not as an instantaneous response to the forcing; rather, the forcing appears to initiate a process that ultimately results in stripping several tens of days later. There appears to be no simple quantitative relationship between the amount of mass stripped and the topography amplitude. However, at least over the early stages of the experiments, there is a good correlation between the amount of mass stripped and the global integral of wave activity, which may be interpreted as a measure of the accumulated topographic forcing. Finally there does not appear to be a simple correspondence between amount of mass stripped and the occurrence of an SSW.

  20. A Hybrid Vortex Sheet / Point Vortex Model for Unsteady Separated Flows

    Science.gov (United States)

    Darakananda, Darwin; Eldredge, Jeff D.; Colonius, Tim; Williams, David R.

    2015-11-01

    The control of separated flow over an airfoil is essential for obtaining lift enhancement, drag reduction, and the overall ability to perform high agility maneuvers. In order to develop reliable flight control systems capable of realizing agile maneuvers, we need a low-order aerodynamics model that can accurately predict the force response of an airfoil to arbitrary disturbances and/or actuation. In the present work, we integrate vortex sheets and variable strength point vortices into a method that is able to capture the formation of coherent vortex structures while remaining computationally tractable for control purposes. The role of the vortex sheet is limited to tracking the dynamics of the shear layer immediately behind the airfoil. When parts of the sheet develop into large scale structures, those sections are replaced by variable strength point vortices. We prevent the vortex sheets from growing indefinitely by truncating the tips of the sheets and transfering their circulation into nearby point vortices whenever the length of sheet exceeds a threshold. We demonstrate the model on a variety of canonical problems, including pitch-up and impulse translation of an airfoil at various angles of attack. Support by the U.S. Air Force Office of Scientific Research (FA9550-14-1-0328) with program manager Dr. Douglas Smith is gratefully acknowledged.

  1. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  2. Observational Facts of Sustained Departure Plateau Vortexes

    Institute of Scientific and Technical Information of China (English)

    YU Shuhua; GAO Wenliang; PENG Jun; XIAO Yuhua

    2014-01-01

    By using the twice-daily atmospheric observation data from 1998 to 2012, station rainfall data, Tropical Rainfall Measure Mission (TRMM) data, as well as the plateau vortex and shear line year book, charac-teristics of the sustained departure plateau vortexes (SDPVs) are analyzed. Some new useful observational facts and understanding are obtained about the SDPV activities. The following results are obtained. (1) The active period of SDPVs is from June to August, most in July, unlike that of the unsustained depar-ture plateau vortexes (UDPVs), which have same occurrence frequencies in the three summer months. (2) The SDPVs, generated mainly in the Qumalai neighborhood and situated in a sheared surrounding, move eastward or northeastward, while the UDPVs are mainly led by the upper-level trough, and move eastward or southeastward. (3) The SDPVs influence wide areas of China, even far to the Korean Peninsula, Japan, and Vietnam. (4) The SDPVs change their intensities and properties on the way to the east. Most of them become stronger and produce downpour or sustained regional rainstorms to the south of Yellow River. (5) The longer the SDPV sustains, the more baroclinity it has. (6) When an SDPV moves into the sea, its central pressure descends and rainfall increases in all probability. (7) An SDPV might spin over the bend of the Yellow River when there exists a tropical cyclone in the East China Sea. It could also move oppositely to a landed tropical low pressure originated from the sea to the east of Taiwan or from the South China Sea.

  3. Frequency response of Lamb-Oseen vortex

    Science.gov (United States)

    Blanco-Rodríguez, F. J.; Parras, L.; del Pino, C.

    2016-12-01

    In this numerical study we present the frequency response of the Lamb-Oseen (Gaussian) vortex for two synthetic jet configurations. The first one consists of an annular axial jet that is superimposed on the Gaussian vortex. The other configuration deals with an off-axis, single-point, axial jet (SPI). We detect that the system responds to the forcing for a given axial wavenumber, k, exciting natural modes of the vortex by a resonance mechanism. We propose an explanation for the physical mechanism responsible for the maximum energy gain obtained by comparing our results with the different branches found theoretically by Fabre et al (2006 J. Fluid Mech. 551 235-74). We find high energy gains in both cases ({G}∞ ≃ {10}3 for the annular jet and {G}∞ ≃ {10}4 for the SPI jet), so these types of forcing are able to produce responses of the system strong enough to reach a non-linear state. Axisymmetric modes, with azimuthal wavenumber m = 0, produce the highest energy gain while applying an annular forcing. However, other modes, such as the helical one m = 1 and also double helix modes with m = 2, contribute in the SPI configuration. We find that the best region to be tested experimentally in both cases is the region that corresponds to the L2 branch described by Fabre and his collaborators. Furthermore, and whenever using these L2 branch frequencies, the response of the system is always axisymmetric, independently of the type of excitation. Finally, we conclude that the energy gain with the SPI jet is one order of magnitude greater than for the annular jet, so that the single-point off-axis jet is a feasible candidate to design a control device.

  4. Creating Gaze Annotations in Head Mounted Displays

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Qvarfordt, Pernilla

    2015-01-01

    , the user simply captures an image using the HMD’s camera, looks at an object of interest in the image, and speaks out the information to be associated with the object. The gaze location is recorded and visualized with a marker. The voice is transcribed using speech recognition. Gaze annotations can......To facilitate distributed communication in mobile settings, we developed GazeNote for creating and sharing gaze annotations in head mounted displays (HMDs). With gaze annotations it possible to point out objects of interest within an image and add a verbal description. To create an annota- tion...

  5. AO corrected satellite imaging from Mount Stromlo

    Science.gov (United States)

    Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.

    2016-07-01

    The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.

  6. Habitat changes: Mount Haggin Wildlife Management Area

    Science.gov (United States)

    Frisina, M.R.; Keigley, R.B.

    2004-01-01

    In 1984, a rest-rotation grazing system was established on the Mount Haggin Wildlife Management Area (MHWMA) in southwest Montana. The area is a mixture of wet and dry meadow types, grass/shrublands, and forest. Prior to implementing the grazing system, photo-monitoring points were established on the MHWMA at locations were cattle concentrate were grazing. The area consists of a three pasture rest-rotation system incorporating 20,000 acres. Photo essays revealed changes in riparian, lowland, and upland sites within the grazing system. In addition, gross changes in the amount of willow present were documented.

  7. Boundary conditions for viscous vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Koumoutsakos, P.; Leonard, A.; Pepin, F. (California Institute of Technology, Pasadena, CA (United States))

    1994-07-01

    This paper presents a Neumann-type vorticity boundary condition for the vorticity formulation of the Navier-Stokes equations. The vorticity creation process at the boundary, due to the no-slip condition, is expressed in terms of a vorticity flux. The scheme is incorporated then into a Lagrangian vortex blob method that uses a particle strength exchange algorithm for viscous diffusion. The no-slip condition is not enforced by the generation of new vortices at the boundary but instead by modifying the strength of the vortices in the vicinity of the boundary. 19 refs., 5 figs.

  8. New Vortex States in Mesoscopic Aluminum Structures

    Science.gov (United States)

    Terai, Y.; Yakabe, T.; Terakura, C.; Terashima, T.; Yasuzuka, S.; Takamasu, T.; Uji, S.

    2003-03-01

    We report resistance measurements in mesoscopic Al ring and disks whose sizes are much smaller than the superconducting coherence length of Al bulk. In the magnetic filed, the ring sample shows periodic oscillations in the resistance known as Little-Park oscillations in superconducting rings. In the disks, non-periodic resistance peaks are observed, which are due to transitions between the quantized states with different orbital quantum numbers. When the sample size is sufficiently small, the circular and square disks show a remarkable difference in the field intervals of the non-periodic resistance peaks. The results suggest that a new vortex state is induced by the effect of the sample topology.

  9. Vectorial rotating vortex Hankel laser beams

    Science.gov (United States)

    Kotlyar, Victor V.; Kovalev, Alexey A.; Soifer, Victor A.

    2016-09-01

    We propose a generalization of spherical waves in the form of linearly polarized beams with embedded optical vortices. The source of these beams is an infinitely narrow light ring with an infinitely small radius. These vectorial beams are obtained based on scalar Hankel beams discovered by the authors recently. We have derived explicit relations for complex amplitudes of all six components of vectorial vortex Hankel beams. A closed analytical expression for the axial projection of the orbital angular momentum density in far field has been obtained. We also showed that the intensity distribution of the electric vector rotates by 90 degrees upon the beam propagation in near field.

  10. Point vortex dynamics: A classical mathematics playground

    DEFF Research Database (Denmark)

    Aref, Hassan

    2007-01-01

    The idealization of a two-dimensional, ideal flow as a collection of point vortices embedded in otherwise irrotational flow yields a surprisingly large number of mathematical insights and connects to a large number of areas of classical mathematics. Several examples are given including...... the integrability of the three-vortex problem, the interplay of relative equilibria of identical vortices and the roots of certain polynomials, addition formulas for the cotangent and the Weierstrass zeta function, projective geometry, and other topics. The hope and intent of the article is to garner further...

  11. Aperiodicity Correction for Rotor Tip Vortex Measurements

    Science.gov (United States)

    2011-05-01

    Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Wire Anemometry (HWA), see, e.g., Refs. 1–5. Further- more, for such point measurement techniques...components along x- and y-axis, ms−1 uc, vc Vortex convection velocities, ms−1 Vθ Swirl velocity, ms−1 x, y, z Measurement coordinate system, mm xc, yc...techniques such LDV and Hot - 1 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is

  12. Vortex motion in YBCO thin films

    Science.gov (United States)

    Shapiro, V.; Verdyan, A.; Lapsker, I.; Azoulay, J.

    1999-09-01

    Hall resistivity measurements as function of temperature in the vicinity of Tc were carried out on a thin films YBCO superconductors. A sign reversal of Hall voltage with external magnetic field applied along c axis have been observed upon crossing Tc. Hall voltage in the mixed state was found to be insensitive to the external magnetic field inversion. These effects are discussed and explained in terms of vortex motion under the influence of Magnus force balanced by large damping force. It is argued that in this model the flux-line velocity has component opposite to the superfluid current direction thus yielding a negative Hall voltage.

  13. Sound radiation by a plane localized vortex

    Science.gov (United States)

    Yakovlev, P. G.

    2012-07-01

    A classical problem on small-scale fluctuations of the Rankine vortex in a compressible gas has been numerically simulated. Euler equations for a compressible gas have been solved by the CABARET method. Simulation results well predict the value of the eigenfrequency of the boundary fluctuations for the azimuthal harmonic n = 2 and almost coincide with the analytic solution. The value of the acoustic instability increment has been quantitatively predicted despite the fact that it is small and it has been revealed at a fluctuation number higher than 100.

  14. Tomographic PIV measurements of a regenerating hairpin vortex

    Science.gov (United States)

    Sabatino, D. R.; Rossmann, T.

    2016-01-01

    The three-dimensional formation and regeneration of a hairpin vortex in a laminar boundary layer is studied in a free-surface water channel. The vortex is generated by fluid injection through a narrow slot into a laminar boundary layer (Re_{δ ^*} = 485) and recorded with tomographic particle image velocimetry. The swirling strength based on the λ _2 criterion shows that the hairpin initially forms at the upstream edge of the elongated ring vortex produced by the injection. The elongated ring vortex decays while the hairpin vortex strengthens. Because the hairpin vortex is of sufficient strength, it forms a kink in the legs as a result of inviscid induction. A bridging structure forms between the legs initially upstream of the kink. As this structure dissipates, another bridging structure forms downstream of the kink and closes the vortex loop between the legs. This pinches off the original hairpin head such that two distinct vortices result. The formation of the secondary hairpin head does not appear to be preceded by a reduction in the spanwise gap between the legs or significant change in height above the wall as has been seen when exposed to a mean turbulent profile. Instead, the formation is preceded by the stretching of the hairpin legs downstream of the kink, exposes the ejected fluid between the legs to boundary layer flow producing conditions similar to those that formed the initial hairpin vortex.

  15. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales

    Science.gov (United States)

    Curran, P. J.; Desoky, W. M.; Milos̆ević, M. V.; Chaves, A.; Laloë, J.-B.; Moodera, J. S.; Bending, S. J.

    2015-01-01

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications. PMID:26492969

  16. Generating and analyzing non-diffracting vector vortex beams

    CSIR Research Space (South Africa)

    Li, Y

    2013-08-01

    Full Text Available We experimentally generate non-diffracting vector vortex beams by using a Spatial Light Modulator (SLM) and an azimuthal birefringent plate (q-plate). The SLM generates scalar Bessel beams and the q-plate converts them to vector vortex beams. Both...

  17. Bifurcation of Vortex Density Current in Trapped Bose Condensates

    Institute of Scientific and Technical Information of China (English)

    XU Tao; ZHANG ShengLi

    2002-01-01

    Vortex density current in the Gross-Pitaevskii theory is studied. It is shown that the inner structure of the topological vortices can be classified by Brouwer degrees and Hopf indices of φ-mapping. The dynamical equations of vortex density current have been given. The bifurcation behavior at the critical points of the current is discussed in detail.

  18. The origins of a wind turbine tip vortex

    NARCIS (Netherlands)

    Micallef, D.; Akay, B.; Simao Ferreira, C.J.; Sant, T.; Van Bussel, G.J.W.

    2014-01-01

    The tip vortex of a wind turbine rotor blade originates as a result of a complex distribution of vorticity along the blade tip thickness. While the tip vortex evolution was extensively studied previously in other work, the mechanism of the initiation of the tip vorticity in a 3D rotating environment

  19. The Retrogressive movement of eccentric vortex in the Column Vessel

    OpenAIRE

    赤澤, 孝; Akazawa, Takashi

    2012-01-01

    Our experiment found that the center of an eccentric vortex retrogrades and move nutationally when modeled using an eccentric vortex of water in the column vessel. This paper reports that this retrogressive movement is established and caused by the propagation of only one wave. This result is in line with the findings of previous experiments.

  20. Formation of Periodic Vortex Streets Driven by the Lorents Force

    OpenAIRE

    池端, 義人; 本地, 弘之; 杉原, 裕司

    1996-01-01

    Quasi-2D periodic vortex streets, driven by the Lorentz force due to the interaction of a localized magnetic field with an electrolytic current, have been investigated experimentally using a shallow water tank with a movable bottom floor. The vortex street formation has also been investigated numerically and some simulated flow patterns are presented.

  1. Motion of a Vortex Filament in the Half Space

    CERN Document Server

    Aiki, Masashi

    2010-01-01

    A model equation for the motion of a vortex filament immersed in three dimensional, incompressible and inviscid fluid is investigated as a humble attempt to model the motion of a tornado. We solve an initial-boundary value problem in the half space where we impose a boundary condition in which the vortex filament is allowed to move on the boundary.

  2. Nanostructuring superconducting vortex matter with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guillamón, I. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Kulkarni, P.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Córdoba, R.; Sesé, J. [Laboratorio de Microscopías Avanzadas (LMA) – Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza 50009 (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); and others

    2014-08-15

    Highlights: • Nanostructuring vortex matter with focused ion beams. • Nanofabrication produces high vortex density gradients. • Patterning gives nanocrystalline vortex lattice. - Abstract: Focused ion beams provide new opportunities to create small nanofabricated structures. Materials where this technique is successfully applied are different from those that are widely used in e-beam or photolithography processes. Arrays of holes have been fabricated in several layered superconductors, such as the transition metal dichalcogenides. A focused ion beam system can be also used to deposit superconducting material. A Ga beam is used to decompose a precusor W(CO){sub 6} molecule, giving an amorphous mixture of W–C–Ga–O which is superconducting below liquid helium temperatures. The amorphous nature of the deposit gives isotropic superconducting features, and vortex pinning is determined by the surface topography (or film thickness). Here we present vortex lattice images in an amorphous thin film with a nanofabricated array of dots. We find vortex confinement within the dots and inhomogeneous vortex distributions with large magnetic field gradients (around a Tesla in 10–20 nm). We discuss scaling behavior of the vortex lattice after nanofabrication.

  3. Particle-Vortex Duality from 3d Bosonization

    CERN Document Server

    Karch, Andreas

    2016-01-01

    We provide a simple derivation of particle-vortex duality in d=2+1 dimensions. Our starting point is a relativistic form of flux attachment, designed to transmute the statistics of particles. From this seed, we derive a web of new dualities. These include particle-vortex duality for bosons as well as the recently discovered counterpart for fermions.

  4. Modeling Vortex Generators in a Navier-Stokes Code

    Science.gov (United States)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  5. Modeling Vortex Generators in the Wind-US Code

    Science.gov (United States)

    Dudek, Julianne C.

    2010-01-01

    A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.

  6. Shell Games. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experiences supported by multimedia instruction. This document presents an overview on the biology of…

  7. Maxwell's Demon in the Ranque-Hilsch Vortex Tube

    Science.gov (United States)

    Liew, R.; Zeegers, J. C. H.; Kuerten, J. G. M.; Michalek, W. R.

    2012-08-01

    A theory was developed that explains energy separation in a vortex tube, known as one of the Maxwellian demons. It appears that there is a unique relation between the pressures in the exits of the vortex tube and its temperatures. Experimental results show that the computed and measured temperatures are in very good agreement.

  8. Droplet behaviour in a Ranque-Hilsch vortex tube

    NARCIS (Netherlands)

    Liew, R.; Michalek, W.R.; Zeegers, J.C.H.; Kuerten, J.G.M.

    2011-01-01

    The vortex tube is an apparatus by which compressed gas is separated into cold and warm streams. Although the apparatus is mostly used for cooling, the possibility to use the vortex tube as a device for removing non-desired condensable components from gas mixtures is investigated. To give first insi

  9. Preliminary technical and economic evaluation of vortex extraction devices

    Energy Technology Data Exchange (ETDEWEB)

    Kornreich, T. R.; Kottler, Jr., R. J.; Jennings, D. M.

    1980-04-01

    Two innovative vortex extraction devices - the Tornado Wind Energy System (TWES) and the Vortex Augmentor Concept (VAC) - are critically evaluated to provide a preliminary assessment of their technical and economic viability as compared to conventional horizontal axis wind energy systems. This assessment was carried out over a wide range of power output levels and augmentation ratios appropriate to each of the concepts.

  10. Optical vortex coronagraphy from soft spin-orbit masks

    CERN Document Server

    Aleksanyan, Artur

    2016-01-01

    We report on a soft route towards optical vortex coronagraphy based on self-engineered electrically tunable vortex masks based on liquid crystal topological defects. These results suggest that a Nature-assisted technological approach to the fabrication of complex phase masks could be useful in optical imaging whenever optical phase singularities are at play.

  11. On the electron vortex beam wavefunction within a crystal

    Energy Technology Data Exchange (ETDEWEB)

    Mendis, B.G., E-mail: b.g.mendis@durham.ac.uk

    2015-10-15

    Electron vortex beams are distorted by scattering within a crystal, so that the wavefunction can effectively be decomposed into many vortex components. Using a Bloch wave approach equations are derived for vortex beam decomposition at any given depth and with respect to any frame of reference. In the kinematic limit (small specimen thickness) scattering largely takes place at the neighbouring atom columns with a local phase change of π/2 rad. When viewed along the beam propagation direction only one vortex component is present at the specimen entrance surface (i.e. the ‘free space’ vortex in vacuum), but at larger depths the probe is in a mixed state due to Bragg scattering. Simulations show that there is no direct correlation between vortex components and the pendellösung, i.e. at a given depth probes with relatively constant can be in a more mixed state compared to those with more rapidly varying . This suggests that minimising oscillations in the pendellösung by probe channelling is not the only criterion for generating a strong electron energy loss magnetic circular dichroism (EMCD) signal. - Highlights: • Equations are derived for vortex decomposition due to scattering within a crystal. • There is no direct correlation between vortex decomposition and pendellösung. • Results are also discussed in the context of EMCD measurements.

  12. Updated Results for the Wake Vortex Inverse Model

    Science.gov (United States)

    Robins, Robert E.; Lai, David Y.; Delisi, Donald P.; Mellman, George R.

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an Inverse Model for inverting aircraft wake vortex data. The objective of the inverse modeling is to obtain estimates of the vortex circulation decay and crosswind vertical profiles, using time history measurements of the lateral and vertical position of aircraft vortices. The Inverse Model performs iterative forward model runs using estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Iterations are performed until a user-defined criterion is satisfied. Outputs from an Inverse Model run are the best estimates of the time history of the vortex circulation derived from the observed data, the vertical crosswind profile, and several vortex parameters. The forward model, named SHRAPA, used in this inverse modeling is a modified version of the Shear-APA model, and it is described in Section 2 of this document. Details of the Inverse Model are presented in Section 3. The Inverse Model was applied to lidar-observed vortex data at three airports: FAA acquired data from San Francisco International Airport (SFO) and Denver International Airport (DEN), and NASA acquired data from Memphis International Airport (MEM). The results are compared with observed data. This Inverse Model validation is documented in Section 4. A summary is given in Section 5. A user's guide for the inverse wake vortex model is presented in a separate NorthWest Research Associates technical report (Lai and Delisi, 2007a).

  13. Effects of Surface Anisotropy on Magnetic Vortex Core

    OpenAIRE

    Pylypovskyi, Oleksandr V.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri

    2013-01-01

    The vortex core shape in the three dimensional Heisenberg magnet is essentially influenced by a surface anisotropy. We predict that depending of the surface anisotropy type there appears barrel- or pillow-shaped deformation of the vortex core along the magnet thickness. Our theoretical study is well confirmed by spin-lattice simulations.

  14. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms

    Directory of Open Access Journals (Sweden)

    Kevin Sunderland

    2016-01-01

    Full Text Available This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD simulations. Modified versions of known λ2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  15. Experimental Vortex Identification and Characterization in Reacting Jets in Crossflow

    Science.gov (United States)

    Nair, Vedanth; Emerson, Ben; Lieuwen, Timothy

    2016-11-01

    Reacting jets in crossflow (JICF) is an important canonical flow field in combustion problems where there is strong coupling between heat release and the evolution of vortical structures. We use vortex identification studies to experimentally characterize the spatial evolution of vortex dynamics in a reacting JICF. A vortex identification algorithm was designed to operate on particle image velocimetry (PIV) data and its raw Mie scattering images. The algorithm uses the velocity fields to obtain comparisons between the strain rate and the rotation rate. Additionally, the algorithm uses the raw Mie scattering data to identify regions where the high acceleration at vortex cores has centrifuged seeding particles out of the vortex cores. Together, these methods are used to estimate the vortex location and circulation. Analysis was done on 10 kHz PIV data from a reacting JICF experiment, and the resulting vortex trajectory, and growth rate statistics are presented. Results are compared between non-reacting JICF and reacting studies performed with different jet density ratios and different levels of acoustic forcing. We observed how the density ratio, the frequency and amplitude of the acoustic forcing affected the vortex characteristics and growth rate.

  16. Vortex dynamics in the wake of a mechanical fish

    Energy Technology Data Exchange (ETDEWEB)

    Bruecker, Christoph [TU Bergakademie Freiberg, Lehrstuhl fuer Stroemungslehre und Stroemungsmaschinen, Freiberg (Germany); Bleckmann, Horst [Poppelsdorfer Schloss, Zoologisches Institut Bonn, Bonn (Germany)

    2007-11-15

    This study focuses on the three-dimensional flow around a mechanical fish model, which reproduces the typical undulatory body and fin motion of a carangiform swimmer. The mechanical model consists of a flexible skeleton embedded in a soft transparent silicone body, which is connected with two cams to a flapping and bending hinge generating a traveling wave motion with increasing amplitude from anterior to posterior, extending to a combined heaving and pitching motion at the fin. The model is submerged in a water tank and towed at the characteristic swimming speed for the neutral swimming mode at U/V = 1. The method of Scanning Particle Image Velocimetry was used to analyze the three-dimensional time-dependent flow field in the axial and saggital planes. The results confirm the earlier observations that the wake develops into a chain of vortex rings which travel sidewards perpendicular to the swimming direction. However, instead of one single vortex shed at each tail beat half-cycle we observed a pair of two vortex rings being shed. Each pair consists of a larger main vortex ring corresponding to the tail beat start-stop vortex, while the second vortex ring is due to the body bending motion. The existence of the second vortex reflects the role of the body in undulatory swimming. A simplified model of the fish body comparing it to a plate with a hinged flap demonstrates the link between the sequence of kinematics and vortex shedding. (orig.)

  17. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms

    Science.gov (United States)

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments. PMID:27891172

  18. Quantum vortex dynamics in two-dimensional neutral superfluids

    NARCIS (Netherlands)

    Wang, C. -C J.; Duine, R.A.; MacDonald, A.H.

    2010-01-01

    We derive an effective action for the vortex-position degree of freedom in a superfluid by integrating out condensate phase- and density-fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and

  19. Longitudinal impedance of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, J. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  20. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between...

  1. Prediction Model for Vortex-Induced Vibration of Circular Cylinder with Data of Forced Vibration

    Institute of Scientific and Technical Information of China (English)

    PAN Zhi-yuan; CUI Wei-cheng; LIU Ying-zhong

    2007-01-01

    A model based on the data from forced vibration experiments is developed for predicting the vortex-induced vibrations (VIV) of elastically mounted circular cylinders in flow. The assumptions for free and forced vibration tests are explored briefly. Energy equilibrium is taken into account to set up the relationship between the dynamic response of self-excited oscillations and the force coefficients from forced vibration experiments. The gap between these two cases is bridged straightforwardly with careful treatment of key parameters. Given reduced mass m* and material damping ratio ζ of an elastically mounted circular cylinder in flow, the response characteristics such as amplitude, frequency, lock-in range, added mass coefficient, cross-flow fluid force and the corresponding phase angle can be predicted all at once. Instances with different combination of reduced mass and material damping ratio are compared to investigate their effects on VIV. The hysteresis phenomenon can be interpreted reasonably. The predictions and the results from recent experiments carried out by Williamson's group are in rather good agreement.

  2. Influence of Structural Parameters on the Performance of Vortex Valve Variable-Thrust Solid Rocket Motor

    Science.gov (United States)

    Wei, Xianggeng; Li, Jiang; He, Guoqiang

    2017-04-01

    The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.

  3. Coupled dynamics of vortex-induced vibration and stationary wall at low Reynolds number

    Science.gov (United States)

    Li, Zhong; Jaiman, Rajeev K.; Khoo, Boo Cheong

    2017-09-01

    The flow past an elastically mounted circular cylinder placed in proximity to a plane wall is numerically studied in both two dimensions (2D) and three dimensions (3D). This paper aims to explain the mechanism of the cylinder bottom shear layer roll-up suppression in the context of laminar vortex-induced vibration (VIV) of a cylinder placed in the vicinity of a plane stationary wall. In 2D simulations, VIV of a near-wall cylinder with structure-to-displaced fluid mass ratios of m* = 2 and 10 is investigated at the Reynolds number of Re = 100 at a representative gap ratio of e/D = 0.90, where e denotes the gap distance between the cylinder surface and the plane wall. First, the cylinder is placed at five different upstream distances, LU, to study the effects of the normalized wall boundary layer thickness, δ /D , on the hydrodynamic quantities involved in the VIV of a near-wall cylinder. It is found that the lock-in range shifts towards the direction of the higher reduced velocity Ur as δ /D increases and that the lock-in range widens as m* reduces. Second, via visualization of the vortex shedding patterns, four different modes are classified and the regime maps are provided for both m* = 2 and 10. Third, the proper orthogonal decomposition analysis is employed to assess the cylinder bottom shear layer roll-up suppression mechanism. For 3D simulations at Re = 200, the circular cylinder of a mass ratio of m* = 10 with a spanwise length of 4D is placed at a gap ratio of e/D = 0.90 and an upstream distance of LU = 10D. The 3D vortex patterns are investigated to re-affirm the vortex shedding suppression mechanism. The pressure distributions around the cylinder are identified within one oscillation cycle of VIV. The pressure and the shear stress distributions on the bottom wall are examined to demonstrate the effects of near-wall VIV on the force distributions along the plane wall. It is found that both the suction pressure and the shear stress right below the cylinder

  4. Longitudinal categorical data analysis

    CERN Document Server

    Sutradhar, Brajendra C

    2014-01-01

    This is the first book in longitudinal categorical data analysis with parametric correlation models developed based on dynamic relationships among repeated categorical responses. This book is a natural generalization of the longitudinal binary data analysis to the multinomial data setup with more than two categories. Thus, unlike the existing books on cross-sectional categorical data analysis using log linear models, this book uses multinomial probability models both in cross-sectional and longitudinal setups. A theoretical foundation is provided for the analysis of univariate multinomial responses, by developing models systematically for the cases with no covariates as well as categorical covariates, both in cross-sectional and longitudinal setups. In the longitudinal setup, both stationary and non-stationary covariates are considered. These models have also been extended to the bivariate multinomial setup along with suitable covariates. For the inferences, the book uses the generalized quasi-likelihood as w...

  5. U-shaped Vortex Structures in Large Scale Cloud Cavitation

    Science.gov (United States)

    Cao, Yantao; Peng, Xiaoxing; Xu, Lianghao; Hong, Fangwen

    2015-12-01

    The control of cloud cavitation, especially large scale cloud cavitation(LSCC), is always a hot issue in the field of cavitation research. However, there has been little knowledge on the evolution of cloud cavitation since it is associated with turbulence and vortex flow. In this article, the structure of cloud cavitation shed by sheet cavitation around different hydrofoils and a wedge were observed in detail with high speed camera (HSC). It was found that the U-shaped vortex structures always existed in the development process of LSCC. The results indicated that LSCC evolution was related to this kind of vortex structures, and it may be a universal character for LSCC. Then vortex strength of U-shaped vortex structures in a cycle was analyzed with numerical results.

  6. Kelvin Waves and Dynamic Knots on Perturbative Helical Vortex Lines

    CERN Document Server

    Kou, Su-Peng

    2016-01-01

    Vortex lines are one-dimensional extended objects in three-dimensional superfluids. Vortex lines have many interesting properties, including Kelvin waves, exotic statistics, and possible entanglement. In this paper, an emergent "quantum world" is explored by projecting helical vortex lines. A one-dimensional quantum Fermionic model is developed to effectively describe the local fluctuations of helical vortex lines. The elementary excitations are knots with half winding-number that obey emergent quantum mechanics. The Biot-Savart equation, and its Kelvin wave solutions on helical vortex lines become Schrodinger equation, and the wave functions of probability waves for finding knots, respectively. This work shows an alternative approach to simulating quantum many-body physics based on classical systems.

  7. (Non)-universality of vortex reconnections in superfluids

    CERN Document Server

    Villois, Alberto; Proment, Davide

    2016-01-01

    An insight into vortex reconnections in superfluids is presented making use of analytical results and numerical simulations of the Gross--Pitaevskii model. Universal aspects of the reconnection process are investigated by considering different initial vortex configurations and making use of a recently developed tracking algorithm to reconstruct the vortex filaments. We show that about the reconnection event the vortex lines approach and separate always accordingly to the time scaling $ \\delta \\sim t^{-1/2} $ with pre-factors that depend on the vortex configuration. We also investigate the behavior of curvature and torsion close to the reconnection point, demonstrating analytically that the curvature can exhibit a self-similar behavior that might be broken by the development of shock-like structures in the torsion.

  8. Source Term Model for an Array of Vortex Generator Vanes

    Science.gov (United States)

    Buning, P. G. (Technical Monitor); Waithe, Kenrick A.

    2003-01-01

    A source term model was developed for numerical simulations of an array of vortex generators. The source term models the side force created by a vortex generator being modeled. The model is obtained by introducing a side force to the momentum and energy equations that can adjust its strength automatically based on a local flow. The model was tested and calibrated by comparing data from numerical simulations and experiments of a single low-profile vortex generator vane, which is only a fraction of the boundary layer thickness, over a flat plate. The source term model allowed a grid reduction of about seventy percent when compared with the numerical simulations performed on a fully gridded vortex generator without adversely affecting the development and capture of the vortex created. The source term model was able to predict the shape and size of the stream wise vorticity and velocity contours very well when compared with both numerical simulations and experimental data.

  9. Intense harmonics generation with customized photon frequency and optical vortex

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Zhang, Lingang; Ji, Liangliang; Wang, Xiaofeng; Xu, Zhizhan; Tajima, Toshiki

    2016-08-01

    An optical vortex with orbital angular momentum (OAM) enriches the light and matter interaction process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is proposed for the first time to explore the origin of photons in the generated harmonics, and produce relativistic intense harmonics with expected frequency and an optical vortex. When two counter-propagating Laguerre-Gaussian laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without an optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell simulations. Inheriting the properties of OAM and harmonics, the obtained intense vortex beam can be applied in a wide range of fields, including atom or molecule control and manipulation.

  10. Vortex Tube Modeling Using the System Identification Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jeong, Jiwoong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Im, Seokyeon [Tongmyong Univ., Busan (Korea, Republic of)

    2017-05-15

    In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

  11. Coupled particle dispersion by three-dimensional vortex structures

    Energy Technology Data Exchange (ETDEWEB)

    Troutt, T.R.; Chung, J.N.; Crowe, C.T.

    1996-12-31

    The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.

  12. Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop

    Science.gov (United States)

    Creduer, Leonard (Editor); Perry, R. Brad (Editor)

    1997-01-01

    A Government and Industry workshop on wake vortex dynamic spacing systems was conducted on May 13-15, 1997, at the NASA Langley Research Center. The purpose of the workshop was to disclose the status of ongoing NASA wake vortex R&D to the international community and to seek feedback on the direction of future work to assure an optimized research approach. Workshop sessions examined wake vortex characterization and physics, wake sensor technologies, aircraft/wake encounters, terminal area weather characterization and prediction, and wake vortex systems integration and implementation. A final workshop session surveyed the Government and Industry perspectives on the NASA research underway and related international wake vortex activities. This document contains the proceedings of the workshop including the presenters' slides, the discussion following each presentation, the wrap-up panel discussion, and the attendees' evaluation feedback.

  13. Spectral Characteristics of Wake Vortex Sound During Roll-Up

    Science.gov (United States)

    Booth, Earl R., Jr. (Technical Monitor); Zhang, Yan; Wang, Frank Y.; Hardin, Jay C.

    2003-01-01

    This report presents an analysis of the sound spectra generated by a trailing aircraft vortex during its rolling-up process. The study demonstrates that a rolling-up vortex could produce low frequency (less than 100 Hz) sound with very high intensity (60 dB above threshold of human hearing) at a distance of 200 ft from the vortex core. The spectrum then drops o rapidly thereafter. A rigorous analytical approach has been adopted in this report to derive the spectrum of vortex sound. First, the sound pressure was solved from an alternative treatment of the Lighthill s acoustic analogy approach [1]. After the application of Green s function for free space, a tensor analysis was applied to permit the removal of the source term singularity of the wave equation in the far field. Consequently, the sound pressure is expressed in terms of the retarded time that indicates the time history and spacial distribution of the sound source. The Fourier transformation is then applied to the sound pressure to compute its spectrum. As a result, the Fourier transformation greatly simplifies the expression of the vortex sound pressure involving the retarded time, so that the numerical computation is applicable with ease for axisymmetric line vortices during the rolling-up process. The vortex model assumes that the vortex circulation is proportional to the time and the core radius is a constant. In addition, the velocity profile is assumed to be self-similar along the aircraft flight path, so that a benchmark vortex velocity profile can be devised to obtain a closed form solution, which is then used to validate the numerical calculations for other more realistic vortex profiles for which no closed form solutions are available. The study suggests that acoustic sensors operating at low frequency band could be profitably deployed for detecting the vortex sound during the rolling-up process.

  14. Cut-and-connect of two antiparallel vortex tubes

    Science.gov (United States)

    Melander, Mogens V.; Hussain, Fazle

    1988-01-01

    Motivated by an early conjecture that vortex cut-and-connect plays a key role in mixing and production of turbulence, helicity and aerodynamic noise, the cross-linking of two antiparallel viscous vortex tubes via direct numerical simulation is studied. The Navier-Stokes equations are solved by a dealiased pseudo-spectral method with 64 cubed grid points in a periodic domain for initial Reynolds numbers Re up to 1000. The vortex tubes are given an initial sinusoidal perturbation to induce a collision and keep the two tubes pressed against each other as annihilation continues. Cross-sectional and wire plots of various properties depict three stages of evolution: (1) Inviscid induction causing vortex cores to first approach and form a contact zone with a dipole cross-section, and then to flatten and stretch; (2) Vorticity annihilation in the contact zone accompanied by bridging between the two vortices at both ends of the contact zone due to a collection of cross-linked vortex lines, now orthogonal to the initial vortex tubes. The direction of dipole advection in the contact zone reverses; and (3) Threading of the remnants of the original vortices in between the bridges as they pull apart. The crucial stage 2 is shown to be a simple consequence of vorticity annihilation in the contact zone, link-up of the un-annihilated parts of vortex lines, and stretching and advection by the vortex tube swirl of the cross-linked lines, which accumulate at stagnation points in front of the annihilating vortex dipole. It is claimed that bridging is the essence of any vorticity cross-linking and that annihilation is sustained by stretching of the dipole by the bridges. Vortex reconnection details are found to be insensitive to asymmetry. Modeling of the reconnection process is briefly examined. The 3D spatial details of scalar transport (at unity Schmidt number), enstrophy production, dissipation and helicity are also examined.

  15. Volcanic hazards at Mount Rainier, Washington

    Science.gov (United States)

    Crandell, Dwight Raymond; Mullineaux, Donal Ray

    1967-01-01

    Mount Rainier is a large stratovolcano of andesitic rock in the Cascade Range of western Washington. Although the volcano as it now stands was almost completely formed before the last major glaciation, geologic formations record a variety of events that have occurred at the volcano in postglacial time. Repetition of some of these events today without warning would result in property damage and loss of life on a catastrophic scale. It is appropriate, therefore, to examine the extent, frequency, and apparent origin of these phenomena and to attempt to predict the effects on man of similar events in the future. The present report was prompted by a contrast that we noted during a study of surficial geologic deposits in Mount Rainier National Park, between the present tranquil landscape adjacent to the volcano and the violent events that shaped parts of that same landscape in the recent past. Natural catastrophes that have geologic causes - such as eruptions, landslides, earthquakes, and floods - all too often are disastrous primarily because man has not understood and made allowance for the geologic environment he occupies. Assessment of the potential hazards of a volcanic environment is especially difficult, for prediction of the time and kind of volcanic activity is still an imperfect art, even at active volcanoes whose behavior has been closely observed for many years. Qualified predictions, however, can be used to plan ways in which hazards to life and property can be minimized. The prediction of eruptions is handicapped because volcanism results from conditions far beneath the surface of the earth, where the causative factors cannot be seen and, for the most part, cannot be measured. Consequently, long-range predictions at Mount Rainier can be based only on the past behavior of the volcano, as revealed by study of the deposits that resulted from previous eruptions. Predictions of this sort, of course, cannot be specific as to time and locale of future events, and

  16. Direct Numerical Simulation of Twin Swirling Flow Jets: Effect of Vortex-Vortex Interaction on Turbulence Modification

    Directory of Open Access Journals (Sweden)

    Wenkai Xu

    2014-01-01

    Full Text Available A direct numerical simulation (DNS was carried out to study twin swirling jets which are issued from two parallel nozzles at a Reynolds number of Re = 5000 and three swirl levels of S = 0.68, 1.08, and 1.42, respectively. The basic structures of vortex-vortex interaction and temporal evolution are illustrated. The characteristics of axial variation of turbulent fluctuation velocities, in both the near and far field, in comparison to a single swirling jet, are shown to explore the effects of vortex-vortex interaction on turbulence modifications. Moreover, the second order turbulent fluctuations are also shown, by which the modification of turbulence associated with the coherent or correlated turbulent fluctuation and turbulent kinetic energy transport characteristics are clearly indicated. It is found that the twin swirling flow has a fairly strong localized vortex-vortex interaction between a pair of inversely rotated vortices. The location and strength of interaction depend on swirl level greatly. The modification of vortex takes place by transforming large-scale vortices into complex small ones, whereas the modulation of turbulent kinetic energy is continuously augmented by strong vortex modification.

  17. 76 FR 76689 - Cibola National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling

    Science.gov (United States)

    2011-12-08

    ... Exploratory Drilling AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact... drilling on the Cibola National Forest, Mount Taylor Ranger District. There are two areas identified for... vicinity of the town of San Mateo. In total, there are up to 279 drill holes that would be drilled over...

  18. Deformation of vortex patches by boundaries

    CERN Document Server

    Crosby, A; Morrison, P J

    2013-01-01

    The deformation of two-dimensional vortex patches in the vicinity of fluid boundaries is investigated. The presence of a boundary causes an initially circular patch of uniform vorticity to deform. Sufficiently far away from the boundary, the deformed shape is well approximated by an ellipse. This leading order elliptical deformation is investigated via the elliptic moment model of Melander, Zabusky & Styczek [M. V. Melander, N. J. Zabusky & A. S. Styczek, J. Fluid. Mech., 167, 95 (1986)]. When the boundary is straight, the centre of the elliptic patch remains at a constant distance from the boundary, and the motion is integrable. Furthermore, since the straining flow acting on the patch is constant in time, the problem is that of an elliptic vortex patch in constant strain, which was analysed by Kida [S. Kida, J. Phys. Soc. Japan, 50, 3517 (1981)]. For more complicated boundary shapes, such as a square corner, the motion is no longer integrable. Instead, there is an adiabatic invariant for the motion....

  19. VORTEX INDUCED VIBRATIONS OF FINNED CYLINDERS

    Institute of Scientific and Technical Information of China (English)

    SHA Yong; WANG Yong-xue

    2008-01-01

    This article presents the results of a numerical simulation on the vortex induced vibration of various finned cylinders at low Reynolds number. The non-dimensional, incompressible Navier-Stokes equations and continuity equation were adopted to simulate the fluid around the cylinder. The cylinder (with or without fins) in fluid flow was approximated as a mass-spring system. The fluid-body interaction of the cylinder with fins and uniform flow was numerically simulated by applying the displacement and stress iterative computation on the fluid-body interfaces. Both vortex structures and response amplitudes of cylinders with various arrangements of fins were analyzed and discussed. The remarkable decrease of response amplitude for the additions of Triangle60 fins and Quadrangle45 fins was found to be comparable with that of bare cylinder. However, the additions of Triangle00 fins and Quadrangle00 fins enhance the response amplitude greatly. Despite the assumption of two-dimensional laminar flow, the present study can give a good insight into the phenomena of cylinders with various arrangements of fins.

  20. Dominant Vortex Structures in Transverse Jets

    Directory of Open Access Journals (Sweden)

    Seyfettin Bayraktar

    2016-01-01

    Full Text Available In this paper, formation and development of one of the most dominant vortex structures, namely, counter-rotating vortex pair (CVP which is seen in the jet in crossflow are investigated numerically. Influences of the inclination angles between the nozzle(s and channel on the CVP are presented for three inclination angles, =30, 60 and 90 at velocity ratio, R=2.0. Effects of the number of the nozzles on the evolution of CVP is analyzed by considering the single and three side-by-side positioned circular nozzles. In addition to the CVP, some secondary vortices are also reported by considered relatively a narrow channel because their existence cannot be showed in wider channel. Simulations reveal that higher the inclination angle the more jet penetration into the channel in all directions and increasing the inclination angle causes larger CVPs in size. Although the flow structure of the CVP formed in the single and three side-by-side nozzles are similar their evolution is quite different.

  1. What is the vortex ``transport entropy"?

    Science.gov (United States)

    Sergeev, Andrei; Reizer, Michael; Mitin, Vladimir

    2008-03-01

    Below the superconducting transition the large thermomagnetic effects in the type II superconductors are determined by magnetic vortices. These topological excitations are completely different from particle-hole exctitations in the Fermi liquid and, therefore, the thermomagnetic effects do not require particle-hole asymmetry. Thermomagnetic effects in the vortex state are widely described in terms of the ``transport entropy.'' Despite of intensive theoretical and experimental investigations, this mysterious quantity is still in conflict with either the Onsager principle or the third law of thermodynamics [1]. We resolve this forty years enigma taking into account the magnetization current in the presence of the temperature gradient. Then contributions of superconducting currents of vortices are canceled in the Nernst effect, and, therefore, in agreement with the Onsager relation, both the Nernst and Ettingshausen phenomena originate solely from vortex cores. Finally, the transport entropy turns out to be by a factor of 4 ln (λ/ ξ) smaller than that used in literature [1] (λ is the magnetic field penetration depth, ξ is the coherence length. For high-temperature cuprates this factor is ˜20. [1] R.P. Huebener, Magnetic flux structures in superconductors, Springer-Verlag, Berlin, (1979).

  2. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  3. Scalar Mixing In A Vortex Flow

    Science.gov (United States)

    Meunier, P.; Villermaux, E.; Leweke, T.

    We present experimental and theoretical results on the evolution of a scalar blob em- bedded in the velocity field of one or two vortices, a configuration relevant to geo- physical mixing in particular. We first follow the evolution of the scalar in one vortex. The scalar blob rolls up into a spiral and then diffuses rapidly, much faster than in the absence of a vortex flow. A simple model predicts that the maximal scalar concentration decreases in time as t-3 , after a mixing time which scales like Pe1 /2 /3 (where Pe = /D is the Peclet number). This hyper-diffusion process is due to the coupled presence of stretching and diffusion, and is in good quantitative agreement with the experimental results. In contrast with this temporal variation of the scalar, the model predicts that the proba- bility distribution functions (PDF) of the scalar are almost stationnary. The agreement between experimental and theoretical PDF is excellent. Finally, we report on the evolution of the PDF of a scalar during the merging of two vortices and on the comparison law of the concentration PDF's associated with each vortices, both in laminar and turbulent situations.

  4. Vortex dynamics of particle-wall collisions

    Science.gov (United States)

    Leweke, Thomas; Thompson, Mark C.; Hourigan, Kerry

    2003-11-01

    We present results from an experimental and numerical study of the flow generated by a particle impacting onto a solid wall at low Reynolds numbers. Experimentally, a 3/4" bronze sphere attached to an inelastic string was lowered onto a Plexiglas plate inside a glass tank, using a stepper motor. Direct Numerical Simulations were carried out using either an axisymmetric or a fully 3D spectral-element code. The parameters varied were the running distance before impact, the sphere Reynolds number during motion, and the stopping distance away from the wall. For running lengths less than 7.5 diameters, the sphere wake remains axisymmetric in the form of an attached vortex ring. At impact, this ring overtakes the sphere and spreads out along the wall. When the sphere stops more than 0.3 diameters away from the wall, the secondary vorticity generated at the sphere surface rolls up into a second vortex ring persisting over a long time. At Reynolds number above 1000, the flow after impact exhibits a 3D instability with azimuthal wave numbers of around 20. Flow visualizations, vorticity fields, and quantitative information on the flow topology will be shown to illustrate the different regimes. The effect of a rebound of the sphere is also discussed.

  5. Compressible vortex loops: Effect of nozzle geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zare-Behtash, H. [School of MACE, University of Manchester, M60 1QD (United Kingdom)], E-mail: h.zare-behtash@postgrad.manchester.ac.uk; Kontis, K. [School of MACE, University of Manchester, M60 1QD (United Kingdom)], E-mail: k.kontis@manchester.ac.uk; Gongora-Orozco, N. [School of MACE, University of Manchester, M60 1QD (United Kingdom); Takayama, K. [Tohoku University, Shock Wave Research Centre, Sendai 980-8577 (Japan)

    2009-06-15

    Vortex loops are fundamental building blocks of supersonic free jets. Isolating them allows for an easier study and better understanding of such flows. The present study looks at the behaviour of compressible vortex loops of different shapes, generated due to the diffraction of a shock wave from a shock tube with different exit nozzle geometries. These include a 15 mm diameter circular nozzle, two elliptical nozzles with minor to major axis ratios of 0.4 and 0.6, a 30 x 30 mm square nozzle, and finally two exotic nozzles resembling a pair of lips with minor to major axis ratios of 0.2 and 0.5. The experiments were performed for diaphragm pressure ratios of P{sub 4}/P{sub 1}=4, 8, and 12, with P{sub 4} and P{sub 1} being the pressures within the high pressure and low pressure compartments of the shock tube, respectively. High-speed schlieren photography as well as PIV measurements of both stream-wise and head-on flows have been conducted.

  6. Interactions between unidirectional quantized vortex rings

    CERN Document Server

    Zhu, T; Brown, R A; Walmsley, P M; Golov, A I

    2016-01-01

    We have used the vortex filament method to numerically investigate the interactions between pairs of quantized vortex rings that are initially traveling in the same direction but with their axes offset by a variable impact parameter. The interaction of two circular rings of comparable radii produce outcomes that can be categorized into four regimes, dependent only on the impact parameter; the two rings can either miss each other on the inside or outside, or they can reconnect leading to final states consisting of either one or two deformed rings. The fraction of of energy went into ring deformations and the transverse component of velocity of the rings are analyzed for each regime. We find that rings of very similar radius only reconnect for a very narrow range of the impact parameter, much smaller than would be expected from geometrical cross-section alone. In contrast, when the radii of the rings are very different, the range of impact parameters producing a reconnection is close to the geometrical value. A...

  7. Optical vortex conversion in the elliptic vortex-beam propagating orthogonally to the crystal optical axis: the experiment

    Science.gov (United States)

    Sokolenko, Bogdan; Kudryavtseva, Maria; Zinovyev, Alexey; Konovalenko, Victor; Rubass, Alex

    2012-01-01

    We have experimentally analyzed the topological reactions occurred in the elliptic vortex-beam transmitting orthogonally to the optical axis of the SiO2 crystal. We have revealed that the oscillations of the polarization state when propagating the beam are accompanied by reconstruction of the polarization singularities at the beam cross-section that, in turn, entails the reconstruction of the wavefront in each circularly polarized beam component. Both synchronic oscillations of the spin angular momentum and the sign of the vortex topological charge are expressing in a field structure as birth and annihilation of topological dipoles. Also periodical conversion of the vortex ellipticity along the crystal length z and huge splash of spin angular momentum were analysed. The run of the dislocation reactions in the beam component results in converting the sign of the topological charge in the centered optical vortex, the distance of the vortex conversion being about 0.05 of the wavelength.

  8. A numerical study of flow about fixed and flexibly mounted circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Meling, Trond Stokka

    1998-12-31

    Motivated by the needs of the offshore oil industry, this thesis studies flow around a circular cylinder that is either fixed or flexibly mounted. The latter configuration is susceptible to vortex-induced vibrations. To predict the results numerically, a two-dimensional procedure was developed to handle the fluid domain, the structural problem and the non-linear interaction between the two media. The arbitrary Lagrangian-Eulerian approach was employed in order to handle moving boundaries. The fluid forces and the cylinder kinematics are solved in a staggered fashion. A velocity-correction method is employed to solve the incompressible Navier-Stokes equations where the Galerkin finite element method is used for the spatial discretization of the fluid domain. The second-order equation of motion of the cylinder is solved by a 4th order Rung-Kutta scheme. Various numerical schemes for solving the convection-diffusion equation involved are tested. All the schemes, except the rational Runge-Kutta, were found to smear the vortex street. To predict the flow field at high Reynolds number several turbulence models were tested. The modified 2-layer K-epsilon model with all elements in the boundary layer was found to predict results in remarkably good agreement with experimental results. Self-excited vibration tests of circular cylinders are also performed showing that the presented model is able to capture the lock-in phenomenon with reasonable accuracy, both in the laminar- and in the subcritical Reynolds number regime. 136 refs., 67 figs., 13 tabs.

  9. Vortex magnetic structure in circularly magnetized microwires as deduced from magneto-optical Kerr measurements

    KAUST Repository

    Ivanov, Yurii P.

    2014-02-14

    The magneto-optic Kerr effect has been employed to determine the magnetization process and estimate the domain structure of microwires with circular magnetic anisotropy. The diameter of microwires was 8 μm, and pieces 2 cm long were selected for measurements. The analysis of the local surface longitudinal and transverse hysteresis loops has allowed us to deduce a vortex magnetic structure with axial core and circular external shell. Moreover, a bamboo-like surface domain structure is confirmed with wave length of around 10 to 15 μm and alternating chirality in adjacent circular domains. The width of the domain wall is estimated to be less than 3 μm. Finally, closure domain structures with significant helical magnetization component are observed extending up to around 1000 μm from the end of the microwire.

  10. Hydrodynamic performance of flexible risers subject to vortex-induced vibrations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; YANG Jian-min; XIAO Long-fei; LU Hai-ning

    2013-01-01

    The Vortex-Induced Vibration (VIV) displacements are determined from both the measured accelerations and strains in a series of VIV experiments.Based on the results,the forces in the longitudinal,transversal and tangential directions are estimated by using the finite element method with and without considering the interactions between adjacent elements.The numerical simulation indicates that the method considering the interactions performs better in the estimation of the forces.The component of the transversal force in phase with the acceleration is associated with the added mass coefficient.The estimated added mass coefficients take abnormally high values at the locations where the displacements are small.An improved formula based on the L'Hospital's rule is pro-posed to deal with this problem.The results show the advantage of this formula in estimating the added mass coefficients at the loca-tions with small ⅥⅤ displacements.

  11. Eruptive history of Mount Katmai, Alaska

    Science.gov (United States)

    Hildreth, Edward; Fierstein, Judith

    2012-01-01

    Mount Katmai has long been recognized for its caldera collapse during the great pyroclastic eruption of 1912 (which vented 10 km away at Novarupta in the Valley of Ten Thousand Smokes), but little has previously been reported about the geology of the remote ice-clad stratovolcano itself. Over several seasons, we reconnoitered all parts of the edifice and sampled most of the lava flows exposed on its flanks and caldera rim. The precipitous inner walls of the 1912 caldera remain too unstable for systematic sampling; so we provide instead a photographic and interpretive record of the wall sequences exposed. In contrast to the several andesite-dacite stratovolcanoes nearby, products of Mount Katmai range from basalt to rhyolite. Before collapse in 1912, there were two overlapping cones with separate vent complexes and craters; their products are here divided into eight sequences of lava flows, agglutinates, and phreatomagmatic ejecta. Latest Pleistocene and Holocene eruptive units include rhyodacite and rhyolite lava flows along the south rim; a major 22.8-ka rhyolitic plinian fall and ignimbrite deposit; a dacite-andesite zoned scoria fall; a thick sheet of dacite agglutinate that filled a paleocrater and draped the west side of the edifice; unglaciated leveed dacite lava flows on the southeast slope; and the Horseshoe Island dacite dome that extruded on the caldera floor after collapse. Pre-collapse volume of the glaciated Katmai edifice was ∼30 km3, and eruptive volume is estimated to have been 57±13 km3. The latter figure includes ∼40±6 km3 for the edifice, 5±2 km3 for off-edifice dacite pyroclastic deposits, and 12±5 km3 for the 22.8-ka rhyolitic pyroclastic deposits. To these can be added 13.5 km3 of magma that erupted at Novarupta in 1912, all or much of which is inferred to have been withdrawn from beneath Mount Katmai. The oldest part of the edifice exposed is a basaltic cone, which gave a 40Ar/39Ar plateau age of 89 ± 25 ka.

  12. Effects of Longitudinal Photons

    CERN Document Server

    Friberg, C; Friberg, Christer; Sjöstrand, Torbjörn

    2000-01-01

    The description of longitudinal photons is far from trivial, and their phenomenological importance is largely unknown. While the cross section for direct interactions is calculable, an even more important contribution could come from resolved states. In the development of our model for the interactions of (real and) virtual photons, we have modeled resolved longitudinal effects by simple multiplicative factors on the resolved transverse-photon contributions. Recently, a first set of parton distributions for longitudinal virtual photons has been presented by Ch\\'yla. We therefore compare their impact on some representative distributions, relative to the simpler approaches.

  13. EVIDENCE OF THE NATURAL VORTEX LENGTH AND ITS EFFECT ON THE SEPARATION EFFICIENCY OF GAS CYCLONES

    NARCIS (Netherlands)

    HOFFMANN, AC; DEJONGE, R; ARENDS, H; HANRATS, C

    It is widely assumed that the vortex in a cyclone has a well defined length, which may be shorter than the physical length of the cyclone, One speaks of the 'end' to the vortex, and of the 'natural vortex length' or the 'natural turning length'. The space below the vortex is normally assumed to be

  14. EVIDENCE OF THE NATURAL VORTEX LENGTH AND ITS EFFECT ON THE SEPARATION EFFICIENCY OF GAS CYCLONES

    NARCIS (Netherlands)

    HOFFMANN, AC; DEJONGE, R; ARENDS, H; HANRATS, C

    1995-01-01

    It is widely assumed that the vortex in a cyclone has a well defined length, which may be shorter than the physical length of the cyclone, One speaks of the 'end' to the vortex, and of the 'natural vortex length' or the 'natural turning length'. The space below the vortex is normally assumed to be i

  15. MOUNT PELE, AN ECOCLIMATIC GRADIENT GENERATOR

    Directory of Open Access Journals (Sweden)

    PHILIPPE JOSEPH

    2013-05-01

    Full Text Available Generally, mountains determine the characteristics of particular areas, because of the island phenomenon they cause. However, the geological origins of mountains are multiple and they are located in different climatic regions. Nevertheless, in all aspects they reflect the basic elements of the local biologic unit. The shapes, climates, diverse water resources, biocenoses and the generated soils are the different components that determine, through their dynamic interaction, the “Mountain” ecosystem. Tectonic subduction processes lead to the development of islands such as Martinique, whose basic structure consists of a series of mountains (among them Mount Pele. Like the topographic divisions, the local micro-climates, water courses, different soils (themselves the consequences of the presence of the mountain itself and successive volcanic eruptions determine, over time, the organization of the diverse vegetal entities.

  16. Accurate Telescope Mount Positioning with MEMS Accelerometers

    Science.gov (United States)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the sub-arcminute range which is well smaller than the field-of-view of conventional imaging telescope systems. Here we present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  17. Renewed unrest at Mount Spurr Volcano, Alaska

    Science.gov (United States)

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  18. Insectivore Plants Nepenthes sp. at Mount Merbabu

    Directory of Open Access Journals (Sweden)

    AHMAD DWI SETYAWAN

    2000-07-01

    Full Text Available The aims of the research were to know the existence of the Nepenthes at mount Merbabu, variations of its morphology, associated plants, and ecological conditions. Nepenthes are one of plants that were categorized as conserved plant by Indonesian government as indicated in PPRI No. 7/1999. Many researchers attracted to study this unique plant since it’s distinct feature and the way to get nutrient by trapping insects at its sac. Samples were taken randomly along the path for climbing from Selo, Boyolali to the top of the mountain between April to May 2000. The results show that the plants were found at the altitude of around 1500 to 2000 tsl. There were two forms of the sacs, long and short at the same individual plants. The plants grow coiling on Myristica trees and shrubs of Thunbergia fragrans Roxb., and also could grow at the stoned-soil.

  19. Foot mounted inertial system for pedestrian navigation

    Science.gov (United States)

    Godha, S.; Lachapelle, G.

    2008-07-01

    This paper discusses algorithmic concepts, design and testing of a system based on a low-cost MEMS-based inertial measurement unit (IMU) and high-sensitivity global positioning system (HSGPS) receivers for seamless personal navigation in a GPS signal degraded environment. The system developed here is mounted on a pedestrian shoe/foot and uses measurements based on the dynamics experienced by the inertial sensors on the user's foot. The IMU measurements are processed through a conventional inertial navigation system (INS) algorithm and are then integrated with HSGPS receiver measurements and dynamics derived constraint measurements using a tightly coupled integration strategy. The ability of INS to bridge the navigation solution is evaluated through field tests conducted indoors and in severely signal degraded forest environments. The specific focus is on evaluating system performance under challenging GPS conditions.

  20. Robotized Surface Mounting of Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Erik Hultman

    2014-10-01

    Full Text Available Using permanent magnets on a rotor can both simplify the design and increase the efficiency of electric machines compared to using electromagnets. A drawback, however, is the lack of existing automated assembly methods for large machines. This paper presents and motivates a method for robotized surface mounting of permanent magnets on electric machine rotors. The translator of the Uppsala University Wave Energy Converter generator is used as an example of a rotor. The robot cell layout, equipment design and assembly process are presented and validated through computer simulations and experiments with prototype equipment. A comparison with manual assembly indicates substantial cost savings and an improved work environment. By using the flexibility of industrial robots and a scalable equipment design, it is possible for this assembly method to be adjusted for other rotor geometries and sizes. Finally, there is a discussion on the work that remains to be done on improving and integrating the robot cell into a production line.